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Abstract
The longitudinal dispersion coefficient (LDC) of river pollutants is considered as one of the prominent water quality parameters.
In this regard, numerous research studies have been conducted in recent years, and various equations have been extracted based
on hydrodynamic and geometric elements. LDC’s estimated values obtained using different equations reveal a significant
uncertainty due to this phenomenon’s complexity. In the present study, the crow search algorithm (CSA) is applied to increase
the equation’s precision by employing evolutionary polynomial regression (EPR) to model an extensive amount of geometrical
and hydraulic data. The results indicate that the CSA improves the performance of EPR in terms of R2 (0.8), Willmott’s index of
agreement (0.93), Nash–Sutcliffe efficiency (0.77), and overall index (0.84). In addition, the reliability analysis of the proposed
equation (i.e., CSA) reduced the failure probability (Pf) when the value of the failure state containing 50 to 600 m

2/s is increasing
for the Pf determination using the Monte Carlo simulation. The best-fitted function for correct failure probability prediction was
the power with R2 = 0.98 compared with linear and exponential functions.
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Nomenclatures
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ARE Average relative error
B Channel width
BA Bee algorithm
BN Bayesian network
CSA Crow search algorithm

DE Differential evolution
DR Discrepancy ratio
EPR Evolutionary polynomial regression
H Flow depth
GA Genetic algorithm
GC Granular computing
GEP Gene expression programming
GP Genetic programming
GPR Gaussian process regression
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ICA Imperialist competitive algorithm
LDC Longitudinal dispersion coefficient
LMA Levenberg–Marquardt algorithm
MAE Mean absolute error
MARS Multivariate adaptive regression splines
MCS Monte Carlo simulation
ME Mean of the absolute error
MER Mean error rate
MLR Multivariate linear regression
MT Model tree
NE Normalized error
N F -
GMDH

Neuro-fuzzy–based group method of data
handling

NSE Nash–Sutcliffe efficiency
NLR Nonlinear regression
Pf Failure probability
RAE Relative absolute error
RMSE Root mean square error
SE Standard error
SVM Support vector machine
SVR Support vector regression
U Velocity
U∗ Shear velocity

Introduction

Monitoring the contaminants of natural rivers is a fundamental
part of environmental monitoring and assessment (Jeon et al.
2007; Rolsky et al. 2020). Developing novel methods for
evaluating and accurately estimating water quality of rivers,
as one of the fundamental freshwater recourses, has been an
active research domain of environmental modeling and as-
sessment (Parsaie and Haghiabi 2015). Urban and industrial

sewages are globally known as the principal sources of rivers’
pollution (Sercu et al. 2009; Cheng 2003). Therefore, the
study of mixing flow for reducing contamination level has
drawn many researchers’ attention for water quality assess-
ment (Hu et al. 2013; Haghiabi 2016). However, modeling
the pollutant composition due to several uncertainties and ir-
regularities regarding the formation of dead zones, recircula-
tion mechanism, bed configuration, velocity, and secondary
flow development is considered highly complex (Jeon et al.
2007). Modifying the longitudinal dispersion coefficient
(LDC) has been used to specify the pollution density distribu-
tion (Li et al. 2020).

Various mixing stages influence a pollutant due to flow
turbulence and molecular motion. As illustrated in Fig. 1,
which is an illustration adapted from (Baek and Seo
2010), the pollutants gradually diffuse in the river and infect
the downstream’s water. During the pollutant mixing process,
firstly, vertical mixing rapidly occurs near the field (Seo and
Cheong 1998). Afterward, a mixture occurs in the intermedi-
ate field in both longitudinal and transverse directions (Baek
and Seo 2010). After completing the transverse mixing in
natural rivers, the longitudinal mixing only is indefinitely
maintained in the far field without any boundaries (Baek and
Seo 2010). The dispersion coefficients are usually investigat-
ed using the concentration data collected from a tracer test.
However, in the absence of any concentration dataset, the
dispersion coefficients are determined by theoretical or empir-
ical approaches based on the geometric and hydraulic param-
eters (Baek and Seo 2010). Empirical approaches and exper-
imental datasets require time-consuming and expensive re-
search; thus, there is an essential demand for professional
tools for estimating this coefficient in rivers (Alizadeh et al.
2017c). Several studies (e.g., Elder 1959; Seo and Cheong
1998; Deng et al. 2001; Kashefipour and Falconer 2002;

Fig. 1 Conceptual diagram of
dispersion mechanism in rivers
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Disley et al. 2014; Zeng and Huai 2014; Sahin 2014; Wang
and Huai 2016) estimate the LDC using the experimental
methods and field measurements where the LDC of rivers
represents the mixture’s intensity in the rivers (Alizadeh
et al. 2017b). Among the parameters used for the prediction
of LDC, hydraulic and geometrical river features, including
channel width (B), flow depth (H), shear velocity (U*), and
mean velocity (U), play prominent roles. However, the LDC
estimations vary remarkably. Nevertheless, determining the
environmental problems and evaluating the pollutant transport
in rivers are important; consequently, it is important to esti-
mate the LDC with a high accuracy (Alizadeh et al. 2017a).
Generally, LDC measurement approaches have been divided
into three categories: statistical equations, mathematical solu-
tions, and artificial intelligence (AI) procedures. Mathematical
solutions (e.g., numerical and analytical models) use the geo-
morphology and the channel’s geometry to estimate LDC.
Statistical models apply the accessible measurement dataset
for correlating the LDC based on the efficient parameters (re-
gression analysis (RA) methods known as the most popular
subcategories of statistical approaches). Because of the as-
sumptions regarding the normality and linearity of this type
of intricate phenomenon, these equations may not yield suffi-
ciently accurate and valid results (Alizadeh et al. 2017c).

On the other hand, AI techniques have been recruited to
overcome the disadvantage of regression-based methods in
predicting various problems. In particular, machine learning
methods, e.g., artificial neural networks (ANNs), support vec-
tor machine (SVM), model tree (MT), as well as metaheuristic
algorithms, have recently shown promising results (Li et al.
2016; Wang et al. 2016; Zounemat-Kermani et al. 2016;
Rezaie-Balf et al. 2017; Deo et al. 2018; Horton et al. 2018;
Kisi et al. 2019; Najafzadeh and Ghaemi 2019; Fallah et al.
2019; Ghaemi et al. 2019; Maroufpoor et al. 2019; Bozorg-
Haddad et al. 2019). In the case of LDC, although many stud-
ies (e.g., Adarsh 2010; Etemad-Shahidi and Taghipour 2012;
Li et al. 2013; Najafzadeh and Tafarojnoruz 2016; Alizadeh
et al. 2017b; Noori et al. 2017; Seifi and Riahi-Madvar 2019;
Riahi-Madvar et al. 2019) have been performed during the last
decades in order to predict this complicated phenomenon with
high precision, the estimation results have not been adequately
accurate or reliable. Consequently, this research aims to im-
prove prediction performance by proposing the crow search
algorithm (CSA) and evolutionary polynomial regression
(EPR).

Theoretical background

Despite describing the pollutant behavior in natural streams as
a three-dimensional advection–diffusion equation (3D-ADE),
which was obtained from a Fickian diffusion law, in the far
downstream of the mixing zone where concentration varia-
tions in the horizontal and vertical directions have been

insignificant, the 3D-ADE over width and depth yields

∂C
∂t

þ U
∂C
∂x

¼ LDC
∂2C
∂x2

ð1Þ

whereC denotes the average cross-sectional concentration, t is
time (seconds-based), and U and x are the average velocities
of the cross-sectional and the longitudinal coordinate along
the direction of mean flow, respectively (Noori et al. 2017;
Rezaie-Balf et al. 2018).

Equation (1), which is taken into account as 1D advection–
dispersion equation, has been highly recruited to evaluate the
behavior of pollutants originating downstream from non-
steady point resources and is a balance between the advection
and dispersion. The LDC is based on the river geometries,
hydraulic condition, as well as fluid properties. The govern-
ment parameters influencing the LDC are expressed as

LDC ¼ f ρ;μ;U ;U*;H ;W ; S f ; Snð Þ ð2Þ

where ρ and μ are fluid density and dynamic viscosity,
respectively; the width of cross section and flow depth are
shown by W and H, respectively; Sn is the sinuosity of the
river, Sf is the longitudinal bed shape, andU* denotes the shear
velocity. To reach the dimensionless parameter in the LDC,
the Buckingham theory was employed, and the dimensionless
parameter was derived, as shown in Eq. (3) (Seo and Cheong
1998; Alizadeh et al. 2017a).

LDC
HU*

¼ h ρ
UH
μ

;
U
U*

;
W
H

; S f ; Sn

� �
ð3Þ

Since the river flow is turbulent, the Reynolds number ρ UH
μ

can be omitted and the measurement of the bed form and
sinusitis path parameters cannot be clear. Consequently, their
effectiveness can be selected as flow resistant, which can be
observed in the flow depth. The nondimensional parameters
that have been measured are

LDC
HU*

¼ g
U
U*

;
W
H

� �
ð4Þ

Developing a plethora of AI models and empirical formu-
las is mostly based on these nondimensionless parameters.
Table 1 provides some well-known empirical formulas pro-
posed by the researchers (Seo and Cheong 1998; Alizadeh
et al. 2017c).

State of the art

This section employed various state-of-the-art scholarly stud-
ies on empirical and AI approaches for LDC prediction col-
lected from the existing literature. A list of studies adopting
empirical and AI techniques is presented in Table 1, which is
arranged as an extensive overview of the prediction methods
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developed so far. It should be mentioned that in Table 1, the
ratios of channel width to flow depth (B/H) and velocity to
shear velocity (U/U*) are presented by A and C, respectively.

Elder (1959) proposed the first extension of Taylor’s ap-
proach for an open channel with infinite width using a labo-
ratory dataset. He recruited a logarithmic velocity profile in
the vertical direction and introduced an equation (Alizadeh
et al. 2017b). Fischer (1967) suggested a simplified integral
equation which presented the advantage of LDC estimation in
the nondimensional form of accessible parameters. Liu (1977)
considered lateral velocity gradients’ role in the LDC and
suggested an expression in natural streams.

Seo and Cheong (1998) suggested an empirical equation
with respect to the one-step technique developed by Huber
(1981); it was a sturdy regression approach with a permissible
estimating even at the presence of moderately bad leverage
points. They used 59 sets of data from 26 U.S. streams to
implement their equation. Their findings revealed that their
equation had outperformed in comparison with other existing
expressions. Deng et al. (2001) derived expressions for LDC
prediction by assuming the importance of the transverse tur-
bulent mixing (e). Based on the dimensional and regression
analysis, Kashefipour and Falconer (2002) developed a pre-
dictive equation to estimate the LDC in natural rivers using 81
datasets collected from 30 rivers in the USA.

Disley et al. (2014) presented a predictive equation for a
LDC using combined datasets from 29 rivers. Based on the
outcomes, they concluded that their proposed equation was far
superior to other empirical equations. Additionally, they
found that the Froude number played a key role in capturing
the effect of slope of the reach. Furthermore, Zeng and Huai
(2014) established an empirical formula to estimate the LDC
based on the 116 datasets of width, depth, cross-sectional
averaged velocity, and bed shear velocity. Based on the
results, their formula was as an effective method for LDC
prediction. The evaluation performed by a couple of
empirical approaches concerning 128 field datasets collected
from 41 natural rivers in the USA revealed that the empirical
equation obtained by Sahin (2014) was more valid and reli-
able than other predictive methods for LDC estimation in
rivers.

In a research by Hamidifar et al. (2015), the examination of
longitudinal dispersion in a compound open channel was per-
formed for both vegetated and smooth floodplains and various
flow conditions. They concluded that the magnitude of LDC
had an increasing trend by implanting vegetation over the
floodplain as well as increasing the relative flow depth.
Outcomes of two studies by Farzadkhoo et al. 2018, 2019a)
indicated that roughening the floodplain with stems was one
of the important factors in increasing the longitudinal flow
velocity and the Reynolds shear stress in the main channel.
The maximum value of nondimension (LDC/U⁎H) was also
found at the bend apex. Moreover, by increasing the relative
flow depth, the nondimensional LDC (LDC/U⁎H) values de-
creased in the compound meandering channel for all the veg-
etated cases.

Furthermore, Farzadkhoo et al. (2019b) investigated the
effect of rigid vegetation on the LDC estimation in a com-
pound open channel. According to the results, floodplain veg-
etation caused the depth-averaged longitudinal velocity and
LDC values to decrease and increase, respectively,
compared with nonvegetated conditions. The results of a
study by Shin et al. (2020) indicated that the cross-sectional
averaged values of the dimensionless LDC, determined by the
velocity profile data in a range of 4.1–6.5, had a behavior
corresponding to the theoretical values, whereas this value,
by a concentration data between 14.7 and 35.5, was 4–6 times
greater than the velocity-based coefficient.

In terms of artificial intelligence, Tayfur and Singh (2005)
used AI methods in LDC prediction for the first time. They
employed an artificial neural network tomodel the LDC by 71
data of geometric and hydraulic parameters. The results
showed that ANN could predict this target better than the
empirical methods. Moreover, fuzzy, ANN, as well as MLR
were applied by Tayfur (2006) to estimate the LDC based on
92 datasets of field dataset. He demonstrated that the fuzzy
approach had higher performance compared to the other pre-
dictive methods.

Adarsh (2010) evaluated the degree of precision of data-
driven models, including SVM and genetic programming
(GP) in LDC estimation. The results indicated the superiority
of the GP model to SVM and empirical methods. MT was

33%
67%

Empirical equations
Artificial intelligence methods

61%
39%

Equation-based models
Non-Equation-based models

70%

30%

Standalone models
Evolutionary algorithms

Fig. 2 Different techniques
applied in LDC estimation
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employed by Etemad-Shahidi and Taghipour (2012) to esti-
mate the LDC. In their study, for developing the proposed
model, 149 distinctive hydraulic and geometrical field
datasets of several rivers were applied. The error criteria
confirmed that MT demonstrated a significantly good
performance in capturing the relationship between input and
output variables for LDC prediction than empirical
approaches. The accuracy of the GP expression
implemented by Sahay (2013) indicated that the GP model
outperformed the empirical methods (e.g., Fisher and Liu) to
predict LDC. They also found that the channel sinuosity was
considered as a critical input variable for LDC prediction.

Sattar and Gharabaghi (2015) used 150 geometric and hy-
draulic datasets at hand for LDC prediction. Their study illus-
trated that the gene expression programming (GEP) model
yielded the best performance. Najafzadeh and Tafarojnoruz
(2016) evaluated the performance of the neuro-fuzzy–based
group method of data handling (NF-GMDH)–particle swarm
optimization (PSO) compared to some of the approaches such
as MT, genetic algorithm (GA), and DE in LDC prediction. In
their study, NF-GMDH had better accuracy than other alter-
native methods. They performed sensitivity analysis (SA) to
select the important variables in LDC prediction. They also
concluded that the flow depth had the most effective perfor-
mance on the target variable. In a study by Alizadeh et al.
(2017a), a multi-objective PSO algorithm was applied to de-
rive a new expression in order to prognosticate the LDC.
Based on the results, PSO methodology could increase the
precision of the predictive equations by considering the opti-
mum coefficient values.

Rezaie-Balf et al. (2018) developed evolutionary polyno-
mial regression to estimate the LDC. According to statistical
measures, EPR was an appropriate tool in comparison to the
other alternative methods (e.g., PSO, GA, and MT). In addi-
tion, the result of sensitivity analysis demonstrated that chan-
nel width played a prominent role in LDC estimation.
Evaluation of support vector regression (SVR), M5P,
Gaussian process regression (GPR), and random forest (RF)
was performed by Kargar et al. (2020) to estimate the LDC in
the natural streams. Their findings illustrated that the applied
M5P model outperformed the other alternative methods.
Whale optimization algorithm (WOA) was applied by
Memarzadeh et al. (2020) to improve the accuracy of the
LDC predictive equation. Their outcomes illustrated that the
proposed method could be considered as a useful method to
estimate LDC.

In general, in recent years, the LDC prediction has been
performed using AI (67%) and empirical (33%) methods (Fig.
2). In terms of AI techniques, approximately 39% of the uti-
lized methods have the formula to predict the LDC.
Additionally, only few studies in LDC prediction (30% of
equation-based models) have been carried out on the basis
of the evolutionary algorithms.

Objective

Since the LDC is considered as a complicated phenomenon,
obtaining a predictive model with an acceptable level of ac-
curacy has attracted many researchers’ attention. As a result, a
number of predictive approaches based on the empirical and
AI methods have been reviewed to find the best approach. As
the first attempt, this study aims to provide a comprehensive
overview of applied LDC estimation techniques. Secondly,
the main contribution of the present research is to improve
one of the LDC equations (Rezaie-Balf et al. 2018) by using
a kind of metaheuristic algorithm called CSA. It can be said
that there is no published study related to employing this al-
gorithm in LDC prediction. The accuracy of the proposed
model is evaluated with other existing equations that are pro-
vided for LDC predictions. Thirdly, after selecting the best-
fitted model in LDC estimation using conventional metrics,
the partial derivative sensitivity analysis (PDSA) is applied for
evaluating the pattern of input variables by the superior model.
Afterward, the failure limit of a phenomenon is defined as a
permissible domain for its safety. Different items (e.g., num-
ber of input variables) may influence the appropriate failure
limits. One of the reliability evaluation techniques is Monte
Carlo simulation (MCS) which is recruited in this study to
determine the failure probability of the best LDC predictive
equation in different failure states. Eventually, the variations
of failure probabilities regarding the average and standard
deviation corresponding to the suitable distribution of input
variables are investigated.

Proposed models

Crow search algorithm

Among different types of animals and birds, crows are the
most intelligent, and despite the small size of their brains, they
have longer memories. They can communicate in sophisticat-
ed ways, memorize faces using tools, hide foods, and remem-
ber their positions during the various seasons. These features
cause crows to discover and steal other crows’ hidden foods
when they are not there. If a crow finds out that it is being
followed by another one, it attempts to misguide the follower
by flying to another area. Considering this, Askarzadeh (2016)
introduced the CSA as a novel evolutionary algorithm to solve
sophisticated optimization difficulties. This approach follows
four principles as follows:

(1) Their lives are as herd form
(2) They maintain the location of the hidden food
(3) They pursue each other for robbery
(4) Crowsmemorize their caches from being pilfered using a

probability
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Like other algorithms, the optimization process begins with
a dimensional environment containing the crow number (or
population size). Suppose x denotes the position of crow i at
each time (iteration) in the search area, which is calculated

using a vector xi;iter ¼ xi;iter1 ; xi;iter2 ;…; xi;iterd

h i
where i = (1, 2,

…,N) and i = (1, 2,…,N). Each crow keeps in mind the po-
sition of its hidden location. It can be said that the best place of
the hidden food experienced by each crow is preserved in its
memory. Therefore, the crow’s hiding position i in iteration
iter is the crow memory, which is illustrated bymi, iter. In each
iteration, two states can occur, crow j flies to its hiding posi-
tion (mj, iter), and crow i follows crow j to discover the hidden
place of crow (Askarzadeh 2016; Díaz et al. 2018):

(1) If crow j does not recognize that it is followed by crow i,
crow i finds out the hidden place of crow j. Hence, the
new position of crow i is expressed as

xi;iterþ1 ¼ xi;iter þ ri � f li;iter � mj;iter−xi;iter
� � ð5Þ

where fli, iter is the flight length for crow i in iteration iter and ri
presents a random number of the uniform distribution in an
interval of 0 and 1. If fl value is considered less than 1, it
brings about a local search and provides other situation of
crow i between xi, iter and mj, iter; otherwise, a global search
will be anticipated, which causes the next situation of crow i
gained away from xi, iter and may exceed mj, iter.

(2) If crow j becomes aware that crow i is pursuing it to get
its hidden food, it will deceive crow i by changing the
food situation. States 1 and 2 are written briefly as

xi;iterþ1 ¼ xi;iterþ1 ¼ xi;iter þ ri � f li;iter � mj;iter−xi;iter
� �

r j≥APi;iter
a random position otherwise

	
ð6Þ

where APi, iter indicates the awareness possibility of crow j
at iteration iter. The function of this parameter is balancing
the exacerbation and variety for increasing the exacerba-
tion by minor quantity for awareness probability by
searching a local space and rising the probability value of
the awareness, and CSA tends to investigate the searching
space on the global scale. In sum, crow search algorithm
implementation in solving the optimization problems can
be expressed as (Askarzadeh 2016; Rezaie-Balf et al.
2019):

1. Defining the optimization problem and its constraints,
selecting the CSA flock size (N), decision variables, the
awareness probability (AP), the number of iteration (iter-

max), as well as the length of flight (fl).

2. Randomly finding the memory and position in a d-dimen-
sional search space for proposed crows based on Eqs. (7)
and (8). Each crow is considered as a conceivable solution
for a specific problem, and d reveals the values for deci-
sion variables.

Position ¼
x11 x12 …
x21 x22 …
⋮ ⋮ ⋮

x1d
x2d
⋮

xN1 xN2 … xNd

2
664

3
775 ð7Þ

Memory ¼
m1

1 m1
2 …

m2
1 m2

2 …
⋮ ⋮ ⋮

m1
d

m2
d

⋮
mN

1 mN
2 … mN

d

2
664

3
775 ð8Þ

3. Fitness function evaluation of each crow using the deci-
sion variables putting into the objective function.

4. Generating a new position by crow i which one crow
(crow j) selects randomly and chasing it for finding crow
j’s hidden food resource (Eq. (5)).

5. Evaluating the possibility of the new situation by all
crows. If the possibility of a new position of each crow
is confirmed, updating the position of that crow is con-
ducted. Otherwise, the crow stays in that situation and
does not generate a new position.

6. Afterwards, the fitness function is assessed for the new
position of each crow.

7. Eventually, the memory of crows is updated using Eq. (9)

mi;iterþ1 ¼ xi;iterþ1 f xi;iterþ1
� �

is better than f mi;iter� �
mi;iter otherwise

	
ð9Þ

where the objective function is represented by f (.), and xi, iter

and mi, iter are the position and memory of crow i in iteration
iter, respectively. The termination benchmark is evaluated (re-
peating steps 4–7 until itermax). Ultimately, the optimum solu-
tion is the best memory position calculated based on the objec-
tive function (Askarzadeh 2016; Rezaie-Balf et al. 2019).

Geometry and hydraulic parameters influencing LDC

In this research, in order to implement CSA for estimating the
LDC, a comprehensive field dataset including flow velocity,
flow depth, channel width, and shear velocity was collected
from the previous literature (e.g., Etemad-Shahidi and
Taghipour 2012). This dataset has been applied to predict
LDC in a wide range of the former studies with access to a
huge number of natural streams. Moreover, it is obvious that
these parameters have remarkably influence the LDC estima-
tion (Noori et al. 2016). In general, 149 distinctive data
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records containing various hydraulic and geometric parame-
ters have been applied in the model implementation (Etemad-
Shahidi and Taghipour 2012). Moreover, in this study, among
the defined distributions in MATLAB software, the proper
distr ibution of each input variable based on the
Kolmogorov–Smirnov test has been calculated. Hence, results
of the statistical analysis of the data used (average (mean),
maximum (max), minimum (min), standard deviation (SD),
and their suitable distributions) are shown in Table 2.

It is clear that the largest maximum value of LDC (1486.5
m2/s) is roughly twice the second largest value. Therefore,
removing these values is a convenient way (Tayfur and
Singh 2005; Li et al. 2013; Disley et al. 2014). Despite the
fact that omitting the largest LDC value may improve the
model precision, it limits the implemented model usage.
Accordingly, this study aims to improve the existing LDC
equation provided by the EPR model using CSA.

Development of CSA in the prediction of the LDC

As for the artificial intelligence methods (e.g., ANN, GEP,
and MT), parameter selection is one of the prominent process-
es for getting better performance of the methods. For illustra-
tion, in terms of ANN, the weight and the number of hidden
layers are used to optimize this model. Even an incorrect se-
lection of optimized parameters leads to worse performance of
the model in comparison to what expected. As a result, apply-
ing the metaheuristic approaches can be a worthwhile way for
one has no longer count on a deep experience on the applica-
tion of each method to the problem.

On the other hand, as mentioned above, in the recent
decades, the LDC prediction has drawn the attention of lots
of researchers. Thus, various methods have been recruited
to estimate the LDC accurately. Among the applied ap-
proaches, most of which are presented in Table 1, EPR is
considered as one of the successful tools in LDC predic-
tion. In this regard, the principal aim of this study is to
exhibit the usage of CSA to optimize the LDC equation
gained from EPR.

EPR, as one of the artificial intelligence techniques, is the
nonlinear global stepwise regression, which presents mathe-
matical expressions according to the evolutionary calculation.

EPR also applied GA along with numerical regression for
improving the mathematical equations to calculate optimum
parameters. The common form of EPR mathematical equa-
tions is written as (Giustolisi and Savic 2009; Kakoudakis
et al. 2017)

y ¼ ∑m
i¼1 F X ; f Xð Þ; aið Þ þ a0 ð10Þ

where y indicates the estimated value; ai and X are the constant
coefficient and input variables, respectively; m is the sample
number; F creates model structures in the process; and f is the
user-defined function.

Finally, EPR expression can be presented based on one of
the general forms as below

y ¼ a0 þ ∑m
j¼1 aj X 1ð ÞES j;1ð Þ… XKð ÞES j;Kð Þ f X 1ð ÞES j;Kþ1ð Þ

� �
… f X Kð ÞES j;2Kð Þ

� �
ð11Þ

y ¼ a0 þ ∑m
j¼1 aj f X 1ð ÞES j;1ð Þ… XKð ÞES j;Kð Þ

� �
ð12Þ

y ¼ a0 þ ∑m
j¼1 aj X 1ð ÞES j;1ð Þ… XKð ÞES j;Kð Þ f X 1ð ÞES j;Kþ1ð Þ

� �
… XKð ÞES j;2Kð Þ

ð13Þ
y ¼ f a0 þ ∑m

j¼1 aj X 1ð ÞES j;1ð Þ… XKð ÞES j;Kð Þ
� �

ð14Þ

where ES(j, K) indicates a function exponent which is re-
lated to the Kth input of the jth term, and its bound is
assigned by user (Khosravi and Javan 2019; Balacco and
Laucelli 2019).

By assuming dimensional analysis in LDC estimation on
the basis of the hydraulic (including velocity (U) and shear
velocity (U∗)) and geometric (including channel width (B) and
flow depth (H)) parameters, Eq. (15) is obtained

LDC ¼ f B;H ;U ;U*ð Þ ð15Þ

Additionally, the EPR mathematical equation that is pro-
vided for LDC estimation is written as

LDC ¼ þ9:1941
U 2

BU*
2 exp −1H þ 2U−2U*ð Þ

þ 0:33128
U1:5 HB
U*

0:5 exp −0:5U*ð Þ þ 0 ð16Þ

Table 2 Statistical indices of the
parameters applied for the EPR-
CSA technique

Parameters B (m) H (m) U (m/s) U* (m/s) LDC (m2/s)

Maximum 253.6 8.2 1.73 0.55 1486.5

Minimum 1.4 0.14 0.029 0.0016 0.2

Average 49.58 1.35 0.47 0.08 83.29

SD 48.44 1.32 0.31 0.07 181.56

Distribution Lognormal Generalized
extreme value

Generalized
extreme value

Generalized
extreme value

Log-logistic

Environ Sci Pollut Res



By considering Eq. (16), the general expression of the LDC
is written as follows:

LDC ¼ þa
Ub

BcU*
d exp −eH þ f U−gU*ð Þ

þ h
Ui H jBk

U*
l exp −mU*ð Þ þ n ð17Þ

where a, b, and c until n are constant values of the equation.
Therefore, the major purpose of this research is to use the CSA
to gain the constant optimum values. The adjustable CSA
parameters are shown in Table 3. These parameters included
the flock size (N), maximum number of iterations (itermax),
flight length (fl), and AP, which are determined using trial
and error methodology and demonstrated optimum values of
this study. In addition, LDC estimation diagram using EPR-
CSA model is illustrated in Fig. 3.

Model assessment criteria

In the current study, the performance of the predictive
methods is assessed by a couple of conventional benchmarks

Table 3 Characteristics of the developed CSA

Flock size Maximum number
of iterations

Flight length Awareness probability

149 1000 0.5 0.3

rj>AP

Generate a
random position

Initialize
positions and

memories

Generate a new
position by Eq. (6)

Terminate

Keep the current
position

Check the final
iteration

No

Yes

YesNo

Evaluate fitness
function

Update position
with new one

Evaluate fitness
function for new

position

Check feasibility
of new position

Check suitability of fintness
of new position compared to fintness

of memory position

Keep the current
memory

No
Yes

Keep the current
memory

YesProduce the best
position

No

Apply EPR
Equation

Define objective function, decision
variables and constraints, Adjust flock

size (N), maximum number of
iterations, flight length (fl ), and

awareness probability (AP)

Fig. 3 LDC estimation diagram
using the EPR-CSA model
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consisting of determination coefficient (R2), root mean square
error (RMSE), Willmott’s index of agreement (WI), mean
absolute error (MAE), Nash–Sutcliffe efficiency (NSE), over-
all index (OI), and objective function (OBJ), which are written
as

R2 ¼ ∑N
I¼1 LDCi

Pre−LDC
mean
Pre

� �
LDCi

Obs−LDC
mean
Obs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 LDCi
Obs−LDC

mean
Obs

� �2∑N
i¼1 LDCi

Pre−LDC
mean
Pre

� �2q
0
B@

1
CA

ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 LDCi
Obs−LDC

i
Pre

� �2
N

s
ð19Þ

NSE ¼ 1−
∑N

i¼1 LDCi
Obs−LDC

i
Pre

� �2
∑N

i¼1 LDCi
Obs−LDC

mean
Obs

� �2 ð20Þ

WI ¼ 1−
∑N

i¼1 LDCi
Obs−LDC

i
Pre

� �2
∑N

i¼1 LDCi
Pre−LDC

mean
Obs



 

− LDCi
Obs−LDC

mean
Obs



 

� �2
ð21Þ

MAE ¼ ∑N
i¼1 LDCi

Pre−LDC
i
Obs



 


N

ð22Þ

OI ¼ 1

2
2−

RMSE

LDC
maxmin

Obs
Obs −

∑N
i¼1 LDCi

Obs−LDC
i
Pre

� �2
∑N

i¼1 LDCi
Obs−LDC

mean
Obs

� �2
Þ

0
BBBB@ ð23Þ

OBJ ¼ NLDCtr−NLDCte

NoLDCtotal

� �
MAELDCtr

R2
LDCtr

þ 2NLDCte �MAELDCte

NoLDCtotal � R2
LDCte

ð24Þ
where LDCPre and LDCObs are the estimated and observed
values of LDC, respectively; LDCmean indicates the average
estimated values; and N is the length of observation dataset
(Gandomi et al. 2010; Ghaemi et al. 2019).

LDC prediction result and discussion

Comparison of different models

In this paper, the accuracy of a new equation that was obtained
by CSA (EPR-CSA) is evaluated for the prediction of LDC.
The inputs employed in the proposed model are velocity,
shear velocity, channel width, and flow depth. The models
were calibrated (i.e., trained) by using 103 datasets (about
70% of total dataset) while the remaining data (46 data) were

utilized for validating the proposed model. The extracted
equation is as follows:

LDC ¼ þ1:45142
U1:33648

B1:64538U*
1:65004 exp −1:34848H þ 1:42431U−1:41526U*ð Þ

þ 1:20883
U1:77612 H0:91413B0:67221

U*
0:61864 exp −0:98949U*ð Þ þ 1:21398

ð25Þ

In the present study, the results corresponding to the
abovementioned benchmarks of 16 regression and AI-based
equations were initially compared with the predictive equation
obtained by EPR-CSA, and this can be difficult to have a
comprehensive and comparable assessment. As asserted by
Henseler et al. (2009) and Hair et al. (2013), the acceptance
condition of models’ performance is determination coefficient
(R2) ≥0.75, and it means that the response variable can be
perfectly explained with insignificant error by the predictor
variables. In this sense, eight equations provided by Seo and
Cheong (1998), Deng et al. (2001), Li et al. (2013), Zeng and
Huai (2014), Disley et al. (2014),Wang and Huai (2016), EPR
(2018), and CSA are selected based on their determination
coefficients calculated (higher than 0.75 (Table 4)).

To confirm the robustness of the proposed approach, EPR-
CSA, this section presents the performances of the selected
methods to estimate LDC. To evaluate the merits of the pro-
posed method, a plethora of evaluation metrics, as expressed
by Eqs. (18)–(24), is selected to illustrate the predictive

Table 4 Satisfactory of utilized methods for LDC prediction

Equation R2 Satisfy

Elder (1959) 0.42 No

Fischer (1967) 0.14 No

Liu (1977) 0.19 No

Koussis and Rodriguez-Mirasol (1988) 0.13 No

Iwasa and Aya (1991) 0.29 No

Seo and Cheong (1998) 0.76 Yes

Deng et al. (2001) 0.75 Yes

Kashefipour and Falconer (2002) 0.74 No

Sahay and Dutta (2009) 0.73 No

Etemad-Shahidi and Taghipour (2012) 0.55 No

Li et al. (2013) 0.75 Yes

Zeng and Huai (2014) 0.76 Yes

Disley et al. (2014) 0.77 Yes

Antonopoulos et al. (2015) 0.001 No

Wang and Huai (2016) 0.75 Yes

Alizadeh et al. (2017c) 0.68 No

Rezaie-Balf et al. (2018) 0.79 Yes

Kargar et al. (2020) 0.61 No

Memarzadeh et al. (2020) 0.69 No

Present study-CSA 0.80 Yes
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performance criteria achieved in the calibration and validation
stages. The predictive capability of the EPR-CSA and equa-
tions provided by previous research in LDC prediction is
shown concisely in Tables 5 and 6.

Conventional benchmarks (R2, RMSE, NSE, WI, OI, as
well as MAE) were applied for LDC prediction in the calibra-
tion stage, and the quantitative comparison of performances is
shown in Table 5. Accordingly, by performing a comparison
between the eight selected equations, the LDC prediction
equation, which was observed by using the EPR model (pro-
posed by Rezaie-Balf et al. 2018), had the highest level of
accuracy with respect to statistical metrics (e.g., highest WI
= 0.945 and R2 = 0.80, lowest RMSE = 88.71) in comparison
with other predictive equations. After that, Eq. (25) achieved
by EPR-CSA with minor difference from the EPR model in
terms of RMSE (88.75), NSE (0.776), and R2 (0.787) ranked
second.

In the case of validation dataset, it is apparent from Table 6
that Eq. (25) provided with EPR-CSA yielded the greatest
precision (i.e., generally largest R2, OI, WI, and lowest
RMSE) compared to the other approaches illustrating the
crow search algorithm as a sturdy technique to enhance the
EPR accuracy. For instance, as seen in Table 5, contrary to the
results of the validation stage, the EPR-CSAmodel with lower
MAE (11.41%) and higher OI (1.69%) in comparison with the
EPR model with MAE = 48.52 and OI = 0.827 outperformed
the EPRmodel. Moreover, Seo and Cheong’s (1998) equation

with respect to NSE (0.659), MAE (60.25), and OI (0.772)
could not estimate the LDC values compared to that of other
methods, such asWang and Huai (2016) (NSE = 0.688, MAE
= 49.83, and OI = 0.789) and Disley et al. (2014) (NSE =
0.677, MAE = 48.99, and OI = 0.782)

Furthermore, to gain more meticulous comprehension of
the EPR-CSA model’s performance, the goodness-of-fit and
Pearson’s correlation coefficients (R) of the observed LDC
values versus the predicted ones are demonstrated by Fig. 4
for the validation dataset. Scatterplots confirm the best agree-
ment between the output and predicted values. The determi-
nation coefficient (R2) with a linear fit equation y = px + t (p
and t are taken into account as the gradient and the intercept on
the y-axis, respectively) and a least squares regression (LSR)
line have been presented in each sub-panel (Deo et al. 2016).
As it is specified in Fig. 4, most of the LDC values predicted
by the eight proposed equations were underestimated, and the
estimated LDC values using EPR-CSA were closest to the
perfect line and were in better agreement with corresponding
observed values than others.

Further analysis with the relative estimated error as present-
ed on polar plots (Fig. 5) verifies the EPR-CSA model’s wor-
thiness. As for the polar plots, the radial axis from origin
illustrates the magnitude of the appraising benchmark calcu-
lated. Accordingly, it is obvious from Fig. 5a that the maxi-
mum values of evaluation metrics (R2, WI, NSE, and OI)
generated by Eq. (25) were obtained by EPR-CSA.
Moreover, the calculated values of RMSE, MAE, and OBJ
for EPR-CSA were closer to the center of the regular octagon.
These determined metrics, however, indicated the incapacita-
tion of Seo and Cheong’s (1998) equation owing to the far
distance from the regular octagon center in comparison with
other alternative approaches (Fig. 5b).

To determine the error concentration in LDC estimation,
the error histograms of the proposed approaches are plotted in
Fig. 6. It can be seen that the error density for EPR-CSA
aggregated around the zero roughly in an interval of −3 and
3, whereas this error density related to the EPR model is al-
most gathered around zero between −10 and 10.
Consequently, the EPR-CSA performs more appropriately
compared to the other equations.

Table 5 Evaluation of the
proposed models at calibration
stage

Method R2 RMSE WI NSE MAE OI

Seo and Cheong (1998) 0.75 101.223 0.929 0.709 54.435 0.820

Deng et al. (2001) 0.74 95.600 0.914 0.740 46.436 0.8383

Li et al. (2013) 0.76 92.580 0.923 0.757 43.907 0.847

Zeng and Huai (2014) 0.71 113.601 0.846 0.634 46.923 0.778

Disley et al. (2014) 0.58 134.154 0.748 0.489 52.646 0.699

Wang and Huai (2016) 0.63 122.431 0.815 0.575 52.457 0.746

Rezaie-Balf et al. (2018) 0.80 88.710 0.945 0.776 47.076 0.858

Present study-CSA 0.78 88.756 0.936 0.776 39.538 0.858

Table 6 Evaluation of the proposed models at validation stage

Method R2 RMSE WI NSE MAE OI

Seo and Cheong (1998) 0.76 95.534 0.922 0.659 60.258 0.772

Deng et al. (2001) 0.75 83.761 0.927 0.738 49.665 0.818

Li et al. (2013) 0.75 82.132 0.921 0.748 44.856 0.824

Zeng and Huai (2014) 0.76 89.425 0.884 0.701 48.869 0.797

Disley et al. (2014) 0.77 93.018 0.863 0.677 48.997 0.782

Wang and Huai (2016) 0.75 91.311 0.878 0.688 49.830 0.789

Rezaie-Balf et al. (2018) 0.79 81.548 0.940 0.751 48.529 0.827

Present study-CSA 0.80 77.557 0.935 0.775 42.987 0.841
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Partial derivative sensitivity analysis

The PDSA is considered one of the most prominent tech-
niques to determine the pattern of changes in predictors by
the superior approach (Azimi et al. 2017). It should be noted
that the positive and negative values of PDSA denote the
increasing and decreasing of the objective function, respec-
tively. On the other hand, based on the PDSA, influence of
decreasing or increasing of input variables on the output var-
iable can be found. The positive PDSA value indicates the
increasing trend of the LDC. In this technique, the relative
derivative of the proposed equation is conducted for each
input parameter (Rashki Ghaleh Nou et al. 2019).

The results of PDSA for the input parameters (B, H,U,U*)
for EPR-CSA, which could predict LDC values with a maxi-
mum level of accuracy, are shown in Fig. 7. In Fig. 7, all
regression variables were plotted by means of a second-
order polynomial. Accordingly, in the case of U, the calculat-
ed PDSA was positive, and by growing the U values, the
sensitivity increased. Moreover, U*, B, and H versus sensitiv-
ity parameter’s behaviors were complicated and do not follow
a particular trend.

Reliability analysis

A major problem with the reliability of the predictive ap-
proach is calculating the multifold probability integral as a
failure probability (Pf) expressed as

P f ¼ Prob P xð Þ≤0½ � ¼ ∫p xð Þ≤0 f xð Þdx ð26Þ

where X = [x1, x2,…, xn]
T and T and X are transposed and a

vector of random variables, respectively, indicating the uncer-
tainty of the structural quantities. The functions P(X) and f(X)
represent the failure state and joint probability density func-
tion (PDF) of X, respectively. The negative values of P(ξ)
(P(x) ≤ 0) reveal the integration domain which covers the fail-
ure set. As argued by Cardoso et al. (2008), the assessment of
Eq. (26) is too difficult owing to some difficulties (Cardoso
et al. 2008) including

(1) Determining P(X),
(2) Conducting the multidimensional integration of P(X) in

the domain, and
(3) Evaluating Eq. (26) either when the number of random

variables rises or when the shape of failure regions is
complicated (Cardoso et al. 2008).

These problems for calculating Eq. (26) can be essential
factors to implement different approximation techniques.
Generally, simulation is taken into account as a useful ap-
proach to perform experiments in a laboratory or on a digital
computer to model the system behavior. Usually, simulation
models output simulated data, which must be treated statisti-
cally for estimating the future treatment of that system. MCS
is one of the appropriate tools that is usually applied for a
number of problems, including random variables with
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proposed suitable probability distribution. By means of statis-
tical sampling methods, random variables are generated based
on the corresponding probability distribution. These values
are treated similar to experimental datasets and are recruited
to determine a sample solution. By repeating this process and
generating various sample datasets, dozens of sample solu-
tions can be obtained. Following this, the statistical analysis
of the sample solutions is conducted. Thus, it can be said that
the result of MCS approach depends on the length of the
samples used.

In this study, the fundamental idea is that random values
corresponding to the original variables, which are based on
their appropriate probability distribution, are sampled, and the
number of failure samples (Nf) is determined. Afterward, the
failure probability (Pf) is calculated as follows (Mahadevan
1997; Cardoso et al. 2008):

P f ¼ N f

N
ð27Þ

where N is the length of the samples and Nf indicates failure
samples, and the failure probability is written as follows:

P f ¼ 1

N
∑N

i¼1I g xð Þð Þ ð28Þ

where I(.) denotes the failure area identifier, and the values of
0 and 1 show the safe and failure regions, respectively

g xð Þ≤0 ðifÞ
I g xð Þð Þ ¼ 1 ð29Þ
else

I g xð Þð Þ ¼ 0

In this section, the main aim is to determine the best distri-
bution for the input variable. To gain this aim, since there are
different probability distributions for the dataset with specific
features, one of them defined in MATLAB was used to deter-
mine the proper distribution in the current study (Table 2). As
mentioned earlier in Table 2, among the input variables, ex-
cept the variable B that follows the lognormal distribution, the
generalized extreme value distribution was selected as the best
probability distribution for the remaining variables, namelyH,
U, and U*. Additionally, 1,000,000 samples for each of the
input variables, based on their own distributions, were pro-
duced in order to estimate LDC values using Eq. (25).
Eventually, the failure probability for a couple of failure-
state values, including 50 to 600 m2/s, has been calculated,
which is demonstrated in Fig. 8. Based on Fig. 8, by increas-
ing the value of failure state, Pf decreased. It should be noted
that a power-fitted function by R2 = 0.98 for the prediction of
correct failure probability is more suitable than the other fitted
functions, such as linear and exponential functions.

Fig. 6 Relative forecasting error generated using proposed predictive equations for LDC prediction
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Furthermore, changes in average (μ) and standard devia-
tion (σ) corresponding to each predictor variable’s appropriate
distributionmay have impact on the failure probability. On the
other hand, this analysis evaluates each input variable’s influ-
ence on failure probability behavior of the proposed tech-
nique. Thus, in this research, the influence of changes in B,
H, U, and U* on the failure probability of LDC predictive
equation is investigated. To achieve this target, values for each
predictor’s average and standard deviation separately varied in
the interval of their own 0.75 and 1.25 values. Moreover, three
LDC values, including 50 m2/s, 100 m2/s, as well as 150 m2/s,
were considered as failure states of failure probability.
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Channel width effect

Results of the failure probability changes versus the μ
and σ of channel width (B) are presented in Fig. 9.
Regarding Fig. 9, increasing the average of B leads to
a decrease in failure probability. For instance, in the
failure state 50 m2/s, the Pf value for μ = 2.64 m was
equal to 0.016, and by increasing μ to 4 m, the calcu-
lated Pf had a decreasing trend by 0.002. In the case of
standard deviation, Pf had an ascending trend when the
σ values increased. In addition, the rising slope of the
failure state 50 m2/s was roughly higher than that of the
failure state 150 m2/s.

Flow depth effect

Figure 10 illustrates the Pf changes versus the μ and σ of
flow depth (H). As shown, Pf varies almost within the
range of μ = 0.75 and μ = 1, which indicates that μ chang-
ing in this interval may have more impact on Pf in com-
parison to the range of μ = 1 and μ = 1.25. In contrast, the
increasing value of σ caused failure probability to have a
rising trend and obtained its highest value for all failure
states such as having a Pf value of 0.0017 at a point with
H = 1.25 for the failure state 50 m2/s.

Velocity effect

The Pf changes versus the μ and σ of velocity (U) are shown in
Fig. 11. Accordingly, in terms of U, it is obvious that increas-
ing both values of μ and σ causes the failure probability to
have a rising trend. However, the influence of increasing σ on
the Pf was greater than μ. Additionally, for the failure state
100, the variation Pf in an interval of 75% and 125% of μ and
σ was limited.

Shear velocity effect

Similar to other input variables, the evaluation of Pf changes
based on the μ and σ of shear velocity (U*) was performed.
According to Fig. 12, an increase in the μ and σ values results
in the descending and ascending trend of Pf value.

It is clear that the highest values of failure probability in
different μ and σ values of input variables belonged to the
failure state 50 m2/s. Therefore, this failure state was selected
to assess the maximum influence of input variables with re-
spect to their average and standard deviation in this section.
The Pf variation for different average values of input variables
(B, H, U, U*) is shown in Fig. 13. From Fig. 13, it can be
concluded that by increasing the average values of input var-
iables, channel width (B) has the highest importance with
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respect to failure probability. In case of increasing σ between
75 and 115% of standard deviation for input variables, the Pf
changes for B was more than those for U*. Additionally, the σ
and μ variations ofH and U had relatively the lowest Pf effect
compared with B and U*.

Conclusion

Accurate estimation of the LDC is one of the challenges in
finding the distribution of pollution density. Due to this phe-
nomenon’s nonlinearity and complexity, it is crucial to devel-
op more accurate predictive approaches. To this end, this re-
search implements and evaluates the efficiency of a kind of
nature-inspired metaheuristic algorithm called crow search al-
gorithm (CSA) to optimize the LDC equation coefficients
provided using the EPR model. Outcomes of this comparison
with respect to some evaluation metrics indicated that, among
the existing equations, the proposed model EPR-CSA with a
slight difference from the EPR model in terms of RMSE and
WI had an acceptable accuracy in the calibration stage. In the
case of validation dataset, recruiting the obtained equations by
CSA illustrated that Eq. (25) could provide an acceptable es-
timation of LDC values for natural rivers with the lowest

RMSE (77.57) and MAE (42.987). Eventually, comparing
the results of LDC equations by applied evaluation bench-
marks and diagnostic plots confirms the efficiency and robust-
ness of the EPR-CSA versus other existing equations.

As a result, it can be concluded that CSA can be an
alternative and promising estimation approach for compli-
cated problems such as LDC prediction. Evaluating the
pattern of input variables in LDC prediction reveals that
the calculated value of PDSA related to U was positive,
and increasing the value of U has an outstanding influence
on growing the PDSA value. In addition, reliability analy-
sis of the propose equation was performed by applying
MCS. Determining the failure probability for several fail-
ure states containing 50 to 600 m2/s showed that, by in-
creasing the value of the failure state, Pf is decreasing.
Moreover, the influence of the input variables on the fail-
ure probability was assessed. According to the results, σ
and μ changes for channel width (B) had the most effect on
the Pf compared to those of other input variables.
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