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Abstract
Fourier-transform infrared (FTIR) spectroscopy enables the chemical characterization and identification of pollen samples,
leading to a wide range of applications, such as paleoecology and allergology. This is of particular interest in the identification
of grass (Poaceae) species since they have pollen grains of very similar morphology. Unfortunately, the correct identification of
FTIR microspectroscopy spectra of single pollen grains is hindered by strong spectral contributions from Mie scattering.
Embedding of pollen samples in paraffin helps to retrieve infrared spectra without scattering artifacts. In this study, pollen
samples from 10 different populations of five grass species (Anthoxanthum odoratum, Bromus inermis, Hordeum bulbosum,
Lolium perenne, and Poa alpina) were embedded in paraffin, and their single grain spectra were obtained by FTIR
microspectroscopy. Spectra were subjected to different preprocessing in order to suppress paraffin influence on spectral classi-
fication. It is shown that decomposition by non-negative matrix factorization (NMF) and extended multiplicative signal correc-
tion (EMSC) that utilizes a paraffin constituent spectrum, respectively, leads to good success rates for the classification of spectra
with respect to species by a partial least square discriminant analysis (PLS-DA) model in full cross-validation for several species.
PLS-DA, artificial neural network, and random forest classifiers were applied on the EMSC-corrected spectra using an indepen-
dent validation to assign spectra from unknown populations to the species. Variation within and between species, together with
the differences in classification results, is in agreement with the systematics within the Poaceae family. The results illustrate the
great potential of FTIR microspectroscopy for automated classification and identification of grass pollen, possibly together with
other, complementary methods for single pollen chemical characterization.
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Introduction

Many research fields, including paleobiology, climate re-
search, and allergology, rely on a fast and reliable identifica-
tion of pollen [1–4]. Furthermore, insight into pollen chemical
composition is important for any plant-related phenotyping,
crucial in agriculture, plant physiology, and ecology, e.g.,
when adaptation of plants to altered environmental conditions
is discussed [5, 6]. Traditional pollen analysis is done by light
or electron microscopy and is based on the morphology of
pollen grains, specifically their shape and size, position, and
shape of apertures (pores), as well as texture and
morphologyof the cell wall [7]. In most cases, identification
to species level is not possible, and some pollen types can be
identified only to higher taxonomic level, such as family level
for grasses (Poaceae) [8]. For that reason, spectroscopic and
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spectrometric methods, including mass spectrometry, Raman
scattering, and Fourier-transform infrared (FTIR) spectrosco-
py, are currently being harnessed by several groups in order to
obtain not only more precise identification but also high-
throughput pollen chemical analysis [9–13].

As demonstrated during the last decade, FTIR spectrosco-
py enables a detailed analysis of the species-specific chemical
composition of pollen [14–21]. FTIR analysis of pollen is
based on the fingerprint-like characteristics of the IR spec-
trum, containing contributions from all different kinds of bio-
molecular constituents. More recently, FTIR spectroscopy
was shown to allow for a characterization of chemical varia-
tion also at the subspecies level, specifically between popula-
tions of the same pollen species, and led to conclusions re-
garding, e.g., the adaptation of plant populations to environ-
mental conditions [22–28]. Although the majority of FTIR
pollen studies were conducted by measurement of bulk pollen
samples, containing 1 mg or more of pollen sample per mea-
surement, some studies have used FTIR microspectrometers
as well [5, 15, 18, 20, 28–33]. FTIR microspectroscopy mea-
surements of complex mixtures of pollen grains of different
plant species or various particulate impurities are also possi-
ble. Unfortunately, FTIR microspectroscopy of single pollen
grains provides specific challenges, as scattering effects occur
for the mid-IR wavelengths due to the micron-scale size of
typical pollen grains [15, 20, 29, 31]. The spectral contribution
from Mie scattering, as well as other artifacts, can superim-
pose the absorbance spectrum, depending on the geometry of
the sample, and cause band shifts, distortions, and artificial
bands [34]. These scattering problems can be addressed by
numerical analytical approaches, such asmodel-based spectral
preprocessing [30] and spectral averaging [32], or by modify-
ing experimental settings, such as measurements of many pol-
len grains with large microscope apertures [15, 18, 20] or
measurement in an embedding matrix [31].

Extended multiplicative signal correction (EMSC) is a
model-based spectral preprocessing method [35] that can take
scattering contributions into account and separates them from
the molecular absorption [35]. When applied to FTIR spectra,
EMSC retrieves chemical information [36, 37]. However, due
to the heterogeneity of pollen shapes, sizes, chemistry, and
surface texture, a successful modeling of the physical contri-
butions on single pollen grain FTIR spectra is challenging,
even by novel EMSC-based algorithms [30].

Recently, a strategy to obtain FTIR microspectra of single
pollen grains using paraffin embedding was presented [31].
Embedding in soft paraffin leads to a suppression of the scat-
tering effects due to the similar refractive index of paraffin and
the pollen grains [31]. A successful discrimination between
pollen with a very broad phylogenetic background, including
one grass species, was obtained [31]. This approach is aligned
with the traditional pollen sampling and measurement, since
soft paraffin is used in standard aero-biology and aero-

allergology pollen traps. In that study, the strong spectral con-
tribution of paraffin was resolved by cutting out the region in
the spectra that had strong paraffin signals [31]. Although
pollen spectral classification was successful, retrieval of pol-
len signals in the removed spectral region and suppression of
less prominent paraffin contributions in other spectral regions
would be very useful. Managing the presence of paraffin in
biosamples analyzed by FTIR microspectroscopy has been an
ongoing discussion, in particular in the context of tissue diag-
nostics, since paraffin embedding is a routine procedure in
histopathology as well [38, 39]. Strategies include the mathe-
matical removal of the paraffin signals, e.g., by EMSC [40],
by independent component analysis [41], or by partial least
squares [42].

Here, we discuss the possibilities to utilize FTIR
microspectra of paraffin-embedded single grass pollen grains
to distinguish between pollen from five grass species within
the Pooideae subfamily of the Poaceae family. Pooideae com-
prise some of the economically most important plant species
such as wheat, rye, and barley. Pooideae also have harmful
impact, their pollen being one of the most widespread causes
of hay fever, allergic rhinitis, and asthma [43]. In the work
presented here, we have measured ~ 1000 spectra of pollen of
Anthoxanthum odoratum, Bromus inermis, Hordeum
bulbosum, Lolium perenne, and Poa alpina, with each of these
species being represented by 10 individual plants from two
populations. This is an extremely challenging sample set for
traditional pollen identification and classification, since the
studied species have almost identical pollen morphology. A
recent study on pollen samples of eight grass species in mea-
surements with large aperture, covering 8–10 grains has dem-
onstrated the great potential of FTIR microspectroscopy for
identification of grass pollen [20]. Here, we now push the
FTIR microspectroscopy approach closer to real world paleo-
ecological and allergological samples, by classifying individ-
ual pollen grains of grasses.

First, a comparative study comprising different spectral
preprocessing approaches was conducted in order to assess
and suppress spectral contributions of the paraffin-
embedding matrix in classification analyses (Scheme 1).
Apart from simple baseline correction and normalization that
does not alter the influence of the paraffin contributions, the
preprocessing approaches included (1) omitting of the spectral
region containing the most dominant paraffin signals, as pro-
posed previously [31]; (2) separation of the contribution by
paraffin from that of the pollen constituents by non-negative
matrix factorization (NMF); and (3) an EMSC approach with
modeling of the paraffin spectral contributions as suggested in
a previous work [44] (Scheme 1, red colored boxes).

Second, characterization of the spectral differences be-
tween the pollen of the different species was done by principal
component analysis (PCA) and hierarchical cluster analysis
(HCA). Lastly, a classification analysis with three machine
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learning classifiers, namely partial least square discriminant
analysis (PLS-DA), artificial neural network (ANN), and ran-
dom forest (RF), was conducted on a large independent sam-
ple set. The analysis of the spectral variance within and be-
tween the species, together with a comparison of success rates
in PLS-DA, ANN, and RF, underpins the sensitivity of FTIR
microspectroscopy to characterize compositional differences
between grass species, and to relate them to systematics/
phylogenetic information at the level of individual pollen
grains.

Materials and methods

Pollen samples

The sample set of this study contains pollen from two popu-
lations from each of the five Poaceae species Anthoxanthum
odoratum (accessions 51541 and 63063 from Millennium
Seed Bank), Bromus inermis (accessions NGB2875 and
NGB5420 from the Nordic Gene Bank), Hordeum bulbosum
(accessions PI614642 and PI639320 from Germplasm
Resources Information Network (GRIN), United States
Department of Agriculture), Lolium perenne (accessions
NGB4262 and NGB14263 from the Nordic Gene Bank),
and Poa alpina (accessions NGB1197 and NG6297 from
the Nordic Gene Bank). From each population, up to five

individuals of different genotypes were used in the
experiment.

Seeds from Anthoxanthum odoratum and Poa alpina were
germinated in moist soil (Tjerbo Gartnerjord, Tjerbo,
Rakkestad, Norway) in an open greenhouse in the spring.
The plants grew over summer and were subsequently
vernalized for 12 weeks at 4 °C with a day length of 8 h.
Following vernalization, the day length was increased to
16 h to induce flowering. The plants were grown at 20 °C until
flowering. During this period, the plants were fertilized twice
a week with water containing 4%Yara Kristalon Indigo (Yara,
Skøyen, Norway) and 3% YaraLiva calcium nitrate (Yara,
Skøyen, Norway) adjusted to an electron conductivity of
1.5. For Bromus inermis, Hordeum bulbosum, and Lolium
perenne, seeds were stratified in moist soil (Tjerbo
Gartnerjord, Tjerbo, Rakkestad, Norway) in the dark for
6 days, first at 4 °C for 5 days, followed by 1 day at room
temperature. Seeds were then transferred to an open green-
house in long days (16 h day length) at 17 °C and grown for
4 weeks, before temperature (vernalization at 4 °C for 6 weeks
and then transferred to 17 °C, or no vernalization at 17 °C) and
day lengths (8 or 16 h photoperiod) were varied for different
plants as required by another study fromwhich the plants were
sampled. The plants were fertilized regularly during the course
of the experiment.

Pollen were collected from the plants at the onset of polli-
nation (varying for each species and growth condition) and

Scheme 1 Schematic
representation of the data analysis
conducted with ~ 1000 FTIR
microspectra of single pollen
grains from five Poaceae species.
Basic preprocessing steps are
marked in green. Preprocessing
steps that concern suppression of
spectral contributions of the
paraffin are marked in red color.
Classification analyses are
marked in blue. The
preprocessing steps depend on the
approach that is used for paraffin
correction, and on the
classification analysis, as
indicated by the arrows.
Abbreviations: ANN, artificial
neural network; EMSC, extended
multiplicative signal correction;
HCA, hierarchical cluster
analysis; NMF, non-negative ma-
trix factorization; PCA, principal
component analysis; PLS-DA,
partial least square discriminant
analysis; RF, random forest
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stored at − 20 °C. The complete set of plants contains in total
50 individuals, with 10 individual plants for each species.
Approximately 20 different pollen grains were sampled from
each plant.

Sample preparation and data acquisition

For FTIR microspectroscopy, the pollen grains were spread
onto a thin layer of paraffin on a ZnSe slide. With the help of a
glass slide, the soft paraffin (Enzborn Vaseline, Nordwalde,
Germany) was distributed over the pollen grains, resulting in
embedding of the pollen grains in the thin paraffin layer. FTIR
spectra were obtained in transmission mode using a Nicolet
FTIR microscope (Thermo Scientific, Waltham, USA),
equipped with a single element MCT detector and with a ×
32 Cassegrainian objective. The size of the sampled spot was
15 μm× 15 μm. As light source, a synchrotron source (beam
line IRIS, HZB-BESSY, Berlin) was used. The FTIR spectra
were measured with a spectral resolution of 4 cm−1 and digital
spacing of 1.9 cm−1, by averaging 128 interferograms per
spectrum. A background spectrum was collected from the
ZnSe slide with identical parameters. From each of the 50
plants, approximately 20 different pollen grains were mea-
sured (with one spectrum per pollen grain), resulting in a data
set of 1004 spectra in total. Moreover, for each plant sample, 2
to 5 spectra of the pollen-free paraffin layer were measured
using the same condition as described above, leading to 190
pure paraffin spectra. Finally, individual pollen grains were
measured on a ZnSe slide without paraffin embedding (i.e.,
unembedded samples). Approximately 20 spectra of individ-
ual pollen grains from only one plant per grass species were
measured, resulting in 97 spectra of unembedded samples in
total.

Spectral preprocessing

Scheme 1 outlines the data processing steps that include basic
preprocessing such as baseline correction, normalization, and
calculation of average spectra (Scheme 1, green boxes), as
well as the steps that were used specifically to assess the con-
tributions by paraffin to the spectra (Scheme 1, red boxes). For
the analysis of the spectral sets, the spectral region of 1800 to
800 cm−1 was selected, since it contains bands that are distinc-
tive for pollen grains [15, 16, 22]. Three spectral preprocess-
ing approaches were tested to assess and suppress paraffin
spectral contributions in the spectral set of paraffin-
embedded pollen grains (Scheme 1, red colored boxes).
Different preprocessing was applied on the spectral set of
paraffin-embedded samples, depending on the specific ap-
proach for paraffin correction (Scheme 1, different arrows).

Preprocessing before comparison of spectra from paraffin-
embedded and non-embedded samples In order to compare

the spectra from non-embedded and paraffin-embedded sam-
ples, all spectral sets belonging to non-embedded and
paraffin-embedded pollen grains were preprocessed as fol-
lows: The spectra were baseline-corrected using asymmetric
least squares (AsLS) correction, as proposed by Eilers [45]
and vector-normalized before averaging.

Preprocessing for an analysis without observing the influence
of the paraffin contribution For simple baseline correction
and normalization, the spectra from paraffin-embedded pollen
grains are baseline-corrected by AsLS before applying a sim-
ple EMSC, an MSC model extended by a linear and quadratic
component [46], that replaces normalization. Afterwards, the
spectra were smoothed using a Savitzky–Golay filter with a
window size of 9 and a second-order polynomial. The optimi-
zation of the Savitzky–Golay parameters was accomplished as
described in [46], using PLS-DA of the spectra from two
pollen species permutatively, which resulted in a median win-
dow size of 9. For classification by PLS-DA, the individual
spectra were used. For analysis by HCA and PCA, averages of
the spectra of one respective plant were calculated.

Preprocessing in application of approach 1 (cf. Scheme 1) The
spectral region 1300–1500 cm−1 was omitted from the spectra
of the embedded pollen grains, thus dividing the data into
the two ranges 800–1300 and 1500–1800 cm−1. Before con-
catenation of the two ranges, each range was baseline-
corrected using AsLS correction. After concatenation,
EMSC was applied as described above, also leading to nor-
malization, and Savitzky–Golay smoothing as applied. For
classification by PLS-DA, the individual spectra were used.
For analysis by HCA and PCA, averages of the spectra of one
respective plant were calculated.

Preprocessing in application of approach 2 (cf. Scheme 1) The
spectra of the embedded pollen grains were baseline-corrected
using AsLS correction. After subsequent vector normaliza-
tion, NMF was used to split each spectrum into a paraffin
and a pollen component in order to eliminate the paraffin
spectral signature. The 1004 pollen spectra and the 190 pure
paraffin spectra were decomposed together into six compo-
nents using the nnmf function in Matlab. All components that
contained paraffin signals on visual inspection were separated
from those without prominent paraffin signature and left out in
the reconstruction of 1004 spectra without paraffin contribu-
tion. For classification by PLS-DA, the individual spectra
were used. For analysis by HCA and PCA, averages of the
spectra of one respective plant were calculated.

Preprocessing in application of approach 3 (cf. Scheme 1) The
AsLS baseline-corrected spectra of the embedded pollen
grains were corrected by the complex EMSC model using a
linear and a quadratic component, extended by a
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representative spectrum of paraffin, as suggested by Kohler
et al. [44] (Scheme 1, red-green box). In contrast to the simple
EMSC model used in the preprocessing of the spectra treated
by approach 1 and by the untreated spectra (Scheme 1), where
an average spectrum is used in the model, in the complex
EMSC model, we assume two different constituents in the
spectra, specifically the paraffin constituent and the pollen
constituent. For the representative spectrum of paraffin for
the EMSC model, an average spectrum was calculated from
the 190 pure paraffin spectra. For classification by PLS-DA,
the individual spectra were used. For analysis by HCA and
PCA, averages of the spectra of one respective plant were
calculated.

All spectral preprocessing was performed using Matlab
(MathWorks, Inc.).

Unsupervised data analyses

Averages of all spectra (pollen grains) from an individual
plant, resulting in 10 average spectra per species, were, after
correction for paraffin signals by the different approaches, and
also without correction for paraffin signals, analyzed using
HCA and PCA (Scheme 1, left blue box). The full spectral
range from 800 to 1800 cm−1 was used for the analyses. HCA
was executed using Euclidean distances and Ward’s
algorithm.

All unsupervised data analyses were obtained usingMatlab
(MathWorks, Inc.).

Classification data analyses

In order to assess the three approaches for elimination of the
influence of paraffin signals, the data sets comprising 1004
(1003, in the case of approach 1) preprocessed pollen spectra
were analyzed using PLS-DA with an optimized amount of
latent variables, using 10-fold cross-validation. We trained
each model using the whole data set except one spectrum
and permutated this procedure to apply leave-one-out cross-
validation (full CV) (Scheme 1, middle blue box).

The classification analyses were conducted by splitting the
spectral data set in half, where each comprised the spectrum of
only one population per species, thus creating a fully indepen-
dent training and test sets with 502 spectra each (Scheme 1,
right blue box). The preprocessed data set, obtained by ap-
proach 3, was selected as optimal for the classification analy-
ses based on the aforementioned PLS-DAwith full CV. Three
different machine learning classifiers were used in the analy-
ses: PLS-DA, ANN, and RF.

A feed-forward ANN containing 519 input neurons, 50
neurons in the hidden layer, and 5 outputs corresponding to
the species was constructed and trained using the patternnet
and train functions in Matlab. Of the 502 training spectra,
70% were used for training, 25% for validation, and 5% for

internal testing. Success rates for ANN identification were
calculated for a set of 502 spectra comprising the data from
the other respective population of each species. RF classifica-
tion was applied by using the treebagger function in Matlab
with 300 trees on the 502 training spectra of one population of
each species. The classification of the 502 spectra from the test
set was executed using the predict function.

All classification analyses were obtained using the
Statistics and Machine Learning Toolbox, as well as the
Neural Network Toolbox in Matlab (MathWorks, Inc.).

Results and discussion

Pollen morphology

As can be seen in the bright-field images (Fig. 1), the dry
pollen grains from the five different grass species are similar
in size and morphology. In general, grass pollen is character-
ized by a simple spherical shape, single circular and annulate
aperture situated distally, and microechinate grain wall orna-
mentation [8]. Grass pollen has very limited mechanisms for
preventing desiccation [47]. As a result, grass pollen morphol-
ogy is dramatically changed after shedding, collapsing from a
spherical shape of fresh pollen to extensive infolding of dry
pollen [48]. The extensive infolding leads to large variation in
Mie scat ter ing effects , resul t ing with extremely
unreproducible spectra. Although the pollen grains of all five
measured species have similar morphology, those of Poa
alpina and Anthoxanthum odoratum are slightly smaller than
the pollen grains of Lolium perenne, Bromus inermis, and
Hordeum bulbosum.

Influence of the paraffin spectral contribution

Following our recently established protocol [31], we embed-
ded the pollen samples in paraffin to avoid scattering artifacts
in the spectra. Figure 2 shows the averages of baseline-
corrected and vector-normalized spectra of non-embedded
(Fig. 2a) and of the paraffin-embedded pollen grains (Fig.
2b) for each pollen species. The spectra of the embedded
pollen show much less variation within each species (Fig.
2b) compared to the large standard deviation when measured
as the unembedded samples (Fig. 2a). The most prominent
bands in the spectra are found at 989 and 1045 cm−1 both
assigned to carbohydrates, at 1161 cm−1 assigned to lipids
and carbohydrates, at 1549 and 1659 cm−1 assigned to amide
II and amide I vibrations of proteins, respectively, and at
1745 cm−1 assigned to lipids [18]. In Fig. 2 b, the character-
istic absorbance of paraffin adds to this pollen signature and is
particularly prominent in the region from 1300 to 1500 cm−1.
In particular, bands associated with the methyl rocking vibra-
tion at 1377 cm−1 and the CH2 bending and CH3 deformations
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modes at 1462 cm−1 determine the spectra of all the embedded
pollen samples (Fig. 2b) [49]. Although much less dominat-
ing, the spectra from the non-embedded samples also contain
signals in this spectral region.

The paraffin bands at 1377 and 1462 cm−1 in the spectra of
the embedded samples vary between the different species
(Fig. 2b). In the spectra of pollen from Poa alpina and
Anthoxanthum odoratum, both bands have higher relative ab-
sorbance values, whereas for Lolium perenne and Bromus
inermis, they are less strong. In the spectrum of Hordeum
bulbosum, the two characteristic paraffin signals have much
smaller contributions and the spectrum in the region from
1300 to 1500 cm−1 resembles that of the averaged spectrum
from the non-embedded pollen grains (compare the two blue
traces in Fig. 2 a and b). The different relative contribution by
the embedding paraffin in the spectra of the different species is
likely related to the different size of the pollen grains, leading
to a different relative amount of paraffin versus pollenmaterial
in the probed microscopic volume.

We have tested three different approaches for correction of
FTIR spectra of the paraffin-embedded samples. In compari-
son, in the simplest procedure, paraffin spectral contributions
were not suppressed, and the spectra were only baseline-
corrected and vector-normalized. The assessment of this pre-
processing by PLS-DAwith full CV indicates clearly that the
spectra of the different species can be discriminated (Table 1).
The overall success rate of 79% was achieved, with the indi-
vidual success rates of approximately 90% for Hordeum
bulbosum, Anthoxanthum odoratum, and Poa alpina spectra.
The average spectra in Fig. 2 already suggest that the different
extent of the paraffin spectral contribution could also influ-
ence the discrimination of the different pollen species. The
results of the PCA corroborate this, and the loadings of the
first principal component (PC 1) (see Electronic
Supplementary Material (ESM) Fig. S1, right column) show
the two strong paraffin-related signals at 1377 and 1462 cm−1.
Also, in the other principal components, e.g., PC 4 (ESM Fig.
S1, right column), the paraffin signals may be a reason for the
species-related variation, as can be seen from the presence of
signal at 1460 cm−1. This indicates that the paraffin contribu-
tion needs to be minimized before data analysis, in order to
obtain classification and identification based on pollen chem-
istry alone.

Selection of non-affected spectral ranges

As discussed above, the strong deformation modes of paraffin
affect the spectra mostly in the spectral range from 1300 to
1500 cm−1 with the two bands at 1377 and 1462 cm−1.
Therefore, this spectral region was omitted from the data set
(compare Scheme 1, approach 1), similar to the approach in
our first paraffin-embedding study [16]. Eliminating only the
two strongest bands from paraffin here, we assume that other

Fig. 1 Bright-field micrographs
(× 20) of pollen grains from the

five indicated grass species used.
Scale bars 100 μm
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spectral features contributed by the paraffin in the regions
800–1300 and 1500–1800 cm−1 are negligibly small com-
pared to the absorption bands of the pollen samples them-
selves. Following the removal of the 1300–1500-cm−1 spec-
tral range, the spectra were normalized by the simple EMSC
model.

The assessment by PLS-DA with full CV shows that the
overall classification success rate is lower (i.e., 76%, see
Table 2) compared to the preprocessing, where the contribu-
tion by paraffin is not corrected for (Table 1). Similar to these
results, the success rates can vary enormously for each of the
pollen species, ranging from 46% for Bromus inermis, where
one fourth of the actual Bromus inermis pollen spectra was
misclassified as Hordeum bulbosum, to 91% correct

classification of Anthoxanthum odoratum and Poa alpina
spectra. PCA results show that the main variances within this
data set are found in the spectral range from 850 to 1150 cm−1

(ESM Fig. S2A right loadings of PC 1 and PC 2), which can
be assigned mainly to carbohydrates [14, 18]. A differentia-
tion between the pollen spectra from Anthoxanthum odoratum
and Poa alpina and between Hordeum bulbosum and Lolium
perenne can be achieved in PC 3 and PC 6, respectively, as
found in the scores plot (ESM Fig. S2B). The finding that the
spectral differences in the pollen spectra preprocessed by ex-
cluding the range from 1300 to 1500 cm−1 lead to a relatively
small drop in classification success rates, compared to the
simple preprocessing—without consideration of the paraffin
influence, is in agreement with a previous work that reports

Fig. 2 Average FTIR spectra of
five grass species (based on 20
individual pollen grains per plant,
and 10 plants per species): a
unembedded samples and b
paraffin-embedded samples. The
standard deviation for each group
of spectra is indicated in gray

Table 1 Result of PLS-DA clas-
sification of spectra from paraffin-
embedded pollen after simple
baseline correction and vector
normalization. Nine latent vari-
ables were used. The results are
based on full cross-validation

Output class Target class

A. odoratum B. inermis H. bulbosum L. perenne P. alpina

A. odoratum 184 3 5 13 11

B. inermis 1 114 10 14 2

H. bulbosum 4 51 189 5 2

L. perenne 5 18 0 131 7

P. alpina 5 14 5 33 178

Success rate (SR) 92% 57% 90% 67% 89%

Overall SR 79%
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the successful discrimination of paraffin-embedded pollen
from other plant species [31].

Decomposition of spectra from paraffin-embedded
pollen using NMF

A decomposition of spectral signatures belonging to different
chemical constituents within the same spectrum of a complex

sample can be achieved by a matrix factorization algorithm,
such as NMF. This can result in a more detailed analysis of the
spectral features from the different chemical constituents [50].
In addition, such matrix factorization algorithms have been
shown to be very useful for the exclusion of disruptive con-
tributions from spectra, e.g., for de-noising [51, 52].
Therefore, NMF was used in another preprocessing approach
(Scheme 1, approach 2) to split our spectra into pollen spectra

Table 2 Result of PLS-DA clas-
sification of spectra from paraffin-
embedded pollen corrected by
omitting the spectral range from
1300 to 1500 cm−1, following
approach 1 (cf. Scheme 1). Nine
latent variables were used. The
results are based on full cross-
validation

Output class Target class

A. odoratum B. inermis H. bulbosum L. perenne P. alpina

A. odoratum 181 9 6 16 8

B. inermis 6 91 13 14 6

H. bulbosum 4 52 183 14 0

L. perenne 4 28 1 126 4

P. alpina 4 19 6 26 182

Success rate (SR) 91% 46% 88% 64% 91%

Overall SR 76%

Fig. 3 First six components of the
spectral decomposition by non-
negative matrix factorization
(based on 1004 spectra of
paraffin-embedded pollen grains,
and 190 pure paraffin spectra,
compare Scheme 1, approach 2).
Components 2 and 6 show typical
contributions by paraffin. See
Table 3 for the relative contribu-
tion of the six components in the
different pollen species
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and paraffin spectra. In this procedure, the 1004 spectra from
each individual pollen grain and 190 spectra of pure paraffin
were decomposed together several times using different num-
bers of components—six components. The decomposition
using six components was chosen as optimal based on visual
inspection, which indicated a good separation of the paraffin
spectra in components 2 and 6 (Fig. 3). These two components
show the typical paraffin bands at 1377 and 1462 cm−1. The
reconstructed paraffin and pollen spectra were obtained for
each measured spectrum (each pollen grain), and the averages

of these two sets of reconstructed spectra for each species are
shown in Fig. 4 a and b, respectively. The reconstructed par-
affin spectra (Fig. 4a) are in good agreement with a paraffin
reference spectrum (Fig. 4a, top). Table 3 shows the normal-
ized relative amount of each of the six components. The var-
iation of the relative paraffin contribution (Table 3,
components 2 and 6) is in good agreement with the visual
observation of pollen spectra (Fig. 2), showing its larger con-
tribution to Anthoxanthum odoratum and Poa alpina spectra
and smaller contribution for the other three species. The

Fig. 4 a Spectra obtained by
reconstruction from component 2
and component 6 upon non-
negative matrix factorization
(NMF) with six components (cf.
Fig. 3) for each species, revealing
the typical paraffin signature. An
average of 190 pure paraffin
spectra is shown for comparison
(top). b Reconstructed spectra
from NMF components 1, 3, 4,
and 5 for each species. All spectra
are averages of 200 individual re-
constructed spectra (correspond-
ing to 200 pollen grains). The
standard deviation for each group
of spectra is marked in gray. See
Fig. 3 and Table 3 for details on
NMF components

Table 3 Averaged relative
spectral contribution of each
component after decomposition
using NMF (cf. Scheme 1,
approach 2). The spectral contri-
bution is averaged for each pollen
species

Comp 1 [%] Comp 2 [%]

(Paraffin)

Comp 3 [%] Comp 4 [%] Comp 5 [%] Comp 6 [%]

(Paraffin)

A. odoratum 41 ± 12 25 ± 9 12 ± 9 12 ± 11 8 ± 6 2 ± 4

B. inermis 34 ± 13 18 ± 9 15 ± 12 13 ± 9 17 ± 11 3 ± 5

H. bulbosum 36 ± 11 13 ± 7 19 ± 9 17 ± 8 12 ± 8 2 ± 3

L. perenne 34 ± 16 15 ± 10 20 ± 15 18 ± 11 8 ± 7 5 ± 7

P. alpina 42 ± 9 25 ± 9 10 ± 7 13 ± 9 9 ± 6 1 ± 3
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averages of the spectra that were reconstructed from the re-
maining four components show no characteristic paraffin sig-
nals (Fig. 4b). Compared to the spectra from unembedded
single pollen grains on ZnSe slide discussed above (compare
Fig. 2a), three characteristic bands at 1236, 1331, and
1408 cm−1 are visible more clearly. They can be assigned to
phospholipids, indicated, e.g., by the P=O-stretching vibration
at 1236 cm−1, amino acids, as illustrated by the COO−

stretching mode at 1408 cm−1, and carbohydrates, the latter

possibly causing the band at 1331 cm−1 that is likely assigned
to a ring deformation vibration [18, 49, 53].

The PLS-DAwith full CV classification of the pollen spec-
tra reconstructed by the NMF approach results with higher
success rate (82%) compared to PLS-DA results of the previ-
ous preprocessing procedures (compare Table 4 with Tables 1
and 2). The success rates for Bromus inermis and Lolium
perenne are slightly higher (65 and 71%, Table 4) compared
to the classification results of approach 1 (46 and 64%,
Table 2). Nevertheless, the PCA results (ESM Fig. S3) indi-
cate that the variation within the NMF-decomposed spectra
might still be slightly affected by bands from paraffin, as in-
dicated by the variation in the CH2 deformation at 1460 cm−1

that on the one hand is assigned to lipids in the pollen [16], but
that could also be present due to residual paraffin contribu-
tions (ESM Fig. S3, right column, loadings of PC 2 and PC 6).

Correction of the spectra using EMSC with a paraffin
constituent spectrum

EMSC can be used to correct scattering and other non-
absorption effects in FTIR data [35, 54, 55]. This is achieved
by executing the model-based normalization with the help of a
reference spectrum. In the preprocessing for approach 1 (cf.
Scheme 1 and “Selection of non-affected spectral ranges” sec-
tion), we used a simple EMSC model with linear and quadrat-
ic terms and the mean spectrum of the spectral data set [35].
Here, in approach 3 (cf. Scheme 1), we used the complex
EMSC with a modeled paraffin contribution. We assume that
the spectra are composed of two components, a paraffin and a
pollen constituent. In order to apply EMSC on the data set, the
pollen constituent spectrum was chosen as a reference spec-
trum, and an averaged pure paraffin spectrum was added into
the algorithm as discussed previously [44]. As a result, the
spectra are normalized so that particularly the bands at 1377
and 1462 cm−1 show less variation between the spectra from
the five species (Fig. 5). For the classification, this would
mean that the variation induced by the differences in the
paraffin-embedding medium can be minimized and that

Fig. 5 FTIR microspectra of paraffin-embedded pollen samples of the
five grass species after correction using EMSC model with paraffin con-
stituent spectrum (cf. Scheme 1, approach 3). Each spectrum is an average
of 200 individual, corrected spectra (corresponding to 200 pollen grains).
The standard deviation for each group of spectra is marked in gray

Table 4 Results of PLS-DA
classification of spectra from
paraffin-embedded pollen recon-
structed from NMF components
1, 3, 4, and 5 (cf. Scheme 1,
approach 2). See Table 3 and
Figs. 3 and 4 for details on NMF
components and NMF recon-
struction of spectra. Nine latent
variables were used. The results
are based on full cross-validation

Output class Target class

A. odoratum B. inermis H. bulbosum L. perenne P. alpina

A. odoratum 185 2 1 15 12

B. inermis 1 130 9 14 3

H. bulbosum 2 42 192 8 0

L. perenne 6 17 1 140 4

P. alpina 4 8 6 19 181

Success rate (SR) 93% 65% 92% 71% 91%

Overall SR 82%
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classification is only based on the spectral contributions by the
pollen grains themselves.

The PLS-DAwith full CV classification of the pollen spec-
tra preprocessed by the complex EMSC approach results with
the highest success rate (83%) of all the tested approaches
(Table 5). In particular, the success rate for Bromus inermis
is higher (63% in Table 5) compared to the classification of the

data set corrected using approach 1 (49% in Table 2). This
indicates that the already very promising classification results
obtained in the previous study on 11 plant species [31] can be
improved even further by optimizing the spectral preprocess-
ing step. In general, approach 2 (the NMF approach, Table 4)
and approach 3 (the complex EMSC approach, Table 5) result
with relatively similar success rates. For all preprocessing
procedures, the success rates vary regarding the different pol-
len species. The pollen spectra of the species Anthoxanthum
odoratum, Hordeum bulbosum, and Poa alpina can be classi-
fied well (Table 5, > 90%), while the identification of the
spectra belonging to Bromus inermis and Lolium perenne is
more challenging, with success rates of 63 and 69%,
respectively.

Classification by hierarchical cluster analysis
and principal component analysis

The success rates for the full cross-validation PLS-DA-based
classification indicate that the three approaches of minimizing
the paraffin contribution to the spectra, namely (i) omitting a
part of the spectrum (approach 1), (ii) non-negative matrix
factorization (approach 2), and (iii) normalization of the par-
affin signals by EMSC (approach 3), lead to a similar ability to
discriminate the pollen spectra from the species
Anthoxanthum odoratum, Hordeum bulbosum, and Poa
alpina, and a less efficient classification of the two species
Bromus inermis and Lolium perenne within the data set. It
has been shown before that the spectra of some grass pollen
species have more unique spectral features than others, so that
their discrimination within a data set of similar pollen species
is less difficult [20, 23]. In order to assess intra- versus inter-
species differences, a hierarchical cluster analysis was per-
formed, using the spectral data obtained by approach 3
(Scheme 1, left blue box). This pretreatment has the advantage
that no supervision is needed, and automated pattern recogni-
tion tools could be developed for a fast identification of the
spectra.

Fig. 6 Dendrogram obtained after hierarchical cluster analysis (HCA)
with 50 pollen spectra from the five indicated grass species, using the full
spectral range from 800 to 1800 cm−1. Each spectrum in the analysis is an
average of the ~ 20 pollen grain spectra of one individual plant (cf.
Scheme 1, approach 3). HCA was executed using Euclidean distances
and Ward’s algorithm. The colored branches correspond to the font color
with which the respective pollen species is listed

Table 5 Results of PLS-DA
classification of spectra from
paraffin-embedded pollen
corrected using EMSC model
with paraffin constituent spectrum
(cf. Scheme 1, approach 3).
Eleven latent variables were used.
The results are based on full
cross-validation

Output class Target class

A. odoratum B. inermis H. bulbosum L. perenne P. alpina

A. odoratum 187 3 1 16 10

B. inermis 1 126 7 14 2

H. bulbosum 2 44 197 7 0

L. perenne 5 19 0 136 4

P. alpina 4 8 4 23 184

Success rate (SR) 94% 63% 94% 69% 92%

Overall SR 83%
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The hierarchical cluster analysis was carried out with the
average spectra of 20 single pollen spectra of each sample,
leading to 50 spectra in total, using Euclidean distances and
Ward’s algorithm. The resulting dendrogram is shown in
Fig. 6. Most of the spectra of Poa alpina (Fig. 6, purple
branches), Anthoxanthum odoratum (Fig. 6, black branches),
and Hordeum bulbosum (Fig. 6, blue branches) are clustered
almost exclusively in respective groups. This is in good agree-
ment with the PLS-DA identification discussed above and
indicates low variances within the spectra of the respective
species. The high similarity of the majority of spectra from
Bromus inermis (Fig. 6, red branches) to those of Hordeum
bulbosum (Fig. 6, blue branches) agrees with the high number
of Bromus inermis spectra that are misclassified in the PLS-
DA as Hordeum bulbosum spectra (cf. Table 5). We therefore
conclude on a high similarity of the composition of the pollen
from these two species, in agreement with the close relation-
ship of the tribes Hordeeae (Triticeae) and Bromeae within the
Pooideae subfamily [56, 57]. The cluster in the dendrogram
that comprises all except one spectrum from Poa alpina (Fig.
6, purple branches) is very similar to a group of spectra that
contains average pollen spectra from Anthoxanthum
odoratum and Lolium perenne plants (Fig. 6, black branches
and green branches, respectively), also in agreement with the
misclassification by PLS-DA of several individual spectra
from Anthoxanthum odoratum as Lolium perenne and Poa
alpina, and vice versa (Table 5). Moreover, it can be conclud-
ed that the chemical composition of these pollen has more

similarities compared to those from the other species, in agree-
ment with the fact that all of them belong to the Poeae/
Aveneae tribe complex [56].

In a PCA, the differences between the spectra of the five
pollen species can be identified based on the loadings spectra.
Figure 7 a shows the scores plot and corresponding loadings
of the first and second principal components of a PCAwith the
average spectra of the 50 plants. The first and second PCs
explain 54% of the total variance in the data set. As visible
in the scores plot in Fig. 7 a, the mostly positive score values
regarding the first PC of spectra from Poa alpina and
Anthoxanthum odoratum, as well as most spectra from
Lolium perenne, confirm the high similarity of the pollen com-
position in these two species. Similarly, the spectra from
Bromus inermis and Hordeum bulbosum show mostly nega-
tive score values regarding the first PC (Fig. 7a). According to
the loadings in Fig. 7 a, the most pronounced differences
between the spectra from the Bromus inermis/Hordeum
bulbosum group and those from the two species Poa alpina
and Anthoxanthum odoratum are in the broad bands around
945 cm−1 (second PC) and 1678 cm−1 (first PC) that could be
assigned to molecular vibrations of carbohydrates and pro-
teins, respectively [14, 49, 53]. This would lead to the conclu-
sion that pollen from Bromus inermis can be discriminated
from Poa alpina and Anthoxanthum odoratum based on a
different carbohydrate and protein composition. The scores
plot in Fig. 7 b shows that separation of Poa alpina and the
Bromus inermis/Hordeum bulbosum group from the other

Fig. 7 Principal component
analysis (PCA) of 50 pollen
spectra from the five indicated
grass species, using the full spec-
tral range from 800 to 1800 cm−1.
Each spectrum in the analysis is
an average of the ~ 20 pollen
grain spectra of one individual
plant corrected using EMSC with
a paraffin constituent (cf. Scheme
1, approach 3). a Scores plot and
corresponding loadings of PC 1
and PC 2. b Scores plot and cor-
responding loadings of PC 3 and
PC 6. Each color representing the
respective pollen species.
Abbreviations: A, Anthoxanthum
odoratum (black symbols); B,
Bromus inermis (red symbols); H,
Hordeum bulbosum (blue sym-
bols); L, Lolium perenne (green
symbols); P, Poa alpina (purple
symbols)
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species is also possible based on the variance in the third PC.
According to the corresponding loading spectra in Fig. 7 b, the
discrimination is caused by signals that can be assigned to
carbohydrates at 966 cm−1, to sporopollenin at 1167 and
1610 cm−1, here tentatively assigned to lipids at 1423 and
1460 cm−1, and to proteins at 1651 and 1691 cm−1 [16, 18].

Pattern recognition for classification of grass pollen
spectra from independent populations

The PLS-DA models discussed in the previous sections
(“Selection of non-affected spectral ranges” and “Correction
of the spectra using EMSC with a paraffin constituent spec-
trum”) show high success rates for the discrimination of the
three pollen species Anthoxanthum odoratum, Hordeum
bulbosum, and Poa alpina in a leave-one-out approach, where
each individual spectrum of each sample is tested separately.
Nevertheless, in such a setting, the model is trained with spec-
tra from different plants, but from the same population as
those of the pollen that is identified. A robust, reliable discrim-
ination method should include the possibility to identify pol-
len spectra that come from different plant populations as well.
In our experiments, the plants in each of the five species orig-
inate from two different populations. Therefore, a PLS-DA
model was constructed using spectra from just one population
per species, amounting to 502 spectra. The success rates were
obtained by using the respective other population from each
species as an independent test set, comprising other 502 spec-
tra. The results for the identification of the unknown popula-
tions by PLS-DA are shown in the upper section of Table 6.
Comparing the success rates with the results obtained in the
leave-one-spectrum-out approach above (Table 4), we find
that the success rates are only slightly lower for the species
Anthoxanthum odoratum, Hordeum bulbosum, and Poa
alpina when spectra come from an unknown population.
Nevertheless, they are very low in those species, where suc-
cess rates werealready low in the leave-one-spectrum-out
identification, that is, in Bromus inermis and Lolium perenne
(compare the upper section of Table 6 with Table 5), with the
success rate for classification of the former drops from 63% to
26%. We assign this low success rate to a greater variation
between the different populations in these two species. Similar
observations have been reported for other grass species with
bulk FTIR andMALDImass spectrometry approaches as well
and have been discussed in the greater context of adaptive
variation [23, 58]. We have also used the second derivatives
of the spectra, which yielded similar success rates (ESM
Table S1).

Apart from the linear classifier PLS-DA, we used machine
learning for the identification of spectra from the respective
unknown populations. A feed-forward ANN was trained with
the same set of 502 spectra, divided into a training, validation,
and internal test set, and tested with 502 spectra from the other

respective populations. The success rates were very similar,
with a higher number of correct species assignment in Lolium
perenne and similar misclassification, e.g., assignment of
Lolium perenne as Poa alpina (Table 5, middle section). The
slightly diminished success rate for the identification of
Hordeum bulbosum compared to the PLS-DA classifier is
balanced, considering a 66% correct identification of the spec-
tra from Lolium perenne pollen that is an improvement com-
pared to the PLS-DAmodel (compare top and middle sections
in Table 6). Consistent with the results of HCA (Fig. 6) and
PCA (Fig. 7), almost all incorrectly assigned spectra of
Hordeum bulbosum are labeled withBromus inermis as output
class, also in agreement with the close phylogenetic relation-
ship of the two species mentioned above [56, 57].
Identification using a random forest algorithm as another ma-
chine learning approach results in similar success rates as the
PLS-DA model in the case of Bromus inermis and Lolium
perenne, but lower numbers of correct identification than
PLS-DA and ANN for the other three species (Table 5, last
section). Changing the number of trees in the RF from 300 (cf.
results in Table 3), determined to be optimum, to higher num-
bers, results in similar success rates.

The strong decrease in classification success in Bromus
inermis when an unknown population must be identified
(compare the respective columns in Table 4 and in the three
sections of Table 5) and the quite high success rates for other
species are in agreement with the different intraspecies vari-
ance that was observed between populations of other Poaceae
species [23, 58]. Especially in Anthoxanthum odoratum and
also Poa alpina that show highest success rates here (Table 5),
the ability to distinguish spectra from different populations of
the same species was challenging based on FTIR spectra [23]
but could be achieved using other chemical information of the
pollen samples [58].

The fact that identification is based here on spectra from
individual pollen grains rather than averages from one plant
adds another source of variation here, as was recently also
discussed when we compared different spectroscopic methods
that probe either bulk samples or individual pollen grains and
their potential for pollen identification [24]. Nevertheless, the
possibility to study pollen spectra in mixtures could in the
future open possibilities for FTIR imaging-based identifica-
tion of mixed grass pollen samples, similar to existing high-
throughput and mapping approaches [9, 10].

Conclusions

The results indicate that different spectral preprocessing strat-
egies to minimize the influence of unwanted paraffin spectral
contributions in the FTIR microspectra of individual grass
pollen grains are feasible. These spectral preprocessing proce-
dures lead to meaningful classification results of pollen
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samples from the five very similar Pooideae grass species
Anthoxanthum odoratum, Bromus inermis, Hordeum
bulbosum, Lolium perenne, and Poa alpina. The analysis
shows that, while classification of the spectra is possible with
good success rates in spite of strong paraffin absorption, the
elimination of the paraffin spectral features is desirable, since
the effect by the paraffin embedding depends on the pollen
grain morphology and has a strong influence on the classifi-
cation. The relative amount of the paraffin contribution was
characterized by NMF of the spectra and by the complex
EMSC model with paraffin constituent. Both NMF and com-
plex EMSC approaches improve the classification success
rates, compared to a removal of the spectral region that con-
tains the strongest absorption bands of paraffin.

Following the EMSC-based correction approach using a
paraffin constituent spectrum, requiring a decision by the op-
erator, it is possible to identify spectra from different popula-
tions applying PLS-DA, as well as ANN and RF machine
learning. This suggests that both the spectral preprocessing
and the identification of the spectra can in principle be includ-
ed in an automated analysis of pollen samples, e.g., as collect-
ed from typical pollen traps.

Using average spectra from all pollen samples of each of
the 50 individual plants, the spectral variation within and be-
tween species, together with the particular mis/-classification
results for the investigated species, is in agreement with the
systematics within the Poaceae family. Furthermore, success
rates for classification of unknown populations reveal a vari-
ation of chemical differences between respective different
populations for the five species. Therefore, in future work,
FTIR microspectroscopy will be combined with other micro-
scopic analytical methods that give single pollen grain spatial
resolution and sensitivity, namely Raman microscopy [11, 29]
and MALDI imaging [9]. Such a multimodal single pollen
probing will be a logical continuation of recent experiments
combining the complementary chemical information of these
methods [18, 24].
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