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Abstract—Basing on the theory of positively invertible matrices, we study certain questions
of the exponential 2p-stability (1 ≤ p < ∞) of systems of Itô linear differential equations with
bounded delays and impulse actions on certain solution components. We apply the ideas and
methods developed by N.V. Azbelev and his followers for studying the stability of deterministic
functional differential equations. For the systems of equations mentioned above, we establish
sufficient conditions for the exponential 2p-stability (1 ≤ p < ∞) stated in terms of the positive
invertibility of matrices constructed from parameters of these systems. We verify the feasibility
of these conditions for certain specific systems of equations.
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INTRODUCTION

Stochastic differential equations describe many actual real life problems of modern physics,
biology, economics, engineering, and other applied sciences. In particular, Itô impulse differential
equations with aftereffect represent an illustrative mathematical model of certain financial processes.
One of the most important questions among those that occur in studying such problems is the
analysis of the stability of solutions to stochastic functional differential equations.

The stability of solutions to systems with random parameters was studied by many Russian and
international mathematicians. Fundamental studies in this realm find many applications, which, in
turn, often give rise to new theoretical thought.

The study of the stability of systems with random parameters became widespread in 1960 due
to the paper by I.Ya.Kats and N.N.Krasovskii, where they give basic definitions of the stochastic
stability. Moreover, the mentioned authors were first to solve the considered equations by the
second (direct) Lyapunov method based on the construction of the corresponding functions. This
idea was later used for studying the Itô equations with aftereffect (the method of Lyapunov–
Krasovskii–Razumikhin functionals); there are many papers devoted to these equations (see their
rather complete list in monographs [1]–[4]). However, in many cases, the application of the direct
Lyapunov method and its stochastic analogs encounters serious difficulties. In particular, usually
one can prove effective stability criteria with the help of these methods only for relatively simple
classes of stochastic functional differential equations.
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POSITIVE INVERTIBILITY OF MATRICES 15

On the other hand, the method of auxiliary or “model” equations, also called the “W-method”,
proposed by N.V.Azbelev [5], [6] has proved to be effective in studying the stability issues in the
deterministic case. The authors of this paper (mainly, the first one) have applied the mentioned
method to studying stochastic functional differential equations [7]–[14]. In principle, the W-method
is universal, i. e., applicable both in the deterministic case, and in the stochastic one. Certainly, this
does not mean that it always gives the best results. However, this method can be helpful in many
“nontrivial” cases, when the use of the Lyapunov function is difficult. In particular, the W-method
allows one to eliminate some difficulties that occur in studying (by commonly used schemes) the
stability issues for equations with unbounded delays, with random coefficients and delays, and with
impulse actions.

The Lyapunov stability of solutions with respect to the initial function for deterministic impulse
differential equations was studied in papers [15]–[18]. For Itô impulse differential equations with
aftereffect, the stability of solutions with respect to the initial function was studied for special
classes of equations with the help of the Lyapunov method in [19]. Papers [10], [12], [13], and [20]
are devoted to studying the stability of solutions to systems of Itô linear differential equations with
aftereffect and with impulse actions on all components of solutions. The research technique used in
the mentioned papers is analogous to that applied in [18]. Namely, this is the method of auxiliary
or “model” equations; it is described in detail in monographs [5], [6] for the deterministic case, and
in papers [7], [9], [11] for the stochastic one.

In this paper, we study the exponential 2p-stability (1 ≤ p < ∞) of systems of Itô linear
differential equations with bounded delays and with impulse actions on some components of
solutions. To this end, we apply the ideas of the method of auxiliary equations and the theory
of positively invertible matrices. The distinction from the classical method of auxiliary equations
consists in the fact that each equation in the system is transformed independently of others,
and each component of the solution is estimated separately. This approach combined with the
theory of positively invertible matrices allows us to obtain new results, including those for the
deterministic case, and to effectively study the stability issues for equations with impulse actions
on some components of solutions.

1. PRELIMINARY INFORMATION. THE OBJECT OF THE STUDY

We use the following denotations: (Ω,F , (Ft)t≥0, P ) is a stochastic basis; kn is a linear space of
n-dimensional F0-measurable random values; Bi, i = 2, . . . ,m, are independent standard Wiener
processes; 1 ≤ p < ∞; cp is a positive value (depending on p) ([21], p. 65) which is used in
estimate (2); E is the mean value symbol; |.| is the norm in Rn; ||.|| is the norm of an n× n-
matrix concordant with the norm in Rn; ||.||X is the norm in a normed space X; µ is the Lebesgue
measure on [0,+∞); l is a certain integer such that 0 ≤ l ≤ n.

Let B = (bij)
m
i,j=1 be some m×m-matrix. The matrix B is said to be nonnegative, if bij ≥ 0,

i, j = 1, . . . ,m, and it is said to be positive, if bij > 0, i, j = 1, . . . ,m.

Definition 1 ([22]). A matrix B = (bij)
m
i,j=1 is said to be an M-matrix, if bij ≤ 0 for i, j = 1, . . . ,m,

i 6= j, and one of the following conditions takes place:

– for the matrix B there exists a positive inverse matrix B−1;

– principal diagonal minors of the matrix B are positive.

According to ([22], p. 338), a matrix B is an M-matrix, if bij ≤ 0 for i, j = 1, . . . ,m, i 6= j, and
if there exist positive values ξi, i = 1, . . . ,m, such that one of the following conditions takes place:

ξibii >

m
∑

j=1,i 6=j

ξj|bij |, i = 1, . . . ,m, or ξjbjj >

m
∑

i=1,i 6=j

ξi|bij |, j = 1, . . . ,m.

In particular, if in the first of these inequalities, ξi = 1, i = 1, . . . ,m, then the class of M-matrices
includes the class of matrices with strong diagonal dominance ([22], p. 418), whose off-diagonal
elements are nonpositive.

RUSSIAN MATHEMATICS Vol. 64 No. 8 2020



16 KADIEV, PONOSOV

In this paper, we study the stability issues for the following system of Itô linear differential
equations with bounded delays and impulse actions on certain components of solutions:

dx(t) = −
m1
∑

j=1
A1j(t)x(h1j(t))dt+

m
∑

i=2

mi
∑

j=1
Aij(t)x(hij(t))dBi(t) (t ≥ 0),

x(µj) = Bjx(µj − 0), j = 1, 2, . . . , almost surely (a. s.)

(1)

with respect to the initial data

x(t) = ϕ(t) (t < 0), (1a)

x(0) = b, (1b)

where

1. x = col(x1, . . . , xn) is the unknown n-dimensional random process;

2. Aij = (aijsk)
n
s,k=1 are n× n-matrices with all i = 1, . . . ,m, j = 1, . . . ,mi, where elements

of matrices A1j , j = 1, . . . ,m1, are progressively measurable scalar random processes, whose
trajectories a. s. are locally summable, while elements of matrices Aij , i = 2, . . . ,m, j = 1, . . . ,mi,
are progressively measurable scalar random processes, whose trajectories are a. s. locally square
summable;

3. hij , i = 1, . . . ,m, j = 1, . . . ,mi, are Lebesgue measurable functions defined on [0,∞)
such that 0 ≤ t− hij(t) ≤ τij (t ∈ [0,∞)) µ-almost everywhere for some positive τij, i = 1, . . . ,m,
j = 1, . . . ,mi;

4. µj, j = 1, 2, . . ., are real values such that 0 = µ0 < µ1 < µ2 < . . ., lim
j→∞

µj = ∞;

5. Bj is a real diagonal n× n-matrix, all whose diagonal elements differ from zero and b
j
ii = 1,

i = 1, . . . , l, for j = 1, 2, . . .;

6. ϕ = col(ϕ1, . . . , ϕn) is an F0-measurable n-dimensional random process defined on [−σ̂, 0),
where σ̂ = max{τij , i = 1, . . . ,m, j = 1, . . . ,mi};

7. b = col(b1, . . . , bn) is an F0-measurable n-dimensional random value, i. e., b ∈ kn.

Note that under the above assumptions problem (1), (1a), (1b) has a unique solution [8]. Denote
this solution by x(t, b, ϕ), i. e., x(t, b, ϕ)=ϕ with t < 0 and x(0, b, ϕ)=b.

Introduce a special denotation for the linear normed subspace of the space kn defined as follows:

knq =
{

α : α ∈ kn, ‖α‖knq = (E|α|q)1/q < ∞
}

.

Definition 2. We say that system (1) is exponentially q-stable (1≤q<∞) with respect to the initial
data, if there exist positive values K,λ such that solutions x(t, b, ϕ) to problem (1), (1a), (1b) satisfy
the inequality

(E|x(t, b, ϕ)|q)1/q ≤ K exp{−λt}
(

||b||knq + vrai sup
t<0

(E|ϕ(t)|q)1/q
)

(t ≥ 0).

Lemma 1. Let f(s) be a scalar random process integrable with respect to the Wiener process B(s)
on the segment [0, t]. Then






E

∣

∣

∣

∣

∣

∣

t
∫

0

f(s)dB(s)

∣

∣

∣

∣

∣

∣

2p






1/(2p)

≤ cp



E





t
∫

0

|f(s)|2ds





p



1/(2p)

; (2)

here cp is some value depending on p ≥ 1.

The validity of inequality (2) follows from inequality (4) in ([21], p. 65), where one obtains a
concrete expression for cp.
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Lemma 2. Assume that g(s) is a scalar function defined on [0,∞), whose square is locally

summable, and f(s) is a scalar random process such that sup
s≥0

(E|f(s)|2p)1/(2p) < ∞. Then

sup
t≥0






E

∣

∣

∣

∣

∣

∣

t
∫

0

g(s)f(s)ds

∣

∣

∣

∣

∣

∣

2p






1/(2p)

≤ sup
t≥0





t
∫

0

|g(s)|ds



 sup
s≥0

(

E |f(s)|2p
)1/(2p)

, (3)

sup
t≥0



E

∣

∣

∣

∣

∣

∣

t
∫

0

(g(s))2(f(s))2ds

∣

∣

∣

∣

∣

∣

p



1/(2p)

≤ sup
t≥0





t
∫

0

(g(s))2ds





1/2

sup
s≥0

(

E |f(s)|2p
)1/(2p)

. (4)

This lemma is proved in [14].

2. THE RESEARCH TECHNIQUE

As was mentioned in the Introduction, in this paper we study the stability of the trivial solution
to system (1). To this end, we transform the system under consideration, namely, with the help
of a simpler auxiliary (model) equation we get an integral equation, for which the conditions that
ensure the stability of the trivial solution to (1) can be verified immediately.

Therefore, along with system (1) we consider the following auxiliary system of ordinary linear
differential equations with impulse actions on certain components of solutions:

dx(t) = [B(t)x(t) + f(t)]dt (t ≥ 0),

x(µj) = Bjx(µj − 0), j = 1, 2, . . . ,
(5)

where B(t) is an n× n-matrix, whose elements are Lebesgue measurable functions, f(t) is an
n-dimensional Lebesgue measurable function, while Bj, µj , j = 1, 2, . . . , are the same values as in
system (1).

For system (5), the corresponding linear homogeneous system takes the form

dx(t) = B(t)x(t)dt (t ≥ 0),

x(µj) = Bjx(µj − 0), j = 1, 2, . . . .
(6)

Definition 3. An n× n-matrix X(t) (t ≥ 0), whose columns are solutions to system (6), while
X(0) = Ē, is called the fundamental matrix of system (5).

Since for any x0 ∈ kn there exists a unique solution to system (6) that goes through it,
detX(t) 6= 0 with t ≥ 0.

The following assertion is valid.

Lemma 3. The solution to system (5) going through x0 ∈ kn allows the representation

x(t) = X(t)x0 +
t
∫

0

X(t)X(s)−1f(s)ds (t ≥ 0). (7)

Using system (5) and Lemma 3, we can write problem (1), (1a), (1b) in the equivalent form

x(t) = X(t)b+ (Θx)(t) + (Cϕ)(t) (t ≥ 0), (8)

where

(Θx)(t)=

t
∫

0

X(t)X(s)−1

[

B(s)−
m1
∑

j=1

A1j(s)x̄(h1j(s))

]

ds+

t
∫

0

X(t)X(s)−1
m
∑

i=2

mi
∑

j=1

Aij(s)x̄(hij(s))dBi(s),
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18 KADIEV, PONOSOV

(Cϕ)(t) =

t
∫

0

X(t)X(s)−1

[

−
m1
∑

j=1

A1j(s)ϕ̄(h1j(s))

]

ds+

t
∫

0

X(t)X(s)−1
m
∑

i=2

mi
∑

j=1

Aij(s)ϕ̄(hij(s))dBi(s).

Here x̄(t) is the unknown n-dimensional random process on (−∞,∞) such that x̄(t) = 0 with
t < 0, while ϕ̄(t) is a known n-dimensional random process on (−∞,∞) such that ϕ̄(t) = ϕ(t) with
t ∈ [−σ̂, 0) and ϕ̄(t) = 0 with t ∈ (−∞,−σ̂) ∪ [0,+∞).

Let us state one useful assertion which follows from more general results obtained in [12].

Theorem 1. Let 1 ≤ q < ∞. Assume that for some positive value λ and arbitrary ϕ, b such that

vrai sup
t<0

(E|ϕ(t)|q)1/q < ∞, b ∈ knq , system (6) allows estimates

sup
t≥0

(E| exp{λt}X(t)b|q)1/q ≤ c1‖b‖knq ,

sup
t≥0

(E| exp{λt}(Θx)(t)|q)1/q ≤ c2 sup
t≥0

(E| exp{λt}x(t)|q)1/q,

sup
t≥0

(E| exp{λt}(Cϕ)(t)|q)1/q ≤ c3 vrai sup
t<0

(E|ϕ(t)|q)1/q,

where c1, c2, c3 are some positive values, c2 < 1. Then system (1) is exponentially q-stable with
respect to the initial data.

On the base of this theorem, in the paper [12] we establish sufficient conditions for the exponential
q-stability of systems in form (1) in terms of parameters of these systems.

Denote x(t) = col(x1(t), . . . , xn(t)) (t ≥ 0), x̄λi = sup
t≥0

(E| exp{λt}xi(t)|q)1/q, i = 1, . . . , n,

x̄λ = col(x̄λ1 , . . . , x̄
λ
n).

Let 1 ≤ q < ∞. Assume that for some positive λ by componentwise estimation of solutions to
system (8) we have succeeded in obtaining the matrix inequality

Ēx̄λ ≤ Cx̄λ + c̄‖b‖knq Ê + ĉ vrai sup
t<0

(E|ϕ(t)|q)1/qÊ, (9)

where C is some n× n-matrix, c̄, ĉ are some positive values, Ê is the n-dimensional vector, all whose
elements equal one. The following assertion is valid.

Theorem 2. If the matrix Ē −C is an M-matrix, then system (1) is exponentially q-stable with
respect to the initial data.

Proof. Under assumptions of the theorem, the matrix Ē −C is positively invertible. Consequently,
we can write inequality (9) as follows:

Ēx̄λ ≤ (Ē − C)−1(c̄‖b‖knq Ê + ĉ vrai sup
t<0

(E|ϕ(t)|q)1/qÊ).

The obtained inequality implies the correlation

|x̄λ| ≤ K(‖b‖knq + vrai sup
t<0

(E|ϕ(t)|q)1/q), (10)

where K=‖|(Ē − C)−1‖|Ê|max{c̄, ĉ}. Since x(t, b, ϕ)=x(t) and sup
t≥0

(E| exp{λt}x(t, b, ϕ)|q)1/q ≤

|x̄γ |, inequality (10) implies that the estimate

sup
t≥0

(E| exp{λt}x(t, b, ϕ)|q)1/q ≤ c(‖b‖knq + vrai sup
t<0

(E|ϕ(t)|q)1/q),

where c is some positive value, takes place with any ϕ, b such that vrai sup
t<0

(E|ϕ(t)|q)1/q < ∞, b ∈ knq .

Consequently, system (1) is exponentially q-stable with respect to the initial data.
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In the next section, on the base of Theorem 2, assuming that q = 2p, 1 ≤ p < ∞, we establish
sufficient conditions for the exponential q-stability of system (1) in terms of the positive invertibility
of the matrix calculated from parameters of this system.

3. THE MAIN RESULT

In this section, we assume that there exist subsets of numbers Is⊂{1, . . . ,m1}, s = 1, . . . , n, and

positive values ρ, σ, b̄s, s = l + 1, . . . , n, ās, ā
ij
sk, i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n, such

that the following estimates are valid for system (1):

|bjss| ≤ b̄s, s = l + 1, . . . , n, j = 1, 2, . . . ,

ρ ≤ µj+1 − µj ≤ σ, j = 1, 2, . . . ,

|aijsk(t)| ≤ ā
ij
sk, t ∈ [0,+∞), i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n,

P × µ-almost everywhere,
∑

k∈Is

a1kss (t) ≥ ās, t ∈ [0,+∞), s = 1, . . . , n,

P × µ-almost everywhere, and there also exist positive values ĉs, s = l + 1, . . . , n, such that

exp{−āst} ⊓
0<µj≤t

|bjss| < ĉs with t ∈ [0,+∞), s = l + 1, . . . , n.

Denote by the symbol C the n× n-matrix, whose elements are defined as follows:

css = 1− 1
ās

[

∑

k∈Is

m1
∑

j=1
ā1kss τ1kā

1j
ss +

m1
∑

j=1,j /∈Is

ā
1j
ss

]

−

−cp

(

1
2ās

)1/2
[

∑

k∈Is

m
∑

i=2

mi
∑

j=1
ā1kss

√
τ1kā

ij
ss +

m
∑

i=2

mi
∑

j=1
ā
ij
ss

]

, s = 1, . . . , l,

csj = − 1
ās

[

∑

k∈Is

m1
∑

ν=1
ā1kss τ1kā

1ν
sj +

m1
∑

ν=1
ā1νsj

]

−

−cp

(

1
2ās

)1/2
[

∑

k∈Is

m
∑

i=2

mi
∑

ν=1
ā1kss

√
τ1kā

iν
sj +

m
∑

i=2

mi
∑

ν=1
āiνsj

]

, s = 1, . . . , l, j = 1, . . . , n, s 6= j,

css = 1− max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

∑

k∈Is

m1
∑

j=1
ā1kss τ1kā

1j
ss +

m1
∑

j=1,j /∈Is

ā
1j
ss

]

−

−cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2
[

∑

k∈Is

m
∑

i=2

mi
∑

j=1
ā1kss

√
τ1kā

ij
ss +

m
∑

i=2

mi
∑

j=1
ā
ij
ss

]

, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

∑

k∈Is

m1
∑

ν=1
ā1kss τ1kā

1ν
sj +

m1
∑

ν=1
ā1νsj

]

−

−cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2
[

∑

k∈Is

m
∑

i=2

mi
∑

ν=1
ā1kss

√
τ1kā

iν
sj +

m
∑

i=2

mi
∑

ν=1
āiνsj

]

,

s = l + 1, . . . , n, j = 1, . . . , n, s 6= j.

Theorem 3. If the matrix C is an M-matrix, then system (1) is exponentially 2p-stable with respect
to the initial data.

RUSSIAN MATHEMATICS Vol. 64 No. 8 2020



20 KADIEV, PONOSOV

Proof. Let us write system (1) subject to (1a) in the form

dx̄s(t) = −
m1
∑

j=1

n
∑

k=1

a
1j
sk(t)[x̄k(h1j(t)) + ϕ̄k(h1j(t))]dt+

+
m
∑

i=2

mi
∑

j=1

n
∑

k=1

a
ij
sk(t)[x̄k(hij(t)) + ϕ̄k(hij(t))]dBi(t) (t ≥ 0), s = 1, . . . , n,

x̄s(µj) = b
j
ssx̄s(µj − 0), j = 1, 2, . . . , a. s., s = l + 1, . . . , n,

(11)

where x̄s(t) is the unknown scalar random process on (−∞,∞) such that x̄s(t) = 0 with t < 0,
and ϕ̄s(t) is a known scalar random process on (−∞,∞) such that ϕ̄s(t) = ϕs(t) with t ∈ [−σ̂, 0)
and ϕ̄s(t) = 0 with t ∈ (−∞,−σ̂) ∪ [0,+∞) for s = 1, . . . , n. Let the symbol x̄(t, b, ϕ̄) denote the
solution to system (11) that satisfies condition (1b). Evidently, the solution to problem (11), (1b)
with t ≥ 0 coincides with that to problem (1), (1a), (1b), i. e., x(t, b, ϕ) = x̄(t, b, ϕ̄), t ≥ 0.

If in system (11) we put x̄s(t) = exp{−λt}ys(t), where ys(t) is the unknown scalar random process
on (−∞,∞) such that ys(t) = 0 with t < 0 and all s = 1, . . . , n, while 0 < λ < min{ās, s = 1, . . . , n},
then we get the system

dys(t) =

[

λys(t)−
m1
∑

j=1

n
∑

k=1

a
1j
sk(t)[exp{λ(t− h1j(t))}yk(h1j(t)) + exp{λt}ϕ̄k(h1j(t))]

]

dt+

+
m
∑

i=2

mi
∑

j=1

n
∑

k=1

a
ij
sk(t) [exp{λ(t− hij(t))}yk(hij(t)) + exp{λt}ϕ̄k(hij(t))] dBi(t) (t ≥ 0), s = 1, . . . , n,

ys(µj) = b
j
ssys(µj − 0), j = 1, 2, . . . , a. s., s = l + 1, . . . , n.

(12)

Putting ηs(t) =
∑

k∈Is

a1kss (t) exp{λ(t− h1k(t))} − λ with s = 1, . . . , n and taking into account the

equality

t
∫

h1k(t)

dys(τ) = ys(t)− ys(h1k(t)), k ∈ Is, we rewrite system (12) in the form

dys(t)=

[

− ηs(t)ys(t) +
∑

k∈Is

a1kss (t) exp{λ(t− h1k(t))}
t
∫

h1k(t)

dys(τ) +
∑

k∈Is

a1kss (t) exp{λt}ϕ̄k(h1k(t))+

+
m1
∑

j=1

n
∑

k=1,k 6=swithj∈Is
a
1j
sk(t)[exp{λ(t− h1j(t))}yk(h1j(t)) + exp{λt}ϕ̄k(h1j(t))]

]

dt+

+
m
∑

i=2

mi
∑

j=1

n
∑

k=1

a
ij
sk(t) [exp{λ(t− hij(t))}yk(hij(t)) + exp{λt}ϕ̄k(hij(t))] dBi(t) (t ≥ 0), s = 1, . . . , n,

ys(µj) = b
j
ssys(µj − 0), j = 1, 2, . . . , a. s., s = l + 1, . . . , n.

(13)
Substituting the expression for dys(t) on the right-hand side of the sth (s = 1, . . . , n) equation in
system (12) to the sth equation in system (13), we get equalities

dys(t) =



−ηs(t)ys(t) +
∑

k∈Is

a1kss (t) exp{λ(t− h1k(t))}×

×
t

∫

h1k(t)









λys(τ)−
m1
∑

j=1

n
∑

ν=1

a1jsν(τ)[exp{λ(τ − h1j(τ))}yν(h1j(τ)) + exp{λτ}ϕ̄ν(h1j(τ))]



 dτ+

+

m
∑

i=2

mi
∑

j=1

n
∑

k=1

a
ij
sk(τ) [exp{λ(τ − hij(τ))}yk(hij(τ)) + exp{λτ}ϕ̄k(hij(τ))] dBi(τ)







+
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+
∑

k∈Is

a1kss (t) exp{λt}ϕ̄k(h1k(t))+

+

m1
∑

j=1

n
∑

k=1,k 6=swithj∈Is

a
1j
sk(t)[exp{λ(t− h1j(t))}yk(h1j(t)) + exp{λt}ϕ̄k(h1j(t))]



 dt+

+

m
∑

i=2

mi
∑

j=1

n
∑

k=1

a
ij
sk(t) [exp{λ(t− hij(t))}yk(hij(t)) + exp{λt}ϕ̄k(hij(t))] dBi(t) (t ≥ 0), s=1, . . . , n,

ys(µj) = bjssys(µj − 0), j = 1, 2, . . . , a. s., s = l + 1, . . . , n.

(14)

Let ms(t, ς) = exp

{

−
t
∫

ς
ηs(ζ)dζ

}

, s = 1, . . . , l, and ms(t, ς) = exp

{

−
t
∫

ς
ηs(ζ)dζ

}

⊓
ς<µj≤t

b
j
ss,

s = l+1, . . . , n. Using the formula for the representation of solutions to Itô linear scalar differential
equations with impulse actions [12], from system (14), taking into account condition (1b), we deduce
the system

ys(t) = ms(t, 0)bs +
∑

k∈Is

t
∫

0

ms(t, ς)a
1k
ss (ς) exp{λ(ς − h1k(ς))}

ς
∫

h1k(ς)

λys(τ)dτdς−

− ∑

k∈Is

m1
∑

j=1

n
∑

ν=1

t
∫

0

ms(t, ς)a
1k
ss (ς) exp{λ(ς − h1k(ς))}×

×
ς

∫

h1k(ς)

a1jsν(τ)[exp{λ(τ − h1j(τ))}yν(h1j(τ)) + exp{λτ}ϕ̄ν(h1j(τ))]dτdς+

+
∑

k∈Is

m
∑

i=2

mi
∑

j=1

n
∑

ν=1

t
∫

0

ms(t, ς)a
1k
ss (ς) exp{λ(ς − h1k(ς))}×

×
ς

∫

h1k(ς)

aijsν(τ) [exp{λ(τ − hij(τ))}yν(hij(τ)) + exp{λτ}ϕ̄ν(hij(τ))] dBi(τ)dς+

+
∑

k∈Is

t
∫

0

ms(t, ς)a
1k
ss (ς) exp{λς}ϕ̄k(h1k(ς))dς+

+
m1
∑

j=1

n
∑

k=1,k 6=swithj∈Is

t
∫

0

ms(t, ς)a
1j
sk(ς)[exp{λ(ς − h1j(ς))}yk(h1j(ς)) + exp{λς}ϕ̄k(h1j(ς))]dς+

+
m
∑

i=2

mi
∑

j=1

n
∑

k=1

t
∫

0

ms(t, ς)a
ij
sk(ς) [exp{λ(ς − hij(ς))}yk(hij(ς)) + exp{λς}ϕ̄k(hij(ς))] dBi(ς)

(t ≥ 0), s = 1, . . . , n.

(15)

For simplicity of notations, we put ŷs = sup
t≥0

(

E|ys(t)|2p
)1/(2p)

, ϕ̂s = vrai sup
t<0

(

E|ϕs(t)|2p
)1/(2p)

,
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s = 1, . . . , n, ||ϕ|| = vrai sup
t<0

(

E|ϕ(t)|2p
)1/(2p)

. Below we also use the following evident inequalities:

vrai sup
t≥0

(

E| exp{λt}ϕ̄s(hij(t))|2p
)1/(2p) ≤ exp{λτij} vrai sup

t<0

(

E|ϕs(t)|2p
)1/(2p)

,

s = 1, . . . , n, i = 1, . . . ,m, j = 1, . . . ,mi;

|ms(t, ς)| ≤ exp{−(ās − λ)(t− ς)}, t ∈ [0,+∞), ς ∈ [0, t], P × µ− almost everywhere, s = 1, . . . , l,

|ms(t, ς)| ≤exp{−(ās − λ)(t− ς)} ⊓
ς<µj≤t

|bjss|, t ∈ [0,+∞), ς ∈ [0, t], P × µ− almost everywhere,

s = l + 1, . . . , n, as well as estimates

t
∫

0

exp{−(ās − λ)(t− ς)} ⊓
ς<µj≤t

|bjss|dς ≤
max{1, b̄s}(1− exp{−(ās − λ)σ})
(ās − λ)(1− exp{−(ās − λ)ρ}b̄s)

, s = l + 1, . . . , n,

proved in [18] and estimates





t
∫

0

exp{−2(ās − λ)(t− ς)} ⊓
ς<µj≤t

(bjss)
2dς





1/2

≤
(

max{1,b̄2s}(1−exp{−2(ās−λ)σ})

2(ās−λ)(1−exp{−2(ās−λ)ρ}b̄2s)

)1/2
,

s = l + 1, . . . , n,

whose validity immediately follows from above bounds.

Taking into account these denotations and inequalities, as well as correlations (2)–(4), we can
easily deduce the following estimates from Eq. (15):

ŷs ≤ ĉs||bs||k1
2p

+ λL1s

[

∑

k∈Is

ā1kss exp{λτ1k}τ1k

]

ŷs+

+L1s

[

∑

k∈Is

m1
∑

j=1

n
∑

ν=1
ā1kss exp{λτ1k}τ1kā1jsν exp{λτ1j}(ŷν + ϕ̂ν)

]

+

+cpL2s

[

∑

k∈Is

m
∑

i=2

mi
∑

j=1

n
∑

ν=1
ā1kss exp{λτ1k}

√
τ1kā

ij
sν exp{λτij}(ŷν + ϕ̂ν)

]

+

+L1s

[

∑

k∈Is

ā1kss exp{λτ1k}ϕ̂k
]

+ L1s

[

m1
∑

j=1

n
∑

k=1,k 6=swithj∈Is
ā
1j
sk exp{λτ1j}(ŷk + ϕ̂k)

]

+

+cpL2s

[

m
∑

i=2

mi
∑

j=1

n
∑

k=1

ā
ij
sk exp{λτij}(ŷk + ϕ̂k)

]

, s = 1, . . . , n;

(16)

here ĉs = 1 for s = 1, . . . , l, while ĉs for s = l + 1, . . . , n are defined above,

L1s :=
1

(ās−λ) , L2s :=
(

1
2(ās−λ)

)1/2
, s = 1, . . . , l, L1s :=

max{1,b̄s}(1−exp{−(ās−λ)σ})
(ās−λ)(1−exp{−(ās−λ)ρ}b̄s)

,

L2s :=
(

max{1,b̄2s}(1−exp{−2(ās−λ)σ})
2(ās−λ)(1−exp{−2(ās−λ)ρ}b̄2s)

)1/2
, s = l + 1, . . . , n.

Taking into account estimates (16) and the fact that the norm in Rn is chosen so that ϕ̂j ≤ ||ϕ||
for all j = 1, . . . , n, we conclude that

ŷs ≤ ĉs||bs||k1
2p

+
n
∑

j=1
Nsj(λ)ŷj +Ms(λ)||ϕ||, s = 1, . . . , n. (17)
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Here

Nss(λ) := λL1s

[

∑

k∈Is

ā1kss exp{λτ1k}τ1k

]

+

+L1s

[

∑

k∈Is

m1
∑

j=1
ā1kss exp{λτ1k}τ1k ā1jss exp{λτ1j}+

m1
∑

j=0,j /∈Is

ā
1j
ss exp{λτ1j}

]

+

+cpL2s

[

∑

k∈Is

m
∑

i=2

mi
∑

j=1
ā1kss exp{λτ1k}

√
τ1kā

ij
ss exp{λτij}+

m
∑

i=2

mi
∑

j=1
ā
ij
ss exp{λτij}

]

, s = 1, . . . , n,

Nsj(λ) := L1s

[

∑

k∈Is

m1
∑

ν=0
ā1kss exp{λτ1k}τ1kā1νsj exp{λτ1ν}+

m1
∑

ν=1
ā1νsj exp{λτ1ν}

]

+

+cpL2s

[

∑

k∈Is

m
∑

i=2

mi
∑

ν=1
ā1kss exp{λτ1k}

√
τ1kā

iν
sj exp{λτiν}+

m
∑

i=2

mi
∑

ν=1
āiνsj exp{λτiν}

]

, s, j=1, . . . , n, s 6=j,

Ms(λ) := L1s

[

∑

k∈Is

m1
∑

j=1

n
∑

ν=1
ā1kss exp{λτ1k}τ1k ā1jsν exp{λτ1j}+

+
∑

k∈Is

ā1kss exp{λτ1k}+
m1
∑

j=1

n
∑

k=1,k 6=swithj∈Is
ā
1j
sk exp{λτ1j}

]

+

+cpL2s

[

∑

k∈Is

m
∑

i=2

mi
∑

j=1

n
∑

ν=1
ā1kss exp{λτ1k}

√
τ1kā

ij
sν exp{λτij}+

m
∑

i=2

mi
∑

j=1

n
∑

ν=1
ā
ij
sν exp{λτij}

]

, s=1, . . . , n.

Put y(t) = col(y1(t), . . . , yn(t)), ȳ = col(ȳ1, . . . , ȳn), M(λ) = col(M1(λ), . . . ,Mn(λ)) and assume
that C(λ) = (cij(λ))

n
i,j=1 is the n× n-matrix, whose elements are defined as follows:

css(λ) = 1−Nss(λ), s = 1, . . . , n, csj(λ) = −Nsj(λ), s, j = 1, . . . , n, s 6= j.

Then estimates (17) imply the correlation

C(λ)ȳ ≤ ĉ||b||kn
2p
Ê +M(λ)||ϕ||, (18)

where ĉ = max{ĉs, s = 1, . . . , n}, Ê is the n-dimensional vector, all whose elements equal one. It is
also evident that C(0) = C. According to assumptions of the theorem, the matrix C is an M-matrix.
Then with sufficiently small λ the matrix C(λ) also is an M-matrix, consequently, there exists
λ = λ0 such that the matrix C(λ0) is positively invertible. Therefore inequality (18) gives the
correlation

|ȳ| ≤ K(||b||kn
2p

+ ||ϕ||), (19)

where K = ‖C(λ0)
−1‖|Ê|max{ĉ, |M(λ0)|}.

Since x(t, b, ϕ) = exp{−λt}y(t) and sup
t≥0

(E|y(t)|2p)1/(2p) ≤ |ȳ|, inequality (19) implies that there

exist positive values λ = λ0, K = ‖(C(λ0)
−1‖|Ê|max{ĉ, |M(λ0)|} such that the solution x(t, b, ϕ)

to problem (1), (1a), (1b) satisfies the inequality

(E|x(t, b, ϕ)|2p)1/(2p) ≤ K exp{−λt}
(

||b||kn
2p

+ vrai sup
t<0

(E|ϕ(t)|2p)1/(2p)
)

(t ≥ 0).

Consequently, system (1) is exponentially 2p-stable with respect to the initial data.

Remark 1. One can immediately verify whether the matrix C is an M-matrix by evaluating its
diagonal minors. Namely, if all these minors are positive, then the matrix C is an M-matrix.
Moreover, one can establish this fact by verifying sufficient conditions given in Section 1.
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4. COROLLARIES OF THE MAIN RESULT

Assume that elements of the matrix Aij, i = 2, . . . ,m, j = 1, . . . ,mi, equal zero with t ∈ [0,+∞)
P × µ-almost everywhere and there exist subsets of numbers Is ⊂ {1, . . . ,m1}, s = 1, . . . , n, and
positive values

ρ, σ, b̄s, s = l + 1, . . . , n, ās, ā
ij
sk i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n,

such that system (1) satisfies estimates

|bjss| ≤ b̄s, s = l + 1, . . . , n, j = 1, 2, . . . , ρ ≤ µj+1 − µj ≤ σ, j = 1, 2, . . . ,

|aijsk(t)| ≤ ā
ij
sk, t ∈ [0,+∞), i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n,

P × µ-almost everywhere. Assume also that
∑

k∈Is

a1kss (t) ≥ ās, t ∈ [0,+∞), s = 1, . . . , n,

P × µ-almost everywhere and there exist positive values ĉs, s = l + 1, . . . , n, such that

exp{−āst} ⊓
0<µj≤t

|bjss| < ĉs with t ∈ [0,+∞), s = l + 1, . . . , n.

Let us define an n× n-matrix C1 = (csj)
n
s,j=1 as follows:

css = 1− 1
ās

[

∑

k∈Is

m1
∑

j=1
ā1kss τ1kā

1j
ss +

m1
∑

j=1,j /∈Is

ā
1j
ss

]

, s = 1, . . . , l,

csj = − 1
ās

[

∑

k∈Is

m1
∑

ν=1
ā1kss τ1kā

1ν
sj +

m1
∑

ν=1
ā1νsj

]

, s = 1, . . . , l, j = 1, . . . , n, s 6= j.

css = 1− max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

∑

k∈Is

m1
∑

j=1
ā1kss τ1kā

1j
ss +

m1
∑

j=1,j /∈Is

ā
1j
ss

]

, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

∑

k∈Is

m1
∑

ν=1
ā1kss τ1kā

1ν
sj +

m1
∑

ν=1
ā1νsj

]

, s = l + 1, . . . , n, j = 1, . . . , n, s 6= j.

Corollary 1. If C1 is an M-matrix, then system (1) is exponentially 2p-stable with respect to the
initial data.

The validity of this assertion immediately follows from Theorem 3.

Remark 2. If under assumptions of Corollary 1 elements of matrices A1j , j = 1, . . . ,m1, are
measurable locally summable functions, then system (1) is a deterministic system of linear
differential equations with bounded delays; it is exponentially stable with respect to the initial
data.

Assume that elements of matrices A1k, k = 2, . . . ,m1, Aij , i = 2, . . . ,m, j = 1, . . . ,mi, equal zero

with t ∈ [0,+∞) P × µ-almost everywhere and there exist positive values ρ, σ, b̄s, s = l + 1, . . . , n,

ās, ā
ij
sk, i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n, such that system (1) satisfies inequalities |bjss| ≤

b̄s, s = l + 1, . . . , n, j = 1, 2, . . ., ρ ≤ µj+1 − µj ≤ σ with j = 1, 2, . . ., |aijsk(t)| ≤ ā
ij
sk, t ∈ [0,+∞),

i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n, P × µ-almost everywhere, and a11ss(t) ≥ ās, t ∈ [0,+∞),
s = 1, . . . , n, P × µ-almost everywhere and there exist positive values ĉs, s = l + 1, . . . , n, such

that exp{−āst} ⊓
0<µj≤t

|bjss| < ĉs with t ∈ [0,+∞), s = l + 1, . . . , n. Let us define an n× n-matrix

C2 = (csj)
n
s,j=1 as follows:

css = 1− 1
ās
(ā11ss)

2τ11, s = 1, . . . , l, csj = − 1
ās

[

(ā11ss)
2τ11 + ā11sj

]

, s = 1, . . . , l, j = 1, . . . , n, s 6= j.
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css = 1− max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

(ā11ss)
2τ11, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

(ā11ss)
2τ11 + ā11sj

]

, s = l + 1, . . . , n, j = 1, . . . , n, s 6= j.

Then (in above denotations) Theorem 3 implies the following assertion.

Corollary 2. If C2 is an M-matrix, then system (1) is exponentially 2p-stable with respect to the
initial data.

Let us now assume that in system (1), m1 = 1 and there exist positive values ρ, σ, b̄s,

s = l + 1, . . . , n, ās, ā
ij
sk, i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n, such that system (1) satisfies

the following estimates: |bjss| ≤ b̄s, s = l + 1, . . . , n, j = 1, 2, . . ., ρ ≤ µj+1 − µj ≤ σ for j = 1, 2, . . .,

|aijsk(t)| ≤ ā
ij
sk, t ∈ [0,+∞), i = 1, . . . ,m, j = 1, . . . ,mi, s, k = 1, . . . , n, P × µ-almost everywhere.

Assume also that a11ss(t) ≥ ās, t ∈ [0,+∞), s = 1, . . . , n, P × µ-almost everywhere and there exist

positive values ĉs, s = l + 1, . . . , n, such that exp{−āst} ⊓
0<µj≤t

|bjss|<ĉs with t ∈ [0,+∞), s =

l + 1, . . . , n. Let us define an n× n-matrix C3 = (csj)
n
s,j=1 as follows:

css = 1− 1
ās
(ā11ss)

2τ11 − cp

(

1
2ās

)1/2
[

m
∑

i=2

mi
∑

j=1
ā11ss

√
τ11ā

ij
ss +

m
∑

i=2

mi
∑

j=1
ā
ij
ss

]

, s = 1, . . . , l,

csj = − 1
ās

[

(ā11ss)
2τ11 + ā11sl

]

− cp

(

1
2ās

)1/2
[

m
∑

i=2

mi
∑

ν=1
ā11ss

√
τ11ā

iν
sj +

m
∑

i=2

mi
∑

ν=1
āiνsj

]

,

s = 1, . . . , l, j = 1, . . . , n, s 6= j.

css = 1− max{1,b̄s}(1−exp{−āsσ})

ās(1−exp{−āsρb̄s)
(ā11ss)

2τ11−

−cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2
[

m
∑

i=2

mi
∑

j=1
ā11ss

√
τ11ā

ij
ss +

m
∑

i=2

mi
∑

j=1
ā
ij
ss

]

, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

[

(ā11ss)
2τ11 + ā11sj

]

− cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2
×

×
[

m
∑

i=2

mi
∑

ν=1
ā11ss

√
τ11ā

iν
sj+

m
∑

i=2

mi
∑

ν=1
āiνsj

]

, s = l + 1, . . . , n, j = 1, . . . , n, s 6= j.

Corollary 3. If C3 is an M-matrix, then system (1) is exponentially 2p-stable with respect to the
initial data.

The validity of this assertion immediately follows from Theorem 3.

Corollary 4. Let system (1) satisfy all propositions that precede Corollary 3. Assume, in addition,
that n = 2 and elements of the 2× 2-matrix C4 = (csj)

2
s,j=1 satisfy inequalities c11 > 0, c11c22 >

c12c21. Then system (1) is exponentially 2p -stable with respect to the initial data.

The validity of Corollary 4 follows from Corollary 3 and the fact that under the above assumptions
the 2× 2-matrix C4 is an M-matrix, because its diagonal minors are positive.

Let system (1) satisfy assumptions that precede Corollary 3, and let h11(t) = t (t ∈ [0,∞))
µ-almost everywhere. Elements of the n× n-matrix C5 = (csj)

n
s,j=1 obey the formulas

css = 1− cp

(

1
2ās

)1/2 m
∑

i=2

mi
∑

j=1
ā
ij
ss, s = 1, . . . , l, csj = − 1

ās
ā11sj − cp

(

1
2ās

)1/2 m
∑

i=2

mi
∑

j=1
ā
ij
sj,

s = 1, . . . , l, j = 1, . . . , n, s 6= j.
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css = 1− cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2 m
∑

i=2

mi
∑

j=1
ā
ij
ss, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−āsσ})
ās(1−exp{−āsρ}b̄s)

ā11sj − cp

(

max{1,b̄2s}(1−exp{−2āsσ})
2ās(1−exp{−2āsρ}b̄2s)

)1/2 m
∑

i=2

mi
∑

ν=1
āiνsj,

s = l + 1, . . . , n, j = 1, . . . , n, s 6= j.

In this case, Theorem 3 implies the following assertion.

Corollary 5. If C5 is an M-matrix, then system (1) is exponentially 2p-stable with respect to the
initial data.

5. EXAMPLES

Consider the following system of deterministic linear differential equations with constant delays
and coefficients subject to impulse actions on certain variables:

dx(t) = −
m
∑

j=1
Ajx(t− hj)dt (t ≥ 0),

x(µj) = Bjx(µj − 0), j = 1, 2, . . . ;

(20)

here Aj = (ajsk)
n
s,k=1, j = 1, . . . ,m, are real n× n-matrices, hj , j = 1, . . . ,m, are nonnegative real

values, µj, j = 1, 2, . . ., are real values such that 0 = µ0 < µ1 < µ2 < . . ., lim
j→∞

µj = ∞, Bj is a real

diagonal n× n-matrix, all whose diagonal elements differ from zero, and b
j
ii = 1, i = 1, . . . , l, for

j = 1, 2, . . ..

Assertion 1. Assume that system (20) satisfies the inequality
m
∑

j=1
a
j
ss = as > 0, s = 1, . . . , n, and

there exist positive values ρ, σ, b̄s, ĉs, s = l + 1, . . . , n, such that exp{−a1sst} ⊓
0<µj≤t

|bjss| < ĉs with

t ∈ [0,+∞), |bjss| ≤ b̄s, j = 1, 2, . . ., s = l + 1, . . . , n, ρ ≤ µj+1 − µj ≤ σ for j = 1, 2, . . .. If under
these assumptions the n× n-matrix C6, whose elements obey formulas

css = 1− 1
as

m
∑

k=1

m
∑

j=1
|akss|hk|ajss|, s = 1, . . . , l,

csj = − 1
as

[

m
∑

k=1

m
∑

ν=1
|akss|hk|aνsj |+

m
∑

ν=1
|aνsj |

]

, s = 1, . . . , l, j = 1, . . . , n, s 6= j,

css = 1− max{1,b̄s}(1−exp{−asσ})
as(1−exp{−asρ}b̄s)

m
∑

k=1

m
∑

j=1
|akss|hk|ajss|, s = l + 1, . . . , n,

csj=−max{1,b̄s}(1−exp{−asσ})
as(1−exp{−asρ}b̄s)

[

m
∑

k=1

m
∑

ν=1
|akss|hk|aνsj|+

m
∑

ν=1
|aνsj |

]

, s = l + 1, . . . , n, j = 1, . . . , n, s 6= j,

is an M-matrix, then system (20) is exponentially stable with respect to the initial data.

The validity of assertion 1 follows from Corollary 1 of Theorem 3.

Assume that system (20) satisfies correlations h1 = 0, a1ss > 0, s = 1, . . . , n. In this case,
Corollary 1 of Theorem 3 implies the following assertion.

Assertion 2. Assume that for system (20) there exist positive values ρ, σ, b̄s, ĉs, s = l + 1, . . . , n,

such that the following inequalities are valid: exp{−a1sst} ⊓
0<µj≤t

|bjss| < ĉs with t ∈ [0,+∞), |bjss| ≤
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b̄s, j = 1, 2, . . ., s = l + 1, . . . , n, ρ ≤ µj+1 − µj ≤ σ for j = 1, 2, . . .. If the n× n-matrix C7, whose

elements obey formulas

css = 1− 1
a1ss

m
∑

j=2
|ajss|, s = 1, . . . , l, csj = − 1

a1ss

m
∑

ν=1
|aνsj |, s = 1, . . . , l, j = 1, . . . , n, s 6= j,

css = 1− max{1,b̄s}(1−exp{−a1ssσ})
a1ss(1−exp{−a1ssρ}b̄s)

m
∑

j=2
|ajss|, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−a1ssσ})
a1ss(1−exp{−a1ssρ}b̄s)

m
∑

ν=1
|aνsj|, s = l + 1, . . . , n, j = 1, . . . , n, s 6= j,

(21)

is an M-matrix, then system (20) is exponentially stable with respect to the initial data.

If, for example, css >
n
∑

j=1,j 6=s

|csj|, s = 1, . . . , n, where csj , s, j = 1, . . . , n, obey formulas (21),

then in view of Proposition 2 system (20) is exponentially stable with respect to the initial data.
Really, in this case, valid are sufficient conditions given in Section 1, which guarantee that the
n× n-matrix C7 is an M-matrix.

In particular, if all elements of matrices Aj , j = 2, . . . ,m, equal zero and a1ss >
n
∑

j=1,j 6=s

|a1sj|,

s = 1, . . . , l, while

a1ss(1− exp{−a1ssρ}b̄s)
max{1, b̄s}(1 − exp{−a1ssσ})

>

n
∑

j=1,j 6=s

|a1sj |, s = l + 1, . . . , n,

then system (20) is exponentially stable with respect to the initial data.

Consider the following impulse system of Itô linear differential equations with constant delays:

dx(t) = −
m1
∑

j=1
A1jx(t− h1j)dt+

m
∑

i=2

mi
∑

j=1
Aijx(t− hij)dBi(t) (t ≥ 0),

x(µj) = Bjx(µj − 0), j = 1, 2, . . . , a. s.,

(22)

where Aij = (aijsk)
n
s,k=1, i = 1, . . . ,m, j = 1, . . . ,mi, are n× n-matrices with real-valued elements,

hij , i = 1, . . . ,m, j = 1, . . . ,mi, are nonnegative real values, µj, j = 1, 2, . . ., are real values such
that 0 = µ0 < µ1 < µ2 < . . ., lim

j→∞
µj = ∞, Bj is a real diagonal n× n-matrix, all whose diagonal

elements differ from zero, and b
j
ii = 1, i = 1, . . . , l, for j = 1, 2, . . ..

Assertion 3. Assume that system (22) satisfies correlations
m1
∑

j=1
a
1j
ss = as > 0, s = 1, . . . , n, and

there exist positive values ρ, σ, b̄s, ĉs, s = l + 1, . . . , n, such that exp{−ast} ⊓
0<µj≤t

|bjss| < ĉs with

t ∈ [0,+∞), |bjss| ≤ b̄s, j = 1, 2, . . ., s = l + 1, . . . , n, ρ ≤ µj+1 − µj ≤ σ for j = 1, 2, . . .. If the

n× n-matrix C8 defined by formulas

css=1− 1
as

m1
∑

k=1

m1
∑

j=1
|a1kss |h1k|a1jss| − cp

(

1
2as

)1/2
[

m1
∑

k=1

m
∑

i=2

mi
∑

j=1
|a1kss |

√
h1k|aijss|+

m
∑

i=2

mi
∑

j=1
|aijss|

]

, s=1, . . . , l,

csj=− 1
as

[

m1
∑

k=1

m1
∑

ν=1
|a1kss |h1k|a1νsj |+

m1
∑

ν=1
|a1νsj |

]

−cp

(

1
2as

)1/2
[

m1
∑

k=1

m
∑

i=2

mi
∑

ν=1
|a1kss |

√
h1k|aiνsj|+

m
∑

i=2

mi
∑

ν=1
|aiνsj |

]

,

s = 1, . . . , l, j = 1, . . . , n, s 6= j,
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css = 1− max{1,b̄s}(1−exp{−asσ})
as(1−exp{−asρ}b̄s)

m1
∑

k=1

m1
∑

j=1
|a1kss |h1k|a1jss|−

−cp

(

max{1,b̄2s}(1−exp{−2asσ})
2as(1−exp{−2asρ}b̄2s)

)1/2
[

m1
∑

k=1

m
∑

i=2

mi
∑

j=1
|a1kss |

√
h1k|aijss|+

m
∑

i=2

mi
∑

j=1
|aijss|

]

, s = l + 1, . . . , n,

csj = −max{1,b̄s}(1−exp{−asσ})
as(1−exp{−asρ}b̄s)

[

m1
∑

k=1

m1
∑

ν=1
|a1kss |h1k|a1νsj |+

m1
∑

ν=1
|a1νsj |

]

−

−cp

(

max{1,b̄2s}(1−exp{−2asσ})
2as(1−exp{−2asρ}b̄2s)

)1/2
[

m1
∑

k=1

m
∑

i=2

mi
∑

ν=1
|a1kss |

√
h1k|aiνsj |+

m
∑

i=2

mi
∑

ν=1
|aiνsj|

]

,

s = l + 1, . . . , n, j = 1, . . . , n, s 6= j,

is an M-matrix, then system (22) is exponentially 2p-stable with respect to the initial data.

The validity of Proposition 3 immediately follows from Theorem 3.

Assume that system (22) satisfies correlations m1 = 1, h11 = 0, and a11ss > 0, s = 1, . . . , n.
Theorem 3 implies the the following assertion.

Assertion 4. Assume that for system (22) there exist positive values ρ, σ, b̄s, cs, s = l + 1, . . . , n,

such that exp{−a1sst} ⊓
0<µj≤t

|bjss| < ĉs with t ∈ [0,+∞), |bjss| ≤ b̄s, j = 1, 2, . . ., s = l + 1, . . . , n,

ρ ≤ µj+1 − µj ≤ σ for j = 1, 2, . . .. If the n× n-matrix C9 defined by formulas

css = 1− cp

(

1
2a11ss

)1/2 m
∑

i=2

mi
∑

j=1
|aijss|, s = 1, . . . , l,

csj = −|a11sj | 1
a11ss

− cp

(

1
2a11ss

)1/2 m
∑

i=2

mi
∑

ν=1
|aiνsj|, s = 1, . . . , l, j = 1, . . . , n, s 6= j,

css = 1− cp

(

max{1,b̄2s}(1−exp{−2a11ssσ})
2a11ss(1−exp{−2a11ssρ}b̄

2
s)

)1/2 m
∑

i=2

mi
∑

j=1
|aijss|, s = l + 1, . . . , n,

csj = −|a11sj |
max{1,b̄s}(1−exp{−a11ssσ})

a11ss(1−exp{−a11ssρ}b̄s)
− cp

(

max{1,b̄2s}(1−exp{−2a11ssσ})
2a11ss(1−exp{−2a11ssρ}b̄

2
s)

)1/2 m
∑

i=2

mi
∑

ν=1
|aiνsj|,

s = l + 1, . . . , n, j = 1, . . . , n, s 6= j,

is an M-matrix, then system (22) is exponentially 2p-stable with respect to the initial data.

One can verify whether the matrix C9 mentioned in assertion 4 is an M-matrix, making use of
sufficient conditions established in Section 1. If, for example,

1− cp

(

1
2a11ss

)1/2 m
∑

i=2

mi
∑

j=1
|aijss| >

n
∑

j=1

(

|a11sj | 1
a11ss

+ cp

(

1
2a11ss

)1/2 m
∑

i=2

mi
∑

ν=1
|aiνsj|

)

, s = 1, . . . , l,

1− cp

(

max{1,b̄2s}(1−exp{−2a11ssσ})
2a11ss(1−exp{−2a11ssρ}b̄

2
s)

)1/2 m
∑

i=2

mi
∑

j=1
|aijss| >

>
n
∑

j=1,j 6=s

(

|a11sj |
max{1,b̄s}(1−exp{−a11ssσ})

a11ss(1−exp{−a11ssρ}b̄s)
+cp

(

max{1,b̄2s}(1−exp{−2a11ssσ})
2a11ss(1−exp{−2a11ssρ}b̄

2
s)

)1/2 m
∑

i=2

mi
∑

ν=1
|aiνsj |

)

,

s = l + 1, . . . , n,

then C9 is an M-matrix, therefore, system (22) is exponentially 2p-stable with respect to the initial
data.
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