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Abstract

This thesis investigates the possibility of using observations from satellite altimetry in marine grav-
ity modelling. Observations of sea surface height obtained by satellite altimetry can be decomposed
into different components, where the Earth’s gravity field contribution is among one of those com-
ponents. By reduction of all other components, a residual geoid height signal can be formed.
This residual signal can be used for predicting gravity anomalies by least-squares collocation. The
computations are following the remove-compute-restore (RCR)-method where the gravity field’s
long wavelength components is removed and restored using a global geopotential model. In total,
three global models are used within this thesis: EGM2008, XGM2019e2159 and GOCO06s. The
two first models are high-resolution GGMs, while the latter is a satellite-only model with a lower
resolution. These different models are selected in order to investigate the assumption about model
independence in the RCR-method.

The implementation of lest-squares collocation is validated in an area located approximately 150 km
from the Norwegian coast. This area is considered to be so far from shore that any coastal effects
can be neglected. The validation of least-squares collocation is carried out by comparison with
gravity anomalies from a global gravity field model DTU13GRA. The global model is based, to
a large extent, on the same data, while the computation method differs, and accordingly the
validation procedure is termed as a near closed-loop simulation. Within the validation area, two
different mean sea surface models, DTU13MSS and DTU18MSS, are used in the computation of
residual geoid height in order to see if any systematic effects can be seen between the different
components.

The prerequisite for applying least-squares collocation is that the residual signal can be treated as
a stochastic signal. Empirical covariance functions are used to evaluate the stochastic properties of
the residual signal. All residual signals derived by using different GGMs and MSS models result in
covariance functions with shapes closely resembling the shape of a stochastic signal. The empirical
errors are in mutual agreement between all three models, and hence confirming the assumption
about model independence. When using DTU13MSS the empirical and formal errors are reported
as 1.68 − 1.92 mGal and 3.39 − 3.86 mGal, while using DTU18MSS results in 2.23 − 2.35 mGal
and 3.44 − 3.78 mGal. GOCO06s is the global geopotential model resulting best result for both
DTU13MSS and DTU18MSS.

Further numerical investigations were performed at a gravimetric testbed formed by the Norwegian
Mapping Authority located in the coastal areas outside of Sunnmøre. The empirical errors must
be analysed with caution due to degrading quality of DTU13GRA in the coastal areas. Within this
testbed the residual geoid height was formed by heterogeneous observations from Saral/ALTIKA,
Saral/ALTIKA-GM, Sentinel-3A and Cryosat-2. These satellite missons employ the SAR tech-
nique resulting in significantly higher spatial resolution compared to conventional altimetry satel-
lites. Empirical and formal errors by comparison with DTU13GRA is achieved by 4.08 mGal and
5.55 mGal, respectively.

The empirical and formal errors for both study areas are in accordance with results from similar
studies. The formal errors represents an upper-bound estimate compared with the empirical errors.
Due to time limitations, comparison by an independent set og ship-measured gravity anomalies
provided by the Norwegian Mapping Authority is left to be performed. A comparison with ship-
measured gravity anomalies is necessary in order to give a final conclusion on error-estimates of
satellite altimetry derived gravity anomalies in coastal areas predicted by least-squares collocation.
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Samandrag

Denne oppg̊ava undersøkjer høve til å nytta observasjonar fr̊a satellittaltimetri innan marin tyn-
gdemodellering. Observasjonar av havoverflatehøgde oppn̊add fr̊a satellittaltimetri kan bli delt opp
i ulike komponentar, kor ein av desse er bidraget fr̊a jordas tyngdefelt. Ved reduksjon av alle andre
komponentar kan ein isolere eit residualgeoidesignal. Dette signalet kan nyttast til prediksjon av
tyngdeanomali ved bruk av minste-kvadraters kollokasjon. Berekninga følgjer remove-compute-
restore (RCR)-metoden der jordas langbølgja signal blir fjerna og attendeført ved bruk av ein
global geopotensialmodell. Totalt blir tre ulike globale modellar nytta i oppg̊ava: EGM2008,
XGM2019e2159 og GOCO06s. Dei to første modellane er høgoppløyselege modellar, medan den
siste nyttar berre observasjonar fr̊a satellittar og har ein l̊agare oppløysing. Desse ulike modellane
blir valt for å undersøkja TEORIEN om modelluavhengigheit i RCR-metoden.

Implementeringa av minste-kvadrater kollokasjon blir validert i eit omr̊ade kring 150 km fr̊a
norskekysten. Dette omr̊adet blir anteke å vera tilstrekkeleg langt vekke fr̊a kysten, slik at kystef-
fektar kan bli neglisjert. Valideringa av minste-kvadraters kollokasjon blir utført ved samanlikning
med tyngdeanomali fr̊a ein global tyngdemodell DTU13GRA. Denne modellen er i stor grad basert
p̊a same type data, men med ulik berekningsmetode, so valideringsprosessen blir omtalt som ein
nær lukka krets simulering. I valideringsomr̊adet blir to modellar av middelvassflater, DTU13MSS
og DTU18MSS, nytta i berekninga av residualgeoidehøgde for å undersøkja om potensielle system-
atiske effektar kjem til syne mellom dei ulike komponentane.

Føresetnaden for bruken av minste-kvadraters kollokasjon er at residualsignalet kan bli behandla
som eit stokastisk signal. Empiriske kovariansfunksjonar blir nytta til å undersøkja residualsignalets
stokastiske eigenskapar. Alle residualsignala ved bruk av dei ulike global geopotensial modellane og
middelvassflatene resulterer i kovariansfunksjonar som liknar nær p̊a forma til stokastiske signal.
Alle dei empiriske feila ved bruk av EGM2008, XGM2019e2159 og GOCO06s samsvarar med
kvarandre, og dermed stadfestar antake om modelluavhengigheit i RCR-metoden. Ved bruk av
DTU13MSS blir det oppn̊add empiriske og formelle feil ved bruk av dei ulike geopotensialmodellane
i intervalla 1.68− 1.92 mGal og 3.39− 3.86 mGal, medan bruk av DTU13MSS resulterer i 2.23−
2.35 mGal og 3.44− 3.78 mGal. GOCO06s er den globale geopotensialmodellen som oppn̊ar best
resultat b̊ade ved bruk av DTU13MSS og DTU18MSS.

Vidare numeriske forsøk blir utført i eit gravimetrisk testfelt danna av Kartverket i kystsona
utanfor Sunnmøre. Dei empiriske feila i testfeltet m̊a bli vurdert med aktsemd p̊a grunn av den
redusert kvaliteten til DTU13GRA i kystomr̊ade. I dette omr̊adet blei berekninga berre utført
med GOCO06s. I testfeltet blir residualgeoidehøgde danna ved bruk av heterogene observasjonar
av havoverflatehøgde utført med Saral/ALTIKA, Saral/ALTIKA-GM, Sentinel-3A og CryoSat-
2. Desse satellittferdane nyttar SAR-teknikken som gir ein betydeleg høgare romleg oppløysing
samanlikna med konvensjonelle altimetrisatellittar. Empiriske og formelle feil ved samanlikning
med DTU13GRA blir oppn̊add p̊a henhaldsvis 4.08 mGal og 5.55 mGal.

Dei empiriske og formelle feila oppn̊add for begge studieomr̊ada er i samsvar med resultat fr̊a
liknande type studiar. Dei formelle feila dannar eit øvre feilestimat samanlikna med den empiriske
feilen. P̊a grunn av begrensa tid st̊ar det att å gjera ein uavhengig samanlikning med skipsm̊alt
tyngdeanomali. Ein uavhengig samanlikning med skipsm̊alt tyngdeanomali er naudsynt for å gi
ein endeleg konklusjon p̊a feilestimatet for avleia tyngdeanomali i kystsona fr̊a havoverflatehøgde
m̊alt med satellittaltimetri.
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Chapter 1

Introduction

Monitoring of the Earth is of great importance, and today spending on space operations are at
an all-time high. The operations have varying focus, some performs research on other celestial
objects, such as the Moon and Mars, others focuses on space science, but the majority of missions
monitors our planet Earth. Climate change is one of the most important questions within politics
and decision making, both at regional and global level (ESA, 2020c). Satellites can provide daily
updates with global coverage, and as a result Copernicus was formed by the European Union as
their Earth Observation Programme. The programme will look at our planet and its environment to
benefit all European citizens. The Sentinel satellites are built to fulfill the needs of the Copernicus
programme, and they are developed by the European Space Agency (ESA). Copernicus is an
cooperation between the member states of the European Union and its data policy assure full, open
and free-of-charge access to Copernicus data and information. The programme is built up around
six main categories: land management, the marine environment, atmosphere, emergency response,
security and climate change (ESA, 2020c). An important part of the Copernicus program is to
provide scientific data to the research communities, but also provide information to normal citizens
through a variety of products. One application of special interest for Norwegian inhabitants is the
monitoring of potential dangerous regions for rock slides as a result from the Sentinel-1 mission
(ESA, 2020b).

Several different missions are involved in the program, where each mission aims to provide insight
in some of the above categories. The first satellite, Sentinel-1, was launched back in April 2014
(ESA, 2020c), and the last satellite, now re-named as Sentinel-6 Michael Freilich1, was launched
into orbit on 21. November 2020. One of the main treats of climate change is sea level rise. Over 10
% of the world’s population living less than 10 meters above sea level (ESA, 2020a) and continuous
measurements of sea surface height (SSH) are by these means of crucial importance. Sea level rise
has had a rate of 3.6 cm per decade, and its trend is accelerating even faster in recent years (ESA,
2020a). Since 1993 satellite altimetry missions have observed the Earth’s water bodies, mainly the
open ocean waters. Improvements in observation techniques and analysis strategies for satellite
altimetry has in the more recent times made it possible to also observe the Earth’s inland water
bodies. ERS-1, as the first altimetry mission, was launched back in 1991 starting the continuous
observation and monitoring of sea level. An overview of historical and planned satellite altimetry
missions is shown in figure 1.2. Each altimetry mission has contributed to the observation of
sea level resulting in a continuous observation period of over 25 years. With an increasing focus
and developments in observations techniques, sea level rise can now be measured with mm-level
accuracy (Abdalla et al., 2021). Since 1993 vast developments in many fields has occurred, but
hardly any as explosive development as in the field of global navigation satellite systems (GNSS). As
will be shown in section 5.1, improvement in the satellite’s position directly affects the solution of
any altimetry derived product. Figure 1.3 shows the historical improvement of accuracy in orbital
and altimetry errors, where the accuracy of both components hs improved by a factor of almost 100
and 10, respectively. The Sentinel-6 satellite shows even further improvement in accuracy, which
is explained by the development in observation techniques and positioning of the satellite (ESA,

1Named in honour after the director of NASA’s Earth Sciences Division Michael Freilich.
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Figure 1.1: Different categories and services included in the Copernicus programme. Satellite
altimetry mainly contributes to the investigation of climate change.

2020e). Sentinel-6 is the first altimetry satellite able to receive both Galileo and GPS signals. In
addition to surveillance of sea level change, satellite altimetry can provide measurements of mean
sea surface (MSS), mapping of dynamic ocean topography (DOT) and also provide measurements
used in gravity field modelling.

Satellite altimetry observes SSH and its temporal variations. As will be described in following
sections, the sea surface is mainly affected by the Earth’s gravity field and time varying ocean
topography. If the SSH measurement can be reduced for the time-varying oceanic effects, then
the altimetry observations can provide information about the Earth’s gravity field. The geoid is
determined as an equipotential surface coinciding with an undisturbed sea surface (Barthelmes,
2009). This equipotential surface makes the foundation for height systems, and thus is of high
importance in geodesy. By using global models for reducing known long-wavelength components
the SSH measurement a residual geoid height signal can be isolated. This signal can in turn be
used to derive gravity anomalies and provide information about the Earth’s gravity field. Different
techniques can be applied for predicting gravity anomalies from residual geoid, e.g., Molodensky2’s
equation, inverse Vening Meinesz equation or least-squares collocation (LSC). This thesis will focus
on the transition from altimetry observations to gravity anomalies using the LSC approach.

After a theoretical study of possible estimation techniques has been done, a numerical investigation
will be carried out based on datasets of mean sea surface (MSS) (Andersen et al., 2018), mean
dynamic topography (MDT) (Andersen et al., 2016) and a gravity field solution (Andersen et al.,
2014), where all datasets are originating from the Technical University of Denmark (DTU). As
this thesis focuses on the use of altimetry observation for marine gravity field modelling, all topics
relating to processing, error sources and realization of a MSS, will not be treated here. Those
topics are for sure of great importance, and at NMBU a fellow M.Sc. student in geomatics is
currently writing a master thesis on how artificial intelligence and machine learning can be exploited
on classification of Sentinel-3 radar pulses in the Norwegian coastal zone. It is very complex to
distinguish between observations affected by land contamination and undisturbed measurements in
the coastal zone. Correctly classifying altimetry observations will become even more important with
the satellite’s reduced footprint on ground. A smaller footprint allows for observations even closer
to the coast, and then in order to fully exploit the potential of satellite altimetry, improvement
in classification and handling of error sources are necessary. Estimation of gravity anomalies from
altimetry observations is an established geodetic technique where detailed information can be

2Named after the Soviet geodesist Mikahil Sergeevich Molodenskii (1909-1991)
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Figure 1.2: Historical overview of satellite altimetry missions launched since 1991. Overlap between
the missions is necessary to not introduce biases in the observation series. The figure originates
from Abdalla et al. (2021).

Figure 1.3: Representation of the development in orbital and altimetry errors for a number of
selected satellite altimetry missions. The figure originates from Abdalla et al. (2021).
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found in Stammer and Cazenave (2017). A regional application, which in many ways serves as a
theoretical guideline for the implementation of LSC in this thesis, was recently done by Nguyen
et al. (2020). However, adaptations in covariance modelling to fit Norwegian conditions for selecting
the different components in LSC have been necessary.

LSC is a numerical method developed by T. Krarup in 1969 (Krarup, 1969), and further exploration
and application to geodesy was later done by H. Moritz (Moritz, 1980) and published in 1980. LSC
has in the recent years become a well used method in the field of physical geodesy, and especially
when it comes to regional gravity field modelling. Through a special syllabus before the start on
this master thesis a study of LSC was done (Dale, 2021). A detailed explanation on LSC can be
found in a variety of books on physical geodesy (Moritz, 1980; Hofmann-Wellenhof and Moritz,
2006; Andersen, 2013). In addition several articles, on global and regional gravity field modelling,
e.g., Willberg et al. (2019); Zingerle et al. (2020), provide an useful insight in LSC. All these
resources together with articles on covariance modelling, e.g., Knudsen (1987); Heydarizadeh Shali
et al. (2020), form the theoretical background of this master thesis.

Application of LSC is especially useful when it comes to combining different observation types.
In addition to measurements of the Earth’s global gravity field from space, also terrestrial mea-
surements are performed on or near the Earth’s surface. Commonly the Earth’s gravity field is
represented using spherical harmonics as basis functions, and when it comes to how the spheri-
cal harmonic coefficients are estimated, the terrestrial measurements, i.e., measurements by ship,
airborne or ground data, and satellite observations have different strengths. The satellite data is
well suited for observing the long to medium wavelengths of the gravity field, while ground data
is suitable for detecting short wavelength part of the gravity field signal. With the increasing
number of satellites, and also dedicated gravity missions such as CHAMP, GRACE, GOCE and
most recently GRACE-FO, a high resolution and accurate global geopotential model (GGM) is
now possible to obtain. By both having a set of global and regional gravity measurements, then
a natural question would be how these measurements could be combined in an optimal way. The
motivation for combining the two datasets could either be to improve a global gravity field model
by terrestrial gravity field data, or to support a regional geoid solution with the global model. With
a new global gravity model coming up, EGM2020 originally planned for 2020, a lot of research
is ongoing with a goal to answer how this combination can be done optimally, and also on other
questions regarding the estimation procedure, e.g. Willberg et al. (2020).

Observations of the Earth’s gravity field over the entire earth are seeked when working with global
gravity field modelling. With the recent satellite gravity missions a large increase of gravity obser-
vations has taken place during the last 20 years. Water covers over two-thirds of earth’s surface,
and by this fact satellite altimetry is a technique with great potential in gravity field modelling.
The observations used in global gravity field modelling origins from satellite gravity missions,
satellite altimetry, in combination with terrestrial or airborne gravity campaigns. The most recent
GGMs are calculated using relative weighting accounting for the difference in accuracy between the
above mentioned observation techniques. Satellite altimetry through its multi-mission processing
contributes to a consistent data set of high accuracy (Fecher et al., 2017).

1.1 Primary goal for this thesis

The main goal for this master thesis is to derive gravity anomalies altimetric in the coastal zone
and see if they can improve the marine geoid. On a global scale the Earth’s gravity field is most
commonly described using a spherical harmonic series expansion up to a maximum degree Nmax,
and today these models have a maximum degree of Nmax = 5540 which corresponds to a spatial
resolution of around 4 km. In regional areas, a gravity field model with higher spatial resolution
can be obtained by combing local measurements with the global gravity field model. Collecting
measurements of the Earth’s gravity field in regional areas can be done from terrestrial, airborne
or ship campaigns, and the Norwegian geoid is computed from a set of terrestrial measurements
with higher accuracy on land than in oceanic areas. Due to observational gaps in the datasets
a degradation of the geoid’s accuracy occurs in the coastal regions. Norway, similar to other
countries, has the majority of its population located in coastal regions, and thereby a precise geoid
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in this area is of high interest. A precise geoid is also important in the transition between different
vertical datums (height references), as the geoid forms a natural reference surface for physical
heights, used on ocean and land. The development of new altimetry satellites and observation
techniques allows today for altimetric observations closer to the shore than previously. In this
thesis, gravity anomalies are determined using LSC on residual geoid heights deduced from satellite
altimetry observations. First the implementation and simulation is performed in an area outside
of the Norwegian coast, not affected by coastal effects. Here the collocation result is compared
and verified with gravity anomalies from an external gravity field solution, DTU13GRA (Andersen
et al., 2014), released by the Technical University of Denmark (DTU). Next the prediction of gravity
anomalies is carried out in a testbed at Sunnmøre along the Norwegian coast. In this testbed the
Norwegian Mapping Authority (MNA) has made available shipborne gravimetric observations .
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Chapter 2

Earth’s gravity field

Extensive literature about the Earth’s gravity field can be found, and especially the book by
Hofmann-Wellenhof and Moritz (2006) has been used for the theoretical background for this thesis.
A more compact and less mathematical source, still giving a fairly good understanding of the
different components of the Earth’s gravity field can be obtained from ICGEM (2019).

The Earth’s gravity field can be described using Sir Isaac Newton’s law of universal gravitational

~Fg = −GMm0

r2

~r

r
, (2.1)

where G is the Newton’s gravitational constant, G = 6.6742× 10−11 m3 kg s−1, and the two point
masses M and m0 are separated by a distance of r = |~r|. Conservative forces, such as the gravi-

tational force ~Fg, can be described through the gradient of a scalar field ∇V = ~F , where V is the
gravitational potential. Working with a scalar quantity is easier than through a vector field repre-
sentation. As is pointed out in ICGEM (2019), the total gravity field consist of components from a
gravitational and centrifugal part. The gravitational field is a conservative vector field, which means
that no energy is changed if a body moves back and forth between points P and Q. In conservative
vector fields the potential energy can be defined to be path independent, and mathematically this
is stated as the vector field to be rotationally invariant, i.e., rot ~F = curl~F = ∇× ~F = 0.

The work for moving a unit mass m0 in the gravitational field generated by a point mass M is
given by

W =

∫
~F · d~r =

∫
m0 · ~a · d~r =

∫
~a · d~r ⇒W =

∫
−GM

r2
dr. (2.2)

The gravitational potential V of the mass M is the amount of work necessary to move the particle
from infinity to a given distance r

V =

r∫
∞

−GM
r2

dr = −GM
r∫
∞

1

r2
dr = −GM

[
1

∞
− 1

r

]
→ V =

GM

r
. (2.3)

From equation (2.3) it can be seen that ∇V = ~F

∇V =
dV

dr
=

d

dr

(
GM

r

)
= −GM

r2

~r

r
= ~F . (2.4)
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In a system with many attracting masses continuously distributed over a volume v, the gravitational
potential, given by equation (2.3), will result in an integral

V =

∫∫∫
v

dm

r
= G

∫∫
v

ρ

r
dv, (2.5)

which also is known as Newton’s integral. If the Earth’s density ρ distribution would have been
precisely known, then the potential at an arbitrary location P = (ϕ, λ, h) could have been calcu-
lated using equation (2.5). However, the Earth’s density distribution is not known with required
accuracy, and thus a different approach needs to be taken in order to obtain potential values. The
gravitational potential V can be shown to satisfy Poisson’s differential equation

∆V = −4πGρ, (2.6)

and outside of the attracting bodies the density is ρ = 0, and a special case of Poisson’s equation,
known as Laplace’s partial differential equation, results

∆V = 0. (2.7)

All solutions of equation (2.7) are called harmonic functions. Since the gravity field of the Earth is
sought, the solution on arbitrary locations on a sphere, or an ellipsoid, would be preferable. In order
to obtain such a solution, the Cartesian coordinates are transformed to spherical coordinates and
Laplace’s equation is solved by a separation of variables. A detailed description of the derivations
and solutions of equation (2.7) will not be given here, for further details I will refer to Hofmann-
Wellenhof and Moritz (2006).

By using separation of variables, three one-dimensional functions depending on r, θ and λ are
obtained. The result of the derivation is a set of equations, one representing the solution inside the
sphere, and one solution outside the sphere. Only the solution outside of the sphere is of interest,
for a solution inside the sphere the appropriate solution should fulfill Poisson’s equation. The
gravitational potential of the Earth can be expanded into a series of spherical harmonics, which
is solely a mathematically solution of Laplace’s differential equation. In spherical coordinates the
series expansion is given by

V (r, θ, λ) =

∞∑
n=0

1

rn+1

n∑
m=0

[anm cosmλ+ bnm sinmλ]Pnm(cos θ), (2.8)

where {anm, bnm} is the spherical harmonic coefficients of degree n and order m, and Pnm is the
associated Legendre functions.

To determine the potential at arbitrary location in space at a point P = (r, θ, λ) from known
spherical harmonic coefficients {anm, bnm} is called spherical harmonic synthesis (SHS), and will
be the only application used in this thesis. To determine spherical harmonic coefficients based on
observations of gravity functionals, i.e., quantities that can be derived from the gravity field, is
known as spherical harmonic analysis. This thesis only focuses on SHS, where global geopotential
models (GGM) are selected from the International Centre for Global Earth Models (ICGEM).
Further details about GGMs will be given in section 2.2.

The gravity field is the sum of the Earth’s gravitational attraction and the centrifugal force
(ICGEM, 2019). Hence, the gravity potential W is the sum of the gravitational potential V
and the centrifugal potential Φ:
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W = V + Φ, (2.9)

where the centrifugal potential is accurately given by

Φ =
1

2
ω2d2, (2.10)

with d representing the distance between the point and the Earth’s rotational axis. The grav-
ity acceleration, which again is a sum of the gravitational and centrifugal acceleration, can be
determined by taking the gradient of the gravity potential W .

~g = gradW. (2.11)

The geoid is defined as the equipotential surface that coincides with the undisturbed sea surface
(Barthelmes, 2009). An equipotential surface is a surface where the potential is constant, and
accordingly the geoid can be defined by assigning this equipotential surface with a value by

W = W0 = constant. (2.12)

The geoid, defined by its value W0, will be used in the following for forming a normal gravity field
fulfilling some specific criteria.

2.1 The normal gravity field or normal potential

The entire Earth’s true gravity potential W could have been modelled, but large parts can instead
be calculated using a geometrical and physical model of the Earth. By approximating the Earth
with a rotating ellipsoid, large parts of the true gravity potential W can be reduced by the gravity
potential U generated from this mathematical Earth model. An ellipsoid is convenient to use,
because of its fairly simple mathematical description, but it also approximates the true gravity
field very well (Hofmann-Wellenhof and Moritz, 2006). Approximately 99.9996% of the Earth’s
total gravity field can be accounted for by the normal gravity potential according to Jekeli (2015).
By introducing this normal potential, the Earth’s true gravity potential W can be written as

W = U + T, (2.13)

where T is called the disturbing potential and describes the remaining signal parts not represented
by the normal potential generated from the mathematical representation of the Earth’s gravity
field. The rotational ellipsoid is formed such that it fits with the definition of the geoid. In order
to do so, the ellipsoid must be constructed as an equipotential surface in the normal gravity field.
This equipotential surface with a value of U = U0 should approximate the geoid as good as possible.
From this statement the value of U0 is defined as

U = U0 = W0. (2.14)

A rotating ellipsoid, and accordingly a normal gravity field, is defined by the following 4 parameters
(Hofmann-Wellenhof and Moritz, 2006):
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� The angular velocity of the Earth ω

� The shape of the reference ellipsoid given by a and b, or one of them in combination with
the ellipsoids flattening f = a−b

a

� The value U0 = W0.

As was described in section 2, the gravity field consists both of gravitational and centrifugal
components. The normal gravity field’s centrifugal component, in the same way as for the true
gravity field, can be calculated from the analytical formula given in equation (2.10). The disturbing
potential can then be written as

T = W − U = (V + Φ)− (V N + Φ) = V − V N , (2.15)

where V N is introduced as the gravitational component of the normal gravity field. If the rotational
ellipsoid is selected such that it rotates with the same angular velocity ω, then it can clearly be
seen from equation (2.15) that the centrifugal potential cancels out when forming the disturbing
potential. ICGEM (2019) points out that there exists a mixture of terms in the literature to denote
W : global gravity field models, global geopotential models and global gravitational models. The
reason for this mixture is probably relating to that the centrifugal component can be calculated
precisely with an analytical formula, here again referring to equation (2.10). Still, since the gravity
field consists of both a gravitational and centrifugal component, throughout this thesis the global
models will be denoted as global geopotential models (GGM).

The normal gravity field can also, in the same way as for the gravitational potential of the Earth,
be represented with a spherical harmonic series expansion

V N (r, θ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

(
C̄nm cosmλ+ S̄nm sinmλ

)
P̄nm(cos θ). (2.16)

Due to symmetrical properties of the rotating ellipsoid, the normal gravitational field does only
depend on latitude. This also implies that the series expansion can only consist of terms invariant
of longitude, and only zonal harmonics which have an order of m = 0 fulfill this property. Since
the field also is symmetric with respect to the equator, it can only consist of zonal harmonics of
even degree n = {0, 2, 4, ..} (Gerlach, 2019). Taking all these properties into account, the normal
gravitational potential can be represented by

V N (r, θ, λ) =
GMN

RN

∞∑
n=0(2)

(
RN

r

)n+1

C̄Nn0P̄n0(cos θ), (2.17)

where normalised spherical harmonic coefficients {ānm, b̄nm} and normalised associated Legendre
functions P̄nm are used.

The disturbing potential T can be calculated according to equation (2.15), and using the spherical
harmonic series expansion representation of the respective gravitational potentials leads to

T (r, θ, λ) =
GM

R

∞∑
n=2

(
R

r

)n+1 n∑
m=0

(
∆C̄nm cosmλ+ ∆S̄nm sinmλ

)
P̄nm(cos θ). (2.18)

The ∆-coefficients {∆C̄nm,∆S̄nm} are the difference in spherical harmonic coefficients between
the true gravitational field V and the normal gravity field V N
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Table 2.1: The dimensioning factor Df and spectral eigenvalue λfn for different gravity functionals.
In addition, the cosine and sine part of the general expression, given by equation (2.22), using
spherical-harmonic series expansion of the anomalous potential T is represented.

f(T ) Df λfl KC
nm KS

nm

T GM/r 1 ∆C̄nm ∆S̄nm

−δg or Tr −GM/r2 (l + 1) (n+ 1)∆C̄nm (n+ 1)∆S̄nm

Trr GM/r3 (l + 1)(l + 2) (n+ 1)(l + 2)∆C̄nm (n+ 1)(l + 2)∆S̄nm

ζorN R 1 ∆S̄nm ∆S̄nm

∆g GM/r3 (l − 1) (n− 1)∆C̄nm (n− 1)∆S̄nm

∆S̄nm = S̄nm (2.19)

∆C̄nm =

{
C̄n0 − C̄Nn0 ; for m = 0, n = {2, 4, 6, 8}
C̄nm ; else

(2.20)

From the disturbing potential it is possible to derive several different gravity field functionals. All
quantities that can be derived from the gravity field are called gravity field functionals. These
quantities are related to the distrubing potential T through linear functionals. An alternative, or
more general expression, to express a functional F (T ) of the disturbing potential T can be written
as

F (T ) = Df
∑
n

λn
∑
m

P̄nm(cos θ)
[
∆C̄nm cosmλ+ ∆S̄nm sinmλ

]
, (2.21)

where Df and λfn are the gravity functional’s dimensioning factor and spectral eigenvalue, respec-
tively. Another representation that can be obtained by including the spectral eigenvalues inside
the summation sign, and accordingly obtained an expression for the functional F (T ) as

F (T ) = Df
∑
n

∑
m

P̄nm(cos θ)[(λn∆C̄nm︸ ︷︷ ︸
=KC

nm

) cosmλ+ (λn∆S̄nm︸ ︷︷ ︸
=KS

nm

) sinmλ]. (2.22)

In table 2.1, a summary of gravity functionals and their corresponding dimensioning factor Df

and spectral eigenvalues λfl is given. With dimensionless potential coefficients originating from a
GGM, degree variances of different gravity functionals can be calculated using equation (2.22) by

selecting the correct spectral eigenvalues λfl and dimensioning factor Df from table 2.1

Figure 2.1, known as a Meissl1 schema, shows the spectral relationship between the disturbing
potential and its first and second order derivatives Tr and Trr at the Earth’s surface h = 0 and at
satellite altitude h. A closer investigation of figure 2.1 reveals that through its dependency on the
spherical harmonic degree n, the higher order derivatives are more sensible for short wavelength
components of the disturbing potential.

Another important part is that the prediction using LSC will follow the well known remove-
compute-restore (RCR)-method, see further section 2.2.1. As LSC will be applied after the remove-
step, then the covariance function should express the remaining signal’s characteristics. Reduction
of the signal by use of a GGM leads to a bandlimited n = [Nmax,∞] residual signal. In case a
high-resolution GGM is used, for example EGM2008 with a maximum degree of Nmax = 2159,
then the residual field will be bandlimited to n = [2159,∞]. For n > 2159 there exist no potential
coefficients, and the covariance function must be calculated by other means.

1named after the Austrian geodesist Peter Meissl

10



Figure 2.1: A Meissl schema representing the spectral relationship between the disturbing potential
and its first and second order derivatives Tr and Trr at the Earth’s surface h = 0 and at satellite
altitude h. The figure originates from Gerlach (2019).

2.2 Global Geopotential Models(GGM)

ICGEM provides the scientific community with GGMs and solutions from dedicated time peri-
ods. An approximation to the real gravity field can be developed through different mathematical
representations, e.g., ellipsoidal harmonics, spherical harmonics, spherical radial basis function,
or spherical harmonic wavelets (Ince et al., 2019). As was described in section 2, all the basis
functions are harmonic and satisfy Laplace differential equation. The most common approach is
to describe the Earth’s gravity field by a spherical harmonic series.

A GGM is published through a set of spherical harmonic potential coefficients {C̄nm, S̄nm}, and
in more recent times it contains also the standard deviations {σC̄nm

, σS̄nm
} of the corresponding

potential coefficients. In addition, the constants R and GM are published such that gravity func-
tionals defined by the anomalous potential can be computed. Today, there exists both combined
and satellite-only GGMs, where the latter only uses satellite data.

An increasing number of GGMs exists in the geodetic community. One of the most frequently
used GGMs in the scientific community is EGM2008 (Pavlis et al., 2012). Since its publication in
2008, EGM2008 has served as a mathematical model of the Earth’s gravity field supporting research
fields like oceanography, unification of global height systems and orbit determination (Fecher et al.,
2015). With the more recent specialised satellite gravity missions, CHAMP, GRACE, GOCE and
latest GRACE-FO, an increasing number of observations has been collected since the publication
of EGM2008 back in 2008. With an increase in observations and better processing strategies,
comparison with GNSS-levelling shows that a 1 cm geoid from the combined GGM can be obtained
in areas with a high quality terrestrial gravity dataset available (Gruber and Willberg, 2019).

At ICGEM’s website, GGMs can be evaluated against each other, both in the spectral domain and
by comparison with GNSS levelling. From the model coefficients of a GGM, geoid heights N at
arbitrary locations can be derived by

N(φ, λ)GGM =
GM

γr

[
Nmax∑
n=2

(
R

r

)n n∑
m=0

(C̄nm cos(mλ) + S̄nm sin(mλ))P̄nm(sinφ)

]
, (2.23)
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Figure 2.2: A geometrical representation of the difference between height anomaly ξ and geoid
height N . The height of the topography ht refers to the ellipsoid. For areas where ht = N (or
H = 0) the quasigeoid and geoid coincide. The figure originates from Barthelmes (2009).

where the transition from disturbing potential T to geoid height N is described by the famous
Bruns2’ formula

N =
T

γ
, (2.24)

where γ is the normal gravity generated by the normal potential field V N . Equation (2.23) expresses
the geoid height N using an assumption that at the sea surface the quasigeoid coincides with the
geoid as shown by figure 2.2. This assumption is certainly of great importance as the Norwegian
height system NN2000 is based on normal heights, which in turns refers to the quasigeoid. Without
going into details about the Stokes’s and Molodensky’s theory, the assumption holds because of
absent in topographic masses above the point P when it is located in open-waters on the sea
surface. Using the same assumption for NN2000 means that these heights will coincide with the
geoide at sea.

An independent set of geoid height can be obtained at benchmark points which has been observed
both by geodetic levelling and GNSS according to

Ngeom = h−H, (2.25)

where the ellipsoidal height h is observed with GNSS and the orthometric height H is observed
from geodetic levelling. To finish off the discussion about difference between the quasigeoid and
geoid, it is noted that in case the heights H would have referred to NN2000, then equation (2.25)
would result in quasigeoid heights ξgeom. By forming the difference in geoid height from the two
different approaches, an external evaluation of the different GGMs can be performed by comparison
of

ε∆N = NGGM −Ngeom. (2.26)

2Named after the German mathematician Ernst Heinrich Bruns (1848-1919).
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As this comparison method depends on the access to benchmark points, it is well suited for local
or regional evaluation of a GGM from comparison with national GNSS-levelling datasets. The
validation results from ICGEM do not take into account the different error sources in equation
(2.25), so the comparison result will only be as good as the quality of the resources, global gravity
field model, and GNSS-levelling derived geoid undulation (Ince et al., 2019). Still, the comparison
will give a good estimate of the GGM quality. Gruber and Willberg (2019) provide a more detailed
description and analysis on comparison of recent GOCE-based gravity field models and pre-GOCE
models. In addition, they investigate how GNSS-levelling can be used to investigate possible
systematic errors in the global models, in the spirit levelling and in the GNSS height observations.
Their approach is also used by Zingerle et al. (2020) for comparison of recent high-resolution
GGMs.

In this thesis, GOCO06s (Kvas et al., 2021), EGM2008 (Pavlis et al., 2012) and XGM2019e2159
(Zingerle et al., 2020) will be used as GGMs in the remove-compute-restore(RCR) approach.
GOCO06s is the most recent satellite-only model, and is modelled up to a maximum degree of
Nmax = 300. EGM2008 and XGM2019e2159 are high-resolution GGMs with a maximum degree
of Nmax = 2190. The three models’ RMS-value compared to a global GNSS-levelling dataset
at ICGEM are reported to be 0.3341 m, 0.1877 m and 0.1732 m for GOCO06s, EGM2008 and
XGM2019e2159, respectively. Zingerle et al. (2020) show that XGM2019e2159 is the most con-
sistent model, and it also posses the lowest RMS-value among the models evaluated by ICGEM.
EGM2008 is included because it still serves as a reference GGM. Recent studies, such as Zingerle
et al. (2020); Gruber and Willberg (2019), has showed that recent GGMs perform better than
EGM2008 in most regions, where the improvement is largely explained by inclusion of new GOCE-
data and updated terrestrial datasets.

Even though no detailed description or derivation has yet been given on how LSC will be used for
predicting gravity anomalies, I still consider a short description on the application of GGM in the
remove-compute-restore (RCR)-method to be appropriate.

2.2.1 Remove-compute-restore (RCR)-method

The RCR-method is a well used estimation technique in physical geodesy. These steps account
for the removal and restoring of known signal components of the Earth’s gravity field. A GGM
represented through a spherical harmonic expansion with maximum degree of Nmax can resolve
signal components with a spatial resolution given by

λmax =
20 000 km

Nmax
. (2.27)

Vice versa, the spatial resolution of the observations defines the maximal degree Nmax which can
be determined from an observed dataset (Fecher et al., 2015). The removal of the signal’s long
wavelength components allows for a close investigation on the short wavelength characteristics of
the signal to take place. According to the RCR-method the residual signal will be bandlimited
to N = [Nmax,∞]. This is not 100% true, but for now this holds as a fact. A more detailed
description and treatment of the residual signal’s spectral characteristics will be treated in section
5.1. In principle, the same signal parts will be added back after the LSC prediction to recreate the
full signal using equation (2.28), so the selection of a GGM was initially expected to not be of great
importance. However, as part of a preprocessing step, Nguyen et al. (2020) uses GNSS-levelling
comparison, similar to the approach found in Ince et al. (2019), to assure that the best GGM
in the area under consideration is used. The analysis done by Gruber and Willberg (2019) is to
be considered as best guidelines. Instead of direct comparison between GNSS levelling and geoid
heights derived from a GGM, Gruber and Willberg (2019) applies a planar correction for reducing
systematic effects such as biases and tilt in the regional GNSS levelling datasets. Comparison of
geoid heights derived from the GGMs and GNSS-levelling at benchmarks goes beyond this thesis,
but by using three different GGMs, EGM2008, XGM2019e2159 and GOCO06s, then potential
effects relating to the model selection should become visible.
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Today EGM2008 (Pavlis et al., 2012) is the most used GGM, while in near future a new release,
EGM2020, will be available. Reduction by a GGM gives a more homogeneous and smooth signal
than the original geoid signal, and several studies, such as Andersen (2013); Willberg et al. (2019),
have shown that using LSC on the residual signal gives favourable results.

A modified approach named residual least-squares collocation (RLSC) has been developed by Will-
berg et al. (2019), where RLSC uses error-covariance matrices instead of signal covariance matrices.
Willberg et al. (2019) shows by a numerical closed-loop simulation of regional geoid modelling that
RLSC achieves better results than standard LSC. They points out that the favourable results comes
of how the residual signal fulfills the stochastic properties compared with the full signal.

After the prediction of gravity anomaly by LSC is carried out, then the gravity field signal’s long
wavelength is added back again in form of gravity anomalies derived from SHS as

∆g(θ, λ) =
GM

R2

Nmax∑
n=2

(n− 1)

n∑
m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)Pnm(cos θ), (2.28)

with {∆C̄nm,∆S̄nm} the dimensionless normalised potential coefficients of the anomalous gravity
field and P̄nm the associated Legandre functions of degree n and order m. This equation states
that the gravity anomaly at a point P (θ, λ) is based on a sum of productse between spherical
harmonic coefficients and the corresponding associated Legendre functions. A more compact form
of the gravity anomalies ∆g can be obtained by introducing two new variables

R̄nm = P̄nm cosmλ (2.29)

S̄nm = P̄nm sinmλ, (2.30)

and then the spherical harmonic representation of gravity anomalies ∆g, given by equation (2.28),
can be written as

∆g =
GM

R2

∞∑
n=2

(n− 1)

n∑
m=0

(
∆C̄nmR̄nm + ∆S̄nmS̄nm

)
. (2.31)

The above expression for gravity anomalies will be very convenient when the covariance function
C∆g(ψ) is derived by using a spherical harmonic expansion.

2.2.2 Degree variances

From equation (2.27) it is evident that potential coefficients of different degree n resolves different
signal components with different spectral characteristics. How much a spherical harmonic coef-
ficient of a certain order contributes to the gravity field’s total signal variance can be expressed
by

cn =

n∑
m=0

[
∆C̄2

nm + ∆S̄2
nm

]
, (2.32)

where cn are the dimensionless degree variances. The degree variances give information on the
spectral distribution of signal power (squared amplitude), i.e., they tell us which degrees (which
spectral band) contribute most to the signal (Gerlach and Ophaug, 2021). In section 5.1.7, see for
example figure 5.12 for GOCO06s, it can clearly be seen that potential coefficients of higher degree
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contribute less to the total signal variance. By using a satellite-only model, such as GOCO06s,
with lower spatial resolution it is possible to obtain a higher signal-to-noise ratio for the reduced
signal. In order to increase the signal-to-noise ratio, also the high-resolution GGM has been
truncated to a maximum degree of Ncut = 1000. In the service provided by ICGEM (http:
//icgem.gfz-potsdam.de/calcpoints -last accessed: 27.03.2021) no gentle truncation of the
model is applied. The different ICGEM-services, especially the one which allows for calculation of
gravity functionals from a specific GGM at user-defined points, have provided essential support in
the work with this thesis.

2.2.3 Commission error

The GGM is a mathematical representation, i.e., an approximation, of the Earth’s gravity field
and it will accordingly also contain modelling errors. In addition to the set of potential coefficients,
the GGM contains a corresponding set of standard deviation for the potential coefficients. The
error standard deviation of a certain GGM up to a given degree N is calculated in a similar way
as degree variances

σcom =

√√√√ N∑
m=0

[
σ2
C̄nm

+ σ2
S̄nm

]
, (2.33)

where standard deviations of the potential coefficients {C̄nm, S̄nm} are used, instead of the potential
coefficients themselves as in the case of degree variances. The value calculated using equation (2.33)
is commonly called the commission error of the model (Gerlach, 2019). The maximum resolution
of a GGM is defined where the commission error surpasses the signal strength.

2.2.4 Omission error

Another quantity which is of relevance when working with GGMs is the omission error. The signal
content above the maximum degree Nmax of a GGM, addresses the omission error (Gerlach, 2019).
It represents the signal strength in the spectral band above the maximum degree of the GGM.
Normally, a GGM is used up to its maximum degree Nmax, but in this thesis, a truncation of the
GGM to a lower spherical harmonic degree Ncut is done in an attempt to increase the signal-to-noise
ratio. This also allows the signal content above Ncut to be modelled using the potential coefficients
of a high-resolution GGM in the spectral band Ncut < N ≤ Nmax. Above the GGM’s maximum
degree Nmax there exist no potential coefficient usable for calculating the degree variance, then
the omission error needs to be calculated by other means. Several models exists for modelling the
degree variance cn above the GGM’s maximum degree. Two examples of degree variance models
are the model derived by Kaula (1966):

cn ≈
1 · 10−10

n3
, (2.34)

which provides dimensionless degree variances, and another possibility is to derive degree variances
of the anomalous potential T using the model by Tscherning and Rapp (1974):

cn(T, T ) =
A(n− 1)

(n− 2)(n+B)
(2.35)

valid for n > 2. Degree variances for other gravity functionals are obtained by combining the
appropriate dimensioning factor and spectral eigenvalue. In Nguyen et al. (2020) and Knudsen
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(1987) the Tscherning/Rapp covariance model, as given by equation (2.35) is used to calculate
degree variance for N > Nmax, and it is also selected as the preferable choice within this thesis. As
the model parameters A and B are highly correlated, B is fixed to a value of 24, which is also the
value selected by Knudsen (1987), while Nguyen et al. (2020) uses a value of 4. Initial tests, not
shown here, confirms that fixing the value of B to a specific value has no significant effect since A
will then be scaled accordingly. A more detailed explanation about the covariance modelling will
be given in section 5.1.7.

16



Chapter 3

Least-squares collocation (LSC)

LSC was already implemented on computers in the early 1960s (Tscherning, 1972). With entering
into the era of supercomputers some previous estimation techniques can now be used for gravity
field modelling. LSC, due to its high computational demand, is one of those techniques who has
gained on the improvements in computational powers. Even today, global gravity field modelling
challenges the computational bounds of supercomputers (Pail et al., 2017). As described in section
2.2.1, the RCR-method is popularly used for regional gravity field modelling. The method uses
a GGM for removing and restoring the long wavelength components of the Earth’s gravity field.
When working with LSC the underlying assumption is that we assume the signal to be stochastic.
This assumption means that (Gerlach and Ophaug, 2021):

� the signal does not contain any deterministic components (like trends or biases) and as such

� the signal fluctuates around zero (the function’s mean value is zero) and is

� isotropic (no dependence on azimuth or direction) and

� homogeneous (signal characteristics do not vary from place to place)

Moritz (1980) showed that the anomalous gravity field of the Earth, T , may be described as a
stochastic process, expressing its spatial variability. The signal strength of the Earth’s gravity
field reduces with altitude. This causes spaceborne observation techniques only to measure the
medium and long wavelength components of the Earth’s gravity field. Terrestrial observations, on
the other hand, can observe the full gravity signal, and thereby also observe the gravity field’s short
wavelength components. In addition to observing different signal components of the gravity field,
the observation techniques observe different types of gravity functionals. Tscherning (2001) states
that LSC is well suited to handle different types of observed gravity functionals, where combination
of the different gravity functionals is carried out according to their statistical relationship described
through the auto-covariance and cross-covariance functions. A natural question would be how
spaceborne and high-resolution terrestrial gravity data can be combined in an optimal way. An
optimal combination of local (terrestrial) gravity data and global gravity models derived from
satellite data is achieved by assigning relative weights based on their respective covariance matrices.

This thesis will focus on using a GGM for regional applications. The common way is to remove
the gravity field’s long-wavelength parts using a global model. After this removal is done, a local
Tscherning-Rapp covariance model is fitted to the residual signal. When working with LSC, which
is a statistical estimation technique, the signal must fulfill the given stochastic properties in order
to give reliable results. In regional or local applications, the average of ∆g is not necessarily zero.
Large scale structures with wavelengths larger than the extent of the study area will show up
as regional trends. Subtraction of a high-resolution GGM is applied to make sure the stochastic
assumptions are met (Gerlach and Ophaug, 2021). To further reduce and ensure that no systematic
effects are present relating to the global models, the residual signal should also be reduced by its
mean value in the area of interest.
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Large parts of this section is based on Dale (2021). First a brief introduction to the concept
of covariance functions will be given, and afterwards least-squares prediction is derived. Further
details about covariance functions, which is the key component in LSC, is given in section 4. At
last, the expression for least-squares collocation is derived from Stokes’s formula.

3.1 Deriving least-squares prediction

The geoid height can be calculated using Stokes1’s formula

NP =
R

4πγ

∫∫
σ

S(ψPQ)∆gQdσ, (3.1)

where geoid height N at the computation point P is derived by globally integrating gravity anoma-
lies ∆g weighted by the Stokes function S(ψ). Gravity anomalies are only obtained at discrete
points, but in order to apply Stokes equation a continuous representation of gravity anomalies is
needed. Due to the fact that gravity anomalies are only obtained at discrete points, a way to pre-
dict gravity anomalies as a continuous function must be obtained. A suitable prediction method
should both take signal variance and signal correlation into account, and a covariance function
does exactly this.

In this section a derivation will be given on how least-squares-collocation(LSC) can be used for
predicting gravity anomalies ∆g from residual geoid heights ∆N . First an introduction to what
a covariance function is given, and next how the covariance function builds the foundation for
creating an optimal prediction method with respect to average prediction error.

3.1.1 The idea of a covariance function

In general, when selecting an interpolation method good knowledge of the target quantity’s be-
haviour is important. All the following derivations will be shown using gravity anomaly ∆g as
an example, but it is of course valid for any other quantity. As has already been stated, grav-
ity anomalies ∆g are only measured at discrete points on the earth’s surface. To predict gravity
anomalies in an optimal way would be preferable. When searching for such a method then its
performance on the entire earth’s surface should be investigated. If the normal gravity field is
created from an ellipsoid with the same mass as the earth, and the same potential as the geoid,
then the global average of the gravity anomaly ∆g will be 0. Mathematically this is stated as

M{∆g} =
1

4π

∫∫
σ

∆g dσ = 0, (3.2)

where the integration is done over a unit sphere with area σ and M denotes the average operator.
A better impression on how a function behaves can be obtained by calculating the product of two
distinct points’ function values. The covariance function characterizes the statistical correlation
between a quantity’s value at two points separated by a distance ψ. Creating products for all
point pairs separated by a certain distance ψ, and then taking the average for all observation pairs
separated by the same distance over the entire earth’s surface leads to a one dimensional function
only depending on the distance ψ called the covariance function

cov(∆g, ψij) =M{∆gi∆gj} =
1

4π

∫∫
σ

∆gi∆gjdσ. (3.3)

1Named after the Irish mathematician Sir George Gabriel Stokes (1819-1903
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The variance is a special value of the covariance function at C(s = 0), which of course implies that
∆gi = ∆gj . From statistics, variance describes the range of function values, while the function’s
smoothness can be described through the covariance or its normalized version, the correlation.
The correlation length ε is commonly used to describe the smoothness of a function, and it is
defined as the distance where the covariance function has dropped to half of its maximum value,
mathematically stated as

C(ε) =
1

2
C0. (3.4)

3.1.2 Interpolation

Now a short look will be taken on the application of a covariance function C(ψ) in LSC. As briefly
explained earlier, good knowledge of a function’s behaviour is necessary to come up with a good
approximation. In section 3.1.1 a statistical approach was used to describe a signal through its
covariance function. Interpolation is describing the process of how to assign individual weights to
the observations at hand, when calculating the value at a new location P based on the original
observations.

Prediction of gravity anomaly ∆g̃ at P is a linear combination of the function values given at the
data points Qi, i.e.,

∆g̃P =

I∑
i=1

αPi∆gi = ~αPi ·∆~gi, (3.5)

where αi is the weight assigned to the different data points Qi. When talking about selecting an
interpolation method this means in particular to assign values to the α-coefficients following some
criteria. In the following, a closer look will be taken on how these weights can be calculated in
such a way that it leads to minimizing the average square error M{ε2}.

3.1.3 The error-covariance function

As in any other field of study, estimate of a quantity should always be provided together with its
correspond uncertainty. The whole purpose with interpolation is to estimate the target quantity’s
value at a locations that does not have any observation. To decide upon the best method, then a
certain criteria needs to be defined, so the different methods can be compared.

The accuracy of any prediction method is described by the prediction error

εP = ∆gP −∆g̃P = ∆gP −
∑
i

αPi∆gi (3.6)

which is the deviation between the true ∆gP and the predicted value ∆g̃P . The best prediction
method is the one which on average (average over the entire prediction area) yields the smallest
prediction error mP , i.e., the one which fulfills the condition

m2
P = M{ε2} = min. (3.7)

The value mP is called the standard error of the prediction, so equation (3.7) is representing the
square of this value. Inserting equation (3.6) into equation (3.7) and after some calculation the
square of the standard error can finally be written as
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m2
P =M{ε2} = C0 − 2αPiCiP + αPiCijαjP .

For further explanation and derivation, I will refer to either Hofmann-Wellenhof and Moritz (2006);
Gerlach and Ophaug (2021).

3.1.4 Least-squares prediction

So far, no numerical values have been assigned to the α-coefficients. In the previous section it
was stated that the prediction should fulfill the condition given by equation (3.7). An optimiza-
tion problem like this is solved by finding for which α-coefficients the derivative of m2

P is zero.
Mathematically this is calculated by

∂m2
P

∂αPi
= −2CPi + 2αPkCik = 0,

and solving for α gives

αPk = C
(−1)
ik CPi. (3.8)

Now, as an expression for the α-coefficients which minimizes the square error have been found,
then equation (3.8) can be inserted again in equation (3.5) giving

∆g̃P = αPk∆gk = C
(−1)
ik CPi∆gk. (3.9)

Equation (3.9) expresses the predicted gravity anomaly ∆ĝP at a point P in terms of the covariance
function C. The prediction based on equation (3.9) is known as Least-Squares Prediction(LSP),
since the average prediction error is minimized. This prediction uses α-coefficients containing
information on the signal characteristics through the covariance function.

3.1.5 Standard error of least-squares prediction

An expression for the gravity anomaly ∆ĝP in terms of the covariance function which guarantees
to minimize the square error has been established through equation (3.9). The next step is to also
express the square standard error m2

P by the covariance function C.

Inserting the α-coefficient which leads to minimum square error, i.e, the coefficients given by equa-
tion (3.8), into equation (3.7) gives an expression for the squared standard error in the prediction
as

m2
P = C0 − 2C

(−1)
ik CPiCPk + C

(−1)
ik CPiC

(−1)
jl CPjCkl.

After some manipulation m2
P can be further simplified to its final form as

m2
P = C0 − C(−1)

ik CPiCPk. (3.10)

3.2 Derivation of least-squares collocation

To keep track of the findings so far a short summary is necessary: With the help from statistical
treatment a continuous representation of gravity anomalies ∆g has been obtained using least-
squares prediction given by equation (3.9), and the corresponding standard error can be calculated
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from equation (3.10). Both equations depends on the knowledge of a covariance function C(ψ),
where a detailed description of both empirical and global covariance functions can be found in
section 4. In this section, least-squares collocation will be derived from Stokes’ equation based on
the findings so far.

As was described in the introduction of section 3.1, the requirement for applying Stokes’ equation
is a continuous representation of gravity anomalies ∆g. The findings from section 3.1 showed that
gravity anomalies at arbitrary locations can be predicted using the least-squares prediction formula

∆g̃P = αPk∆gk = C−1
ik CPi∆gk.

Through the least-squares prediction formula, a continuous representation of gravity anomalies
is realized. From the above formula it is clear that in order to realize a least-squares prediction
of gravity anomalies, the covariance between observation points and cross-covariance between ob-
servation points and computation points are needed. Inserting the continuous representation of
gravity anomalies, given by the least squares prediction, into Stokes’ formula gives

NP =
R

4πγ

∫∫
σ

S(ψPQ)∆gQdσQ

=
R

4πγ

∫∫
σ

S(ψPQ)CQiC
−1
ij ∆gidσQ.

(3.11)

The covariance matrix Cij does not depend on the integration point Q, so it can be taken out of
the integral resulting in

NP =

 R

4πγ

∫∫
σ

S(ψPQ)CQidσQ

 · C−1
ij ∆gi. (3.12)

Now a closer look on the terms within the brackets of equation (3.12) will be taken. An important
component in Stokes’ equation is the Stokes function S(ψPQ), which works as a weight for the
different gravity anomalies ∆gQ. The Stokes function S(ψ) is a one-dimensional function only
depending on the spherical distance ψ between the calculation point P and the integration point
Q, and it can be expressed through a harmonic expansion as

S(ψPQ) =

∞∑
n=2

2n+ 1

n− 1
Pn(cosψPQ), (3.13)

where n denotes the spherical harmonic degree. The elements in Cij can be described using the
spherical harmonic expansion of the covariance function, i.e. from equation (4.1)

C∆g(ψPi) =

∞∑
n=2

c∆gn Pn(cosψPQ).

Representing both the Stokes function and the covariance matrix by their spherical harmonic
expansion, then the brackets of Stokes’ equation can be written as

R

4πγ

∫∫
σ

S(ψPQ)CQidσQ =
R

4πγ

∫∫
σ

[ ∞∑
n=2

2n+ 1

n− 1
Pn(cosψPQ)

]
·

[ ∞∑
p=2

c∆gp Pp(cosψQi)

]
dσQ.

(3.14)
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Through the decomposition formula a mathematical relationship between the Legendre polynomial
and fully normalized spherical harmonics is established according to

Pn(cosψPQ) =
1

2n+ 1

n∑
m=0

(R̄nm(P )R̄nm(Q) + S̄nm(P )S̄nm(Q)), (3.15)

where the fully normalized spherical harmonics R̄nm and S̄nm are evaluated at the calculation
point P and the integration point Q. Inserting the newly formed expression for the Legendre
polynomial, Pn(cosψPQ), gives an expression for the brackets as

R

4πγ

∫∫
σ

S(ψPQ)CQidσQ

=
R

4πγ

∫∫
σ

[ ∞∑
l=2

2l + 1

l − 1
· 1

2n+ 1

l∑
m=0

(R̄lm(P )R̄lm(Q) + S̄lm(P )S̄lm(Q))

]

·

[ ∞∑
p=2

c∆gp ·
n∑

m=0

(R̄lm(P )R̄lm(Q) + S̄lm(P )S̄lm(Q))

]
dσQ.

(3.16)

By using the orthogonality property of fully normalized spherical harmonics, which states that only
the integral of products between fully normalized spherical harmonics of same degree and order
n = p and m = q will yield a value of n, and all other combinations will result in 0, then the
following expression can be obtained

R

4πγ

∫∫
σ

S(ψPQ)CQidσQ =
R

γ

∞∑
n=2

1

n− 1
· c∆gn

2n+ 1
·

n∑
m=0

[
R̄nm(P )R̄nm(Q) + S̄nm(P )S̄nm(Q)

]
.

(3.17)

Recognizing that the last part of equation (3.17) can be replaced with the Legendre polynomial,
according to the decomposition formula, then equation (3.17) can be further simplified to

R

4πγ

∫∫
σ

S(ψPQ)CQidσQ =
R

γ

∞∑
n=2

1

n− 1
· c∆gn Pn(cosψPi). (3.18)

Explicitly writing the expression for gravity anomaly degree variances c∆gn , where the expression is
given by the generalized formula for degree variances cfn in section 4, equation (4.6), alongside with
the spectral eigenvalues λfn and dimensioning factor Df for gravity anomaly ∆g found in table 2.1,
then equation (3.18) can be further described by

R

4πγ

∫∫
σ

S(ψPQ)CQidσQ =

∞∑
n=2

R

γ

1

n− 1
· γ2(n− 1)2cnPn(cosψPi)

=

∞∑
n=2

R · γ(n− 1)cnPn(cosψPi).

(3.19)

Comparing the general formula for degree variances cfn and equation (3.19) a pattern can be found,
showing that it contains the spectral eigenvalue and dimensioning factor of gravity anomaly and
geoid height. Accordingly, equation (3.19) describes the cross-covariance between gravity anomaly
and geoid height, and equation (3.19) can then be further reduced to
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R

4πγ

∫∫
σ

S(ψPQ)CQidσQ =

∞∑
n=2

Rγ(n− 1)cnPn(cosψPi) = CN∆g(ψPi). (3.20)

A final equation for the brackets of Stokes’ equation, as it was written in equation (3.12), can now
be expressed in terms of the cross-covariance between gravity anomaly and geoid height. Inserting
equation (3.20) into equation (3.12) gives

NP = CN∆g
Pi (C∆g

ij )
−1

∆gi. (3.21)

Equation (3.21) is known as Least-Squares Collocation (LSC). Since all the derivations from equa-
tion (3.1) to equation (3.21) is only mathematical derivations, then both equations need to represent
the same quantity. So, Least-Squares Collocation gives exactly the same solution as Stokes integra-
tion, but the major difference is that LSC does not require a continuous representation of gravity
anomalies, only discrete point observations. Here I wish to emphasize on one important aspect
and understanding of LSC. If it is possible to describe the covariance of the observed signal and
its cross-covariance with the target quantity, then a prediction can be made according to equation
(3.21).

3.3 Validation of estimates

The accuracy of a prediction result can be represented either using empirical or formal errors, and
often a quantity in real life will be presented alongside with an estimate of its standard deviation
s = σ̂ or variance s2 = σ̂2. For completeness, a description of both empirical and formal errors will
be given in this section since both of them will be used in assessing the numerical results later in
this thesis. The two error representations differ, one resulting solely from error propagation and
mathematical relationship, while the other uses deviations between the predicted value at points
which also contain independent measurement of the quantity.

3.3.1 Empirical errors

When new measurement systems and techniques are being developed, then a verification following
a closed-loop simulation is often carried out. In a closed-loop simulation, both the input and output
is known, i.e., values of the target quantity in the prediction area are known from independent
measurements. In this way it is possible to compare different methods and processing strategies
against each other with real observations. In this thesis, the implementation of LSC in MATLAB
is validated in a near closed-loop simulation against an external dataset. The external dataset is
a result of an estimation procedure using mainly the same datasets, and thereby the simulations
is strictly a near closed-loop simulation, and not, exactly a closed-loop simulation. A closed-
loop simulation can be created by leaving out a number of measurements when calculating the
covariance functions. In this way an existing independent set of observations at P is available and
can be used for validation. These observations are to be considered as ground truth.

The empirical error is defined as the difference between measured and predicted values at the
points P . For the gravity anomaly the empirical error is given by

semp = σ̂emp = ∆gP −∆g̃P . (3.22)

If several approaches exists for estimating ∆̃gP , then the approach resulting in smallest empirical
error should be considered as the superior. As has been mentioned several times, calculating
empirical errors requires independent observations at the prediction locations.
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3.3.2 Formal errors

If a set of independent values at the prediction points is not available, then empirical errors can
not be estimated as it requires available observations at the prediction points. Formal errors,
in contrast to empirical errors, can always be calculated. These errors are calculated by the
mathematical relationship between the measurements and the target quantities. Formal errors
can be estimated using error-propagation, and in the case when predicting geoid heights N from
gravity anomalies ∆g the formal errors can be obtained from

ΣNP = CNP − C
N∆g
Pi (C∆g

ij )−1CN∆g
jP , (3.23)

where ΣNP represents the error covariance matrix of all computation points P , Cij the covariance

matrix between all data points, and the cross-covariance matrix CN∆g
jP between data points and

computation points. As can be seen from equation (3.23) the observations at Q are not necessary,
and the corresponding covariance matrices can be calculated using methods which will be described
in section 4.
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Chapter 4

Covariance functions

Working on a global scale the covariance function for gravity anomaly C∆g(ψ) would conveniently
be represented using a spherical harmonic representation. Global covariance functions play an
important role as they describe the field’s spatial variability. In section 3, covariance functions
played a fundamental role in the derivation of LSC. They describe the stochastic relationship
between the observations through the auto-covariance matrix, e.g, C∆g, and also the statistical
relationship between the observation and target quantity through the cross-covariance matrix, e.g.,
CN∆g. One advantage with LSC is that it allows to use a mixture of different data types, such as
geoid and gravity anomalies, when estimating the anomalous potential T . In addition, by LSC it
is possible to estimate arbitrary gravity field functionals from inhomogeneous point observations
(Moritz, 1980).

In this section the derivation of two different types of covariance functions will be given. From
the potential coefficients of a GGM it is possible to derive global covariance functions, while local
empirical covariance functions are estimated from observations within the study area. To adapt the
global covariance functions to local conditions they are scaled with a factor based on the variance-
ratio between the global and local covariance functions. A detailed explanation of the covariance
modelling used in this thesis will first be given in section 5.1 after the theoretical foundation on
the transition from residual geoid height ∆N to gravity anomalies ∆g has been given.

4.1 Global covariance functions

Recalling the statistical properties of the anomalous gravity field itself, then already some condi-
tions are imposed on the spherical harmonic expansion of C∆g(ψ). Knowing that the covariance
function is defined to be an isotropic function, i.e. angular independency, then the spherical har-
monic expansion cannot contain terms depending on azimuth. When expressing a global covariance
function in terms of a spherical harmonic expansion, then zonal harmonics, i.e. those harmonics
with an order of m = 0, are the only terms fulfilling this criteria. With an order of m = 0 all Snm
terms will vanish because sin(0 · λ) = 0, and a spherical harmonic representation for the global
covariance function of gravity anomalies C∆g(ψ) will look like

C∆g(ψPi) =

∞∑
n=2

c∆gn Pn(cosψPQ). (4.1)

From equation (4.1) it can be seen that Legendre polynomials Pn are used instead of associated
Legendre functions Pnm. The calculations of Legendre polynomials are implemented on computers
by recursive algorithms due to better numerical stability than using Rodrigues’ formula. On a
computer, recursive algorithms are implemented for calculating the associated Numerically, recur-
sive Covariance functions based on equation (4.1) uses potential coefficients from a GGM, and
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they will therefore be called global covariance functions. An illustration of a covariance function
is shown in figure 4.1, which shows that the covariance function decreases quite rapidly for larger
distances. The correlation length ξ is defined as the distance where the covariance function has
dropped to half of its maximum value, and it is often used for describing the signal’s characteristic.
A smooth signal will have a larger correlation length compared to a rough signal.

Figure 4.1: An illustration of a covariance function together with its descriptive parameters. C0 -
Signal variance and ξ - correlation length. The figure originates from Gerlach and Ophaug (2021).

To get a deeper understanding of global covariance functions a short derivation of the degree
variances c∆gl will be given in the following. The signal variance is defined as the global mean of
the function under consideration, in the above case this was gravity anomaly ∆g. Expressing the
gravity anomaly ∆g by its spherical harmonic expansion, equation (2.31), the signal variance can
be written as

σ2(∆g) =
1

4π

∫∫
σ

[
GM

R2

∞∑
n=2

(n− 1)

n∑
m=0

(∆C̄nmR̄nm + ∆S̄nmS̄nm)

]
· ...

...

[
GM

R2

∞∑
p=2

(p− 1)

p∑
q=0

(∆C̄pqR̄pq + ∆S̄pqS̄pq)

]
,

(4.2)

where spherical degree and order numbers are labelled {n,m} in the first term of the product and
{p, q} in the second term. A detailed derivation will not be given in this thesis, for further details
it is referred to Gerlach and Ophaug (2021); Hofmann-Wellenhof and Moritz (2006). By applying
the orthogonality relations of the spherical harmonics, then equation (4.2) can be simplified to

σ2(∆g) =

(
GM

R2

)2 ∞∑
n=2

(n− 1)2
n∑

m=0

(∆C̄2
nm + S̄2

nm), (4.3)

where the spectral eigenvalue and dimensioning factor of gravity anomaly, see section 2.1, can be
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recognized. Multiplying those two factors inside the summation signs and collecting terms gives

σ2(∆g) =

∞∑
n=2

n∑
m=0

[(
GM

R2
(n− 1)∆C̄nm

)2

+

(
GM

R2
(n− 1)∆S̄nm

)2
]

=

∞∑
n=2

n∑
m=0

[(
∆C̄∆g

nm

)2

+ (∆S̄∆g
nm)

2

]
︸ ︷︷ ︸

c∆g
n

=

∞∑
n=2

c∆gn .

(4.4)

Multiplying the spectral eigenvalue, dimensioning factor and the dimensionless potential coefficients
gives the degree variance c∆gl . Equation (4.4) shows that the signal variance of gravity anomaly
σ2(∆g) is calculated as the sum over all degree numbers l. Following this argumentation the
individual terms represent the contribution of each degree l to the total variance. An alternative
form of writing equation (4.4) would be to keep the spectral eigenvalue and the dimensioning factor
outside of the summation over m, since they only depend on n. The degree variance can then be
written as

c∆gn =

(
GM

R2
(n− 1)

)2 l∑
m=0

[
∆C̄2

nm + ∆S̄2
nm

]
︸ ︷︷ ︸

=cn

, (4.5)

where the second term describes the dimensionless degree variances cl.

From equation (4.5) a pattern can be seen, allowing for generalising the computation of degree
variances for arbitrary functionals. Calculation of degree variance of an arbitrary gravity functional
f can be written as

cfn = (λfn)2 · cn, (4.6)

and the total signal variance of an arbitrary gravity functional is then given by

σ2(f) =

∞∑
n=2

(λfn)
2 · cn. (4.7)

When working with LSC the statistical relationship between different gravity functionals are
needed, see for example equation (3.21) where the cross-covariance between geoid height N and
gravity anomaly ∆g is required. Already in 1974 closed expressions for covariance and cross-
covariance for ∆N and ∆g were derived by Tscherning and Rapp (Tscherning and Rapp, 1974):

C∆Ni∆gP =
a

γi

N∑
n=2

cn
n− 1

rP

(
R2
E

rirp

)n+1

Pn cosψ+
1

γi

∞∑
n=N+1

A

(n− 2)(n+ b)

1

rP

(
R2
B

rirP

)n+1

Pn cosψ

(4.8)
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and

C∆Ni∆Ni
= a

N∑
n=2

cn
1

γiγj

(
R2
E

rirj

)n+1

Pn cosψ +

∞∑
n=N+1

A

(n− 2)(n+ b)

1

γiγj

(
R2
B

rirj

)n+1

Pn cosψ,

(4.9)

where a: additional parameter r: geocentric radius of the point; γ: normal gravity on the ellipsoidal
surface; RE : the readius of the Earth; A: is a constant; b: is a constant and RB is the radius
of the Bjerhammer-sphere. All other quantities are defined as in the previous sections. The
analytical closed expression derived by Tscherning and Rapp are used by Nguyen et al. (2020),
where the parameters α, A and RB are determined in a least-squares adjustment. Their study
works in many ways as a guideline for the processing flow in this thesis. The procedure for selecting
the best possible GGM within the study area was also treated in Nguyen et al. (2020). Gruber
and Willberg (2019) give a full explanation on the assessment of a GGM in local areas based on
comparison with GNSS-levelling and computation of geoid slopes. A more detailed explanation on
selection of GGM can be found in section 2.2.

4.2 Scaling of the global covariance function

From the observation made so far it has become clear that a covariance function is only valid for
the same gravity functional it was built for, and also for the area under consideration. This last fact
becomes important when using a global covariance model. To verify that the global covariance
function, derived using potential coefficients from a GGM, represents the signal characteristics
for the area under consideration it should be compared with an empirical covariance function.
If comparison of the global and empirical covariance function reveals differences, then the global
covariance function can be scaled such that both functions gets the same variance. The scaling
coefficient α can then be computed according to

α =
C0empirical

C0global

, (4.10)

where C0empirical
and C0global

are the variance of the empirical and global functions, respectively. In
case the empirical covariance function does not approach 0 with increasing distance, or it oscillates
around a value different from 0, then some deterministic part is still present in the signal, and
thereby it also violates with the signal properties stated in section 3. The handling of systematic
and deterministic effects are more thoroughly discussed in section 5.1.5 and 6.

4.3 Empirical covariance function

In addition, to derive covariance functions using closed analytical expression, it is possible to derive
empirical covariance functions if observations of the gravity functional are available in the area
under consideration. A covariance function describes the statistical correlation of a function’s value
at two points Qi and Qj separated by a certain distance ψij . The covariance is a statistical measure
derived from the average of all point pairs within the same distance class. In order to do so, several
distance classes needs to be defined, ideally following a specific rule. Defining different classes and
average over all observations falling into each distance class will give a more robust result in a
statistical sense, because the average value is based on a higher number of observations. From
an intuitive understanding it is expected that the correlation of the two function values should
approach 0 with increasing distance.

After an empirical covariance function has been calculated, then it would be preferable to fit an
analytical function that resembles this empirical function well in order to determine covariance
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values for arbitrary distances. There exists several different analytical functions for this purpose,
and among them are exponential functions, Hirvonen’s model or Tscherning/Rapp as given by
equation (4.9) and equation (4.8). In this thesis, the empirical covariance function will only be
used as a comparison and scaling for the global covariance function.

4.3.1 How to define distance classes

A question when deriving an empirical covariance function is how to select distance classes. Several
attempts have been made in order to find a clever way, but none of these approaches has proven
to be superior to any of the other methods. One obvious thing is that all distance classes should
contain a similar amount of observations, otherwise the mean value for each class will not be
determined with the same accuracy, as this is dependent of the number of observations. If the
last class, containing those point pairs separated furthest from each other, cannot be filled up,
then these points will be disregarded when forming the empirical covariance function. This is done
in order to keep a simple and efficient implementation in MATLAB allowing for working with
matrices. The relative distribution, not shown here, of point pairs has a maximum for smaller
distance, so the potential effect of leaving out those point pairs separated furthest from each other
can be neglected. On the other hand the distance distribution between point pairs is not evenly
distributed, and then by fixing a number of observations in each class will cause that some classes
may cover a large distance span. No matter how the distance classes are defined it will have this
side-effect. Quantifying the possible effect on the procedure of selecting distances classes has not
been possible within this thesis. In order to do so, a closer inspection of the distance distribution
for all point-pairs has to be made, but this goes beyond the scope of this thesis.

4.3.2 Calculation of spherical distances

It is by now well established that a one dimensional covariance function depending only on the
spherical distance C(ψ) shall be used for describing the function’s behaviour. In all the derivations
the distance variable has been denoted with ψ, instead of its planar relative s. From the fact
that LSC will be implemented on a fairly large area, with a dimension of 2◦ × 2◦, it is necessary
to use spherical distance, instead of planar distance. The spherical distance between two points
P (φP , λP ) and Q(φQ, λQ) can be calculated using

cosψPQ = sinφPφQ + cosφP cosQ cos(λP − λQ). (4.11)

When implemented on computers with low float precision a spherical distance calculated by equa-
tion (4.11) can cause large rounding errors for short distances. Haversine’s equation given by

sin2

(
φPQ

2

)
= sin2

(
φP − φQ

2

)
+ sin2

(
λP − λQ

2

)
cosφP cosφQ (4.12)

is better conditioned for small distances and has been implemented in MATLAB.
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Chapter 5

Satellite altimetry

Altimetry satellites are active sensors providing measurements of the Earth’s surface height using
radar techniques. Satellite altimetry are used in observing the Earth’s water bodies, and among the
parameters they can determine are time-varying sea-surface height (ocean topography), coverage
of ice sheets, significant wave heights and determine wind speeds (ESA, 2020c). With increased
focus on climate change the by far most used application of satellite altimetry is the monitoring
of sea surface changes. As described in section 1, satellite altimetry is an essential part of the 6
main services of the Copernicus programme coordinated by ESA. At 21. November 2020, Sentinel-
6 Michael Freilich was launched as the next satellite altimetry mission following its predecessor
Sentinel-3, and a second satellite Sentinel-6B is planned for launch in 2025. Sentinel-6 is the
first satellite within the Sentinel family that carries a dual-system satellite navigation receiver
capable of receiving both GPS and Galileo signals to perform Precise Orbit Determination (POD).
Initial test shows that position accuracy is improved by a factor of two compared with GPS-only
measurements (ESA, 2020d). Sentinel-6, alongside with CryoSat-2 and Sentinel-3A, is part of
the new-generation altimetry satellites which uses the synthetic aperture radar (SAR) technique.
Compared to conventional altimetry satellites, the SAR technique achieves greater precision and
a spatial resolution of 300 m in high-resolution mode compared to previous mission with a spatial
resolution of several kilometres. The better spatial resolution will allow retrieval of sea-surface
measurements closer to the coastline, which is an important aspect in sea surface analysis (ESA,
2020a). An in-orbit validation with Jason-3, successfully completed at 27. January 2021, assures
that no biases are introduced into the time series of data. For the next 12 months, Sentinel-6
will orbit closely following Jason-3 before starting operating as the operational reference mission
(ESA, 2021). Sentinel-6 will continue the legacy of sea-surface height measurements that began
with Topex-Poseidon in 1992 until at least 2030 (ESA, 2021). An overview of recent and current
satellite altimetry missions can be found in figure 1.2.

Satellite altimetry missions can be divided into two main categories based on their scientific goals:
Exact repeat mission (ERP) and Geodetic mission (GM). These two mission types differ from each
other with respect to spatial and temporal resolution. GMs provides data with a high spatial
resolution, and hence also a long repetition period. Earth’s gravity field is of special interest in
geodesy, and the gravity field can be split into a static and temporal part. Due to a long repetition
period, then GM altimetry missions can only observe long wavelength components of the Earth’s
gravity field. ERPs have a coarser spatial resolution, but on the other hand a short repetition
period. To observe location dependent small scale changes, often characterised with high temporal
variations, frequent observations at the same location on ground is a requirement. In observing
temporal changes of climate related quantities, such as sea surface height, ERP satellite missions
are of great importance. It is not possible to create an orbit with both high spatial resolution and
temporal resolution at once, so there is a constant trade-off between orbital height and revolution
period. The mathematical connection between the two will be given in the following. Here it will
also be shown that orbital errors propagate directly into an estimate of sea surface height. Satellites
flying in a higher orbit will be less affected by orbit perturbations, but the signal strength will
reduce. Satellite altimetry measures the Earth’s gravity field at ground level, but it is still a
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Figure 5.1: A representation of the different Keplerian elements needed for describing a satellite
orbit in space. The figure originates from lecture notes on satellite geodesy given at the Technische
Universität München.

reduction in signal strength due to backscattering and atmospheric effects.

Before a detailed description of satellite altimetry and its observation equation will be given, a
short introduction to satellite orbits is appropriate. Orbital parameters are selected based on the
mission’s scientific goal, and a satellite orbit can be fully described by six orbital elements, also
known as as Keplerian1 elements. Figure 5.1 shows the six Keplerian elements needed to describe a
satellites position in space. Semi-major axis a and the numerical eccentricity e describes the orbit’s
shape, while the inclination i and right ascension Ω of the ascending node describes the orbital
plane’s orientation. The satellite’s position along this plane can be described using argument of
perigee ω and the perigee passing time T0, or alternatively the argument of latitude u0 at an epoch
t0, i.e., the angle between the ascending node and the satellite position at the epoch t0, measured
in the direction of the motion of the satellite.

As already mentioned, satellite altimetry missions can be divided into two categories, where the
different types are characterised by its spatial and temporal resolutions. The revolution period
Trev of a satellite orbit describes the time a satellite uses on one full revolution around the Earth.
From Kepler’s 3rd law the revolution period can be derived from

n2a3 = GM,

where n is the mean motion and a is the satellite orbit’s semi-major axis. Mean motion describes
the satellite’s angular velocity by

n =
2π

T
,

1Named after the German mathematician and astronomer Johannes Kepler(1571-1630).
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and writing n explicitly in Kepler’s 3rd law gives a revolution period Trev of

Trev ≈ 2π

√
a3

GM
.

A mission’s temporal resolution is represented by the repetition period Trep, and it describes how
long time it takes before the satellite repeats its ground track. To repeat the exact same ground
track, then the total number of Earth revolutions α, relative to the satellite orbit must be equal
to the Earth’s relative angular velocity relative to the satellite orbit (ωe − Ω̇) multiplied with the
repetition period Porb. During this time the Earth has rotated an angle of 2πα. The repetition
period Porb can then be described by

2πα = Porb(ωe − Ω̇)⇒ Porb =
2πα

ωe − Ω̇
, (5.1)

where ωe is the Earth’s angular velocity and Ω̇ is the drift in right ascension of the ascending
node. The spacing between satellite ground tracks on the Earth’s surface defines a mission’s
spatial resolution. To calculate the spatial resolution it is necessary to know the total number of
revolutions β performed by the satellite within one repetition period Porb. From Kepler’s 3rd law
the satellite’s revolution period Trev is known, and then the total number of revolutions β can be
calculated from

β =
Trev
Porb

. (5.2)

The angular spacing between satellite ground tracks can then be calculated by

∆λ =
2π

β
, (5.3)

or alternatively expressed in km by

∆x =
222.4π

β
cosφ. (5.4)

From equation (5.4) it is seen that the spatial resolution is dependent of latitude with largest
spread in ground tracks for small latitude values. An orbit’s inclination i, defines the accessible
areas for the satellite | φmax |= i , or for a retrograde orbit, i.e. a orbit with an inclination angle
larger than 90°, | φmax |= 180°− i. Typical spatial and temporal resolution are shown in table 5.1
for recent and current satellite altimetry missions.

5.0.1 From observations by satellite altimetry to gravity anomalies

As previous described in section 3, the geoid height N at a computation point P can be calculated
from gravity anomalies ∆gQ using Stokes’s formula given by 3.1. From the derivation in section
3, Stokes’s formula was used to derive an expression for estimating geoid height N with LSC and
also showing that the two methods are mathematical equivalent. Stokes’s formula represents the
functional relationship ∆g → N . When estimating gravity anomalies from reidual geoid height
the relationship ∆N → ∆g is needed. A final expression for representing this relationship was
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derived for LSC in equation (3.21). However, LSC is not the only possible technique that can be
used for predicting gravity anomalies ∆g from residual geoid heights ∆N . Even though none of
these approaches are used in this thesis, they should be mentioned as they are commonly used in
gravity field modelling.

The integral equation representing the relationship ∆N → ∆g is given by the inverse Stokes
equation, also known as Molodensky’s equation (Andersen, 2013)

∆gp = γ
Np
r
− γ

16πr

∫∫
σ

N −Np
sin3(ψ/2)

dσ, (5.5)

where ψ describes the spherical distance between the integration point P (λP , φP ) and the inte-
gration point P (λ, φ). All other quantities are defined in the other equation shown within this
thesis.

Another option is to calculate gravity anomalies by observing north/south and east/west deflections
of the vertical (ξ, η), and then calculate gravity anomaly ∆g and geoid height H from the inverse
Vening Meinesz2 equation and the deflection geoid formula (Andersen, 2013)

{
N
∆g

}
=

1

4π

{
R
γ

}∫∫
σ

(ξ cosα+ η sinα)

{
C
H

}
, (5.6)

where the kernel functions H and C represent the connection between the observables and the
corresponding target quantities, for gravity anomaly

H(ψ) =
cos(ψ/2)

2 sin(ψ/2)

(
− 1

sin(ψ/2)
+

3 + 2 sin(ψ/2)

1 + sin/ψ/2)

)
, (5.7)

while for geoid height the kernel function is given by

C(ψ) = − cot
ψ

2
+

3

2
sinψ. (5.8)

2Named after the Dutch geodesist Felix Andries Vening Meinesz (1887-1966)
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Table 5.1: An overview of historical and present satellite altimetry missions and some of their
respective orbital parameters. Mission details have been collected from Breili (2018) and at the
missions respective operation websites.

Mission Mission era Orbital height Inclination Revolution period Repetition period Distance equator
SKYLAB 1973 435 km 50◦ 93.4 min
GEOS-3 1975-1978 845 km 115◦ 102 min
SeaSat 1978-1978 800 km 115◦ 100 min
GeoSat 1980-1980 800 km 108◦ 100 min 3, 17 d 163 km
GFO-1 1998-2008 800 km 108◦ 100 min 17 d
ERS-1 1991-1996 785 km 98.5◦ 112 min 3,35,168 d 77 km
ERS-2 1995-2000 785 km 98.5◦ 112 min 35 d 77 km
ENVISAT 2002-2012 785 km 98.5◦ 112 min 35 d 77 km
TOPEX/POSEIDON 1992-2005 1336 km 66◦ 112 min 35 d 315 km
Jason-1 2001-2013 1336 km 66◦ 112 min 10 d 315 km
Jason-2 2008-2019 1336 km 66◦ 112 min 10 d 315 km
IceSat 2003-2010 600 km 94◦ 97 min 91 d
CryoSat-2 2010 � 717 km 92◦ 100 min 309/30 d
Saral/Altika 2013 � 815 km 98.55◦ 100 min 35 d
Jason-3 2016 � 1336 km 66◦ 112 min 10 d 315 km
Sentinel-3a 2016 � 815 km 98.65◦ 100 min 27 d 104 km
Sentinel-3b 2018 � 815 km 98.65◦ 100 min 27 d 52 km
Sentinel-3c 2023? 810 km 98.65◦ 100 min 27 d 52 km
Sentinel-3d 2025? 815 km 98.65◦ 100 min 27 d
IceSat-2 2018 � 496 km 94◦ 100 min 91 d 315 km
Sentinel-6 2020 � 1336 km 66◦ 112 min 10 d 315 km
SWOT 2022? 891 km 77.6◦ 100 min 21 d

In this thesis, only least-squares collocation will be used to predict gravity anomalies from residual
geoid heights. The satellite altimetry observation equation and its different components will be
described in the following sections. In addition, an adaptation of the LSC expression, derived in
section 3, to represent the stochastic relationship between residual geoid height ∆N and gravity
anomalies ∆g will be presented. As the procedure of deriving a residual geoid height signal involves
several different components and models, a summary of the reference systems and tide systems
used in the this thesis will be presented. By not assuring consistency in reference systems between
all datasets will introduce unwanted systematic errors into the signal. The final part in this section
focuses on the application and modelling of covariance functions. Extended literature on satellite
altimetry and its application on marine gravity field modelling can be found in Andersen (2013);
Stammer and Cazenave (2017).

5.1 Satellite altimetry observations

Altimetry observations are well suited in open waters, where the observation area is uniform and
without distortions. When approaching shore the observations becomes noisy, or they get a totally
different form than expected for open-water areas. How land affects the signal is called land
contamination. One of the main sources for this effect is that the footprint contains backscattered
signal from land areas. The correction terms for the altimetry observation have a lower spatial
resolution, and therefore they will be contaminated earlier by land than the altimetry observations
itself. In addition, geophysical corrections becomes more challenging in coastal areas. An overview
of the error budget for Jason-2 is shown in table 5.2, where the table originally was published in
Stammer and Cazenave (2017). The new satellite altimetry mission Sentinel-6 reports an even
better orbital determination than what is reported for Jason-2. Anyhow, table 5.2 provides an
overview in error budget for a modern satellite altimetry mission. Benveniste et al. (2020) reports
that wet tropospheric corrections becomes inaccurate at distances shorter than 20-50 km from
land caused by land reflection entering into the radiometer footprint, while the models for sea
state bias (SSB), which accounts for the interference between radar pulse and sea surface, becomes
inaccurate within 10-15 km from the coast. Another component that affects the return pulse is how
it is reflected by the sea surface. In wind-still conditions without waves the pulse will appear as a
spike, because the sea surface acts like a mirror(Breili, 2018). Coastal regions on the other hand
are often characterised with surface currents and short wavelength characteristics which disturbs
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Figure 5.2: Representation of the key components in satellite altimetry. An altimetry satellite’s
position is determined using DORIS, SLR and GNSS, and then the altimetry observe the relative
distance between itself and the sea surface. Notice that the sea surface can be decomposed into
different quantities. The figure originates from NOOA (2021).

the backscattering effect.

In contrast to other specially designed gravity missions, such as CHAMP, GRACE, GOCE and
GRACE-FO, altimetry provides observations at the the Earth’s surface by its measurement of sea
surface height (SSH). Altimetry observations alongside with terrestrial measurements gives the
full signal of the Earth’s gravity field, but altimetry also provides global coverage, and hence is a
measurement technique with great potential in marine gravity field modelling. Satellite altimetry
observes SSH with respect to its own position. This is an important property of satellite altimetry
and caution needs to be made in processing to assure consistency in reference systems between
the different model components. A new satellite altimetry mission always goes through an in-orbit
validation phase to assure that no biases relating to the observation equipments are introduced
with respect to previous missions.

The measurement principle for satellite altimetry is that the satellite transmits and records its
own pulse, then the distance R between the satellite and the reflecting object in presence of no
error-sources is given by

R =
c∆t

2
, (5.9)

where c = 299 792 458 m s−1 is speed of light in vacuum and ∆t is the time between transmittance
and recording. Equation (5.9) expresses a relative distance measurement with respect to the
transmitting satellite.

Figure 5.2 shows the different components involved in satellite altimetry with both the measurement

35



principle in satellite altimetry, but also the POD using space geodetic techniques such as SLR,
DORIS and GNSS. The position of an altimetry satellite is then referring to the same reference
ellipsoid as is used for the control stations and GNSS satellites in the POD. Satellite altimetry is by
these means a geometrical measurement technique, however, the target quantity SSH is governed
by physical laws. By knowing the satellite height H, then SSH can be represented in the same
reference frame by

hSSH = H −R. (5.10)

From equation (5.10) it is clear that an error in satellite position, which will effect theH component,
will propagate directly into the estimation of SSH. Because of this fact, POD of altimetry satellites
is very important. Today altimetry satellites are determined with an accuracy of 1-2 cm (Breili,
2018). Additional corrections needs to be made as well, due to signal propagation in the atmosphere
and signal interaction with the sea surface. These corrections are summarised in table 5.2.

Equation (5.10) is dependent of time through the distance measurement in equation (5.9). The
pulse generated by an altimetry satellite creates a footprint covering a certain area on the Earth’s
surface. Sentinel-6, the newest altimetry satellite, has a footprint of 300m resulting from its
improved SAR-technique, and a list of different altimetry satellite mission and their specifications
are given in table 5.1.

Table 5.2: An overview of the error budget for Jason-2 sea surface height measurement. Notice
that the table shows uncertainty in the correction term of the error source, and not the magnitude
of the correction itself. The table is adapted from Stammer and Cazenave (2017).

Parameters
Altimetry
Uncertainties [cm]

Parameters and correction for
sea surface height

Altimeter range 1.7

Filtered-out altimeter ionosphere
correction

0.2

Sea state bias 0.2
Dry troposphere and dynamical
atmospheric corrections

0.7

Radiometer wet troposphere 0.2
Ocean tide 1.0
Orbit (radial component) 1.5

Sea surface height Corrected with all corrections <3.5

If the signal would have been reflected by a planar surface, then time of flight ∆t could easily been
determined. The reflecting signal would only consist of one sharp return pulse(echo). Irregularities
in the sea surface will cause multiple echoes and decision of ∆t becomes more complex. From the
received echo’s shape, information about sea surface height, significant wave height and wind speed
can be derived (Ophaug et al., 2019). As can be seen from figure 5.2, the physical measurement
quantity SSH is composed of several different components. Different applications and quantities
are possible depending on the field of interest. In this thesis, the geoid is of particular interest.
Table [ref], found in (Breili, 2018), shows the different applications area for satellite altimetry. As
this thesis focuses on determination of gravity anomalies ∆g from residual geoid heights ∆N , no
further focus will be paid to topics involving preprocessing of altimetry observations. Now a closer
look at the observation equation will be made, and in particular to decompose the sea surface
height measurement into different components. An excellent illustration of the different processing
steps can be found in Nguyen et al. (2020). The processing flow, implementation and processing
used in this thesis can be found in figure 6.1 which is greatly inspired from the scheme found in
(Nguyen et al., 2020).
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5.1.1 Altimetric observation equation

The observation equation is a bit more complicated than equation (5.10) implies and is described
through

hSSH = N + ζ + ε, (5.11)

where N is geoid height above the reference ellipsoid, ζ contains time-variable sea surface topogra-
phy, and ε is the error including: instrumental corrections; sea state bias corrections; ionospheric
correction; tropospheric correction(wet, dry); tides (ocean, earth, pole); inverse barometer (Nguyen
et al., 2020). Application of satellite altimetry observations depends on which component in equa-
tion (5.11) that is of interest. In geodesy, which is the focus of this thesis, N is of particular
interest, while in ocean studies ζ is the important component.

Both geoid height and sea surface topography can be split up into two parts containing long and
short wavelength components. Geoid height can be written as N = NGPM + ∆N , where a GGM
is used for describing the long wavelength part NGPM and ∆N is the residual signal. Sea surface
topography can be written as ζ = ζMDT + ζ(t), where ζMDT is mean dynamic topography (MDT)
and ζ(t) is time varying sea surface topography also known as dynamic ocean topography (DOT).
Explicitly writing out N and ζ in equation (5.11) gives

hSSH = NGGM + ∆N + ζMDT + ζ(t) + ε. (5.12)

Equation (5.12) is the fundamental observation equation in satellite altimetry. This thesis focuses
on how satellite altimetry can be used in marine gravity modelling, and hence the target quantity
is the residual geoid height signal ∆N . In order to estimate ∆N with a given accuracy, then all
other terms in equation (5.12) needs to be estimated within the same accuracy. Equation (5.12)
still contains time-variable components not relating to the geoid component, and a way to reduce
these effects is needed. There are two methods that can be used, either model the time-varying or
create differences to reduce its value. Forming difference between two neighbouring points i and
j, while assuming that NGPM , ζMDT and ε(t) have long wavelength characteristics, gives

hi − hj ≈ ∆Ni −∆Nj + ε ≈ ∂N + ε (5.13)

and all terms with long wavelength behaviour will cancel out, since they are assumed to have the
same value in both points. Equation (5.13) describes the geoid slope which is closely related to the
deflection of the vertical in the north and east direction (ξ, η) which can be used to derive gravity
anomalies ∆g (Andersen, 2013), recall the inverse Vening Meinesz equation given in equation (5.6)
as part of the introduction in section 5. The assumptions made when deriving equation (5.13)
will not necessarily be true in shallow areas where effect of wind and currents have a higher
spatial variation. An alternative approach would be to model those terms instead. This will be
a very complex task, in particular for the time varying sea surface topography which contains
high frequency components caused by wind and other effects. The geometrical shape of a satellite
orbit causes different spacing of ground tracks depending on latitude, as it was described in the
introduction of 5. Ground tracks are separated by a larger distance for low latitudes, while having
more dense tracks for regions in high latitude. This leads to a more accurate estimation of geoid
undulation in north-south direction for low latitudes, and better accuracy in east-west direction
for high latitudes (Andersen, 2013). In this thesis, datasets containing mean sea surface (MSS),
DTU18MSS (Andersen et al., 2018) and DTU13MSS (Andersen et al., 2016), are given. As the
name describes, it is a mean of SSH extended over a long period of time. Effects due to tides and
atmosphere have been corrected prior to the mean calculation

hMSS = N + ζMDT + e = NGPM + ∆N + ζMDT + e. (5.14)
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Equation (5.14) does not contain the time varying sea surface topography ζ(t) because it is expected
to be a stochastic signal, which implies an expected value of E(ζ(t)) = 0, and with time-averaging
all stochastic and time dependent quantities will cancel each other out. ζ(t) will vary most in
regions with largest differences, such as within the large ocean systems, and has a wavelength of
100-200 km mainly caused by wind, waves and air pressure (Andersen, 2013). Equation (5.14)
forms the final observations equation used in this thesis, and in the following a description of its
different terms will be given.

5.1.2 Mean dynamic topography(MDT)

In Nguyen et al. (2020) mean dynamic topography (hMDT ) is defined as the average value of the
difference between mean sea surface (hMSS) and geoid height (NGGM ) over many years:

hMDT = hMSS −NGGM . (5.15)

In this thesis, DTU13MDT is used as the mean dynamic topography model, and a detailed de-
scription on the development of DTU13MDT can be found in Andersen et al. (2016). As a short
summary, the calculation of DTU13MDT is performed in a purely geodetic way, where the dif-
ference between DTU13MSS and quasi-geoid heights, derived according to equation (2.23), from
EIGEN-6C3 (Foerste et al., 2011) was used to estimate the MDT according to equation (5.15).
In turn the calculation of EGIEN-6C3 uses surface data based on EGM2008. So, even if another
GGM is used as part of the RCR-method, a dependency on EGM2008 exist due to the calcula-
tion procedure in DTU13MDT. Still, as was described in section 2.2, the RCR-method should in
principle be model independent given that the GGM fits reasonably well with local conditions.
Andersen et al. (2016) shows that the largest difficulty in creating a MDT is that the MSS and
GGM resolves different signal scales. The spherical harmonic expansion describing the Earth’s
gravity field is only expanded to a maximum degree and order Nmax, where the spatial resolution
possible to resolve with a given maximum degree can be calculated from equation (2.27). Nor-
mally the spatial resolution of a GGM and MSS differ which induces small scale signals in the MDT
originating from the Earth’s gravity field signal above the GGM’s maximum degree. In order to
obtain an useful estimate of the MDT without these small scale signals, a proper filtering of the
MDT is necessary. The application of a MDT is in the field of oceanographic studies where hori-
zontal derivative of the MDT, and assuming geostrophic conditions, can be used to derive surface
geostrophic currents (Breili, 2018). A recent study by Wu et al. (2020) indicates that selection of
GGM is of great importance in oceanographic research when forming geostrophic currents from
MDT surfaces. Their results for the South China Sea by comparison of geostrophic currents from
different GGMs with currents derived from oceanographic models shows an increased accuracy
of the more recent developed GGMs with a higher number of observations and improvements in
processing strategies.

5.1.3 Time varying sea surface topography(DOT)

Alongside with the treatment of ζ(t), Andersen (2013) points out an important processing issue
with MSS. A MSS will only be possible to realize in points with several measurements. In section 5,
it was described that altimetry satellites can be divided into two categories: GM and ERM. Several
observations in a point is only true if the point lies along the ground track of ERM satellites. If
no interpolation is applied, then the MSS will for points between the ground track of an ERM be
realised based only on the observations from a GM. Altimetric observations are available as discrete
observations both geographical and in time. If continuous observations in a point would have been
available, then mean of the time varying sea surface topography ζ(t) would have become 0. Due
to discrete sampling of altimetry observations, a MSS will contain a time-varying component ζ(t).
Crossover adjustment between different altimetry missions is used to minimize ζ(t). Assuming that
a point’s residual geoid height signal should be time invariant, then intersecting satellite ground
tracks can be used for cross adjustment to eliminate, or at least reduce, the time varying sea surface
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topography. A short summary of the procedure is that it minimizes the height difference between
measurements from different satellite revolutions or missions. This step represents a removement of
offset between different observation epochs, making all observations referring to the same reference
point. Crossover adjustement is a topic of preprocessing so no further discussion on this matter
will be done, further details can be found in (Andersen, 2013; Stammer and Cazenave, 2017).

5.1.4 RCR-method revisited

In section 2.2.1, the concept of the RCR-method was introduced. As now finally all components
involved in satellite altimetry have been introduced, the observation equation used for predicting
gravity anomalies by LSC can be presented.

In the same way as for the long wavelength part of the Earth’s gravity field, global models of MSS
and MDT can be used to reduce their respective quantities’ long wavelength components. After
all reductions have been done a residual geoid height ∆N is given by

∆N = hMSS −NGGM − hMDT . (5.16)

Equation (5.16) is the observable to be used for predicting gravity anomalies by LSC.

5.1.5 Reference systems and tide systems

All geodetic products that are provided relates to a specific reference system and tide system. As
has been described in section 5, satellite altimetry products are referring to the same reference
system as the satellite’s position is referring to. In addition to reference system, the products are
also defined in a given tide system. The three tide systems differ from each other depending on
which effects caused by the Sun and Moon that are corrected for. The tidal effects consist both
of a time dependent and time independent components, where the time dependent component
has a periodic behaviour and with observation over time its mean value will be zero (Ophaug,
2018). The time independent component is the tidal effects permanent deformation of the Earth’s
surface. These effects have a mean value different from zero, and they will therefore not cancel over
time, and then they have to be corrected for. From (Ophaug, 2018) and the ICGEM faq website
(ICGEM, 2019) the different tide systems are defined as:

� In a tide-free system all (direct and indirect) effects of the Sun and Moon are removed.

� In a mean-tide system no permanent tidal effects are removed, so it includes the presence of
the Sun and Moon.

� In a zero-tide system all permanent effects of the Sun and Moon are removed, but the indirect
effects component related to the elastic deformation of the Earth is retained.

The orbital planes of the Sun and the Moon are close to the equatorial plane, so the tidal ef-
fect is mainly latitude dependent. The requirement for applying LSC is that the signal behaves
stochastically, which means that no deterministic signal or inconsistency in the parameters and def-
initions of the GGM, MSS or MDT can exist. As a preprocessing step, the potential inconsistency
in reference systems and tide systems must be corrected for. DTU13MSS and DTU13MDT had
previously been transformed from TOPEX to WGS84 reference ellipsoid, while The DTU18MSS
dataset is accordingly referring to a TOPEX reference ellipsoid, while DTU13MSS refer to WGS84.
Along the Norwegian coastal zone the difference between WGS84 and TOPEX has a mean value
of εcorr = 0.71 m. The residual geoid height ∆N in RLSC will then be calculated according to

∆N = hMSS −NGGM − hDTU18MDT + εcorr, (5.17)
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where the ellipsoidal correction is εcorr = 0.71 m and εcorr = 0 m for DTU18MSS and DTU13MSS,
respectively.

The corrected field follows the stochastic requirements in chapter 3. Even though a GGM is
applied for removing the field’s long wavelength components, the residual geoid height ∆N is
further reduced by its own mean value. This is done in order to remove any possible systematic
effects relating to the GGM, and it will also assure consistency and allow for comparison of gravity
anomalies predicted by RLSC using different GGMs for the remove-restore step. If an inconsistency
in reference systems, tide systems or other definitions would have been present, then a reduction
with the residual signal’s mean value would reduce its effect significantly. On the other hand,
reducing the residual signal by its mean value can then also cover systematic effects, so thorough
investigation of the datasets is always required.

5.1.6 Prediction of gravity anomalies using least-squares collocation

Equation (5.16) is the observation equation entering into the least-squares collocation approach
for predicting gravity anomalies. The calculation procedure is shown as a flowchart in figure 6.1.

In section 3, an expression for the geoid height in a computation point P was derived from Stokes’
formula. It was shown that least-squares collocation and integral representation of geoid height
N by Stokes’ formula would mathematically give the same results. Section 3 used collocation to
estimate geoid height N from gravity anomalies ∆g, but as was shortly explained in the introduc-
tion of section 5, and also can be seen in equation (5.16), satellite altimetry provides observation
of residual geoid height ∆N .

It was described in section 3 that LSC is a result of statistical treatment of the observable, In equa-
tion (3.21), gravity anomalies ∆gi were observed at discrete points i, and then the observations
were used to predict geoid heights at the computation point P by exploiting the statistical depen-
dency, i.e., covariance function between the observable ∆g and the target quantity N . The LSC
prediction of gravity anomalies ∆g from residual geoid height ∆N can be found by manipulating
equation (3.21) into

∆g = C∆N∆gT
[
C∆N∆N +D∆

]−1
∆N, (5.18)

where the expression has also been extended to include the error covariance matrix D∆ of the
residual geoid height. The theoretical background for the covariance matrices was derived in
section 3.1.1, and a more detailed description of the covariance model used in this thesis will be
given in the following section. For the datasets used in this thesis, see table 6.1, only the MSS
alongside with the GGMs have a corresponding error field. The error covariance in equation (5.18)
will therefore be D∆ = ΣhMSS

, since the GGM’s error field is already included in the computation
of the covariance matrices. The formal errors, similar to equation (3.23), can be calculated as

σ2
∆g = C∆g∆g − C∆N∆gT

[
C∆N∆N +D∆

]−1
C∆N∆g. (5.19)

As has earlier been described, and which is also very clear from equation (5.18) and (5.19), LSC
depends solely on the statistical relationship between the observable and the target quantity de-
scribed by the auto-covariance and cross-covariance matrices, respectively. To accurately model
the residual signal’s behaviour, a more detailed look at its component should be taken. Parts of
the residual signal, even if it has a stochastic behaviour, can be explained from the different terms
for the final observation equation of ∆N , as given by equation (5.17).

The formal errors, as given by equatin (5.19), are independent of measurements and can always
be calculated based on the statistical relationship between the observation and target quantity.
In cases where an independent set of observations are available then the calculation of empirical
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errors is also possible. The empirical error is defined as the difference in estimated and measured
value of the target quantity according to

εemp = ∆ĝ −∆gobs, (5.20)

where the notation ĝ and gobs is introduced to denote estimated and measured values, respectively.
Ideally the empirical and formal errors should be of the same order, such that the measurements
verifies the formal errors which are solidly a result of mathematical error propagation. In section
6 empirical and formal errors will be used as parameters to evaluate the contribution of RLSC
prediction of gravity anomalies from residual geoid height using EGM2008, XGM2019e2159 and
GOCO06s in the remove-restore step.

5.1.7 Modelling of the covariance function

Except for the GGMs, not much time has been spent on the error fields relating to the different
components of the final observation equation. All terms on the right hand side are based on some
models. In other words, all the terms are an approximation of the real world. GGM, for example, is
a mathematical description of the Earth’s geopotential represented by a spherical harmonic series
expansion up to a maximum degree of n = Nmax. To perfectly reproduce the true geopotential,
then the model must contain an infinite number of terms. Even today with GGMs expanded up
to a maximum degree of Nmax = 2190, the model is still an approximation and will accordingly
contain errors with respect to the true field. A more detailed handling of these problems might
have been dealt with at an earlier stage, but first now as all the observation components, i.e.,
GGM, MSS and MDT, have been introduced I argue that a complete handling of the problem can
take place.

A more complex notation could have been introduced in the beginning, where both MSS and GGM
can be split into two components; a common component of the geoid signal Ntrue and a component
that differs between the two models δMSS and δGGM . Introducing this extended notation gives

∆N = hMSS −NGGM − hMDT

= (Ntrue + δMSS)− (Ntrue + δGGM )− hMDT

= δMSS − δGGM − hMDT .

(5.21)

The common (true) geoid signal Ntrue covered by both models will cancel each other out. The
resulting residual geoid height ∆N will then accordingly consist of the difference between the MSS
and the GGM, in addition to the MDT. With a perfect mathematical representation of the MSS
and GGM up to the maximum degree used for the remove-restore step N = Ncut, then the residual
geoid signal would truly be bandlimited between N = [Ncut,∞]. Since both the MSS and GGM
contains errors, their respective error contribution up to N = Ncut will still be present in the
signal. In section 2.2.3 the error contribution of a GGM was covered under the term commission
error. The error-degree variances can be used to model the residual geoid height’s signal for
N ≤ Ncut. Since error-degree variances are derived using the GGM’s potential coefficients, then
they represents the signal on a gloval scale for the spectral band N ≤ Ncut. Following, the error-
degree variances may not describe local conditions representative for the residual geoid height ∆N
in the area under consideration. As was described in section 4, the solution is to introduce a
scaling factor calculated from variance comparison between the local and global functions. The
scaling will change the error signal strength such that it fits best possible with the residual geoid
height signal in the respective spectral frequency domain. In contrary to the GGM, the error field
relating to the MSS is represented as grid values alongside with the corresponding MSS values. To
calculate error-degree variances from an error field is possible, but these calculations goes beyond
this thesis. By only modelling the error signal strength of the GGM and then scale it to fit local
effects, then it is assumed that degree variances for the GGM and MSS posses the same spectral
characteristics. In that case, no significant error is introduced by using a simple scaling for the
error-degree variances.
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In this thesis, the remove-restore step is applied with the GGM’s maximum degree truncated to
a lower spherical harmonic degree of Ncut = 1000. Above N = Ncut the residual signal consist
mainly of the true geoid signal. Since the remove-restore step was calculated using a lower spherical
harmonic degree than the GGM’s maximum degree, then the signal components for Ncut < N ≤
Nmax can be calculated using degree variances based on the model’s potential coefficients. Even
when using GGMs with a maximum degree of Nmax = 2190, the marine gravity field signal still
contains significant above the maximum degree (Zingerle et al., 2020). The Tscherning-Rapp
model, equation (4.9) can be used for describing the signal strength above the GGM’s maximum
degree N > Nmax.

In summary, the covariance functions consists of three parts:

1. Using the GGM’s error-degree variances for modelling the residual geoid height’s signal
strength for the spherical harmonic degrees N ≤ Ncut.

2. Using the GGM’s degree variances for modelling the residual geoid height’s signal strength
for the spherical harmonic degrees Ncut < N ≤ Nmax.

3. Applying Tscherning-Rapp closed analytical covariance function for modelling the residual
geoid height’s signal strength above the GGM’s maximum degree N > Nmax.

From the findings in this section, a more detailed description of the residual signal’s different
components is now possible. Nguyen et al. (2020) uses equation (4.8) and (4.9) for modelling
the stochastic relationship and spatial variation of the signal. Knudsen (1987) uses the same
equations, but with other values assigned to the model parameters. In Nguyen et al. (2020),
these parameters are determined using the GRAVSOFT software, while Knudsen (1987) provides
a detailed description on how these parameters can be estimated in a least-squares adjustment.
Since the remove-restore technique in this thesis is only performed up to Ncut, which is a lower
spherical harmonic degree than the GGM’s maximum degree, there is still potential coefficients
available for Ncut < N ≤ Nmax. This leads to a slight adaptation to equation (4.8) and (4.9). The
extended formulation of cross-covariance and auto-covariance functions will then be written as

C∆Ni∆gP =
α

γi

Ncut∑
n=2

σcn
n− 1

rP

(
R2
E

rirp

)n+1

Pn cosψ +
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cn
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(
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1
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and

C∆Ni∆Ni
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σcn
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(5.23)

where cn and σcn are degree variances and error-degree variances calculated using equation (2.32)
and (2.33), respectively. Equation (4.8) and (4.9) are special cases of this extended formulation with
Ncut = Nmax. The error-degree variances, as for degree variances, expresses the error contribution
of each spherical harmonic degree by the GGM up toNcut on a global scale. The same scaling factor,
as found for the degree variances, will be used to fit the commission error to local conditions. The
extended formulation by equation (5.22) and (5.23) accounts for the commission error caused by
the GGM. The MSS dataset is given as a grid of MSS and corresponding error estimates. Equation
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(5.22) and (5.23) are derived using degree variances, so the inclusion of the MSS’s error field is not
straightforward from its original gridded representation. By assuming equal spectral properties
of the error contribution of MSS and GGM, then the extended formulation with rescaling of the
global covariance function will also account for the MSS’s uncertainty. The scaling parameter
for the global covariance function degree variances α is commonly estimated based on variance
comparison from equation (4.10).

5.1.8 Final implementation of covariance function

Originally it was intended that the covariance modelling would be implemented following the
approach found in Knudsen (1987); Heydarizadeh Shali et al. (2020), where both determines the
model parameters by a least-squares adjustment. Due to time limitations in the work with this
thesis, estimation of the model parameters α, RB and A in equation (5.22) and (5.23) by least-
squares adjustment could not be achieved. In addition, numerical investigations at a very late
stage revealed problems with modelling the covariance functions by the extended formulation as
shown in equation (5.22) and (5.23). These problems are related to the switch from error-degree
variances to degree variances represented by the second and last term of equation (5.22) and (5.23).
This switch in the computation of degree variances causes an unavoidable jump in value for the
degree variances and result in odd-shaped covariance functions. In the following, a final treatment
of how the covariance functions are implemented for GOCO06s, EGM2008 and XGM2019e2159
will be given.

In equation (5.23), the covariance function consist of three terms representing the commission and
omission error of the RCR-method. The commission error is modelled by the first term containing
the GGM’s error-degree variance up to its truncation degree Ncut, while the omission error is
modelled by the two last terms of equation (5.23) which consists of the potential coefficients from
a high-resolution GGM for the spectral band N ∈ [1001, 2190] and a Tscherning-Rapp covariance
model for N ∈ [2191, 10000]. As was described in section 5.1.7, the covariance modelling used by
Knudsen (1987) and Nguyen et al. (2020) is a special case of the extended covariance modelling
represented by equation (5.23) with Ncut = Nmax. Accordingly, only the relative weighting of two
terms by least-squares adjustment is estimated.

Instead of assigning relative weights for each term, one common vector of dimensionless degree
variances cntot is formed in the alternative approach. This degree variance vector consists of error-
degree variances σcn from a GGM, degree variances cGGM between the truncation degree Ncut
and the maximum degree of the GGM Nmax, and at last analytical degree variances cTR from
a Tscherning-Rapp model for N ∈ [1001, 2190]. To summarise, the degree variances vector ~cn is
given by

~cn =

 σcn
cGGM
cTR

 , (5.24)

and it is taken as input to an already implemented MATLAB routine for computing covariance
functions based on degree variances. The resulting global covariance function from this combined
degree variances vector is scaled based on variance comparison with the empirical covariance func-
tion. The only difference between this simplified approach and full least-squares adjustment, as
represented by equation (5.23), is the determination of only one scaling coefficient. Still, the simpli-
fied approach is expected to closely resemble the optimal covariance function as given by Knudsen
(1987); Nguyen et al. (2020).

To document the impact and improvement of a more complex covariance modelling, figure 5.3
shows the plotting of each term in equation (5.23) for the covariance function of residual geoid
height C∆N∆N in the validation area. The covariance functions for the validation area, shown in
figure 5.3, are estimated using already implemented MATLAB routines with degree variances as
indicated by the legend of each curve. Comparison of the resulting global covariance functions
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Figure 5.3: Investigation of the effects on the global covariance function for GOCO06s in the valida-
tion area by including different components for the degree variances computation. The three cases
are calculated as follows; Red line: error degree variances of GOCO06s for N ∈ [2, Ncut]. Blue line:
degree variances from Tscherning-Rapp for N ∈ [Ncut + 1, 10000]. Magenta line: Combination of
degree variances used for the red and blue line. Green dots: Empirical covariance function.

Figure 5.4: Covariance modelling for GOCO06s in the validation area using the most complex
degree variances modelling. Black line: degree variances calculated according to equation (5.24).
Magenta line: error degree variances of GOCO06s for N ∈ [2, Ncut] and degree variances from
Tscherning-Rapp for N ∈ [Ncut + 1, 10000]. Magenta line corresponds to the magenta line shown
in figure 5.3. Green dots: Empirical covariance function.
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with the empirical covariance function shows that inclusion of more terms and following a more
sophisticated covariance modelling leads to a better approximation of the empirical covariance
function. From figure 5.3 it is especially visible that the magenta line, where a degree variance
vector formed by a combination of commission error and omission error is used, shifts the global
covariance function such that its oscillation fits better with the empirical covariance function. This
effect is expected as the empirical covariance function is considered to cover the complete spectrum,
while red and blue curves are based on degree variances representing only part of the spectrum, i.e.,
the long wavelength and the medium to short wavelength. By combining these two degree variance
vectors, the magenta curve again represents the full spectrum. From those investigations it is
evident that inclusion of both commission and omission error gives a better covariance modelling.
A more detailed modelling of the omission error can be further introduced by including degree-
variances from a high-resolution GGM for the spectral band N ∈ [Ncut + 1, Nmax], and then only
apply a Tscherning-Rapp model for the remaining spectral band N ∈ [Nmax + 1, 10000]. Figure
5.4 shows the results by using this extended covariance modelling, and it can clearly be seen that
it increases the covariance function’s amplitude for large distances. The results for GOCO06s,
documented in figure 5.3 and figure 5.4, verify the proposed covariance modelling approach. A
natural next step is also to create global covariance functions when the high-resolution GGMs,
EGM2008 and XGM2019e2159, are used for the remove-restore step. Using the same covariance
modelling for EGM2008 and XGM2019e2159 results in odd-shaped analytical covariance functions
as presented in figure 5.5a and figure 5.5b. A closer look needs to be taken in order to clarify
and explain the very different covariance functions resulting from EGM2008 and XGM2019e2159
compared to GOCO06s. At first sight, it is surprising that the same method results in different
analytical global covariance functions. From equation (5.23) it is evident that the Tscherning-Rapp
component remains the same for all three models, so the difference must be caused by either of
the two first terms relating to the degree variances cGGM and error-degree variances σcn given by
equation (2.32) and equation (2.33), respectively. An investigation of the complete degree variance
vector used for the most complex covariance modelling will be taken in the following. The complete
degree variance vectors for EGM2008, XGM2019e2159 and GOCO06s are shown in figure 5.6a, 5.7a
and 5.8a, respectively.

(a) EGM2008 (b) XGM2019e2159

Figure 5.5: Odd-shaped covariance functions for EGM2008 (left) and XGM2019e2159 (right) cal-
culated from degree variances given by equation (5.24).

The covariance modelling using GOCO06s, shown by figure 5.3 and 5.4, showed that all components
of the degree variances vector contributes to the final covariance function. GOCO06s also proved
that the proposed approach, which was to create one common degree variances vector and introduce
only one scaling coefficient, is a valid method for covariance modelling. As the general idea for
the covariance modelling proves to be sufficient, then no further modification of the modelling
approach for the covariance function is wanted.

Figure 5.6a and figure 5.7a shows the full degree variances vector ranging from spherical harmonic
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degree 2 up to 10000 for EGM2008 and XGM2019e2159, respectively. It can clearly be seen that
the degree variances vector contains jumps in the transition between its different components con-
sisting of error-degree variances, degree variances and Tscherning-Rapp. For the RCR-method with
EGM2008 and XGM2019e2159 there are jumps in the transition between all degree variances com-
ponents, but for GOCO06s, shown in figure 5.8a, a jump in value only occurs in the connection be-
tween the high-resolution GGM and Tscherning-Rapp for degrees above the GGM’s resolution. The
degree variance vector’s behaviour can in the case of GOCO06s be explained for the transition be-
tween error degree variances for GOCO06s and degree variances from XGM2019e2159. In Zingerle
et al. (2020), a detailed explanation of the computation and observations of XGM2019e2159 can
be found. The lower spherical harmonic degrees of XGM2019e2159 is mainly determined by the
satellite-only model GOCO06s (Kvas et al., 2021), where the information from GOCO06s is intro-
duced by its unconstrained normal equations. Then the potential coefficients of XGM2019e2159
and its standard deviations will be equal with the corresponding values of GOCO06s at the max-
imum spherical harmonic degree of the satellite-only model, this is also verified by Zingerle et al.
(2020). Thereby, for the maximum degree of GOCO06s, i.e., where the error degree exceeds the
degree variances, the error degree and degree variances will have the same value and accordingly
no jump in degree variances will occur. A nice representation of relevant error-degrees and degree
variances can be found in figure 4 of Zingerle et al. (2020). Another feature of figure 5.6a and
5.7a is that the degree variances decreases rapidly in the spectral band between n = [2160, 2190].
For all models there are a clear drop in the spectral band between N ∈ [2160, 2190]. This can
be explained by the reduced signal strength for the potential coefficients of XGM2019e2159 in
this range caused by the transformation from spheroidal harmonic to spherical harmonic domain.
In the following, degree variances calculated from the potential coefficients of a high-resolution
GGM will only be performed up to a spherical harmonic degree of 2159, and for the remaining
spherical harmonic degrees up to 10000 by using the Tscherning-Rapp model. Still, figure 5.6a
and figure 5.7a contain large jumps in the transition between degree variances calculated from the
GGM’s potential coefficients and the Tscherning-Rapp model for spherical harmonic degrees above
the GGM’s resolution. Degree variances for the anomalous potential T using Tscherning-Rapp is
calculated according to

cn(T, T ) = σ2
n(T, T ) =

A

(n− 2)(n+ b)
, (5.25)

and further transformed to dimensionless degree variances by use of the spectral eigenvalues and
dimensioning factor of the anomalous potential T , see section 2.2, which finally results in the
relationship

σ2
n =

σ2(T, T )[
GM
R

]2 =
1[

GM
R

]2 A

(n− 2)(n+ b)
(5.26)

The scaling coefficient A is selected such that it best fits to the data. As a preprocessing step, the
value of B is fixed to a value of B = 24. This has to be done, since the values of A and B are
expected to be highly correlated. Different values for B exists in the literature, see Nguyen et al.
(2020); Knudsen (1987); Heydarizadeh Shali et al. (2020). Initial tests, not shown here, confirmed
that fixing B at an different value would be counter affected by a corresponding scaling of the
A parameter. In the early stage of the thesis, when degree variances were exclusively modelled
by using a Tscherning-Rapp model above the model’s truncation degree Ncut up to a spherical
harmonic degree of 10000, then this resulted in an estimated scaling coefficient of A = 715116,
which is a similar value as was estimated by Knudsen (2007). Those initial computations did
not account for the commission and omission error of the GGM, and in particular the Tscherning-
Rapp model was already applied at the truncation degree Ncut, and not from the model’s maximum
degree Nmax. Thereby, it is expected that the scaling coefficients will be considerable lower when
using the extended covariance modelling. The scaling coefficient A can either be determined from
visual inspection, or by introducing an additional scaling parameter β defined as
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βTR =
cGGM (Nmax)

cTR(Nmax)
, (5.27)

and following the Tscherning-Rapp model will be scaled such that it fits with degree variances
from the GGM’s potential coefficients. To assure theoretical consistency the comparison of signal
strength is performed at the spherical harmonic degree Nmax. However, the Tschering-Rapp model
can be evaluated for arbitrary degrees and will first be applied from Nmax+1. From the Tscherning-
Rapp model it can be shown that unmodelled signal components results in less than 1 cm for the
geoid when spherical harmonic degrees larger than 5000 are neglected (Gerlach, 2019). In the
following computations, all the effects discovered from figure 5.6a and figure 5.7a will be accounted
for. Taking all those effects into consideration, then the final degree variances vectors to be taken
as input for the covariance function routine in MATLAB are shown in figure 5.6b, 5.7b and figure
5.8b. Two jumps remain in the degree variances vector for XGM2019e2159 occurring at spherical
harmonic degree of 720 and 1000, respectively. The jump at N = 720 is caused by change in dataset
to forward-modelled gravity anomalies using a global topography model. The jump in value at
N = Ncut = 1000 is natural as the degree variances component, see equation (5.24), is calculated
from error degree variances for 2 ≤ N ≤ 1000 and degree variances for 1000 < N ≤ 10000. No
words have yet been said about degree variances for EGM2008, but they shows similar features as
for XGM2019e2159. The degree variances vector does not contain a jump for spherical harmonic
degree 720 as the computation of EGM2008 is performed using one consistent dataset. However,
it still contains the same jump in value for N = 1000 due to the transition from error-degree
variances to degree variances. The original and final degree variances for EGM2008 is shown in
figure 5.6. From this analysis, all theoretical and numerical aspects, which first were encountered in
the validation area, relating to degree variances has now been justified. The final implementation
of degree variances and covariance functions will be performed according to

cn =


σcGGMn 2 ≤ n ≤ Ncut
cHR−GGMn Ncut < n ≤ 2159

βTRc
TR
n 2159 < n ≤ 10000

, (5.28)

where a new notation for high-resolution GGM (HR-GGM) is introduced such that equation (5.28)
is valid for all GGMs, since the three models have a different truncation degree. A final flowchart
of the implementation and calculation in MATLAB can be found in figure 6.1. The original and
final degree variances vectors, calculated according to equation (5.28), are showed in figure 5.6, 5.7
and 5.8 for the different GGMs applied in the remove-restore step.
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(a) Using original degree variances (b) Using modified degree variances

Figure 5.6: Comparison of degree variances calculated for RCR method with EGM2008. Figure
5.6a: original degree variances given by equation (5.24). Figure 5.6b: modified degree variances
given by equation (5.28).

(a) Using original degree variances (b) Using modified degree variances

Figure 5.7: Comparison of the degree variances calculated for RCR method with XGM2019e2159.
Figure 5.7a: original degree variances given by equation (5.24). Figure 5.7b: modified degree
variances given by equation (5.28).
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(a) Using original egree variance (b) Using modified degree variances

Figure 5.8: Comparison of the degree variances calculated for RCR method with GOCO06s. Figure
5.8a: original degree variances given by equation (5.24). Figure 5.8b: modified degree variances
given by equation (5.28).

As a final check of the modified degree variances modelling, a comparison of the resulting global
covariance functions with the empirical covariance is performed. Empirical covariance functions
will be generated, by the method outlined in section 4.3, and used for scaling and comparison of
the global covariance functions. The remove-step by applying the different GGMs results should
result in a residual geoid height signal ∆N fulfilling the stochastic properties given in section 3,
and accordingly also result in local empirical covariance functions with similar shape as the global
covariance functions derived from potential coefficients. However, since the empirical covariance
functions should reflect local effects and will be used for scaling the global covariance functions by
variance comparison, the two functions are not expected to fit perfectly. The empirical covariance
function should not contain any clear trends, then the residual signal contains some deterministic
component and it violates with the stochastic requirement of LSC.

Figure 5.9a and 5.9b shows the corresponding global and empirical covariance functions of resid-
ual geoid height C∆N∆N for EGM2008 and XGM2019e2159, respectively. It was expected that a
modified treatment of degree variances modelling would result in similar global covariance func-
tions for all the GGMs, but figure 5.9 shows that still some problems exists for EGM2008 and
XGM2019e2159.

(a) EGM2008 (b) XGM2019e2159

Figure 5.9: Empirical and global covariance functions using the extended degree variances mod-
elling given by equation (5.28). Figure 5.9a: EGM2008. FIgure 5.9b: XGM2019e2159.
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As the cross-covariance functions between residual geoid heights ∆N and gravity anomalies ∆g
does not have any empirical results available to be used for scaling, then they are scaled with
the same coefficient as the auto-covariance function for residual geoid height. This method is
also in accordance with methods found in different literature (Knudsen, 1987; Nguyen et al.,
2020). From the plots of analytical and empirical covariance functions it is visible that both
EGM2008 and XGM2019e2159 results in odd-shaped covariance functions compared to GOCO06s,
but more importantly they does not produce any good approximations of the real signal repre-
sented by the empirical covariance function. The small scaling coefficients of αEGM2008 = 0.1127
and αXGM2019e2159 = 0.4667 shows that the high-resolution GGMs have a poor fit to local ef-
fects. This can also be caused by wrongly selecting a too large initial scaling coefficient for the
Tscherning-Rapp component, but, as seen from equation (5.27) for the simplified degree variances
modelling, this problem has already been included and corrected for. One other possibility could
be that the residual geoid height when using a high-resolution GGM for the remove-restore step
up to a spherical harmonic degree of 1000 resulted in a residual signal with very low signal-to-noise
ratio, and then no signal content is possible to model with LSC. This could have been observed
by the empirical covariance function, and with a low signal amplitude, then also the contribution
of LSC to the total gravity signal, according to equation (6.3), will become smaller. Due to the
very low value of αEGM2008 and αXGM2019e2159, then small details for the empirical and global
covariance function are hard to observe from figure 5.9a and 5.9b. In the case of XGM2019e2159,
some of the same effects can be seen, but the global covariance function fits marginally better to
the empirical values than for EGM2008. The only GGM resulting in a satisfying global covariance
function is GOCO06s, as represented by figure 5.4. A separate plotting, not shown here, of the
rescaled global and empirical covariance functions were made of EGM2008 and XGM2019e2159,
but it only conformed the global covariance functions as poor approximation of the local signal,
which is clearly visible from figure 5.9 as well.

As LSC is an estimation technique based on statistical relationship between the observables and
target quantity, then empirical and formal errors based on prediction results using global covariance
functions not resembling the empirical covariance function cannot be relied on. In order to give a
final answer on the odd-shaped covariance functions, then the empirical errors and global covariance
functions from an earlier LSC based on a different set of degree variances will be presented in the
following.

Initially the residual geoid height signal was considered to be truly bandlimited restrictive to the
spectral band N ∈ [Ncut + 1, Nmax]. Accordingly, degree variances within this spectra was formed
by the potential coefficients from a high-resolution GGM, i.e.,

~cn =
{
cHR−GGMn Ncut < N ≤ 2159. (5.29)

As a way to scale the Tscherning-Rapp component above the GGM’s maximum degree was obtained
by equation (5.27), the initial degree variances modelling in equation (5.29) can be extended with
a Tscherning-Rapp term resulting in

~cn =


cHR−GGMn Ncut < N ≤ 2159.

βcTRn

{
2159 < N ≤ 10000 for XGM2019e2159

2140 < N ≤ 10000 for EGM2008

(5.30)

degree variances, calculated by equation (5.30), and corresponding global covariance functions
for EGM2008 and XGM2019e2159 are shown in figure 5.10 and 5.11, respectively. Figure 5.6b
shows for EGM2008 a rapid decrease in value for the spectral interval N ∈ [2140, 2160], so to
contour-act this effect for EGM2008 a Tscherning-Rapp model is already applied from N = 2141.
Both figures shows a clear improvements by the covariance functions, which now resembles the
empirical covariance in a similar manner as for GOCO06s. Comparison with figure 5.9a and 5.9b
verifies that realistic global covariance functions can only be formed based on degree variances
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free of large jumps in values. Accordingly, evaluation of EGM2008 and XGM2019e2159 will be
based on empirical and formal errors derived from global covariance functions using equation
(5.30) for degree variances modelling, and thereby it will not include the GGM’s error-degree
component. Since Knudsen (1987); Nguyen et al. (2020) uses the GGM up to its maximum degree,
i.e., Ncut = Nmax, they can avoid jumps induced by switching from error-degree variances to degree
variances, and directly use least-squares adjustment to determine the model parameters shown in
equation (5.23).

(a) Modified degree variances (b) Modified global covariance functions

Figure 5.10: Modified approach for calculating degree variances according to equation (5.30) along-
side with the resulting global covariance function for EGM200 using DTU13MSS as the MSS model.

(a) Modified degree variances (b) Modified global covariance functions

Figure 5.11: Modified approach for calculating degree variances according to equation (5.30) along-
side with the resulting global covariance function for XGM2019e2159 using DTU13MSS as the MSS
model.
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(a) Modified degree variances (b) Modified global covariance functions

Figure 5.12: Modified approach for calculating degree variances according to equation (5.30) along-
side with the resulting global covariance function for GOCO06s using DTU13MSS as the MSS
model.
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Chapter 6

Numerical investigations

The datasets used in this thesis are Mean Sea Surface (MSS) - DTU18MSS (Andersen et al.,
2018), DTU13MSS (Andersen et al., 2016), DTU13MDT (Andersen et al., 2016) and DTU13GRA
(Andersen et al., 2014). Further description of the datasets, preprocessing and methods can be
found in their corresponding references. An overview of the different datasets and their reference
ellipsoids, tide systems, spatial resolution are shown in table 6.1.

Table 6.1: An overview of the different datasets and their specifications used in the LSC for the
validation area.

DTU13GRA DTU13MDT DTU13MSS DTU18MSS
Spatial coverage Global Global Global Global
Spatial resolution[°] 1× 1 1

60 ×
1
60

1
60 ×

1
60

1
60 ×

1
60

Reference period 1993-2013 1993-2013 1993.1-2013.0
Reference ellipsoid TOPEX TOPEX WGS84
Tide system Mean tide Mean tide Mean tide Mean tide

In this thesis, the subject of study is gravity field modelling in marine areas, specifically along the
Norwegian coast. Without presence of topography it is not necessary to apply a topographic gravity
field model to remove topographic effects. Zingerle et al. (2020) state that even though the ocean
geoid can be considered as a smooth surface compared with the land geoid, significant signal is
still left above the maximum degree and order 2159. How to model the statistical behaviour of the
remaining signal through covariance functions was explained in section 4. By truncating the high-
resolution models to a maximum degree of Ncut = 1000 allowed the global covariance functions to
be modelled with the potential coefficients above the truncation degree with already implemented
routines in MATLAB. The degree variances above Nmax = 2190 were further modelled using a
Tscherning/Rapp covariance model.

In all computations the data area is sub-divided into a one smaller central target zone named
”target area” and the whole area called ”data area”. This is done to overcome known boundary
effects in regional gravity field modelling, and in order to compare results, then a smaller are free
for boundary effects, i.e., the target area, is considered for comparison of empirical and formal
errors. The calculation is done for the entire data area, so the target area is just a sub-area used
for validation purposes. Throughout this thesis a significant amount of time has been devoted
to the limitation of memory storage. All numerical calculations has been done in MATLAB on
a basic computer, Lenovo ThinkPad E460 with Core i5-6200U processor (Lenovo, 2020). The
storage limitation is due to the computer’s RAM availability, no problems are related to MATLAB
itself. Due to limited computational capacity the maximum number of observations that can be
handled in the LSC calculations are 14400. The resulting covariance matrix with a dimension of
[14400, 14400] uses close to 8GB storage which is the computer’s RAM size. The whole scripts with
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Figure 6.1: The implementation and processing strategy in MATLAB used for LSC of gravity
anomalies from residual geoid heights.
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Figure 6.2: Area used for validating LSC implementation in MATLAB. The data covers a region
of φ = [68.5, 70.5] and λ = [8, 10]. Here the residual geoid height ∆N is calculated according to
equation (5.17) with GOCO06s and DTU18MSS.

creating residual geoid heights, covariance and cross-covariance functions, LSC and calculation of
empirical and formal errors spends around 20 minutes, where a substantial part is used on creation
and saving of figures. A final upgrade to 16 GB RAM size reduced the run time to 10 minutes,
and test simulations at a rather late stage shows that LSC predictions can be carried out with a
total number of observations between 15000 − 16000. The large computational power of LSC is
one of its drawbacks, but still on a regular computer it is possible to predict gravity anomalies ∆g
from residual geoid heights ∆N for an area of sufficient size according to this thesis’ objective.

6.1 Validation of least-squares collocation

As an initial test to verify the implementation of LSC in MATLAB, a small area outside of the
Norwegian coast was chosen. The validation area is shown in figure 6.2 and extends over φ =
[68.5, 70.5] and λ = [8, 10], which is approximately 150 km from the Norwegian coast such that
any coastal effects on the altimetry data can be neglected. The validation is both performed using
a satellite-only gravity field model, GOCO06s (Kvas et al., 2021), with a maximum degree of
Ncut = 300, and two high-resolution gravity field models, EGM2008 and XGM2019e2159, with its
maximum degree truncated to Ncut = 1000. Further details about the selection criteria for the
GGMs is explained in section 2.2.

In this area, gravity anomalies ∆g from DTU13GRA is used as validation data for the LSC pre-
dictions. DTU13GRA is based on a large amount of the same observations, but the processing
strategies differ so the validation does not strictly follow a closed-loop simulation. The global model
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DTU13GRA is calculated by applying a Tscherning-Rapp model for interpolating residual geoid
heights at a regular grid, and secondly using the fast fourier techniques (FFT) for the transforma-
tion between residual geoid height and gravity anomalies (Andersen et al., 2015). However, small
deviations between the total gravity signal based on LSC and DTU13GRA can be used to validate
the implementation of LSC in MATLAB. Nguyen et al. (2020), in their research on marine gravity
modelling from Cryosat-2 and Saral/AltiKa satellite altimetry data, reports empirical errors of
their LSC satellite altimetry derived gravity anomalies compared to DTU13GRA as

εNguyen = 2.94± 5.73 mGal (6.1)

with errors ranging from [−44.13 mGal, 40.16 mGal]. Empirical and formal errors for LSC smaller
than 2 mGal, or of similar size as found in Nguyen et al. (2020), are used as validation criteria in
the validation area. The validation area consist of 14400 observations, which results in covariance
matrices with dimensions of 14000×14000 and a total of 196000000 elements. The implementation
and processing of LSC is shown in figure 6.1, which is greatly inspired by the scheme found in
Nguyen et al. (2020).

Two different MSS models, DTU13MSS (Andersen et al., 2015) and DTU18MSS, are available,
so the numerical investigations will be divided into two parts, where the only difference between
the two is the selection of the MSS model. The reason for using two different MSS models is to
see if any systematic effects caused by dependencies between any of the components in equation
(5.17) shows up in the empirical or formal errors. All computations are performed following the
implemented scheme as represented by figure 6.1, so for further details about each processing step
I will refer to that figure whenever it is relevant.

For comparison in order to evaluate the different GGMs, plots of residual gravity anomaly will be
made according to

∆gres = ∆gSHS −∆gDTU13GRA, (6.2)

where ∆gSHS is gravity anomaly resulting from SHS, given by equation (2.28), using spherical
harmonic coefficients up to spherical harmonic degree Ncut from the GGM under consideration,
while ∆gDTU13RA is gravity anomalies from the global model DTU13GRA (Andersen et al., 2014).
LSC works on a residual geoid height signal ∆N consisting of short wavelength characteristics, and
accordingly the LSC can contribute with determination of the gravity field signal’s short wavelength
components. The total gravity anomaly signal, after the restore-step, is given by

∆ĝtot = ∆gSHS + ∆gLSC , (6.3)

and accordingly another set of residual gravity anomalies can be calculated by comparison with
DTU13GRA

ε (∆gLSC) = ∆ĝtot −∆gDTU13GRA. (6.4)

The contribution by LSC is evaluated based on its effect on mean value, standard deviation and
extremal values of the empirical error, obtained by equation (6.4), compared to the same descriptive
statistics for the residual gravity anomaly signal formed by equation (6.2). The two sets of residual
gravity anomaly fields only differs by the LSC of gravity anomaly, then the contribution by LSC can
be evaluated based on its influence on the empirical errors’ statistical parameters compared to the
residual gravity anomaly signal. In case their values are similar, then a very limited contribution
by LSC can be offered, and vice versa. Residual gravity anomalies for EGM2008, XGM2019e2159
and GOCO06s are shown in figure 6.7b, 6.8b and 6.9b, respectively.
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6.1.1 LSC estimates using DTU13MSS as mean surface model

The residual geoid height for the different GGMs are shown in figure 6.3, 6.4 and figure 6.5. Here the
residual geoid height is shown before it has been reduced by its own mean value, which is performed
in order to compare the prediction results based on different GGMs and also to optimally fulfill
the stochastic requirements as was explained in section 5.1. From plots of residual geoid height,
as is shown by the respective figures, no conclusion can be drawn about the stochastic properties
for the residual field. One feature that should be noticed is the much larger signal variance of ∆N
when using GOCO06s for the remove-step. An increased signal variance for GOCO06s is to be
expected, as the gravity field’s long wavelength components are only removed up to a spherical
harmonic degree of 300, compared with 1000 for EGM2008 and XGM2019e2159. The covariance
functions for EGM2008, XGM2019e2159 and GOCO06s were shown in figure 5.10, 5.11 and figure
5.12, respectively.

Figure 6.3: Residual geoid height, calculated according to equation (5.17), using EGM2008 for
removement of the gravity field’s long wavelength components.

57



Figure 6.4: Residual geoid height, calculated according to equation (5.17), using XGM2019e2159
for removement of the gravity field’s long wavelength components.

Figure 6.5: Residual geoid height, calculated according to equation (5.17), using GOCO06s for
removement of the gravity field’s long wavelength components.

One last important quantity of LSC, as given by equation (5.18), is the MSS’ accuracy. The error
covariance matrix D∆ is a diagonal matrix consisting of squared values from the MSS error field at
the observation points. Figure 6.6 shows the error field for DTU13MSS with values ranging from
1.5− 1.9 mGal. Adding values along the diagonal of the covariance matrix gives a numerical more
stable system, but one side-effect is that it has a smoothing effect on the signal.
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Table 6.2: Descriptive statistics for empirical errors, according to equation (6.4), when using
DTU13MSS as the MSS model and the respective GGMs alongside with residual gravity anomaly
given by equation (6.2). All quantities have unit mGal.

Difference of total gravity signal
from LSC and DTU13GRA

DTU13MSS ∆gSHS −∆gDTU13GRA

min max mean std min max mean std
EGM2008 -7.283 5.850 0.044 1.877 -10.204 9.826 -0.106 3.629
XGM2019e2159 -8.360 5.811 -0.465 1.920 -9.930 9.145 -0.578 3.589
GOCO06s -6.738 4.810 -0.688 1.680 -23.332 14.023 -2.233 8.186

Figure 6.6: Corresponding error-field of DTU13MSS. Notice that the error-field is shown with unit
of cm.

The residual gravity anomaly signal formed by equation (6.2) are shown in figure 6.7b, 6.8b and
6.9b, while the empirical errors derived by equation (6.4) are shown in figure 6.7a, 6.8a and 6.9a.
All figures are in the order of EGM2008, XGM2019e2159 and GOCO06s, respectively. A summary
of the descriptive statistical parameters are shown in table 6.2. It can clearly be seen a contribution
by LSC from all the GGMs. However, the reduction is largest in the case of GOCO06s. This can
in particular be explained by its well approximating global covariance function, and also its higher
SNR for the residual geoid height signal. EGM2008 obtains a smaller value for both the mean
value and standard deviation compared to XGM2019e2159. Especially, its mean value is by a
factor 10 smaller than for both XGM2019e2159 and GOCO06s. This might be explained by a
better consistency between DTU13MDT and EGM2008. DTU13MDT is calculated as a difference
between DTU13MSS (Andersen et al., 2016) and EIGEN-6C3 (Foerste et al., 2011), where EIGEN-
6C3 in turn uses EGM2008 as surface data for their computation.

GOCO06s shows very promising results, where the mean value and standard deviation for the
empirical errors in figure 6.9a are reduced by 79 % and 63%, respectively, compared to the residual
gravity signal shown in figure 6.9b. Also for EGM2008 and XGM2019e2159 LSC contributes to a
large reduction. These results are in accordance with the principal of model independence for the
RCR-method. GOCO06s achieves the lowest standard deviation which shows that a satellite-only
model can be used as GGM for the remove-restore step, in addition it again validates the extended
covariance modelling represented in section 6 when degree variances are free of jumps in value.

59



(a) Empirical error based on LSC. (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.7: Evaluation of the contribution by the LSC of gravity anomalies from residual geoid
height using EGM2008 for the remove-restore step.

(a) Empirical error based on LSC. (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.8: Evaluation of the contribution by the LSC of gravity anomalies from residual geoid
height using XGM2019e2159 for the remove-restore step.

(a) Empirical error based on LSC. (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.9: Evaluation of the contribution by the LSC of gravity anomalies from residual geoid
height using GOCO06s for the remove-restore step.
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As a final step the formal error are predicted according to equation (5.19) and shown in figure 6.10,
6.11 and 6.12 for EGM2008, XGM2019e2159 and GOCO06s, respectively. Again I will emphasize
that formal errors calculated by equation (5.19) are independent of observations, and they are
exclusively determined using error-propagation of the target guantity’ mathematical relationship
to the observations described by the auto-covariance function and cross-covariance function. All
models produce a homogeneous error field, where again GOCO06s posses the smallest values. The
three models only marginal differs from each other showing a consistent covariance modelling. All
plots of formal errors shows increasing errors in-between the satellite tracks. A more sparse sam-
pling is existing in these regions compared to along the satellite tracks, and the LSC of gravity
anomaly will then rely more on observations further away compared to points along the satellite
track. Compared with the empirical errors it can be seen that the formal errors represents an
upper bound estimate. Practically, this is a lot safer than producing a too optimistic error es-
timate, because altimetry derived gravity anomalies can be included in other estimations where
corresponding weights safely can be assigned according to the formal errors. The main thesis ob-
jective was to investigate the possibility of predicting gravity anomalies from residual geoid height,
and accordingly the results from all GGMs proves this to be possible. In the following section, the
same LSC using DTU18MSS as mean sea surface model will be carried out.

Figure 6.10: Formal errors using covariance functions with EGM2008.
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Figure 6.11: Formal errors using covariance function with XGM2019.

Figure 6.12: Formal errors using covariance function with GOCO06s.
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6.1.2 LSC estimates using DTU18MSS as mean sea surface model

As degree variances modelling is independent of mean sea surface model, except from scaling
by variance comparison with the empirical covariance function, then the same degree variances
modelling for EGM2008 and XGM2019e2159 will be applied in these numerical estimations using
DTU18MSS as mean sea surface model. Again, first the residual geoid height ∆N is calculated
using the different GGMs for the remove-step. Isolated by the residual plots shown in figure 6.13,
6.14 and 6.15 no clear conclusions can be drawn. A plot of residual geoid height works as a visual
check to verify that the computations by equation (5.17) has resulted in a stochastic signal. From
a comparison between figure 6.5 and 6.15 it can be seen that the mean value is reduced by 3.4 cm
for GOCO06s. The standard deviation, and thereby also the signal variance, is unchanged which
means that the mean value calculated for the residual geoid height of GOCO06s in the case of
DTU13MSS, as represented in figure 6.5, reflects a pure offset between the two datasets.

Figure 6.13: Residual geoid height when using EGM2008 and DTU18MSS.

Figure 6.14: Residual geoid height when using XGM2019e2159 and DTU18MSS.
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Figure 6.15: Residual geoid height when using GOCO06s and DTU18MSS.

The error-field of DTU18MSS is shown in figure 6.16. By comparison with figure 6.16 it can
be verified that DTU13MSS and DTU18MSS have error-fields of similar size. DTU18MSS has a
slightly larger mean value and standard deviation by 0.1 cm, and it shows a more defined pattern for
the satellite tracks. However, these slight differences are expected to not have any great influence
on the empirical and formal errors of LSC.

Figure 6.16: Corresponding error-field of DTU18MSS. Notice that the error-field is shown with
unit of cm.

The corresponding global and empirical covariance functions using the three GGMs are shown in
figure 6.17b, 6.18b and 6.19b. Since the same degree variances are used for the computations as
was shown in section 6.1.1, then the left parts of the respective figures shows the cross-covariance
function between residual geoid height and gravity anomaly C∆N∆g. No remarks on the empir-
ical covariance functions were given in the numerical calculations with DTU13MSS, but now as
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similar functions have been derived using DTU18MSS, then a closer inspection of the empirical
covariance functions behaviour will be made. Comparison of the empirical covariance functions
using DTU13MSS and DTU18MSS shows only minor differences depending on the different MSS
models. However, the empirical covariance functions of residual geoid height C∆N∆N generated by
using different GGMs as part of the remove-step shows some differences. XGM2019e2159, figure
5.11b and 6.18b, shows signs of a small negative trend with larger distances. This negative trend
is very marginal, so performing a reduction by a linear model can be neglected. The empirical
covariance functions derived by GOCO06s, figure 5.12b and 6.19b, shows truly a stochastic signal
with no deterministic components for the spatial distances depicted in the corresponding figures.
Here again, the signal variance using GOCO06s is by an order of 2 larger compared to EGM2008
and XGM2019e2159. On the other hand, the empirical covariance functions for EGM2008, figure
5.10b and 6.17b, shows relatively large difference compared to what can be seen for XGM2019e2159
and GOCO06s. Especially figure 6.17b looks to contain a deterministic signal consisting of two
components with a period of approximately 1◦ and one of larger wavelength, respectively. In order
to apply any correction formula for the residual geoid height a much more detailed knowledge of
the deterministic signal components must first be obtained. Therefore, no correction is applied
to the residual geoid height for EGM2008. This is a topic that can, and should, be investigated
further in future research.

(a) Cross-covariance function (b) Global and empirical auto-covariance functions

Figure 6.17: Figure 6.17a: Cross-covariance functions between residual geoid height and gravity
anomaly C∆N∆g. Figure 6.17b, red line: global covariance and green dots: empirical covariance
functionsfor residual geoid height. EGM2008 is applied for the remove-step.
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(a) Cross-covariance function (b) Global and empirical auto-covariance functions

Figure 6.18: Figure 6.17a: Cross-covariance functions between residual geoid height and gravity
anomaly C∆N∆g. Figure 6.17b, red line: global covariance and green dots: empirical covariance
functionsfor residual geoid height. XGM2019e2159 is applied for the remove-step.

(a) Cross-covariance function (b) Global and empirical auto-covariance functions

Figure 6.19: Figure 6.17a: Cross-covariance functions between residual geoid height and gravity
anomaly C∆N∆g. Figure 6.17b, red line: global covariance and green dots: empirical covariance
functionsfor residual geoid height. GOCO06s is applied for the remove-step.

In figure 6.20a, 6.20a and figure 6.20a the empirical errors are once again shown alongside with
the difference between SHS derived gravity anomalies and DTU13GRA in figure 6.20b, 6.21b
and 6.22b. Also when using DTU18MSS all three GGMs contribute by LSC to a reduced mean
value and standard deviation. A comparison of the empirical and formal errors from LSC using
DTU13MSS and DTU18MSS will be given in the following section. Table 6.3 shows descriptive
statistics using for the empirical error using LSC with DTU18MSS as the MSS model. The same
results as obtained in the case of DTU13MSS can again be concluded from table 6.3. GOCO06s
achieves the greatest reduction of 69 % and 72 % for the mean value and standard deviation,
respectively.
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Table 6.3: Comparison of empirical errors resulting from LSC applied to residual geoid height signal
using DTU18MSS as MSS model with residual gravity anomaly formed by the difference in gravity
anomaly from SHS using the different GGMs and gravity anomalies derived from DTU13GRA. All
quantities have unit mGal.

DTU18MSS ∆gshs −∆gDTU13GRA

Empirical errors min max mean std min max mean std
EGM2008 -7.596 7.727 0.069 2.350 -10.204 9.826 -0.106 3.629
XGM2019e2159 -9.124 8.445 -0.444 2.346 -9.930 9.145 -0.578 3.589
GOCO06s -9.255 6.163 -0.682 2.234 -23.332 14.023 -2.233 8.186

(a) Total gravity anomaly based on LSC (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.20: Evaluation of the contribution by LSC of gravity anomalies from residual geoid height
using EGM2008 for the remove-restore step.

(a) Total gravity anomaly based on LSC (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.21: Evaluation of the contribution by LSC of gravity anomalies from residual geoid height
using XGM2019e2159 for the remove-restore step.
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(a) Total gravity anomaly based on LSC (b) SHS gravity anomaly minus DTU13GRA.

Figure 6.22: Evaluation of the contribution by LSC of gravity anomalies from residual geoid height
using GOCO06s for the remove-restore step.

The formal errors, calculated according to equation (5.19), are shown in figure 6.23, 6.24 and 6.25.
All GGMs results in a homogeneous field, and compared to the results for DTU13MSS only minor
differences can be seen.

Figure 6.23: Formal errors using covariance functions with EGM2008.
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Figure 6.24: Formal errors using covariance function with XGM2019.

Figure 6.25: Formal errors using covariance function with GOCO06s.
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6.1.3 Summary of LSC in the validation area

To summarize the prediction of gravity anomalies from residual geoid heights by LSC, table 6.4
shows the empirical and formal errors for the two different MSS models. In addition to using
three different GGMs, the calculations were also carried out using two different MSS models. The
comparison of global covariance functions, as was made in the previous sections, showed hardly
any differences. The observations, residual geoid heights ∆N , together with the global covariance
functions solely determines LSC. As no difference in the global covariance functions could be seen
either using DTU13MSS or DTU18MSS as the MSS model, then the slight difference in results
using LSC must be caused by the input ∆N dataset or the MSS’ error field. Figure 6.26 shows the
difference between DTU13MSS and DTU18MSS which reaches a maximum of −6.5 cm. With this
observation alongside with similar error-fields, it is expected that LSC applied to the residual geoid
height signal ∆N will result in similar empirical and formal errors using the two different MSS
models. From table 6.4 a slight increase in standard deviation for the empirical error when using
DTU18MSS can be seen. From the similar formal errors when using DTU13MSS and DTU18MSS,
then the slight increase in empirical error must be caused by the small difference between the MSS
models as shown in figure 6.26.

Table 6.4: Comparison of empirical and formal errors from LSC applied to residual geoid heights
formed by using different MSS models, where left and right parts are the results using DTU13MSS
and DTU18MSS as MSS models, respectively. All quantities have unit mGal.

DTU13MSS DTU18MSS
Empirical errors min max mean std min max mean std
EGM2008 -7.283 5.850 0.044 1.877 -7.596 7.727 0.069 2.350
XGM2019e2159 -8.360 5.811 -0.465 1.920 -9.124 8.445 -0.444 2.346
GOCO06s -6.738 4.810 -0.688 1.680 -9.255 6.163 -0.682 2.234

Formal errors min max mean std min max mean std
EGM2008 3.517 3.738 3.642 0.037 3.514 3.737 3.627 0.043
XGM2019e2159 3.723 3.969 3.861 0.041 3.659 3.900 3.781 0.046
GOCO06s 3.285 3.476 3.391 0.032 3.338 3.545 3.443 0.039

Figure 6.26: Difference in MSS between DTU18MSS and DTU13MSS.
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Evaluation of empirical errors, independent of MSS model used, shows that satellite altimetry
derived gravity anomalies using the RCR-method with LSC results in empirical errors between
1.68 − 2.35 mGal when compared to DTU13GRA. In addition, corresponding formal errors are
estimated in the range between 3.39− 3.78 mGal. For all calculations the formal errors represent
an upper-bound error estimate. Accordingly, gravity anomalies obtained by LSC can safely be
included in other estimations with weights determined from their formal errors. GOCO06s is the
GGM which results in the smallest empirical and formal errors, both in the case of DTU13MSS
and DTU18MSS. This is probably relating to the observations used in the processing of GOCO0s
which is solely collected by satellites (Kvas et al., 2021), and accordingly the GGM will not reflect
on-land topographic effects observed with terrestrial techniques. The results obtained by empirical
and formal errors using all GGMs are in agreement with accuracy of marine gravity field as found
in literature, e.g., Andersen (2013); Nguyen et al. (2020).
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6.2 Testbed of Sunnmøre

The near closed-loop simulation for the validation area showed that realistic estimates of satel-
lite altimetry derived gravity anomalies can be obtained from residual geoid heights by applying
LSC. The numerical investigations by LSC have been applied in open waters where the quality
of global MSS and gravity field models are not degraded by coastal effects. For validation pur-
poses DTU13GRA was considered ideal to be used as empirical validation for the near closed-loop
simulation. In coastal areas, the quality of DTU13MSS degrades due to sparse sampling and
extrapolation effects. The accuracy of DTU13GRA also degrades as DTU13MSS is used in its
estimation.

The Norwegian Mapping Authority (NMA) has initiated a research project to study the possibility
of creating a common physical vertical datum on land and at sea. To serve this project, a testbed,
located at φ = [61.9◦, 62.5◦] and λ = [4.5◦, 6.5◦], covering approximately 250 km×250 km has been
established. Within this testbed, gravity observations with a density of ∼ 2 km have been collected
in the recent years (Kartverket, 2020).

The numerical investigations in section 6.1 showed that only GOCO06s, when the covariance
function was modelled as outlined in section 6.1, resulted in analytical covariance function with
similar shape as commonly reported in literature, .e.g., Knudsen (1987); Nguyen et al. (2020);
Heydarizadeh Shali et al. (2020). GOCO06s was also the GGM that resulted in smallest empirical
and formal errors using both MSS models in the validation area. Based on these findings and time
limitations, only GOCO06s is used for LSC predictions at the Sunnmøre testbed.

For the Sunnmøre testbed, LSC of gravity anomalies is carried out based on residual geoid heights
calculated from a dataset of SSH measurements gathered with Saral/ALTIKA, Saral/ALTIKA-
GM, Sentinel-3A and Cryosat-2 (Ophaug et al., 2019). In contrast to the validation area, where
data originated from models provided homogeneously on a grid, the SSH measurements forms a
heterogeneous dataset. The SSH measurements, collected over a time period between 2013 and
2017, have undergone a preprocessing to ensure high quality of the dataset. This preprocessing
involves calculating offsets between the satellite missions from crossover analysis, and reducing the
ocean tide (OT) contribution on the measurement by applying a local OT model from the NMA. In
addition, seasonal effects are eliminated by subtracting a linear model including annual and semi-
annual harmonics. For further details about processing and estimations of the SSH observations I
refer to Ophaug et al. (2019) where a detailed description can be found. The SSH measurements
use WGS84 as their reference ellipsoid, and following no inconsistency exists in reference ellipsoid
between the SSH measurements, GGM and MDT. The residual geoid height ∆N calculated at the
heterogeneous observation points is shown in figure 6.27. To obtain MDT values at the observation
points, in order to apply equation (5.17), a 2D cubic interpolation method has been applied. This
interpolation technique is also applied to DTU13GRA in order to obtain independent gravity
anomalies used for validation.

Figure 6.28b shows the empirical and analytical covariance function calculated by the same ap-
proach as in section 6.1. The empirical and analytical covariance function for the Sunnmøre testbed
shows to a large extent the same behaviour as for the validation area, see figure 6.19b or 5.12b.
The validation area was selected far from the Norwegian coast to avoid coastal effects, and from
this reasoning it was expected to see a different behaviour of the empirical covariance function in
the Sunnmøre testbed. As the estimation of sea state biases and dynamical effects are reported
to be more complex in coastal areas, then the empirical covariance function would be expected to
contain more deterministic signals due to the uncertainty and incompleteness of the MDT mod-
elling and from a larger noise on the observations itself. By comparison of 6.28b with 6.19b or
5.12b it can be seen that the Sunnmøre testbed consist of a signal with a period of around 1◦ while
in the validation area the signal has a considerable longer wavelength characteristic and a period
of approximately 2◦. Coastal effects were expected to show up as short wavelength components
in the empirical covariance function, but no such effect can be seen in figure 6.28b. The empir-
ical covariance function has the same shape as the empirical covariance function found in other
literature. The only difference, except from the periodicity of the signal, between the two cases is
the signal amplitude described by the two functions variance, i.e., C(ψ) = C0. The residual geoid
signal ∆N at Sunnmøre has a larger amplitude compared to the validation area of a factor 1.25,
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Figure 6.27: The Sunnmøre testbed covers a region of φ = [61.9◦, 62.5◦] and λ = [4.5◦, 6.5◦].
Here the residual geoid height ∆N is calculated according to equation (5.17) with SSH dataset,
GOCO006s and DTU13MDT.

(a) Cross-covariance function (b) Covariance function

Figure 6.28: Figure 6.28a: Cross-covariance. Figure 6.28b: auto-covariance function for the
Sunnmøre testbed. Residual geoid height is generated according to equation (5.17).
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Table 6.5: Empirical errors formed as differences between the total gravity signal based on LSC
and gravity anomalies from DTU13GRA. The formal errors are calculated according to equation
(5.19). All quantities have unit mGal.

∆gtot −∆gDTU13GRA Formal errors
min max mean std min max mean std

GOCO06s -15.205 19.020 -1.787 4.084 4.704 7.811 5.551 0.387

which is not by any means a great increase. These first investigations at the Sunnmøre testbed
shows a good consistency between the different datasets, and no clear deterministic signal com-
ponent can be observed from the residual geoid height and its empirical covariance function. The
large maximum negative value for the residual geoid height in the Sunnmøre testbed, shown in
figure 6.27, is probably caused by an gross error, especially since the maximum positive value only
differ from the mean value with 0.858 m compared to 1.540 m for the negative value. As a rule of
thumb, a gross error is recognized if it deviates from the mean value with more than 3 times the
standard deviation. Accordingly the maximum positive value can also be a gross error, but a closer
inspection of the residual geoid height shows no clear jump in value for the 10 or 20 maximum
values. For the negative case things are quite different, where the two most negative values differ
from the rest by 0.5 m. This is more than the variation of the following 300 SSH observations. The
two gross errors found using this simple method are located at the border of the dataset with a po-
sition of φ = [62.4214◦, 62.4628◦] and λ = [3.0157◦, 3.0071◦]. These two observations are removed
from the dataset before the calculations of empirical covariance functions and LSC predictions are
performed, but no updated plot of residual geoid height will be given here.

Figure 6.28b shows both the original global covariance function derived from potential coefficients of
the GGM and the scaled global covariance function with its scaling coefficient derived from variance
comparison using equation (4.10). Earlier it has been stated that the scaled covariance function
will be used in order to adapt the global covariance function to local effects. From figure 6.28b it is
seen that the global covariance function’s fit with the empirical covariance function degrades for the
scaled version, so a visual inspection of the original and scaled global covariance function should
always be done. From this observation the LSC in the Sunnmøre testbed will use the unscaled
global covariance function. The primarily purpose for using LSC on a residual signal is to perform
a detailed analysis of the signal’s short wavelength components. Figure 6.29 shows a comparison of
the difference in empirical errors between gravity anomalies derived by SHS using GOCO06s and
LSC predictions applying the RCR method. The gravity anomalies obtained by LSC predictions
reduces the empirical errors standard deviation by a factor of 4, and hence shows that LSC and
the RCR method can offer large benefits compared to only applying a standalone comparison with
a global model. Large empirical errors for the standalone comparison using GOCO06s is expected
as it is a satellite-only model expanded up to a spherical harmonic degree of 300. The empirical
error increases closer to the coast where islands and fjords creates a very complex environment for
the satellite altimetry and its quality is expected to degrade (Abdalla et al., 2021). Ophaug et al.
(2019) with their model DTU18MSS, using the same dataset, reports an empirical error of ≈ 8 cm
by comparison with tide gauges. Accordingly, measurement noise of D∆ = 0.08 m2 is added to
the auto-covariance matrix creating a stable system without producing any clear signs of large
smoothing effects. SSH measurements fulfilling the conditions φ ∈ [3◦, 7◦] and λ ∈ [61◦, 63◦] were
selected as observations for the LSC. This resulted in a total number of 12586 data points. At
the Sunnmøre testbed no clear boundary effects for the LSC predicted gravity anomalies is visible,
meaning that no creation of a ’target area’ used for comparison is necessary. As DTU13MDT
and DTU13GRA are interpolated onto the SSH observation points, then no further modification
of the implementation in MATLAB is required. The empirical errors, see figure 6.29b, obtained
in this thesis, where computations are performed along the challenging Norwegian coast, achieves
similar results as found in Nguyen et al. (2020). The empirical errors obtained by (Nguyen et al.,
2020) are calculated from LSC predictions using an extended collocation formulation allowing for
the combination of both observations from satellite altimetry derived gravity anomalies and ship-
measured gravity anomalies. A summary of the comparison between satellite altimetry derived
gravity anomalies and DTU13GRA together with its formal errors can be found in table 6.5.
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(a) Empirical error of gravity anomalies derived by
SHS using GOCO06s and DTU13GRA.

(b) Empirical errors of LSC predicted gravity
anomalies and DTU13GRA.

Figure 6.29: Comparison of empirical errors. Figure 6.29a: Difference in gravity anomalies derived
by SHS from GOCO06s and DTU13GRA. Figure 6.29b: Difference between the total gravity
anomaly signal constructed by LSC predictions and applying GOCO06s for the remove-restore
step and DTU13GRA.

The formal errors, shown in figure 6.30 computed using equation (5.19), still serves as an upper-
error estimate for the empirical error’s standard deviation as shown in figure 6.29b. In the same way
as for the validation area, a too conservative error estimates by the formal errors is preferable, than
vice versa. If the resulting gravity anomalies are used in further computations, then a potential
weighting of the observations based on their corresponding formal errors will assign a lower weight
to the satellite altimetry derived gravity anomalies, instead of a high weight if the formal errors
would have been to optimistic. Figure 6.28b reveals that larger frequency oscillation for point-pairs
separated by a spherical distance of larger than ψ ∼ 1.5◦ cannot be approximated by the global
covariance function. From the comparison of signal amplitude between the two areas, only an
increase of a factor 1.25 in variance could be observed for the Sunnmøre testbed, and accordingly
a small increase in formal error would be expected. A formal error of 5.723 mGal can be explained
by the small increase in signal variance and taking into consideration the increased measurement
noise of 8 cm compared to less than 2 cm in the validation for DTU13MSS and DTU18MSS.
Compared with the empirical and analytical covariance functions found in Nguyen et al. (2020),
the corresponding functions for the Sunnmøre testbed closely resembles this shape. The formal
errors are predicted entirely on the observations mathematical relationship described through its
auto-covariance and cross-covariance functions. Again I would like to emphasize that the formal
errors are independent of the observations, except for the assumed measurement noise forming
the measurement noise matrix D∆. Any unmodelled signal components should result in poor
prediction results and thereby large empirical errors. From figure 6.30 it can also be seen that the
formal errors increases in-between the satellite tracks. A more sparse sampling is existing in these
regions compared to along the satellite tracks, and the LSC of gravity anomaly will then rely more
on observations further away compared to points along the satellite track. The analytical and
empirical covariance function starts deviating for point-pairs separated by more than 1.25◦, even
here the differences are considered to be small, which also is supported by the small variations in
formal error. Still, the geometry of the observations is reflected in the formal errors. For now the
formal errors are considered to represent an upper-bound error field, which can safely be used for
weight assignment in the computations where the satellite derived gravity anomalies are taken as
input.
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Figure 6.30: Figure showing the formal errors of the LSC predicted gravity anomalies using equa-
tion (5.19).

The empirical validation with DTU13GRA is more questionable for the Sunnmøre testbed as its
accuracy degrades in coastal areas. An independent set of gravity measurement collected by the
NMA should have been used as an external validation of the gravity anomalies derived from residual
geoid height by LSC. For comparison with the NMA gravity measurements a new computation
procedure was set up in MATLAB. This procedure involved to predict gravity anomalies at an
evenly spaced grid with the same resolution as DTU13GRA, and then the LSC predicted gravity
anomalies were interpolated to the observation points of the NMA. The NMA gravity observations
would have been an independent validation of the LSC, and in contrast to DTU13GRA which is
a global model of gravity anomalies, the NMA dataset consist of single point observations that
have not undergone any common estimation procedure resulting in a gravity anomaly surface
or anything like that. Due to time limitations the final implementation was not achieved. A
future validation with the NMA will be of great importance as it provides a solid measure on the
possibility, and application, of satellite altimetry derived gravity anomalies in addition to gravity
anomalies obtained by dedicated satellite gravity missions and national measurement campaigns.
Another important aspect is that it will give a more reliable measure of the error estimates.
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Chapter 7

Conclusion and outlook

Within this thesis, satellite altimetry derived gravity anomalies were predicted from residual geoid
heights using LSC. First a theoretical study of GGMs, LSC and covariance functions was carried
out. Based on these findings, implementation of LSC and numerical investigations were performed
using MATLAB. The numerical investigations took place at two different study areas. One area was
selected in open-water, not influenced by coastal effects, to be used for validation purposes, while
the other area was selected at a gravimetric testbed in coastal areas outside of Sunnmøre created
by the NMA. For the validation area, DTU13GRA was used to derive empirical errors in a near
closed-loop simulation. The residual geoid heights were formed by using two different MSS models,
DTU13MSS and DTU18MSS. In addition, separate computations were performed using different
GGMs for the RCR-method, namely EGM2008, XGM2019e2159 and GOCO06s. The comparison
of empirical and formal errors using the different GGMs showed similar results, where GOCO06s
obtained the smallest empirical and formal errors for both DTU13MSS and DTU18MSS. For the
Sunnmøre testbed only GOCO06s was used as GGM, and here the total gravity signal based on
LSC was compared with DTU13GRA. The quality of DTU13GRA is known to degrade in coastal
areas, so the empirical errors for the Sunnmøre testbed must be used with caution. Due to time
limitations, an external validation with shipborne gravimetric observations provided by the NMA
was not possible.

From the results documented in section 6, some conclusion and areas for further research can be
drawn. Even though considerable work has been paid to the field of covariance modelling, there
is still room for optimisation and theoretically studies to ensure a proper handling of covariance
modelling in accordance to methods found in literature (Knudsen, 1987; Nguyen et al., 2020;
Heydarizadeh Shali et al., 2020). A detailed understanding to the topic of covariance modelling
and LSC can be achieved by the research of Zingerle et al. (2020); Willberg et al. (2020), where the
latter is part of the International Association of Geodesy (IAG) joint working group (JWG) 2.2.2,
called the ’1 cm geoid experiment’. A topic that has been neglected in this thesis, is the truncation
method for calculating height anomalies ∆N and gravity anomalies ∆g from the truncated GGM.
The simple ’rigorous’ cutting of the GGM’s potential coefficients at a spherical harmonic degree
Ncut, which is the method used in this thesis, creates well-known side lobes in the spatial structures
of the truncated field (Barthelmes, 2008). A natural starting point for future work would be an
investigation of the difference between using a rigorous or gentle truncation of the GGM’s spherical
harmonic coefficients. The computation service provided by ICGEM already offers the possibility
to select preferred truncation method. Pail et al. (2017); Zingerle et al. (2020), in their computation
of XGM2016 and XGM2019e, treats topics of data combination and model truncation. They are
using a tapering function to assign relative weights of the observations in land-ocean transition
areas, and also weights for the potential coefficients in order to compare GGMs with different
spherical harmonic degrees. Those articles can form the foundation and guidelines for looking into
the topic of truncation methods and tapering functions.

The simplified covariance modelling used in this thesis showed that computation of one common
degree variance vector, and then estimate one common scaling coefficient, will result in odd-shaped
covariance functions if there exists jumps in the degree variance vector. The implementation of a
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least-squares adjustment method for estimating the model parameters α, Rb and A proved itself to
be a difficult task, and at last the proposal of a slightly modified way of covariance modelling forced
its way. Here a new problem relating to the calculation of one common degree variance vector,
given by equation (5.24), emerged. The idea, which was finally validated with the use of GOCO06s,
was to account for both commission and omission error of the GGM used in the remove-restore
step, but also include higher degree effects by a Tscherning-Rapp covariance model. Optimization
in covariance modelling by least-squares determination of the model parameters will further reduce
the formal errors, as they are more sensible to changes in the covariance modelling than the estimate
of gravity anomalies from LSC itself. In comparison with residual gravity anomalies ∆gres, formed
by the difference between SHS-derived gravity anomalies and DTU13GRA, all GGMs used within
this thesis resulted in significantly reduced empirical errors by prediction of gravity anomalies
using LSC. When it comes to the selection of GGM one can even argue that using a satellite-only
GGM, here represented by GOCO06s, suffice for the remove-restore method. The calculations
with different MSS models showed similar results, where the slight variations are assigned to the
difference between DTU13MSS and DTU18MSS for the validation area. GOCO06s results in the
smallest empirical and formal errors both for DTU13MSS and DTU18MSS. The RCR-method
should in principle be model independent if the GGM is of high quality and fits well with the
local effects, and similar empirical and formal errors obtained using different GGMs confirms this
assumption about model independency.

Initial investigations, not shown within this thesis, of forming residual geoid height ∆N by using
the high-resolution GGMs EGM2008 and XGM2019e2159 up to its maximum spherical harmonic
degree 2190 resulted in empirical covariance functions with clear signs of trend and deterministic
signal. Accordingly, the continuing calculations were performed with the high-resolution GGMs
maximum spherical harmonic degrees truncated to 1000. The empirical covariance function is gen-
erated by a set of local observations representing the signal’s spatial variations. Strictly speaking it
is no necessity for the empirical covariance functions to follow a smooth shape as is resulting from
the use of GOCO06s and XGM2019e2159, but those functions are known to fulfill the stochastic
requirements in order to apply LSC. Even though the global covariance functions are derived from
the potential coefficients of a GGM, and hence reflects the signal characteristics on a global scale,
the empirical covariance functions should not contain any clear signs of trends or accelerations.
Plots of residual geoid heights, as shown within this thesis, can only provide information about any
clear deterministic signal components with respect to the dataset’s geometry or any inconsistency
in definitions and reference systems between the MSS, MDT and GGM. The empirical covariance
function is a great tool for detecting deterministic components of the residual geoid height sig-
nal. EGM2008 is the only GGM resulting in empirical covariance functions for DTU13MSS and
DTU18MSS with a different shape, see figure 5.10b and 6.17b, than commonly reported in litera-
ture. This is a result that should be investigated further. A final evaluation of the different GGM’s
accuracy in the Norwegian coastal zone would be an interesting study, even though I strongly argue
that the best-guidelines should be to use the best possible GGM in the remove-restore step.

Nguyen et al. (2020) in their study uses EIGEN-6C4 up to its maximum spherical harmonic degree
2190 and obtains empirical covariance functions of similar shapes as the global covariance functions.
In this thesis, using the same approach resulted in empirical covariance functions of different shapes
than commonly reported in literature, and accordingly the maximum spherical harmonic degree
of the GGMs were truncated. This result is in contrast to what is obtained by Nguyen et al.
(2020). Further research should be paid to this issue. Especially, investigations of the impact
from different signal-to-noise ratios by evaluation of empirical and formal errors resulting from the
RCR-method using the same GGM with different truncation degree Ncut. After spending some
time with covariance modelling, I am convinced that an empirical covariance function should not
contain any clear trends or deterministic components and closely resemble the same shape of the
global covariance function. The empirical covariance function is by these means a good measure
of the completness in modelling the different terms of equation (5.17) for residual geoid height.

Computations following the RCR-method works on a residual signal, and its long wavelength com-
ponents are removed and restored in beforehand and afterwards. Other research and evaluation
of EGM2008, e.g., Gruber and Willberg (2019), indicates that increase in observations and de-
velopments of modelling and processing strategies have increased the quality of GGMs. For both
DTU13MSS and DTU18MSS, EGM2008 actually obtains the smallest mean value for the empiri-
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cal error. This result is assumed to be caused by a better consistency between DTU13MDT and
EGM2008, but again here is a possibility for more research.

With lack of experience relating to covariance modelling, and neither a very precise knowledge of
the expected accuracy in the prediction of gravity anomalies by the RCR-method, then no focus
were drawn in direction of the degree variance vector. At all stages with identical implementation
scheme for all GGMs, GOCO06s has resulted in promising results. Thereby, no obvious reason
existed for being sceptical towards the computation of degree variances. In hindsight, a simple
plotting routine during the computation of degree variances would have revealed this effect at
an early stage. With knowledge from the computation approach used in XGM2019e2159, then
these problems relating to the combination of degree variances could, and maybe also should, have
been recognised and dealt with at an earlier stage. Using a simplified approach for EGM2008 and
XGM2019e2159, where only the omission error represented by degree varinces from the GGM’s
potential coefficients for N ∈ [Ncut, 2140, 2159] and high degree terms using a Tscherning-Rapp
model, gave satisfying results. All three GGMs resulted for the validation in empirical errors even
better than what was reported by Nguyen et al. (2020) for the Gulf of Tonkin.

Another encouraging result is that hardly any difference between the empirical covariance function
for the two different study areas can be observed. This finding is of great importance as the
requirement for applying least-squares collocation is that the residual signal can be treated as
stochastic. These results shows that all components in equation (5.17) are modelled consistently,
even in the coastal region where coastal effects takes a more high frequency components and impose
a higher complexity of the signal. In both areas and for all the GGMs, the formal errors represents
an upper-bound error estimate, which means that inclusion of altimetry derived gravity anomaly
can safely be included in other calculations with weights assigned according to its formal errors.

The comparison with DTU13GRA for the two study areas validate the implementation and pro-
cessing strategy of LSC as outlined in this thesis. Empirical errors derived by comparison with
DTU13GRA shows that LSC prediction of gravity anomalies from sea surface height measure-
ment observed by satellite altimetry is a method with great potential. Even in the challenging
environment along the Norwegian coastline the predictions show small deviations compared to the
global model DTU13GRA. The accuracy of DTU13GRA is known to degrade in coastal areas,
so evaluation with independent gravity observations collected by the NMA will provide an exter-
nal validation. For this future research, the implementation and processing strategies as proposed
within this thesis can be used as guidelines. With an even better covariance modelling the empirical
and formal errors are expected to be further reduced. Continuously improvements in altimetry ob-
servation technique, signal processing and orbit determination indicates a bright future for gravity
anomalies derived from satellite altimetry. The first investigation of Sentinel-6, with its improved
POD results by combination of GPS and Galileo, will provide very interesting data and especially
its improvement in the coastal zone. The same conclusions as is drawn by (Nguyen et al., 2020)
can also be said about the validation area and Sunnmøre testbed.
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