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Abstract Signalling pathways leading to post-synaptic plasticity have been examined in many

types of experimental studies, but a unified picture on how multiple biochemical pathways

collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-

synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic

potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which

permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on

numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our

model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the

visual cortex and can be fit to data from many cortical areas, uncovering the biochemical

contributions of the pathways pinpointed by the underlying experimental studies. Our model

explains the dependence of different forms of plasticity on the availability of different proteins and

can be used for the study of mental disorder-associated impairments of cortical plasticity.

Introduction
Synaptic plasticity in the neocortex has been under intense research since the first observations of

neocortical long-term potentiation (LTP) (Komatsu et al., 1981; Lee, 1982). Although most often

studied in brain slices, synaptic plasticity in the neocortex is a key phenomenon underlying vital

mammalian brain processes ranging from formation and storage of memories to attentional selec-

tion (Roelfsema and Holtmaat, 2018). These processes are impaired in heritable mental illnesses

such as schizophrenia and fragile X syndrome, as well as neurodegenerative diseases such as Alz-

heimer’s disease, all of which have been associated with deficits in cortical plasticity

(Kantrowitz et al., 2017; Martin and Huntsman, 2012; Koch et al., 2014). Improved understand-

ing of neocortical synaptic plasticity all the way from molecular to circuit level is therefore needed to

further our understanding of these yet incurable diseases.

Similar to hippocampal synaptic plasticity (Larkman and Jack, 1995), synaptic plasticity in the

neocortex is highly variable — the outcomes of any plasticity-inducing protocol depends on the cor-

tical area, neuron type as well as details of the stimulation protocol (Castro-Alamancos et al., 1995;

Froc and Racine, 2005; Sjöström et al., 2008; Feldman, 2009). Computational models provide a

tool for efficient hypothesis testing of mechanisms of neocortical plasticity, which helps to overcome

the challenges posed by excessive variability. The foundations of our mechanistic understanding of

neocortical synaptic plasticity lie upon the phenomenological Bienenstock-Cooper-Munro (BCM) the-

ory, which predicts that small synaptic activity (later attributed to small Ca2+ transients [Bear et al.,

1987; Lisman, 1989]) cause long-term depression (LTD) whereas large synaptic activity (large Ca2+

transients) give rise to LTP (Bienenstock et al., 1982). Simple BCM-based models and the closely
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related models of spike-timing-dependent plasticity (STDP) have been widely used to explain the

emergence of input-specific cell assemblies mediating, e.g., orientation selectivity (Shouval et al.,

1997) or memory traces (Klampfl and Maass, 2013) in the cortex. These models, however, typically

fail to provide a mechanistic understanding of the biochemistry within the synapse — namely, they

do not reveal how various molecules downstream of Ca2+ regulate the induction and maintenance of

plasticity occurring in neuronal circuits, their composite neurons and synapses of the cortex. More-

over, current models often ignore the joint contributions of neuromodulators, which are critical for

inducing some forms of cortical synaptic plasticity (Meunier et al., 2017; Brzosko et al., 2019).

These shortcomings impede testing biochemical mechanisms of heritable mental illnesses associated

with impaired cortical plasticity.

In this work, we aim at filling this gap of knowledge by introducing a biochemically detailed,

mass-action law-based model of neocortical post-synaptic plasticity that can be used to study the

induction of plasticity in different genetic conditions and neuromodulatory states, and under various

stimulation protocols. Despite the lack of biochemically detailed models of synaptic plasticity in the

neocortex, models of intracellular signalling have been used to study LTP and LTD in the hippocam-

pus (Bhalla and Iyengar, 1999; Jȩdrzejewska-Szmek et al., 2017), cerebellum (Gallimore et al.,

2018), and striatum (Blackwell et al., 2019). These models permit systematic studies on how pat-

terns of Ca2+ inputs to the post-synaptic spine, either alone or in combination with neuromodulatory

actions, activate different signalling pathways leading to post-synaptic plasticity in the form of, e.g.,

AMPA-receptor (AMPAR) phosphorylation and membrane insertion. We integrate quantitative

descriptions of the intracellular signalling pathways underlying synaptic plasticity in the neocortex

into a unified model that is capable of describing both stimulation protocol-dependent plasticity, as

well as neocortically observed neuromodulator-gated forms of STDP. We show that our model can

be tuned by alterations of protein expression to reproduce not only BCM-like forms of plasticity but

also experimental observations on neocortical plasticity from various cortical areas. Our results help

to quantify and explain the differences in molecular constituents of different forms of neocortical

LTP and LTD, and the different, data-fitted versions of our model can be directly used to examine

the effects of chemical inhibitors and genetic manipulations of signalling proteins on synaptic plastic-

ity in different cortical cells.

Results

Model construction
We reviewed the literature of molecular signalling pathways that needed for neocortical LTP/LTD, in

particular in the post-synaptic spine of pyramidal cells (Table 1A). Three main pathways were

highlighted in the experimental studies, namely, the protein kinase A (PKA), protein kinase C (PKC),

and Ca2+/calmodulin-dependent kinase II (CaMKII) pathways. To construct a computational model of

cortical post-synaptic plasticity that describes these pathways, we adopted mass-action law-based

descriptions of these pathways from biochemically detailed models of post-synaptic LTP/LTD in

other brain areas, namely, hippocampus, basal ganglia and cerebellum (Table 1B). We prioritised

the model components from hippocampal models due to the relatively small ontological differences

between hippocampus and neocortex (Kirsch and Chechik, 2016). We focused on the effects of

these pathways on AMPARs due to the better description of intracellular regulation of AMPAR

dynamics in comparison to that of NMDA and kainate receptors or voltage-gated ion channels. In

short, we based our model on that of Jȩdrzejewska-Szmek et al., 2017, which describes the PKA-

and CaMKII-dependent phosphorylation of AMPAR subunit 1 (GluR1), and added the metabotropic

glutamate receptor (mGluR) and muscarinic acetylcholine M1 receptor-mediated activation of PKC

from Kim et al., 2013 and Blackwell et al., 2019, respectively. Other types of receptors that inter-

act with these pathways, such as serotonin (5HT) and dopamine receptors (He et al., 2015), have

been shown to underlie certain types of neocortical plasticity. Dopamine D1/D5 receptors as well as

serotonin 5HT4, 5HT6 and 5HT7 receptors are coupled to Gs proteins whereas 5HT2 receptors are

Gq-coupled. The effects of these neurotransmitters would therefore be similar to those of norepi-

nephrine and acetylcholine in our model (depending on the receptor composition in the post-synap-

tic neuron), and thus they are omitted in the present work. We then adopted the reactions

describing PKC-dependent phosphorylation and endocytosis of AMPAR subunit 2 (GluR2) and
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reinsertion to the membrane from Gallimore et al., 2018, which allowed the representation of post-

synaptic depression with our model. The pathways included in the model are illustrated in Figure 1.

A description of the model calibration is given in Materials and methods, section ’Construction and

calibration of the biochemically detailed model of post-synaptic plasticity in the cortex’, and the full

set of model reactions and initial concentrations is provided in Tables 3 and 4, respectively.

Ca2+ activates multiple pathways that regulate the post-synaptic
plasticity in cortical PCs
All pathways of Table 1B are Ca2+-dependent, but due to the variability in binding rates and quanti-

ties of different Ca2+-binding molecules, some pathways become more easily activated than others.

This permits LTP or LTD to be induced in a way that is sensitive to the amount of Ca2+ inputs and

may serve as a basis for BCM-type rules of plasticity.

Table 1. Pathways contributing to cortical synaptic plasticity.

(A) Experimental evidence on the requirement of various molecular species for specific types of synaptic regulation in different cortical

areas. (B) Model components needed for describing the modes of plasticity listed in (A). References are made to previous computa-

tional models describing these pathways. The types of phosphorylation of AMPAR subunit that mediate the plasticity are printed in

bold.

(A)

Pathway components Type of neurons Type of regulation
Pre-/post-
synaptic References

CaMKII Cingulate cortex Esophageal acid-induced sensitisation post-syn. Banerjee et al., 2013

CaMKII Prefrontal cortex, pyramidal
neurons

5-HT1-induced modulation of AMPA
currents

post-syn. Cai et al., 2002

b-adr. receptors, PKA Visual cortex, layer 4 pyramidal
cells

Potentiation of AMPA currents post-syn. Seol et al., 2007

M1 receptors, PKC Visual cortex, layer 4 pyramidal
cells

Depression of AMPA currents post-syn. Seol et al., 2007

D1–PKA Prefrontal cortex, pyramidal
neurons

Potentiation of AMPA currents post-syn. Sun et al., 2005

b-adr. receptors Frontal cortex Potentiation of field EPSPs n/a Sáez-Briones et al.,
2015

PKC Cultured cortical neurons Internalisation of AMPARs post-syn. Chung et al., 2000

ERK Visual cortex Potentiation of field EPSPs n/a Di Cristo et al., 2001

(B)

Molecular pathway Cell type and references

Ca2+ ! CaM ! CaMKII Hippocampal CA1 neuron Bhalla and Iyengar, 1999; Jȩdrzejewska-Szmek et al., 2017, generic Hayer and Bhalla,
2005,

cerebellar Purkinje cells Gallimore et al., 2018, striatal spiny projection neuron Blackwell et al., 2019

CaMKII ! GluR1 S831p Hippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017

b-adrenergic receptors !
cAMP

Hippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017

cAMP ! PKA Hippocampal CA1 neuron Bhalla and Iyengar, 1999; Jȩdrzejewska-Szmek et al., 2017, cerebellar Purkinje

cells Gallimore et al., 2018

PKA ! GluR1 S845p Hippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017

M1 receptors ! PLC Cerebellar Purkinje cells Gallimore et al., 2018

PLC ! PKC Hippocampal CA1 neuron Bhalla and Iyengar, 1999, striatal spiny projection neuron

Kim et al., 2013; Blackwell et al., 2019

cerebellar Purkinje cells Kotaleski et al., 2002; Gallimore et al., 2018

PKC ! GluR2 S880p Cerebellar Purkinje cells Gallimore et al., 2018
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To examine the sensitivities of LTP- and LTD-inducing pathways to Ca2+, we simulated the injec-

tion of a prolonged square-pulse Ca2+ input of varying magnitude (illustrated in Figure 2A) into the

post-synaptic spine and quantified the degree of activation of each of the Ca2+-binding molecules

and the downstream signalling cascades. The simulations were carried out in the presence of

mGluRs and b-adrenergic and cholinergic neuromodulation, which were modelled as prolonged

square-pulse inputs as well.

The injected Ca2+ quickly bound to Ca2+ buffers (immobile buffer and calbindin, Figure 2B) and

pumps (PMCA and NCX, Figure 2C) as well as to the proteins of the PKC pathway

(phospholipase A2 (PLA2) and C (PLC), Figure 2D): a 95% saturation was reached in 1–2 s

(Figure 2B–D). In contrast, the activation of calmodulin (CaM) was slower (Figure 2E): a 95% satura-

tion was reached in 32–53 s, depending on the magnitude of the Ca2+ input. Consistent with experi-

mental literature, a vast majority of Ca2+ was quickly bound and only a small fraction remained free

in the cytosol (Figure 2F).

To further illustrate the differences between the activation patterns of these pathways, we quanti-

fied the degrees of Ca2+ binding of these molecules in a steady state (5 min after the onset of Ca2+)

and the overall activation/deactivation of downstream molecules as a function of the magnitude of

the Ca2+ injection. Both PKC pathway-mediating proteins PLC, diacylglycerol lipase (DGL), and

Figure 1. Signalling pathways included in the model. The PKA-pathway-related proteins and signalling molecules

are highlighted by blue, PKC-pathway molecules by yellow, and CaMKII-pathway molecules by green colours.

Reactions associated with a molecular species in parenthesis indicate a dependency on the denoted species — for

details, see Table 3. Acronyms: b-AR – b-adrenergic receptor; AC1 and AC8 – adenylyl cyclase type 1 or 8; CaM –

calmodulin; CaMKII – calmodulin-dependent protein kinase II; cAMP – cyclic adenosine monophosphate; DAG –

diacylglycerol; Epac1 – exchange factor directly activated by cAMP 1; Gi, Gq and Gs – G-protein type I, Q, or S;

GluR1 and GluR2 – AMPAR subunit 1 or 2; mGluR – metabotropic glutamate receptor; M1R – cholinergic receptor

M1; NCX – Na+-Ca2+ exchanger; Ng – neurogranin; NMDAR – NMDA receptor; PDE1 and PDE4 –

phosphodiesterase type 1 or 4; PIP2 – phosphatidylinositol 4;5-bisphosphate; PKA – protein kinase A; PKCt and

PKCp – transiently or persistently active protein kinase C; PLC – phospholipase C; PMCA – plasma membrane

Ca2+ ATPase; PP1 – protein phosphatase 1; PP2A – protein phosphatase 2A; PP2B – protein phosphatase 2B

(calcineurin). In this work, the NMDARs are considered only in section ’Paired pre- and post-synaptic stimulation

induces PKA- and PKC-dependent spike-timing-dependent plasticity (STDP) in GluR1-GluR2-balanced synapses’:

in the rest of the work, Ca2+ is directly injected as a square-pulse current into the spine.
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PLA2, along with the PKA and CaMKII pathway-related protein CaM became completely activated if

large enough Ca2+ flux is given, but their degrees of activity varied across the magnitude of the

injected Ca2+ flux (Figure 2G). DGL was most completely activated throughout the Ca2+ amplitude,

owing to the large equilibrium constant of its Ca2+ binding. At extremely large Ca2+ fluxes, CaM

was more completely bound by Ca2+ than PLC and PLA2 (Figure 2G), but at lower Ca2+ amplitudes,

CaM remained largely unbound (Figure 2G inset). This is reflected in the activation patterns of the

catalytic subunit of PKA (Figure 2H) and CaMKII (Figure 2I), both of which are dependent on the

activation of CaM and thus had a small response at low Ca2+ amplitudes. PKC, by contrast, became

activated at relatively small Ca2+ amplitudes (Figure 2J). Of these three pathways, the PKC pathway

was dependent on the cholinergic ligands or the activation of the mGluRs (Figure 2J), and the PKA

pathway was dependent on the availability of b-adrenergic ligands (Figure 2H). Taken together,

these results highlight the need for large Ca2+ flux to the post-synaptic spine for the activation of

the CaMKII pathway, relatively large Ca2+ flux for the activation of the PKA pathway, and relatively

small Ca2+ flux for the activation of the PKC pathway.

Figure 2. Ca2+ activates CaMKII, PKA, and PKC pathways. (A) Illustration of the stimulus protocols with Ca2+ flux amplitudes 150 (green), 200 (cyan),

and 250 (purple) particles/ms. (B–F) Time courses of Ca2+ (in nM) bound to buffers (B), pumps (C), PKC-pathway proteins (D), or CaM (E), and the

concentration of free Ca2+ ions (F), according to NeuroRD (solid; averaged across eight samples) or NEURON (dashed) simulations. Colours indicate

the Ca2+ flux used (see A). (B) Number of Ca2+ ions bound to Ca2+ buffers, that is immobile buffer and calbindin. (C) Number of Ca2+ ions bound to

Ca2+ pumps and exchangers, that is PMCA and NCX. (D) Number of Ca2+ ions bound to PKC-pathway proteins PLC and PLA2. (E) Number of Ca2+ ions

bound to CaM, in all its forms. (F) Cytosolic Ca2+ concentration (mM) (G) Degrees of activation of different Ca2+-binding proteins in a steady state (5

min after onset of Ca2+ input) as a function of the magnitude of Ca2+ flux. The x-axis shows the amplitude of the Ca2+ input (see panel A), and the

y-axis shows the ratio of the underlying species in a Ca2+-bound form over the total number of the proteins. For CaM, only the CaM molecules bound

by four Ca2+ ions are considered activated — in PLC, PLA2, and DGL, binding of only one Ca2+ ion is needed for activation. Here, the measured

quantity of active PLC includes both Gq-bound and non-Gq-bound CaPLC. Inset: zoomed-in view on the red area. (H) Ratio of the steady-state

concentration of PKA catalytic subunit over the theoretical maximum where all PKA molecules were dissociated into residuals and catalytic subunits.

Colour of the curve indicates the amplitude of the b-adrenergic ligand flux (particles/ms). (I) Fraction of phosphorylated CaMKII subunits. (J) Fraction of

(transiently or persistently) activated PKC. Colour of the curve indicates the amplitude of the cholinergic and glutamatergic ligand flux (particles/ms).

The grey area in panels (G–J) represents Ca2+ inputs that cause cytosolic Ca2+ concentration to reach extremely high levels (>1 mM) that are likely to

lead to apoptosis.
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High-frequency stimulation (HFS) causes LTP and low-frequency
stimulation (LFS) causes LTD in GluR1-GluR2-balanced synapses
The Ca2+ flux entering the post-synaptic spine is extremely large during and after synaptic transmis-

sion and low otherwise, which causes the signalling pathways to be activated and deactivated in

a more dynamic way than described in the previous section (’Ca2+ activates multiple pathways that

regulate the post-synaptic plasticity in cortical PCs’). The activation of these pathways and their

dependence on the stimulus protocol are difficult to study experimentally due to methodological

constraints (e.g., side effects of fluorescence indicators, lack of signal calibration, and poor temporal

or spatial resolution), but biochemically detailed models, such as the one considered in this work,

can provide insights into the transient molecular mechanisms behind LTP and LTD. Our model is

particularly well suited to study the mechanisms behind CaMKII-, PKA- and PKC-mediated phosphor-

ylation of AMPAR subunits, which are important mediators of long-term plasticity (Wang et al.,

2005). Phosphorylation of GluR1 subunits at S845 increases the insertion rate of the AMPAR into the

membrane, thus leading to post-synaptic LTP (Diering et al., 2016). Conversely, phosphorylation of

GluR2 subunits at S880 increases the rate of receptor endocytosis from the membrane, and has thus

been observed to lead to post-synaptic LTD (Xia et al., 2000). However, it is not the number of the

membrane-expressed AMPAR subunits alone that determine the strength of the synapse, but differ-

ent compositions of the subunits have different single-channel conductances, and phosphorylation at

S831 of the GluR1 subunit also affects the conductance of the channel (Oh and Derkach, 2005).

To simulate the reaction dynamics in the post-synaptic spine under realistic input patterns, we

applied the 4xHFS and LFS protocols. Each input contained transient (3 ms) influxes of Ca2+ (1900

particles/ms) into the cytosol and glutamate (20 particles/ms), acetylcholine (20 particles/ms) and b-

adrenergic ligand (10 particles/ms) into the extracellular subspace near the spine membrane. We

used a balanced ratio (1:1) of GluR1 and GluR2 subunits. We recorded the time courses of the con-

centrations of all CaMKII-, PKA-, and PKC-pathway molecules contributing to LTP or LTD to monitor

their activity during and following the stimulation protocols. We also recorded the numbers of mem-

brane-inserted GluR1 and GluR2 and their state of phosphorylation and used Equation 5 for deter-

mining the maximal synaptic conductance.

In the 4xHFS protocol, which typically causes LTP in plasticity experiments, our model predicts a

large increase in total synaptic conductance (Figure 3A) due to a radical increase in membrane-

inserted GluR1 subunits (Figure 3B) and a decrease in GluR2 subunits (Figure 3C). These changes in

membrane-expression of AMPAR subunits were dependent on activations of many signalling pro-

teins in the CaMKII (Figure 3D–H), PKA (Figure 3I–M), and PKC (Figure 3N–R) pathways. First, the

Ca2+ entry (Figure 3D) caused a rapid increase in half-activated calmodulin (bound by two Ca2+

ions; Figure 3E), leading to a longer-lasting increase in active calmodulin (Figure 3F). Calmodulin

activation led to an increase in the concentration of phosphorylated CaMKII (Figure 3G), which

phosphorylated the GluR1-type receptors at S831 (Figure 3H). The b-adrenergic input (Figure 3I), in

turn, bound to the b-adrenergic receptors and activated the Gs proteins (Figure 3J), which bound

to the adenylyl cyclase AC1 to produce cyclic adenosine monophosphate (cAMP, Figure 3K). cAMP

bound to PKA to release the catalytic subunits of PKA (Figure 3L), which led to a phosphorylation of

the GluR1-type receptors at S845 (Figure 3M) and thus to increased membrane expression of GluR1

subunits and total synaptic conductance (Figure 3A–B). Due to the simultaneous activation of the

CaMKII pathway, a significant proportion of double phosphorylated GluR1-type receptors was

observed (Figure 3H,M). As for the PLC–PKC pathway, glutamate (Figure 3N, blue) bound to

mGluRs and acetylcholine (Figure 3N, green) bound to muscarinic receptors (M1), and the activation

of these receptors contributed to the activation of Gq proteins (Figure 3O). The activated Gq pro-

teins bound with PLC and metabolised phosphatidylinositol 4,5-bisphosphate (Pip2) into diacylgly-

cerol (DAG, Figure 3P), which activated PKC (Figure 3Q). This led to the phosphorylation of GluR2-

type receptors at S880 (Figure 3R), which caused the decrease in membrane expression of GluR2

observed in Figure 3C.

The differences between NEURON and NeuroRD simulation results in Figure 3M were due to the

stochasticity in NeuroRD simulator — both smaller and larger GluR1 phosphorylation levels com-

pared to NEURON simulation results (Figure 3M, dashed) were obtained when NeuroRD simulations

were run with different random number seeds (not shown).
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Figure 3. 4xHFS activates CaMKII, PKA, and PKC pathways and leads to LTP (A–R), while LFS activates the PKC pathway and leads to LTD (S–U). (A)

Total synaptic conductance in response to 4xHFS, determined by the numbers of membrane-inserted GluR1s and GluR2s — see Equation 5. The

stimulation starts at 40 s and lasts until 53 s. (B–C) Concentration of membrane-inserted GluR1s (B) and GluR2s (C) in response to 4xHFS. (D–H)

Concentration of different species in the CaMKII pathway, namely, intracellular unbound Ca2+ (D), CaM bound with two Ca2+ ions (E), CaM bound with

four Ca2+ ions (active CaM; F), phosphorylated CaMKII, bound or unbound by CaMCa4 (G), and S831-phosphorylated and double-phosphorylated

GluR1 subunits (H) in response to 4xHFS. (I–M) Concentration of different species in the cAMP-PKA pathway, namely, b-adrenergic ligand in all its forms

(I), activated (GTP-bound but not bound to ATP) Gs and Gi proteins (J), intracellular cAMP (K), catalytic subunit of PKA (L), and S845-phosphorylated

and double-phosphorylated GluR1 subunits (M) in response to 4xHFS. (N–R) Concentration of different species in the PLC-PKC pathway, namely,

glutamate and acetylcholine in all their forms (N), activated (GTP-bound but not bound to DAG) Gq proteins (O), intracellular DAG (P), activated PKC

(Q), and S880-phosphorylated GluR2 subunits (R) in response to 4xHFS. S: Total synaptic conductance in response to LFS. (T–U) Concentration of

membrane-inserted GluR1s (T) and GluR2s (U) in response to LFS, which starts at 40 s and lasts until 220 s. The solid lines represent stochastic

(NeuroRD) simulation results, while the dashed lines represent data from deterministic (NEURON RxD) simulations. b-adrenergic ligands, glutamate,

Figure 3 continued on next page
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In the LFS protocol, which typically causes LTD in the experiments, our model predicts a promi-

nent (20%) decrease in total synaptic conductance (Figure 3S) due to a decrease in GluR2 subunits.

In this protocol, the Ca2+ inputs are insufficiently large to activate CaM, and the Gs proteins remain

deactivated as well (data not shown). In consequence, CaMKII and PKA pathways remain deacti-

vated, and the effect of the LFS protocol on GluR1 phosphorylation and membrane insertion is small

(Figure 3T). By contrast, the PKC pathway is almost as strongly activated as in the 4xHFS protocol

(data not shown), leading to prominent S880 phosphorylation of GluR2 (data not shown) and

removal of GluR2 from the membrane (Figure 3U).

The expression of both LFS-induced LTD and 4xHFS-induced LTP of these types is dependent on

the presence of both GluR1 and GluR2 subunits: GluR1-deficient synapses failed to show 4xHFS-

induced LTP (Figure 3—figure supplement 1A) and GluR2-deficient synapses failed to show LFS-

induced LTD (Figure 3—figure supplement 1B). To show that our results were not an artefact of

the tetramer formation rule (Equation 1–5), we applied an alternative tetramer formation rule where

GluR1 and GluR2 subunits randomly dimerised and the dimers paired with like dimers (which disal-

lows the emergence of heterotetramers with 1:3 or 3:1 proportion of GluR1:GluR2 subunits;

Gan et al., 2015). We reproduced the LFS-induced LTD and 4xHFS-induced LTP using this dimer-of-

like-dimers rule with a modified (35:65) balance of GluR1 vs. GluR2 subunits (Figure 3—figure sup-

plement 2A).

In the above analyses, we used brief square-pulse fluxes of Ca2+to the synapse model, which is a

simple representation of inputs during synaptic plasticity induction protocols. Alternatively, Ca2+ cur-

rent entering the post-synaptic spines can be estimated by using multicompartmental biophysically

detailed neuron models. We simulated a model of layer 2/3 pyramidal cell, stimulated with synaptic

inputs from a 6xHFSt or LFS-1Hz protocol (see Materials and methods, section ’Modelling the Ca2+

inputs and neuromodulatory inputs’), to determine the Ca2+ inputs entering the post-synaptic spine

through NMDA receptors (NMDARs). In accordance with Figure 3 and experimental data from

somatosensory cortex (Heusler et al., 2000), our model predicted that 6xHFSt induced LTP whereas

LFS-1Hz induced LTD (Figure 3—figure supplement 3). Here, the 6xHFSt protocol was used instead

of 4xHFS to model the same protocol as in Heusler et al., 2000; our model would also predict an

LTP for 4xHFS (data not shown). The HFS-induced LTP and LFS-induced LTD of Figure 3 could also

be reproduced with alternative durations of neuromodulator inputs, including 10 min bath applica-

tions (Figure 3—figure supplement 4). These results indicate that our model can reproduce HFS-

induced LTP and LFS-induced LTD also when using realistic NMDAR-conducted Ca2+ transients and

that these forms of plasticity are robust to the temporal profile of the neuromodulatory inputs.

The activations of the above pathways are dependent on the magnitude and dynamics of the

inputs to the model, namely, Ca2+, b-adrenergic and cholinergic ligands, and glutamate. All path-

ways leading to GluR1 and GluR2 phosphorylation and the consequent exocytosis and endocytosis

are Ca2+-dependent: blocking Ca2+ entry completely abolished 4xHFS-induced LTP (Figure 4A) that

followed GluR1 insertion (Figure 4B) and GluR2 endocytosis (Figure 4C). Blocking b-adrenergic

ligands abolished the 4xHFS-induced LTP (Figure 4A) by suppressing the membrane-insertion of

GluR1 (Figure 4B), but had no effect on GluR2 endocytosis (Figure 4C). Likewise, blocking b-adren-

ergic ligands had no effect on LFS-induced LTD (not shown). In contrast, LFS-induced LTD

(Figure 4E) that followed GluR2 endocytosis (Figure 4G) was reduced by blockade of mGluR activa-

tion while the number of GluR1 subunits at the membrane remained unaffected (Figure 4F). This

Figure 3 continued

and acetylcholine are measured in numbers of particles as they reside both at the membrane (when bound to receptors) and at the extracellular

subspace near the spine membrane (when unbound); other species measured in concentration.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Both GluR1 and GluR2 are needed for bidirectional plasticity.

Figure supplement 2. An alternative dimers-of-like-dimers rule of tetramer formation reproduces the HFS-induced LTP, LFS-induced LTD, and STDP

predictions obtained with the default tetramer formation rule.

Figure supplement 3. The biochemical signalling network model, given the NMDAR-conducted Ca2+ inputs from the multicompartmental neuron

model of layer 2/3 pyramidal cell under 1.3 mM extracellular [Mg2+], predicts LTP for 6xHFSt and LTD for LFS-1Hz.

Figure supplement 4. The biochemical signalling network model robustly predicts LTP for HFS and LTD for LTP with altered durations of

neuromodulatory inputs.
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reduction was strengthened by simultaneous blockade of cholinergic inputs (Figure 4E–G, yellow

traces). Counterintuitively, blocking mGluR and M1-receptor activation also reduced the amplitude

of the 4xHFS-induced LTP (Figure 4A) by disabling GluR2 endocytosis (Figure 4C) while it had no

effect on GluR1 insertion (Figure 4B). The reason for this is that in the PKC pathway-blocked case

there is a smaller post-4xHFS membrane-bound GluR1 ratio (fraction of GluR1 subunits over all GluR

subunits at the membrane) than in the control case, and thus the probability of AMPARs being

homomeric GluR1 tetramers (which had a very large conductance compared to other tetramers;

Equation 5) is much smaller in the former case than in control (Figure 4D). Although qualitatively

similar difference can be observed in post-LFS membrane-bound GluR1 ratios between PKC path-

way-blocked case and control, the probability of homomeric GluR1 tetramers and their contribution

to the synaptic conductance are very small in both cases (Figure 4H) and thus the LFS-induced LTD

is not affected.

Taken together, our results show that cortical synapses expressing both GluR1 and GluR2 subu-

nits can express a frequency-dependent form of post-synaptic plasticity (LTP for high-frequency

inputs, LTD for low-frequency inputs) that is gated by neuromodulators affecting the PKA and PKC

pathways. Our findings also lend support to that GluR2 endocytosis may lead to either potentiation

(Figure 4A) or depression (Figure 4E), depending on the prevalence of the GluR1 subunits at the

membrane.

Paired pre- and post-synaptic stimulation induces PKA- and PKC-
dependent spike-timing-dependent plasticity (STDP) in GluR1-GluR2-
balanced synapses
Cortical synapses typically exhibit a type of synaptic plasticity, namely STDP, that is dependent on

both the pre- and post-synaptic activity. According to a classical model, the differences in the out-

come of STDP for different pairing intervals of pre- and post-synaptic stimulus are explained by dif-

ferent amount of Ca2+ entering the post-synaptic spine, which is affected by both the pre-

Figure 4. 4xHFS-induced LTP is dependent on b-adrenergic ligands and LFS-induced LTD is dependent on

activation of mGluRs or cholinergic receptors. (A–D) 4xHFS-induced LTP in the control case (dark purple), without

Ca2+ inputs (blue), without b-adrenergic ligands (green), and under blockade of PKC pathway-activation (mGluRs

or cholinergic receptors; yellow). (E–H) LFS-induced LTD in the control case (dark purple), under the blockade of

mGluR activation (blue), and under blockade of both mGluRs or cholinergic receptors (yellow). (A, E) Total synaptic

conductance. (B, F) Membrane expression of GluR1. (C, G) Membrane expression of GluR2. (D, H) The fraction of

membrane-inserted GluR1 over all membrane-inserted GluR subunits (left), the probability of an AMPAR tetramer

being homomeric GluR1 (middle), and the relative contribution of homomeric GluR1 subunits to the total

conductance (i.e., summed conductance of homomeric GluR1 tetramers divided by the summed conductance of

all tetramers; right). The bars represent the values at the end of the 4xHFS (D) or LFS (H) simulation with (dark

purple) and without (yellow) PLC-activating ligands.
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synaptically released glutamate and the elevation of post-synaptic membrane potential. Biophysically

detailed neuron modelling offers a powerful tool for determining the size of these Ca2+ inputs as a

function of the pairing interval.

We considered the LTP/LTD response to paired stimulation protocol using a multicompartmental

model of a layer 2/3 pyramidal cell (Figure 5A; Markram et al., 2015). We placed a synaptic spine

with volume 0.5 mm3 at a random location on the apical dendrite, 250–300 mm from the soma

(Figure 5A, thick, black branches), and stimulated the head of the spine with glutamatergic synaptic

currents (Hay and Segev, 2015; Markram et al., 2015; Figure 5A, black traces, top). In parallel, we

stimulated the soma with a burst of four short (2 ms) supra-threshold square-pulse currents

(Figure 5A, black traces, bottom). Given that approximately 10% of the NMDAR-mediated currents

and none of the AMPAR-mediated currents are conducted by Ca2+ flux, we could determine the

number of Ca2+ ions entering the spine at each time instant following the onset of the synaptic input

(Figure 5A, grey traces). This experiment was repeated using different inter-stimulus intervals (ISI)

between the synaptic and somatic stimuli and averaged across Nsamp ¼ 200 trials. The membrane

potential dynamics at the post-synaptic spine depended on the ISI (Figure 5B–D), largest effects

response being obtained with near-coincident stimuli (Figure 5C). The higher the membrane

Figure 5. Layer 2/3 pyramidal cell plasticity in response to STDP protocol depends on neuromodulatory state and pairing interval. (A) Layer 2/3

pyramidal cell morphology (grey, thin), locations of synaptic input highlighted (black, thick). Inset: Illustration of the inputs (black) and the recorded

synaptic intracellular Ca2+ (grey). Scale bar 200 mm. (B–D) Membrane potential at the dendritic spine when the pre-synaptic stimulation onset is 50 ms

after (B), at the same time as (C), or 50 ms prior to (D) the onset of the last somatic stimulus. Inset (red): Mg2+-gate variable as a function of time,

ranging from �80 ms to 140 ms in a similar manner as the data in the main panel. (E–G) Concentration of free Ca2+ in the dendritic spine according to

the biochemical spine model when the pre-synaptic stimulation onset is 50 ms after (B), at the same time as (C), or 50 ms prior to (D) the onset of the

last somatic stimulus. (H–J) No LTD was induced by the stimulation protocol (1 Hz paired with post-synaptic stimulation for 2 min) in the absence of M1-

receptor activation, but pairing-interval-dependent LTP was induced in presence of b-adrenergic inputs. (K–M) Pairing-interval-dependent LTD was

induced when the synaptic input was coupled with cholinergic inputs, and STDP was induced when both cholinergic and b-adrenergic inputs were

present. (H, K) Relative concentration of GluR1 at the membrane 16 min after the stimulation onset (normalised by concentration of membrane-inserted

GluR1 at rest). (I, L) Relative concentration of GluR2 at the membrane 16 min after the stimulation onset (normalised by concentration of membrane-

inserted GluR2 at rest). (J, M) Relative synaptic conductance (Equation 5) 16 min after the stimulation onset (normalised by synaptic conductance at

rest).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Ca2+ fluxes predicted by the multicompartmental layer 2/3 pyramidal cell model depend on the inter-stimulus interval (ISI).
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potential at the spine, the higher the value of the variable describing the Mg2+-gate opening in the

NMDA receptor (Figure 5B–D, insets) (Hay and Segev, 2015; Markram et al., 2015). Thus, the

Ca2+ flux time course varied across the pairing ISIs (Figure 5—figure supplement 1). These Ca2+

flux time series were imported into our biochemical model (Ca2+ transients in the spine model

showed in Figure 5E–G), which allowed us to predict the magnitude of GluR subunit phosphoryla-

tion and membrane insertion for each pairing interval. When added as bath application, the b-adren-

ergic and cholinergic ligands were simulated by prolonged injections of 50 particles/s for 10 min,

starting 8 min before the STDP protocol — these neuromodulators alone (without the electric stimu-

lation-mediated Ca2+ inputs) did not cause synaptic plasticity. Throughout the experiments, the acti-

vation of mGluRs was blocked.

We first confirmed that the membrane expression of the glutamate receptors was not strongly

affected by paired synaptic and somatic stimulation in the absence of b-adrenergic (which activates

the PKA pathway) and cholinergic (which activates the PKC pathway) neuromodulation. Our model

predicted that there is little change in the membrane expression of GluR1 and GluR2 type receptor

subunits in this stimulation protocol (Figure 5H–I, purple). Consequently, our model reproduced the

observation (Seol et al., 2007) that this stimulation protocol led to little change in predicted synap-

tic conductance (Figure 5J, purple).

We next considered the paired synaptic-somatic stimulation in the presence of b-adrenergic

ligand. Our model predicted a prominent (up to 70%) increase in GluR1 membrane expression with

little effect on GluR2 membrane expression (Figure 5H–I, blue). The predicted increase in GluR1

membrane expression (Figure 5H) and the consequent increase in synaptic conductance (Figure 5J,

blue) were most prominent when the ISI was around 20–80 ms, and modest for large ISIs. These pre-

dictions are consistent with the experiments where an ISI-dependent potentiation of the EPSCs in

the presence of b-adrenergic receptor agonists and absence of cholinergic agonists was observed

(Seol et al., 2007).

When b-adrenergic neurotransmission was blocked but M1 receptors were activated by choliner-

gic ligands, the model predicted a prominent (up to 60%) decrease in GluR2 membrane expression,

with little effect on GluR1 membrane expression (Figure 5K–L, purple). Our model of synaptic con-

ductance (Equation 5) predicted a decrease in total conductance in a GluR1-GluR2-balanced syn-

apse for this condition (Figure 5M, purple), which is in line with the experimental data (Seol et al.,

2007). The depression takes place throughout the tested ISIs, but the effect was smallest for ISIs

very close to zero due to the counteracting effects of GluR1 membrane-insertion (Figure 5K, pur-

ple). Finally, when both b-adrenergic and cholinergic neurotransmission were active, our model pre-

dicted an increased GluR1 membrane expression and decreased GluR2 membrane expression, both

of which were ISI dependent (Figure 5K–L, blue). In these simulations, the predicted synaptic con-

ductance was increased for small and moderate pre-post intervals and decreased otherwise

(Figure 5M, blue), which is qualitatively similar to experimental data (Seol et al., 2007). These

results are dependent on the availability of both GluR1 and GluR2 subunits at the post-synaptic

spine: in simulations where GluR1 or GluR2 subunits were absent, only LTD (Figure 3—figure sup-

plement 1C) or LTP (Figure 3—figure supplement 1D), respectively, was induced by the STDP pro-

tocol. In a similar manner as the HFS- and LFS-induced plasticity in Figure 3—figure supplement

2A, we could reproduce the STDP using the dimer-of-like-dimers tetramer formation rule with a

GluR1 fraction of 35% (Figure 3—figure supplement 2B). Taken together, our model with balanced

numbers of GluR1 and GluR2 subunits reproduces the neuromodulator-gated STDP observed in

layer 2/3 pyramidal cells of the visual cortex.

The combination of our biochemically detailed model with the biophysically detailed model of

layer 2/3 pyramidal cell model provides a compelling means of hypothesis testing for cortical STDP

in this cell type. We analyzed how the shape of the STDP curve of Figure 5M is affected by the num-

ber of spikes in each post-synaptic burst stimulus. Our simulations suggest that decreasing the num-

ber of spikes per burst decreases the amplitude of both LTP and LTD in the STDP protocol and, in

particular, brings the LTD for large post-pre ISIs close to zero (Figure 6A). These alterations are

mediated by changes in both the level of membrane-insertion of GluR1 and endocytosis of GluR2

subunits (Figure 6A, insets). For small and moderate pre-post ISIs, the effects of decreasing the

number of post-synaptic stimuli on the STDP curve are expected: both GluR1 insertion and GluR2

endocytosis are of smaller amplitude, and hence the dampened LTP amplitude (Figure 6A). By con-

trast, for post-pre ISIs and large pre-post ISIs, decreasing the number of post-synaptic stimuli results
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in larger amplitude of GluR1 insertion and GluR2 endocytosis, which yields a dampened LTD for

post-pre ISIs and strengthened LTP for large pre-post ISIs (Figure 6A). These counter-intuitive

effects can be explained by the accumulation of small-conductance K+ (SK) conductance in the post-

synaptic neuron: the larger the number of post-synaptic pulses in the pairing burst, the larger the SK

currents (Figure 6B). The SK current decays slowly (matching the Ca2+ concentration decay), and

remnants of the SK currents can be observed as long as 200 ms after the post-synaptic stimulus

(Figure 6B inset). For large post-pre ISIs, the number of spikes per burst has little effect on the Ca2+

transients during the post-synaptic stimulation (Figure 6C inset), but the SK currents activated by a

large number of spikes per burst contribute to significantly decrease the Ca2+ transient caused by

the pre-synaptic stimulus during the decay period (Figure 6C). By contrast, for small pre-post inter-

vals, the additional spikes in the post-synaptic stimulus significantly contribute to the Ca2+ transients

(Figure 6D). To show that the effects of the number of spikes per post-synaptic burst are mediated

by the SK current, we ran the simulation of Figure 5J using a partial to complete blockage of the SK

currents in the biophysically detailed simulations of the layer 2/3 pyramidal cell. The paired-pulse

protocol of Figure 5M (involving both b-adrenergic and cholinergic neuromodulation) caused an

STDP in all cases, but decreasing the SK conductance shortened the post-pre LTD window and

decreased the amplitude of LTD (Figure 6E). Similar effects were obtained with a decrease of Ca2+-

channel conductances (not shown), which is in agreement with the data of Nevian and Sakmann,

2006. Our model predictions also agree with the observation that the plasticity outcome is not

determined by Ca2+ transient amplitude (Nevian and Sakmann, 2006), instead, our model suggests

Figure 6. The STDP curve of layer 2/3 pyramidal cells is affected by the number of post-synaptic stimulus pulses associated with the pre-synaptic input.

(A) The STDP curves of Figure 5M when the number of spikes per post-synaptic burst was 1 (yellow), 2 (green), 3 (blue), or 4 (as in Figure 5; dark

purple). Inset: relative concentrations of membrane-inserted GluR1 (top) or GluR2 (bottom) subunits — see Figure 5K–L for reference. (B) Top: somatic

membrane potential time course (aligned according to the onset of the first stimulus) for different numbers of post-synaptic stimulus pulses. Bottom:

somatic SK current-density time course in the four conditions. Inset: the SK current densities 200 ms after the onset of the first post-synaptic stimulus.

(C–D) Ca2+ flux to the dendritic spine when the pre-synaptic stimulation onset is 200 ms after (C) or 30 ms before (D) the onset of the last post-synaptic

stimulus. (E) The STDP curves of Figure 5M when the number of spikes per post-synaptic burst was four but the somatic SK conductance parameter

was either normal (dark purple), 50% smaller (magenta), or 80% smaller (pink).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The post-STDP synaptic conductance is weakly correlated with the peak of the Ca2+ input but strongly correlated with the mean

Ca2+ input during the inter-stimulus interval.
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that the total Ca2+ is a better predictor of the plasticity outcome: the correlation coefficient between

the post-STDP synaptic conductance and the peak Ca2+ transient amplitude (see Figure 5—figure

supplement 1E) was 0.53, while that between the post-STDP synaptic conductance and the mean

Ca2+ input during the inter-stimulus interval (see Figure 5—figure supplement 1F) was 0.96 (Fig-

ure 6—figure supplement 1).

The model predicts multimodal, protein concentration- and
neuromodulation-dependent rules of plasticity
Cortical neurons express a variety of forms of LTP/LTD depending on the brain region and cell type.

In computational studies, neocortical plasticity is most typically described by simple rules according

to which small-amplitude Ca2+ inputs lead to depression of the synapse whereas large-amplitude

inputs lead to potentiation. Apart from a few examples Castellani et al., 2001; d’D’Alcantara et al.,

2003; Castellani et al., 2005; Honda et al., 2013, these models typically do not describe the intra-

cellular signalling machinery leading to the resulting plasticity Holthoff et al., 2002;

Karmarkar et al., 2002; Badoual et al., 2006; Cornelisse et al., 2007; Kubota and Kitajima, 2008;

Urakubo et al., 2008. Unlike biochemically detailed models, the simple models cannot be used to

explore whether and how the prevalence of different plasticity-related proteins gives rise to various

types of LTP/LTD or their impairments, which is an important question in the study of mental disor-

ders with deficits in cortical plasticity. Here, we analysed the biochemical underpinnings of different

types of plasticity rules using our unified model of cortical plasticity in order to predict the conditions

for different forms of plasticity.

In a similar fashion to section ’Ca2+ activates multiple pathways that regulate the post-synaptic

plasticity in cortical PCs’, we simulated our model of the post-synaptic spine when stimulated with a

prolonged (5 min) square-pulse influx of Ca2+ and neuromodulators. We randomly altered the model

parameters controlling the initial concentrations of different proteins, namely, the ratio of GluR1 to

all GluR subunits (i.e.,
½GluR1�total

½GluR1�totalþ½GluR2�total
, from here on referred to as GluR1 ratio), the concentration

of NCX (regulating the rate of Ca2+ decay from the spine), and the concentrations of PKA-pathway

and PKC-pathway proteins (upstream of PKA and PKC). Alterations of the initial concentration of

CaMKII (the only molecule in our model that exclusively affects the CaMKII pathway) had little effect

in most domains of plasticity considered here (not shown), and thus, we omitted it in this analysis.

We sampled these parameters from the following intervals: GluR1 ratio from the interval from 0 to 1

(keeping the total concentration of GluR subunits fixed at 540 nM), NCX concentration from the

interval from 0 to twice the original value (2 � 0.54 mM), and the PKA and PKC-pathway factors fPKA

and fPKC from the interval from 0 to 2 (see Materials and methods, section ’Parameter alterations

and model fitting’). We simulated the post-synaptic spine 150,000 times using different random val-

ues for these parameters under zero, low (50 particles/ms), medium (150 particles/ms), and high

(250 particles/ms) levels of Ca2+ input.

We classified the parameter sets based on the total synaptic conductance 15 min after the onset

of the stimulation with the high Ca2+ flux (250 particles/ms): the relative synaptic conductance varied

between 0.16 and 5.92, and thus, we grouped the parameter sets to 16 classes using a bin size of

0.36 (Figure 7A). We then analysed the parameter distributions and their co-variations within these

classes and how the different parameters affected the shape of the LTP/LTD curve within each class.

A special subset of the LTP/LTD curves were the BCM-type plasticity curves, where either 50 or 150

particles/ms Ca2+ injection resulted in LTD and the 250 particles/ms resulted in LTP.

Our model with the standard protein concentrations (GluR1 ratio 0.5, [NCX] = 0.54 mM,

fPKA ¼ fPKC ¼ 1:0) produced a BCM-type curve in class 6 (Figure 7A, black dashed curve). Classes

11–16 exhibited the strongest LTP, with large synaptic conductance for both 150 and 250 particles/

ms Ca2+ injection, whereas classes 1 and 2 only exhibited LTD (Figure 7A). Classes 3–12 exhibited

BCM-type of plasticity but the majority of the LTP/LTD curves were of non-BCM type in each class

(Figure 7A).

Three parameters — the GluR1 ratio, NCX concentration and fPKA, differed significantly across

the 16 classes (Figure 7B–D). Low GluR1 ratio was needed for strong LTD and medium or high

GluR1 ratio for strong LTP (Figure 7B). However, the strongest forms of LTP (classes 11–16) were

induced only when GluR1 ratio was smaller than 1 (Figure 7B), because a very low number of GluR2

subunits implied that the synapse has many homomeric GluR1 tetramers at a basal state, and thus
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stimulation-induced GluR1 exocytosis and GluR2 endocytosis did not radically increase the number

of homomeric GluR1 tetramers (Equation 5, see also Figure 4D). For LTD and moderate LTP (classes

1–5), any NCX concentration and PKA-pathway coefficient could be used, but very strong LTP (clas-

ses 10–16) required a small to medium NCX concentration (Figure 7C) and a medium to large PKA-

pathway coefficient (Figure 7D). By contrast, PKC-pathway coefficient alone was not predictive of

plasticity outcome (Figure 7E).

The model results for the large parameter distributions of Figure 7B–E imply that there are mani-

festly different combinations of parameters that lead to the same LTP/LTD outcome. To analyse this

Figure 7. The fraction of GluR1s, number of Ca2+ extrusion proteins, and the concentrations of PKA and PKC-pathway proteins in the post-synaptic

spine determine the type of LTP/LTD in the post-synaptic spine. (A) The LTP/LTD curves for all 16 classes. Four values of Ca2+ input amplitude were

considered: 0, 50, 150, and 250 particles/ms (x-axis; repeated and overlaid for space). The y-axis shows the relative synaptic conductance, that is, total

synaptic conductance 15 min after the onset of the Ca2+ input divided by the total synaptic conductance before the Ca2+ input. 20 representative

parameter sets are displayed from each class, coloured from purple (lowest relative synaptic conductance response for medium Ca2+ input) to green

(highest conductance). The black, dashed trace in class six represents the model with the default concentration parameters. (B–E) Distribution of model

parameters, that is, GluR1 ratio (B), NCX-concentration coefficient (C), PKA pathway-concentration coefficient fPKA (D), and PKC pathway-concentration

coefficient fPKC in the 16 classes. Class 6 (purple) highlighted for further analysis. F–H: GluR1 ratio plotted against NCX-concentration coefficient (F),

fPKA (G), and fPKC (H) in class 6. The contours represent the distribution of parameters (N = 5837) that produced class-6 plasticity. No parameters

yielding class-6 plasticity were found beyond the purple contour, and the inner contours cover the parameter space where the distribution is higher

than 0%, 20%, 40%, 60% or 80% of the maximal density value. The black and red markers represent parameter sets that produced two plasticity

subclasses, namely, one where the total deviance (summed absolute difference) from the BCM-type plasticity produced by the default parameter set

(black, N = 145) or from a linearly increasing LTP (red, N = 183) was less than 0.2 (a.u.). Inset: The LTP/LTD plasticity curves of the two subclasses. The

thick lines represent the centre of the subclasses (black: relative conductances in response to 50, 150, and 250 Ca2+ ions/ms: 0.76, 0.96, 2.24; red:

relative conductances in response to 50, 150, and 250 Ca2+ ions/ms: 1.41, 1.83, 2.24).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The PKC-pathway parameter distributions differ between clusters separated by their response to low (50 particles/ms) Ca2+

input.
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intrinsic variability, we studied the distributions of the model parameters within the class of moder-

ate LTP (class 6, 132–168% LTP for 250 particles/ms; indicated by purple boxes in Figure 7B–E) in

more detail. Dependencies among the four parameters could be observed in 2-dimensional contour

plots of the parameter distributions (Figure 7F–H). With large (0:6) GluR1 ratios, any NCX, PKA or

PKC concentration could be used, but with smaller ( <» 0:6) GluR1 ratios, smaller NCX concentration

(Figure 7F) or larger PKA-pathway coefficients (Figure 7G) were needed to obtain class-6 type of

plasticity. To illustrate how these parameters affect the shape of the plasticity curves within class 6,

we plotted the parameter sets that produced a BCM-type LTP/LTD curve similar to the one pro-

duced by our default model (Figure 7F inset, black) or an LTP curve that was linear within this

regime (Figure 7F inset, red). Moderate GluR1 ratios (0.40–0.57; Figure 7F, black) and moderate

NCX concentrations (0.7–1.4 times the default value; Figure 7F, black) were needed for the default

BCM-type plasticity, while for the linear LTP curve a larger GluR1 ratio (0.59–0.92; Figure 7F, red)

was needed but the NCX concentration was more variable (values ranged from 0.4 to 1.7 times the

default value; Figure 7G, red). The PKA pathway coefficients were generally larger in the default

BCM-type plasticity parameter sets than in the parameter sets producing the linear LTP curve

(Figure 7G). Figure 7H shows the distributions of a set of coefficients, i.e. the PKC pathway, which

were not correlated with the plasticity outcome within this group.

Our previous analysis showed that PKC-pathway-mediated GluR2 endocytosis was important in

lower stimulation frequency protocols (Figure 3) or in protocols with large separation between pre-

and post-synaptic stimuli (Figure 5). To further analyze the contribution of PKC-pathway proteins to

plasticity outcomes, we repeated the analysis of Figure 7 by clustering the plasticity outcome based

on the relative synaptic strength after a steady-state Ca2+ input of low amplitude (50 particles/ms;

Figure 7—figure supplement 1A). As observed with the previous clustering, the GluR1 ratio and

NCX concentration differed across classes (Figure 7—figure supplement 1B and C). However, in

this classification, the PKA-pathway coefficient was not predictive of the plasticity outcome (Fig-

ure 7—figure supplement 1D) whereas the PKC-pathway coefficient varied across the classes (Fig-

ure 7—figure supplement 1E). Separation between BCM-like plasticity and gradual LTD was also

evident within class 6’, and due to the same GluR1, PKA and NCX parameters as with the original

classification (Figure 7—figure supplement 1F–H). This shows our identification of critical parame-

ters is robust to how the classification was performed.

Taken together, our results show that alterations of the concentrations of the proteins regulating

Ca2+ efflux or PKA/PKC-pathway signalling and the numbers of GluR1 and GluR2 subunits, ranging

from complete absence to moderate increase (±100%), have a large effect both on the type of plas-

ticity (LTP or LTD) and on the sensitivity of the plasticity outcome to the amplitude of the Ca2+ flux.

These data suggest that neocortical post-synaptic spines may exhibit a vast set of plasticity rules by

downregulation or relatively mild upregulation of their protein expression.

A parametric analysis confirms the robustness of the model
We analysed the model responses to 4xHFS and LFS protocols (as in Figure 3) under small (±10%)

changes in the parameters describing the initial concentrations and reaction rates (Figure 8). As

expected, most parameter changes led to small deviations from the predicted magnitudes of LTP/

LTD (Figure 8, grey bars). Alterations of the initial concentration of a number of species (10 out of

47) and reaction rates (12 out of 223) resulted in a notable (>15%) amplification or attenuation of

LTD (Figure 8A) or LTP (Figure 8B). The parameters affecting the LFS-induced LTD were all related

to GluR1 membrane insertion or total amount of GluR1 or GluR2 (Figure 8A), while the parameters

affecting the 4xHFS-induced LTP were related to NCX-mediated Ca2+ extrusion, PP1 concentration,

production of cAMP by AC1, PKA buffering/deactivation, or GluR1 membrane insertion (Figure 8B).

Importantly, none of the parameter changes completely abolished the LTP or LTD. Taken together,

our model is robust to small alterations in initial concentrations and reaction rates, but parameters

influencing the Ca2+ dynamics, GluR1 activity, or the PKA-pathway signalling can have relatively

large effects on the model output.
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The model flexibly reproduces data from various cortical LTP/LTD
experiments
The richness of the intracellular signalling machinery behind LTP and LTD poses challenges for both

qualitative and quantitative comparison between results from different cell types, obtained using dif-

ferent stimulation protocols, or even published by different laboratories Larkman and Jack, 1995.

Computational biochemically detailed models have been proposed as an absolutely reproducible

tool that is particularly suited for unifying our understanding of LTP and LTD across cell types and

brain regions Manninen et al., 2010. Here, we show that our model for intracellular signalling in a

cortical post-synaptic spine — through the use of varying concentrations of different proteins — can

be flexibly tuned to reproduce data from the experimental literature of cortical LTP/LTD. This allows

one to make predictions for the differences in intracellular machineries underlying each of the

experiments, leading to a more complete view of the plasticity-related signalling pathways in

Figure 8. The model predictions of LTP and LTD are robust to small changes in model parameters. Values of initial concentrations (47 parameters) or

reaction rates (223 parameters) were changed one at the time by �10% or +10%, and the resulting synaptic conductance 16 min after LFS (A) or 4xHFS

(B) protocol was measured (NEURON RxD simulations). The initial synaptic conductance is 33.4 pS (see Figure 3A,S), although some parameter

changes mildly affected this value (data not shown). The x-axis shows the post-LFS (A) or post-HFS (B) synaptic conductance, and the y-axis shows the

number of parameter alterations. Majority of the parameter changes had small effect on plasticity (grey bars), but changes in initial concentrations of 10

species and 12 reaction rates caused >15% change in the amplitude of LTP or LTD — these changes are represented by black (multi-pathway

parameters), blue (PKA-pathway-related parameters), and green (PKC-pathway-related parameters) bars. The underlying parameter changes are printed

above the corresponding bar.
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different cell types in the cortex and the effects of the stimulation protocol on the plasticity outcome

across cortical areas.

To show the flexibility of our model, we aimed to reproduce a large amount of data on cortical

plasticity across cortical areas and stimulation paradigms. We reviewed the literature of cortical

Table 2. List of LTP/LTD experiments in the cortex.

The first column labels the experimental data set and names the underlying study. The second column shows the considered synaptic

pathway and the third column shows whether the observed LTP/LTD had a pre- or post-synaptic origin. The fourth and fifth columns

show the frequency (in Hz) of stimulation and the number of pulses delivered, respectively: 10 � 4 means that 10 trains of 4 pulses with

10 ms interval (100 Hz) were delivered, and likewise, 25 � 5 means that 25 trains of 5 pulses with 10 ms interval were delivered. The

sixth column tells whether the data were obtained in control conditions or under additional blockers or agonists. The seventh, eighth,

ninth, and tenth columns show the relative change in synaptic strength 10, 15, and 20 min after the start of the stimulus protocol and

an average SD of the relative synaptic strengths — these values were approximated from the LTP/LTD curves plotted in the underlying

references. The rows correspond to experiments from a given reference that are divided to 11 different experimental data sets. Within

each data set, the underlying system is assumed to be otherwise similar to the control except for the applied modifier: as an example,

the chemical or genetic blockade of CaMKII activity (as performed in Ma et al., 2008 and Hardingham et al., 2003) is here expected

to only affect the ability of CaMKII to autophosphorylate, and the rest of the model parameters are kept fixed. The experiments

printed in grey were included in the underlying study, but were excluded from the main analyses of the present work (see main text).

EC – entorhinal cortex; PFC – prefrontal cortex; BC – barrel cortex; ACC – anterior cingulate cortex; VC – visual cortex; AuC – auditory

cortex; CC – corpus callosum. (*): The LFS of 900 3-ms pulses at 5 Hz in data sets VC-1 and VC-2 was replaced by 180 15-ms pulses at

1 Hz to decrease computational load in the optimisation.

Data set Reference Pathway Pre/post Freq. Npulses Experiment 10 min 15 min 20 min SD

EC-1 Ma et al., 2008 horizontal mostly 100 100 control 1.3 1.4 1.3 0.1

post CaMKII blocked 1.05 1.02 0.95 0.07

without post-syn. Ca2+ 1.05 1.05 1.1 0.09

EC-2 Ma et al., 2008 ascending mostly 100 100 control 1.6 1.6 1.6 0.11

post PKA blocked 1.4 1.4 1.4 0.13

without post-syn. Ca2+ 1.3 1.4 1.4 0.13

PFC-1 Sáez-Briones et al., 2015 CC!PFC n/a 312 156 control 2.0 1.98 1.9 0.08

without b-adrenergic ligand 1.34 1.4 1.36 0.09

PFC-2 Flores et al., 2011 CC!PFC n/a 312 156 control 1.7 1.6 1.64 0.12

without b�1-receptor agonist 1.43 1.45 1.43 0.1

BC Hardingham et al., 2003 L4!L2/3 n/a 5 10 � 4 control 1.35 1.4 1.3 0.09

CaMKII mutant 1.25 1.2 1.1 0.09

ACC Song et al., 2017 L5/6 ! L2/3 post 5 10 � 4 control 1.55 1.4 1.4 0.05

without s845 1.1 1.05 1.05 0.07

without s831 1.35 1.4 1.3 0.1

PFC-3 Zhou et al., 2013 L2/3 ! L2/3 mostly 0.1 50 control 1.3 1.4 1.4 0.14

post without b�1-receptor agonist 1.1 1.2 1.2 0.13

VC-1 Kirkwood et al., 1997 L4 ! L3 n/a 5 10 � 4 (CTR, HFS) 1.3 1.26 1.26 0.07

(adult) (without CaMKII, HFS) 1.02 1.02 1.02 0.02

5 900* (CTR, LFS) n/a 0.95 0.95 0.05

(without CaMKII, LFS) n/a 0.88 0.93 0.03

VC-2 Kirkwood et al., 1997 L4 ! L3 n/a 5 10 � 4 (CTR, HFS) 1.2 1.18 1.18 0.05

(4–5 w) (without CaMKII, HFS) 1.07 1.09 1.08 0.03

5 900* (CTR, LFS) n/a 0.79 0.82 0.03

(without CaMKII, LFS) n/a 0.82 0.89 0.03

AuC-1 Kotak et al., 2007 L6 ! L5 n/a 1 25 � 5 LTP-expressing cells 1.98 1.58 1.93 0.19

AuC-2 Kotak et al., 2007 L6 ! L5 n/a 1 25 � 5 LTD-expressing cells 0.77 0.68 0.67 0.09
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plasticity, and picked eight studies where one or more types of neurons were tested using one or

more stimulation protocols and the outcome was quantified using electrophysiological measure-

ments (Table 2). These studies comprised 11 data sets that described the response of a neuron pop-

ulation in entorhinal cortex (EC), prefrontal cortex (PFC), barrel cortex (BC), anterior cingulate cortex

(ACC), visual cortex (VC), or auditory cortex (AuC) to plasticity inducing protocols (Table 2). For

each experiment in each data set, we assigned an objective function that quantified the error

between the predicted LTP/LTD outcome (measured in relative synaptic conductance) and the data

(typically measured in fold change of field EPSP slope). The objective functions were averaged across

different time instants (10, 15, and 20 min post-stimulus-onset). We then ran a multi-objective opti-

misation algorithm (see Materials and methods, section ’Parameter alterations and model fitting’)

that aimed at finding the values for model parameters that minimised these objective functions. The

fitted parameters included the amplitudes of pre-synaptic stimulation-associated fluxes of Ca2+, b-

adrenergic ligand and glutamate in addition to GluR1 fraction and factors for the protein concentra-

tions of different pathways. Here, both the Ca2+ and the neuromodulatory inputs were square-pulse

injections that followed every pre-synaptic stimulation although some of the studies of Table 2 used

bath application of neuromodulatory agents; however, the temporal distribution of the neuromodu-

lators has only a small effect in our model as shown earlier (Figure 3—figure supplement 4).We ran

the optimiser for 20 generations. For data sets VC-1 and VC-2, we did not find parameter sets that

would fulfil all four objective functions, and therefore, we re-fitted the model for these data sets

excluding the CaMKII-blocked experiments (printed in grey in Table 2).

We found groups of parameter sets that fit within one standard deviation (SD) on average from

the target values of synaptic conductance for each data set of Table 2 (Figure 9A–C). There were

differences in the numbers of acceptable parameter sets between the data sets due to differences in

the postulated strength of the LTP/LTD, the number of experiments, and the SD of the post-stimulus

synaptic conductance (Figure 9D). The data sets EC-1 and BC were particularly challenging to fit

(<0.2% of the parameter sets tested by the optimiser gave an acceptable fit; Figure 9D). By con-

trast, the data set AuC-2 was the easiest to fit (3.9% of the parameter sets were acceptable;

Figure 9D).

The obtained parameters reflect the pathways needed for the type of plasticity. For example, the

LTP of synapses of the horizontal but not those of the ascending pathway to EC were blocked by

CaMKII inhibition, while the LTP of synapses of the ascending pathway were blocked by PKA inhibi-

tion (Ma et al., 2008). This is reflected in the obtained parameter sets: the parameter controlling

CaM and CaMKII concentrations (fCaMKII) was significantly larger (U-test, p-value<0.001) in the hori-

zontal-pathway (data set EC-1) synapse models, while the parameter controlling upstream PKA-path-

way proteins (fPKA) was significantly larger in the models reproducing the data from the ascending

pathway (data set EC-2; Figure 9E). The GluR1-GluR2 ratio, in turn, was not significantly different

between the two data sets (Figure 9E). As a contrasting example, our model predicts a large variety

of parameters that reproduce the LTP and LTD of data sets AuC-1 and AuC-2 but, consistent with

the results of Figure 7, the GluR1 ratio was significantly larger in the model parameters fitted to the

data from LTP-expressing neurons than from LTD-expressing neurons (Figure 9E). The complete

graphs of parameter value distributions in the 11 data sets and the parameter set producing the

best fit (Figure 9A) for each data set are shown in Supplementary data, Figure 9—figure supple-

ments 1–11. Taken together, our model-fitting experiment shows that the model can be fit to many

types of multi-condition plasticity data — without altering the reaction rates — and that the resulting

predictions of the underlying protein concentrations reflect the mechanisms proposed by the experi-

mental studies.

The models obtained by fitting the initial concentrations to data provide an important tool

for predicting the outcome of plasticity under various stimulus protocols and chemical agents. We

carried out additional simulations with the obtained models using HFS protocol. The models fitted

for data from EC (data sets EC-1 and EC-2, [Ma et al., 2008]), BC (Hardingham et al., 2003),

ACC (Song et al., 2017), and LTP-expressing auditory cortical neurons (data set AuC-1,

Kotak et al., 2007) predicted a steady increase in response to HFS, while models fitted for other

cortical data predicted a mixture of LTP, LTD, and no change (Figure 10A). Furthermore, to obtain

experimentally testable predictions for the dependency of the plasticity outcome in different cortical

areas on the intracellular signalling, we simulated the models from each data set with the corre-

sponding stimulus protocol with CaMKII, PKA, or PKC blockade. The inhibition of CaMKII impaired
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Figure 9. The model can be fit to LTP/LTD data from different cortical areas. (A) The model could be fit to LTP/

LTD data from data sets EC-1 (top), EC-2, PFC-1, PFC-2, BC, ACC, PFC-3, AuC-1, and AuC-2 (bottom). The curves

represent the model predictions of the best-fit parameter sets, and the dots represent the experimental data from

Table 2. For data sets other than AuC-1 and AuC-2, several experiments with various chemical agents or genetic

mutations were performed for each neuron population: these are ordered as in Table 2 (e.g., in data set EC-1,

purple (1 st experiment) corresponds to control, blue (2nd experiment) to CaMKII-blocked experiment, and green

(3rd experiment) to the experiment where post-synaptic Ca2+ was blocked). (B) The model could not be fit to the

complete LTP/LTD data from data sets VC-1 (top) and VC-2 (bottom). The best parameter sets correctly predicted

the LTP/LTD in up to two experiments (e.g., the selected parameter sets reproduce the HFS data with and without

Figure 9 continued on next page
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the LTP in data set EC-1 (horizontal pathway) but had little or no effect on the plasticity in other cor-

tical areas (Figure 10B). The lack of effect of CaMKII blockade on the ascending pathway of EC —

an experiment which was not included in the fitting of the model (Table 2) — validates the underly-

ing models in this aspect since similar results were observed in Ma et al., 2008. Moreover, the simi-

larities in the predicted effect of CaMKII-, PKA-, and PKC-pathway blockades between the two

models of CC!PFC synapses (PFC-1 and PFC-2; Figure 10B–D) serve as an additional validation of

these models. The inhibition of PKA impaired LTP in all cortical areas, except for LTP in the horizon-

tal pathway of the EC (EC-1; Figure 10C). Our models also predicted that LTP of the CC!PFC path-

way and LFS-induced LTP in VC can be effectively weakened or even be transformed to a mild LTD

by PKA blockade (Figure 10C). Finally, our models predicted that PKC inhibition transformed all

forms of LTD (LFS-induced LTD in VC-1 and VC-2; LTD in AuC-2) into LTP and impaired certain forms

of LTP (LTP in EC-2; LTP in AuC-1) (Figure 10D). Taken together, our results suggest that almost all

forms of post-synaptic plasticity in the cortex are likely to be PKA-dependent, and that many types

of cortical plasticity are also influenced by CaMKII and PKC activity. Our results highlight the need

for additional chemical or genetic manipulations to be done when experimenting on cortical plastic-

ity in order to correctly reveal the intracellular signalling cascades in the post-synaptic spine.

Discussion
We built a single-compartment model describing the major post-synaptic signalling pathways lead-

ing to LTP and LTD in the cortex. We showed that our model reproduced conventional types of LTP

and LTD, where an HFS-induced increase in GluR1 can increase the synaptic conductance (LTP) and

an LFS-induced endocytosis of GluR2 can decrease it (LTD; Figure 3) and reproduced STDP data

from visual cortical layer 2/3 pyramidal cells (Figure 5). Our model explains how different forms of

plasticity depend on the concentrations of PKA- and PKC-pathway proteins (Figure 7). We also

showed that our model can be fit to explain the pathway dependencies of various types of neocorti-

cal LTP/LTD data published in the literature by altering the magnitude of Ca2+ and ligand fluxes and

the concentrations of post-synaptic proteins regulating the Ca2+ efflux and PKA- and PKC-

pathway dynamics (Figure 9). Our fitted models provide a powerful tool for testing hypotheses on

the effects of chemical or genetic manipulations on the LTP and LTD in different cortical regions

(Figure 10).

Figure 9 continued

CaMKII inhibitor, but failed to reproduce the LFS data). (C) The model could be fit to the LTP/LTD data from data

sets VC-1 (top) and VC-2 (bottom) when CaMKII-blocked experiments were ignored. The vertical bars in (B) and (C)

represent the SD from the experimental data. (D) Proportion of accepted parameter sets across the 20

generations of multi-objective optimisation (20’000 parameter sets in total) in each data set. (E) Box plots of

selected parameters in the acceptable parameter sets of data sets EC-1 and EC-2 (three left-most pairs) and AuC-

1 and AuC-2 (right-most pair). Values of fCaMKII and fPKA are linearly scaled such that the values 0 and 1

correspond to 0 and double the original value of the underlying parameters, respectively (CaM and CaMKII for

fCaMKII, and R, Gs, AC1, and AC8 for fPKA, see Materials and methods, section ’Parameter alterations and model

fitting’). The medians were significantly different in the compared data sets (U-test, p-value<0.001).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Parameters for data set EC-1.

Figure supplement 2. Parameters for data set EC-2.

Figure supplement 3. Parameters for data set PFC-1.

Figure supplement 4. Parameters for data set PFC-2.

Figure supplement 5. Parameters for data set BC.

Figure supplement 6. Parameters for data set ACC.

Figure supplement 7. Parameters for data set PFC-3.

Figure supplement 8. Parameters for data set VC-1.

Figure supplement 9. Parameters for data set VC-2.

Figure supplement 10. Parameters for data set AC-1.

Figure supplement 11. Parameters for data set AC-2.
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Role of GluR2 in synaptic plasticity in the neocortex
GluR2 subunits are highly expressed in neocortical neurons (Kondo et al., 1997), and their endocy-

tosis mediates (or, at minimum, is correlated with) synaptic depression in many cortical regions such

as ACC (Toyoda et al., 2007), VC (Heynen et al., 2003), and PFC (Van den Oever et al., 2008).

Previous intracellular signalling-based models of neocortical LTP/LTD exist, but they do not take into

account the contributions of GluR2 subunit. For example, in three previous models

(D’Alcantara et al., 2003; Castellani et al., 2005; Honda et al., 2013), S831-phosphorylation-medi-

ated LTP was described in a fashion similar to our model (although more approximations were

made), but the phosphorylation site S845 was assumed to be basally phosphorylated and LTD was

caused by modest Ca2+ inputs that led to PP1 or PP2B-mediated dephosphorylation of S845.

Although there is support for this order of events (Lee and Kirkwood, 2011; Diering et al., 2016),

newer findings have confirmed the low degrees of phosphorylation of both S831 and S845 at a basal

state in cortical cells, especially in synaptic spines (Diering et al., 2016). A recent phenomenological

model has also shed light on the dependency of cortical STDP on the pairing interval and location of

Figure 10. The models describing plasticity in different cortical areas predict diverse responses to modified stimulation protocol and stimulation under

chemical blockers. (A) The predicted responses of the 20 best models in each data set to HFS (100 pulses at 100 Hz) stimulation. (B–D) The predicted

responses of the 20 best models in each data set to the applied stimulation protocol (see Table 2) when CaMKII (B), PKA (C), or PKC (D) activity was

blocked (red) or under control condition (black).
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the synapse (Ebner et al., 2019), but their mechanisms are not specific to any particular AMPAR or

NMDAR subunit. To analyse the contributions of GluR2 subunits to neocortical LTP/LTD, we included

in our model the signalling pathways leading to both phosphorylation-mediated exocytosis of GluR1

and endocytosis of GluR2. Our model could thus be used to study not only PKA-mediated LTP or

PKC-mediated LTD but also their co-effects and co-dependencies.

Implications of the study
The modelling results of the present work give rise to experimentally testable predictions. For exam-

ple, our STDP model, when stimulated without b-adrenergic ligands, suggests that at near-zero pair-

ing-intervals the magnitude of the depression may be decreased or even switched to mild LTP

(Figure 5J). In many experimental studies (including Seol et al., 2007), the type and magnitude of

plasticity in this regime of STDP is not reported. We also predict that a mild LTP (24–60% LTP; class

4 in Figure 7) can be obtained through many differently weighted interactions of PKA and PKC path-

ways and Ca2+ extrusion strengths (Figure 7F–H, Figure 9—figure supplement 1 and 2, Figure 9—

figure supplement 5–7).Importantly, this is the regime of a wealth of experimental LTP data (Tsu-

moto, 1990; Table 2), which is consistent with the great diversity of LTP mechanisms observed in

the neocortex (Feldman, 2009). Based on our simulated data (Figure 10), we suggest that in order

to correctly characterise the mechanisms behind LTP of especially this magnitude, both experiments

that activate the PKA pathway and experiments that block or activate the PKC pathway should be

carried out. It is also important to know whether and to what degree GluR1 and GluR2 subunits are

present in the synapse, since the balance of GluR1 and GluR2 subunits seems to be a determinant

parameter permitting certain types of plasticity while prohibiting others (Figures 7B and 9E, and

Figure 3—figure supplement 1).

A key challenge in the study of synaptic plasticity is the diversity of LTP/LTD observed across the

cell types in the brain (Granger and Nicoll, 2014). Differences in the transcriptome have been pro-

posed as one of the sources for this variability (Lisachev and Shtark, 2018). We believe our model

can be used to explain some of the discrepancies in the experimental data in this regard and expand

the understanding of possible molecular contributors to LTP/LTD. For example, it is known that acti-

vation of PKA pathway by dopamine or noradrenaline in PFC pyramidal neurons increases the synap-

tic conductance through GluR1 membrane insertion (Sun et al., 2005; Xu et al., 2010). Our model

is in agreement with this (Figure 3), but it also proposes that the LTP can be impaired by over- or

underexpression of many involved proteins, such as AC1, I-1 (inhibitor of PP1), PDE4, PDE1, GluR1,

and CaM, and even alterations in ATP concentration (see Figure 8B). Small differences in the con-

centrations of a number of such contributing proteins are likely to cause significant alterations to

LTP observed in different brain areas and cell types.

Due to the inclusion of three major LTP/LTD pathways in the neocortex, our model provides a

more accurate means than earlier models for exploring how the Ca2+ dynamics in the spine affects

the plasticity outcome in many stimulation protocols, STDP in particular. Our model suggests that

the plasticity outcome of the STDP protocol is strongly correlated with the total amount of Ca2+

entering the post-synaptic spine, and less so with the peak Ca2+ flux (Figure 6—figure supplement

1).The total amount of Ca2+ influx could thus provide a better biomarker for plasticity than the previ-

ously considered amplitude and duration of the Ca2+ transient (Evans and Blackwell, 2015).

Validity of the results and limitations of the study
Our model of total synaptic conductance of the post-synaptic spine is based upon a number of

assumptions. First, the prediction of a large increase of conductance that follows the replacement of

GluR2 subunits at the membrane by GluR1 subunits (e.g., Figure 3) is based upon the findings on

differences in single-channel conductances of different types of AMPAR tetramers in hippocampal

neurons (Oh and Derkach, 2005). Following Oh and Derkach, 2005, we assumed that CaMKII-phos-

phorylation of S831 only increases the conductance of GluR1 homomers and not that of GluR1/

GluR2 heteromers, although also heteromers have been observed to increase their conductance in

the presence of transmembrane AMPAR regulatory proteins (Kristensen et al., 2011). Second, we

assumed a random tetramerization procedure in which each of the four subunits in the tetramer may

be either GluR1 or GluR2 subunit. Traditionally, AMPARs were thought to assemble as dimers of like

dimers, that is, that first GluR1s and GluR2s assemble into homomeric R1-R1 and R2-R2 dimers and
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R1-R2 heterodimers and that these three types of dimers only assemble into tetramers with a dimer

of its own kind (Gan et al., 2015). However, recent findings of heterotetramers with only one GluR1

subunit (Zhao et al., 2019) challenge this model. To show that our results were not dependent on

the details of this process, we reproduced our results using the alternative (dimer of like dimers) tet-

ramer formation rule. Using a slightly modified GluR1-GluR2 balance (35:65), this model reproduced

HFS-induced LTP and LFS-induced LTD (Figure 3—figure supplement 2A) as well as the neuromo-

dulator-gated STDP (Figure 3—figure supplement 2A).In summary, our model predictions were not

dependent on the assumptions on the tetramer formation rule.

Our model reproduced the qualitative results of STDP of layer 2/3 pyramidal cells in visual cortex

being gated by neuromodulators, but there were quantitative differences. When acetylcholine was

present, our model predicted a prominent decrease in GluR2 membrane-expression regardless the

pairing interval (Figure 5I), which caused a notable LTD for very large pairing intervals (Figure 5J),

whereas the experimental data showed attenuation of the depression for large inter-stimulus inter-

vals (Seol et al., 2007). This discrepancy is likely caused by processes allowing slower time-scale

(>50 ms) interaction between the pre- and post-synaptic stimulus that are either not included (e.g.,

Ca2+-induced Ca2+ release or cAMP-dependence of HCN channels) or not adequately strong in the

multi-compartmental model. For example, the contributions of voltage-gated Ca2+ channels and SK

channels to the neuron electrophysiology may be large (Mäki-Marttunen et al., 2017; Mäki-

Marttunen et al., 2018) — to this end, we showed here that the SK currents are amplified by the

subsequent pulses stimulating the post-synaptic neuron and that this is one factor increasing the

LTD for large ISIs (Figure 6). Note that this prediction of lowered synaptic strength for large abso-

lute ISIs is not to be considered a basal synaptic state under spontaneous activity since the ampli-

tude of the LTD is significantly decreased both by the removal of cholinergic neuromodulation

(Figure 6J) and a decrease of stimulating frequency (data not shown). On the other hand, mecha-

nisms lacking from the biochemical model (e.g., voltage-dependence of the Ca2+-extrusion rate of

NCX Weber et al., 2002) could also impede our results in this matter. Some aspects of cellular phys-

iology could therefore be better represented if we incorporated both biochemical signalling and

multicompartmental Hodgkin-Huxley-type modelling into the simulations, as done in modelling stud-

ies of persistent neuron firing (Neymotin et al., 2016) and astrocyte electrophysiology

(Savtchenko et al., 2018).

The quality of the model fitting to experimental data in Figure 9 is restricted by the fact that not

all of the LTP/LTD data in Table 2 were confirmed to have a post-synaptic origin. This may be the

key source of discrepancy in the fitting of the model to the CaMKII-blocked data from

Kirkwood et al., 1997 (Figure 9B), since CaMKII activation at the pre-synaptic spine may lead to

EPSC potentiation through an increase in neurotransmitter release (Ninan and Arancio, 2004). This

scenario is supported by Seol et al., 2007 where S831-deficient mice were observed to show normal

post-synaptic LTP in the VC.

Outlook
Our results on interactions of the different pathways in post-synaptic spines including both GluR1

and GluR2 subunits provide valuable insights on the contributions of protein expression on the plas-

ticity of the synapse. Previously, synaptic plasticity outcomes in the cortex have been conjectured to

depend on the type of the post-synaptic cell type, in addition to the timing and frequency of the

applied stimuli and dendritic filtering properties (Bi and Poo, 1998; Sjöström et al., 2001). Our

model provides a way to analyse exactly which aspects of PKA-, PKC- and CaMKII-pathway signalling

underlie these cell-type-dependent differences in synaptic plasticity. Combining our biochemically

detailed model with biophysically detailed models from different cortical areas will provide models

with better predictive power in the future. Moreover, our model can be used for initial testing of

hypotheses concerning dysfunctions (including chemical and genetic manipulations) of many intracel-

lular signalling proteins and their role in impairments of cortical synaptic plasticity. By altering the ini-

tial concentrations or reaction rates of various species according to disease-associated functional

genetics data, the model can be used to provide insights into the disease mechanisms of mental dis-

orders that express both genetic disposition of post-synaptic signalling pathways and plasticity-

related phenotypes, such as schizophrenia (Devor et al., 2017).
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Figure 11. Calibration of the model. Black curves represent the final model, while grey lines represent predictions of models where previous model

components or tentative parameter values were used. (A) Concentration of membrane-inserted GluR2 in 4xHFS when the forward rate of the

membrane insertion of non-phosphorylated GluR2 was 0.0055 1/ms Gallimore et al., 2018 (grey) or 0.00025 1/ms (black). The rate 0.00025 1/ms caused

a resting-state concentration of 121 nM for the membrane-bound GluR2 subunits, which is 45% of the total GluR2 concentration (270 nM). (B) Steady-

state concentration of activated (bound by four Ca2+ ions) CaM in response to a prolonged Ca2+ input amplitude when the two-step (grey) or three-

step (black) activation of CaM by Ca2+ was used. The x-axis shows the corresponding steady-state concentration of free Ca2+. Here, the initial

concentrations of molecular species were as in Li et al., 2020, namely, 50 mM for CaM, Ng, PP2B, and CaMKII and 0 mM for all other species. Red dots

show experimental data from Hoffman et al., 2014. (C) Concentration time course of non-protein-bound activated CaM (inset) or total activated CaM

(main figure) in response to 4xHFS when the two-step (grey) or three-step (black) activation of CaM by Ca2+ was used. (D) Percentage of S880-

phosphorylated GluR2 15 min after LFS when different forward rates of the activation of persistent PKC (kf between 0.00005 and 0.005 1/(nM ms)) were

used. The value kf = 0.0005 1/(nM ms) gave a percentage of 47%, in close agreement with Ashby et al., 2004. (E–G) The dynamics of transiently active

PKC (E) were not strongly influenced by the forward rate of the activation of persistent PKC (reaction 140), but those of persistently active PKC (F) and

S880-phosphorylated GluR2 (G) were significantly affected. Black curves show the data corresponding to kf = 0.0005 1/(nM ms), while the grey lines

show the data corresponding to kf = 0.00015 1/(nM ms) (dashed) and kf = 0.0015 1/(nM ms) (dotted). (H) Predicted responses of an isolated PKA

activation model (reactions 59 and 93) to a 16 s cAMP input (dim grey background) when different values of the forward rate of PKA binding with four

cAMP molecules were used. The curves show the concentration of the catalytic PKA subunit when different forward rates of PKA–cAMP binding (from

bottom to top: 0.4 �109, 1.0�10 9, 1.6 �109, 2.2�10 9, and 2.8 �109 1/(nM4ms)) were used. The markers show the corresponding data when the two-

step PKA–cAMP binding model of Jȩdrzejewska-Szmek et al., 2017 was used. Inset: summed absolute differences between the tentative data (curves)

and simulated data from the previous model (markers). The model with the forward rate of kf = 1.6 � 109 1/(nM4ms) gave the closest correspondence

to the model of Jȩdrzejewska-Szmek et al., 2017. (I) Concentration of S845-phosphorylated GluR1 in response to 4xHFS when the single-step

(reaction 59, black) or two-step (from Jȩdrzejewska-Szmek et al., 2017, grey) PKA–cAMP binding was used. (J) Concentration of S831-phosphorylated

GluR1 in response to 4xHFS when PKC did (black) or did not (grey, overlaid) phosphorylated S831 in GluR1s.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. 1 hr of simulation without inputs is sufficient to obtain a steady state.

Figure supplement 2. The model STDP model is robust to changes in AMPA conductance but sensitive to changes in NMDA condutance in the

multicompartmental layer 2/3 pyramidal cell model.
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Table 3. List of model reactions.

(A) The reaction-rate units are in 1/ms, 1/(nMms), 1/(nM2ms), 1/(nM3ms), or 1/(nM4ms), depending on the number of reactants. Reac-

tions are grouped by similar modes of action and identical forward and backward rates. The denominators X, Y, and Z represent

groups of species detailed below. †: backward reaction rate proportional to [PKAc], not to [PKAc]2. (B) Groups of species as used in

panel (A).

(A) Forw. Backw. Forw. Backw.

ID Reaction Rate Rate ID Reaction Rate Rate

1 Ca + PMCA *) PMCACa 5e-05 0.007 71 GluR1X22 + Y22 *) GluR1Z22 2.78e-08 0.002

2 PMCACa *) PMCA + CaOut 0.0035 0.0 72 GluR1X23 *) GluR1 Y23 + Z23 0.0005 0

3 Ca + NCX *) NCXCa 1.68e-05 0.0112 73 GluR1X24 + PKAc *) GluR1Z24 4e-06 0.024

4 NCXCa *) NCX + CaOut 0.0056 0.0 74 GluR1X25 + PP1 *) GluR1Z25 8.7e-07 0.00068

5 CaOut + Leak *) CaOutLeak 1.5e-06 0.0011 75 GluR1X26 *) GluR1 Y26 + PP1 0.00017 0

6 CaOutLeak *) Ca + Leak 0.0011 0.0 76 GluR1X27 + PP1 *) GluR1Z27 8.75e-07 0.0014

7 Ca + Calbin *) CalbinC 2.8e-05 0.0196 77 GluR1X28 *) GluR1 Y28 + PP1 0.00035 0

8 L *) LOut 0.0005 2e-09 78 GluR1X29 + PP2BCaMCa4 *) GluR1Z29 2.01e-06 0.008

9 L + R *) LR 5.555e-06 0.005 79 GluR1X30 *) GluR1Y30 + PP2BCaMCa4 0.002 0

10 LR + Gs *) LRGs 6e-07 1e-06 80 GluR1X31 *) GluR1_membX31 2e-07 8e-07

11 Gs + R *) GsR 4e-08 3e-07 81 GluR1_S845X32

12 GsR + L *) LRGs 2.5e-06 0.0005 *) GluR1_memb_S845X32 3.28e-05 8e-06

13 LRGs *) LRGsbg + GsaGTP 0.02 0.0 82 PDE1 + CaMCa4 *) PDE1CaMCa4 0.0001 0.001

14 LRGsbg *) LR + Gsbg 0.08 0.0 83 PDE1CaMCa4 + cAMP *) PDE1CaMCa4cAMP 4.6e-06 0.044

15 X1 + PKAc *) PKAcX1 8e-07 0.00448 84 PDE1CaMCa4cAMP *) PDE1CaMCa4 + AMP 0.011 0.0

16 PKAcX2 *) pX2 + PKAc 0.001 0.0 85 AMP *) ATP 0.001 0.0

17 ppLR + PKAc *) PKAcppLR 1.712e-05 0.00448 86 PDE4 + cAMP *) PDE4cAMP 2.166e-05 0.0034656

18 pppLR + PKAc *) PKAcpppLR 0.001712 0.00448 87 PDE4cAMP *) PDE4 + AMP 0.017233 0.0

19 ppppLR + Gi *) ppppLRGi 0.00015 0.00025 88 X33 + Y33 *) PKAc Z33 2.5e-07 8e-05

20 ppppLRGi *) ppppLRGibg + GiaGTP 0.000125 0.0 89 PKAcX34 *) pPDE4Y34 + PKAc 2e-05 0.0

21 ppppX3 *) ppppY3 + Gibg 0.001 0.0 90 pPDE4 *) PDE4 2.5e-06 0.0

22 p X4 *) X4 2.5e-06 0.0 91 pPDE4 + cAMP *) pPDE4cAMP 0.000433175 0.069308

23 ppX5 *) pX5 2.5e-06 0.0 92 pPDE4cAMP *) pPDE4 + AMP 0.3446674 0.0

24 R + PKAc *) PKAcR 4e-08 0.00448 93 PKAcAMP4 *) PKAr + 2*PKAc 0.00024 2.55e-05

25 pR + PKAc *) PKAcpR 4e-07 0.00448 94 Ca + fixedbuffer *) fixedbufferCa 0.0004 20.0

26 ppR + PKAc *) PKAcppR 4e-06 0.00448 95 Glu *) GluOut 0.0005 2e-10

27 pppR + PKAc *) PKAcpppR 0.0004 0.00448 96 Ca + PLC *) PLCCa 4e-07 0.001

28 ppppR + Gi *) ppppRGi 7.5e-05 0.000125 97 GqaGTP + PLC *) PLCGqaGTP 7e-07 0.0007

29 ppppRGi *) ppppRGibg + GiaGTP 6.25e-05 0.0 98 Ca + PLCGqaGTP *) PLCCaGqaGTP 8e-05 0.04

30 GsaGTP *) GsaGDP 0.01 0.0 99 GqaGTP + PLCCa *) PLCCaGqaGTP 0.0001 0.01

31 GsaGDP + Gsbg *) Gs 0.1 0.0 100 PLCCa + Pip2 *) PLCCaPip2 3e-08 0.01

32 GiaGTP *) GiaGDP 0.000125 0.0 101 PLCCaPip2 *) PLCCaDAG + Ip3 0.0003 0.0

33 GiaGDP + Gibg *) Gi 0.00125 0.0 102 PLCCaDAG *) PLCCa + DAG 0.2 0.0

34 GsaGTP + AC1 *) AC1GsaGTP 3.85e-05 0.01 103 PLCCaGqaGTP + Pip2 *) PLCCaGqaGTPPip2 1.5e-05 0.075

35 AC1 X6 + CaMCa4 *) AC1 Z6 6e-06 0.0009 104 PLCCaGqaGTPPip2 *) PLCCaGqaGTPDAG + Ip3 0.25 0.0

36 X7 + ATP *) Z7 1e-05 2.273 105 PLCCaGqaGTPDAG *) PLCCaGqaGTP + DAG 1.0 0.0

37 AC1GsaGTPCaMCa4ATP 106 Ip3degrad + PIkinase *) Ip3degPIk 2e-06 0.001

*) cAMP + AC1GsaGTPCaMCa4 0.02842 0.0 107 Ip3degPIk *) PIkinase + Pip2 0.001 0.0

38 X8 + Y8 *) AC1GsaZ8 6.25e-05 0.01 108 PLCX35 *) PLCY35 + GqaGDP 0.012 0.0

39 X9 *) cAMP + Z9 0.002842 0.0 109 GqaGTP *) GqaGDP 0.001 0.0

Table 3 continued on next page
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Table 3 continued

(A) Forw. Backw. Forw. Backw.

ID Reaction Rate Rate ID Reaction Rate Rate

40 AC1GiaGTPCaMCa4ATP 110 GqaGDP *) Gqabg 0.01 0.0

*) cAMP + AC1GiaGTPCaMCa4 0.0005684 0.0 111 Ca + DGL *) CaDGL 0.000125 0.05

41 AC1CaMCa4ATP *) cAMP + AC1CaMCa4 0.005684 0.0 112 DAG + CaDGL *) DAGCaDGL 5e-07 0.001

42 AC8 + CaMCa4 *) AC8CaMCa4 1.25e-06 0.001 113 DAGCaDGL *) CaDGL + 2AG 0.00025 0.0

43 CaM + 2*Ca *) CaMCa2 1.7e-08 0.035 114 Ip3 *) Ip3degrad 0.01 0.0

44 X10 + Ca *) Z10 1.4e-05 0.228 115 2AG *) 2AGdegrad 0.005 0.0

45 X11 + Ca *) Z11 2.6e-05 0.064 116 DAG + DAGK *) DAGKdag 7e-08 0.0008

46 CaM + Ng *) NgCaM 2.8e-05 0.036 117 DAGKdag *) DAGK + PA 0.0002 0.0

47 CaM + PP2B *) PP2BCaM 4.6e-06 1.2e-06 118 Ca + PKC *) PKCCa 1.33e-05 0.05

48 CaMCaX12 + PP2B *) PP2BZ12 4.6e-05 1.2e-06 119 PKCCa + DAG *) PKCt 1.5e-08 0.00015

49 PP2BCaM + 2*Ca *) PP2BCaMCa2 1.7e-07 0.35 120 Glu + MGluR *) MGluR_Glu 1.68e-08 0.0001

50 CaMCa4 + CK *) CKCaMCa4 1e-05 0.003 121 MGluR_Glu *) MGluR_Glu_desens 6.25e-05 1e-06

51 2*CKCaMCa4 *) Complex 1e-07 0.01 122 Gqabg + MGluR_Glu *) MGluR_Gqabg_Glu 9e-06 0.00136

52 CKpCaMCa4 + CKCaMCa4 *) pComplex 1e-07 0.01 123 MGluR_Gqabg_Glu *) GqaGTP + MGluR_Glu 0.0015 0.0

53 CKX13 + Complex *) CKX13 + pComplex 1e-07 0.0 124 GluR2X36 + PKCY36 *) GluR2Z36 4e-07 0.0008

54 2*Complex *) Complex + pComplex 1e-05 0.0 125 GluR2X37 *) GluR2Y37 + PKCZ37 0.0047 0

55 Complex + pComplex *) 2*pComplex 3e-05 0.0 126 GluR2X38 + PP2A *) GluR2Z38 5e-07 0.005

56 CKpCaMCa4 *) CaMCa4 + CKp 8e-07 1e-05 127 GluR2X39 *) GluR2Y39 + PP2A 0.00015 0

57 CKpX14 + PP1 *) CKpZ14 4e-09 0.00034 128 GluR2X40 *) GluR2_membX40 0.00024545 0.0003

58 CKpX15 *) PP1 + CKZ15 8.6e-05 0.0 129 GluR2_S880X41 *) GluR2_memb_S880X41 0.0055 0.07

59 PKA + 4*cAMP *) PKAcAMP4 1.6e-15 6e-05 130 ACh + M1R *) AChM1R 9.5e-08 0.0025

60 Epac1 + cAMP *) Epac1cAMP 3.1e-08 6.51e-05 131 Gqabg + AChM1R *) AChM1RGq 2.4e-05 0.00042

61 I1 + PKAc *) I1PKAc 1.4e-06 0.0056 132 Gqabg + M1R *) M1RGq 5.76e-07 0.00042

62 I1PKAc *) Ip35 + PKAc 0.0014 0.0 133 ACh + M1RGq *) AChM1RGq 3.96e-06 0.0025

63 Ip35 + PP1 *) Ip35PP1 1e-06 1.1e-06 134 AChM1RGq *) GqaGTP + AChM1R 0.0005 0.0

64 Ip35X16 + PP2BCaMCa4 *) Ip35PP2BZ16 9.625e-05 0.33 135 ACh *) 0.006 0

65 Ip35PP2BX17 *) I1 + PP2BX17 0.055 0.0 136 Ca + PLA2 *) CaPLA2 6e-07 0.003

66 PP1PP2BCaMCa4 *) PP1 + PP2BCaMCa4 0.0015 0.0 137 CaPLA2 + Pip2 *) CaPLA2Pip2 2.2e-05 0.444

67 GluR1X18 + PKAc *) GluR1Z18 4.02e-06 0.024 138 CaPLA2Pip2 *) CaPLA2 + AA 0.111 0.0

68 GluR1X19 *) GluR1Y19 + PKAc 0.006 0 139 AA *) Pip2 0.001 0.0

69 GluR1X20 + CKY20 *) GluR1Z20 2.224e-08 0.0016 140 PKCt + AA *) PKCp 5e-09 1.76e-07

70 GluR1X21 *) GluR1Y21 + CKZ21 0.0004 0

(B)

X1 2 {LR, pLR} (X23, Y23, Z23) 2 { (_CKpCam, _S831, CKpCaMCa4), (_PKCt,

X2 2 {LR, pLR, ppLR, pppLR, R, pR, ppR, pppR} _S831, PKCt), (_PKCp, _S831, PKCp), (_S845_CKpCam,
_S845_S831,

(X3, Y3) 2 { (LRGibg, LR), (RGibg, R) } CKpCaMCa4), (_S845_PKCt, _S845_S831, PKCt), (_S845_PKCp,

X4 2 {LR, R, pR} _S845_S831, PKCp), (_memb_CKpCam, _memb_S831,
CKpCaMCa4),

X5 2 {LR, pLR, ppLR, pR, ppR} (_memb_PKCt, _memb_S831, PKCt), (_memb_PKCp,
_memb_S831, PKCp),

(X6, Z6) 2 { (GsaGTP, GsaGTPCaMCa4), (GsaGTPGiaGTP, (_memb_S845_CKpCam, _memb_S845_S831, CKpCaMCa4),

GsaGTPGiaGTPCaMCa4), (fg, CaMCa4) } (_memb_S845_PKCt, _memb_S845_S831, PKCt),
(_memb_S845_PKCp,

Table 3 continued on next page

Mäki-Marttunen et al. eLife 2020;9:e55714. DOI: https://doi.org/10.7554/eLife.55714 26 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.55714


Table 3 continued

(B)

(X7, Z7) 2 { (AC1GsaGTPCaMCa4, AC1GsaGTPCaMCa4ATP), _memb_S845_S831, PKCp) }

(AC1GsaGTPGiaGTPCaMCa4, AC1GsGiCaMCa4ATP),
(AC1GiaGTPCaMCa4,

(X24, Z24) 2 { (_S831, _S831_PKAc), (_memb_S831,

AC1GiaGTPCaMCa4ATP), (AC1CaMCa4, AC1CaMCa4ATP),
(AC8CaMCa4,

_memb_S831_PKAc) }

AC8CaMCa4ATP) } (X25, Z25) 2 { (_S845, _S845_PP1), (_memb_S845,

(X8, Y8, Z8) 2 { (GiaGTP, AC1GsaGTP, GTPGiaGTP), (GiaGTP, _memb_S845_PP1) }

AC1CaMCa4, GTPCaMCa4), (AC1GiaGTP, GsaGTP,
GTPGiaGTP) }

(X26, Y26) 2 { (_S845_PP1, fg), (_memb_S845_PP1,

(X9, Z9) 2 { (AC1GsGiCaMCa4ATP, AC1GsaGTPGiaGTPCaMCa4), _memb) }

(AC8CaMCa4ATP, AC8CaMCa4) } (X27, Z27) 2 { (_S845_S831, _S845_S831_PP1), (_S831,

(X10, Z10) 2 { (CaMCa2, CaMCa3), (PP2BCaMCa2, _S831_PP1), (_memb_S845_S831, _memb_S845_S831_PP1),

PP2BCaMCa3) } (_memb_S831, _memb_S831_PP1) }

(X11, Z11) 2 { (CaMCa3, CaMCa4), (PP2BCaMCa3, (X28, Y28) 2 { (_S845_S831_PP1, _S845), (_S845_S831_PP1,

PP2BCaMCa4) } _S831), (_S831_PP1, fg), (_memb_S845_S831_PP1, _memb_S845),

(X12, Z12) 2 { (2, CaMCa2), (4, CaMCa4) } (_memb_S845_S831_PP1, _memb_S831), (_memb_S831_PP1,

X13 2 {pCaMCa4, CaMCa4} _memb) }

(X14, Z14) 2 { (fg, PP1), (CaMCa4, CaMCa4PP1) } (X29, Z29) 2 { (_S845, _S845_PP2B), (_S845_S831,

(X15, Z15) 2 { (PP1, fg), (CaMCa4PP1, CaMCa4) } _S845_S831_PP2B), (_memb_S845, _memb_S845_PP2B),

(X16, Z16) 2 { (fg, CaMCa4), (PP1, P2BCaMCa4) } (_memb_S845_S831, _memb_S845_S831_PP2B) }

X17 2 {CaMCa4, P2BCaMCa4} (X30, Y30) 2 { (_S845_PP2B, fg), (_S845_S831_PP2B,

(X18, Z18) 2 { (fg, _PKAc), (_memb, _memb_PKAc) } _S831), (_memb_S845_PP2B, _memb), (_memb_S845_S831_PP2B,

(X19, Y19) 2 { (_PKAc, _S845), (_S831_PKAc, _S845_S831), _memb_S831) }

(_memb_PKAc, _memb_S845), (_memb_S831_PKAc, X31 2 {fg, _PKAc, _CKCam, _CKpCam, _CKp, _PKCt, _PKCp,

_memb_S845_S831) } _S831, _S831_PKAc, _S831_PP1}

(X20, Y20, Z20) 2 { (fg, CaMCa4, _CKCam), (fg, p, X32 2 {fg, _CKCam, _CKpCam, _CKp, _PKCt, _PKCp, _S831,

_CKp), (_S845, CaMCa4, _S845_CKCam), (_S845, p, _S845_CKp), _PP1, _S831_PP1, _PP2B, _S831_PP2B}

(_memb, CaMCa4, _memb_CKCam), (_memb, p, _memb_CKp), (X33, Y33, Z33) 2 { (PKAc, PDE4, PDE4), (PDE4cAMP, PKAc,

(_memb_S845, CaMCa4, _memb_S845_CKCam),
(_memb_S845, p,

_PDE4_cAMP) }

_memb_S845_CKp) } (X34, Y34) 2 { (PDE4, fg), (_PDE4_cAMP, cAMP) }

(X21, Y21, Z21) 2 { (_CKCam, _S831, CaMCa4), (_CKp, _S831, (X35, Y35) 2 { (GqaGTP, fg), (CaGqaGTP, Ca) }

p), (_S845_CKCam, _S845_S831, CaMCa4),
(_S845_CKp, _S845_S831,

(X36, Y36, Z36) 2 { (fg, t, _PKCt), (fg, p, _PKCp),

p), (_memb_CKCam, _memb_S831, CaMCa4), (_memb_CKp,
_memb_S831,

(_memb, t, _memb_PKCt), (_memb, p, _memb_PKCp) }

p), (_memb_S845_CKCam, _memb_S845_S831, CaMCa4), (X37, Y37, Z37) 2 { (_PKCt, _S880, t), (_PKCp, _S880, p),

(_memb_S845_CKp, _memb_S845_S831, p) } (_memb_PKCt, _memb_S880, t), (_memb_PKCp, _memb_S880, p)
}

(X22, Y22, Z22) 2 { (fg, CKpCaMCa4, _CKpCam), (fg, (X38, Z38) 2 { (_S880, _S880_PP2A), (_memb_S880,

PKCt, _PKCt), (fg, PKCp, _PKCp), (_S845, CKpCaMCa4, _memb_S880_PP2A) }

_S845_CKpCam), (_S845, PKCt, _S845_PKCt), (_S845, PKCp, (X39, Y39) 2 { (_S880_PP2A, fg), (_memb_S880_PP2A,

_S845_PKCp), (_memb, CKpCaMCa4, _memb_CKpCam),
(_memb, PKCt,

_memb) }

_memb_PKCt), (_memb, PKCp, _memb_PKCp), (_memb_S845,
CKpCaMCa4,

X40 2 {fg, _PKCt, _PKCp}

_memb_S845_CKpCam), (_memb_S845,
PKCt, _memb_S845_PKCt),

X41 2 {fg, _PP2A}

(_memb_S845, PKCp, _memb_S845_PKCp) }
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Materials and methods

Construction and calibration of the biochemically detailed model of
post-synaptic plasticity in the cortex
We created a model of pathways leading from Ca2+ inputs and activation of b-adrenergic receptors,

metabotropic glutamate receptors, and muscarinic acetylcholine receptors to the phosphorylation

and insertion of AMPARs into the membrane. We started by using the model of Jȩdrzejewska-

Szmek et al., 2017 for GluR1 phosphorylation at sites S831 and S845, which are phosphorylated by

PKA and CaMKII, respectively, as a basis for our unified model. We added the mGluR- and M1

receptor-dependent pathways leading to PKC activation from Kim et al., 2013 and Blackwell et al.,

2019, respectively, and adopted the PKC-dependent endocytosis of GluR2 and reinsertion to the

membrane from Gallimore et al., 2018 as these pathways are critical for neocortical plasticity

(Seol et al., 2007). As we included molecular species from different models and as we omitted cer-

tain molecular species that affected the dynamics of the underlying species but were not imperative

for the pathways we wanted to describe, calibration of the model reactions was necessary. Following

Hayer and Bhalla, 2005, we allowed the insertion and removal of GluR1 subunits to and from the

membrane that depended on their state of S845 phosphorylation. We also allowed spontaneous

membrane insertion of non-S845-phosphorylated GluR1; we chose the rate of this reaction so that

on average one fifth of the (non-S845-phosphorylated) GluR1s were membrane-expressed in steady

state, as suggested by experimental data (Oh et al., 2006). We adjusted the forward rate of GluR2

insertion to the membrane to decrease the proportion of membrane-inserted vs. internalised GluR2s

(Figure 11A), following experimental data according to which 45% of GluR2s were membrane-

Table 4. List of initial concentrations of molecular species.

All non-mentioned species have an initial concentration of 0 nM.

Species
Conc.
(nM) Species

Conc.
(nM) Species

Conc.
(nM)

CaOut extracell. Ca2+ 1900000 AMP adenosine
monophosphate

980 Pip2 phosphatidylinositol 4,5-
bisphosphate

24000

Leak leak channels 2000 Ng neurogranin 20000 PIkinase phosphatidylinositol kinase 290

Calbin calbindin 150000 CaM calmodulin 60000 Ip3degPIk Ip3-bound PI kinase 400

CalbinC Ca2+-bound calbindin 15000 PP2B protein phosphatase
2B

2300 PKC protein kinase C 15000

LOut extracell. b-adr.
ligand

2500000 CK CaMKII 23000 DAG diacylglycerol 90

Epac1 Epac1 500 PKA protein kinase A 6400 DAGK DAG kinase 300

PMCA Ca2+ pump 22000 I1 inhibitor-1 2200 DGL DAG lipase 1600

NCX Ca2+ exchanger 540000 PP1 protein phosphatase 1 1600 CaDGL Ca2+-bound DAG lipase 250

L b-adrenergic ligand 10 GluR1 AMPAR subunit type 1 180 DAGCaDGL Ca2+-and DAG-bound DAG
lipase

90

R b-adrenergic receptor 1600 GluR1_memb membrane-inserted
GluR1

90 Ip3degrad degraded Ip3 600

Gs S-type G-protein 13000 PDE4 phosphodiesterase
type 4

670 GluR2 AMPAR subunit type 2 14

Gi I-type G-protein 2600 fixedbuffer immobile buffer 500000 GluR2_memb membrane-inserted GluR2 256

AC1 adenylyl cyclase type
1

430.0 mGluR metab. glutamate
receptor

800 PP2A protein phosphatase 2A 500

ATP adenosine
triphosphate

2000000 GluOut extracell. glutamate 1000000 M1R acetylcholine receptor M1 450

AC8 adenylyl cyclase type
8

370 Gqabg Q-type G-protein 1400 PLA2 phospholipase A2 1000

PDE1 phosphodiesterase
type 1

12000 PLC phospholipase C 250
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inserted at resting conditions (Ashby et al., 2004). We also adopted the three-step CaM activation

of Gallimore et al., 2018 instead of the two-step activation of Jȩdrzejewska-Szmek et al., 2017

where the reaction rates of CaM binding two Ca2+ ions were linearly dependent on the number of

Ca2+ ions. The response curve for CaM activation by Ca2+ was steeper in this model (Figure 11B),

which was in better accordance with recent experimental data (Hoffman et al., 2014). As a result,

our model predicted a more prominent activation of CaM in response to a large influx of Ca2+ but

milder activation in respose to small Ca2+ influx than the model of Jȩdrzejewska-Szmek et al.,

2017 (Figure 11C).

To allow long-term activation of PKC, we adopted a persistently activated form of PKC, mediated

by arachidonic acid (AA), from Kotaleski et al., 2002. We calibrated the rates of this reaction as fol-

lows. The backward rate was chosen so that approximately 90% of PKC would be active after 10

min, inspired by experimental data of Shirai et al., 1998. The forward rate was chosen so that LFS

with effective PLC activation led to approximately 50% of the GluR2s being phosphorylated

(Figure 11D), following experimental data (Ahmadian et al., 2004). The implications of these adjust-

ments on the dynamics of transiently activated PKC, persistently activated PKC and GluR2 S880

phosphorylation are illustrated in Figures 11E, F and G, respectively.

We adopted the simplified, mass-action law-based PKA activation model (reaction 59; Table 3)

from Williamson et al., 2009 (where it was called model ‘C’) instead of the 2-stage, linearised

cAMP-binding of PKA in Jȩdrzejewska-Szmek et al., 2017 and Blackwell et al., 2019. We fitted

the forward rate to data simulated with the original model (Figure 11H) to produce a longer-lasting

S845 phosphorylation (typically,>10 min duration of S845 phosphorylation was observed Seol et al.,

2007; Xue et al., 2014) in the 4xHFS protocol (Figure 11I). To account for the experimental obser-

vation the PKC phosphorylates GluR1 at site S831 Roche et al., 1996, we added this reaction using

the rates identical to those of GluR1-S831 phosphorylation by phosphorylated CaMKII (see reactions

71–72). However, the presence of this reaction did not have a large effect on the S831 phosphoryla-

tion of GluR1 under standard conditions (Figure 11J). Finally, we introduced an immobile Ca2+

buffer with a Ca2+ binding rate of 0.0004 1/(nM ms), a release rate 20.0 1/ms, and an initial concen-

tration of 500 mM (these values are within the range of experimental observations and values used in

models Matthews and Dietrich, 2015). The model reactions are described in Table 3 and the initial

concentrations are listed in Table 4.

Throughout the work, we simulated the signalling pathways in a single compartment representing

a dendritic spine of size 0.5 mm3. In reality, some of the molecular species are prevalently present in

the cytosol, some attached to the membrane, some in the extracellular medium in an immediate

vicinity to the membrane, and others outside the cell further away from the synaptic cleft (free in the

extracellular medium or sequestered to other cells). As commonly done in the field, we solved this

problem by introducing species that represent a molecular species confined in a particular location:

reactions 1–6 describe the extrusion of Ca2+ from the cytosol into the extracellular medium, reac-

tions 8, 95, and 135 describe the escape of ligands from the vicinity of the synapse, and reactions

80–81 and 128–129 for the translocation of the AMPARs to/from the membrane (Table 3). All stimu-

lations start after 4040 s of simulation without inputs, which is sufficient for attaining a steady state

for all species (Figure 11—figure supplement 1).

Statistical model for numbers of AMPAR tetramers at the membrane
and the total synaptic conductance
AMPARs have different conductances depending on their subunit composition and phosphorylation

state (Oh and Derkach, 2005), but it is challenging to take this into account in models that include a

large number of receptor subunits. In our model, AMPAR subunits GluR1 and GluR2 can be in one

of 21 or five states, respectively, when counting all the different phosphorylation states and bonds

with other molecules (Table 3), which leads to 284 possible types of tetramers. This makes it virtually

impossible to model the dynamics of AMPAR tetramer assembly using the mass-action law-based

approach where the concentration of each type of species is monitored (Michalski and Loew,

2012). To avoid this problem, we used a statistical model that estimated the numbers and types of

different types of AMPAR tetramers given the numbers of GluR1 and GluR2 subunits located at the

membrane.

We assumed that the composition of AMPAR tetramers is random such that there is no prefer-

ence of one type of subunit being more likely to bind with any other type of subunit. Thus, the
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probability of a tetramer being a GluR1 homomer without any S831-phosphorylated subunits is

approximately

pGluR1 homomer; non�phos: ¼

N1 �N1;phos:

4

� �

N1 þN2

4

� � »
ðN1 �N1;phos:Þ

4

ðN1þN2Þ
4

(1)

where N1 and N2 are the numbers of GluR1 and GluR2 subunits bound to the membrane, respec-

tively, and N1;phos: is the number of S831-phosphorylated GluR1 subunits at the membrane (note that

the N1;phos: subunits are included in all GluR1 subunits, that is, N1;phos: �N1). Accordingly, the probabil-

ities of a tetramer being a GluR1 homomer with at least one S831-phosphorylated subunit, a GluR2

homomer, or a heteromer, are approximately:

rlpGluR1 homomer; phos: ¼
N4

1
�ðN1�N1;phos:Þ

4

ðN1 þN2Þ
4

(2)

pGluR2 homomer ¼
N4

2

ðN1 þN2Þ
4

(3)

pheteromer ¼ 1�
N4

1

ðN1 þN2Þ
4
�

N4

2

ðN1þN2Þ
4
: (4)

The number of membrane-bound tetramers that the N1 GluR1 subunits and N2 GluR2 subunits at

the membrane can form is N1þN2

4
. Here, we ignore the unpaired subunits by estimating that

N1þN2

4
»bN1þN2

4
c — we also disregard the states of the non-membrane-bound subunits as they are not

assumed to contribute to the synaptic conductance. This gives us approximate values for expected

numbers of different types of tetramers on the membrane:

NGluR1 homomer; non�phos: ¼
N1 þN2

4
pGluR1 homomer; non�phos:

NGluR1 homomer; phos: ¼
N1 þN2

4
pGluR1 homomer; phos:

NGluR2 homomer ¼
N1 þN2

4
pGluR2 homomer

Nheteromer ¼
N1 þN2

4
pheteromer

These estimates allow us to determine the total maximal synaptic conductance as the sum of the

numbers of these tetramers multiplied with the corresponding single-channel conductances:

gsyn ¼ 12:4pS�NGluR1 homomer; non�phos: þ18:9pS�NGluR1 homomer; phos:

þ2:2pS�NGluR2 homomerþ 2:5pS�Nheteromer:
(5)

The single-channel conductance values 12.4 pS, 18.9 pS, 2.2 pS, and 2.5 pS are taken from exper-

imental data (Oh and Derkach, 2005).

Modelling the Ca2+ inputs and neuromodulatory inputs
We modelled the neurotransmission to the post-synaptic spine as fluxes of Ca2+ ions, b-adrenergic

ligand, glutamate, and acetylcholine (labelled as Ca, L, Glu, and ACh, respectively, in Table 3). We

used various stimulation paradigms: In sections ’Ca2+ activates multiple pathways that regulate the

post-synaptic plasticity in cortical PCs’ and ’The model predicts multimodal, protein concentration-

and neuromodulation-dependent rules of plasticity’, long-lasting, single pulses of input species were

applied. In sections ’High-frequency stimulation (HFS) causes LTP and low-frequency stimulation

(LFS) causes LTD in GluR1-GluR2-balanced synapses’ and ’A parametric analysis confirms the robust-

ness of the model’, we used the following repeated stimulus protocols: HFS — 100 pulses of Ca2+ (3

ms), repeated at 100 Hz; 4xHFS — 4 trains of HFS, separated by 3 s of quiescence; LFS — 900 pulses

of Ca2+ (3 ms), repeated at 5 Hz. Unless otherwise stated, each Ca2+ pulse was accompanied by a 3

ms pulse of b-adrenergic ligand, glutamate, and acetylcholine. The activation of cholinergic and nor-

adrenergic terminals by electrical stimulation is supported by experimental data in, e.g., slices of

mouse prefrontal cortex (Mundorf et al., 2001). In section ’The model flexibly reproduces data from
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various cortical LTP/LTD experiments’, the same approach was used, but the frequencies and num-

bers of repetitions of the inputs were taken from the experiments (see Table 2).

In section ’Paired pre- and post-synaptic stimulation induces PKA- and PKC-dependent spike-tim-

ing-dependent plasticity (STDP) in GluR1-GluR2-balanced synapses’ (and Figure 3—figure supple-

ment 3 of section ’High-frequency stimulation (HFS) causes LTP and low-frequency stimulation (LFS)

causes LTD in GluR1-GluR2-balanced synapses’), we used a multicompartmental model of a layer 2/

3 pyramidal cell (Markram et al., 2015) (L23_PC_cADpyr229_1) to determine the amplitudes and

time courses of the Ca2+ inputs conducted by NMDARs when different stimulus patterns were

applied. This model included the fast Na+ current INa;t, Shaw-related K+ current IKv3:1, muscarinic K+

current Im, and hyperpolarization-activated cyclic nucleotide-gated current IHCN in the apical den-

drite. The axo-somatic region contained all these (except for Im) as well as the low and high-voltage

activated Ca2+ currents ICaLVA and ICaLVA, the small-conductance Ca2+-dependent K+ current ISK,

the transient K+ current IK;t, and the persistent Na+ and K+ currents INa;p and IK;p in the axo-somatic

region (Markram et al., 2015). We placed 10 post-synaptic spines, consisting of a 0.5 mm long and

0.1 mm thick neck and a 0.4 mm long and 0.4 mm thick head, to the proximal apical dendrite (250–

300 mm from the soma). For an analysis of the effects of synapse location on Ca2+ flux and plasticity

in cortical pyramidal cells, see Ebner et al., 2019. Each spine was equipped with the AMPA–NMDA

synapse model of Hay and Segev, 2015 using the NMDA gating mechanism of Spruston et al.,

1995 and an adjustment in the pre-synaptic resource update (Mäki-Marttunen et al., 2019). The

ten synapses were synchronously stimulated but the glutamate release was probabilistic, the release

events at different synapses being independent of each other as in Hay and Segev, 2015). We set

the maximal AMPAR conductance to 0.001 mS, a value typically used in computational neuron mod-

els. We set the maximal conductance of NMDARs to 0.0032 mS to compensate for the lack of the

slow component in the model of the NMDA current (Markram et al., 2015) — a value significantly

smaller or larger than this abolished the LTP or LTD, respectively, in our STDP model, while the

AMPAR conductance was a less crucial parameter (Figure 11—figure supplement 2).We estimated

the numbers of Ca2+ ions entering into the post-synaptic spine across time, and used these numbers

as the input to the biochemical model. In section ’Paired pre- and post-synaptic stimulation induces

PKA- and PKC-dependent spike-timing-dependent plasticity (STDP) in GluR1-GluR2-balanced synap-

ses’, following the experiments of Seol et al., 2007, we used extracellular [Mg2+] of 1.0 mM and a 1

Hz pre-synaptic stimulation, where each pulse was paired with a burst of post-synaptic stimulus cur-

rents (Seol et al., 2007). For Figure 3—figure supplement 3 of section ’High-frequency stimulation

(HFS) causes LTP and low-frequency stimulation (LFS) causes LTD in GluR1-GluR2-balanced synap-

ses’, following the experiments of Heusler et al., 2000 we used [Mg2+] of 1.3 mM and solely pre-

synaptic stimulation of one of the two stimulus protocols: 6xHFSt — 10 bursts of 4 pulses (at 100

Hz), repeated every 100 ms, and the whole train repeated 6 times every 10 s; LFS-1Hz — 1800

pulses delivered at a frequency of 1 Hz.

The effects of LTP/LTD on the size of Ca2+ inputs were not considered in this work.

Parameter alterations and model fitting
In sections ’The model predicts multimodal, protein concentration- and neuromodulation-dependent

rules of plasticity’ and ’The model flexibly reproduces data from various cortical LTP/LTD experi-

ments’, we altered the initial concentrations of many proteins to explore the parameter space or to

perform model fitting. We chose to fit protein concentrations instead of reaction rates, since the

reaction rates can be considered to be the same across cell types while the protein expression is

known to be cell-type and age-dependent. This is analogous to fitting maximal conductances that

correlate with ion-channel densities in Hodgkin-Huxley-type models instead of the ion-channel acti-

vation and inactivation curve parameters as is usually done in the fitting of biophysically detailed

neuron models. The concentrations of upstream PKA-pathway proteins R (b-adrenergic receptor),

Gs, AC1, and AC8 were varied in proportion using a factor parameter fPKA 2 0; 2½ �, and, likewise, the

concentrations of upstream PKC-pathway proteins mGluR, M1, Gq, and PLC using a factor parame-

ter fPKC 2 0; 2½ �. Furthermore, in section ’The model flexibly reproduces data from various cortical

LTP/LTD experiments’, CaM and CaMKII were altered in proportion by a factor fCaMKII 2 0; 2½ �, phos-

phatases PP1 and PP2B by a factor fPP 2 0; 2½ �, and phosphodiesterases PDE1 and PDE4 by a factor

fPDE 2 0; 2½ �. In both sections, the rapidity of Ca2+ extrusion was varied by altering the concentration

of NCX, and in section ’The model flexibly reproduces data from various cortical LTP/LTD
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experiments’, the concentrations of PKA and PKC were varied in addition to the upstream proteins

— these concentrations were varied within the interval from 0 to double the original value. For the

multi-objective optimisation in section ’The model flexibly reproduces data from various cortical

LTP/LTD experiments’, we used the Python implementation (published by the authors of Bahl et al.,

2012) of the non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) with popula-

tion size 1000. To restrict to physiologically realistic Ca2+ dynamics, we disregarded the data where

free Ca2+ concentrations rose above 2 mM for one or more levels of Ca2+ input in section ’The model

predicts multimodal, protein concentration- and neuromodulation-dependent rules of plasticity’. In a

similar manner, in section ’The model flexibly reproduces data from various cortical LTP/LTD experi-

ments’, we introduced an objective function that penalised parameter sets that produced Ca2+ tran-

sients larger than 2 mM.

Simulation software and code accessibility
For deterministic simulations of intracellular signalling, we used the NEURON simulator with the

reaction-diffusion (RxD) extension (McDougal et al., 2013). For stochastic simulations, we used Neu-

roRD software (https://github.com/neurord). In both types of simulations, we used adaptive time-

step integration methods. The NEURON simulator was also used for simulating the multicompart-

mental model of layer 2/3 pyramidal cell in section ’Paired pre- and post-synaptic stimulation indu-

ces PKA- and PKC-dependent spike-timing-dependent plasticity (STDP) in GluR1-GluR2-balanced

synapses’. The full model along with the fitting and data-analysis algorithms (Python scripts) that

were used in this study are publicly available in ModelDB at http://modeldb.yale.edu/260971.
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