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Abstract. The existence and uniqueness of solutions of the boundary value problem for

the recently introduced McKendrick-Von Foerster equation with continuous stochastic

noise is proven. Motivated by the applications in mathematical biology, the boundary

conditions are assumed to depend on the aggregated age variables, which makes the

problem both non-local and nonlinear. The techniques used in the paper are based

on a special transformation method converting the stochastic McKendrick-Von Foerster

equation into a pair of finite dimensional systems of stochastic functional differential

equations.
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1. Introduction.

The following stochastic partial differential equation is considered in the paper:

(1)
∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −[m(t, a, J(t), A(t))− ν̇(t, J(t), A(t))]u(t, a) (t, a ≥ 0)

subject to the non-local and nonlinear boundary conditions

(2) u(0, a) = χ(a), u(t, 0) =

∫ ∞
0

β(t, a, J(t), A(t))u(t, a)da (t ≥ 0).

Here ν̇(t) represents the stochastic noise, while

(3) J(t) =

∫ τ

0

u(t, a)da and A(t) =

∫ ∞
τ

u(t, a)da
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are the so-called ’aggregated variables’ and τ ≥ 0 is some constant.

Remark 1. Convergence of the improper integrals in (2) and (3) is not a priori assumed.

It is a part of the solvability of problem (1)-(2), and it will be justified in Section 3.

The exact conditions to be set on m, ν, χ and β will be specified later in Assumption sets

(A) (the simplified boundary value problem) and (B) (the full boundary value problem),

see Sections 2 and 3, respectively. The main results of the paper are Theorem 1 in Section

2 and Theorem 4 in Section 3, which justify the existence and uniqueness property for

the boundary value problem (1)-(2).

If no stochastic noise is present, then Eq. (1) becomes the well-known deterministic

McKendrick-Von Foerster equation (DMF), which is widely used in applications:

(4)
∂u

∂t
+
∂u

∂a
= −mu (t, a ≥ 0).

This explains why Eq. (1) is called below the stochastic McKendrick-Von Foerster equation

(SMF).

The motivation to study DMF and SMF stems first of all from the different fields

of mathematical biology such as population dynamics [10], [13], epidemiology [8], cell

biology [14] as well as from some other areas such as economics [3] and geophysics [20].

In population dynamics, the function u(t, a) stands for the size of a certain population

of age a > 0 at time t ≥ 0, m(t, a) ≥ 0 is the population’s per capita extinction rate,

while the size u(t, 0) of newborn individuals is calculated as u(t, 0) =
∫∞
0
β(t, a)u(t, a)da,

where β(t, a) is the per capita birth rate. The given initial age distribution function χ(a)

is included in the initial condition u(0, a) = χ(a) ≥ 0. This population model as such

has, unfortunately, similar disadvantages as the Malthusian law of the population growth

[8]. To make the model more realistic, one often assumes that the birth and extinction

rates depend on the size of the population, e. g. on the aggregated variables (3), where

J and A stand for the juvenile and adult population, respectively, and τ ≥ 0 is the

maturation time [22]. In a simper setting this dependence is restricted to the total size of

the population P (t) = J(t) + A(t) =
∫∞
0
u(t, a)da [13], [14], but according to the review

paper [22], about half of all publications on the subject of age-structured populations in

the period of 2000-2016 were based on models including the maturation time.

The present paper partly complements the studies started in the paper [19] by offering

a proof of the fundamental existence and uniqueness theorems for the SMF equation with

non-local and nonlinear boundary conditions (2). This property is known to be crucial
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in the deterministic case for justifying many popular biological models, like the logistic,

Nicholson’s blowflies [5], marine protection [6], cannibalism [9], [11], [24], compartment-

delayed [12] and many other models, which can be derived from the master equation (4).

Likewise, this property is of similar importance for the stochastic master equation (1),

which is a source of stochastic versions of the above population models [19].

It is well-known from the theory of the DMF equation (4) that proving the existence

and uniqueness results for it requires a nontrivial technique because of the complex nature

of the boundary conditions and the assumptions on m and β (see e.g. [4], [13] and [14]).

The problem becomes only even more complicated in the stochastic case. Therefore, we

suggest here a new approach to the existence and uniqueness analysis, which is based

on a special transformation of the boundary value problem (1)-(2) into the initial value

problem for a connected pair of systems of stochastic functional differential equations

(SFDE). The idea of this approach is, thus, to go over to a finite dimensional setting and

to prove the existence and uniqueness property for SFDE using more or less standard

techniques. Note that this framework helps to prove positivity of the solutions as well.

Unlike the paper [19], we study here only the case of stochastic perturbations of the type

’weighted white noise’, which, in particular, means continuity of the resulting stochastic

processes. Similar choice, but in a different setting, was made in the publications [1], [2].

More complicated noises have been introduced in the papers [7], [17], [19] and [23], but

these cases will be addressed in the forthcoming publications of the author.

The paper is organized as follows. In Section 2 we study the simplified boundary value

problem for SMF (1) under Assumption set (A). In addition to this, we derive two systems

of SFDE, which in Section 3 will play a crucial role in the study of the full boundary value

problem (1)-(2) under Assumption set (B).

The definitions from stochastic calculus to be used in this paper can be found in [21].

All stochastic processes will be defined on the fixed filtered probability space

(5) (Ω, F, (Ft)t≥0, P)

with a probability measure P on a σ-algebra F of subsets of Ω and an increasing, right-

continuous sequence of σ-subalgebras Ft of F, where all the introduced σ-algebras are

complete with respect to the measure P. The expectation on this probability space is

denoted by E.

Let B be the σ-algebra of all Borel subsets of the interval [0,∞). A stochastic process

v(t) = v(t, ω), t ∈ [0,∞), ω ∈ Ω is called Ft-adapted if v(·, ·) is B ⊗ F-measurable and
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the random variable v(t, ·) is Ft-measurable for each t ∈ [0,∞). A stochastic process

v(t) = v(t, ω) is called continuous (more precisely, path-continuous) if its trajectories

v(·, ω) are continuous functions with probability 1, i.e. almost surely (a.s.). We assume

that the above filtered probability space is rich enough to host the Brownian motion (also

known as the standard scalar Wiener process) W (t), which is an example of an Ft-adapted

and continuous stochastic process. One of its important features is existence of a well-

defined stochastic integral (Itô’s integral) ν(t) =
∫ t
0
γ(s)dW (s) with respect to W (t) for

Ft-adapted processes γ(t) with locally square-integrable on [0,∞) paths. Note that in

this case ν(t) is an Ft-adapted and continuous stochastic process.

2. The simplified boundary value problem.

In this section, we consider a linear and local version of the boundary value problem

(1)-(2). In particular, the boundary condition (2) will be replaced by the following linear

conditions

(6) u(0, a) = χ(a), u(t, 0) = b(t) (t ≥ 0),

where b(t) is known in the literature as the birth function [22]. The entries χ, b, m and

ν in the boundary value problem (1), (6) are supposed to satisfy

Assumption set (A):

• The extinction rate m(t, a) is defined as

(7) m(t, a) =

{
mJ(t), 0 ≤ a ≤ τ,

mA(t), a > τ,

where mJ(t) ≥ 0 and mA(t) ≥ 0 are Ft-adapted continuous stochastic processes

and τ ≥ 0.

• the birth function b(t) = b(t, ω) ≥ 0 a.s. is an Ft-adapted continuous stochastic

process on [0,∞).

• The stochastic process ν(t), t ≥ 0 is defined by the formula ν(t) =
∫ t
0
γ(s)dW (s),

where γ(t) is a Ft-adapted processes with locally square-integrable on [0,∞) paths.

• The initial age distribution function χ(a) ≥ 0 is continuous and satisfies∫ ∞
0

sup
s≥a

χ(s)da <∞.

Remark 2.

• The assumptions on m are similar to those used in the deterministic case [22].
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• The assumption on χ reflects the fact that the total size of the population at time

t = 0 must be finite (in fact, a little more by technical reasons).

Definition 1. A solution u(t, a) = u(t, a, ω) of the boundary value problem (1), (6)

(t ∈ [0,∞), a ∈ [0,∞), ω ∈ Ω) is a B ⊗ B ⊗ F-measurable function, such that the

stochastic process u(·, a) is Ft-adapted and continuous for all a ≥ 0 and almost surely

satisfies (6) and the integral equation

(8)

∫ a
0

(u(t, s)− χ(s))ds+
∫ t
0
(u(σ, a)− b(σ))dσ =

−
∫ t
0

(∫ a
0
m(σ, s)u(σ, s)ds

)
dσ +

∫ t
0

(∫ a
0
u(σ, s)ds

)
γ(σ)dW (σ),

for all t, a ∈ [0,∞).

Remark 3. If the function u(t, a) describes the size of a population, then it must be

positive, and this will be proven for the case of the boundary value problem (1), (6) provided

that the assumptions on the sign of b and m in (A) are fulfilled. This also explains why

these assumptions are a priori put on these entries. However, the positivity of u is less

evident in the nonlinear case and may require additional conditions on the entries, see

Theorem 4.

To prove the existence and uniqueness of solutions of the linear problem (1), (6), we

need a lemma for the deterministic version of this problem, where we by notational reasons

replace the initial function χ and the birth function b in (6) with some functions v1 and

v2, respectively.

Lemma 1. Let v1(a), v2(t) and m(t, a) (t, a ∈ [0,∞)) be locally Lebesgue integrable

functions. Then

(9) ū(t, a) =

{
v1(a− t) exp{−

∫ t
0
m(s, a− t+ s)ds}, t ≤ a,

v2(t− a) exp{−
∫ a
0
m(t− a+ s, s)ds}, t > a,

is the unique solution of the following integral version of DMF (4)

(10)

∫ a

0

(ū(t, s)− ū(0, s))ds+

∫ t

0

(ū(σ, a)− ū(σ, 0))dσ = −
∫ t

0

(∫ a

0

m(σ, s)ū(σ, s)ds

)
dσ,

satisfying the boundary conditions ū(0, a) = v1(a) and ū(t, 0) = v2(t) for almost all a ≥ 0

and t ≥ 0, respectively.

Proof. The proof of the fact that (9) satisfies (10) and the corresponding boundary con-

ditions can be found in [19, Lemma 1]. To prove uniqueness, let us assume that there
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are two solutions ū1 and ū2 of (10) satisfying the same boundary conditions. Then the

function w(t, a) = ū1(t, a)− ū2(t, a) obeys w(0, a) = w(t, 0) = 0 (t, a ≥ 0) and

(11)

∫ a

0

w(t, s)ds+

∫ t

0

w(σ, a)dσ = −
∫ t

0

(∫ a

0

m(σ, s)w(σ, s)ds

)
dσ (t, a ≥ 0).

Let us pick an arbitrary C2-function ψ(t, a), (t, a ∈ [0,∞)), supported by a compact

subset of {t, a ∈ (0,∞)} and satisfying 0 ≤ ψ(t, a) ≤ 1, and solve the equation

(12)
∂φ

∂t
+
∂φ

∂a
= m(t, a)w(t, a) + ψ(t, a) (t, a > 0).

If 0 ≤ t ≤ a, then the substitution ξ = a − t reduces (12) to a linear nonhomogeneous

equation with the zero initial condition, so that

φ(t, a) =
∫ t
0

exp{
∫ t
ξ
m(s, s+ a− t)ds}ψ(ξ, a− t+ ξ)dξ

=
∫ a
a−t exp{

∫ t
ξ+t−am(s, s+ a− t)ds}ψ(ξ + t− a, ξ)dξ (t ≤ a).

Similarly, the substitution ξ = a− t (t > a) yields

φ(t, a) =

∫ t

t−a
exp{

∫ ξ+a−t

ξ

m(s, s+ a− t)ds}ψ(ξ, ξ + a− t)dξ (t > a).

As ψ has a compact support, there is R > 0 for which ψ(t, a) = 0 for t > 0, a > R and

a > 0, t > R. Therefore,

(13) φ(t, a) = 0 (t > 0, a > t+R) and φ(t, a) = 0 (a > 0, t > a+R).

Then integration by parts results in∫ ∞
0

da

(
∂2φ

∂a∂t
(t, a)

∫ a

0

w(t, s)ds

)
= −

∫ ∞
0

w(t, a)
∂φ

∂t
(t, a)da,

∫ ∞
0

dt

(
∂2φ

∂t∂a
(t, a)

∫ t

0

w(σ, a)dσ

)
= −

∫ ∞
0

w(t, a)
∂φ

∂a
(t, a)dt

and ∫∞
0
da
∫∞
0
dt
(
∂2φ
∂a∂t

(t, a)
∫ t
0

∫ a
0
m(σ, s)w(σ, s)dσds

)
=
∫∞
0

∫∞
0
w(t, a)m(t, a)φ(t, a)dtda

due to (13). Integrating the first two equalities from 0 to ∞ with respect to t and a,

respectively, and adding the results yield∫∞
0
dt
∫∞
0
da
(
∂2φ
∂t∂a

(t, a)
(∫ a

0
w(t, s)ds+

∫ t
0
w(σ, a)dσ

))
=

−
∫∞
0
dt
∫∞
0
da
(
w(t, a)

(
∂φ
∂t

+ ∂φ
∂a

))
= −

∫∞
0

∫∞
0
w(t, a)

(
∂φ
∂t

+ ∂φ
∂a

)
dtda.
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Therefore,

0 =
∫∞
0
dt
∫∞
0
da
(
∂2φ
∂t∂a

(t, a)
(∫ a

0
w(t, s)ds+

∫ t
0
w(σ, a)dσ +

∫ t
0

∫ a
0
m(σ, s)w(σ, s)dσds

))
=
∫∞
0

∫∞
0
w(t, a)

(
−∂φ

∂t
− ∂φ

∂a
+m(t, a)φ(t, a)

)
dtda = −

∫∞
0

∫∞
0
w(t, a)ψ(t, a)dtda.

Thus, it is proven that

(14)

∫ ∞
0

∫ ∞
0

w(t, a)ψ(t, a)dtda = 0

for any C2-function ψ having a compact support for t, a > 0. To check that this necessarily

implies w(t, a) = 0 almost everywhere, let us assume on the contrary that there exists

a Lebesgue measurable set G, mes (G) = q > 0 (mes is the Lebesgue measure in the

plane) such that w(t, a) ≥ h > 0 (the case w(t, a) ≤ −h < 0 is similar). Without loss

of generality, G can be assumed to be a subset of an open ball B. Pick 0 < ε < qh
4

.

Due to integrability of w on B, there exists 0 < δ < q
4

such that |
∫ ∫

E
w(t, a)dtda| < ε

whenever mes (E) < δ. Further, there exist finitely many open balls Bi(ri) ⊂ B in the

plane, the union O of which satisfies the property mes (O∆G) < δ. Choose 0 < ρi < ri

for which mes (O− C) < δ, where C is the union of the closed balls B̄i(ρi), and construct

a C2-function ψ equalling 1 on the set C and 0 outside the set O.

Then ∫∞
0

∫∞
0
w(t, a)ψ(t, a)dtda =

∫ ∫
O
ψ(t, a)w(t, a)dtda

=
∫ ∫

C−G ψ(t, a)w(t, a)dtda+
∫ ∫

O−C ψ(t, a)w(t, a)dtda+
∫ ∫

C
⋂
G
ψ(t, a)w(t, a)dtda

≥ −ε− ε+ h,mes (C ∩G) > −2ε+ h(q − 2δ) > hq
4
> 0,

as C−G ⊂ O−G and hence mes (C−G) < δ; mes (O− C) < δ, ψ(t, a) = 1 ((t, a) ∈ C),

w(t, a) ≥ h ((t, a) ∈ G) and

mes (C ∩G) ≥ mes (G)−mes (G− O)−mes (O− C) > q − 2δ.

This contradicts property (14) and completes, therefore, the proof of the uniqueness of

solutions of Eq. (8). �

The first theorem of the paper justifies the existence and uniqueness of the solutions

of the linear boundary value problem (1), (6), where we use the so-called ’stochastic

exponential’

(15) X(t) = E{ν(t)} := exp{
t∫

0

γ(s)dW (s)− 1

2

t∫
0

γ2(s)ds},

which satisfies the equation X(t) = 1 +
∫ t
0
γ(s)X(s)dW (s), t ≥ 0.
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Theorem 1. If Assumptions (A) are fulfilled, then the boundary value problem (1), (6)

has a unique nonnegative solution u(t, a, ω) (t, a ≥ 0, ω ∈ Ω) in the sense of Definition 1,

and if χ(a) > 0 (a ≥ 0) and b(t, ω) > 0 (t ≥ 0) a.s., then also u(t, a, ω) > 0 (t ≥ 0) a.s.

This solution is given explicitly by the formula

(16) u(t, a) =

{
χ(a− t) exp{−

∫ t
0
m(s, a− t+ s)ds}E{ν(t)}, t ≤ a,

b(t− a) exp{−
∫ a
0
m(t− a+ s, s)ds}E{ν(t)}E−1{ν(t− a)}, t > a.

Proof. The existence part of this result was proven in [19, Th. 1]. In addition, it was

proven there that the stochastic process u(t, a) (t, a ≥ 0) satisfies (8) a.s. if and only if

ū(t, a) = u(t, a)E−1{ν(t)} satisfies (10) a.s. Now we can apply Lemma 1 for almost all

ω ∈ Ω, according to which the a.s. unique solution ū(t, a) of (10) is given by (9), where

v1(a) = χ(a) and v2(t) = b(t). This gives the representation formula (16) and at the same

time ensures uniqueness of solutions.

Finally, the explicit formulas (15) and (16) guarantee that this u is always nonnegative

and even a.s. positive if χ is positive and b is a.s. positive. �

In the next theorem as well as in the next section we will use the differential-based

notation for stochastic differential equations [21].

Theorem 2. Let Assumptions (A) be fulfilled and u(t, a) (t, a ≥ 0) be a solution of the

boundary value problem (1), (2). Then for all t ≥ 0 the stochastic processes J(t) (t ≥ 0)

and A(t) introduced in (3) are well-defined, Ft-adapted, continuous and satisfy on the

interval 0 ≤ t ≤ τ the following system of SFDE:

(17)

dJ(t) = −D0{t,X(·))}dt+ b(t)dt−mJ(t)J(t)dt+ γ(t)dW (t)

dA(t) = D0{t,X(·)}dt−mA(t)A(t)dt+ γ(t)dW (t)

dX(t) = γ(t)X(t)dW (t),

where

(18) D0{t,X(·)} = χ(τ − t) exp{−
∫ t

0

mJ(s)ds}X(t),

and the initial conditions

(19) J(0) = J0, A(0) = A0, X(0) = 1,

where J0, A0 are real numbers defined as

(20) J0 =

∫ τ

0

χ(s)ds, A0 =

∫ ∞
τ

χ(s)ds.
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On the interval (τ,∞) the stochastic processes (3) satisfy the system

(21) dJ(t)=βA(t)A(t)dt−mJ(t)J(t)dt−D{t,X(·)}b(t−τ)dt+γ(t)J(t)dW (t),

(22) dA(t) = −mA(t)A(t)dt+D{t,X(·)}b(t−τ)dt+ γ(t)A(t)dW (t),

(23) dX(t) = γ(t)X(t)dW (t),

where

(24) D{t,X(·)} = exp{−
∫ t

t−τ
mJ(s)ds}X(t)X−1(t− τ).

Proof. First of all, let us notice that the initial conditions (20) are satisfied due to the

representation (3) of the variables J and A.

According to (16), the function u(·, a) is Ft–adapted for all a. It is therefore straight-

forward to check that also J(t) and A(t) will be Ft-adapted stochastic processes, provided

that the integral for A(t) converges in the proper sense (for this property, see (29)).

To derive equations for the variable J(t), let us put a = τ in (8). Then

(25)

∫ τ
0

(u(t, s)− χ(s))ds+
∫ t
0
(u(σ, τ)− b(σ))dσ

= −
∫ t
0

(∫ τ
0
m(σ, s)u(σ, s)ds

)
dσ +

∫ t
0

(∫ τ
0
u(σ, s)ds

)
dν(σ).

Then, using (3), we obtain

(26) J(t)− J(0) +

∫ t

0

(u(σ, τ)− b(σ)) dσ = −
∫ t

0

mJ(σ)J(σ)dσ +

∫ t

0

J(σ)dν(σ).

because 0 ≤ s ≤ τ , so that m(σ, s) = mJ(σ).

Assume first that 0 ≤ t ≤ τ . In this case, the term u(t, τ) must be calculated according

to the first formula in the solution (16), i.e.

(27)
u(t, τ) = χ(τ − t) exp{−

∫ t
0
m(s, τ − t+ s)ds}E{ν(t)} =

χ(τ − t) exp{−
∫ t
0
mJ(s)ds}E{ν(t)}

due to the definition (7) of the mortality rate and the observation that τ − t + s ≤ τ if

0 ≤ s ≤ t. Inserting (27) in (26) gives the first equation in (17).

To calculate u(σ, τ) in the case t > τ let us use the assumption a ≤ τ , the second

formula in (16) and again the formula (7), which yields

(28) u(t, τ) = b(t− τ) exp{−
∫ t

t−τ
mJ(s)ds}E{ν(t)}E−1{ν(t− τ)},
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as
∫ τ
0
m(t− τ + s, s)ds =

∫ τ
0
mJ(t− τ + s)ds =

∫ t
t−τ mJ(s)ds if 0 ≤ s ≤ τ . Plugging (28)

in (26) justifies (21).

To derive the equation for the variable A(t), we need to be sure about the convergence

of the following improper integrals:

(29) lim
a1,a2→∞

E

(∫ a2

a1

u(t, a)da

)
2 = 0,

(30) lim
a→∞

E

(∫ t

0

u(σ, a)dσ

)
2 = 0,

(31) lim
a→∞

E

(∫ t

0

mA(σ)dσ

∫ ∞
a

u(σ, s)ds

)
2 = 0,

and

(32) lim
a→∞

E

(∫ t

0

dν(σ)

∫ ∞
a

u(σ, s)ds

)
2 = 0.

The property (29) ensures, in particular, that the integral (3) converges in the mean-

square sense, so that A(t) in (3) is a well-defined Ft-adapted stochastic process.

Properties (29)-(32) are checked in [19, p. 6-7]. By this reason, the proof, which utilizes

some standard techniques for estimating stochastic integrals, is omitted here.

To derive the equation for the variable A(t), let us now subtract (25) from (8) giving∫ a
τ

(u(t, s)− χ(s))ds+
∫ t
0
(u(σ, a)− u(σ, τ))dσ

= −
∫ t
0

(∫ a
τ
mA(σ)u(σ, s)ds

)
dσ +

∫ t
0

(∫ a
τ
u(σ, s)ds

)
dν(σ)

Letting a→∞ and using (29)-(32) we get

(33) A(t)− A(0)−
∫ t

0

u(σ, τ)dσ = −
∫ t

0

mA(σ)A(σ)dσ +

∫ t

0

A(σ)dν(σ).

If 0 ≤ t ≤ τ , then combining (33) with the formula (27) for the function u(σ, τ) yields

the second equation in (17).

If t > τ , then according to (7) and (16),

u(t, τ) = b(t− τ)E{ν(t)}E−1{ν(t− τ)} exp{−
∫ τ

0

mJ(t− τ + s)ds} (t > τ).

Then from (33) and Assumptions (A) we derive (22).

The equations for the auxiliary variable X(t) = E{ν(t)} follow immediately from the

formula (15) for the stochastic exponential. �



STOCHASTIC MCKENDRICK-VON FOERSTER EQUATION 11

Remark 4. The system of functional differential equations (21)-(23) should be supplied

by the prehistory conditions on the interval [0, τ ]:

(34) J(t) = ϕJ(t), A(t) = ϕA(t), X(t) = ϕX(t) (t ∈ [0, τ ]).

Based on the property of path continuity of the stochastic processes J , A and X, we will

in the main theorem of the next section define the right-hand sides in these conditions to

be the solutions of the initial value problem (17)-(19). This explains, in particular, why

the functions ϕJ(t), ϕA(t) and ϕX(t) must be random.

3. The full boundary value problem.

In this section, we consider the boundary value problem (1), (2), where the entries m,

β and γ depend on the aggregated variables (3), which makes this problem both non-

local and nonlinear. The set of assumptions put on the coefficients is described below

(Assumption set (B)).

We start with the following auxiliary definition [19]:

Definition 2. We say that a real-valued (deterministic) function α(t, x, y), t ≥ 0, x, y ∈
(−∞,∞) belongs class L if it is Borel measurable (as a function of three variables),

continuous with respect to t for any x and y, satisfies the uniform Lipschitz condition

with respect to x and y:

|α(t, x1, y1)− α(t, x2, y2)| ≤ L(|x1 − y1|+ |x2 − y2|)

for all t ≥ 0, x1, x2, y1, y2 ∈ (−∞,∞) and equals 0 outside the set t, x, y > 0.

The following assumptions replace Assumption set (A) in this section.

Assumption set (B):

• The extinction rate m(t, a) ≥ 0 is defined as

(35) m(t, a) =

{
mJ(t) := µJ(t, J(t), A(t)), 0 ≤ a ≤ τ,

mA(t) := µA(t, J(t), A(t)), a > τ,

where µJ and µA are class L functions.

• The birth rate β(t, a) ≥ 0 is defined as

(36) β(t, a) =

{
0, 0 ≤ a ≤ τ,

βA(t, J(t), A(t)), a > τ,

where βA is a class L function.
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• The stochastic noise is defined as

(37) ν(t) =

∫ t

0

γ(s, J(s), A(s))dW (s),

where γ is a class L function and W is, as before, the standard scalar Wiener

process (the Brownian motion) defined on the filtered probability space (5).

• The initial age distribution function χ is deterministic, continuous and satisfies∫∞
0

sup
s≥a

χ(s)da <∞.

Remark 5.

• By default, the birth rate of the juvenile population (i.e. βJ) is equal to 0; due to

this assumption and the formula for A(t) in (3), we get the following representation

of the second boundary condition in (2):

(38) b(t) = u(t, 0) =

∫ ∞
0

β(t, a)u(t, a)da = βA(t, J(t), A(t))A(t).

• The functions u, J and A should, in principle, be non-negative in the population

model. However, by technical reasons we sometimes let them be negative, too.

• Assumption set (B) requires an adjustment of the definition of solutions of the

boundary value problem (1)-(2), which is done in Definition 3.

Definition 3. A solution of the nonlocal boundary value problem (1), (2) satisfying As-

sumption set (B) is a B ⊗ B ⊗ F-measurable function u(t, a) = u(t, a, ω) (t, a ≥ 0,

ω ∈ Ω), for which the stochastic process u(·, a) is Ft-adapted and continuous for all a ≥ 0,

for which the second integral in (3) is a.s. finite and which satisfies (2) and the integral

equation (8) for t, a ∈ [0,∞) a.s.

Before we proceed, let us compare the simplified and the full boundary value problem

(1)-(2). The existence and uniqueness of solutions of the simplified problem was proven in

Section 2 under Assumptions (A). Then it was shown that the aggregated age variables (3)

are well-defined and satisfy systems (17) and (21)-(23). In the case of the full problem, i.e.

if Assumptions (B) are fulfilled, we have to proceed in a quite different way. We start with

a ’guess’ on what stochastic functional differential systems can describe the dynamics of

the aggregated age variables, treat these systems separately and then use their properties

to prove existence and uniqueness of solutions of the boundary value problem (1)-(2)

under Assumptions (B). In particular, this will imply that, indeed, our guess was correct.

The necessity of using such a trick also explains why we below temporarily denote the
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solutions of these systems by J̃(t), Ã(t), X̃(t), respectively. This is done to avoid the

notational crash until the equalities J̃(t) = J(t), Ã(t) = A(t), X̃(t) = X(t) are proven in

Step 3 of the proof of Theorem 4.

For 0 ≤ t ≤ τ the system is defined as

(39)

dJ̃(t) = −D0{t, J̃(·), Ã(·, X̃(·))}dt+ βA(t, J̃(t), Ã(t))Ã(t)dt

−µJ(t, J̃(t), Ã(t))J̃(t)dt+ γ(t, Ã(t), J̃(t))J̃(t)dW (t)

dÃ(t) = D0{t, J̃(·), Ã(·), X̃(·)}dt− µA(t, J̃(t), Ã(t))Ã(t)dt

+γ(t, J̃(t), Ã(t))Ã(t)dW (t)

dX̃(t) = γ(t, J̃(t), Ã(t))X̃(t)dW (t),

where

(40) D0{t, J̃(·, Ã(·)), X̃(·)} = χ(τ − t) exp{−
∫ t

0

µJ(s, J̃(s), Ã(s))ds}X̃(t).

The initial conditions for the system (39) are, as in the previous section, given by

(41) J̃(0) = J0, Ã(0) = A0, X̃(0) = 1,

where J0, A0 are the real numbers defined in (20).

For t > τ we put

(42)

dJ̃(t) = βA(t, J̃(t), Ã(t))Ã(t)dt− µJ(t, J̃(t), Ã(t))J̃(t)dt

−D{t, J̃(·), Ã(·), X̃(·)}βA(t− τ, J̃(t− τ), Ã(t− τ))Ã(t− τ)dt

+γ(t, Ã(t), J̃(t))J̃(t)dW (t) (t > τ),

(43)

dÃ(t) = −µA(t, J̃(t), Ã(t))Ã(t)dt

+D{t, J̃(·), Ã(·), X̃(·)}βA(t− τ, J̃(t− τ), Ã(t− τ))Ã(t− τ)dt

+γ(t, J̃(t), Ã(t))Ã(t)dW (t) (t > τ),

(44) dX̃(t) = γ(t, J̃(t), Ã(t))X̃(t)dW (t),

where

(45) D{t, J̃(·), Ã(·), X̃(·)} = exp{−
∫ t

t−τ
µJ(s, J̃(s), Ã(s))ds}X̃(t)X̃−1(t− τ).

is the integral operator standing for the distributed delay in the above system.

The prehistory conditions for the system (42)-(44) are defined as

(46) J̃(t) = ϕJ(t), Ã(t) = ϕA(t) X̃(t) = ϕX(t) (t ∈ [0, τ ]),
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where the right-hand sides are Fτ -measurable for all 0 ≤ t ≤ τ and continuous stochastic

processes.

The theorem below ensures the existence and uniqueness property of the formally de-

fined systems of SFDE (39) and (42)-(44).

Theorem 3. Let µJ , µA, βA, γ be class L functions. Then for any J0, A0 the initial

value problem (39), (41) has a unique Ft–adapted continuous solution on the interval

[0, τ ], while the system (42)-(44) has a unique Ft–adapted continuous solution on the

interval 0 ≤ t < ∞ satisfying the prehistory conditions (46), where ϕJ(t), ϕA(t) and

ϕX(t) (0 ≤ t ≤ τ) are arbitrary Fτ -measurable and continuous stochastic processes.

Proof. We split the proof into two steps starting with the system (39) equipped with the

initial conditions (41). This is a particular case of a stochastic hereditary equation with

special initial conditions at time t = 0, i.e. without the prehistory condition for t < 0.

Such equations are sometimes called the Doléans-Protter equations, see e.g. [15]. Let ‖ ·‖
be the sup-norm on the space of all continuous functions defined on [0, τ ]. It is straightfor-

ward to check that for some Ft-adapted and càdlàg stochastic process L(t), the right-hand

side F0 in (39) satisfies the Lipschitz condition |(F0x1)(t) − (F0x2)(t)| ≤ L(t)‖x1 − x2‖
almost surely for all t ∈ [0, τ ], where | · | is the usual Euclidean norm. Using now the

main result of the paper [16], based on the generalized contraction principle for stochas-

tic functional differential equations, ensures existence and uniqueness of solutions of the

initial value problem (39)-(41) defined on the interval [0, τ ]. This solution is continuous

and Ft-adapted (0 ≤ t ≤ τ).

The existence and uniqueness result for the second initial value problem is justified in

step 2 of the proof. Following [18] we show how to obtain the Doléans-Protter equation

from the system (42)-(44). By this, the existence and uniqueness property can be again

established by referring to [16].

To simplify the notation, let us put ϕ(t) = (ϕJ(t), ϕA(t), ϕX(t)) (t ∈ [0, τ ]) and

x(t) = (J̃(t), Ã(t), X̃(t)) (t ≥ 0) and accumulate the right-hand sides of (42)-(44) into

two Volterra operators F1 and F2 yielding

(47) dx(t) = (F1x)(t)dt+ (F2x)(t)dW (t), t > τ.

The prehistory conditions (46) become

(48) x(t) = ϕ(t), 0 ≤ t ≤ τ.
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Define

ϕ−(t) =

{
ϕ(t), 0 ≤ t < τ,

0, t ≥ τ,

and introduce the nonlinear operators F̂1 and F̂2, both acting on Ft-adapted continuous

stochastic processes x(t) (τ ≤ t <∞), by setting F̂i(x) = Fi(x
+ + ϕ−) (i = 1, 2), where

x+(t) =

{
0, 0 ≤ t < τ,

x(t), t ≥ τ.

By construction, the solution x(t) of the Doléan-Protter equation

(49) dx(t) = (F̂1x)(t)dt+ (F̂2x)(t)dW (t), t ≥ τ,

satisfying the initial condition (at t = τ)

(50) x(τ) = ϕ(τ),

defines the solution of the initial value problem by the formula x(t) = x+(t) + ϕ−(t),

and vice versa: given the stochastic process x(t) satisfying (47) and (48) on [0,∞), its

restriction x(t) to the interval [τ,∞) is a solution of (49) satisfying the initial condition

(50). Thus, we can replace the property of existence and uniqueness for (47)-(48) by that

of (49)-(50).

Using again the Lipschitz condition |(F̂ x1)(t)−(F̂ x2)(t)| ≤ L(t)‖x1−x2‖ on τ ≤ t <∞,

where ‖ · ‖ is the sup-norm and the main result of the paper [16] yields existence and

uniqueness of the solutions of the initial value problem (49)-(50). This completes the

proof of the theorem. �

Remark 6. Assumptions on the stochastic processes ϕJ , ϕA and ϕX in the prehistory

conditions (46) are, in particular, fulfilled if they coincide with the solutions of the initial

value problem (39)-(41), which is defined on the interval [0, τ ]. In this case, we may call

the triple (J̃(t), Ã(t), X̃(t) (t ≥ 0) from Theorem 3 the solution of the initial value

problem (39)-(46). This terminology will be used in the next theorem.

We are now ready to prove the main result of this paper.

Theorem 4. Suppose that the entries m, χ, β, γ, ν satisfy Assumptions (B). Then the

nonlocal boundary value problem (1), (2) has a unique solution u(t, a) (0 ≤ t, a < ∞) in

the sense of Definition 3.
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Moreover, u(t, a) > 0 a.s. (0 ≤ t, a <∞) if and only if

βA(t, J̃(t), Ã(t))Ã(t) > 0 a. s., (0 ≤ t <∞),

where the stochastic processes J̃(t) and Ã(t) (together with X̃(t)) are the solutions of the

initial value problem (39)-(46) and J0, A0 are given by (20).

Proof. The proof of the theorem is divided in 5 steps. The existence of solutions is proven

in Steps 1-4, while their uniqueness is justified in Step 5.

Step 1. Applying Theorem 3 we let the triple
(
J̃(t), Ã(t), X̃(t)

)
be a unique solution

of the initial value problem (39)-(46), where J0 and A0 are given by (20).

Let us define the function u(t, a) (t, a ≥ 0) by

(51) u(t, a) =

{
χ(a− t) exp{−

∫ t
0
m̃(s, a− t+ s)ds}E{ν̃(t)}, t ≤ a,

b̃(t− a) exp{−
∫ a
0
m̃(t− a+ s, s)ds}E{ν̃(t)}E−1{ν̃(t− a)}, t > a,

for χ satisfying the last assumption in (B) and m̃, b̃ and ν̃ given by

(52) m̃(t, a) =

{
m̃J := µJ(t, J̃(t), Ã(t)), 0 ≤ a ≤ τ,

m̃A := µA(t, J̃(t), Ã(t)), a > τ,

(53) b̃(t) = βA(t, J̃(t), Ã(t))Ã(t),

(54) ν̃(t) =

∫ t

0

γ(s, J̃(s), Ã(s))dW (s),

where the class L functions µJ , µA, βA and γ are taken from Assumptions (B). Evidently,

these formulas correspond to those in (B) and (38) if J and A are replaced by J̃ and Ã,

respectively. As the solutions J̃(t), Ã(t) are Ft-adapted and continuous, it is straightfor-

ward to see that the functions m̃, b̃ and ν̃ satisfy the Assumptions (A). Thus, we can

apply Theorem 1 ensuring the function u(t, a) to satisfy the integral version (8) of the

SMF equation (1) as well as the boundary conditions (6). This solution is, in addition,

unique in the class of stochastic processes described in Definition 1.

Step 2. Using the function u from Step 1 we define the aggregated variables J(t) and

A(t), as it is done in (3). By Theorem 2, they satisfy the following systems of SFDE

(55)

dJ(t) = −D0{t, J̃(·), Ã(·, X̃(·))}dt+ βA(t, J̃(t), Ã(t))Ã(t)dt

−µJ(t, J̃(t), Ã(t))J(t)dt+ γ(t, Ã(t), J̃(t))J(t)dW (t) (0 ≤ t ≤ τ)

dA(t) = D0{t, J̃(·), Ã(·), X̃(·)}dt− µA(t, J̃(t), Ã(t))A(t)dt

+γ(t, J̃(t), Ã(t))A(t)dW (t) (0 ≤ t ≤ τ),
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where the integral operator D0{t, J̃(·), Ã(·), X̃(·)} is defined in (40), and

(56)

dJ(t) = βA(t, J̃(t), Ã(t))Ã(t)dt− µJ(t, J̃(t), Ã(t))J(t)dt

−D{t, J̃(·), Ã(·), X̃(·)}βA(t− τ, J̃(t− τ), Ã(t− τ))Ã(t− τ)dt

+γ(t, Ã(t), J̃(t))J(t)dW (t) (t > τ),

(57)

dA(t) = −µA(t, J̃(t), Ã(t))A(t)dt

+D{t, J̃(·), Ã(·), X̃(·)}βA(t− τ, J̃(t− τ), Ã(t− τ))Ã(t− τ)dt

+γ(t, J̃(t), Ã(t))A(t)dW (t) (t > τ),

where the integral operator D is defined in (45).

Finally,

(58)
J(0) =

∫ τ
0
u(0, s)ds =

∫ τ
0
χ(s)ds = J̃(0),

A(0) =
∫∞
τ
u(0, s)ds =

∫∞
τ
χ(s)ds = Ã(0).

Step 3. Now, we can prove that J̃(t) = J(t) and Ã(t) = A(t), t ≥ 0. To see this,

we observe that due to (58), these processes satisfy the same initial conditions, while

(39), (42), (43) and (55)-(57) imply that they satisfy the same system of linear stochastic

functional differential equations given by

dx1(t) =
(
−c1(t)x2(t) + b̃(t)− m̃J(t)x1(t)

)
dt+ γ̃(t)x1(t)dW (t)

dx2(t) = (c1(t)− m̃A(t)x2(t)) dt+ γ̃(t)x2(t)dW (t) (0 ≤ t ≤ τ)

and

dx1(t) =
(
−c2(t)x2(t) + b̃(t)− m̃J(t)x1(t)

)
dt+ γ̃(t)x1(t)dW (t)

dx2(t) = (c2(t)− m̃A(t)x2(t)) dt+ γ̃(t)x2(t)dW (t) (t > τ),

where

c1(t) = D0{t, J̃(·), Ã(·), X̃(·)},
c2(t) = D{t, J̃(·), Ã(·), X̃(·)}, βA(t− τ, J̃(t− τ), Ã(t− τ)Ã(t− τ),

γ̃(t) = γ(t, Ã(t), J̃(t)), X̃(t) = E{
t∫
0

γ(s, J̃(s), Ã(s))dW (s)},

and m̃J(t), m̃A(t), b̃(t) are defined in (52)-(53).

The uniqueness property of the solutions of the above systems for the variables x1 and

x2 on the intervals [0, τ ] and (τ,∞), respectively, yields x1(t) = J(t) = J̃(t), x2(t) =

A(t) = Ã(t) (t ≥ 0).

Step 4. Using the results obtained in step 3, we conclude that m = m̃, b = b̃ and

ν = ν̃, see (52)-(54) and A(t) calculated by (3) is well-defined. Hence the representations
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of u(t, a), given by (16) and (51) coincide and this u solves the SMF equation (1). The

first condition in (2) is satisfied by definition, while the second one is fulfilled, because∫ ∞
0

β(t, a)u(t, a)da = βA(t, J(t), A(t)))A(t) = βA(t, J̃(t), Ã(t)))Ã(t) = u(t, 0)

due to the formulas (38) and (51), (53), respectively.

Finally, the positivity of u(t, a) follows immediately from the formulas (51), (53) and

the evident inequality E{ν̃(t)} > 0 for all t ≥ 0.

Step 5. In the last step we prove the uniqueness of u. Assume, on the contrary,

that there exist two different solutions u1(t, a) and u2(t, a) of the full boundary value

problem (1)-(2). Then by the previous steps of the proof, the aggregated variables Ji(t) =∫ τ
0
ui(t, a)da and Ai(t) =

∫∞
τ
ui(t, a)da (i = 1, 2) are well-defined and satisfy the initial

value problem (39)-(46) with the same initial conditions J1(0) = J2(0), A1(0) = A2(0) due

to the formulas (20). In particular, they are Ft-adapted continuous stochastic processes

on [0,∞). Using the uniqueness property for the solutions of this initial value problem

proven in Theorem 3, we conclude that J1(t) = J2(t) and A1(t) = A2(t) a.s. (t ≥ 0).

Let us define m, b and ν by the formulas (35), (38) and (37), respectively. Clearly, these

stochastic processes satisfy Assumption (A). Then u1 and u2 become the solutions of the

same boundary value problem (1), (6), so that by Theorem 1 u1(t, a) = u2(t, a) a.s. for

all t, a ≥ 0. �

4. Conclusions and outlook

The McKendrick-Von Foerster equation for an age-structured population with a stochas-

tically perturbed extinction rate function and the non-local boundary conditions depend-

ing on the aggregated age variables was studied in this paper. The fundamental existence

and uniqueness results for the simplified (linear) and the full (nonlinear) boundary value

problems were proven. This may, in particular, serve as the final justification of several

finite dimensional stochastic models for the aggregated age variables describing the size

of juveniles and adults in the population, which were earlier derived in the paper [19].

However, the present study only covered continuous stochastic noises of the type ’weighted

white noise’. More general cases, in particular, those including discontinuous stochastic

noises (see [19]), should be investigated further.
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[3] S. Aniţa, V. Arnaŭtu, V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and

Economics, Birkhäuser (2011).
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