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a b s t r a c t

In Schoener’s model of intraguild-predation a prey–predator interaction is mixed
with the competition of the prey and the predator for food resource supplied to a
system with a constant rate. In this work the model is extended to examine the
impact of indirect prey taxis which counts for the movement of predator towards
the odor released by prey rather than directly towards gradient of prey density
(prey taxis) and indirect predator taxis which refers to prey movement opposite
to the gradient of a chemical released by predator. The constant coexistence steady
state in the model was shown earlier to be globally stable when Schoener’s O.D.E.
model is generalized to reaction–diffusion or even prey taxis system. Existence of
global-in-time solutions to Schoener’s model with indirect prey taxis is proved for
any space dimension while for the case of indirect predator taxis only in 1D. This
study reveals that sufficiently large value of taxis sensitivity parameter disturbs the
stability of the coexistence steady state giving rise to pattern formation governed
by the Hopf bifurcation. Numerical simulations illustrate emergence of taxis driven
spatio-temporal periodic patterns.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider Schoener’s type predator–prey model [1] describing so called intraguild predation in which
both predator and prey exploit competitively a common food resource which is available at some constant
rate and shared between the predator and the prey. There are many examples of such an ecological interplay
and we refer to [2] for the biological background with detailed description of Schoener’s O.D.E. model and
to [3,4] for mathematical results on extensions of the model to the case of reaction–diffusion or prey-taxis
systems. In this work Schoener’s model is extended to study the impact of indirect prey taxis which counts
for indirect movement of predator towards the odor released by prey rather than directly towards gradient
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of prey (prey taxis) as well as predator taxis which refers to the movement of prey in the opposite direction
to the gradient of chemical released by predator (c.f. [5–8]).

If N and P represent the densities of prey and predator distributed in domain Ω ⊂ IRn with smooth
oundary, W the concentration of chemo-attractant released by prey and U the concentration of chemical
eleased by predator then the following system defined in Ω × (0 , +∞) is an extension of Schoener’s kinetic
odel: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pt = d1∆P − χ∇ · (P∇W ) + P
( bc

cP + eN
+ dN − δ1

)
,

Nt = d2∆N + ξ∇ · (N∇U) + N
( be

cP + eN
− dP − δ2

)
,

Wt = d3∆W + αwN − βW ,

Ut = d3∆U + αuP − βU ,

(1)

ith homogeneous Neumann boundary condition and initial conditions

∂νP = ∂νN = ∂νW = ∂νU = 0 on ∂Ω × (0 , ∞) (2)
P (·, 0) = P0 , N(·, 0) = N0 , W (·, 0) = W0 , U(· , 0) = U0 . (3)

where ∂ν denotes derivative with respect to outer normal vector ν at the boundary ∂Ω . In the sequel we
shall separately consider the following two models:

Schoener’s model with indirect prey taxis defined by setting in (1)–(3) :
ξ = 0 , αu = 0 , χ > 0 , (4)
Schoener’s model with indirect predator taxis defined by setting in (1)–(3) :
χ = 0 , αw = 0 , ξ > 0 . (5)

In (1) di are diffusion coefficients, χ and ξ are chemotactic sensitivity coefficients, b represents a constant
inflow of resources units, c and e are the conversion coefficients of the resource into number of offspring per
population density unit for predator and prey respectively, δi are death rates, d is a predation coefficient
proportional to the encounter rate, αw , αu chemical production rates and β is a chemical degradation rate.
Following [3,4] for simplicity we assume that in P -equation a conversion coefficient of the prey biomass into
the number of predator’s offspring equals 1.

It follows from earlier works [3,4] that neither diffusion nor prey taxis is capable to destabilize the
unique homogeneous steady state which exists for some range of parameters. Contrary to the aforementioned
extensions this work shows that in Schoener’s model extended to account for indirect prey taxis or indirect
predator taxis for sufficiently big chemotaxis sensitivity coefficients the steady state destabilizes giving rise to
spatio-temporal patterns based on the Hopf bifurcation mechanism. Moreover, we provide a model example
of a system in which the Hopf bifurcation appears for a reaction–diffusion system with taxis in the case
when it is not possible to hold for the corresponding O.D.E. At last we notice that the existence of classical
solutions for the full system (1) with ξ, χ > 0 seems to be an open problem and in the light of [9] it is
expected to hold for its parabolic–elliptic approximation.

2. Existence of global-in-time solutions

It turns out that proving existence of global in time solutions to each of the problems demands
substantially different arguments and leads to restriction of space dimension to n = 1 for the case of
Schoener’s model with indirect predator taxis. This is due to the lack of L∞ estimates on the predator

∞
density P while in the case of Schoener’s model with indirect prey taxis the L estimate on prey density
2
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N follows easily from the comparison principle. Note that assuming the logistic term in the P-equation (not
present in the original Schoener’s model) would lead to the global existence of solutions for n = 2 using
imilar arguments as in [7]. It is also worth noticing that contrary to Schoener’s model with prey taxis [4]
o restriction on the chemotactic sensitivity χ is needed to ensure global existence of solution. By ∥ · ∥p the
tandard norm in the space LP (Ω) is denoted while W k,p(Ω) denotes the Sobolev space.

heorem 1. Suppose that initial functions N0 , P0 , W0 , U0 ∈ W 1,r(Ω), r > n. There exist unique global-in-
time classical solutions (N, P, W ) to problem (1)–(3) with (4) for all n ≥ 1 and (N, P, U) to problem (1)–(3)

ith (5) for n = 1. The solutions are L∞-bounded and satisfy boundary conditions and initial conditions in
2), (3) such that

(N, P, W ) , (N, P, U) ∈ (C([0 , T ) : W 1,r(Ω)) ∩ C2,1(Ω̄ × (0 , T )))3 for any T > 0 .

roof. Since both problems have the structure of a quasilinear parabolic system with a normally elliptic
operator in the main part having upper-triangular structure the existence and uniqueness of maximal clas-
sical solutions (N, P, W ) , (N, P, U) ∈ (C([0 , Tmax) : W 1,r(Ω)) ∩ C2,1(Ω̄ × (0 , Tmax)))3 satisfying boundary
nd initial conditions (2),(3) follows from Amann’s theory [10, Theorems 14.4 &14.6] (see e.g. [6] for details)
hich has been already applied for similar problems in many papers. The non-negativity of solutions easily

ollows from the maximum principle. Moreover in this case it is known that a uniform in time L∞-bound
or the solution is enough to warrant that Tmax = +∞.

We are in the position to obtain a uniform L1-bound for each of problems under consideration. On
ultiplying W-equation in problem (1)–(3) with (4) by δ2

2αw
and then integrating the equations over Ω

sing the boundary condition (2) we obtain upon summing up the equations

d

dt

(∫
Ω

Pdx +
∫
Ω

Ndx + δ2

2αw

∫
Ω

Wdx

)
(6)

≤ −δ1

∫
Ω

Pdx − δ2

2

∫
Ω

Ndx − δ2β

2αw

∫
Ω

Wdx + b|Ω |

≤ − min
{

δ1 ,
δ2

2 , β

} (∫
Ω

Pdx +
∫
Ω

Ndx + δ2

2αw

∫
Ω

Wdx

)
+ b|Ω | .

n the case of problem (1)–(3) with (5) we proceed similarly multiplying the U-equation by δ1
2αu

. Solving the
ifferential inequality (6) with respect to ξ(t) = (

∫
Ω

Pdx +
∫
Ω

Ndx + δ2
2αw

∫
Ω

Wdx) in the case of problem
1)–(3) with (4) and with respect to ξ1(t) =

(∫
Ω

Pdx +
∫
Ω

Ndx + δ1
2αu

∫
Ω

Udx
)

in the case of problem
1)–(3) with (5) we deduce that there exists a constant M > 0 such that

sup
t∈[0 ,Tmax)

(∥N(t)∥1 + ∥P (t)∥1 + ∥W (t)∥1 + ∥U(t)∥1) ≤ M . (7)

ext we consider the following prototype for the last equation in both problems

ut = d3∆u − βu + f , f ∈ C([0 , Tmax); Lq(Ω)) ∩ C(Ω̄ × (0 , Tmax)) (8)

ith homogeneous Neumann boundary condition and initial condition u0 ∈ W 1,r(Ω) , r > n. By standard
stimates of analytic semigroup theory (see e.g. [6, Lemma 2.3]) we infer that for some τ > 0 and C > 0

∥∇u(·, t)∥p ≤ C(1 + sup
t∈[0,Tmax)

∥f(·, t)∥q) for t ∈ [τ , Tmax) (9)

rovided
1
2 + n

2

(1
q

− 1
p

)
< 1 , for p ∈ (1, ∞] and q ∈ [1, ∞) . (10)

he remaining part of the proof of the global existence of solutions splits.

3
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Let us first consider an easier case of problem (1)–(3) with (4). To this end we notice that due to the
embedding W 1,r(Ω) ⊂ C(Ω̄) by the comparison with O.D.E. we obtain that

sup
t∈[τ ,Tmax)

{∥N(t)∥∞} ≤ max{∥N0∥∞ ,
b

δ2
} (11)

nd setting in (8)f = αwN with q > n and p = ∞ we infer that supt∈[τ ,Tmax){∥∇W (t)∥∞} < ∞ and
hen adjusting the Moser–Alikakos iteration for the P-equation in much the same way as in the proof of [6,
heorem 1.1] we obtain that supt∈[0 ,Tmax){∥P (t)∥∞} < C1 where C1 depends on the uniform L1-bound

n (7). It follows that in fact Tmax = +∞ for problem (1)–(3) with (4). To prove a uniform L∞-bound
f solution to problem (1)–(3) with (5) we shall first show that supt∈[0 ,Tmax){∥P (t)∥2} < ∞ which is the
rst step to deduce the L∞-estimate on ∇U in the case n = 1. The Gagliardo–Nirenberg inequality in the
ollowing form (see e.g. [7, Lemma 3.3]) will be used twice

∥v∥4
4 ≤ CG−N

(
∥∇v∥2

2 ∥v∥2
1 + ∥v∥4

1

)
for v ∈ W 1,2(σ1 , σ2) (12)

here Ω = (σ1 , σ2) ⊂ IR is an interval. On multiplying the P-equation by P for problem (1)–(3) with (5)
e use first the Hölder inequality and next the Gagliardo–Nirenberg inequality (12) to obtain

1
2

d

dt

∫
Ω

P 2dx + d1

∫
Ω

|∇P |2dx + δ1

∫
Ω

P 2dx = bc

∫
Ω

Pdx + d

∫
Ω

NP 2dx ≤

≤ bc

∫
Ω

Pdx + ∥N∥2∥P∥2
4 ≤ bc

∫
Ω

Pdx + d2

4ε

∫
Ω

N2dx + εCGN
(∥∇P∥2

2∥P∥2
1 + ∥P∥4

1) .

hoosing suitable ε and using (7) we can find C1 such that

1
2

d

dt

∫
Ω

P 2dx + δ1

∫
Ω

P 2dx ≤ C1

(
1 +

∫
Ω

N2dx
)

. (13)

ext observe that setting in (8)f = αuP , n = 1 and q = 1 it follows that for any p ∈ [1 , ∞) condition (10)
s satisfied and hence

sup
t∈[τ ,Tmax)

{∥∇U(t)∥p} < ∞ for any p ∈ [1 , ∞) . (14)

n multiplying the N-equation in problem (1)–(3) with (5) by N and using twice the Young inequality with
and ε′ and then the Gagliardo–Nirenberg inequality (12) we arrive at

1
2

d

dt

∫
Ω

N2dx + d2

∫
Ω

|∇N |2dx + δ2

∫
Ω

N2dx = be

∫
Ω

Ndx − d

∫
Ω

NP 2dx − ξ

∫
Ω

N∇U∇Ndx

≤ be

∫
Ω

Ndx + ε

∫
Ω

|∇N |2dx + Cε∥N∥2
4∥∇U∥2

4

≤ be

∫
Ω

Ndx + ε

∫
Ω

|∇N |2dx + Cεε′∥N∥4
4 + CεCε′∥∇U∥4

4

≤ be

∫
Ω

Ndx + ε

∫
Ω

|∇N |2dx + Cεε′CGN

((∫
Ω

|∇N |2dx
)

∥N∥2
1 + ∥N∥4

1

)
+ CεCε′∥∇U∥4

4 .

hoosing suitable ε and ε′ and using (7) and (14) for p = 4 we get

1
2

d

dt

∫
Ω

N2dx + δ2

∫
Ω

N2dx ≤ C ′
1

here C ′
1 depends on M . It follows that there exists a constant C ′

2 such that

sup {∥N(t)∥2} < C ′
2.
t∈[0 ,Tmax)

4
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Combining this with (13) we infer that there exists a constant C ′′
2 such that

sup
t∈[0 ,Tmax)

{∥P (t)∥2} < C ′
2.

t remains to use again the regularity result for (8) with f = αP whence for q = 2 we may set in (10) p = ∞.
ence, supt∈[τ ,Tmax){∥∇U(t)∥∞} < ∞ and to find the uniform in time L∞-bound on N in problem (1)–(3)
ith (5) the Moser–Alikakos iterative technique may be used again. Owing the L∞-bound on N the uniform
stimate on P follows from (7) and the classical paper by Alikakos [11] which completes the proof. □

. Stability of the constant coexistence steady state and occurrence of the Hopf bifurcation

The constant steady state Ē = (N̄ , P̄ , W̄ ) with

P̄ = −δ2

d
+ be

eδ1 − cδ2
, N̄ = δ1

d
− bc

eδ1 − cδ2
, W̄ = αwN̄

β
(15)

s the unique coexistence steady state in model (1)–(3) with (4) under the condition

δ2

ed
<

b

eδ1 − cδ2
<

δ1

cd
(16)

hich was found in [4] for O.D.E. system and extends by obvious reasons also for both models with an
bvious modification Ū = αuP̄

β in the place of W̄ in the case of model (1)–(3) with (5).
The linearization of model (1)–(3) with (4) at the steady state Ē leads to the following stability matrix

Jj(Ē) =

⎛⎝j11 − d1hj j12 χP̄hj

j21 j22 − d2hj 0
0 αw −β − d3hj

⎞⎠ (17)

here {hj}∞
j=1 are positive eigenvalues of the Laplace operator −∆ on Ω with Neumann boundary conditions

nd

j11 = − bc2P̄

(cP̄ + eN̄)2
< 0, j12 =

(
d − ebc

(cP̄ + eN̄)2

)
P̄ , (18)

j21 = − ebcN̄

(cP̄ + eN̄)2
− dN̄ < 0, j22 = − e2bN̄

(cP̄ + eN̄)2
< 0 . (19)

otice that for j = 0 there is hj = 0 and the system reduces to the O.D.E case. The characteristic polynomial
o (17) reads

λ3 + ϕ1
jλ2 + ϕ2

jλ + ϕ3
j = 0 , (20)

here

ϕ1
j = −trJj(Ē) = (β − j11 − j22) + (d1 + d2 + d3)hj := α0 + α1hj ,

ϕ2
j = (j11j22 − j12j21 − j11β − j22β) + (−j11(d2 + d3) − j22(d1 + d3) + β(d1 + d2))hj

+ (d1d2 + d1d3 + d2d3)h2
j := β0 + β1hj + β2h2

j ,

ϕ3
j = (j11j22β − j12j21β) + (j11j22d3 − j12j21d3 − j11βd2 − j22βd1 − j21αwχP̄ )hj

+ (−j11d2d3 − j22d1d3 + βd1d2)h2
j + d1d2d3h3

j ,

:= γ0 + γ1hj + γ2h2
j + γ3h3

j − χj21αP̄hj := ϕ3,1
j + χϕ3,2

j ,

where ϕ3,1
j = γ0 + γ1hj + γ2h2

j + γ3h3
j and ϕ3,2

j = −j21αwP̄ hj > 0. It can be checked using (18)–

(19) that the coefficients αj , βj , γj defined above are strictly positive provided j12 ≥ 0. It follows that

5
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ϕ3
j = −detJj(Ē) = ϕ3,1

j + χϕ3,2
j > 0. By substituting the steady state coordinates (15) to j12 in (18) we find

hat
j12 > 0 iff b

eδ1 − cδ2
<

√
b√

ecd
(21)

nd combining it with the upper bound in (16) we infer that condition

δ2
1e < bcd (22)

mplies j12 > 0. Notice that ϕ1
j , ϕ2

j , ϕ3
j > 0 and the last Routh–Hurwitz stability criterion reads

Φj := ϕ1
jϕ2

j − ϕ3
j = ϕ1

jϕ2
j − ϕ3,1

j − χϕ3,2
j . (23)

et us denote

Ψ(hj) = ϕ1
jϕ2

j − ϕ3,1
j = (α0β0 − γ0) + (α1β0 + α0β1 − γ1)hj + (α0β2 + α1β1 − γ2)h2

j + (α1β2 − γ3)h3
j

straightforward calculation shows that all coefficients of the third order polynomial Φ(hj) are positive.
ow we are in a position to calculate the critical value of chemotaxis sensitivity parameter χ for the stability
f the steady state Ē. To this end from (23) we obtain

χc = min
j∈N+

=
{Ψ(hj)

ϕ3,2
j

}
= min

j∈N+

{ Ψ(hj)
−j21αwP̄ hj

}
. (24)

o see that χc > 0 let us consider the function Ψ̃(hj) = Ψ(hj)
hj

. Since the coefficients of the polynomial Ψ
are positive we infer that Ψ̃(x) > 0 for x > 0 and limx→0+ Ψ̃(x) = limx→+∞ Ψ̃(x) = +∞ , thus χc > 0.

oreover, if
Ψ̃(hj) ̸= Ψ̃(hk) for j ̸= k (25)

hen of course the minimum is attained for a single j = j0. To show the occurrence of Hopf bifurcation we
se [12] and follow approach used in [8, Theorem 3.2]. Let λ1(χ) ∈ IR and λ2,3 = σ(χ) ± iτ(χ) be the roots
f the characteristic polynomial (20). Then we have

−ϕ1
j0 = trJj0(Ē) = 2σ(χ) + λ1(χ),

ϕ2
j0 = λ1λ2 + λ1λ3 + λ2λ3 = σ(χ)2 + τ(χ)2 + 2σ(χ)λ1(χ), (26)

−ϕ3
j0(χ) = detJj0(Ē) =

(
σ(χ)2 + τ(χ)2

)
λ1(χ).

otice that λ1(χ) < 0. Since σ(χc) = 0 by (26) we have τ(χc)2 = ϕ2
j0 > 0 and upon differentiating each

quation with respect to the bifurcation parameter χ we obtain

2σ′(χ) + λ′
1(χ) = 0, (27)

2σ(χ)σ′(χ) + 2τ(χ)τ ′(χ) + 2σ′(χ)λ1(χ) + 2σ(χ)λ′
1(χ) = 0, (28)

2σ(χ)σ′(χ)λ1(χ) + σ(χ)2λ′
1(χ) + 2τ(χ)τ ′(χ)λ1(χ) + τ(χ)2λ′

1(χ) = −ϕ3,2
j0

. (29)

valuating the above functions at χ = χc we infer from (27) that σ′(χc) = − 1
2 λ′

1(χc) and reminding that
(χc) = 0 it follows from (28)–(29) that

0 = 2τ(χc)τ ′(χc) + 2σ′(χc)λ1(χc) and − ϕ3,2
j0

= 2τ(χc)τ ′(χc)λ1(χc) + τ(χc)2λ′
1(χc).

y solving this system and making use of the equality λ1(χc) = −ϕ1
j0 = trJj0(Ē) we finally get

λ′
1(χc) =

−ϕ3,2
j0

(ϕ1
j0

)2 + ϕ2
j0

< 0 , whence, σ′(χc) > 0.

his verifies the transversality condition required for the occurrence of the Hopf-bifurcation at χ = χc. We
hus proved the following theorem.
6
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Theorem 2. Under assumptions (22) the constant steady state Ē in problem (1)–(3) with (4) is locally
asymptotically stable if χ < χc defined in (24). If χ > χc the steady state is unstable. At χ = χc the Hopf
bifurcation emerges provided (25) holds.

Remark 1. Notice that for hj = 0 (O.D.E case) as well as for χ = 0 (reaction–diffusion case) the steady
state Ē is linearly stable and moreover it is globally stable which was proved in [4] by means of suitable
Lyapunov functional even in the case of prey taxis.

Remark 2. Following above computations we obtain the following stability matrix associated with indirect
predator-taxis model (1)–(3) with (5) and the critical value of ξc:

J(Ē) =

⎛⎝j11 − d1hj j12 0
j21 j22 − d2hj −ξN̄hj

0 α −β − d3hj

⎞⎠ , ξc = min
j∈N+

{ Ψ(hj)
(d1hj − j11)αuN̄hj

}
.

emark 3. To illustrate numerically the pattern formation for model (1)–(3) with (4) we assume Ω = (0 , 1)
nd fix model parameters as b = 0.1, c = 0.2, d = 0.25, e = 0.15, δ1 = 0.3, δ2 = 0.1, α =
.5, β = 1, d1 = 0.01, d2 = 0.001, d3 = 0.07, χ = 1.5 > χc with initial condition (P0 , N0 , W0) =

(P̄ + 0.1 cos πx , N̄ + 0.1 cos πx , W̄ + 0.1 cos πx) and steady state Ē = (P̄ , N̄ , W̄ ) = (0.2, 0.4, 0.3). The
gure below exhibits spatiotemporal periodic patterns emerging in the vicinity of the coexistence steady
tate Ē:
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