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at all or not explore the full potential of RMS data.

gradient for Escherichia coli across time.
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Background: Studies of shifts in microbial community composition has many applications. For studies at species or
subspecies levels, the 165 amplicon sequencing lacks resolution and is often replaced by full shotgun sequencing.
Due to higher costs, this restricts the number of samples sequenced. As an alternative to a full shotgun sequencing
we have investigated the use of Reduced Metagenome Sequencing (RMS) to estimate the composition of a
microbial community. This involves the use of double-digested restriction-associated DNA sequencing, which
means only a smaller fraction of the genomes are sequenced. The read sets obtained by this approach have
properties different from both amplicon and shotgun data, and analysis pipelines for both can either not be used

Results: We suggest a procedure for analyzing such data, based on fragment clustering and the use of a constrained
ordinary least square de-convolution for estimating the relative abundance of all community members. Mock
community datasets show the potential to clearly separate strains even when the 16S is 100% identical, and genome-
wide differences is < 0.02, indicating RMS has a very high resolution. From a simulation study, we compare RMS to
shotgun sequencing and show that we get improved abundance estimates when the community has many very
closely related genomes. From a real dataset of infant guts, we show that RMS is capable of detecting a strain diversity

Conclusion: We find that RMS is a good alternative to either metabarcoding or shotgun sequencing when it comes to
resolving microbial communities at the strain level. Like shotgun metagenomics, it requires a good database of
reference genomes and is well suited for studies of the human gut or other communities where many reference
genomes exist. A data analysis pipeline is offered, as an R package at https://github.com/larssnip/microRMS.

Background

The study of microbial communities relies on the se-
quencing of microbial DNA, and current practice can be
divided into two main approaches: metabarcoding, also
known as amplicon or targeted sequencing, and shotgun
sequencing of random fragments from the entire gen-
ome [1]. The amplicon approach is primarily used for
revealing the taxonomic composition, but may also be
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used to study the distribution of targeted functional
genes [2]. Shotgun sequencing provides a potentially
more detailed information about the community ge-
nomes, the microbiome, and is typically used for studies
that dig beyond the composition and into the genomic
function. Shotgun microbiome sequencing requires sig-
nificantly more efforts in sequencing, data processing,
and analysis compared with metabarcoding.

In most microbiome studies, the composition is of
interest, and in some cases, it is all we require. Shifts in
composition may be used as indicators in various ways
(e.g., microbiota profiles in forensics [3], or in the
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surveillance of environments) [4]. For communities like
the human gut, extensive studies of the composition has
given us the big picture, but recent investigations indi-
cate that differences at the strain level may be crucial for
phenotypic differences [5, 6]. Common to these prob-
lems is the need for high-resolution taxonomic profiles
that can be collected with moderate efforts and in a re-
producible way. Such studies often require many sam-
ples in order to capture the biological variation, and
since sequencing and computational resources are al-
ways limited, the simpler amplicon approach is often
preferred to a deep shotgun sequencing in order to get
enough samples covered. However, the standard ap-
proach using the 16S rRNA gene marker has a limited
resolution. If separation at the species or strain level is
required, the 16S marker is in general too conserved,
and a full shotgun sequencing seems necessary.

As an alternative to do a full shotgun metagenomic se-
quencing, the use of restriction enzymes to reduce the
genomic sequence space has also been employed to inves-
tigate microbial communities [7-9]. The double-digested
restriction-associated DNA sequencing (ddRADseq) idea
[10-12] has been along for some time, but its use for
metagenome studies is quite new. The main advantage for
this approach has been to reduce the sequencing efforts,
and thereby costs per sample. In short, this means cutting
DNA into fragments using two different restriction en-
zymes, followed by a PCR amplification and sequencing of
the resulting amplicons. This procedure falls between the
full shotgun sequencing and the classical use of a specified
marker gene (16S). It has some resemblance to shotgun
sequencing, since from each genome we sequence many
different, in some sense random, fragments that vary in
size and number between genomes. However, this also re-
sembles metabarcoding since multiple copies of a certain
genome will produce the exact same fragments, and the
reads are from these fragments each time. Thus, the ap-
proach has been termed Reduced Metagenome Sequen-
cing (RMS). The wet-lab protocols for ddRADseq are well
established [8].

There are some difficulties that arise with the RMS ap-
proach. When target sequencing a pre-defined marker
gene like the 16S, we may cluster reads into operational
taxonomic units (OTUs) or sequence variants, where
each cluster represents some taxon. RMS reads may also
be clustered, but each taxon gives rise to a variable num-
ber of distinct fragments, and it is difficult to infer the
taxonomic composition from such read clusters without
mapping to some references. Also, due to the variable
lengths and compositions of the fragments, the PCR-
amplification efficiency must be expected to vary and
create biases. For purely predictive purposes, such
reference-free approaches may still be useful, as sug-
gested by [9].
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In this paper, reads are in some way mapped to a data-
base of reference genomes, often referred to as closed-
reference analysis. Our focus is on the estimation of
high-resolution abundances (i.e. species or strain-level
profiles), which is not attainable by conventional 16S se-
quencing. It is possible to use computational tools de-
signed for shotgun data directly in the RMS setting. This
may produce helpful results, but do not utilize all the in-
formation we have in this case. We propose an alterna-
tive analysis approach, using fragment clustering and a
constrained least squares estimation. Based on mock
community data and simulations, we demonstrate some
important aspects of RMS data, and show the potential
for RMS to improve composition estimates at the strain
level. We also include an example of using RMS to esti-
mate strain diversity for Escherichia coli in the infant gut
microbiome. The analysis tools, along with some tutorial
material, is freely available as an R package at the
GitHub site https://github.com/larssnip/microRMS.

Results

We have explored the Reduced Metagenome Sequencing
approach for studying the composition of microbial
communities, with a focus on high-resolution profiles.
The RMS idea is to cut genomes into fragments using
restriction enzymes, then amplify and sequence the
resulting fragments. In this study, we have focused on
the restriction enzymes EcoRI and Msel. The data pro-
cessing pipeline illustrated in Fig. 1 will apply to any
choice of enzymes, but some of the choices made along
the way may change.

In Fig. 2, we see how the RMS fragment number and
lengths distribute for a selection of species typically
found in the human gut. This will clearly change if other
restriction enzymes are used. For each species, we ran-
domly selected 10 sequenced strains, and all results are
based on retrieving the RMS fragments in silico from the
genomes, using the cutting motifs GAATTC (EcoRI) and
TTAA (Msel). In the upper panel, we notice that the
number of RMS fragments per mega base pair varies a
lot between species, but less within each species. The
number of RMS fragments is typically limited by the oc-
currence of the longer cutting motif, in this case GAAT
TC. Since this is a guanine-cytosine (GC)-poor motif,
there is an effect of GC-content, and the grey sector in-
dicates where the numbers should have been had it been
random DNA. In the lower panel, the densities show
how fragment lengths distribute. Here, we selected three
species only, having low (Fusobacterium nucleatum),
medium (E. coli), and high (B. longum) GC-content. The
fragment lengths are typically governed by the occur-
rence of the shorter motif, in this case TTAA, and again
there is a huge effect of GC-content. The GC-poor F.
nucleatum has very short fragments since the short
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Fig. 1 An illustration of the suggested RMS profiling procedure. The left branch is executed once for a collection of reference genomes, except
that the clustering of genomes may be done at various resolutions depending on later use. The right branch is done for each set of samples. The

motif occurs more frequently than in the more GC-rich
species. There are fragments longer than 1000 bases, but
these typically produce low signals after PCR amplifica-
tion and are not shown here. For any choice of restric-
tion enzymes, similar investigations should be made to
see how many and how long fragments one should ex-
pect from the species most likely to be found in the tar-
geted samples.

Figure 3 illustrates the potential for high resolution
using the RMS method. Here we have considered the 27
genomes used in our mock community below. In panel
A, we used the 16S sequence from each genome. These
were aligned (MUSCLE, [13]) and the p-distance (1
minus identity, i.e., distance 0.01 corresponds to 99%
identity) between them computed using the ape-package
in R [14]. We noticed that strains within the same spe-
cies are identical or close to identical, and even the two

Staphylococcus species are difficult to separate, with p-
distance < 0.01. OTUs based on 16S data are usually
clustered at distance 0.03. In panel B, we computed the
p-distances based on whole genomes, using the fastANI
software [15]. This separates the Staphylococci better
than 16S, but strains within the same species are again
quite similar. The two strains of Helicobacter pylori have
p-distance 0.04 between them, indicating 96% of their
genomes are identical. In panel C is the correlation dis-
tance between genomes based on RMS fragment copy
numbers. From the genomes, we get the copy number
matrix X, with one row for each fragment cluster and
one column for each genome. The two Lactobacillus
gasseri strains have a small correlation distance, making
them as good as impossible to separate with RMS. But,
the other species with multiple strains are far better off,
and the correlation distance of 0.22 between the two S.
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mutans strains should be large enough for discrimin-
ation between them.

Previous use of ddRADseq have reported biases in the
signals, most likely introduced in the PCR amplification
of such fragments [16]. To investigate this, we used
mock data from [8], where some samples included a sin-
gle genome only. In Fig. 4, we have plotted the data from
four such samples. From panel A, we clearly see how
fragment length affects the relative read count signals by
the banana-shaped cloud of strong signals. The cloud of
very low signals (note log-transformed y-axis) is due to
noise. In panel B, there seems to be no bias due to GC-
content. Based on repeated observations of similar pat-
terns, we propose a length normalization of the RMS
signals. In panel C, we show the effect of this procedure

described in the Methods section. We also suggest,
based on panels A and C, that only fragments within the
length interval 30-500 bases should be used in the
downstream analyses, highlighted in panel C of Fig. 4. In
this interval, the length bias is small, and the
normalization procedure will not affect the data very
much, which is always a good thing. From Fig. 2, we also
saw that most fragments are in this length interval when
using the current restriction enzymes. Clearly, these
limits must be reconsidered if other enzymes are used.
Next, we used the RMS approach on the mock com-
munity data. In Fig. 5, we show a classical stacked bar
plot displaying the estimated composition of the 20-
genome mock. The estimates are based on the con-
strained ordinary least squares (COLS, see Methods for
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Fig. 3 The dendrograms display hierarchical clustering of the 27 genomes in the mock study. In panel A, the distances are p-distances computed
from a multiple alignment of the 16S sequences from each genome. In panel B, the p-distances are based on whole-genome comparisons, and
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in panel C, we used correlation distances based on RMS fragment copy numbers

details) procedure, with 0.1 trimming, described in the
Methods section. The database contains the genomes
from all the 27 genomes, but only the original 20 ge-
nomes were included in this sample. Proportions are
well estimated, and of the seven extra genomes absent in
the samples, six of them are correctly estimated to have
no contributions. The only false-positive (weak) signal is
from L. gasseri ATCC 33323, as expected from the re-
sults in Fig. 3. In Fig. 6, we display the actual versus the
predicted relative abundances as scatterplots for each of
the other mock combinations. Here the extra strains
were spiked-in, one by one, and in one sample, all seven
were added. From this, we note that proportions are in
most cases well estimated, where strains who are absent
are estimated with zero proportions, and when strains
are spiked-in they are estimated with fairly accurate pro-
portions. There are two exceptions. As seen also in Fig.
5, the L. gasseri ATCC 33323 strain is estimated as
(weakly) present also in those cases it is absent, and the
spiking-in of H. pylori NCTC 11637 seems to have failed
in some way, coming out with much too low abundance
in the two cases where it is present.

We also tested the RMS approach against a standard
shotgun sequencing procedure using simulated data. We
focused on human gut-like communities of three differ-
ent resolutions, where community members have a
minimum whole-genome p-distance of 0.05, 0.02, or
0.01. This resulted in 291, 601, and 1086 community ge-
nomes, respectively. In all cases, the samples contained
reads from 100 randomly sampled present genomes, but
the databases (RMS and Kraken2) contained all commu-
nity genomes, both those present and absent. Both from
RMS and shotgun data, we re-estimated the relative
abundance of every single genome in the database, using
the COLS method for RMS data and Kraken2 [17] with

a custom database for the shotgun data. To evaluate the
results, we computed the Manhattan distance (or L,
norm) between actual and predicted relative abundances,
as suggested in [18]. Thus, a Manhattan distance of D =
0 means we estimate all relative abundances perfectly. In
Fig. 7, the actual versus the predicted abundances are
plotted as scatterplots. We observe, as expected, that
predictions are poorer for lower p-distances (i.e., it be-
comes more difficult to distinguish genomes as they be-
come more similar). However, the difference between
RMS (upper panels) and shotgun (lower panels) data is
striking. With the RMS approach, we can estimate the
abundance of each genome quite well, while for shotgun
data, the variance becomes huge for the highest resolu-
tions, with predicted abundances up to three times lar-
ger or smaller than the actual abundances.

Finally, we include some real data to illustrate our
use of RMS. First, we use it for quantifying strain-
diversity of E. coli in the infant gut. At the time of
writing, there are 1066 complete E. coli genomes in
the RefSeq database (https://ftp.ncbi.nlm.nih.gov/
genomes/refseq/). This is an example of a genome
collection where we find some very similar genomes.
We computed the whole-genome p-distance between
all pairs of genomes, using the MASH software [19],
as well as the RMS correlation distances described in
the Methods section. In Fig. 8, the left of panel A
scatterplot indicates how these distances relate to
each other. We only plot the distance to the nearest
neighbor for each genome, and the grey dots are for
all 1066 genomes. Note that some of distances are
zero (both distance measures), indicating RefSeq con-
tains multiple copies of identical genomes. The scat-
terplot also relates the correlation distance to the
more familiar p-distance, and we observe that a
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correlation distance around 0.30 here corresponds to
a p-distance of roughly 0.01, i.e., genomes of 99%
identity.

Using all 1066 genomes turns out impossible, because
the copy number matrix produces an infinite condition
value. This is due to the identical genomes, which is
(theoretically) impossible to separate. Hence, we
employed the genome clustering described in the
Methods section. Setting the maximum tolerated
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condition value at 100 produced 54 genome clusters, i.e.,
the E. coli population is divided into 54 subgroups with
this resolution. The black dots in Fig. 7 are the nearest
neighbor distances for these 54 genomes. In the right of
panel B we indicate where these are located in a
neighbor-joining tree based on the p-distances between
all strains.

Six of the samples from the infant guts were also sub-
ject to a conventional shotgun sequencing. We first
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Fig. 4 In panel A, fragment signal (relative read counts) is plotted against fragment length and in panel B against fragment GC-content. Each dot
corresponds to a fragment cluster, and data from the four single-genome samples are displayed together. In panel C is shown the effect of the
simple length normalization on a single sample. Raw read counts are normalized as described in the text. The red-brown color highlights the
fragments within the length interval 30-500 bases. Note the log-transformed y-axes in all panels
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made a comparison between shotgun and RMS, using
Kraken2 and a custom database for assigning reads to
the exact same 54 E. coli genomes that we used for the
RMS analysis. Since we do not know the true compos-
ition of these samples, we only considered which strains
were estimated to be present or absent in a sample. In
the left of panel A of Fig. 9, we show a tree of the 54
strains, based on whole-genome p-distances, where we
have colored the leaf nodes by how they were classified
by either shotgun or RMS data in one of the samples.
We can see that from the shotgun data, and the Kraken2
assignments, 51 of the 54 strains were assigned reads,
and thereby being present (grey or black), while the
RMS results only estimate 16 strains as present (black
only), of which half is from the same clade at the top of
the tree. The other five samples show a similar trend:

The shotgun approach will assign reads to a majority of
strains, while the RMS approach is more specific, stating
fewer strains are present.

In the right of panel B of Fig. 9, the boxplot shows the
number of strains found present by RMS in all 94 in-
fants at 4 different times after birth. The variance is
large, partly due to biological variation. Still, the trend of
a growing diversity by age is clear, and a simple ANOVA
analysis confirmed a highly significant increase in diver-
sity from birth (Meconium) to all later times, especially
to 12 months.

As a second illustration of the use of RMS and our de-
convolution method, we re-analyzed the data from [7].
In their paper, they sequenced 3 human gut samples
with both a conventional shotgun approach as well as an
RMS approach. They used other restriction enzymes
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where marker should be if the estimates were perfect. Note that in the lower left corner (those who are absent and predicted to be absent),
many markers of different colors overlap each other.

than we did in our analyses above, the Nlalll with cut-
ting motif CATG and HpyCH4IV with ACGT. In [7], all
data were profiled by MetaPhlAn2 [20], i.e., both shot-
gun and RMS data were treated the same way. In our re-
analysis we used Kraken2 instead of MetaPhlAn2, and in
addition, we also used our RMS-specific method on the
RMS data. As a genome database, both for Kraken2 and
our own method, we used the MGnify collection of hu-
man gut genomes [21]. This consists of 4644 genomes
isolated from human gut samples and clustered at 95%
identity, i.e., each genome represents a cluster of ge-
nomes with more than 95% identity.

In the left of panel A of Fig. 10, we show a principal
component analysis (PCA) plot of the three samples
based on shotgun sequencing and Kraken2 profiling
(shotgun + kraken), RMS sequencing and Kraken2
(ddRADseq + kraken2), and RMS sequencing profiled by
our COLS method (ddRADseq + COLS). Only the 100
overall most abundant taxa were included to make the
figure, and their relative abundances were transformed
by the centered log-ratio transform [22] prior to the
PCA computations and plotting.

In [7], the most abundant species identified by
MetaPhlAn2 in these samples was Faecalibacterium
prausnitzii. This is a common human gut species, but is
also known to consist of multiple phylotypes, where dif-
ferent phylotypes have been reported to be associated
with differing disease developments [23, 24]. Thus, it is
of some interest to separate between variants of this spe-
cies. In the MGnify collection, we find 9 different gen-
ome clusters named F. prausnitzii. We therefore used
our deconvolution approach to separate between them,
as plotted in the right of panel B of Fig. 10.

Discussion

The upper panel of Fig. 2 shows that, using the restric-
tion enzymes of this study, the RMS fragment density
varies by GC-content. Most genomes also have fewer
fragments than expected in random DNA, indicating a
negative selection of the cut sites. However, multiplying
by genome size, we find that most genomes have in the
range of hundred to thousand fragments. The lower
panel of Fig. 1 shows most fragments are rather short.
This is a good thing, since longer fragments amplify
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Fig. 7 The scatter plots show actual versus predicted relative abundances for the simulated data. Each dot is a relative abundance of a genome,
and each panel contain results from 25 samples. The upper panels are RMS data estimated by COLS, and the lower panels shotgun data
estimated by Kraken2. The resolution of the communities increases from left to right, as indicated by the upper panel headers. The average
Manhattan distance D is displayed within each panel

poorly, and we found that by only focusing on fragments
in the length interval 30-500 bases, we obtain strong
signals without too much PCR bias. These results apply
to our chosen restriction enzymes and should always be
investigated for any alternative choices of enzymes.
From Fig. 3, we clearly see the potential for RMS to re-
solve strains at a level which is impossible with 16S, and
even difficult with shotgun sequencing. In panel A, we
used full-length 16S sequences, but still the separation is
very poor between closely related genomes. The dis-
tances in panel B reflects how similar the genomes are
in overall nucleotide identity. As expected, strains within
a species have p-distance of less than 0.05, i.e., more
than 95% identical. Panel C demonstrates that even
closely related strains have rather large correlation dis-
tance, indicating a good number of unique RMS frag-
ments. This may seem strange, how can genomes be so
similar in p-distance, but still have different RMS frag-
ments? Mutations in restriction cut sites as well as rear-
rangements of genomic regions will both create/destroy
RMS fragments, but have little impact on the whole-
genome distance. Only if two or more genomes share

the vast majority of RMS fragments, we would see a
small correlation distance, and a shallow branch in the
dendrogram. From panel C in Fig. 2, we expect to be
able to separate all genomes by RMS, except perhaps the
two L. gasseri strains.

Since the RMS approach involves a PCR step, we must
expect some biases. In Fig. 4 (panel A), we observe a dis-
tinct effect of fragment length on the relative signal
strengths we get, based on single-genome samples from
a previous study. However, the GC-content of the frag-
ments does not seem to have any effect (panel B), unlike
what was reported by [16]. The lower panels of Fig. 4 il-
lustrate our proposed way of handling the length bias.
First, only use fragments in the length interval 30-500
bases, highlighted in brown color in panel C. As we saw
in Fig. 2, short fragments account for the vast majority
anyway, and we have found that 80-90% of the reads
will map to fragments in this interval. Next, we propose
a simple normalization, illustrated in panel C. The cloud
of strong signals is straightened. Note that due to the
log-transformed y-axis it looks like weak signals (noise)
are heavily distorted by the normalization, while their
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values actually change very little. If other restriction en-
zymes are used, the fragment lengths may be different,
and the limits of 30-500 should be reconsidered. How-
ever, the length bias corrected by the normalization will
probably be of the same type, since this is a PCR effect
which is independent of the restriction enzymes.

The mock data results in Figs. 5 and 6 reveal that with
the RMS approach and the COLS algorithm, we can esti-
mate relative abundances fairly well. It should be noted
that the actual abundances are probably not exact, as they
rarely are in experimental data. The mock composition
was designed by 16S copies, and the transformation to
genome copies is not without uncertainty, since most of
these species are known to have variable 16S copy num-
bers. Most important is that strains who are absent from a
sample are also estimated to zero abundance, i.e., they
show up in the lower left corner of the panels in Fig. 6.
The exception is L. gasseri ATCC 33323. This is simply
too similar to the other L. gasseri strain, as seen in Fig. 3
as well. Only five fragment clusters are unique to the
ATCC 33323 strain, and with some noise signals on some
of these, it appears to be present even when it is not.

In virtually all cases, the three replicates (marker
types) of each sample show very similar results, indicat-
ing there is very little variance in the RMS procedure as
such. Hence, any deviations between actual and esti-
mated proportions are most likely due to some system-
atic effect. On closer inspection, we found that the RMS
data display what we denote as a fragment bias. Frag-
ments unique to a genome should in theory all produce
similar read counts, with some variation due to the ran-
domness of sequencing. This is not the case. Some frag-
ments consistently produce strong signals and others
weak. This is also remarkably stable across all samples
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where a particular genome is present. We accounted for
this in our simulation study, adding a random scaling to
all fragments, and supplementary Figure 2 shows the dis-
tribution of this fragment bias. So far, we have failed to
reveal the cause of this effect. If we could understand
and compensate for it, this would improve the precision
and thereby the resolution of the method even further.
We used simulated data to compare the RMS ap-
proach to the use of shotgun sequencing in combination
with the Kraken2 tool for re-estimating the relative
abundances of each genome. Kraken2 is only one out of
several tools for estimating metagenome composition,
but we chose this because it has a good reputation, will
always try to classify reads to the genomes of its data-
base, but most importantly, the genomes in the database
can be easily customized. To make the comparison fair,
the database must be identical for both the RMS and
shotgun approach. Using a generic database is bound to
produce poorer results compared to one where the exact
genomes under study are in the database. An alternative
tool like MetaPhlAn2 [20] assigns reads no lower than
the species level, but has the extension StrainPhlAn [25]
for a strain level analysis. It is, however, difficult to com-
pare StrainPhlAn output to the ones we get here, since
we focus on relative abundances of a priori defined ge-
nomes, while StrainPhlAn identifies strains a posteriori
by aligning reads to a set of marker genes and output a
multiple sequence alignment. It seems to us these are
two quite different approaches to a strain-level analysis.
In Fig. 7, we show some results of our simulation
study. The left panels are from a community where no
members have a p-distance below 0.05 to another mem-
ber. This is roughly a community with one genome from
each species. Here, both methods perform extremely
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well, and the shotgun + Kraken2 is the best, with Man-
hattan distance D = 0.034. However, as the communities
(and databases) are filled up with more and more similar
genomes, the picture changes (middle and right panels).
The shotgun + Kraken2 results are getting dramatically
poorer, with highly fluctuating estimates of relative
abundances. The RMS + COLS approach is also poorer,
but not nearly as bad. While the Kraken2 results seem
to be fairly unbiased, but with a huge variance, the
COLS results have a small variance, at the cost of some
bias in giving weak abundance to some absent genomes,
seen in the lower left corners of the 98 and 99% panels.
Our explanation for these results is that with shotgun
sequencing, most reads will match multiple genomes in
the database, and Kraken2 will then assign to the lowest
common ancestor, i.e., the species. Thus, species abun-
dances become extremely precise, but too few reads are
left at the strain level to get reliable estimates. In our
COLS algorithm for RMS data, we also have many frag-
ment clusters who are present in multiple genomes, but
since we have the copy number matrix with this exact
information, the constrained least square solution
spreads the signal across all genomes instead of assign-
ing it to their common ancestor. It should be mentioned
that this idea has some resemblance to what was pro-
posed by [26], using methods from RNAseq data as an
alternative approach for analyzing shotgun data. The
Kraken2 software also has an extension in the Bracken
software [27], re-estimating low-rank abundances based
on the higher-rank assignments, but is difficult to use
below the species rank.

There is, as for any method, a limit to the reso-
lution obtained by RMS. The example with 1066 E.
coli genomes illustrates this. Many of these are more
than 99% identical, some even 100%, as seen in Fig.
8. We plotted the correlation distance between all ge-
nomes against the p-distance for the same pairs, to il-
lustrate how they are related. An RMS correlation
distance of around 0.30 corresponds roughly to a p-
distance of 0.01 (99% identity) in this case. We em-
ploy a genome clustering, where we only keep a se-
lection of the genomes, ensuring a minimum
difference between them. This means each cluster
centroid represents a subgroup of highly similar
strains. When using the COLS algorithm, the reso-
lution is limited by the condition value of the frag-
ment copy number matrix. A very large condition
value indicates the estimated abundances will be un-
stable. Condition values of 10% 10° or even 10* may
be used to obtain a gradually higher resolutions, but
at the cost of more uncertain results. Even with the
lowest threshold at 10% we get 54 subgroups in the
analysis, and it is likely that in many cases such a
resolution will suffice. As seen in Fig. 8, these strains
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are typically 98-99% identical (p-distance 0.02-0.01)
and represent the full tree of all strains quite well.

A shotgun sequencing should in theory be able to
separate anything below 100% identical, but in prac-
tice not. Reads are not without errors, and read
coverage is often poor for low-abundance taxa. The
results in Fig. 9 underlines this. The shotgun data in-
dicate almost all genomes in the database are present
in the sample. With the RMS approach, much fewer
genomes are present. In one out of the six compar-
able samples, the methods came out with the exact
same genomes as present and absent. In the others,
the shotgun data always results in more detected
strains. It is reasonable to suspect both methods are
too sensitive, assigning too many subgroups as
present, but RMS seems far better in this respect.
The total fraction of E. coli is small in these samples
(around 1%), but the absolute number of reads
assigned to this species are in the same range for
both methods (around 1000). It is in fact slightly lar-
ger for the RMS data; hence, the increased prevalence
from shotgun data is not due to increased coverage.
For shotgun data reads can originate from all loca-
tions on the genomes, making it notoriously difficult
to map a read correctly when genomes are as similar
as here, and given that reads may contain errors.
RMS reads are assigned to the a priori known frag-
ments and allow for some slack due to sequencing
error. Also, if genomes A and B share 50% of their
fragments, but only the genome A fragments have
signal, the COLS algorithm will assign abundance 0.0
to genome B even if 50% of its fragments have signal.
This is possible because we know these fragments are
shared with genome A, and since the unique genome
A fragments have signal while the unique genome B
fragments have none, the shared fragment signals are
all allocated to genome A, giving no abundance to
genome B.

The boxplots in panel B of Fig. 9 is an example of how
we use RMS to detect a change in strain diversity over
time in the infant gut. The increasing diversity by age is
as expected. This example also illustrates how patterns
emerge because we were able to sequence many samples,
rather than deep sequencing of a few, where the bio-
logical variation probably would obscure the results.
Such a high-resolution analysis would not be possible by
16S analysis.

The reanalysis of the data from [7] is an example of
using completely different restriction enzymes. The two
four-base cutters result in far more fragment per gen-
ome than we saw in Fig. 2, but apart from this, the ana-
lysis we did was identical to what we have done above.
The left panel of Fig. 10 shows that shotgun data and
RMS data, assigned both by Kraken2 and our algorithm,
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result in the same big picture. The difference between
methods is small compared to the difference between
samples, which is the same conclusion reached by the
authors of the original paper. In the right panel, how-
ever, we show that with our RMS-specific deconvolution,
we may now also estimate abundances below the species
level. The original results, using MetaPhlAn2, did not
dig beyond the species level, but this seems to some de-
gree possible with the approach we have suggested in
this paper. The species F. prausnitzii is exactly a species
where such analyses may be of some interest. We ob-
serve some difference in strain abundances here, but
three samples are of course far too few to reach any con-
clusion along this road.

The RMS has been proposed as a low-cost alternative
to a full shotgun sequencing [7], since we only sequence
the amplified fragments accounting for a fraction of the
entire genomes. This is true if you use a reference-free
approach where you need to cluster the reads, and hence
need to have sequenced the same region of a genome
several times in order to say something about abun-
dance. However, as long as reads are mapped to refer-
ence genomes, this difference in library complexity is
less important. Instead, the potential gain in using RMS
lies in precise estimates of strain resolution profiles. As
for shotgun data, there is no theoretical lower sequen-
cing depth that is required, the more reads the better.
For the mock data results in Figs. 5 and 6, where strains
separated nicely, each sample had between 1 and 2 mil-
lion reads mapped to some fragments, resulting in
mostly 10-100 reads per fragment. This we consider a
very good coverage. As always, high coverage is needed
for detecting low-abundance taxa, but is not in itself re-
quired for separating closely related strains. A bottleneck
for RMS is the fragment bias previously mentioned. For
some reason, fragments from the same genomes tend to
get quite different read counts, in a reproducible way. If
a genome has as very few fragments, the average read
count for these is not as stable as with many fragments.

We believe our results indicate the RMS approach for
metagenome profiling is something to explore further.
We have focused a lot on one pair of restriction enzymes
in this study, but other enzymes are used for similar
studies [7, 9]. The choice of enzymes will affect the
number and length of fragments, but apart from this,
the data analysis procedure we propose here may be
used, as we illustrate by the reanalysis of the data from
[7]. In the supplied software (R package), there are op-
tions for using any pair of restriction enzymes. The RMS
approach, like the shotgun metagenome approach, re-
quires sequenced reference genomes to map against in
order to produce taxonomic profiles. To obtain this at
the strain level, we need good reference databases. The
good news is that recent extensive efforts provide us
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with many new reference genomes, especially for the hu-
man gut [28-32]. We believe that with evolving sequen-
cing technologies, the quality of metagenome-assembled
genomes (MAGs) will improve drastically, and the road
lies open for more strain-level profiling.

Conclusion

We have demonstrated that the RMS approach can be
used for profiling of microbial communities down to the
strain level. Compared with the conventional 16S ap-
proach, we find that strains with identical 16S genes are
clearly discriminated by RMS, and we can estimate
abundances for such strains in the same sample. The
reason for this is simply that even genomes with identi-
cal 16S sequences will in most cases differ in a fair num-
ber of RMS fragments, enough to obtain strain-specific
signals for the COLS algorithm.

Compared with the shotgun metagenome approach,
the RMS offers an advantage in only sequencing a priori
known amplicons, and we may construct a copy number
matrix revealing the relations between all reference ge-
nomes prior to any sequencing. From this information,
and the suggested constrained ordinary least squares es-
timation algorithm, we can obtain strain-level abundance
estimates at least as good as the popular metagenome
tool Kraken2. A clustering of genomes into species sub-
groups is proposed, as a way of balancing high resolution
against precision in estimated abundances.

Based on this, we conclude that the RMS approach is
worth pursuing, as a tool for studies of composition in
the human gut or other microbial communities of par-
ticular interest and where a comprehensive collection of
reference genomes exists. An R-package with the data
analysis methods suggested here, as well as tutorials, is
available in GitHub at https://github.com/larssnip/
microRMS.

Methods

Mock data

In order to test the RMS approach, and learn about how
such data behave, a mock community study was con-
ducted. As a basis, we used a mock community of 20 ge-
nomes obtained through BEI Resources, NIAID, NIH as
part of the Human Microbiome Project (Genomic DNA
from Microbial Mock Community B (Even, Low Con-
centration), v5.1L, for 16S rRNA Gene Sequencing, HM-
782D, [33]) (see Table 1). This mock has been con-
structed to yield 100,000 16S copies from each included
organism. We converted this into the number of genome
copies by dividing 100,000 by the 16S copy number for
each organism, as listed in the Ribosomal RNA Database
[34]. In addition to this mock itself, we spiked-in 7 add-
itional DSMZ strains (Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures, https://
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Table 1 For each genome is listed its size (megabasepairs), GC-content and the number of RMS fragments in the 30-500 length

interval. Genomes with an asterisk (*) after its name were spiked-in, and not part of the original mock

Genome Size GC RMS-fragments
Acinetobacter baumannii strain 5377 398 0.39 961
Schaalia odontolytica strain 1A.21 239 0.65 92
Bacillus cereus strain NRS 248 522 0.36 2025
Bacteroides vulgatus strain ATCC 8482 5.16 042 2047
Clostridium beijerinckii strain NCIMB 8052 6.00 030 2463
Cutibacterium acnes strain KPA171202 256 0.60 300
Deinococcus radiodurans strain R1 3.06 067 115
Enterococcus faecalis ATCC 19433% 287 038 902
Enterococcus faecalis ATCC 29212* 301 037 922
Enterococcus faecalis strain OG1RF 274 0.38 822
Escherichia coli strain K12 substrain MG1655 4.64 0.51 920
Helicobacter pylori NCTC 11637*% 1.60 039 233
Helicobacter pylori strain 26695 167 039 255
Lactobacillus gasseri ATCC 33323* 1.82 035 662
Lactobacillus gasseri strain 63 AM 1.89 035 675
Listeria monocytogenes strain EGDe 294 0.38 1504
Neisseria meningitidis strain MC58 227 0.52 332
Pseudomonas aeruginosa strain PAO1-LAC 6.26 0.66 143
Rhodobacter sphaeroides strain ATH 2 4 1 413 0.69 92
Staphylococcus aureus strain TCH1516 2.88 033 861
Staphylococcus epidermidis FDA strain PCl 1200 2.50 032 854
Streptococcus agalactiae ATCC 13813* 211 0.35 661
Streptococcus agalactiae strain 2603 V R 2.16 0.36 692
Streptococcus mutans ATCC 25175% 1.99 037 671
Streptococcus mutans strain UA159 203 0.37 680
Streptococcus pneumoniae ATCC 6305 202 040 709
Streptococcus pneumoniae strain TIGR4 2.16 040 771

www.dsmz.de/). These strains were selected to be highly
similar, and with identical 16S gene, to one of the exist-
ing strains in the mock, to see if we could separate sig-
nals from such closely related organisms. One strain was
spiked-in at a time, producing 7 additional samples. The
spiked-in genomes were also at 100,000 16S copies, con-
trolled by a droplet digital PCR procedure. Finally, a
sample with all 27 strains was also used. All these 9
mock mixtures where done in triplicates, resulting in 27
samples. All samples were subject to the wet-lab proce-
dures described in [8] to obtain paired-end Illumina
HiSeq reads. The restriction enzymes EcoRI and Msel
were used throughout this study. All the strains involved
in all samples have whole genome sequence data pub-
licly available, and these were downloaded from the
NCBI Genome database (https://www.ncbi.nlm.nih.gov/
genome).

Infant gut data

As an illustration of a high-resolution analysis, we used
a set of RMS data from the gut of infants. The micro-
biome was sampled from feces of 94 infants at meco-
nium (newborn) and 3, 6, and 12 months age. We used
a genome collection consisting of all complete RefSeq
genomes of E. coli (1066 genomes) in order to look at
strain diversity in these samples. Six of the samples were
also sequenced by conventional shotgun sequencing, for
comparison. All RMS samples were subject to the wet-
lab procedures described in [8]. Both RMS and shotgun
samples were sequenced by Illumina HiSeq, resulting in
150 bp paired-end reads.

Fragment copy number matrix
There exists a number of computational tools for es-
timating the taxonomic composition of a community
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based on shotgun data, e.g., Kraken2, MetaPhlAn2,
CLARK, Kaiju [17, 35-37]. Common to all is that
reads are somehow mapped to some database of ref-
erence genomes. This is also required for RMS data.
Given the reference genomes, and the cutting patterns
of the restriction enzymes used (EcoRI and Msel), all
RMS fragments were collected in silico from each
genome. The RMS fragments are simply all subse-
quences starting with an EcoRI motif GAATTC (5 of
fragment), and ending by the first downstream Msel
motif TTAA, containing none of these motifs inside.
Genomes will, in general, have many such RMS frag-
ments of highly variable lengths.

Fragments from closely related genomes may be
identical or very similar. Also, some fragments may
occur multiple times within a single genome. For this
reason, we clustered the fragment sequences into
fragment clusters, using the VSEARCH software [38]
and some specified identity threshold, similar to
OTU-clustering for 16S data. An identity threshold of
0.99 was used in this study, but other thresholds were
tested without significant changes in results. Each
fragment cluster was represented by its centroid se-
quence and the fragment cluster copy number was
stored in a copy number matrix. This matrix {X} has
one row for each fragment cluster and one column
for each genome, and the integer in cell X(ij) is the
number of fragments from genome j that belongs to
cluster i. If we have a large collection of genomes,
this matrix becomes huge. However, most fragment
clusters occur in only one or a few genomes, and
most cells in the matrix are zero. Thus, the copy
number matrix was stored as a sparse matrix data
type, allowing most matrix operations but using com-
paratively little memory. This copy number matrix is
an essential ingredient in the estimation of commu-
nity abundances, as described below.

Read processing

We used the software VSEARCH [38] for all processing
of reads. All reads were subject to a quality filtering,
keeping only reads with an expected error rate below
0.02. Read pairs were then merged. Since RMS frag-
ments vary in length, some longer fragments produce
non-overlapping reads. Thus, non-merged reads were in-
cluded as single reads, where the R2 reads were reverse-
complemented. To maintain the correct per-fragment
read count, all merged reads were given a count of 2,
while the single reads count as 1. All reads were then
de-replicated to obtain fasta-files of unique reads for all
samples. Proper use of the --sizein and --sizeout
options in VSEARCH allows us to work with the smaller
set of unique reads without losing any information about
actual read abundances.
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Next, the processed reads from each sample were
mapped to the fragment cluster centroids, using VSEA
RCH and the identity threshold from the fragment clus-
tering (0.99, see above). This produced a read count
matrix Y, with one row for each fragment cluster and
one column for each sample.

Length normalization

We realized the need for correcting the read count sig-
nals due to fragment-length PCR bias. First, let y; denote
raw read counts from sample k, ie., column k in Y.
Thus, y(i) is the raw read count for fragment cluster i,
and L; is the length of cluster centroid i. Setting aside all
clusters with zero signal, the ¢; = log;o(y«(i)) is simply the
log read count. Next, we fitted a locally weighted scatter-
plot smoother (loess) S(c¢;|L;) to these data, thus S(c;|L;)
is a smooth curve describing how log read counts ¢; vary
by fragment length L;. Then, a correction factor for frag-
ment cluster i is given as

fi — 10(5 max - S(ci|Li))

where S, is the maximum value on the loess curve.
The normalized read count for any fragment cluster is
then

y*k(i) = Yx() fi

This multiplicative adjustment means fragments with
zero signal remain zero also after normalization. This
normalization is done for each sample separately. If the
database contains a huge number of fragment clusters
(many genomes), only a random subsample of them may
be used to fit the loess model in order to save time and
memory.

Constrained ordinary least squares (COLS)

If all fragment clusters were unique to a single genome,
the abundance of each genome would naturally be esti-
mated by averaging the read counts for their corre-
sponding fragment clusters. However, many RMS
fragment clusters may be found in several genomes, and
more closely related genomes will share more fragment
clusters.

Prior to sequencing, we constructed the copy number
matrix from the G genomes in the database. This results
in C fragment clusters; thus, the copy number matrix X
has C rows and G columns. Let b = (b;, b,...,bg) be the
proportion of the various genomes in sample & (i.e., b; >

0 and Zf’;lb ; = 1). Then, it is reasonable to assume that
E(yy) =aX'b

where y; are the (normalized) read counts for each of
the C RMS fragment clusters given the data from sample
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k, X is the copy number matrix, and a is some positive
scaling factor relevant for sample k. Thus, the expected
signal for fragment cluster i, E(yx(i)), is proportional to
the linear combination of fragment cluster copy num-
bers and genome abundances.

Given this model, the scaled proportions can be esti-
mated using the constrained ordinary least squares
(COLS) approach: Find s = ab that minimizes

f(s) = (3 - X's) (ye - X's) where ;>0 (1)

From the requirement that the b's must sum to 1.0,

we get that Z sj = a and the estimated relative abun-
J
dance of each genome is

s

2%

j

b:

In the implementation of this de-convolution, we have
added the possibility of a trimmed estimate. This means
a two-stage estimation procedure: After the initial fitting
of the model, as described above, the residuals y, — X’§
for all fragment clusters are computed. Then, a user-
selected fraction of the fragments with most extreme re-
siduals are discarded, and the model is re-fitted on the
trimmed fragment set. This makes the estimated abun-
dances less sensitive to extreme signals from some frag-
ments, but also reduces the size of the dataset.

Correlation distance and genome clustering

The COLS algorithm also indirectly suggests the max-
imum resolution possible to de-convolve. If two ge-
nomes are very similar, they will share most RMS
fragment clusters, and their respective columns in the
copy number matrix X become similar. The correlation
distance between two genomes is simply 1 minus the
correlation between their respective columns in X. Thus,
a correlation distance of 0.0 means the two columns are
identical, and the genomes share all fragment clusters. A
correlation distance can be maximum 2.0, meaning all
fragments present in one genome is absent in the other,
and vice versa.

When solving eq. (1) we need to invert the matrix
XX, and if two or more columns are too similar, this
matrix inversion becomes highly unstable resulting in
poor abundance estimates. This instability is often quan-
tified by the condition value of X’X. A perfect condition
value of 1.0 means all columns in X are orthogonal (i.e.,
no shared fragments). As columns become more and
more correlated, the condition value increases. By com-
puting the condition value from X, we get an idea of
how solvable this is, prior to any experimental efforts.
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Instead of trying to estimate the abundance of all ge-
nomes, we cluster them into groups, and replace them
by the group centroid genomes, as a representative of
each group. The centroid is the one with the smallest
sum of distances to all the others in the same group.
This basically means we get fewer columns and rows in
X. We employed a clustering procedure as follows:

1. Compute the correlation distance between all pairs
of genomes from the columns of X.

2. Compute a single linkage hierarchical clustering of
the genomes based on this. This results in a
dendrogram.

3. Each height in the dendrogram corresponds to an
alternative clustering. Choose the largest
dendrogram height resulting in a copy number
matrix with condition value below a user-specified
tolerance.

In this way, the user specifies a tolerated upper condi-
tion value (e.g., 100 or 1000), and genomes will be clus-
tered to the finest resolution not violating this. A larger
tolerance value leads to a finer resolution, but also more
unstable estimates.

Simulation study

We also included a simulation study, where we com-
pared the RMS approach to shotgun metagenome se-
quencing at various resolutions. Genome similarity was
computed as whole-genome p-distance (i.e., 1.0 minus
the Average Nucleotide Identity (ANI)). A whole-
genome p-distance of 0.0 means identical genomes and
above 0.3 means very different genomes. Strains from
the same species usually have p-distance below 0.05. In
most real communities, like the human gut, we must ex-
pect some closely related strains, having a p-distance of
well below 0.05.

In [32], 1520 genomes from the human gut were iso-
lated and sequenced. The whole-genome p-distances be-
tween all pairs of these genomes were computed using
the MASH software [19], and then used to form clusters
at three different resolutions: p-distances 0.05, 0.02, and
0.01. The cluster centroids were used as community
members. The following procedure was applied to all
communities, separately: from a community of G ge-
nomes, a sample contained reads from 100 randomly se-
lected genomes (i.e., 100 of the G genomes are present,
the remaining G-100 are absent). Their abundances were
exponentially distributed such that the largest abun-
dance was 100 times the lowest abundance (dynamic
range of 100), see supplementary figure 1. Let f, f5...fg
be the relative abundance for each of the G genomes in
the community (i.e., 100 of them are positive and the
rest are zero, and they all sum to 1.0). These values form
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the actual relative abundances that we later tried to
estimate.

This was repeated 25 times for each community, form-
ing 25 different samples. Note that for each sample, new
100 present genomes were randomly selected from the
sub-population, thus different genomes were present/ab-
sent in each sample.

Reads were simulated using the ART software [39],
using Illumina HiSeq 2500 error profiles, resulting in
paired-end reads of 150 bases. For each sample, we sim-
ulated 1 million read pairs, either as a shotgun sample
or as an RMS amplicon sample.

Shotgun data

The ART software requires the user to supply the refer-
ence sequences to simulate from as well as the number
of read pairs to generate. In shotgun metagenome se-
quencing, the probability of a read pair to originate from
genome g is proportional to the abundance of the gen-
ome multiplied by its size. After fragmentation of the
genomic DNA, the reads are sampled from this fragment
pool, and larger and more abundant genomes will con-
tribute with more fragments. Thus, if z, is the size of
genome g, we form a weight for genome as

wg = fg 2,

Given that we sequenced a million read pairs, these
were spread out among the genomes by random sam-
pling using the probabilities

G
by = Wg/z;:lwf

resulting in read counts r; ry ..,rg for each genome.
Note that genomes with zero abundance get zero reads.
Finally, read pairs were simulated from each genome,
given these read counts, and assembled into a pair of
fastq files. This was then repeated for each sample, pro-
ducing new sets of fastq files.

RMS data

Instead of random fragmentation of the genomic DNA,
the RMS protocol results in amplicons based on the
fragments we get from restriction enzyme cutting. For
each genome sequence, we collected the RMS fragments
in silico, again using the EcoRI and Msel restriction en-
zyme cutting motifs. Next, we have observed two main
biases in how the RMS fragments from a given genome
contributes to the pool of sequenced amplicons:

First, there is a length bias, especially very long frag-
ments are poorly amplified. Let [y be the factor that
scales the amplification of fragment k in genome g. This
is a function of fragment length only, and in
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supplementary figure 2, we show the function we used
for simulating this.

Second, we have also observed that some fragments
are consistently more or less represented in the reads
from a given genome. We denote this the fragment bias.
Let vy be this fragment bias factor for fragment k in
genome g (i.e., it may scale the amplification of fragment
k up (vg > 1) or down (vg < 1)). These factors were
sampled at random from the distribution in supplemen-
tary figure 2, once for each genome, and then used for-
ever after. Both this distribution as well as the length
bias function were estimated from real RMS data, using
the restriction enzymes described above.

Together, this means that the fragments from genome
g get the weights

Wk = fg lgk Vek

where k = 1,2,...F, and F, is the number of fragments in
genome g. All fragments, together with their weights,
were assembled for all abundant genomes, and the read
count for each fragment/amplicon was sampled at ran-
dom, again using probabilities p, = w, /Z?lej.

Note that for shotgun data, the weights are only af-
fected by genome abundance and size, while RMS data
is affected by genome abundance, number of fragments,
length distribution, and fragment bias distribution for
the present genomes.

Databases

The databases contained all G genomes of the commu-
nity, both the 100 present at various levels and the G-
100 absent. For each community, all RMS fragments
were found in all G genomes, and a copy number matrix
was constructed using a 0.99 identity threshold, as de-
scribed above.

For the shotgun data, we used the Kraken2 software
[17] to obtain relative abundance estimates. This tool
has shown good results in several benchmarking studies
[40—42], but more importantly, is equipped with excel-
lent facilities for building a custom database. In order to
make a fair comparison to the RMS approach, the data-
base of reference genomes must be the same as in the
RMS case. Thus, custom Kraken2 databases were con-
structed, containing all G genomes of the respective
communities. Also, the taxonomy was extended corres-
pondingly, to have a taxonomy ID for every single gen-
ome, making it possible for Kraken2 to list hits to each
genome.

Analysis
The analysis of the RMS data was carried out as de-
scribed above, but without any genome clustering,
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resulting in an estimate of the relative abundance of
every genome in the database.

For the shotgun data, Kraken2 and its custom database
was used to assign reads to the genomes, using the de-
fault confidence level of 0.0. Only reads assigned to the
genome level were counted, since this is our focus. The
read count for a genome was divided by the genome size
(base pairs), to produce the genome signal. Finally, these
signals were divided by the total sum of signals, to pro-
duce relative abundances for all genomes in the
communities.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-021-01019-8.

Additional file 1: Supplementary figure 1. All simulated samples
contained reads from 100 randomly selected genomes, and their relative
abundances in the sample were according to this barplot. The largest
abundance is 100 times the smallest. Different genomes were selected as
the most/least abundant and absent ones in each sample, but this
abundance distribution was used every time.

Additional file 2: Supplementary figure 2. In order to simulate RMS
data, some known biases were introduced to the signals. The upper
panel shows the fragment-length bias used. All signals were scaled by
this function, i.e. fragments of length around 200 bases remained close
to unchanged (scale $1.05) while signals from shorter or longer frag-
ments were scaled down. The lower panel shows the fragment-bias dis-
tribution. For each fragment within a genome, a factor was sampled
from this distribution, and the signals from the fragments were scaled ac-
cordingly. The mean value of this distribution is $1.0$, but some frag-
ments may have signals up to six times as large, or down to almost
nothing. Both the length-bias function and the fragment-bias distribution
were estimated from real RMS data.
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