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ABSTRACT

The current study aimed to investigate new udder 
health traits based on data from automatic milking 
systems (AMS) for use in routine genetic evaluations. 
Data were from 77 commercial herds; out of these, 24 
had equipment for measuring online cell count (OCC), 
whereas all had data on electrical conductivity (EC). A 
total of 4,714 Norwegian Red dairy cows and 2,363,928 
milkings were included in the genetic analyses. Elec-
trical conductivity was available on quarter level for 
each milking, whereas OCC was measured per milking. 
The AMS traits analyzed were log-transformed online 
cell count (lnOCC), maximum conductivity (ECmax), 
mean conductivity (ECmean), elevated mastitis risk 
(EMR), and log-transformed EMR (lnEMR). In addi-
tion, lactation mean somatic cell score (LSCS) was col-
lected from the Norwegian dairy herd recording system. 
Elevated mastitis risk expresses the probability of a 
cow having mastitis and was calculated from smoothed 
lnOCC values according to individual trend and level 
of the OCC curve. The udder health traits from AMS 
were analyzed as repeated milkings from 30 to 320 
DIM, and LSCS as repeated parities. In addition, both 
ECmax and lnOCC were analyzed as multiple traits 
by splitting the lactation into 5 periods. (Co)variance 
components were estimated from bivariate mixed linear 
animal models, and investigated traits showed genetic 
variation. Estimated heritabilities of ECmean, ECmax, 
and lnEMR were 0.35, 0.23, and 0.12, respectively, 
whereas EMR and lnOCC both showed heritabilities of 
0.09. Heritability varied between periods of lactation, 
from 0.04 to 0.13 for lnOCC and from 0.12 to 0.27 
for ECmax, although standard errors of certain peri-
ods were large. Genetic correlations among the AMS 
traits ranged from 0 to 0.99. The genetic correlations 
between EC-based traits and OCC-based traits in AMS 
were 0. Genetic correlations with LSCS were favorable, 

ranging from 0.37 to 0.80 (±0.11–0.22). The strongest 
correlation (0.80 ± 0.13) was found between LSCS 
and lnEMR. Results question the value of ECmax and 
ECmean as indicators of udder health in genetic evalu-
ations and suggest OCC to be more valuable in this 
manner. This study demonstrates a potential of using 
AMS data as additional information on udder health 
for genetic evaluations, although further investigation 
is recommended before these traits can be implemented.
Key words: mastitis indicator, online cell count, 
electrical conductivity, elevated mastitis risk, automatic 
milking system

INTRODUCTION

Automatic milking systems (AMS) provide frequent 
and objective measures with potential as indicators of 
udder health, which is of great importance for both 
economic and animal welfare reasons. The opportunity 
for longitudinal recording of udder health arises with 
sensors in AMS; this is especially relevant because mas-
titis is a complex trait. The disease varies from acute 
cases with clinical signs, such as warm and swollen ud-
der and loss of milk production (Lohuis et al., 1990), to 
mild cases with few or subclinical mastitis without any 
visible signs (Oliveira et al., 2013). Veterinary-treated 
clinical mastitis (CM) and SCC in milk are the 2 main 
traits used in genetic evaluation of udder health (Her-
ingstad et al., 2000). Udder health has been part of the 
breeding program for Norwegian Red (NR) since 1978. 
The prevalence of CM reported to the Norwegian Dairy 
Herd Recording System (NDHRS) declined from 0.22 
cases per cow-year in 2002 to approximately 0.14 in 
2018, and the trend is still decreasing (Tine, 2018). 
Although the prevalence of severe and acute CM has 
decreased, there are still challenges related to intrama-
mmary infections in dairy cattle, suggesting a need for 
alternative definitions of udder health for routine genet-
ic evaluation. Treating CM as a binary trait analyzed 
by linear models leads to heritability estimates being 
generally low, varying from 0.01 to 0.035 (Luttinen and 
Juga, 1997; Heringstad et al., 1999; Rupp and Boichard, 
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1999; Ødegård et al., 2004a). The indicator trait SCC 
is moderately correlated with CM, with an average ge-
netic correlation of 0.6 reported in the Nordic countries 
(Heringstad et al., 2000). Measurements of SCC are 
mainly based on monthly test-day records; thus, there 
may be time for an animal to get infected and recover 
from a mastitis case between test days, leading to un-
discovered udder infections if information is based on 
test-day SCC. In AMS, repeated and objective records 
per milking are available and can be used for genetic 
evaluation purposes (Carlström et al., 2013; Wethal 
and Heringstad, 2019). In-line recording of online cell 
count (OCC; DeLaval, Tumba, Sweden) and electri-
cal conductivity (EC) offers alternative phenotypes for 
continuous monitoring of udder health in AMS. Electri-
cal conductivity is standard equipment and available 
from every AMS herd. Online cell counter is additional 
equipment and not yet available from every AMS herd. 
Heritability estimates of EC vary from 0.12 to 0.36, and 
moderate genetic correlations with mastitis have been 
found, as reviewed by Norberg (2005).

Udder infections might be difficult to discover if clear 
clinical signs are lacking. Further, AMS herds may have 
a reduced time budget per cow, making it more chal-
lenging to discover intramammary infections. Therefore, 
sensor systems have been developed to detect mastitis 
and alert the farmer if the mastitis indicator reaches a 
certain level. The indicator may be based on changes in, 
for example, EC, milk yield, and milking speed. Based 
on OCC data, Sørensen et al. (2016) suggested elevated 
mastitis risk (EMR) on a 0-to-1 scale as an alterna-
tive measure of intramammary infection in AMS. An 
EMR closer to 1 indicates a larger probability for a cow 
to have mastitis, and the sensitivity for detecting true 
cases of CM has been reported to vary from 38 to 89% 
depending on specificity levels (Sørensen et al., 2016; 
Dalen et al., 2019). The ability of the EMR algorithm 
to detect subclinical mastitis caused by 2 groups of 
pathogens was reported with sensitivities from 12 to 
69% for specificities of 80 to 90% (Dalen et al., 2019). 
Heritability of log-transformed EMR (lnEMR) rang-
ing from 0.06 to 0.15 was estimated by Sørensen and 
Løvendahl (2014). They reported that lnEMR had 
higher heritability than traditionally recorded CM. 
Comparing data on OCC, EC, and EMR from AMS 
with test-day SCC and records of CM from the NDHRS 
offers an opportunity to evaluate new phenotypes as 
additional information in the routine genetic evaluation 
of udder health.

The aim of this study was to estimate heritability of 
udder health indicator traits defined from OCC and 
EC data from AMS. We also aimed to estimate genetic 
correlations among udder health indicators from AMS 
and their genetic correlations with the lactation mean 

SCS (LSCS) currently used in genetic evaluation of 
udder health.

MATERIALS AND METHODS

Data Material

Information included in the current study came from 
77 Norwegian herds equipped with AMS from DeLaval 
(Tumba, Sweden). Data were gathered from 2016 to 
2017 using remote desktop connections to the same 
herds as used in Wethal and Heringstad (2019). Due to 
memory limits, records per milking were available only 
1 yr back in time as data were deleted daily from the 
AMS. Before editing, the raw data contained approxi-
mately 4,900,000 observations, including both milkings 
and cows visiting the unit without milking permissions. 
Information about single milkings with known time and 
date were retained, together with information about 
EC, milk yield, and OCC. Records of EC were avail-
able per udder quarter at each milking in AMS. For 
OCC, records were available in only 24 herds because 
the equipment is optional. In these herds, OCC were at 
most available at milking level per cow. For all animals, 
additional information was extracted from the NDHRS, 
including birth date, calving dates, LSCS of the 3 first 
parities, and pedigree information. Records from first 
to ninth parity, within 30 to 320 DIM, and cows with 
a minimum of 9 d of milkings in AMS within a parity 
were included in the genetic analyses. Further, milk 
yield had to be >0 kg, whereas EC ≤0.5 mS and OCC 
<500 cells/mL of milk were set to missing. Only pure-
bred NR cows with a known NR AI sire were included 
in the genetic analyses. After editing, data contained 
information on EC from a total of 2,363,928 milkings 
for 4,714 cows, of which 1,490 cows had records on 
both EC and OCC from the AMS (Table 1). Pedigree 
was traced back 8 generations if possible, resulting in a 
total of 39,523 animals in the pedigree file.

Traits

During each milking, the EC of each udder quarter is 
measured in millisiemens. Change in EC is used as an 
indicator of udder health, where an increase may indi-
cate an ongoing udder infection (Norberg et al., 2004a). 
Two traits were analyzed: maximum EC (ECmax), 
which was the highest value among the udder quar-
ters at each milking, and mean EC (ECmean), which 
was the average value of all milked udder quarters at 
a given milking. Data on OCC were potentially avail-
able at each milking, but because the OCC unit can be 
switched off manually and farmers decide how often it 
should be used, the numbers of milkings and cows with 
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OCC records were lower. Before further analyses, the 
OCC values were log-transformed (lnOCC) to obtain 
a more normally distributed trait. Further, lnOCC was 
used to estimate EMR, which expresses the probabil-
ity of a cow having mastitis at a specific time in the 
lactation. Calculation of EMR followed Sørensen et al. 
(2016), adjusting lnOCC for machine-induced drift, 
before a double exponential Holt-Winter smoothing 
was applied to correct the trait for cow-level effects. 
Elevated mastitis risk is expressed on a continuous 
scale from 0 to 1, with 0 indicating a healthy udder 
and 1 indicating infection. Both EMR and lnEMR were 
included for genetic analyses. Traits provided by AMS 
had 1 observation per milking. For cows with OCC re-
cords that had some milkings lacking OCC, predicted 
OCC values were derived from previous OCC measure-
ments weighted together with values from a standard 
lactation curve using the Wilmink function (Wilmink, 
1987). Predicted values were only used in the EMR 
calculations for the algorithm to continue at every time 
point, also for milkings without OCC values. Further, 
LSCS per parity up to third parity based on test-day 
records from NDHRS was available. Among the 4,714 
cows with AMS records, 4,516 had data on LSCS, 
whereas 1,490 cows had records on lnOCC and lnEMR 
(Table 1). All traits based on AMS were analyzed as 
repeated records from 30 to 320 DIM; in addition, EC-
max and lnOCC were defined as multiple traits within 
lactation by dividing the lactation into 5 periods.

Descriptive Statistics

The number of observations for the udder health 
indicator traits from AMS was 451,949 and 2,363,928 
for OCC and EC, respectively. Descriptive statistics of 
lnOCC, ECmax, ECmean, EMR, and lnEMR measured 
in AMS are given in Table 2. An example of individual 
OCC and EC curves from continuous measurements in 
AMS is depicted in Figure 1.

Traits with Repeated Milkings from 30 to 320 DIM

Udder health indicators (LnOCC, ECmax, ECmean, 
EMR, and lnEMR) were analyzed by repeatability 
models. Repeated milkings from 30 to 320 DIM were 
used. The traits were assumed to be consistent across 
parities, including all parities for (co)variance compo-
nents estimation.

Multiple Traits Within Lactation

Maximum EC and lnOCC were also defined as dif-
ferent traits in periods of the lactation. Five periods 
(30–90, 90–150, 150–210, 210–270, and 270–320 DIM) 
were defined, and traits were assumed to be the same 
within a DIM period across parities. Genetic param-
eters were estimated to check for consistency across 
lactation stage.

Wethal et al.: UDDER HEALTH IN AUTOMATIC MILKING SYSTEMS

Table 1. Number of observations (number of cows in parentheses) per trait combination of udder health traits1 from automatic milking systems 
(AMS) and lactation average SCS (LSCS) from the Norwegian dairy herd recording system (NDHRS)

Data source   Trait lnOCC ECmean ECmax EMR lnEMR

AMS   ECmean 451,216 (1,490)        
  ECmax 451,216 (1,490) 2,363,928 (4,714)      
  EMR 451,949 (1,490) 769,309 (1,490) 769,309 (1,490)    
  lnEMR 451,949 (1,490) 769,309 (1,490) 769,309 (1,490) 770,919 (1,490)  

NDHRS   LSCS 11,020 (1,490) 11,020 (4,516) 11,020 (4,516) 11,020 (1,490) 11,020 (1,490)
1lnOCC = log-transformed online cell count; ECmean = mean electrical conductivity; ECmax = maximum electrical conductivity; EMR = 
elevated mastitis risk; lnEMR = log-transformed EMR.

Table 2. Descriptive statistics for repeated measures of log-transformed online cell count (lnOCC), maximum electrical conductivity (ECmax), 
average electrical conductivity (ECmean), elevated mastitis risk (EMR) and log-transformed EMR (lnEMR) in automatic milking systems and 
lactation average SCS (LSCS) from the first 3 parities (based on SCC test-day records)

Trait No. Mean SD Minimum Maximum No. of animals

lnOCC1 (log cells/mL) 451,949 4.48 1.15 0.69 9.12 1,490
ECmax1 (mS) 2,363,928 4.82 0.55 0.80 16.95 4,714
ECmean1 (mS) 2,363,928 4.71 0.48 0.80 11.80 4,714
EMR1 770,919 0.11 0.20 0.39 × 10−6 1 1,490
lnEMR1 770,919 −3.62 1.85 −14.76 0 1,490
LSCS2 (log cells/mL) 11,020 4.32 0.89 2.02 8.67 4,516
1Based on repeated milkings in automatic milking system from 30 to 320 DIM.
2Repeated over parities.
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Calculation of EMR

The main purpose of EMR is to characterize cows 
as healthy or sick on a continuous scale, giving the 
probability of udder infection at each milking. Elevated 
mastitis risk was calculated based on lnOCC following 
Sørensen et al. (2016). First, observations within a herd 
were adjusted based on the milking unit’s deviation 
from an expected mean lnOCC value. Values in a time 
series might vary considerably from one time point to 
the next; therefore, single exponential smoothing as 
described by Hyndman et al. (2008) was applied. The 
single exponential smoothing of data points was done 
by sorting all the observations within herd by date and 
time of milking. Formula 1 in the supplemental mate-
rial in Sørensen et al. (2016) was applied and updated 
with the smoothed level and trend at each time point. 
A weighted mean of past observations together with the 
current day’s value was calculated, with larger weight 
put on newer records. This first step adjusted the raw 
OCC values within herd for drift in data. Second, a 
double exponential (Holt-Winter) smoothing was ap-
plied, mainly to adjust records according to the individ-
ual cow’s OCC level and trend over time, resulting in a 

smoothed OCC curve for each cow. The smoothed OCC 
values adjusted for drift were used only if they deviated 
less than 2 log-units from the forecasted OCC value for 
the cow (see supplemental material in Sørensen et al., 
2016). Missing OCC values were predicted using the 
previous known value, weighted together with expected 
values using the Wilmink function, in accordance with 
Sørensen et al. (2016). The double-smoothed OCC val-
ue was further used to calculate EMR. Factor analysis 
in SAS 9.4 (SAS Institute Inc., Cary, NC) was used to 
estimate factors for weighing level and trend. For each 
milking a latent variable was estimated and entered 
in the formula for calculating EMR (see the supple-
mentary material in Sørensen et al., 2016). Elevated 
mastitis risk was calculated as follows:

	 EMR
  latent variable

=
+





− − ×( )
1

1 e m n k
, 	

where m and n were set to −3.5 and 2.3, respectively, 
following Sørensen et al. (2016). The following formula 
was used to calculate a latent variable of the kth milk-
ing:
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Figure 1. Plot of records for 1 cow with data from online cell count (OCC; in 1,000 cells/mL of milk) and maximum electrical conductivity 
(ECmax; in mS). At around 160 DIM, an incident of mastitis occurred (red square indicates veterinary treatment of clinical mastitis), causing 
increased OCC and ECmax. The solid line indicates an SCC level of 100,000 cells/mL of milk.



Journal of Dairy Science Vol. 103 No. 8, 2020

7192

	 latent variable  
SD 

 
SD k

t
k

tS S
S

b b
b

=
−





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
β1 




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×β2k , 	

where St and bt are the smoothed OCC level and OCC 
trend of the curve at a given time point t, respectively, 
and β1k and β2k are regression coefficients related to 
level and trend, respectively. Distribution of EMR was 
skewed toward larger frequency of animals with 0; thus, 
a log-transformation of EMR (lnEMR) was also carried 
out to ensure a more normal distribution.

Statistical Methods

For each analysis, the GLM procedure in SAS 9.4 
(SAS Institute Inc.) was used to test for which fixed 
effects to include in the model. The DMUAI package 
of the DMU software (Madsen and Jensen, 2013) was 
used to estimate variance components. Bivariate mixed 
linear animal repeatability models were used for esti-
mating heritabilities and genetic correlations between 
traits.

Models for Udder Health in AMS

For all traits measured in AMS the following linear 
animal repeatability model was used:

	 yghijklmn = CYMg + CAPh + Mnoi + DIMj + HYk 	  

+ htdl + pem + am + eghijklmn,

where yghijklmn is the nth observation of lnOCC, ECmean, 
ECmax, EMR, or lnEMR for cow m. The fixed effects 
were as follows: CYMg is calving year and month g from 
March 2015 to June 2017 (from 24 to 26 classes); CAPh 
is calving age by parity number h (37 classes); Mnoi is 
milking number i within a day (5 classes); DIMj is days 
in milk j (291 or 50/60 classes); and HYk is herd by 
year k (from 47 to 151 classes). Random effects were as 
follows: htdl is herd by test day l (7,898–27,983 levels); 
pem is permanent environmental effect of animal m due 
to repeated milkings (from 1,490 to 4,714 levels); am is 
additive genetic animal effect; and eghijklmn is residual 
of each observation. Some fixed effect levels had few 
observations and were therefore merged. In parity 4 or 
later, age at calving was defined as one CAP class.

Model for LSCS

The following model was used for repeated LSCS 
observations:

	 yijklmn = CYMi + CAPj + DOk + HYl + pem 	  

+ am + eijklmn,

where yijklmn is the LSCS observation for cow m in par-
ity n. Fixed effects were as follows: CYMi is calving 
year and month i (310 levels); CAPj is calving age 
by parity number j (58 levels); and DOk is days open 
within parity, defined as days from calving to concep-
tion grouped in 10-d periods (42 levels, from 20 to 160 
DIM). Random effects were as follows: HYl is herd-year 
(757 levels); pem is permanent environment effect of 
cow due to repeated records over parities; and am and 
eijklmn are as defined as earlier. For LSCS, CYM was 
from November 2005 to July 2019, and ages at calving 
ranged from 19 to 63 mo (parity 1 to 3).

Assumptions for Bivariate Models

Bivariate models were used for estimating genetic 
covariances between udder health traits defined as 
repeated milkings from 30 to 320 DIM. The following 
variance structure was assumed:
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where σhtdi
2 ,  σai

2 ,  σpei
2 ,  and σei

2  are the herd-test day, 

animal, permanent environmental, and residual vari-
ances, respectively, for the 2 traits (i = 1, 2), and σhtd12

,  

σa12
,  σpe12

,  and σe12
 are the corresponding covariances 

between traits. The random effect of herd by test day 
(htdl) was included due to the low frequency of OCC at 
specific test days and had the following distribution: 
htd ~ 0, htd

2N Iσ( ),  where I is the identity matrix and 

σhtd
2  is the herd-test day variance. Additive genetic ef-

Wethal et al.: UDDER HEALTH IN AUTOMATIC MILKING SYSTEMS



7193

Journal of Dairy Science Vol. 103 No. 8, 2020

fect (am) of animal m was assumed to be a ~ a
2N 0, ,Aσ( )  

where σa
2  is the additive genetic variance and A is the 

relationship matrix that includes pedigree information 
on 39,523 animals. The random effect of permanent 
environment (pem) of animal m was assumed to have 
the following distribution: pe ~ 0, pe

2N Iσ( ),  where σpe
2  

is the permanent environmental variance. The residual 
effect (eijklmn) of observation n was assumed to have the 
following distribution: e ~ 0, e

2N Iσ( ),  where σe
2  is the 

residual variance.

Periods of DIM

When estimating covariances between periods of the 
lactation for ECmax and lnOCC, the following assump-
tions were made for the residuals in the model:

	
e
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where e  and e  ~ 1 2 eN 0 2, ,σ( )  e1 is residual variance of 

either lnOCC or ECmax for DIM period i, whereas e2 
is residual variance for DIM period j for the same trait; 
I is the identity matrix; ⊗  denotes the Kronecker prod-
uct; and the residual variance for DIM periods i and j 
is denoted as σe1

2  and σe2

2 ,  respectively. The DIM peri-

ods for the same cow occur at different time points or 
test days; consequently, the residual covariance between 
traits σe12

2( )  was restricted to zero.

Bivariate Models with LSCS

For bivariate models with LSCS, assumptions of co-
variance structures for animal and permanent environ-
mental effects were as defined in models for udder 
health traits in AMS. The effect of herd-year (HYl) was 
included as random due to small subclasses with few 
animals and had the following distribution:
HY ~ 0, HY

2N Iσ( ),  where σHY
2  is the herd-year variance 

and I is the identity matrix. Like in the models for pe-
riods of DIM, the residual covariances were restricted 
to zero.

Heritability

Heritability (h2) of the traits was calculated using the 
following:

	 h
   

a

a pe e

2
2

2 2 2
=

+ +

σ

σ σ σ
, 	

where σa
2  is the additive genetic variance of animal, 

σpe
2  is the permanent environment variance, and σe

2  is 

the residual variance.

Repeatability

The repeatability (R) was defined as the part of total 
phenotypic variation explained by the animal and was 
calculated as

	 R
 a pe

p

=
+σ σ

σ

2 2

2
, 	

where σp
2  is the total phenotypic variance calculated 

from σ σ σa pe e
2 2 2+ + .

Genetic Correlations

Genetic correlation (rg) was calculated as

	 r  
 

g
a a

a   a

=
σ

σ σ
1 2

1 2

2 2,
  , 	

where σa a1 2
 is the genetic covariance between traits and 

σa1

2  and σa2

2  are the additive genetic variance for traits 

1 and 2, respectively.

RESULTS

Udder Health Traits from AMS

Estimated variance components for udder health in-
dicator traits in AMS based on repeated milkings from 
DIM 30 to 320 are given in Table 3. All heritabilities 
were significantly different from zero; LnOCC and EMR 
had the lowest heritabilities of 0.09, and ECmean had 
the largest heritability of 0.35. When log-transforming 
EMR heritability increased to 0.12. Repeatability var-
ied from 0.47 to 0.90; lnOCC showed the lowest value 
and, as expected, LnEMR showed the highest value due 
to inclusion of smoothed OCC values corrected for ef-
fects not caused by animal factors. Log-transformed on-
line cell count (LnOCC) showed large residual variance 
(almost 53% of the total phenotypic variance), whereas 
for lnEMR only 10% of the variation was unexplained 
by the model.
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Estimated genetic correlations between udder health 
indicator traits based on repeated milkings from DIM 
30 to 320 varied from not significantly different from 
zero to close to 1 (Table 4). The strongest correlation 
was estimated between ECmean and ECmax (0.99). 
However, there were no genetic correlations between 
these 2 EC traits and lnOCC, EMR, or lnEMR. Genetic 
correlations with LSCS were significantly different from 
zero for all traits, ranging from 0.34 to 0.80; lnOCC 
and lnEMR showed the strongest correlations of 0.79 
and 0.80, respectively.

DIM Periods of ECmax and lnOCC

Log-transformed online cell count and ECmax were 
also defined as different traits for 5 periods of the lacta-
tion. Heritabilities ranged from 0.04 to 0.13 for lnOCC 
and from 0.12 to 0.27 for ECmax. For the last 2 DIM 
periods the heritability for lnOCC increased, but for 
ECmax heritability was reduced from 0.27 in DIM 210 
to 270 to 0.12 in DIM 270 to 320. For lnOCC the larg-
est heritability was at the last period of the lactation, 

but estimates had a large standard error due to the 
reduced number of animals.

Genetic correlations among the 5 periods were strong 
both for lnOCC (Table 5) and ECmax (Table 6). Ge-
netic correlations between DIM periods varied from 
0.60 to 0.99 for lnOCC. For ECmax the genetic corre-
lations among the periods were stronger, ranging from 
0.81 to 1. Adjacent periods had stronger correlations 
in general for both lnOCC and ECmax. Splitting the 
lactation into shorter periods was a first approach to 
investigating the variation in EC and OCC over time. 
Maximum EC had strong genetic correlation (>0.92) 
among all periods except for 30 to 90 and 270 to 320 in 
DIM, suggesting that this trait is the same genetically 
throughout lactation and that defining the trait for 
different stages of lactation is not necessary. Genetic 
correlations of lnOCC were strong (≥0.90) with low 
standard errors (0.08–0.12) when adjacent periods 
were compared. Lowest correlation (0.60) was found 
between start of lactation and mid lactation (150–210 
DIM), showing cell count in these periods to be most 
distinct.
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Table 3. Estimated variance components,1 repeatability,2 and heritability3 (SE in parentheses) for log-transformed online cell count (lnOCC), 
electrical conductivity (EC) measured as maximum (ECmax) and mean (ECmean), elevated mastitis risk (EMR), and log-transformed EMR 
(lnEMR) from 30 to 320 DIM

Trait

Variance component

R h2σa
2 σpe

2 σhtd
2 σe

2

lnOCC 0.12 (0.04) 0.48 (0.04) 0.04 (<0.001) 0.67 (0.001) 0.47 (0.01) 0.09 (0.03)
ECmax 0.049 (0.006) 0.061 (0.004) 0.009 (<0.001) 0.105 (<0.001) 0.51 (0.006) 0.23 (0.02)
ECmean 0.053 (0.005) 0.036 (0.003) 0.008 (<0.001) 0.062 (<0.001) 0.59 (0.006) 0.35 (0.03)
EMR 0.004 (0.002) 0.037 (0.002) 0.0002 (<0.0001) 0.006 (<0.0001) 0.87 (0.004) 0.09 (0.04)
lnEMR 0.43 (0.17) 2.77 (0.18) 0.033 (<0.001) 0.37 (<0.001) 0.90 (0.004) 0.12 (0.04)

1 σa
2  = additive genetic variance; σpe

2  = permanent environment variance; σhtd
2  = herd test-day variance; σe

2  = residual variance; σp
2  = total 

phenotypic variance σ σ σa pe e
2 2 2+ +( ).

2R = repeatability σ σ σa pe p/2 2 2+( ) .
3h2 = heritability σ σa p

2 2/ .( )

Table 4. Genetic correlations (SE in parentheses) between udder health indicator traits from automatic 
milking systems (AMS)1 and lactation average SCS (LSCS) from test-day records from the Norwegian Dairy 
Herd Recording System (Ås, Norway)2

Trait lnOCC ECmax ECmean EMR lnEMR

ECmax −0.0004 (0.17)        
ECmean 0.04 (0.16) 0.99 (0.002)      
EMR 0.50 (0.22) −0.05 (0.22) −0.03 (0.21)    
lnEMR 0.91 (0.08) −0.05 (0.22) −0.008 (0.20) 0.76 (0.15)  
LSCS 0.79 (0.11) 0.34 (0.11) 0.37 (0.10) 0.58 (0.22) 0.80 (0.13)
1lnOCC = log-transformed online cell count in milk; ECmax = maximum electrical conductivity; ECmean = 
mean electrical conductivity; EMR = elevated mastitis risk; lnEMR = log-transformed EMR.
2Traits were recorded in AMS with 1 record per milking and cow from 30 to 320 DIM and were recorded in 
LSCS as repeated records from first to third parity.
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DISCUSSION

Genetic Variances and Repeatability

This study successfully estimated heritabilities for all 
udder health indicator traits measured in-line during 
milking in AMS and found significant genetic correla-
tions with LSCS. As previous studies mostly focused 
on the use of sensor data in AMS for herd-management 
purposes, results to compare with are scarce. Only 
Sørensen and Løvendahl (2014) have analyzed OCC 
and EMR genetically. They divided first parity into 
periods of 30 d and estimated heritabilities of lnOCC 
from 0.06 to 0.14. This is in good agreement with the 
heritability estimates of 0.04 to 0.13 for lnOCC in 5 
different DIM periods found in our study. Although few 
genetic studies of OCC in AMS have been conducted so 
far, the genetic nature of test-day SCC and LSCS has 
been widely investigated (e.g., Emanuelson et al., 1988; 
Ødegård et al., 2003, 2004b; Heringstad et al., 2008). 
In general, the heritability of SCC when defined as a 
mean value over the lactation ranged from 0.11 to 0.26 
(Luttinen and Juga, 1997; Ødegård et al., 2004b; Kir-
sanova et al., 2019). These estimates were mostly larger 
than what we found for lnOCC. It is generally known 
that averaging records of a trait over a longer period 
increases heritability; thus, larger estimates would be 
expected if OCC were summarized over a longer period.

The heritability estimates of ECmax (0.23) and 
ECmean (0.35) were in line with results reported by 
Norberg et al. (2004c), who found heritability of 0.28 
for EC measured as a daily mean in first-parity Hol-
steins. Further, they reported heritabilities ranging 
from 0.26 to 0.36 using random regression models with 
Legendre polynomials. Heritability of ECmean and EC-
max were also in agreement with the estimate of 0.23 

for log-transformed EC measured as maximum values 
from each milking (Povinelli et al., 2005). Santos et 
al. (2018) found even larger heritability of 0.53 for EC 
measured at cow level and 0.37 to 0.46 for udder quar-
ters in a study based on data from 3 herds for 1 period 
of 30 d. When EC was measured as interquarter ratio 
between the individual teats with the highest and low-
est EC values, heritabilities were relatively low, ranging 
from 0.05 to 0.12 in Norberg et al. (2004b). They found 
this definition of EC to work better for detecting CM. 
Preliminary results of the current study did not find 
any significant additive genetic variance of interquarter 
ratio (results not shown). This may be related to small 
differences in EC between udder quarters in our data. 
Another difference is that our data contained 1 record 
of ECmean and ECmax per udder quarter per milking, 
whereas in Norberg et al. (2004b) EC was measured 
every 2 s.

The heritability estimates of EMR (0.09) and lnEMR 
(0.12) were in the same range as reported by Sørensen 
and Løvendahl (2014), who estimated heritabilities 
from 0.06 to 0.15 for lnEMR and from 0.02 to 0.09 for 
EMR in first-parity Holsteins at different periods of 
DIM. In their study, EMR did not show genetic vari-
ance significantly different from zero for some of the 
investigated periods of lactation; thus, they argue that 
lnEMR may be a better definition than EMR. The cur-
rent study did not investigate EMR in shorter periods 
of DIM, but it would be relevant to check whether 
the trait differs genetically throughout the lactation. 
When calculating EMR, OCC measurements from 6 d 
after calving were included in the algorithm in order to 
ensure fast stabilization of the smoothed OCC values 
before genetic components were estimated. The genetic 
analyses included only records after 30 DIM to avoid 
the period of elevated SCC level right after calving.
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Table 5. Heritability on the diagonal and genetic correlations below the diagonal (SE in parentheses) between 
log-transformed online cell count from automatic milking systems at different DIM periods

DIM period 30–90 90–150 150–210 210–270 270–320

30–90 0.09 (0.04)        
90–150 0.92 (0.09) 0.07 (0.03)      
150–210 0.60 (0.24) 0.90 (0.11) 0.04 (0.03)    
210–270 0.75 (0.21) 0.78 (0.22) 0.99 (0.12) 0.09 (0.04)  
270–320 0.83 (0.21) 0.79 (0.23) 0.92 (0.23) 0.99 (0.08) 0.13 (0.06)

Table 6. Heritability on the diagonal and genetic correlations below the diagonal (SE in parentheses) between 
maximum electrical conductivity measured by automatic milking systems at different DIM periods

DIM period 30–90 90–150 150–210 210–270 270–320

30–90 0.26 (0.03)        
90–150 0.98 (0.01) 0.27 (0.03)      
150–210 0.93 (0.03) 0.98 (0.01) 0.27 (0.04)    
210–270 0.92 (0.04) 0.99 (0.02) 1.00 (0.01) 0.16 (0.03)  
270–320 0.81 (0.08) 0.92 (0.06) 0.94 (0.05) 0.98 (0.02) 0.12 (0.04)
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Heritability estimates for lnOCC showed higher heri-
tability toward the end of lactation. A similar pattern 
was reported for heritability of test-day SCC analyzed 
by random regression models (Norberg et al., 2004b). 
In the study by Sørensen and Løvendahl (2014), herita-
bility of lnOCC increased steadily and peaked around 
200 DIM. The pattern was opposite for the heritabil-
ity of ECmax, where heritability decreased drastically 
after 200 DIM. Larger genetic variation in the first 
period of lactation was also found for CM (Lund et al., 
1999; Heringstad et al., 2003b) and for both test-day 
SCS and EC defined as an interquarter ratio analyzed 
by random regression models (Norberg et al., 2004b). 
Larger genetic variation for EC in the first part of the 
lactation may be due to increased frequency of infection 
in this period. Larger genetic variation and frequency 
of CM in early lactation have been reported earlier 
(Heringstad et al., 2003a). Repeatability of lnOCC 
was low (0.47) compared with the high repeatability 
observed for EMR and lnEMR (0.90). This was in line 
with the study by Sørensen and Løvendahl (2014) and 
likely caused by the smoothing process used for EMR. 
Therefore, EMR observations showed less variation 
over time and to a larger degree were explained by ef-
fects of the animal itself (i.e., permanent nongenetic 
and genetic effects).

Genetic Correlations

Genetic correlations of zero between lnOCC and the 
2 EC traits were not expected and are not comparable 
with other studies at this point. The genetic correlation 
of 0.86 between test-day SCC and EC defined as an in-
terquarter ratio in the first month of lactation reported 
by Norberg et al. (2004b) suggests that a genetic rela-
tionship exists. However, when EC and in-line measure-
ments of SCC from the same milkings were compared, 
a phenotypic correlation <0.4 was reported by Hovinen 
et al. (2006) for commercial AMS farms. These authors 
also reported that measurements of EC alone were very 
poor at detecting SCC level in milk. Others do report 
a low phenotypic correlation between SCS from herd 
test-day records and EC (Nielen et al., 1992; Hovinen 
et al., 2006; Vilas Boas et al., 2017). Considering the 
larger number of animals from different herds in the 
current study, we consider the results to be reliable 
even though they contradict earlier findings.

Strong and favorable genetic correlations of LSCS 
with lnOCC and lnEMR (0.79 and 0.80, respectively) 
in AMS confirm that in-line records of cell count in 
milk provide accurate measurements related to those 
already included in the NDHRS. However, a correlation 
less than unity indicates that OCC may also contribute 
some complementary genetic information. Clinical mas-

titis is also included in the udder health index for NR. 
However, the genetic relationship with EMR could not 
be investigated in the current study due to the limited 
number of animals and very low frequency of CM in the 
material (~4%). Sørensen and Løvendahl (2014) could 
not estimate the relationship between EMR and CM 
for the same reason. Many studies have estimated the 
relationship between traditionally measured SCC and 
CM, yielding genetic correlations ranging from 0.37 to 
0.97 (Lund et al., 1994; Pösö and Mäntysaari, 1996; 
Koeck et al., 2010). Results based on a large data set 
of first-parity NR cows show a genetic correlation be-
tween CM and LSCS of 0.53 (Ødegård et al., 2004b). 
The genetic correlation between CM and EMR should 
be estimated to evaluate how well it is capturing CM 
cases. Even though the numbers of herds and obser-
vations were large in our study, the time period for 
extracting detailed data from each farm was relatively 
short, mainly due to memory limitations in the AMS 
software.

In the current study, traits were assumed to be the 
same across parities because of a limited number of 
cows. This assumption should be checked with more 
cows in the data set for OCC traits. However, many 
studies have estimated strong genetic correlations, 
ranging from 0.70 to 1.0, between CM across parities 
(Pösö and Mäntysaari, 1996; Nielsen et al., 1997; Car-
lén et al., 2004; Urioste et al., 2012). Also, SCC and 
LSCS are genetically correlated across lactations (Pösö 
and Mäntysaari, 1996; Samoré et al., 2008; Urioste et 
al., 2012). Genetic correlation between log SCC mea-
sured early and late in lactation has been reported in 
the range from 0.14 to 0.55 for first- to third-parity 
Holsteins, whereas adjacent periods in the same lacta-
tion were highly correlated and reported to be almost 
unity (Haile-Mariam et al., 2001). If the genetic cor-
relation of test-day SCC or OCC in different lactation 
periods or parities is <1, alternative models such as the 
multitrait model or random regression model should be 
considered to take the time aspect into account and use 
the information from the different periods.

Implications and Further Recommendations

This is the first genetic study of large-scale udder 
health indicator traits from OCC recorded during 
milking in AMS. Studies investigating OCC have so 
far been based on data from 1 farm (research farm) to 
8 farms (commercial farms; Sørensen and Løvendahl, 
2014; Sørensen et al., 2016; Dalen et al., 2019), but 
these studies were not genetic studies. However, more 
data are still needed to estimate genetic correlations 
with CM and to investigate alternative trait defini-
tions.
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Average OCC in the current study was slightly 
higher (88,000 cells/mL) than average test-day SCC 
in the NDHRS (75,000 cells/mL). Herds investing in 
OCC equipment may have elevated SCC level in milk 
and thereby be more motivated to monitor OCC. The 
frequency of cows reported with CM in these herds was 
slightly higher (~6%) compared with the average for 
the AMS herds without the OCC equipment (~3%). 
Another aspect may be that these herds were relatively 
large, which made it more challenging to monitor indi-
vidual cows.

A high level of OCC in milk over time may indicate 
an ongoing subclinical infection with bacteria that 
might be transmitted; hence, this trait is relevant in 
selection for improved udder health. Further studies are 
needed to clarify the usefulness of EC as an indicator of 
udder health, including genetic correlations with CM, 
to understand how well udder health is measured.

When OCC measured in AMS was compared with 
test-day SCC from milk recordings, the correlation be-
tween them was strong (Sørensen et al., 2016; Nørstebø 
et al., 2019). The current study did confirm a strong 
genetic agreement between OCC and LSCS, which sup-
ports in-line-measured cell count as an indicator of udder 
health. Health indicators from AMS do provide more 
precise information due to repeated records from every 
milking. Continuous data present opportunities for new 
udder health traits, such as individual cows’ susceptibil-
ity to udder infections and their ability to recover after 
being infected (Franzén et al., 2012; Welderufael et al., 
2017). Elevated mastitis risk could cover other aspects 
of susceptibility to mastitis, such as number of days from 
calving to first EMR value above some fixed threshold. 
Other alternative traits could be days (or hours) from 
infection to recovery, or whether the animal recovers 
without treatment. Results from the current study show 
that data from AMS can contribute additional udder 
health traits for use in genetic evaluation.

CONCLUSIONS

Udder health indicator traits based on EC and 
OCC data recorded in commercial AMS herds were 
heritable and might contribute genetic information on 
longitudinal udder health. All traits were genetically 
correlated with LSCS, a trait included in the routine 
genetic evaluations of udder health today. The stron-
gest genetic correlation with LSCS was estimated for 
lnOCC and lnEMR, and the lowest with the EC traits. 
No genetic correlations were found between OCC-based 
traits and the 2 EC traits. Despite high heritability, 
their importance as indicator traits for improved udder 
health is unclear, whereas traits based on OCC from 
AMS are promising.
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