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Chitin is crystalline polysaccharide made of β-1–4 linked N-acetyl
glucosamine (GlcNAc) units. In α-chitin, the most abundant form of
chitin, individual chains interact through three-dimensional hydrogen
bond arrangements and stacking of the hydrophobic faces to form a
crystal [1]. This makes chitin recalcitrant and difficult for enzymes to
degrade. In Nature, degradation is catalyzed by family 18 chitinases
that hydrolyze glycosidic linkages, primarily producing chitobiose [2].
Central for the ability of chitinases to degrade chitin is a series of sur-
face exposed aromatic amino acids in the active site cleft that by
strongly interacting with a single polysaccharide chain, promoting its
dissociation from the crystal and guiding into the active site [3]. These
interactions mediated by aromatic amino acids are also beneficial for
the catalysis of transglycosylation [4,5]. SpChiD from Serratia protea-
maculans is an interesting chitinase due to its ability to catalyze both
hydrolysis and transglycosylation [6]. The active-site cleft of SpChiD
contains five exposed aromatic amino acids stretching from subsites−1
to +5 (Fig. 1.). In this work, we have used isothermal titration ca-
lorimetry (ITC) and a series of engineered SpChiD variants to assess the
contribution of each individual aromatic amino acid to the binding free
energy of a single chitin chain, (GlcNAc)6.

Initially, (GlcNAc)6 binding was investigated with the wild type
SpChiD where the catalytic acid Glu153 was mutated to an alanine-re-
sidue to avoid hydrolysis [7], yielding a Kd of 0.35 ± 0.09 μM
(ΔGr° = −8.9 ± 0.1 kcal/mol, ΔHr° = 3.2 ± 0.1 kcal/mol, and

–TΔSr° = −12.1 ± 0.1 kcal/mol) at t = 25 °C (Fig. 1). Exchange of
Trp395 (−1 subsite) by alanine yielded a Kd of 16 ± 3 μM
(ΔGr° = −6.6 ± 0.4 kcal/mol, ΔHr° = −3.5 ± 0.2 kcal/mol, and
–TΔSr° = −3.1 ± 0.4 kcal/mol). Exchange of Trp114 (+1 subsite)
yielded a Kd of 147 ± 85 μM (ΔGr° = −5.2 ± 0.3 kcal/mol,
ΔHr° = 5.7 ± 0.7 kcal/mol, and –TΔSr° = −10.9 ± 0.8 kcal/mol).
Exchange of Tyr226 (+2 subsite) yielded a Kd of 2.7 ± 0.4 μM
(ΔGr° = −7.6 ± 0.1 kcal/mol, ΔHr° = 3.9 ± 0.2 kcal/mol, and
–TΔSr° = −11.5 ± 0.2 kcal/mol). Exchange of Trp160 (+3 subsite)
yielded a Kd of 37 ± 14 μM (ΔGr° = −6.0 ± 0.2 kcal/mol,
ΔHr° = 7.4 ± 0.7 kcal/mol, and –TΔSr° = −13.4 ± 0.7 kcal/mol).
Finally, exchange of Trp290 (+5 subsite) yielded a Kd of 0.7 ± 0.2 μM
(ΔGr° = −8.4 ± 0.2 kcal/mol, ΔHr° = 5.3 ± 0.4 kcal/mol, and
–TΔSr° = −13.7 ± 0.4 kcal/mol).

Interestingly, the distribution between enthalpic and entropic con-
tributions to the binding free energy to SpChiD-W395A is dramatically
different compared to the other variants. The average ΔHr° and –TΔSr°
are 5.4 ± 0.6 and − 12.6 ± 0.6 kcal/mol, respectively, for the other
variants, while binding of (GlcNAc)6 to SpChiD-W395A is accompanied
by a (favorable) ΔHr° of −3.5 kcal/mol and a –TΔSr° of −3.1 kcal/mol,
suggesting a very different binding mode. Structures of family 18
chitinases (Fig. 1; [9]) show that Trp395 is crucial for the energetically
demanding conformational change of the GlcNAc moiety binding to the
−1 subsite change from the 4C1 chair conformation to the 1,4B boat
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confirmation that is necessary to form the Michaelis complex [10]. It is
thus conceivable that the W395A mutation reduces the enthalpic pen-
alty of substrate binding.

All other mutations also resulted in reduced binding affinity. The
largest reduction in binding free energy (3.6 kcal/mol) was observed
for the mutations in subsite +1 (W114A) (Fig. 1). Mutation of Trp160 in
the +3 subsite also had a large effect, whereas the effect of mutating
the tyrosine in the +2 subsite was less profound. The relatively small
contribution of the tyrosine is also apparent from previous studies,
which showed that replacement of this Tyr or of an analogous Phe-
residue ChiA from S. marcescens by tryptophan leads to improved
binding and, consequently, increased transglycosylation [4,5]. Still,
removal of the Phe residue in ChiA (exchange with an Ala-residue)
reduced transglycosylation [4]. Similar observation has been made for a
class V chitinase from cycad, Cycas revoluta where a Phe mutation to
Ala in positive subsites reduced transglycosylation activity [11].

Finally, the lowest reduction in binding free energy (0.4 kcal/mol)
among the mutants was observed for SpChiD-W290A (subsite +5).

Interaction with this subsite would require the binding of (GlcNAc)6
from subsites −1 to +5 in SpChiD. This may indeed happen since
previous studies have shown that SpChiD can catalyze hydrolysis when
only the −1 subsite is occupied. It has been shown that (GlcNAc)4
productively binds to −1 to +3 (next to binding to–2 to +2) [6] and
that SpChiD can cleave (GlcNAc)2, which is a unique feature for family
18 chitinases [12]. Still, in reactions with (GlcNAc)6 there is probably
low occupancy for the +5 subsite, which may explain the limited effect
of the W290A mutation.

Combined, our results demonstrate that all five investigated re-
sidues provide significant binding free energy to the carbohydrate
substrate. The tryptophan residues seem essential in providing neces-
sary binding free energy for the formation of a stable Michaelis com-
plex. These results are in accordance with results from previous studies
[3–5] showing that tryptophan-residues provide more binding free
energy to GlcNAc-residues than phenylalanine- and tyrosine-residues.
This is also a feature observed in other GH systems i.e. xylosaccharide
binding to a family 10 xylanase where a Tyr-residue contributed less to

Fig. 1. A) Crystal structure of SpChiD (pdb 4nzc [8]) with (GlcNAc)5 taken from pdb entry 1e6n [9]. B) A close-up view of aromatic amino acids in the active site of
SpChiD highlighting key interactions with the substrate. C) The thermodynamic parameters of (GlcNAc)6 binding to individual SpChiD mutants and their con-
centrations in the isothermal titration calorimetry experiments.
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the binding free energy as well as the change in heat capacity than a
Trp-residue [13].

Generation and expression of mutant enzymes and their purification
has been thoroughly described previously [6]. Table S1 shows details of
primers and templates used for generation of SpChiD variants. Execu-
tion of ITC experiments and the analysis of calorimetric data has been
thoroughly described previously [14,15]. ITC experiments were per-
formed with a VP-ITC system from Microcal, Inc. (Northampton, MA).
Solutions of (GlcNAc)6 were placed in the syringe whereas the reaction
cell of the calorimeter contained solutions purified SpChiD variants;
details are provided in Fig. 1. Titrations were performed at 25 °C in
20 mM potassium phosphate, pH 6.0. Next to the mutations used to
denote the various enzyme variants, all variants carried a mutation of
the catalytic acid (E153A), which abolishes hydrolytic activity, thus
enabling ITC measurements. Errors in Ka and ΔHr° were obtained as
standard deviations from four individual experiments. Kd, ΔGr°, ΔSr°,
and -TΔSr° were calculated from Eq. 1, and errors in these parameters
were obtained from propagation of error.

° = ° − ° = − =G H T S RT K RT KΔ Δ Δ ln lnr r r a d (1)
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