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Introduction
The Food and Agriculture Organisation of the United Nations (FAO) reports that by

the year 2050 the global human population is likely to reach 9.7 billion, rising to 11.2

billion by 2100 (https://population.un.org/wpp/Publications/Files/Key_Findings_

WPP_2015.pdf). This population growth poses several challenges to the global food

system, which will need to produce more healthy food using fewer natural resources,

reducing the environmental impact, conserving biodiversity and flexibly adjusting to

changing societal expectations. Meeting this demand requires environmentally sustain-

able improvements to farmed animal health and welfare, and of efficiency and diversifi-

cation (e.g. to include a broader range of locally adapted species) [1]. The changes in

breeding strategies and management practises required to meet these goals will need

to build on an improved ability to accurately use genotype to predict phenotype in the

world’s farmed animal species, both terrestrial and aquatic (Fig. 1).

Here we describe a set of research priorities to meet such present and future chal-

lenges that build on progress, successes and resources from the Functional Annotation

of ANimal Genomes (FAANG) project [2]. The first stages of FAANG focused on

foundational data generation to characterise expressed and regulatory genomic regions,

curation and provision of annotated farmed animal genomes [2, 3]. These were largely

based on individual level, high depth approaches [3]. The primary challenge facing this

community now is harnessing these resources to link genotype, phenotype and genetic

merit in order to translate this research out of the laboratory and into industry applica-

tion in the field. To achieve this effectively, we will need to generate functional gen-

omic information for large populations of animals, rather than relying on a small

number of deeply annotated individuals. Furthermore, to date, most of the datasets are

from tissues consisting of heterogeneous cell populations, hindering the resolution of
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functional information and limiting our ability to understand the fundamental cellular

and subcellular processes underlying phenotypes. Since the original FAANG white

paper was published in 2015 [2], exciting new opportunities have arisen to tackle these

challenges. We describe a set of research action priorities for FAANG for the next dec-

ade (Fig. 2), in each of the sections below.

Omics empowered genomic selection
In the past 20 years, genomic selection has substantially increased genetic gain in some

farmed animal species through the use of large training populations [4]. However, pre-

diction accuracy in genetically distant populations (i.e. across populations, breeds and

generations) remains limited due in part to the current reliance on neutral markers in

incomplete linkage disequilibrium with causative genetic variants in the breeding popu-

lation of interest [4]. Using variants more tightly linked to causative polymorphisms

and supported by genomic information in a multi-breed training population can par-

tially alleviate these limitations [5]. Large-scale whole-genome resequencing has pro-

duced inventories of many millions of variants for thousands of animals [6]. In such

sequence datasets, the causative variants are directly genotyped among millions of neu-

tral markers. This reduces the signal-to-noise ratio when all the data are used for gen-

omic prediction without prior biological information. Efforts to detect causative

variants have been successful for variants with large phenotypic effects, often deleteri-

ous, using a combination of quantitative, population and molecular genetics [4]. How-

ever, economically important traits have a polygenic architecture and causative variants

are expected to have small effects, which makes their detection and quantification diffi-

cult. Most of these causal variants, with small effects, are likely to be located in regula-

tory sequences and impact complex traits through changes in gene expression [4].

Thus, it is expected that improvements in prediction accuracy can be achieved by

Fig. 1 Addressing the challenges of global food production in the 21st Century
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filtering the genetic marker information based upon whether the genetic variants reside

in functional sequences and developing robust prediction models that can accommo-

date the biological priors. As functional (expressed and regulatory) genomic elements

are not easy to predict from sequence alone, FAANG will enhance current genome an-

notation with functional information from a range of relevant tissues, cell types and de-

velopmental stages. Recently, novel methods for the integration of biological

information (e.g. methylation of regions of predicted functionality) into genomic pre-

diction have been proposed, e.g. [5]. These models, which are based on the combin-

ation and ranking of many diverse datasets from multiple animals, could facilitate

further improvements in predicting genetic merit and consequently on genomic selec-

tion, as has been demonstrated in cattle [5]. As many more suitable datasets will be-

come available in the next 5 years, improving and adapting these methods to enhance

genomic prediction accuracy, whilst conserving genetic diversity, across farmed animal

species will be a priority for FAANG.

FAANGGTEx—linking genetic variation to genome function
The first phase of FAANG is using a specific set of transcriptomic and epigenomic as-

says to define functional regions of the genome in tissues [2]. Due to the significant in-

vestment per sample, this phase was limited to only a few individuals and ascribed

function was averaged across these replicates [2]. Progress has been made in defining

functional regions, and this should be built upon to ascertain the effect of genetic vari-

ation on genome function [3]. Collecting functional genomic data across many genetic-

ally diverse animals lends itself to the application of statistical genomics to detect

Fig. 2 Priorities for the next decade of FAANG research
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quantitative trait loci (QTL) controlling molecular phenotypes. This is particularly

powerful when done at sequence-level resolution to directly relate molecular pheno-

types (e.g. gene expression or methylation information) to variants associated with

complex traits. The GTEx consortium (https://gtexportal.org/home/) has achieved this

very effectively across human tissues, enabling expression QTL (eQTL) studies linking

gene expression to genetic variation [7] and providing a framework for FAANG to de-

velop a similar project for farmed animals (FAANGGTEx). Large farmed animal cohorts

in controlled and well-characterised environments with extensive pedigree information

and molecular phenotypes would allow researchers, in partnership with industry, to (1)

build better predictive models of genotype-to-phenotype, (2) better understand

genotype-by-environment interactions and (3) prioritise functional variants for inclu-

sion in breeding programmes [4]. Hundreds of thousands of farmed animals currently

have imputed genotypes and extended pedigrees with deep phenotypic records [6]. A

project analysing the relationship between SNPs from Genome Wide Association Stud-

ies and gene expression for cattle, mining publicly available sequence data, was pub-

lished earlier this year, demonstrating the feasibility, timeliness and potential of a GTEx

approach for farmed animals [8].

Beyond genomic selection: towards genome-enabled management
Beyond its use in genomic prediction, the functional data produced by FAANG will

provide new perspectives for informed management decisions. Epigenetic and expres-

sion information for individual animals could be combined with microbiome data and

high-throughput phenotypes from new management technologies (e.g. wearables, GPS,

in-vivo imaging systems) [9]. These datasets from large cohorts of animals would en-

hance prediction of adaptive capacity at the individual, farm or population level

through integration of prior environmental data with individual genome information.

Thus, providing new opportunities for informed management decisions during an ani-

mal’s lifetime (e.g. to optimise diets or for steering animals into the most appropriate

production systems). A genome enabled management approach (providing animals,

within a production system, with their specific needs during their lifetime) will be bene-

ficial to improving animal health and welfare, facilitate adaptation to changing environ-

ments and contribute to addressing public concerns related to animal production.

Achieving this within the next 10 years may be possible, but the challenge will be to en-

sure it is practical and affordable for animal breeders and producers.

Understanding and conserving genomic diversity—the power of
pangenomes
Through large-scale sequencing efforts by the farmed animal genomics community data

are now accumulating that characterise the sequence diversity of farmed animals in-

cluding locally adapted breeds/populations. As a consequence, future genetic manage-

ment is likely to include the use of pangenomes that will capture all available

population-level genomic information for a given farmed animal species. Using graph-

based frameworks, we can more accurately genotype and annotate the genomic diver-

sity present in any given individual [10]. In this way, pangenomes can reveal popula-

tion- or breed-specific adaptations that could be used to tailor the genotypes chosen in

future farming systems in order to conserve biodiversity whilst improving production
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efficiency and animal health [1]. Furthermore, the highly annotated genomes produced

by FAANG allow evolutionary conservation across species to be defined for all genomic

features [11]. Ongoing FAANG projects involve comparative analysis which will reveal

the functional basis of phenotypes present in one species that are desirable in others.

Such projects contribute to addressing the major opportunity that exists to enhance the

sustainable production of a wider diversity of animal species, including numerous and

diverse aquaculture species that are poised to exploit functional genomics to expedite

genetic improvement, where tailored and cost-efficient approaches will be required

[12]. Current FAANG-related projects already extend to several major farmed finfish

species in Europe and North America. We envisage an increased representation of

aquatic species, including shellfish, and further expansion to include invertebrates,

within FAANG projects during the next 5 to 10 years.

FAANGSingleCell—deconvoluting transcriptional and regulatory complexity
The use of bulk tissue samples in the FAANG studies performed to date captures regu-

latory elements and expression signals averaged across all represented cell types but

fails to reveal the cell-specific basis of the molecular phenotypes of interest. In order to

more accurately link genotype to phenotype, data at the level of individual cell types

are required. Single-cell sequencing technologies enable the deconvolution of the tran-

scriptional and regulatory complexity in tissues made up of multiple cell types. New

technologies to detect gene expression as well as chromatin accessibility, structure and

interactions within single cells provide more comprehensive data to predict function

and interaction partners for regulatory elements. As a consequence, one of the main

priorities for FAANG within the next 5 to 10 years is to create single-cell atlases for

the key tissues of farmed animal species (FAANGSingleCell). The organisational pro-

cesses, standardisation and data sharing infrastructure established by the community

for the first stages of FAANG [3] will provide a strong foundation for FAANGSingleCell

to progress quickly and efficiently. The FAANGSingleCell project should build on existing

functional tissue maps for other species [13] and will enable the identification of gen-

omic variants underpinning trait-linked cell types/factors and causal variants. In the

FAANGGTEx project described above, single-cell atlases will provide a powerful layer of

resolution including cell-specific molecular phenotypes, enabling the fine-scale dissec-

tion of complex traits of interest.

In vitro systems—bridging the gaps between cell, tissue and whole animal
scale knowledge
Single-cell sequencing technologies can also be used to deeply characterise cell and tis-

sue complexity of in vitro systems such as organoids. Over the last 5 years, organoids

for many different organ systems and for multiple farmed animal species have been de-

veloped [4]. Organoids provide ex vivo/in vitro systems for testing candidate causal var-

iants by genome editing technologies and potentially a system for high-throughput,

cost-effective, large-scale in vitro phenotyping. Importantly, given the ease of biobank-

ing, organoids have a strong ethical benefit in reducing the number of animals used in

experimentation [3]. Multiple organoid models can be derived from very small quan-

tities of tissue or from induced pluripotent stem cells (iPSCs). They provide the poten-

tial to generate and test multiple phenotypes to unravel when, and under what
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conditions, a putative causal variant has an effect. Therefore, farm animal organoids

will be valuable over the coming decade, providing information about fundamental

biology to model the effects of changing environmental conditions and supporting im-

munology, vaccinology, physiology, nutritional and biodiversity conservation studies.

The ability to decompose complex phenotypes into key processes will provide a means

to robustly relate the deep phenotypes measured in these systems with the traits used

for selection, opening to the possibility of using organoids for breeding purposes.

Genome editing—a route to application for FAANG data
The application of genome editing to farmed animals is advancing rapidly, mainly due

to development of CRISPR/Cas technologies [12, 14]. The CRISPR toolbox has ex-

panded to improve precision, allow modulation of gene expression and epigenetic mod-

ifications, and now forms an integral part of the future FAANG roadmap [3]. CRISPR-

mediated modification of putative genomic elements can confirm their functionality

and reveal their roles in cellular (and organoid) function. Genome-wide multiplexed

CRISPR approaches now enable the simultaneous interrogation of thousands of gen-

omic features in cell lines, increasing the feasibility of this approach for genome-scale

annotation [15]. These high-throughput approaches can also be used in combination

with single-cell sequencing technologies to obtain high-resolution molecular pheno-

types. In addition, genome editing represents a potential major route for the application

of FAANG research in farmed animal breeding programmes via (1) detection and util-

isation of causative variants affecting important traits, (2) targeted introgression, or

‘introgression-by-editing’, of favourable alleles from other strains or species into a

closed breeding population, or (3) creation of de novo alleles with favourable effects, ei-

ther predicted from unbiased genome-wide screens or from a priori knowledge of the

biology of the trait in question. Public perception and regulatory hurdles remain and

ongoing discussion through stakeholder engagement must continue and evolve to keep

pace with technological advances. While the use of genome editing for the improve-

ment of farmed animals may currently only be possible in some countries, its use in

in vitro models, such as organoids, is not subject to the same legislation and ethical

considerations as the use of whole animals and thus represents a new frontier for

FAANG research.

Data recording, computation and integration to support the emerging
objectives of FAANG
As a scientific community, FAANG continues to develop a coordinated analysis and

data collection infrastructure crucial for its success [3]. The FAANG bioinformatics

community, including the centralised Data Coordination Centre (DCC), is focused on

open reproducible science, the FAANG data portal (https://data.faang.org/home) is the

focal point for this activity. Technological development, coordination and standardisa-

tion by the DCC will continue to be crucial for the shift towards population scale stud-

ies, single-cell datasets, cell atlases and pangenomes, across a growing number of

species. This will require new reproducible analysis pipelines and infrastructure, meta-

data validation services, data portal features such as a centralised atlas browser and on-

line training resources. Single-cell atlases and in vitro systems for farmed animal

species will be accompanied by high quality metadata, archiving and visualisations
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across species, organ systems, tissues and cell types. As FAANG datasets continue to

increase in complexity, there is a growing need for new methods of data visualisation

and integration to be made available. These future developments, and the distributed

data and analysis infrastructure, will be crucial for the successful application of func-

tional data to farmed animal breeding programmes.

Priorities for the future of FAANG
The research priorities we have outlined for FAANG for the coming decade are

depicted in Fig. 2. The uptake by the farmed animal production industry and the ex-

pected outcomes of each prioritised action are summarised in Fig. 3. FAANG will im-

prove our ability to more accurately use genotype to predict phenotype. This will

directly contribute to addressing the challenges faced for sustainable and responsible

global food production in the next decade (Fig. 1). However, whilst the molecular as-

says used to enable functional annotation can now be delivered at much lower cost, the

costs for the research priorities outlined above remain substantial, especially consider-

ing the rapid increase in number and diversity of target species in the aquaculture sec-

tor. As such, a strong commitment to invest in research is needed. Persuading the US

Department of Agriculture and the European Commission to include FAANG projects

in NIFA-AFRI and Horizon 2020 funding calls, respectively (https://faang.org/proj.php)

was a major success for the first stage of FAANG and its leadership. Current funding

for FAANG supports the research community to improve the functional annotation of

key farmed animal species and to facilitate more refined genomics-enabled animal

breeding/genetic improvement. The research priorities outlined here are already stra-

tegically aligned to the objectives of the European Green Deal (https://ec.europa.eu/

info/strategy/priorities-2019-2024/european-green-deal_en) and current USDA Na-

tional Institute for Food and Agriculture programmes (e.g. https://nifa.usda.gov/pro-

gram/genome-phenome-initiative; https://www.ag2pi.org). International cooperation

Fig. 3 How implementation of FAANG research priorities over the next decade will benefit farmed
animal production
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will be essential to secure funding for their achievement. Given the scale and cost of

the research involved, it will likely be necessary to initially prioritise the development of

in vitro systems and the enhancement of data infrastructure to provide a solid founda-

tion for FAANGSingleCell and FAANGGTEx.

The timely achievement of all of the research priorities we outline here for the next

stages of FAANG will together increase the capacity of the farmed animal production

industry to face the challenges of the future, empowering genomic selection, enhancing

adaptation to changing environments, conserving biodiversity and bridging the gaps be-

tween cellular and whole animal scale knowledge.
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