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The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus
and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex
plant material into nutrients for host metabolism, a process which also produces other by-products, such as
methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial
interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute
significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen
microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as meta-
proteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic
functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples,
precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence
database that enables precise protein identification and quantification. This review focuses on the application of
rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its me-
tabolic functions. We present and discuss current methods in sample handling, protein extraction and data
analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metapro-
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teomics for accurate reconstruction of active microbial populations in the rumen.

1. Theoretical basis and framework of rumen metaproteomics

With the expected growth of the global human population from 7.8
billion in 2020 to 10 billion in 2050 [1], there is pressure to increase
sustainability within agricultural industries in order to secure both
animal welfare and human nutritional needs for the future. Ad-
ditionally, the expansion of livestock production systems necessitates
options that ensure both animal health and productivity as well as
mitigate negative impacts such as greenhouse gas (GHG) emissions (e.g.
CH,) [2]. While intensive livestock industries involve different animals
such as poultry, pigs and ruminants (e.g. sheep, goats and cattle), all
these systems rely on close interactions between the host animal and its
inherent microbiomes. Moreover, it is widely accepted that a critical
means to address sustainability challenges in ruminant livestock sys-
tems is to optimize the intimate relationship between the environment
(e.g. feed), the animal host and their gut microbiota, which collectively
play an integral role in digesting feedstuffs into nutrients whilst pro-
ducing GHG as a natural by-product [3].
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Using both traditional culturing and molecular omics-based ap-
proaches, it has been inferred that differences in rumen microbiota are
associated with cattle production and health phenotypes, such as feed
conversion ratio (FCR) [4], methane production [5], milk composition
[6], and ruminal acidosis [7]. In particular, modern meta-omic tech-
niques can be used to accommodate the complexity of the rumen mi-
crobiome and to study microorganisms and microbial populations in
their natural ecosystems without the limitations of standard cultivation
methods [8,9]. The term “metaproteomics” was first coined by Wilmes
and Bond in 2004 as “the large scale characterization of the entire
protein complement of environmental microbiota at a given point in
time” [10]. Since then, advances in sensitivity and accuracy in current
mass spectrometry analysis, and development of proteomics software
has made it possible to identify and quantify thousands of proteins from
environmental samples and provide information on expressed function
of proteins in a microbial community [11,12]. While metaproteomics
hold great potential for microbial systems ecology, there are challenges
in studying complex microbial communities regarding protein
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Fig. 1. Workflow for rumen metaproteomics. The ultimate goal of rumen metaproteomics is to visualize and quantify the active microbial populations, their
metabolic pathways and their interactions within the microbiome as well as with the host. High-quality proteomic data depends on optimization of each step in the
workflow. The workflow consists of two main phases; 1) sample handling in the lab, consisting of sampling, protein extraction and protein and peptide fractionation,
and 2) protein analysis with proteomic tools, consisting of protein identification and quantification, annotation of identified proteins and finally, reconstruction of
metabolically active populations in the microbiome using annotated recovered metagenome-assembled genomes (MAGs). Database design and generation is essential
for accurate protein identification and quantification. The integration of sample-specific metagenomic data can provide information on novel proteins otherwise lost

and allow for metabolic reconstruction of the MAGs in the rumen microbiome.

identification rates (compared to single-organism proteomics), protein
extraction from environmental samples, large sequence databases, se-
quence unavailability, and search engine sensitivity [12].

This review will provide insight into how metaproteomics and in
particular, metagenome-resolved metaproteomics can be used to vi-
sualize changes in rumen microbiome functions in larger animal ex-
periments that aim to modify performance metrics such as feed con-
version ratios and methane production or improve animal health and
welfare. We will also introduce and discuss current metaproteomic
methodological workflows (Fig. 1) that consider metaproteomic sam-
pling in the rumen, identifying and quantifying proteins and visualizing
active microbial populations. Finally, this review will highlight the
potential of (meta)genome-resolved metaproteomics and how this
added level of resolution can be applied to reconstruct active metabolic
pathways, and how they function together in the rumen microbiome
(Fig. 1).

2. Rumen sampling, sample preparation and protein extraction

Capturing the heterogeneity and complexity of ecological niches is a
substantial challenge for meaningful metaproteomic analysis, as it is
crucial that the proteins that are extracted from environmental samples
reflect the original microbiome and its functional properties [12].
Given the highly dynamic and ever-changing ecosystem of the rumen,
comprehensive and standardized sampling is especially important to
ensure the detailed and complete “microbiome” portrait at a specific
point in time. The following section will introduce and discuss some
important considerations in sampling, sample handling and processing
for rumen metaproteomics.

The section where each step in the workflow is described is noted in the figure.

2.1. Influences on composition of the rumen microbiome

In an adult ruminant, the rumen is the biggest of the four com-
partments that makes up the stomach. The rumen is specialized in the
degradation and fermentation of complex carbohydrates from plant
biomass, made possible by carbohydrate active enzymes (CAZymes)
produced predominantly by endogenous microorganisms in the rumen
microbiome [13]. The rumen maintains a pH value of about 6.0-6.8
depending on the fermentation stage and a temperature at around 39 °C
[15], which makes the rumen optimal for microbial growth and ac-
tivity. The major microbial populations of the rumen ecosystem are
well known and understood, but the relationships between these in-
dividual populations and the collective rumen function remains poorly
characterized. Large and continuing efforts have been made to identify
a core rumen microbiome [8,16] such as the Global Rumen Census,
which represents a collaborative research effort to catalogue rumen
microorganisms that are available for in depth culture analysis [17]. In
contrast, other studies have focused on cataloguing uncultured micro-
bial populations [8,9,18] or statistically correlating core rumen mi-
crobiome to host animal breeds (i.e. genotype) and production effi-
ciency (i.e. phenotype) [16].

Henderson et al. examined rumen microbial communities across
ruminant and camelid species, diets and geographical regions, and
found that similar bacteria and archaea dominated in nearly all sam-
ples, while protozoal communities were more variable [8]. Prevotella,
Butyrivibrio, Ruminococcus, Lachnospiraceae, Ruminococcaceae, Bacteroi-
dales and Clostridiales, were dominant bacterial groups in over 90% of
the studied samples and accordingly represent the core bacterial mi-
crobiome, yet the metabolic functions of some of these bacterial groups
are not well characterized [8]. The role of eukaryotic microorganisms
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in the rumen microbial ecosystem, such as protozoa and fungi, is not
fully understood. Even though protozoal species can make up a sub-
stantial part, up to 50%, of biomass of the microorganisms present in
the rumen [15,19], they are currently poorly characterized. The lack of
appreciation is predominately due to a lack in genome reference se-
quences for rumen protozoal species, and the fact that laborious mi-
croscopic identification and counting remains the standard method for
analysing the protozoal contribution of the rumen microbiome [19].
Moreover, although the role of rumen fungal species as fibre-degraders
is acknowledged, only 11 anaerobic gut fungi from mammalian herbi-
vores were described until a recent study expanded the taxonomic di-
versity with seven new genera [20]. The shortcomings are mostly due
to technical difficulties associated with their cultivation as well as se-
quencing and analysing their eukaryotic genomes [21,22].

The products from microbial fermentation of carbohydrate biomass
in the rumen are volatile fatty acids (VFAs), such as acetate, butyrate
and propionate, lactate and succinate, in addition to CO5 and H, [15].
VFAs are taken up by the host animal across the rumen epithelial wall
and are important energy and carbon sources [15]. Hydrogen can be
converted to CH4 by methanogenic archaeal populations, which in turn
is emitted during eructation and represents up to 12% of dietary gross
energy loss for the ruminant [15,23,24]. The rate of passage of plant
material depends on feed content, particle size and how efficiently feed
is digested. Digestion efficiency and production rate of fermentation
products are dependent of microbial composition in the rumen. Factors
that impact microbial composition and function in the rumen are pH,
temperature, the host species, age and geographic location [25], in
addition to diet and dietary interventions, which have been suggested
as the most influential factor for altered rumen microbial composition
(and function) [26-29].

2.2. Rumen sampling

Given the scale and diversity of the rumen ecosystem, correct
sampling methods that generate an accurate and reproducible reflection
of the microbiome structure and function are of upmost importance.
Microorganisms are associated with the liquid phase of the rumen
content, attached to feed particles, and to a lesser extent also to the
rumen wall [30,31]. Because of differences in density and the presence
of ruminal pillars and their movements during fermentation, well-di-
gested particles with high density sink towards the ventral parts of the
rumen. In contrast gas (CO, and CH,) and low-density particles that are
less digested are found in the more dorsal part of the rumen, and
contribute to the stratification of the rumen content [15,30,31]. Sub-
sequently, there are higher rates of fermentation in regions where feed
particles are not yet digested, i.e. the intermediate zone of the rumen
content [15].

Spatial differences in rumen content are caused by both stratifica-
tion and variations in microbial profiles that are associated with dif-
ferent fractions of rumen digesta, which can ultimately affect compre-
hensive and representable rumen sample collection. Studies have
suggested that composition of rumen microbiota can be affected by
different sampling technique, rumen fractions sampled and DNA ex-
traction methods. For example, Henderson et al. found that community
composition was generally similar irrespective of sampling via cannula
or oesophageal tubing [32]. However in the same study, community
composition structure differed significantly between rumen sample
fractions (solid vs liquid) possibly reflecting niche-specific microbes
that inhabit these varying regions [32]. While oesophageal tubing is
considered a less invasive, cheaper and more accessible sampling
method compared to rumen cannulation, cannula sampling allows for
collection of representative and repeated samples of both liquid and
solid content of the rumen [32,33]. Canula sampling additionally al-
lows for consistent collection of representative and repeated samples
for similar sites in the rumen. Henderson et al. noted that while they
observed generally similar community structure for both sampling
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methods, the possible effects should not be disregarded [32]. Differ-
ences in relative abundance for certain taxa can be explained by tube
size (when using oesophageal tubing) as it only allows for sampling of
small and highly degraded fibre and plant material [32] and conse-
quently microbial populations that dominate those particular rumen
fractions.

Previous research has also demonstrated significant differences in
microbial community structure between solid and liquid fractions of
rumen content at broad taxonomic levels (i.e. phylum), especially in
bacterial and archaeal groups [32,34-36]. However, Ji et al. found that
although the rumen bacterial diversity was biased in different fractions,
it was predominately affected by individual cow and diet rather than
rumen fraction [37]. Correspondingly, Vaidya et al. observed differ-
ences in microbial composition in solid and liquid fractions of the
rumen content yet questioned if these differences were the result of the
physical nature of the fractions or due to differences in microbes pre-
sent in the fractions [34]. Irrespective of these findings, it must be
considered that microbiome structure and function are two separate
entities and that structural measurements (such as 16S rRNA gene
analysis) may not necessarily match functional activities. Variation in
community function will likely lead to subsequent variation in VFA
production levels and pH levels. The considerations for sampling
mentioned in this review illustrate the complex and dynamic rumen
microbiome, and we further recognise that analyses of rumen microbial
community structure and function are still required to develop a stan-
dardization of protocols for rumen sampling and sample handling for
comparable results.

2.3. Recovering the rumen metaproteome

As mentioned, the rumen microbiome contains prokaryotes, eu-
karyotes and viruses, and collected rumen samples for metaproteomic
analysis should reflect this heterogeneity as accurately as possible.
Once samples are collected optimal protocols for protein extraction
must be used that enable unbiased and complete portrayal of the rumen
metaproteome. If storing is necessary, we recommend flash freezing
samples and storing at —80 °C in order to minimize the activity of
proteases on protein abundance in environmental samples [38,39].
Protein extraction from environmental samples requires multiple steps,
including protein clean-up and protein separation/fractionation
[39,40], for which standardized methods will be discussed below
[31,41-43].

2.3.1. Sample handling and protein extraction

Flash freezing of whole rumen samples and storing at —80° until
further processing is a common storage method, and is used to mini-
mize the effect of natural proteases that can have a detrimental impact
on microbial protein abundance [38,39]. However, a consideration to
this method can be drawn via a study by Martinez-Fernandez et al.,
which discovered that centrifuging fresh rumen fluid, removing the
supernatant and freezing the cell pellet increased the abundance of
readily lysed gram-negative bacterial species in a DNA sequencing ef-
fort, compared to the standard immediate flash freezing for whole
samples [44]. Martinez-Fernandez et al. concluded that while further
analyses are needed to confirm their results, their findings indicate that
flash freezing rumen samples and using the cell pellet for analysis can
alter the abundance of genetic material from species that were easily
lysed [44]. In order to detach microbial cells from undigested plant
matter and disrupt all aggregated cell types in the rumen (e.g. biofilms),
common extraction methods often combine chemical and mechanical
cell lysis to maximize protein recovery from the sample(s) [39,45].
Such protocols combine a chemical lysis method using a lysis buffer
with moderate to high concentrations of detergent with a mechanical
disruption of cells, such as bead-beating or sonication with heat [31].
To enhance denaturation of proteins, sodium dodecyl sulfate (SDS) can
be added in moderate to high concentrations (0.1-5%) [12,46]. Natural
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protease activity in the samples may be a problem if no detergents or
denaturing agents are used, which is typical for so called gel-free ap-
proaches. This may result in non-tryptic or semi-tryptic peptides and
cause low identification yields during database searches. Natural pro-
tease activity can be restricted with the use of protease inhibitors, such
as phenylmethylsulfonyl fluoride (PMSF) or by complex protease in-
hibitor cocktails. However, addition of protease inhibitors that are
peptides may increase complexity of downstream analysis [47]. From
experience, SDS will also increase the solubility of proteins and typi-
cally increase protein recovery rather than lysis buffer without de-
tergents.

2.3.2. Sample processing and protein fractionation

While humic substances has been proven to be beneficial for rumen
microbial growth, they are also known to possibly decrease the number
of identified proteins and the protein coverage percentage in proteomic
analysis and should be removed from the protein extract before further
proteomic analysis [48,49]. Trichloroacetic acid (TCA) is known to be
an effective precipitation agent in order to remove humic or other in-
terfering substances, yet TCA precipitation is generally connected with
potential loss of big proteins and difficulty in re-solubilizing proteins
[12,39,49]. Other commonly used precipitation agents are phenol,
acetone, acetone/deoxycholate, methanol/ammonium acetate and
methanol/chloroform [48]; however, some affiliated with poor protein
recovery (reviewed in [12]). For meta-omic analysis of rumen samples,
the effect of humic interference on further proteomic analysis needs to
be weighed against the effect of potential poor protein recovery due to
precipitation. As meta-omic techniques aim to reflect the unaffected,
unbiased and complete composition and/or function of the environ-
mental microbiomes, any (potentially biased) loss of proteins can have
a detrimental impact on our understanding of the functions of microbial
communities.

The metaproteome of the rumen microbial community consists of a
diverse mixture of proteins due to the complexity of the rumen mi-
crobial community. Efficient separation of the large number of proteins
present is crucial for accurate protein identification and quantification,
and studies have indicated that pre-fractionation can lead to increased
protein identification [50]. To ensure accurate and high-resolution
protein quantification, a typical bottom-up proteomic workflow is often
employed, including one or more fractionating steps to separate pro-
teins and/ or peptides [40,51]. While modern proteomics software
often have imbedded normalization algorithms to ensure unbiased
quantification between samples (e.g. the delayed normalization algo-
rithm MaxLFQ in MaxQuant [52]), evaluation of protein concentration
can be advantageous prior to sample fractionating to ensure equal
amounts of protein from each sample is analysed downstream [39].
However, when using a lysis buffer with high levels of detergent it is
essential to use detergent-compatible protein concentration assays to
ensure accurate estimates, as detergents can bind to proteins and
compete with the dye reagent (e.g. in the classic Bradford protein assay
method), causing underestimations of protein concentration [53]. Since
the development of metaproteomics, two-dimensional (2D) gel-based
protein separation has been the most widespread method for protein
separation. But in recent years, 2D-gels have been replaced by gel-free
or one dimensional (1D) gel separations methods, such as SDS - poly-
acrylamide gel electrophoresis (SDS-PAGE). This is mainly due to
drawbacks of 2D-gel analysis regarding recovery of large and hydro-
phobic proteins and because of recent developments in protein/peptide
labelling techniques, liquid chromatography and high resolution-mass
spectrometry [39,54]. In addition, modern proteomic experiments use
an increasing number of samples, rendering (tedious) 2D-gel analysis
impractical. Thus, after protein extraction, current protocols include
fractionation of proteins by either one dimensional gel electrophoresis,
e.g. SDS-PAGE, followed by in-gel digestion, or digested directly (in-
solution) into peptides commonly by trypsin, a specific and non-selec-
tive serine protease [55]. SDS-PAGE can also be used as a powerful
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clean-up technique for removing interfering substances. SDS-PAGE is an
inexpensive and easy method for separating proteins from interfering
substances, which does not enter the gel or, if charged, passes through
the gel very fast, while at the same time fractionating proteins based on
protein size [12]. Further, cysteine residues in peptides are usually
reduced with a strong reducing agent, such as dithiothreitol (DTT), and
alkylated, with e.g. iodoacetamide (IAA), prior to peptide clean up and
mass spectrometry (MS) analysis. Studies have reported issues in pro-
tein extraction in SDS-PAGE gel possibly due to co-precipitation of in-
terfering humic compounds deriving from plant material [56,57]. As
mentioned, sample preparation protocols often include a phenol ex-
traction or other precipitation agents such as TCA or acetone in order to
remove the majority of humic compounds known to interfere with
downstream analysis. However, precipitation is also connected with
potential protein loss and has to be weighed against the effect of humic
interference. A recently published study by Honan and Greenwood re-
commend the use of non-gel-based fractionation methods to char-
acterize and identify the rumen metaproteome in order to overcome the
effect of poor protein recovery or protein loss when using SDS-PAGE for
the purpose of fractionation [58].

3. Protein identification and quantification
3.1. Peptide separation and UHPLC-MS/MS

Today, MS-based proteomics is the most commonly applied ap-
proach in “shotgun” metaproteomics. Electrospray ionization (ESI) MS
enables high-resolution analysis of peptides due to its convenient cou-
pling with liquid peptide-separation techniques such as ultra-high-
performance liquid chromatography (UHPLC). Furthermore, as the
mass spectrometer is more sensitive to low molecular-weight mole-
cules, separation of peptides aid in achieve deep proteomic coverage
and high analytical resolution [59]. Prior to UHPLC-MS analysis, pep-
tides can be concentrated, cleaned, and further fractionated though
binding, e.g. to a reverse-phase material in microcolumns, often C'®
[60,61]. Typically, StageTips or ZipTips® (Merck-Millipore, cat. no.
Z720070) are used for this purpose and resulting peptides are subse-
quently eluted with organic solvents. The hydrophobic stationary phase
in C'® columns ensures easy purification and concentration of peptides
for MS analysis, and can increase stability of UHPLC-MS/MS systems by
removing impurities, such as gel pieces, hence preventing clogging of
the column used for UHPLC [60,61]. The duration of the UHPLC gra-
dient is selected based on sample complexity and extent of protein
fractionation; for metaproteomics, where sample complexity usually is
high, long gradients of 90-240 min are often used. Peptides are then
analysed by the mass spectrometer, where their mass-to-charge (m/z)
ratios can be analysed, generating mass spectra or fragmented tandem
spectra (MS/MS) [59]. For metaproteomics, due to sample complexity
and large protein databases (explained in Section 3.2), it is of immense
importance that the mass spectrometer used is of high-resolution and
high accuracy, to limit the list of potential sequences matching to one
MS/MS spectrum.

Protein identification in proteomics can be achieved through: 1) de
novo sequencing, by interpreting the amino acid sequence directly from
MS/MS spectra and following identification of the protein using se-
quencing-similarity search engine such as BLAST, 2) peptide sequence
identification using spectral libraries, or 3) theoretical matching - the
most common strategy in metaproteomics. Theoretical matching iden-
tifies detected proteins by matching experimental MS/MS spectra to
theoretical peptide fragmentation patterns from in silico peptide diges-
tion of a user specific protein sequence database. This approach has
proven to be successful in protein identification and quantification even
in large-scale soil metaproteomics studies, a microbial niche even more
complex than that of the rumen microbiome [39,62].
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3.2. Database selection and assembly

Compared to proteomics of single organisms, metaproteomics faces
several challenges because of increased complexity and heterogeneity
of samples. Rumen microbial communities are estimated to consist of
hundreds to thousands of different species [8]. This inherent diversity
means the rumen microbiome likely encodes up to several million
proteins, even before further estimations are made due to alternative
gene splicing and post translational modifications (PTMs), which can
cause the number of expressed proteins to exceed the number of genes
in an organism [63]. In addition, many species consist of closely related
proteins, due to e.g. strain variations or horizontal gene transfer
[42,64]. Therefore, accurate quantification and identification of pro-
teins from the rumen microbiome is highly determined by the database
choice [65]. An optimal protein sequence database should be compre-
hensive, of high-quality and should theoretically include protein se-
quences for all proteins expected to be expressed in the microbial
community and detectable via MS, as well as potential contaminants
such as MS standards and human keratins [42].

Creation of rumen-specific protein sequence databases can be based
on the use of complete public protein sequence repositories that can be
further refined by 16s rRNA analysis of the sample at hand (referred to
as pseudo-metagenomic databases [42,66]) or metagenome assembled
genome (MAG) inventories [21,67]. While it is easy to think that an
increase in search-space (i.e. database) subsequently will increase the
likelihood of identifying detected proteins, protein identification as
such is not trivial. As large, non-sample specific database can represent
only a fraction of the microbial species present in a given microbial
sample, protein identification with aforesaid databases may lead to an
increased fraction of false positive hits, low identification rates and few
significant hits [12]. The generation of rumen-specific MAG catalogues
is expanding rapidly [9,18,68], however it has been highlighted that
individual variation of rumen microbiota exist in both beef [69] and
dairy cattle [70], even when animals are fed the same diet and managed
under the same environment. Therefore, even with steps taken to cus-
tomize a rumen database from sequence/MAG repositories, it is likely
that protein identification will still be sub-optimal if the protein se-
quence database is missing protein entries for present proteins or even
missing species [42].

Sample-specific databases, generated using shotgun metagenomics
data from the same sample from which MS raw data are produced, are
considered far superior to any of the above mentioned options as they
will encompass individual variation that potentially exists in a given
sample [12,42]. While the integration of sample-specific metagenomic
sequence data with metaproteomic analysis requires increased financial
and processing efforts compared to the use of publicly available se-
quence data, there are clear advantages. Not only do metagenome-in-
tegrated protein databases include protein sequences for (nearly all)
expected expressed proteins by the target microbial community, they
also restrict the size of the database, making it both more complete yet
concise, which minimizes issues associated with false positive identifi-
cations. Moreover, the integration of sample-specific metagenomic data
can provide information on expressed proteins from novel and un-
cultured microorganisms that are not present in public sequence re-
positories, and with this contribute to our increased understanding of
their metabolic functions in their innate microbial ecosystem. Lastly,
and importantly, the integration of metagenomics and metaproteomics
does not only enhance metaproteomic detection, but also allows for
metabolic reconstruction and functional assessment of the individual
MAGs (see Sections 3.4.1 and 3.4.2).

Database generation from metagenomic data generally consists of
five main steps; 1) metagenomic sequencing of the community, 2) as-
sembly of reads into longer, continuous and overlapping segments of
DNA (contigs), 3) binning of contigs into MAGs, 4) gene calling, and 5)
functional annotation [12]. A detailed description of the different steps
of metagenomic database generation is provided in [12]. Briefly, the
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sequencing should aim to comprise both dominating and rare microbial
populations in the samples, thus reflecting the microbial composition
and its complexity as accurately as possible. Short read techniques,
creating reads of about 150-300 base pairs (bp), can generate a tre-
mendous amount of data with high sequencing depth and low error
rates. While long read techniques (PacBio and Oxford Nanopore) have a
reduced sequencing depth and increased error rates, there are also
several advantages of incorporating long reads into high-quality as-
semblies for the purpose of metagenomic database creation [71].

Once assembled, larger contigs are binned into MAGs, where each
assembled contig is assigned to (ideally) one population-level genome.
Moreover, to avoid miss-assemblies and inaccurate genomic assign-
ments, results from binning and assembly should always be inspected.
After assembly and binning of the metagenomic dataset, protein coding
regions in the different MAGs are identified through prediction of open
reading frames (ORF) in a process called gene calling. Functional an-
notation of ORFs can be performed using a multitude of different
computational resources and is described in more detail in Section 3.4
below. In most cases, it will also be useful to perform a taxonomical
assignment of the contigs or the MAGs. As there is currently no standard
workflow for de novo genome assembly from complex microbial com-
munities, choice of sequencing technique, assembler and binning soft-
ware should be determined based on target community and research
goals. In this context, the Critical Assessment of Metagenome Inter-
pretation (CAMI) is an example of an initiative that aims to benchmark
software selection to answer specific research questions [72]. Today as
standard practice, our lab routinely uses MAG-centric databases for the
purpose of protein identification and quantification, as it provides
targeted knowledge into individual population activity, and at the same
time reduces database size and complexity.

3.3. Protein identification and quantification

As mentioned, protein identification can be achieved in different
ways, yet the most common method in metaproteomics is the use of a
database and match experimental MS/MS spectra to theoretical frag-
ment patterns from in silico digestion of the database. MS raw data
contain information on peptide m/z ratio and intensity and can be used
to identify and quantify peptides in proteomics software through search
engines, e.g. Andromeda [73] and Mascot [74]. There are also search
engines and workflows designed to overcome challenges specific for
metaproteomics, e.g. database size; these include among others ComPIL
workflow [75] and ProteoStorm [76]. For reviews on proteomic search
engines, see [77,78].

In order to discriminate correct protein identifications from in-
correct identifications, strict control of the false discovery rate (FDR) is
necessary. The most common approach to control the FDR is the target-
decoy approach, where reversed or randomly scrambled (decoy) se-
quences are included in the target database and peptide-to-spectrum
matches (PSMs) to the decoys are considered false positive identifica-
tions. FDR can be estimated as the ratio of the number of decoy matches
above a threshold to the number of database hits above the same given
threshold, to give a FDR of e.g. 1% [12]. The target-decoy approach has
been shown to be less sensitive for FDR estimation in metaproteomic
analysis as increased number of analytes and high sequence similarity
in metaproteomics hampers the differentiation between correct and
false identifications [64]. To regain some sensitivity, alternative options
have been suggested, such as the use of multiple search engines to in-
crease protein identifications for metaproteomics [64].

Label-free quantification (LFQ) as a measure of protein abundance
has become the method-of-choice in metaproteomics, as it can be ap-
plied directly to protein identification data and does not suffer from
potentially error-prone labelling of proteins or peptides, which could
lead to further challenges regarding analytical reproducibility for vastly
complex samples [79]. Yet, recent studies suggest that accurate and
precise LFQ still suffers from heterogeneity and complexity of microbial
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samples and lack of standardized protein sample protocols, compli-
cating the quantification of subtle changes or rare identifications in
microbial samples [79]. In recent years, a variety of bioinformatic ap-
proaches have been developed for acquisition, quantification and pro-
cessing methods, such as transformation, normalization, missing value
filtering, imputations and match-transfer between samples [52], to in-
crease precision and accuracy, and enhance reproducibility of LFQ in
metaproteomic studies [77,78]. One such tool is ANPELA, an open
access server constructed to enable performance assessment of quanti-
fication workflows for the facilitation of accurate proteome quantifi-
cation for metaproteomic research [78]. Further, the MetaProteomeA-
nalyzer is a protein quantification tool that includes multiple search
engines and groups similar proteins into meta-proteins to overcome
some of the challenges [80]. Other robust and commonly used quan-
tification software include MaxQuant [81], the MetaPro-IQ workflow
[82], as well as new developments designed for the Galaxy framework,
such as metaQuantome [83].

3.4. Biological interpretation of identified and quantified proteins

The final step in the metaproteomic analysis is the biological in-
terpretation of the acquired protein identifications and abundances
through taxonomic and functional annotation. Meaningful metapro-
teomics rely heavily on accurate functional assignment of identified
proteins in order to reconstruct active microbial populations and their
metabolic pathways. A considerable challenge in metaproteomics, with
direct implications for taxonomic and functional annotation, is protein
inference [42,84]. Peptide sequences can be unique to a single protein,
but often, and more so for shorter peptides, the peptide sequence can
match to several proteins with similar sequences. The mass spectro-
meter can be tuned in order to disregard peptides under a specific
length in order to reduce the number of interfering peptides in protein
identification and taxonomic evaluation. Peptide-to-protein-to-species
inference is more difficult for large databases, and especially for con-
served proteins; however, when using a sample-specific database con-
structed from MAGs, this process will not be precluded by taxa that are
not present in the sample. This is important, and one of the reasons why
sample-specific databases are most favourable in metaproteomics.
However, in the absence of such databases, options exist. Muth et al.
suggested a workflow for taxonomic evaluation where identified pro-
teins are submitted to protein BLAST [85] as a pre-processing step, and
subsequent results are analysed with MEGAN [86] to compute a phy-
logenetic tree [64]. An alternative strategy is to estimate the taxonomy
of identified proteins using the lowest common ancestor (LCA) of all the
peptides matching to a protein. This method is used in the proteomic
software MetaProteomeAnalyzer, as described above [80]. UniPept is
another tool for taxonomic annotation of peptide/protein sequences,
which also include visualization feature [87].

Functional annotation of proteins makes it possible to reconstruct
active metabolic pathways from environmental samples and contributes
to our understanding of functions of active populations in complex
microbial communities. Several publicly available databases can be
used for functional annotation of identified proteins, e.g. UniProtKB.
The Gene Ontology (GO) Consortium aims to be the largest source of
functional gene information, ranging from molecular functions and
biological processes to organism level [88]. The InterPro database re-
presents protein domains, families and functional sites from multiple
other protein databases [89], such as Pfam [90], and can therefore
reveal functions or domains on otherwise uncharacterized protein and
contribute to an expanded functional understanding [64]. There are
also specialized functional databases, such as the CAZy database [13],
consisting of around 300 families with carbohydrate active enzyme
modules, contributing to the understanding of carbohydrate degrading
systems, such as the rumen.

For metabolic pathway analysis, the Kyoto Encyclopedia for Gene
and Genomes (KEGG) integrates genomic, biochemical and functional
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information into a visualizing feature called PATHWAY to facilitate the
reconstruction of metabolically active pathways [91]. This can be
achieved through their metagenomic annotation tool, GoastKOALA
[92], with annotation of MAGs and their ORFs using Enzyme Com-
mission (EC) numbers, that represents catalytic activities, which are
then mapped on KEGG pathways to highlight abundant and active
pathways in a microbial community. Quantitative expression patterns
can be complemented with functional information in software tools
such as Perseus [93], to visualize expression data and generate heat-
maps. A survey of metaproteomic software tools for functional micro-
biome analysis is described in [94]. Finally, over the past decades
several initiatives have been started in order to make proteomics data
publicly available, such as the Proteomics Identifications database
(PRIDE) [95], PeptideAtlas [96], the Global Proteome Machine Data-
base (GPMDB) [97] and MassIVE [98]. Many of these repositories are
now part of the ProteomeXchange Consortium [99] and collectively
contains approximately 157 metaproteomic studies (March 2020).

3.4.1. Rumen metaproteomic studies: the current state of the art

In many ways, rumen metaproteomics is still in its infancy and these
limited studies include rumen metaproteomes from adult sheep [56],
pre-weaned lambs [100], cows [21,31,101,102] and moose [67]. Me-
tagenome-centric studies have been used to highlight the active pro-
teins and saccharolytic machineries that are used by different rumen
microbiota, in particular polysaccharide utilization loci by gram nega-
tive Bacteroidetes and cellulosomes by anaerobic fungi, which were
surprisingly detected at higher detection levels than their bacterial
counterparts [21]. Moreover, we recently combined both metagenome-
centric metaproteomics and biochemistry to identify and describe a
novel Bacteroidetes family (“Candidatus MH11”) composed entirely of
uncultivated strains that are predominant in ruminants [103]. While
these aforementioned examples have focused on selected populations
and their activity, broader community-wide metaproteomic efforts have
generated metabolic networks that reveal highly connected “hub” po-
pulations hypothesized to be of central importance to the greater rumen
microbiome function [67]. While all metaproteomic studies to date
have detected important microbial functions, they lack both deep
functional resolution at a population level as well as broader systems-
wide metabolic networks that are required to ultimately connect rumen
microbiome function to phenotypic traits in the host animal (Fig. 1). We
believe that in order to reach this level of understanding, steps must be
taken to connect active metabolic functions, i.e. genes and pathways
that are “switched-on” in a host and its microbiome alike. Such “holo-
omic” approaches that integrate metadata (i.e. feed, host traits) and
different levels of molecular data (DNA, RNA and protein) from both
host and microbes are hypothesized to reveal functional interactions
that would otherwise remain undetected.

3.4.2. Case examples: metabolic visualization of anaerobic digestion
Genome-wide association studies with cows has identified heritable
rumen bacteria [16], and it has also been demonstrated that genetic
variation in cows can lead to differences in microbial gene/taxa
abundance and methane production [104,105]. However, these studies
have all relied on the relative abundance of microbial DNA only (sin-
gular genes such as 16S rRNA) and are yet to elucidate how the ex-
pressed metabolic pathways at a profound functional level within
(multiple) microbial populations, are linked to host phenotypes. While
there are only a few rumen metaproteomic datasets that follow the
metagenome-centric workflow described in this review, we believe such
approaches will enable a deeper mechanistic level of understanding
into rumen microbiota that are correlated to host genetic traits and/or
desirable phenotypes such as high feed efficiency and/or low methane
emissions. While to the best of our knowledge protein-mediated
pathway analysis of methanogenesis have not yet been reconstructed
from the rumen, metagenome-centric metaproteomics approaches have
been used at an enrichment scale to visualize microbial interactions
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Fig. 2. Selected metabolic features of a cellulose degrading, methane-producing enrichment as inferred from genome and proteome comparisons. The different
metabolic pathways are displayed for each of the seven recovered population (MAG). The SEM1b consortium is composed of seven populations, including two
saccharolytic bacteria (RCLO1 and CLOS1), one sugar fermenter (TISS1), two syntrophic acetate-oxidizing bacteria (TEPI1 and TEPI2), one hydrogenotrophic
methanogen (METH1) and at least three strains of a generalist bacteria Coprothermobacter proteolyticus, which is represented in this figure by one MAG
(COPR1).Graphical representation of pathways (inferred from EC and KEGG annotation), enzymes, CAZymes, and cellular features are based on functional anno-
tations and metaproteomic data. LFQ values for detected proteins from one time point are indicated as numbered boxes. Main transfers of key metabolites (car-
bohydrates, acetate, formate, hydrogen and methane) are represented by colour-highlighted arrows. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

involved in digesting plant fibre to VFAs and methane (Fig. 2) [106]. In
this study, metagenomic DNA and temporal protein datasets from a
highly efficient fibre-degrading and methane-producing consortium
(SEM1b) were combined, leading to the identification of about 7500
proteins from seven populations (MAGs). Using these proteins, we
highlighted the importance of database selection and construction for
accurate and precise protein identification, thus allowing a greater
understanding of microbial community function, as well as accurate
monitoring of community members over time. Moreover, by using
comparative metaproteomics and EC/KEGG annotations, this study
highlighted the different metabolic pathways expressed by SEM1b po-
pulations which was used to reconstruct the “carbon flow” of the
community from hydrolysis of polysaccharides to production of me-
thane (Fig. 2).

In this particular example of SEM1b [106], we generated metage-
nomic data from replicate enrichment samples using the Illumina
HiSeq3000 platform (Section 3.2). Reads were further co-assembled
and subsequent contigs binned, before the quality of recovered MAGs
were assessed. After genomic feature prediction and KEGG annotation,
the annotated ORFs were used as a reference database for metapro-
teomic analysis (Section 3.4). Proteins were extracted from four time
points and centrifuged, prior to cell lysis with buffer and mechanical
disruption (Section 2.3.1). Extracted proteins were quantified using the
Bradford method and separated by SDS-PAGE (Section 2.3.2). Further,
each gel lane was cut into slides and reduction, alkylation and tryptic
digestion was performed in gel, as described above (Section 2.3.2).
Tryptic peptides were extracted from the gel and desalted, prior to
UHPLC-MS/MS analysis, and eluted using 90-minute gradients (Section
3.1). The total 192 MS raw files were analysed using MaxQuant [81],
where common contaminants were removed and reversed sequences of
protein entries was used for FDR estimation (Section 3.3). Identifica-
tions were filtered to achieve a FDR 1%. Taxonomy was assigned to
protein groups in instances where all proteins within the group origi-
nated from the same species, otherwise only protein function were re-
covered. Identified proteins were quantified using the log of their LFQ
intensities and expression values were analysed using hierarchical
clustering (Section 3.3). The KEGG annotations and the expression
profiles of the proteins were retrieved and the main metabolic pathways
for each community members were identified, as shown in Fig. 2
(Section 3.4).

Due to the high number of proteins identified, complete pathways
involving various stages of carbon metabolism (hydrolysis, fermenta-
tion, VFA oxidation and methanogenesis) could be detected for most of
the different populations identified in this study. Collectively, four of
the MAGs were predicted to generate common fermentation products
such as hydrogen, carbon dioxide and acetate. While issues such as
incomplete genomic information or difficulties to distinguish closely
related strains still made this task difficult, this high level of protein
mapping enabled the visualization of metabolic activities of every
member of the community over time.

4. Future perspectives and conclusions
Today, it has become commonplace for researchers to apply meta-

omic techniques in order to recover and reconstruct composition and
functions of complex microbiomes. For the rumen ecosystems, such
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tools can be used to enhance the understanding of how the rumen
microbiome is linked to methane production and/or performance
measures such as VFA production and feed conversion ratios. Integrated
meta-omic techniques are used in current rumen studies to show and
understand how the active rumen microbiome relate to low or high
methane yield [107,108], and feed efficiency [69], while both Kamke
et al. and Li & Guan performed integrated metatranscriptomics studies
where they concluded that compositional and functional characteriza-
tion of the rumen microbiome can serve as foundation to understand
rumen functions and be used as screening tools for methane yield and
feed efficiency. The power of multi-omic approaches enhances our
ability to better understand how manipulation of the rumen (e.g. with
dietary interventions) affects methane production and performance
metrics via our ability to visualize what microbial populations and
metabolic pathways are active. Despite these progressions, the rumen
research community has been slow to adopt metaproteomic analyses,
however this is beginning to change as methodology rapidly improves.
Finally, an additional hurdle is how rumen metaproteomic data can be
integrated with host multi-omic or meta-data to better understand the
host-microbiome-environment axis (i.e. the holobiont) and how it af-
fects animal health and productivity. While this element of “holo-
omics” is still in its infancy, several approaches are worthy of con-
sideration including constructing of co-expression networks [109] as
well as constraint-based models [110] that contain both host and mi-
crobiome multi-omics/metadata. We believe both methods show pro-
mise to enable researchers to follow the flow of feed components
through multiple keystone microbial populations and into host tissue
where it is metabolized.

In conclusion, this review has introduced and discussed current
methods and considerations for accurate and meaningful metapro-
teomic analysis of the complex rumen microbiome. Metaproteomics can
be added as a functional layer to metagenomic data displaying micro-
bial composition for increased understanding of symbiotics relation-
ships and metabolically active populations in the rumen. In this
method-based review we have provided a “up-to-date” workflow of
metagenome-integrated metaproteomics and exemplified how this can
increase our protein identification. While there exists a multitude of
protocols, software and tools in metaproteomic analysis, rumen meta-
proteomics is still dependent on standardized methods regarding sam-
pling, protein extraction and protein identification and quantification
for comprehensive metaproteomic analysis. We also show how meta-
genomic integration of metaproteomics can serve as an added level of
resolution and how this can be utilized to reconstruct active metabolic
pathways and visualize the “flow” of specific microbial activities and
metabolites, such as hydrogen, methane or carbon. We envisage that
coupling high-resolution metaproteomic approaches to broader genetic
and phenotypic association-based analyses, will create a deeper “sys-
tems-wide” level of understanding into the interactions between the
animal host and its microbiota (i.e. the holobiont) and their effects on
the production efficiency.
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