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ABSTRACT 

While a rapid shift towards electric vehicles (EVs) will contribute to reducing carbon emissions from the 

transport sector, there are concerns that uncoordinated charging of EVs might impose challenges for the local 

electricity grid. Our study is the first to investigate this empirically in a country-wide analysis, using data from the 

country with the highest market share of EVs, namely Norway. We present the regulatory framework in which 

Norwegian grid companies operate and discuss the possible impact of EV charging. Using panel data on 107 grid 

companies over the period 2008-2017, we then estimate the effect of local growth in EVs on local grid costs. We 

find that increases in EV stock are associated with increases in costs which are both statistically and economically 

significant. However, there is a lot of heterogeneity in these results, where the effect on grid costs are higher for 

small grid companies in rural areas. 
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1 INTRODUCTION 

Do electric vehicle (EV) owners impose a negative externality on other electricity consumers when they 

plug in their cars at home during peak hours for electricity? In the absence of any peak pricing scheme, if the high 

power consumption of EVs leads to higher local grid costs, the resulting increase in uniform grid tariffs will be 

shared among all customers. Simulation exercises suggest that uncoordinated EV charging might have an impact on 

the local grid (see e.g., De Hoog, Alpcan, Brazil, Thomas, & Mareels, 2015; Masoum, Deilami, Moses, Masoum, & 

Abu-Siada, 2011), but the empirical evidence is scarce. What can we learn from actual data in the country with the 

highest EV share, namely Norway? 

The high EV share must be viewed as a result of national climate policy, which aims to fulfill Norway's 

part of the Paris agreement. Norway has a goal of ensuring that all new passenger cars are zero emission vehicles by 

2025. Incentives like low vehicle taxes, toll road exemptions, and access to bus lanes has resulted in the highest 

penetration of EVs worldwide. By January 2020, there were about 260 000 battery electric vehicles (BEVs) and 

115 000 plug-in hybrids (PHEVs) in Norway, a country with only 5.3 million inhabitants. In 2019, BEVs accounted 

for 42 percent and PHEVs for 14 percent of all new vehicles (Norwegian Electric Vehicle Association, 2020).  

The Norwegian Water Resources and Energy Directorate (NVE) presents a scenario where the growth in 

BEVs in Norway continues and reaches 100 % of the new car sales after 2025. This implies 1.5 million BEVs in 

Norway in 2030, resulting in a 3 % increase in domestic electricity consumption (Skotland, Eggum, & Spilde, 

2016). So even with rapid electrification of passenger transport, we can expect aggregate electricity generation to 

cope without major challenges.  
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However, while a BEV’s energy consumption may be modest, its power usage could be quite high. 

Currently, power demand per electricity consuming unit in a household usually varies from 2.3 to 7.3 kW. Skotland 

et al. (2016) find through a survey that most BEV owners do their daily charging at home (almost 90 %). Charging 

at work or at public charging stations seems at this point to be mainly supplemental. NVE’s review indicates that 

most BEV owners start their charging late in the evening and cover most of their charging needs during night hours, 

while some start charging their vehicle immediately after work, which is a peak period for electricity consumption.  

Uncoordinated charging (or “dumb charging”) will increase electricity consumption during the morning 

and evening peaks (Graabak, Wu, Warland, & Liu, 2016). De Hoog et al. (2015) point out that if EV charging is not 

controlled, adverse impacts on the distribution network are expected: power demand may exceed distribution 

transformer ratings; line current may exceed line ratings; phase unbalance may lead to excessive current in the 

neutral line; and voltages at customers’ points of connection may fall outside required levels. A similar point is 

made by Neaimeh et al. (2015). Skotland et al. (2016) develop a stress-test for neighborhoods with high BEV 

density. If 70 % of the residents charge their BEVs simultaneously during peak hours, they find that power demand 

can increase by up to 5 kW per household. This results in overload for more than 30 % of the transformer stations 

currently servicing the distribution network. 

Our motivation for this paper is as follows: The number of BEVs is growing fast, and there exists a 

literature that warns that BEV charging will cause substantial future costs to the local grid unless measures are put in 

place. If indeed the aggregate uncoordinated charging from BEV owners does induce higher costs to local grid 

companies (Distribution System Operators - DSOs), then Norwegian data would be the first place to investigate. 

Detailed data of all Norwegian DSOs and all registered BEVs during the last ten years gives a unique opportunity to 

analyze this relationship. To our knowledge, such an empirical analysis has not been done before on real data in a 
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country-wide analysis. It will therefore push the knowledge frontier on a debated, but relatively unexplored topic 

empirically. Findings may have implications for how to regulate DSOs, how to price household power usage and 

how to assess the net social cost of achieving emission reduction targets through promoting EVs. 

This paper complements previous studies that look at the effects that BEVS and PHEVs can have on the 

electricity market. Our analysis covers a relatively long time-period of real experiences with increasing BEV density 

(over 10 % of the car fleet in some areas), while most of the relevant literature up until now have been simulation 

exercises in numerical models of local grids. Hattam and Greetham (2017) analyze how EVs affect load profiles on 

neighborhood level in low voltage networks. Azadfar, Sreeram, and Harries (2015) look at charging behavior in 

terms of time of day, duration, frequency and electricity consumption in light of its implication for electricity 

network management. Barton et al. (2013) look at the challenges for grid balancing when EV charging becomes 

more prominent, and stress the importance of demand side management with time-shifting of electricity loads from 

periods of peak demand to off-peak, and from periods of low renewable energy supply to periods of high supply. 

Other studies also argue for demand side management (see e.g., Haidar, Muttaqi, & Sutanto, 2014; 

Masoum et al., 2011) as an alternative to costly upgrades of distribution transformer stations. Some of these studies 

also argue for pricing schemes that disincentivize charging during peak hours (see e.g., Barton et al., 2013; Clement-

Nyns, Haesen, & Driesen, 2011; Masoum et al., 2011; O’Connell et al., 2012). In the future, smart-charging 

technology and vehicle-to-grid2 (V2G) and vehicle-to-building (V2B) solutions may also provide a means to 

mitigate capacity problems in both electricity generation and distribution (Barton et al., 2013; Clement-Nyns et al., 

2011; Mwasilu, Justo, Kim, Do, & Jung, 2014; Sioshansi & Denholm, 2010), but bidirectional EV charging is in its 

infancy (Haidar et al., 2014), and seems to come at a relatively high cost due to increased battery degradation, 

                                                 
2 V2G involves using EVs as storage for electricity. 
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energy losses, changes in infrastructure, and extra communication between EVs and the grid (Habib, Kamran, & 

Rashid, 2015).  

Exploiting local differences in the growth of the BEV fleet over time, we investigate how an increase in the 

number of BEVs affects the costs of the local DSO. We look at both total costs and individual cost components. We 

analyze data on 107 DSOs over the period 2008-2017 using fixed-effects estimation that account for time-invariant 

characteristics of the DSO. We also control for growth in output indicators that could be correlated with growth in 

the BEV fleet.  

The main finding is that increases in the BEV fleet are associated with positive and statistically significant 

increases in costs when controlling for other DSO outputs and year dummies. The point estimates also imply that the 

effect is economically significant. However, there is a lot of heterogeneity in these results, where the marginal cost 

estimates are a lot higher for small DSOs in rural areas, and a lot lower for larger DSOs in urban areas. 

Section 2 presents the regulatory setting for local grid operators in Norway, and why the growth in BEVs 

may exacerbate existing market failures. Section 3 presents the methods and data. In section 4 we present the results 

from our empirical analysis. Section 5 discusses the results and concludes. 

2 EVS AND NORWEGIAN DSO REGULATION 

Norwegian DSOs are regulated under a revenue cap model with benchmark (or yardstick) competition 

against other DSOs (see e.g., Decker, 2014, pp. 103-140), where they set their tariffs based on this revenue cap. The 

revenue cap is composed of 40 % cost recovery and 60 % cost norm based on benchmark modeling using data 

envelopment analysis (DEA) (NVE, 2015). This means that an increase in costs increases the revenue cap, which 
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allows the DSO to raise its tariffs. However, the revenue cap, and therefore the tariffs, are constrained by the cost 

development of the other DSOs that comprise the benchmark competition. 

Still, at least some of the increase in capital cost will eventually lead to higher tariffs, and these will have to 

be paid by all consumers connected to the local grid, and not just the households demanding more capacity. It can be 

viewed as a pecuniary external cost in an incomplete market (Greenwald & Stiglitz, 1986). That is, the households 

demanding more capacity do not face the full cost of the capacity expansion, and indirectly impose costs on other 

consumers. 

We describe the mechanisms for how an increased number of BEVs may lead to higher costs to DSOs and 

subsequently to higher grid tariffs through the following steps: 

1. The BEV share increases in a neighborhood. 

2. Households will charge their BEVs at 3.6-7.2 kW, and the demand for power capacity will increase.  

3. With a certain size of the BEV share and a certain share of the owners charging simultaneously, the 

existing distribution transformer and/or the cables between the transformer and the household will not be 

able to handle the power capacity demand at certain times of day, certain times of year. This may lead to 

more inspection and maintenance before new investments need to be made. 

4. The DSO invests in capacity expansion in the local grid. The cost of such capacity expansion will depend 

on whether enhancements need to be done for the transformer and/or the cables, the amount of transformer 

capacity that needs to be installed, whether the new transformer fits in the old box that contained the old 

transformer, and the costs of digging.  

 The new investment increases the capital stock for the DSO.  
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5. Regulation then says that the DSO can charge higher grid tariffs to cover costs (subtracted any co-funding 

of upgraded infrastructure from consumers).  

 All of the DSO’s customers have to pay the higher tariffs. 

Currently, individual households do not have any incentive to avoid charging at peak hours3. Both 

electricity prices and grid tariffs are the same throughout the day. And there are many arguments for why BEV 

owners would want to charge the car right away after coming home. First, it is convenient. They can plug in, and 

there is no need to spend mental capacity on timing. Second, they maximize the probability of always having the 

battery charged for any activity later; planned, spontaneous or emergency.  

DSOs’ profitability is determined by their costs and their regulated revenue cap. If policies drive up BEV 

ownership and subsequently capacity demand, their costs will increase, most likely without a corresponding increase 

in the revenue cap. Since “local BEV stock” is currently not a variable in the benchmark competition analysis, the 

cost norm calculation will disfavor DSOs that face increased capacity demand from BEV users. A DSO facing such 

increases in power demand, will see BEV-favoring policies as a threat to their profitability. An exception would be a 

DSO that already is among the most productive and remains among them in spite of the increase in capacity demand 

from BEV owners. Such a company would set the cost norm, and will be able to pass the entire cost increase on to 

consumers. If then the cost norm is expanded, DSOs who are not exposed to higher capacity demand from BEV 

owners will get a larger revenue cap, but no extra costs. 

If capacity demand from BEV owners becomes a major cost driver for DSOs, there are at least two 

measures the regulator can take. The first is to incorporate a measure of “local EV stock” in their benchmarking 

                                                 
3 Some DSOs are experimenting with hour-by-hour pricing experiments, where participating households will be informed about and charged 
according to hour-by-hour prices  
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model for calculating the cost norm for the sector, so that the relatively low costs for DSOs with low BEV density 

are not mistaken for efficiency. The second is to allow for peak power tariffs. NVE argues that the introduction of 

power-based tariffs will provide incentives to shift charging outside peak-hours. An official proposal has been 

drafted and is currently (first half of 2020) out on a public hearing4. Power-based tariffs have become 

technologically feasible after January 1st 2019, when smart meters became compulsory for all Norwegian 

households. This will enable households to closely monitor their temporal consumption profile of electricity, and 

both distribution grid companies and electricity retailers to bill accordingly. 

3 METHODS AND DATA 

3.1 Model concept 

The main objective of our empirical analysis is to identify the effect that changes in the BEV stock have on 

DSO costs. Parts of the data that we use to analyze this is the very same data that NVE uses for regulation by 

calculating the annual revenue cap for DSOs. The main outcome variable for our analysis is the DSOs annual total 

costs (tot_cost) as this is the main basis for calculating the revenue cap. The total costs are the sum of operational 

costs (opex), capital costs (cap_cost), depreciation costs (dep_cost), CENS - cost of energy not supplied (cens) and 

cost of energy network losses (eloss_cost). 

In the benchmarking competition DSOs performance is measured by the output variables number of 

subscribers (subscribers), number of transformer substations (substations) and kilometers of high voltage grid, 

including overhead lines, underground cables and subsea cables (voltline).  

                                                 
4 http://publikasjoner.nve.no/rme_hoeringsdokument/2020/rme_hoeringsdokument2020_01.pdf [in Norwegian - last accessed 13.05.2020]. 

http://publikasjoner.nve.no/rme_hoeringsdokument/2020/rme_hoeringsdokument2020_01.pdf
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In the regulatory DEA calculations, NVE controls for a set of contextual factors that can be seen as external 

cost-driving factors. This is in order not to mistake a difficult operating climate for some DSOs for inefficiency. All 

of the contextual variables are assumed to be time-invariant in NVE’s analysis. The applied variables are displayed 

in Figure 1. In the model below, all these variables are covered by the vector iX . 

To summarize, in NVE revenue cap calculation the DSO costs are assumed to be driven by three output 

measures and external cost-driving factors. In our analysis, we want to investigate whether the registered number of 

BEVs in their operational area is an external cost driving factor that currently is not accounted for. Figure 1 gives an 

illustration of how we expect the relationship between the variables to be. 

 
Figure 1: Direction of impacts from outputs and external cost-driving factors to costs 
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Due to substantial skewness in the distribution of DSO costs (see Table 1), we transform the model into a 

log-log format. Conceptually, our economic model looks like the following: 

 31 2 4_ it it it it itot cost ASubscribers Voltline Substations BEV Xββ β β γ=   (1) 

When we do a log-log transformation, we get: 

 1 2

3 4

( _ ) ( ) ( )
( ) ( ) ( )

it it

it it i

log tot cost log subscribers log voltline
log substations log BEV log X

α β β
β β γ

= + +
+ + +

  (2) 

Here, ln( )Aα =  and the beta coefficients can be interpreted as cost elasticities. We expect them all to be 

positive. A beta coefficient value of 1 implies a constant marginal costs in absolute terms from an increase of a 

given variable, whereas values above 1 implies increasing marginal costs. Beta values between 0 and 1 implies 

decreasing marginal costs for a given variable. Our default assumption is that these elasticities are constant, but we 

will in section 4 investigate whether the beta coefficients could depend on the level of the explanatory variable, e.g., 

1 10 11 ( )log subscribersβ β β= + , by adding squared transformations of the variable. 

3.2 Data and variables 

We have combined 3 datasets. 1) NVE’s data for DSO costs and outputs applied for regulation, with 2) 

NVE’s data for the DSOs legal operational area, with 3) municipalities, which finally can be merged with Statistics 

Norway’s (SSB) data on registered cars at municipal level.  

NVE’s data for DSO costs and outputs applied for regulation 

The data is extracted by running an R-script according to instructions from NVE’s web pages (NVE, 2017). 

The data consists of cost measures and other characteristics of 134 grid companies operating in either the local grid 
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or the regional grid. Our analysis will only focus on the local grid, with a dataset consisting of all DSOs that 

distribute electricity to households, as these are the ones that may be affected by home charging of EVs. That leaves 

us with 107 DSOs in total. 

Following NVE’s instructions, operational costs are adjusted to reflect 2015-prices using the consumer 

price index for the service sector. CENS is adjusted to reflect 2015 prices using the consumer price index. Annual 

capital costs (or the regulator-allowed return on invested capital) are calculated by multiplying the value of the 

regulatory assets (regulat_assets), which is the value of the total capital stock excluding co-paid assets (co-

paid_assets – which customers pay for themselves), with the NVE-calculated regulatory interest rate for each year. 

The contextual variables mentioned in the previous section also follows with this dataset. Since all the contextual 

variables in vector iX  are time-invariant, they drop out of the fixed effects regressions in this paper.  

NVE’s data for the DSOs legal operational area  

NVE’s hydrology department have given us access to data on DSOs’ legal operational area and matched 

this with municipalities. In total 149 companies have areas for grid operation. Using the organizational number as a 

unique identifier, we can merge together cost data and operational area data.5 

Statistics Norway’s data over registered cars at municipal level 

The StatBank of SSB contains data on registered cars at municipal level categorized by fuel type. We have 

extracted the number of electric passenger cars for each of the years 2008-2017 for all Norwegian municipalities. 

We have then merged this with the rest of the dataset.  

                                                 
5 These two data sets have also been combined in Orea, Álvarez, and Jamasb (2018) for the purpose of efficiency analysis using a spatial 
econometric approach. 
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Not all municipalities and DSO operational areas match one-to-one. Where a municipality has its area 

covered by more than one DSO, it is assumed that the DSO’s share of the municipality reflects the share of 

households in the municipality and subsequently the share of EVs. Arguably, this introduces some measurement 

error into the data, but we expect this error to be small, as 90 % of the municipalities have 95 % or more of their area 

covered by a single DSO. This means that observed EVs at municipal level are aggregated up to DSO level and 

weighted by area to the variable we call BEVs. 

The variables 

For this analysis we will conduct separate regressions with the different dependent variables; tot_cost and 

its sub-components opex, cap_cost, dep_cost, cens, and eloss_cost. Descriptive statistics of these variables are given 

in Table 1.  

The independent variables will be the DSO output variables subscribers, substations, and voltline and our 

main variable of interest BEVs. We expect the coefficients for the three DSO output variables to be positive for total 

costs and all the sub-components, as more output should ceteris paribus drive up costs.  

We exclude the variable substations as there could be cases where DSOs would build more substations to 

meet local capacity demand increases stemming from BEV charging. In such cases, the variable substations could 

be considered what Angrist and Pischke (2008) call a “bad control”. When bad controls are applied the coefficient 

estimates of the independent variables will be biased and lose their causal interpretation. It is not clear whether we 

should expect increases in EVs to drive increases in the number of substations (as it probably would be more 

common to reinforce existing ones). However, in order to stay on the safe side, we only include the variable 
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substations in robustness checks with alternative specifications (we find out that including this variable has little or 

no impact on the estimates of interest).  

A linear model in absolute terms would give the easiest interpretation. Then, the interpretation would be 

“For every new BEV registered among the customers of the DSO, we can expect a EVβ  NOK increase in the 

DSO’s cost, ceteris paribus”. However, the cost variables have very high numbers for skewness and kurtosis (see 

Table 1), making it less suited for OLS. This is not surprising given that the Norwegian DSO sector consists of 

many small operators and a few very large ones. Transforming the main cost variable to a cost-per-customer 

variable, or taking the logarithm gets it closer to a normal distribution. The log-transformed cost variable is 

somewhat closer to a normal distribution compared to the per-customer transformation. This can be seen in the two 

bottom rows of Table 1. We therefore proceed with the log-log6 model in this paper, and use a per-customer model 

as a robustness check (see Appendix A). 
  

                                                 
6 For variables for which some values are zero for some DSOs in some years, we add a constant of 1 (e.g. log_ev = 
log(BEVs+1)). 
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Table 1: Descriptive statistics 
 Mean 1st percentile Median 99th percentile Skewness Kurtosis 

Tot_cost 120 048 7 652 42 935 909 365 5.05 35.39 

Opex 62 234 4 445 24 281 415 189 5.78 45.90 

Cap_cost 20 433 809 6 361 207 649 4.29 25.46 

Dep_cost 21 733 816 7 231 217 133 4.04 22.44 

CENS 4 861 61 1 271 58 898 4.02 21.65 

Eloss_cost 10 786 342 2 928 89 277 6.74 58.96 

Subscribers 26 980 999 6957 208 411 6.57 54.79 

Voltline 932 51 339 7138 3.87 21.16 

Substations 1177 59 377 10 626 4.47 27.38 

BEVs 367 0 6 7900 14.98 276.80 

       

Tot_cost_per 
subscriber 6.53 3.10 6.29 12.90 0.96 4.41 

Ln_tot_cost 10.86 8.94 10.66 13.72 0.83 3.66 

Note: Cost figures in 1000 NOK. All costs are in 2015-prices. N = 1070 (107 DSOs over 10 years; 2008-2017). 

With a log-transformations of the model, along with the included variables gives us the following preferred 

model specification: 

 
( ) ( ) ( )

( )
1 it 2 it

4 it t i it

log tot_cost =α+β log subscribers +β log voltline
+β log BEV δ λ ε+ + +

  (3) 

This equation includes DSO fixed effects iλ , year dummies tδ  and the random error term itε . As 

discussed above, time-invariant contextual variables ( iX ) drop out of our fixed effects analysis, and substations is 

not included because it is considered a bad control. 
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3.3 Fixed effects regression 

In this paper we conduct a panel data analysis using a fixed effects regression model on a panel with annual 

data for 107 DSOs over the time period 2008-2017. This gives us a balanced panel containing in total 1070 

observations. 

The goal is to investigate how the time varying explanatory variable BEVs influence the time-dependent 

endogenous variable tot_cost. A good way to do this is applying fixed effects regression, as the fixed effects will 

capture all time-constant variation, both time-invariant explanatory variables and unmeasured time-invariant 

variables (Mehmetoglu & Jakobsen, 2016, pp. 241-242). There has been large variation in when and where the 

growth in BEVs has taken place, making it a suitable candidate for such analysis. In 2008, more than 25 % of the 

DSOs had zero BEVs registered in their area, which grew to between 1 and 625 by 2017. On the other end of the 

spectrum, the single DSO with over a 1000 BEVs in 2008 saw the BEV stock grow to over 55 000 in 2017. To 

illustrate this variation in status and growth, we show the distribution of BEVs in 2008 and 2017 in Figure 2. 

Because of the large differences in scale, we display these differences in status and growth of BEVs across DSOs in 

the form of BEVs per subscriber. 



 16 

 
Figure 2: Large variation in BEV numbers across DSOs and over time 

The fixed effects model will capture the variation from the time-invariant variables that NVE uses for 

regulation, some of which may have a relatively strong correlation with the number of BEVs. Most notably are 

perhaps Latitude, which we expect is negatively correlated with the number of BEVs as most of BEVs are registered 

in the southern half of Norway, and Temperature, which we expect is positively correlated with the number of BEVs 

as colder winters have a negative impact on the range of the BEVs (Figenbaum & Weber, 2017). In addition, there 

are unmeasured time-invariant variables that we expect to have an effect on both our explanatory variable of interest 

and the endogenous variable, so controlling for it in the fixed effects model reduces the problem of omitted variable 

bias. An example of this could be distances between populated areas within a DSO’s operational area, i.e. how 

sprawled people live. This can be expected to drive up DSO costs (need for more infrastructure per customer) and 



 17 

drive down BEV demand as such distances would indicate a need for driving range that would make most BEVs less 

favorable.  

As for the question of reverse causality, there are a priori reasons to believe that this is unlikely. As we 

discussed in the previous section we expect higher BEV density to drive up the cost for DSOs, but even if higher 

costs for DSOs would lead higher tariffs for their customers, dramatic price hikes would be needed to make 

noticeable changes in EV demand. In the calculations in Wangsness (2018), the cost of electricity comprises about 

15 % of the distance-based cost for EVs. And grid rent makes up less than half of the total electricity bill before 

taxes. And it is not certain that the DSO can pass on all of their cost increase to their customers, as they are regulated 

by a revenue cap based on yardstick competition with other DSOs. In other words, we expect BEVs to affect grid 

costs, and have very little feedback the other way around. 

4 RESULTS 

Table 2 shows the effect of the size of the local BEV fleet on the total cost of the DSO, based on six 

different specifications. Table 4 presents estimates for each of the cost components. All of the models use robust 

standard errors clustered at DSO level, acknowledging that even though observations are assumed to be independent 

across DSOs, there could be correlation between yearly observations for the same DSO. 
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Main results 

Table 2: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area and 
DSO costs (log_tot)  

 (1) (2) (3) (4) (5) (6) 
log_ev 0.013*** 0.011 0.018** 0.019** 0.014* 0.019** 
 (0.004) (0.007) (0.008) (0.009) (0.008) (0.008) 
       
log_subscribe 0.383** 0.326 0.967 0.840 0.534 1.154 
 (0.193) (0.245) (0.917) (1.117) (1.049) (1.001) 
       
log_voltline 0.291** 0.280* 1.698*** 1.706*** 1.526** 1.539** 
 (0.147) (0.146) (0.628) (0.635) (0.713) (0.726) 
       
log_subscribe2   -0.036 -0.029 -0.019 -0.047 
   (0.049) (0.061) (0.060) (0.052) 
       
log_voltline2   -0.131** -0.132** -0.114* -0.118* 
   (0.058) (0.059) (0.067) (0.065) 
       
log_ev2    -0.000   
    (0.001)   
       
_cons 5.594*** 6.173*** -0.197 0.283 2.595 -0.546 
 (1.616) (2.217) (4.310) (4.908) (4.392) (4.558) 
Year dummies No Yes Yes Yes Yes Yes 
Removed outliers No No No No Removed 3 

largest DSOs 
Removed 3 
smallest DSOs 

N 1070 1070 1070 1070 1040 1040 
r2_within 0.200 0.276 0.291 0.291 0.299 0.289 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In the first column we report the results where we only control for the size of the customer base and 

kilometers of high voltage line. The estimated effect of log_ev is positive, as expected, and significant at the 1 % 

level. This is the naivest regression model where we do not control for any time effects. We provide more controls 

by adding year dummies in column 2. The estimated coefficient for log_ev is similar to that in column 1, but is 

statistically insignificant.  

The coefficient becomes significant in column 3, where we add the squared terms log_subscribe2 and 

log_voltline2 as controls. There is a good theoretical argument for testing whether these cost elements display 

declining cost elasticities, as DSOs are expected to show increasing returns to scale. After all, they are regulated as 
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natural monopolies. As expected, the squared terms are negative. There is some correlation between the growth in 

BEVs and growth in high voltage line and customers, probably because the growth in the BEV stock has been 

highest in cities, that have the largest DSOs with the largest customer base and network of high voltage line. When 

we control for the increasing returns to scale for network and customers, we are better able to isolate the cost impact 

from BEVs. We also improve the explanatory power of the model (larger within R2).  

In column 4 we use the same model as in column 3, but we add the squared term log_ev2 to see if the cost 

elasticity for BEVs change significantly with changes in BEV stock. The estimated coefficient for log_ev2 is 

negative but close to zero, and highly insignificant. The size and precision of the coefficient for log_ev does not 

change much. We therefore proceed with column 3 as our preferred specification.  

Finally, in column 5 and 6 we test if the preferred model is robust to the removal of outliers. In the former 

column we have removed the three largest DSOs in terms of annual costs during the period 2008-2017. In the latter 

column we have removed the three smallest DSOs in terms of costs. In the former column the coefficient becomes 

somewhat smaller and less precise. In the latter column both the point estimate and standard error remains largely 

unchanged. The confidence intervals for the coefficient in these models largely overlap both each other and the 

original model, implying that the original model is relatively robust to removal of outliers. 

The point estimates from our preferred specification indicates that a 1 % increase in the number of BEVs in 

a DSOs area is associated with a 0.018 % increase in cost. In order to translate this into monetary value, we look at 

the median values for DSOs in 2017. The median values were 44 mill. NOK (about €4.4 mill.) in total costs for 

about 7300 customers with in total 78 registered BEVs. If this DSO experienced a 10 % increase in BEVs in 2018 (8 

cars), ceteris paribus, the model would predict about 80 000 NOK increase in costs. This would translate into a cost 

of about 10 000 NOK per BEV imposed on the DSO, which can be considered economically significant. However, 



 20 

if these estimates are applied to the DSO with the highest BEV stock in its area, the cost per BEV is about 600 

NOK. Such scale effects follow naturally from a log-log model with a coefficient between zero and one, as this 

implies a positive but declining marginal cost per BEV in absolute terms. However, a constant cost elasticity is a 

fairly strong assumption. We therefore investigate the heterogeneity in the effect from BEVs in different parts of the 

sample. 

Heterogeneity 

As the example above illustrates, there is substantial heterogeneity among the DSOs. We will use the 

regressors from column 3 when investigating the heterogeneity in the results, which is shown in Table 3. 

Table 3: Fixed effects regression on the relationship between BEV stock (log_ev) in a DSOs operational area and 
DSO costs (log_tot). Heterogeneity test with sample splits along 3 dimensions 

 (1) (2) (3) (4) (5) (6) 
 (lower half 

customers) 
(upper half 
customers) 

(lower half 
BEV density) 

(upper half 
BEV density) 

(lower half 
costs per 
customer) 

(upper half 
costs per 
customer) 

log_ev 0.036*** 0.005 0.032** 0.008 0.015 0.032*** 
 (0.012) (0.009) (0.014) (0.011) (0.009) (0.011) 
       
log_subscribe 0.408 2.576 0.445 2.333** 0.011 1.779 
 (2.247) (1.729) (1.882) (0.965) (1.093) (1.877) 
       
log_voltline 1.111 -0.628 1.920** 0.798 2.049 1.086 
 (1.075) (2.207) (0.930) (0.913) (1.424) (0.987) 
       
log_subscribe2 -0.002 -0.104 -0.018 -0.086* 0.018 -0.078 
 (0.140) (0.084) (0.112) (0.050) (0.056) (0.113) 
       
log_voltline2 -0.067 0.022 -0.135 -0.077 -0.166 -0.072 
 (0.104) (0.154) (0.092) (0.082) (0.108) (0.096) 
       
_cons 2.828 -0.279 1.399 -4.839 3.287 -2.775 
 (8.477) (8.117) (7.096) (4.843) (5.977) (6.676) 
Year dummies Yes Yes Yes Yes Yes Yes 
N 540 530 540 530 540 530 
r2_within 0.315 0.314 0.287 0.333 0.264 0.343 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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In Table 3 we show split-sample heterogeneity7 in the regression results along the following dimensions; 

DSO size as measured by the number of customers, BEV density in DSO areas (average over the period of analysis) 

and cost per customer. We see that there is considerable heterogeneity in the results. The effect of BEV stock on 

cost seems to vary considerably between different parts of the sample, underlying our point earlier that a constant 

elasticity is a fairly strong assumption. If anything, the cost elasticity for accommodating BEVs seems to be 

declining. 

We find effects of BEVs on cost that are statistically significant and with point estimates almost twice as 

large in the sample halves with the fewest customers, lowest BEV density and highest cost per customer, compared 

to the full sample. The strongest effect is found in the sample half with lower-than-median number of customers. 

However, it is worth noting that these 54 DSOs serve less than 7 % of the total customers in the sample.  

In the other halves of the sample the estimated coefficient are closer to zero and far form statistically 

significant. This could indicate that at the levels observed until now, the cost elasticity for accommodating BEVs 

may be declining rather than constant. Since a constant elasticity between zero and one already implies decreasing 

marginal costs in absolute terms, a declining elasticity implies that the marginal cost decreases even faster as the 

BEV stock increases.  

Another possibility which has been mentioned in conversations with representatives from DSOs may 

complement the explanation that it is costlier for small, rural DSOs to accommodate BEVs. It could be costlier to 

accommodate BEVs in some rural areas where the need for investing in high capacity in all parts of the distribution 

grid has historically been relatively low. In such areas, if there is a need to upgrade parts of the old high voltage 

                                                 
7 We split the sample at the median at any chosen dimension (customers, BEV density etc.) in order to investigate split-sample heterogeneity with 
the largest possible sub-samples. When we tested splitting the sample in three, we got very imprecise results. 



 22 

network or a distribution transformer to accommodate a few dozen BEVs, it may be a noticeable increase in total 

costs. We will look closer at this in the last part of this section. 

Regressions for cost components 

In Table 4 we investigate through which cost components BEVs contribute to higher costs. The first five 

columns show the major cost components sorted from left to right according to their relative importance for total 

costs. 

Table 4: Fixed effects regression on the relationship between the number of BEVs registered in a DSOs operational 
area and 5 different cost components  

 (1) (2) (3) (4) (5) 
 log_opex log_cap log_cens log _depres log_eloss_cost 
log_ev 0.020* 0.011 0.024 0.017 -0.026* 
 (0.011) (0.012) (0.032) (0.013) (0.015) 
      
log_subscribe 2.790** -0.216 -2.184 0.294 2.261 
 (1.303) (1.226) (3.497) (1.399) (1.699) 
      
log_subscribe2 -0.138** 0.022 0.137 -0.009 -0.058 
 (0.065) (0.064) (0.170) (0.076) (0.086) 
      
log_voltline 2.101** 0.044 6.063** 2.167 1.844 
 (1.016) (1.064) (3.025) (1.369) (1.338) 
      
log_voltline2 -0.181* 0.036 -0.453* -0.175 -0.116 
 (0.094) (0.097) (0.257) (0.128) (0.113) 
      
_cons -9.309 7.462 -4.251 0.497 -14.087** 
 (6.231) (6.443) (15.417) (7.004) (6.697) 
Year dummies Yes Yes Yes Yes Yes 
N 1070 1070 1070 1070 1070 
r2_within 0.163 0.833 0.127 0.513 0.199 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

In column 1 we find that BEVs have a positive and significant relation (at 10 % level) with DSOs’ 

operational costs. We also find a positive relationship between BEVs and capital costs in column 2, but this is not 
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significant at the 10 % level. Given the operational costs share of total costs (see Table 1), it looks like it would be 

through this component where BEVs would have the strongest impact on total cost. We are a bit surprised that 

BEVs would have a stronger effect on operational costs than capital costs on average, but it matches the experience 

of one of the DSOs with whom we have talked8. This is a relatively small DSO on the west coast of Norway, and 

they have had a few incidents over the last few years where they have upgraded their infrastructure more than they 

would otherwise have, because of BEVs. In some of these incidents they have received co-payments from customers 

for the hardware to upgrade the infrastructure, but all other costs (in particular labor costs) were registered as 

operational costs.  

In column 3 and 4 we also find small positive but highly non-significant effects on log_depres and 

log_cens, respectively. The results in column 5 may require some more explanation. Here we find a negative and 

significant (at the 10 % level) relationship between EVs and grid energy losses. A drop in energy losses for DSOs 

with many EV owners in their operational area could be consistent with these DSOs upgrading their infrastructure 

faster, meaning a faster upgrade from a 230 Volts grid to a 400 Volts grid. The energy losses are lower in an electric 

grid with higher voltage (Haugen, Haugland, Vingås, & Jonhnsen-Solløs, 2004). 

Alternative specifications 

We test some alternative specifications of the model in order to assess the robustness of our findings. We 

show these in Table 5. 
  

                                                 
8 In total we have had discussions with representatives from six DSOs; two relatively large, and four relatively small. Only one of them, one of 
the small ones, could confirm that BEVs had caused noticeable costs. 
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Table 5: Alternative specifications on fixed effects regressions on the relationship between BEV stock in a DSOs 
operational area and DSO costs   

 (1) 
FE 

(2) 
FE 

(3) 
FE 

(4) 
Difference 

approach over 
sample period 

log_ev 0.039* 0.018** 0.018** 0.045*** 
 (0.023) (0.008) (0.008) (0.012) 
     
log_subscribe 0.338 1.035 0.994 1.714 
 (1.196) (0.873) (0.921) (1.279) 
     
log_subscribe2 0.000 -0.044 -0.039 -0.078 
 (0.065) (0.046) (0.049) (0.073) 
     
log_voltline 1.533** 1.667*** 1.677*** 2.361** 
 (0.649) (0.630) (0.629) (1.162) 
     
log_voltline2 -0.117* -0.129** -0.130** -0.196* 
 (0.061) (0.058) (0.058) (0.105) 
     
log_ev x log_voltline -0.003    
 (0.003)    
     
wintertemp  0.000   
  (0.005)   
     
event  0.004*   
  (0.002)   
     
log_hh_inc  -0.409   
  (0.327)   
     
log_substation   0.025**  
   (0.012)  
     
_cons 2.869 5.200 -0.336 -0.207*** 
 (5.682) (6.458) (4.328) (0.067) 
Year dummies Yes Yes Yes No 
N 1070 1070 1070 107 
r2_within 0.292 0.296 0.291 0.186 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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In column 1 we add an interaction term between log_ev and log_voltline in order to investigate whether the 

marginal cost of accommodating more BEVs is higher for small DSOs in rural areas with little grid capacity 

(measured as km with high voltage line). We find that the marginal cost of more BEVs is decreasing in the amount 

of high voltage line (though not statistically significant), supporting that more capacity makes it less costly to 

accommodate more BEVs. This corroborates our interpretation of the main results and heterogeneity tests, and also 

the conversations with representatives from DSOs.  

In column 2 we add three new control variables that can be expected to impact DSO costs, although some 

of this impact is probably captured by the year dummies. The variable wintertemp is a measure of average winter 

temperature in a given year at county level9. We expect lower winter temperatures to drive DSO costs upwards, and 

perhaps capture some of the costs per BEV, as lower average temperatures would generally require more electricity 

per BEV-km. However, the effect of this control variable is far from statistically significant. Based on conversations 

with representatives from DSOs we have also included extreme weather events as a control variable10, as many 

spikes in costs for different DSOs at different times can be attributed to such events. We see that event has a 

statistically significant impact on costs. We also add average household income (aggregated from municipal level 

data, retrieved from Statistics Norway) as a control variable. BEV growth could be correlated with variations in an 

underlying growth in power usage and demand for modern appliances that require more power capacity, like 

induction stoves. If this is true, then our estimated coefficients for log_ev would be biased upwards, overstating the 

effect. Ideally, we would like to control for household ownership of modern appliances and their power usage, but it 

is reasonable to expect that this should correlate with income. Figenbaum and Kolbenstvedt (2016) show at least that 

                                                 
9 Retrieved from https://www.yr.no/klima/  
10. County-level data on extreme weather events according to the definition from the Norwegian Meteorological Institute: 
https://no.m.wikipedia.org/wiki/Liste_over_ekstremvær_i_Norge [In Norwegian. Last accessed October 1st 2019] 

https://www.yr.no/klima/
https://no.m.wikipedia.org/wiki/Liste_over_ekstremv%C3%A6r_i_Norge
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most BEV buyers until now have generally higher-than-median income. However, the control variable log_hh_inc is 

highly statistically insignificant. The addition of all these control variables does not affect the coefficient estimate 

for log_ev. 

In column 3 we introduce the variable log_substations. As discussed in Section 3, substations are an 

important part of regulators DEA calculation, but it is potentially a bad control when trying to estimate the impact of 

BEVs of cost. Compared to the preferred model, the coefficient for log_ev is largely unchanged. There still may be a 

theoretical argument for leaving log_substations out of the regression, but it does not seem to make much difference 

in practice. 

Finally, in column 4, we estimate the impact from BEVs using data aggregated over several years. Here, we 

look at the change over the entire sample period instead of year-to-year changes. We want to minimize the year-to-

year noise in the data, so we take the average of the first three years of the sample (2008-2010) and the last three 

years (2015-2017). We then take the differences between these two averages and run the regression. With this 

specification we find a stronger and somewhat more precise relation between differences in BEV stock and 

differences in DSO costs, compared to the preferred model in Table 2. We find comparable results when using this 

alternative specification on capital costs and operational costs. These findings imply that the main findings are 

robust. 
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5 DISCUSSION AND CONCLUSIONS 

In this paper, we have used a complete dataset of Norwegian DSOs outputs, costs and registered BEVs in 

their operational area over the time period 2008-2017 to analyze the effect increasing BEV numbers have on DSO 

costs. We have also investigated through which mechanisms, i.e. cost components, do we see this effect. 

The results of our preferred model specification show that an increase in the BEV stock in the operational 

area of a DSO is associated with an increase in local grid costs. This finding is robust to the addition of several 

controls and removal of outliers. The estimated cost increases are also economically significant, as they imply 

additional costs of several thousand NOK per BEV when the BEV stock is low. With a constant cost elasticity of 

0.018, the per-BEV cost becomes relatively low when the stock has reached the higher levels in the sample. 

The results indicate that there is fairly large heterogeneity in the effect of BEVs on DSO costs. In 

particular, the effect is a lot smaller for DSOs that have a higher-than-median number of customers, and over the 

period has had a higher-than-median BEV density. We tested whether the effect of BEVs could be higher in areas 

with less installed capacity, usually rural areas. The point estimates gave some support to this, but they were not 

very precise.  

The costs imposed on DSOs can be contrasted with the reduction in environmental costs from a one-to-one 

replacement of a conventional car with a BEV. The annual tailpipe emissions of a typical diesel car in Norway 

driving on average 12 140 km per year amounts to 1.7 tons of CO2, 7.9 kg of NOX and 150 grams of PM2.5 (Rødseth 

et al., 2020). According to Rødseth et al. (2020) this would be valued at about NOK 1060 if all the driving was done 

in rural areas (with little exposure). However, it would be valued at NOK 4460 if all the driving was done in larger 
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cities. The external costs of pollution are highest where we find the imposed grid costs to be lowest, namely in urban 

areas, suggesting that these are the areas with the highest social benefit-cost ratio of BEVs. 

The heterogeneity also indicates that costs imposed on DSOs by BEV owners, is not a problem that will 

affect a large number of consumers. The half of the sample with largest DSOs serve over 93 % of the customers in 

the entire sample. The effect of BEVs on costs in that sample half is a lot smaller than the full-sample estimate, and 

statistically insignificant. If BEV owners are imposing pecuniary externalities in the incomplete local grid market, 

these externalities do not seem to be very large for most Norwegians. A minority of unlucky DSO customers may 

have to bear some cost as their DSOs seem to have a hard time accommodating BEVs.  

When looking closely at individual cost components, we see that increases in BEV numbers are associated 

with statistically significant increases in operational costs, but statistically insignificant increases in other major 

components. We found this somewhat surprising, but it does corroborate the experiences of one of the DSO 

representatives we contacted during this project. 

The analysis in this paper should be revisited in later years as the stock of BEVs in Norway continues to 

grow. In this dataset the highest level of BEVs in any of the DSOs operational area amounts to 8.3 per 100 

customers. Even though the cost of an additional BEV seems to be positive but decreasing up until now, it could be 

that when we reach substantially higher levels in a matter of years we would detect larger cost impacts, unless 

measures are put in place. It has gone relatively painless so far, as the current BEV stock – the most concentrated in 

the world – has not yet substantially stress-tested the local grid in most places. In Section 2 we referred to NVE 

stress-test that found that if 70 % of normal neighborhood simultaneously charged BEVs during peak hours, they 

would expect overload for more than 30 % of the current substations. Norway is not there yet.  



 29 

It is worth noting a few caveats at the end. The main caveat is that our model captures the statistical 

relationship between DSO costs and the number of BEVs registered in the DSOs area. We do not have data on the 

charging behavior of the BEV-owners, or what kind of equipment they have installed. In addition, the number of 

registered BEVs in one DSO operational area does not need to correspond completely to where the BEV charging is 

taking place. There could be cases where DSOs experience costs from BEVs charging, but these are not BEVs 

registered in their area. This could e.g., apply to municipalities with many cabins, which typically lie in areas where 

the local grid is not dimensioned for high capacity11. Our model would not be able to pick up any of that cost if it is 

there. However, to include cabin owners with BEVs to the analysis could be an interesting venue for future research, 

when more data is available. 

Several papers have documented that the CO2 abatement costs from policies that promote a shift from 

conventional to electric cars are fairly large (see e.g., Bjertnæs, 2016; Fridstrøm & Østli, 2017; Wangsness, 2018; 

Wangsness, Proost, & Rødseth, 2018). These costs may come in the form of higher costs for a given quality level of 

the car stock, a loss in government revenue that has to be funded by distortionary taxes elsewhere, and higher 

congestion levels in cities because of low energy costs and low tolls. Should we in addition to these costs worry 

about BEVs imposing higher costs on the local grid and passing on the cost to all customers, and subsequently want 

the regulators to take action?  

As many economists before us, we expect there to be efficiency gains if the regulator allowed for a well-

designed peak pricing system. That would incentivize more efficient use of local grid capacity with regards to all 

electric appliances, including BEVs. And with a fast-growing number of BEVs, the gains from introducing such a 

                                                 
11 https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-ma-oppgraderes/ [Electric cars leads to a need to 
upgrade the electric grid in cabin areas (Article from DistriktsEnergi in Norwegian, last accessed 05.12.2019)]  

https://www.distriktsenergi.no/artikler/2019/1/16/elbilene-gjor-at-stromnettet-i-hytteomradene-ma-oppgraderes/
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pricing scheme would be even larger. Many BEV owners would probably respond by installing smart charging 

systems, which would ease the household cost minimization and ensure more efficient grid capacity utilization, even 

with small hour-to-hour price differences.  

With regards to including “BEV stock” as a variable in the regulatory analysis, our cautiously optimistic 

interpretation of the findings suggest that this would be a bit premature. Although we find a statistically significant 

relationship between BEV stock and DSO costs, the marginal cost is positive but decreasing, and for the half of the 

DSOs that serve more than 93 % of the Norwegian customers, the point estimates are actually quite close to zero. 

DSOs and regulators should keep an eye on developments, but for now grid costs stemming from higher BEV 

ownership rates do not need to be at the top of their list of worries. 
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APPENDIX A: REGRESSIONS WITH A PER-CUSTOMER MODEL 

As discussed in section 3, there was a need to transform the data because of the very skewed distribution of 

DSOs. The log-log transformation was preferred because the dependent variable was closer to a normal distribution 

than was a per-customer-transformation. Still, a per-customer model can work as a robustness check. Table 6 below 

is the counterpart of Table 2, but with a per-customer transformation. The variable of interest is EV_percent, which 

is the number of BEVs per 100 customers. 
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Table 6: Fixed effects regression on the relationship between EV density in a DSOs operational area and DSO costs 
per customer (measured in 2015-NOK) 

 (1) (2) (3) (4) (5) (6) 
     (removed 3 

largest 
DSOs) 

(removed 3 
smallest 
DSOs) 

EV_percent 61.94** 52.40 42.45 23.00 24.80 39.48 
 (30.46) (44.27) (46.74) (98.96) (48.85) (47.55) 
       
1000subscribers -15.64*** -20.11*** -20.18*** -20.93*** -31.99** -20.12*** 
 (4.36) (4.98) (5.18) (4.62) (12.76) (5.35) 
       
Meters of high 
voltage line per 
subscriber  

42.35*** 49.38*** 6.69 5.95 -15.11 -3.95 
(15.58) (15.55) (54.61) (54.93) (48.16) (53.99) 

       
Meters of high 
voltage line per 
subscriber^2 

  0.27 0.28 0.46 0.32 
  (0.37) (0.37) (0.30) (0.36) 

       
EV_percent2    3.68   
    (11.59)   
       
_cons 4453.49*** 4034.52*** 5431.13*** 5471.29*** 6044.53*** 5818.63*** 
 (917.65) (922.36) (1826.46) (1837.35) (1761.20) (1814.01) 
Year dummies No Yes Yes Yes Yes Yes 
N 1070 1070 1070 1070 1040 1040 
r2_w 0.03 0.13 0.13 0.13 0.15 0.13 

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

We find that the coefficient for EV_percent is positive under all specifications, just like we find with the 

log-log model. However, with the exception of the most naïve specification in column 1, we do not find any 

statistically significant effects from registered BEVs (per customer) on DSO costs (per customer). However, 

compared to the log-log model, the per-customer model does a worse job explaining the variation in the data. Given 

a choice between specifications, it is clear that the log-log model is preferable. 
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