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Abstract

Due to the electrification of the transport sector, it has become a concern for grid
operators, about the challenges the increasing energy demand from the transport sector
could impose on the power grid. Hence, to enable the further electrification of the
transport sector, and avoid heavy additional investments in power grid infrastructure,
there has become a demand of a further understanding of electric vehicle (EV) user-
behaviour. Thus, the goal of this thesis was to analyse how EV owners charged their
EV, and how this varied between EV owners charging at a charging station. This was
done with a data-driven approach, using a dataset recorded at a real charging station,
the Adaptive Charging Network (ACN) at the Institute of Technology in California,
USA. Furthermore, it was attempted to build Machine Learning models to predict the
charging session duration, and the energy delivered in a charging session, using the
dataset. Another part of the goal of this thesis was to present some factors that could
be useful to record at a charging station, for analysing EV user-behaviour, and present
an overview of some open source datasets that could be used for analysing aspects of

EV user-behaviour.

In the analysis it was observed that more EV owners charged at the ACN on weekdays,
than on weekends. EV owners charging on weekdays followed a charging pattern similar
to that expected for a workplace charging station. Furthermore, the EV owners charging
at the ACN on weekdays left their EV connected for longer than the EV owners char-
ging on weekends. Moreover, observations suggested that EV owners who charged on
weekdays tended to leave their EV connected for longer than the duration the EV was
charging. When dividing the EV owners into distinct charging groups, based on how
often the EV owners charged their EV, it was found that the EV owners charging the
most frequently tended to leave their EV connected for longer than the other EV owners.
The machine learning resulted in models with a limited performance, with an R2-score
of around 0.50 for both the model predicting charging session duration and the model
predicting energy delivered in a charging session. Lastly, based on the observations in
the analysis, factors that could be useful to record for analysing EV user-behaviour were
proposed. These factors were the time of connection, time of disconnection, an id to

separate between EV owners, and the price of charging.
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Sammendrag

Elektrifiseringen av transportsektoren har fort til at kraftsystemoperatgrer har uttrykt
bekymringer knyttet til utfordringer det gkende energibehovet fra transportsektoren kan
pafgre kraftnettet. Derfor, for a muliggjgre en videre elektrifisering av transportsektoren,
og & unnga tunge tilleggsinvesteringer i kraftnettinfrastruktur, har det oppstatt et behov
for en ytterligere forstaelse av brukeratferd av elektriske kjoretgy. Malet med denne
oppgaven var & analysere hvordan elbileiere ladet elbilen sin, og hvordan brukeradferden
til elbileiere variert mellom elbileiere som ladet pa en ladestasjon. Dette ble utfort med
en datadrevet analyse av et datasett fra en reel ladestasjon, Adaptive Charging Network
(ACN), ved Institute of Technology i California, USA. I tillegg, ble det forsgkt a bygge
maskinlaeringsmodeller for & predikere varighet pa ladegkt, og energien som leveres i
lopet av en ladegkt, med informasjonen i datasettet. Det var ogsa et mal for denne
oppgaven & presentere en oversikt over noen offentlig tilgjengelige datasett, som kan
brukes til & analysere aspekter ved elbil brukeratferd, og & presentere noen faktorer som

kan veaere nyttige a registrere ved en ladestasjon, for a analysere elbil brukeradferd.

I analysen ble det blant annet observert at flere elbileiere ladet pa ACN pa hverdager,
enn i helgene. Videre, ble det observert at elbileierne som ladet pa hverdager, fulgte et
lademgnster som liknet pa det som forventes for en ladestasjon tilknyttet en arbeidsplass.
I tillegg ble det observert at elbileierne som ladet pa ACN pa hverdager, var tilkoblet
ladestasjonen lenger enn elbileierne som ladet i helgene. Det ble ogsa observert at el-
bileierne som ladet pa hverdager hadde en tendens til a la elbilen veere tilkoblet vesentlig
lengere enn det som tilsynelatende var ngdvenidg for a lade elbilen. Nar elbileierne ble
delt inn i forskjellige ladegrupper, basert pa hvor ofte de ladet elbilen, ble det observert
at elbileierne som ladet oftest, hadde en tendens til & la elbilen veere tilkoblet lengere
enn de andre elbileierne. Maskinlaeringen resulterte i modeller med en begrenset ytelse,
med en R2-verdi pa rundt 0,50 for bade modellen som predikerte varighet pa ladegkt,
og modellen som predikerte energi levert i ladegkt. Til slutt, basert pa observasjonene i
analysen, ble faktorer som kunne veere nyttige a registrere for a analysere brukeratferd
foreslatt. Disse faktorene var tilkoblingstid, frakoblingstid, en id som kan skille mellom

elbileiere og prisen for lading.
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1. Introduction

1.1 Motivation
In 2015, Norway along with 195 other countries, adopted the Paris agreement. The

treaty set a goal to limit global warming to 2° Celsius [45]. To achieve this long-
term temperature goal, countries would need to cut their climate gas emissions. To
comply with the Paris agreement the Norwegian government, in cooperation with the
EU, committed to cut their climate gas emissions by 40 % by 2030 [13], [27]. Norway
also became the third country in the world to report reinforced climate goals targeting a
reduction in climate gas emissions of 50% to 55% by 2030, and 90% by 2050, to become

a low-emission society [27].

To achieve the climate goals set by the Norwegian government, climate gas emissions
across all sectors must be cut, including the transport sector. According to Statistisk
Sentralbyra (SSB), the transport sector in Norway were responsible for almost a third
of all carbon emissions in 2017. Of this, 56% came from road traffic, making it the
second biggest contributor to climate gas emissions in Norway, after the oil and gas
sector [42]. A path to reduce emissions from the transport sector is to transition from
Internal Combustion Engine Vehicles (ICEV) to emission free vehicles. Thus, to reduce
emissions from the transport sector, the Norwegian government implemented several
benefits for buying and owning EVs to help transition the car park from ICEV to EVs,
until EVs becomes a viable option. According to the Norwegian Ministry of Transport
and Communications, these benefits included no VAT and no large one-time fee when
buying an EV [29]. As a result of this, the Norwegian EV market has greatly increased
and by the end of 2020 there were more than 340 000 registered EVs in Norway. This

was an increase of 370 % since 2015 [43].

Initially, the EV owner population consisted of commuters who either charged at home or
at work, and the need for public charging stations was limited. But, as the number of EV
owners increased, and due to a desire to further increase the EV population it became a
substantial need for a widespread public charging infrastructure. To accommodate this,
the Norwegian government implemented several support schemes to build and expand
an extensive charging infrastructure [24]. In 2021 there were more than 3000 charging

stations in Norway with more than 18 000 charging points [33].
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2 CHAPTER 1. INTRODUCTION

This rapid and extensive electrification of the car park has led to a large and growing
power demand from the transport sector. This power demand comes on top of the
ordinary residential and commercial load and has created a concern from both Distribu-
tion System Operators (DSO) and Transmission System Operators (TSO) , about the
large-scale integration of EVs in the distribution grid. For example, in January 2021
there were set multiple demand peaks records on an hourly basis in Norway [3]. This
led to a request from grid operators that EV owners should try to avoid charging in
peak hours of the day [31].

It is feared that a widespread implementation of EVs could potentially have an impact on
the electricity distribution infrastructure. The power grid can handle a high penetration
of EVs. However, several studies have found that, if either the power for EV charging
increases or a large amount of EVs in the same area charge at the same time, it could
create challenges for some components in the distribution grid and harm the power
quality. Especially in areas with low capacity and in congested grid situations. E.g. a
study by DNV GL and Poyry Management Consulting on behalf of NVE [10], and a
study by S. Johansson et al. [19].

Due to the concern of how uncontrolled EV charging can impact the power grid, the
topics of load balancing and peak flattening through smart charging schemes have be-
come popular topics of research. Several studies have found that the implementation
of smart charging could help the power grid handle a higher penetration of EVs and
avoid heavy investments in new infrastructure. E.g. a study by DNV GL and Poyry
Management Consulting on behalf of NVE [10], a study by S. Johansson et al. [19], and
by Z. J. Lee et al. [23]. However, to incorporate reliable smart charging schemes that
both fulfil the power systems technical constrains and maximises the service provided

to EV owners, it is necessary to have a good understanding of EV user-behaviour.

Traditionally, EV user-behaviour has been modelled as similar to that of ICEVs, or mod-
elled with statistical and mathematical approaches. In reality EV charging behaviour is
different than ICEV user-behaviour, and a lot of the unpredictability and individuality
of EV user-behaviour is difficult to capture in a mathematical model [39]. Thus, it
is vital for further research and improvement of smart charging methods to have vast
data of EV charging available. According to S. Shahriar et al. [39], with the emergence
of Big data analytics and machine learning in recent years, solving the EV charging
problem, and modelling EV user-behaviour has been seen as a suitable application of
machine learning. Machine learning models can be trained on historical charging data,
and data about weather and traffic, to accurately capture trends in charging behaviour.
Moreover, they can produce accurate predictions, that can be used independently, or

with other algorithms, for smart scheduling .
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1.2 Objective of thesis

The electrification of the transport sector is set to proceed due to both political goals,
and EVs becoming favoured options when people buy new vehicles. Therefore, it has
become of interest to create better models of EV charging demand, and produce smart
charging schemes for EV charging, to avoid heavy additional investment in grid infra-
structure. Hence, there has become a broad focus on gaining a better understanding of

EV user-behaviour at charging stations.

The goal of this thesis, was to analyse how EV owners charged their EV at a public
charging station, and identify factors that could have impacted how EV owners charged
their EV, using a data-driven approach. This was done by analysing certain aspects
of EV user-behaviour observed at a charging station, and analysing how these aspects
varied between the EV owners, using data recorded at a real charging station. The
aspects of EV user-behaviour that were investigated in this thesis were the time of Con-
nection, the duration EV owners left their EV connected, and the amount of energy EV
owners received in a charging session. To analyse the differences in EV user-behaviour
between EV owners, the EV owners were categorised into charging groups based on how
frequently they charged at the ACN. These charging groups where then used to ana-
lyse differences in connection time, duration of charging session, and energy delivered
in charging sessions, for the EV owners in each charging group. Furthermore, machine
learning was used to predict aspects of EV user-behaviour displayed at a charging sta-
tion. Namely, the charging session duration and the energy delivered in a charging
session. With the observations from the data-driven analysis and the machine learning,
this thesis also aimed to propose some factors that could be advantageous to record at

charging stations, for analysing EV user-behaviour.

It was desired to conduct the analysis using real data, recording real EV user-behaviour
displayed at public charging stations. However, when searching for data to use, it
became clear that there was a limited selection of open-source data. Furthermore, there
was a lack of a general overview of applicable datasets. Hence, an important aspect
of this thesis, became to identify, and create an overview of some publicly available
datasets, that could be used to analyse EV user-behaviour. Moreover, it was also decided
to conduct the analysis using one of the found open-source datasets. Even though,
the motivation for this thesis was mainly due to the electrification of the Norwegian
transport sector, a dataset recorded at a charging station at the California Institute
of Technology (Caltech) was chosen for the analysis, the ACN-dataset [22]. The main
reason for this was due to the limited selection of available data. However, the ACN-
dataset also provided a lot of information, and overall enabled a detailed analysis of

EV user-behaviour. Additionally, the ACN-dataset was recorded at a smart charging
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station, which allowed for a novel investigation on how smart scheduling affected the EV
owners who charged at the charging station. This investigation was mainly focused on
analysing if EV owners received their requested energy before their requested departure
time, and analysing discrepancies between the the requests of the EV owners and the

service provided by the charging station.



2. Theory

2.1 Electric vehicle charging stations

An EV charging station refers to the system used to charge an EV. There are three
methods to charge an EV, inductive, conductive, or by changing the battery. Conductive
charging is currently the preferred type of EV charging due to its superior efficiency and
lower cost [8]. Conductive charging stations can be classified into two types of charging
systems, on-board and off-board systems. An on-board charging system is inside the
EV. It allows for flexible charging as the owner can charge their EV at a grounded
Alternating current (A.C.) power socket, and the on-board system rectifies the A.C.
signal to a Direct Current (D.C.) signal when charging the vehicle. The charging power
for on-board charging is limited due to the systems weight and size. Off-board charging
systems on the other hand, are built at fixed locations and are not limited by these
factors. With off-board charging A.C. power from the grid is rectified locally and charges
the EVs battery directly. This allows for higher charging levels, fully charging the EVs
battery faster [14].

EV charging stations are also categorised based on the power level the charging system
can provide. There are mainly three types, Level 1, Level 2, and D.C. charging stations
[14]. Figure 2.1 shows a simple visualisation of the general structures of these three

types of charging stations.

Type 1 (Schuko) Type 2 D.C. charging

Figure 2.1: A simple visualisation of the structure of a type 1, a type 2 and a
D.C. charging station. The rectifier represents the position of the charging system,
either off-board or on-board.
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Level 1 charging allows for charging an EV at a Shucko socket, a common grounded A.C.
socket [8]. Level 2 charging utilises a dedicated A.C. Electric Vehicle supply equipment
(EVSE) and allows for charging an EV with either 7 kW single phase power, or 22 kW
three phase power, known as FastAC charging. For both Level 1 and Level 2 charging
the EV is dependent of an on-board charging system that rectifies the A.C. signal to
charge the battery [8]. The third type of charging station is the D.C. charging station.
D.C. charging utilises an off-board D.C. EVSE which allows for higher power to charge
the EV. The power supplied from a D.C. charger ranges all from the power level of Level
2 chargers and up to high power levels [8]. E.g. there are D.C. charging stations that
allow for charging with 350 W [18]. A charging station is referred to as a semi-fast or
fast charging station if it allows for charging at 22 kKWW or more [33].

It is important to note that, at a charging station, there can be multiple outlets available
to charge EVs. These outlets are often referred to as charging points. Hence, at a
charging station, multiple EVs can charge simultaneously through different charging

points.

2.2 Charging stations and charging patterns

The user-behaviour of EV owners can vary depending on the accessibility of a charging
station. EV charging stations can usually be separated into three categories based on
the access they provide for EV owners. Namely, private, public, and workplace charging
stations. Private, or residential, charging stations provide charging for the owner of the
charging station. Workplace charging stations are owned by a company and provides
charging for the company’s employees. Public charging stations are either commercially

or privately owned, but provide charging for all EV owners who desire to charge.

Figure 2.2 shows expected charging patterns on weekdays for private, public, and work-
place charging stations, as adapted from data available through Elaad.nl open data
dashboard [11]. The Figure shows an expected distribution of connecting EVs during a
day, based on real charging activity at charging stations in the Netherlands [11]. Figure
2.2 shows that, at private charging stations, most EVs connect to charge in the evening
and at night. Moreover, it shows an expected peak of connecting EVs between 17 and
19, with many EVs connecting even later. For public charging stations this changes.
Public charging stations tend to be used during the day, with the highest number of
EVs connecting in the morning between 7 and 10, and in the evening between 17 and
19. Lastly, at workplace charging stations EVs mainly connect to charge during work
hours. Figure 2.2 shows a distinct peak in connections in the morning, between 7 and

10, when employees arrive at work.

Referencing the distributions in Figure 2.2, an EV charging station can constitute in a
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Figure 2.2: Expected distribution of when EVs connect to Private, public and
workplace charging stations. Adapted from data available at Elaad.nl open data
dashboard [11].

large power demand in peak hours, especially when charging is done at higher power
levels. This can unfortunately result in challenges for the power grid, if it coincides with

periods were the power grid is congested [19].

2.3 Power grid structure and operation

2.3.1 Power grid structure

Figure 2.3 displays a simple model of a power system, where A.C. power is generated
at a power plant, injected into the power grid and transferred to the end-users through

the transmission and distribution lines.

Distribution

' - To T3 feeder
Generation Step-up Step -down Step -down line
: / & Load Load Load
1 2
Central Regional ¢

transmission distribution
line line

Figure 2.3: A simple presentation of a power system with one source of generation
and one line transporting the generated power to three end-users.

In Figure 2.3, 3-phase A.C. power is generated at a power plant. The generated power
is injected into the power grid at a fixed voltage [47]. This voltage is transformed in
several transformers (T1, T2 and T3) before it reaches the three end-users at load 1,
load 2, and load 3. In T1 the voltage is transformed up to a magnitude used in central
transmission lines. As central transmission lines are usually long, power is transported
at a high voltage [47]. E.g. In Norway the voltage in central transmission lines is usually
in the region of 300 £V or 420 £V [35]. When the power is transferred to the area where
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it will be used, the voltage is transformed down. In T2 the voltage is transformed
down to a magnitude used in regional distribution lines. E.g. in Norway the voltage in
regional distribution lines is 22 £V or less [35]. Before the power is consumed by end-
users, it is transformed down in the step-down transformer T3, and distributed through
distribution feeder lines. The voltage in distribution feeder lines is usually 400 V' or 230
V in Norway.

2.3.2 EV charging stations in the power grid

With respect to EV charging stations, they are usually connected in the low voltage,
distribution feeder lines, like Load 1, Load 2, and Load 3 in Figure 2.3. For Level 1
charging, an EV is simply charged through a regular Schuko socket, at for example a
residential home. Level 2 charging is done with a designated A.C. EVSE, and can be
installed at home, or in a public location. D.C. charging uses a designated D.C. EVSE,
and are usually found in public locations. There is however, a lot of research on the
impact and opportunity of connecting fast charging stations, using a very high power
to charge EVs, directly to the medium voltage, regional distribution grid instead. E.g.
an article by S. Srdic and S. Lukic., investigated the challenges and opportunities of

connecting extreme fast charging stations directly to the medium voltage grid [41].

2.3.3 Balancing generation and consumption

The main challenge for operating a power system is energy conservation [47]. For con-
sumers to receive the power they request, an equal amount of power must always be
generated. Whereas, power plants can regulate the generation, and consumers can
choose when to use power, the transmission lines in the power grid can only transfer
power, and do not have the option of storage [47]. Hence, it becomes the responsib-
ility of grid operators to always balance the consumption and generation of power, in
a power system, to ensure that end-users receive a sufficient power, at all times. To
balance power generation and consumption, grid operators both forecast the power con-
sumption in advance, and monitor it in real-time, making sure that the generation of

power and consumption of power is always balanced [47].

2.4 Effects on the power grid

There are several probable grid impacts of EV charging. Widespread EV charging
can result in a relatively large aggregated load demand that could contribute to an
increased peak demand and increased system losses [10], [25]. Moreover, according to
an article by C. H. Dharmakeerthi et al [9], the EV charging load is difficult to forecast

as it depends on several factors that cannot simply be predicted in advance. E.g. the
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location, charging duration, connection time, and power consumption of individual EVs.
Hence, widespread EV charging could contribute to violation of local and regional grid

constrains, such as voltage limit violation and harmonic distortion.

2.4.1 Voltage limit violation

Voltage drops in long distribution feeders can be quite significant, and are dependent on
the power demand [47]. Initially, generators inject power at a fixed voltage magnitude,
which translate through several transformers to the fixed supply voltage for customers.
As the power consumption increases, the current in the power grid increases and there
is a drop in voltage according to Ohms law. System operators allow for some variation
of voltage, as it is practically impossible to maintain a flat voltage profile. In Norway,
operators allow a tolerance of + 10 % of the nominal voltage for slow changes, and + 5

% for rapid fluctuations [28].

Figure 2.4 shows an example, where voltage limits are violated in a distribution feeder.

Voltage
A

Upper

limit
Lower ®

limit \.___

b y » Loads
Load 1 Load 2

Figure 2.4: Voltage drop in a distribution feeder. A large load is connected in
load 1, creating a significant voltage drop, such that load 2 receives a voltage lower
than the allowed limit.

If a large inductive load, like many EVs charging simultaneously, connects to a distri-
bution feeder in an already congested grid situation, the voltage may decrease beyond
the allowed tolerance, as seen in Figure 2.4. This can lead to nuances such as dimming
lights, but also more substantial consequences for sensitive commercial and industrial
appliances, for the consumers connected to the distribution feeder. In the U.S., such
voltage sags are responsible for an estimated 5 billion dollars in economic losses each
year [47].

2.4.2 Harmonic distortion

A clean waveform refers to when oscillations of the A.C. signal follows the mathemat-

ical sine wave. Deviations from this sinusoidal wave is known as harmonic distortion.
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Distortion to the voltage waveform is often caused by generators, while distortion to the
current waveform is usually caused by loads [47]. According to A. Lucas et al. [25], cur-
rent, distortion is very common when it comes to nonlinear loads, such as EV charging
systems. EV charging systems (On-board and off board charging systems) use power
electronics switches to rectify A.C. power from the grid to D.C. power, to charge the EV
battery. This process introduces distortion currents to the distribution grid which can
contribute to distort the power signal [25]. The consequence of the distortion currents
is that transformers are forced to operate at lower efficiencies, and they can damage the

lifetime of the transformers due to overheating [47].

2.4.3 Loss of power and thermal heating of distribution lines

Another aspect of the distribution grid that can be affected by EV charging is the
degradation of distribution lines through thermal heating. With EV charging being
associated higher power demand peaks [16], it contributes to a higher current in dis-
tribution lines. A higher current (/) in the distribution lines leads to a higher loss of
power (P) to thermal heating (Q) according to the I?R-factor (equation 2.1) [49)].

Q=P=IR (2.1)

Heating of lines may lead to damage and a shorted lifetime. As a line is heated up, it
stretches from thermal expansion and sags. If it sags to far, the distortion of the line

becomes irreversible, and it must be replaced [47].

2.5 State of the art: Smart charging

The problems associated with EV charging, such as increased peak demand, increased
system losses, and power quality issues, are mainly due to uncontrolled EV charging. As
mentioned, most problems only arise in congested grid situation if many EVs connect to
the grid. For high power charging, these problems do however, become more prevalent.
Nevertheless, according to a study by Z. J Lee et al. [23], it could be possible to make the
power grid handle a higher penetration of EVs, and avoid heavy additional investment
in grid infrastructure by incorporating smart charging for EV charging [23]. The goal of
smart charging schemes is to maximise the service provided to EV owners at charging
stations and fulfil the power systems technical constraints [40]. With smart charging it
could be possible to move EV charging demand away from peak hours (peak shaving)
and use the EV charging station as a flexible resource (load balancing) [20]. Smart
charging can be categorised into two main types, Direct Load Control (DLC) , and
Indirect Load Control (ILC) .
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2.5.1 Direct Load Control

DLC approaches consists of methods were the charging station operator takes full control
of the EVs charging regiment. They are usually done at an aggregated level to optimise
the benefit of the system or station operator [20]. DLC can be used to move some of
the EV charging load away from peak load hours. An example of a DLC approach is
presented in an article by E. C. Kara et al. [20]. In the article it is assumed that an EV
charging session begins when an EV connects to a charging point, and that EVs usually
are done charging before they disconnect. The proposed approach was designed to move
some of the charging load to this slack period before the vehicle disconnected [20]. The
desired effect of this was to shave demand peaks by moving some of the charging load

away from peak demand hours.

Another example of a DLC scheme is the ACN [23]. The ACN applies and adaptive
charging algorithm (ASA) to schedule the charging session for each connecting EV.
When an EV connects, its owner gives inputs on requested energy and desired departure
time. The algorithm uses these inputs to optimally schedule the charging session, to
prevent the ACN from breaking grid constraints, while delivering the requested energy
before the requested departure. As more users connect, the ACN adapts to the new
power demand. The ASA then adapts the scheduled charging of each connected vehicle
to not breach grid constraints. A full break down and analysis of how the ASA works
is given in an article by Z. J. Lee et al., ’Adaptive charging networks: A framework for

smart electric vehicle charging [23].

2.5.2 Indirect Load Control

In ILC approaches, station operators do not directly control the charging regime, how-
ever, they try to influence the charging behaviour of EV owners with external factors
such as dynamic pricing schemes [20]. An example of an ILC approach is the Deadline
Differentiated Pricing presented by E. Bitar and Y. Xu [2]. The general idea of deadline
differentiated pricing is to offer the customer different prices for charging based on their
requested deadline of delivery. The longer an EV owner is able to delay their deadline,
or departure, the cheaper the price of charging becomes. This will give the station oper-
ator flexibility to meet load demand and avoid breaking grid constrains [2]. The desired
effect of the dynamic pricing scheme is that more users are willing to charge for longer

or avoid charging in peak demand hours.
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2.6 Machine learning

Machine learning is a subfield of Artificial intelligence involving self-learning algorithms
that derive knowledge from data in order to make predictions. Machine learning can be
divided into three main types, supervised learning, unsupervised learning and reinforce-
ment learning [37]. Each of the three types are applied for different scenarios. For the
understanding of this thesis only a description of supervised learning is included, along

with a novel description of some popular supervised learning regression algorithms.

2.6.1 Supervised Learning

In supervised learning, algorithms are used to train a model by learning rules in input
data with known output signals (target variables). Figure 2.5 displays the general

concept of a supervised learning algorithm.

Supervised learning model

Training label /—\

Machine learning
— algorithm

l Rules

Test data mmd Predictive model [ammmdll Predicted label

Figure 2.5: The general concept of a supervised learning algorithm as adapted
from [37]. Training data and training label are input the algorithm. The algorithm
learns the rules and combination of weights which most accurately models the
relationship between the input data and input training label. The learned rules
and combinations are then used when the algorithm is input new data to predict
its target variable (predicted label)

Figure 2.5 shows how the supervised learning model takes a training dataset consisting
of m rows of data (samples), each row consist of n columns of information (features), and
a training label consisting m values representing the output signals (target variables)
of the samples. The model learns the relationship between the features that give the
corresponding target variable for each training sample. This learning process is known
as fitting the model and it produces the predictive model. The predictive model can
then be given new data and predict its target variables based on the observations in the

learning process [37].
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Supervised learning can be divided into two subcategories, classification and regression.
If the label of the data consist of a finite number of distinct categorical values it is a
classification task. Regression, on the other hand, is used when the label does not consist
of a finite number of distinct values, but rather a continuous variable [37]. Figure 2.6

displays an example of the target variable in a classification task and a regression task.

Classification task Regression task
L] L] L]
L] L] ‘II‘ L] L] . -
Y ! Y LI
[] - . . P —— .
LI — -~
. . F * ¢
. | ] . hd
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I" L] L]
. \
X X
(a) (b)

Figure 2.6: (a) displays the target variables in a classification task with a decision
boundary. (b) displays the target variables in a regression task with a line of best
fit.

Figure 2.5 (a) shows the learned decision boundary for a binary classification task (dot-
ted line). The points represent the true values of the target variables for the training
data. The supervised learning model learns a boundary that separates the target vari-
ables into distinct groups (line). When new data is input the predictive model, it
predicts the target variables into the different groups based on the decision boundary
learned during training. Figure 2.6 (b) shows the learned regression line for a regression
task (line), and the true value of the target variables for the training data (points). The
line represents the learned regression line, minimising the distance between the line and
data points. When new data is input, the predictive model uses the intercept and slope
of the learned regression line to predict the values of the target variables for the new
data [37].

It is also important to note that, when choosing a supervised learning algorithm for
predictions, it is important to test and compare the performance of several models. The
reason for this, is the No Free-Lunch theorem by D. H. Wolpert [50]. According to the
No Free-Lunch theorem, there are no a priori distinctions between supervised learners
[50]. Meaning, that in general there is not one supervised learning algorithm that is in

general, better than others across all problems.



14 CHAPTER 2. THEORY

2.6.2 Ordinary least squares regression:

In ordinary least squares regression (OLS) a global linear relationship between the fea-
tures in the training data and a continuous target variable is modelled using a weighted
linear system (Equation 2.2) [37].

Y =wTX (2.2)

Here Y is the predicted target variable, X is the input data and W is the weight matrix.
The structure of an OLS algorithm is displayed in figure 2.7.

SGD
algorithm

@)
00 =
)

Figure 2.7: The figure displays the OLS regression model as adapted from [37].
Data is input a linear model in A. In B a cost function calculates the SSE error
based on the difference of the calculated target variables from A and the true
target variables in the training labels. The cost function is then minimised using
an SGD algorithm in C. The model trains until the weights minimising the cost
function in B are found.

Figure 2.7 shows how a sample with n features is input the OLS algorithm. In A the
predicted target variable for each sample is calculated using the weighted linear system.
In (B) the True target variable is compared with the predicted one to calculate the
sum of squared error (SSE) for all training samples. In C, the weights, W, used in the
linear system are optimised using an optimisation algorithm, such as stochastic gradient
descent, to find the weights that minimise the SSE found in B. When the optimal weights
are found the model is done training. The model can then be used to predict the target

variable for new data using the optimised weights [37].

For nonlinear relationships between the training samples and the target variables it is
possible to use polynomial regression. The learning process is the same, but polynomial

terms are added to the linear system [37].
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2.6.3 K-nearest regression

K-Nearest Neighbor (KNN) regression utilises the lazy learning algorithm KNN. It is
known as a lazy learner because it does not learn a function to model the relationship
between the input data and the target variables. Instead, during training, the algorithm

memorises the input dataset [37].

When predicting the target variable for a new data sample, the KNN algorithm uses a
distance metric, usually euclidean distance, to find the K most similar samples in the
memorised dataset, its K nearest neighbors. The predicted value is calculated as the

mean of the neighbors’ target variables (Equation 2.3).

1 K
=S v 2.3
g K;:ly (2.3)

Here ¢ is the predicted target variable of a new sample, K is the number of samples that
is used, and y; is the target variable for one of the found neighbors in the memorised
dataset [37].

It is crucial for the performance of the KNN algorithm to find a suitable value for K.
If K is too small the algorithm is prone to overfitting and could struggle to adapt to
new data, and if K is too large the model would underfit and could struggle to find a
pattern in the data [37].

2.6.4 Decision tree regression

In decision tree (DT) regression, instead of modelling a global relationship between the
input samples and the target variables, it models multiple piece-wise linear relationships.
In DT regression the input data is split into smaller subsets of data using a DT algorithm.
During training, the DT algorithm learns the optimal way of splitting a dataset with
a binary decision task. The optimal split is the one that minimises the impurity (/)
across the resulting subsets. The impurity of a subset is defined as the variance of the
target variables associated with the samples in the subset (Equation 2.4) [37].

1 M

> - 7) 24)

S =1

]s = VCLT(yS) -

I, is the impurity of subset s, y; is the true target variable of a sample in subset s and
s is the mean of all M target variables in subset s. This splitting process is iteratively
repeated, further splitting the subsets into new smaller subsets, until there is one sample
left in a subset, the impurity of a subset is zero, or the impurity is less than a defined

limit. An example of a trained decision tree is displayed in Figure 2.8.
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Figure 2.8: An example of a decision tree with two learned splits. Each split
is done minimising the impurity across the nodes. Target variables of samples in
each leaf node is used for predictions.

The first split of the input data occurs in the root node. Further splits are referred to
as decision nodes. The subsets found by the final splitting is referred to as leaf nodes.
The mean value of the target variables for the samples in the leaf nodes are used for

predictions when the algorithm is input new data (Equation 2.5) [39].

Y = 41,2, ---Us] (2.5)

When training a DT it is important to be wary of the number of splits. More splits
makes a DT prone to overfitting [37].

2.6.5 Random forest regression

Random forest (RF) regression uses an ensemble technique to combine multiple DTs.
Hence, the predicted target variables from a RF regression algorithm are calculated as
the average predicted value from all the DTs (Equation 2.6) [39].

- 1 & 1 & 1

Y = [f > () 5 P D (F2)s s Z Ys,j)] (2.6)

j:l ]:1 j:l

Here Y is the predicted target variables for the samples input the RF model. P is the

total number of DTs in the RF model, and s is the number of leaf nodes.

The RF algorithm usually has a better generalisation performance than a DT, and is

less prone to overfitting [37].

2.7 Performance metrics

When evaluating the performance of supervised learning algorithms it is important to

verify how well a model adapts to new data, and in general, how accurate or precise the



2.7. PERFORMANCE METRICS 17

predictions are. To evaluate how well a supervised regression model is able to model a
relationship between the input data and its target variables one can use the coefficient of
determination (R2-score) . R2 is given as a value between 0 and 1. A score of 1 indicates
that the regression model is able to approximate the true target variables perfectly. The
R2 score is calculated as the SSE divided by the Sum of total squares (SST) (equation
2.7).

_SSE _ 3 (yi — 5:)°
- SST My — ui)?

Thus, it gives a measurement of the proportion of the SSE for predictions that is ex-

R2 (2.7)

plained by the variation in the true target variable.

To investigate the overall precision of predictions the Mean Absolute Error (MAE) can
be used (Equation 2.8).

1 & N
MAE:*Z‘%—%’- (2.8)
m;=

MAE is calculated as the average total error between the predictions (7) and the true

value target variables (y) for all samples m.






3. Data overview

An important aspect of this thesis was to find and create an overview of some pub-
licly available open-source datasets that provided information relevant for modelling
EV charging patterns, charging demand, and EV charging behaviour. The search for
relevant datasets was done by investigating what datasets had been used in articles

analysing EV charging behaviour, and by an online search using google.

The data search identified four datasets, free to use, that provided information about
EV charging sessions at charging stations. Table 3.1 gives a general overview of these
datasets.
Table 3.1: Table shows the different datasets investigated in this thesis. The
location column gives the area where the data is recorded, the Dataset column

gives the name of the dataset and the Type column gives the type of data recorded,
historical charging data or real-time data.

Open source datasets

Location Dataset Type
California, USA ACN dataset Historical
Netherlands Elaad dataset Historical
Ireland and Northern Ireland | Ireland and Northern Ireland charging data | Historical
Norway NOBIL database Real-time

The datasets provide information about public charging stations in the areas shown in
Figure 3.1. These four datasets are the ACN dataset from Adaptive Charging Networks
(ACN) in California [22], the Elaad dataset provided by ElaadNL in the Netherlands[11],
the Ireland and Northern Ireland charging data [4], and the NOBIL database from
Norway [21]. All four datasets provide information about the number of EVs connecting
and charging patterns at charging stations. The information, however, varies between
them and the datasets have different structures. In the next sections a more detailed

description of the different datasets information, and structure is presented.

19
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Figure 3.1: Map displaying the location of the charging stations the four datasets
were recorded. The ACN dataset in California, the Elaad dataset in the Nether-
lands, the Ireland and Northern Ireland charging data and the NOBIL data in
Norway.

3.1 The ACN dataset

The ACN dataset is available to download through a web interface and through an
Application Programming Interface (API) [22]. The dataset was created and released
to help researchers gain a better understanding of charging patterns and user-behaviour
of public and workplace charging stations [22]. It includes historical data containing
information about transactions between EVs and charging stations from two locations
in California, USA. Since its inception in 2018 more than 32 000 charging sessions have
been recorded and the dataset is continuously updated. The data is collected from two
adaptive charging networks (ACNs) located at the California Insititute of Technology
(Caltech) and at Jet propulsion laboratories (JPL) in California, USA [22].

When downloaded from the web interface the data is given as a JSON-file. The JSON-
file contains two tables. One called Meta giving information of the location, start date
and end date of the downloaded dataset. The second table called Items contains all
the transactions between EVs and the charging station (charging sessions) at the given

location. All recorded sessions are performed on type 2 charging stations.

Each sample in the dataset provides information about individual charging sessions. It
includes timestamps for connection and disconnection, amount energy delivered, unique
ids for each session and charging point, and user-inputs. The user-inputs are given
by users when connecting to the ACN [22]. They include a unique user id, requested
amount of energy, requested amount of miles, requested disconnection time, and if they
paid to charge. The structure of the ACN dataset as downloaded through the web

interface is shown in Table 3.2.
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Table 3.2: The structure of the ACN dataset. The left columns display the
features of the dataset and the right displays an example sample with placeholder
values. The values in sample id, session id and user id are unique long strings
containing random numbers and letters. For simplicity they are represented by -.
Modified at gives the timestamp for when the user-inputs were given.

The ACN dataset

Features Example
Sample id -
Cluster id 0011

Connection time
Disconnect time

Done charging time

Wed, 25 Apr 2018 11:08:04 GMT
Wed, 25 Apr 2018 13:20:10 GMT
Wed, 25 Apr 2018 13:21:10 GMT

Energy delivered [kWh] 8.000
Session id -
Site id 0002
Space id CA-496
Station id 1-41-13-456
Timezone America/Los Angeles

User inputs

User id -
Wh per mile 500.0
Energy requested [kW h] 55.5
Miles requested [miles] 150.0
Minutes available [min] 500.0
Modified at 2018-04-30 15:08:54

2018-05-01 00:17:49

Requested departure

Overall, the ACN dataset gives a lot of information for analysing the user-behaviour and
charging pattern at a public charging station. With the transaction data it is possible
to track the number of charging sessions at the ACN and the EV charging load at an
aggregated station level, for periods of different time scales. Furthermore, with the
addition of user-inputs the dataset makes it possible to analyse the charging behaviour
of individual EV owners. The user-inputs also allows for an investigation of accuracy
of user-inputs and how user-inputs affects the scheduling for a smart charging scheme.
Additionally, it makes it possible to analyse how well the service provided by the ACN
to EV owners is. The amount of data available also enables the dataset to be used for
machine learning. For example it can be used to build models for modelling EV charging

patterns, EV charging load and duration of charging sessions.
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3.2 Elaad dataset

The ElaadNL data dashboard provides information to analyse electric vehicles and the
way they charge in the Netherlands. According to Elaad [11], their data dashboard
contains more information than any EV charging database in the world. The Elaad
dataset is available through the data dashboard and includes historical transaction data
from charging stations in the Netherlands. It is possible to download a sample dataset
straight from the dashboard. The sample dataset contains information about 10 000
randomly selected charging sessions from 850 public charging stations in the Netherlands
in 2019 [11]. Tt is also possible to gain access to larger dataset with more than a million
charging sessions, [39]. This is done by contacting Elaad. Unfortunately, access to
the larger dataset was not granted while writing this thesis. Therefore, the description
done in this thesis is based on the smaller sample data. Assuming the structure of the
sample data is the same as the larger dataset, the sample data provides a picture of the

information available from Elaad’s open data dashboard.

The sample dataset is given at a XLSX-format and it is divided into two tables. One
of the tables contains historical charging session data and is called Transaction data.
The other table, referred to as the Meter data, contains power and energy readings for
each of the recorded sessions. In the sample dataset all recorded charging sessions were
performed at public charging stations, mainly offering type 2 charging. However, some
of the recorded sessions were performed with a charging level of 22 kW suggesting access

to type 2 FastAC charging.

The structure of the transaction data is similar to the ACN data. It includes timestamps
for connection and disconnection, energy demand and unique ids for stations, sessions
and users. The dataset also includes a feature recording the average power used during
the session. Table 3.3 displays the structure of the transaction data as retrieved from
the open data dashboard. The Meter data table supplements the transactions data
with power and energy measurements taken during each of the charging sessions. The
measurements are taken at either a three or five minute interval depending on the

charging station. The structure of the meter data table is given in Table 3.4.

Overall, the Elaad dataset gives an insight into the charging activity and energy demand
at charging stations in the Netherlands. By combining information from the Transaction
data and the Meter data, it is possible to both investigate the charging demand, number
of EV connecting at public charging stations, and individual EV user-behaviour with
a high resolution. The Transaction data gives the ability to track the number of EVs
connecting and energy demand over different time scales, both for a charging station

and at an aggregated national level. With the meter data it is possible to track the
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charging demand throughout a day with a high resolution, and create a load curve for a
charging station. The dataset also provides information of tracking individual EV user-
behaviour with the StartCard feature. Additionally, as the dataset provides information
about several charging stations it is possible to compare the charging activity, charging
demand, and individual EV user-behaviour across different stations. Unfortunately each
station is only identified by a unique string, hence the location of a station is unknown.

Table 3.3: The structure of the Elaad transaction data. The left columns dis-

play the features of the dataset and the right displays an example sample with

placeholder values. The values in Transaction id, Charge point and StartCard are

unique long strings containing random numbers and letters. For simplicity they
are represented by -.

The ELAAD transaction data

Features Ezrample

Transaction id -
Charge point -
Connector 1
UTC Transaction Start | 2019-01-01 11:49:04
UTC Transaction Stop | 2019-01-01 13:10:10

StartCard -
Connected time [hour] 2.39
Charge time [hour] 2.10
Total energy (kW h] 3.34
Mazx power [kW] 3.242

Table 3.4: The structure of the Elaad power meter data. The left columns
display the features of the dataset and the right displays an example sample with
placeholder values. The values in Transaction id and charge point are unique long
strings containing random numbers and letters. For simplicity they are represented

by -.

The ELAAD Power Meter data

Features Example

Transaction id -

Chargepoint -
connector 1
UTCTime 2019-01-01 11:49:04

Collected value 5394520
Energy interval [kW h| 0.89

Average power [kW] 3.242
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3.3 Ireland and Northern Ireland dataset

The Ireland and Northern Ireland charging data was made by J. Burkin, and is avail-
able to download through a web interface [4]. The dataset provides status updates for
charging points, from around 1100 charging stations in Ireland and Northern Ireland,
given at five minute intervals. It is based on real-time data provided by ESB E-Cars
charge map [12]. The dataset contains charging data from the period November 2016
to June 2019 [4].

The Ireland and Northern Ireland dataset is available to download as multiple txt-files.
Each txt-file contains all the recorded measurements from one month. All the separate
txt-files have the same structure. There are three types of charging stations included in

the dataset, type 2 one-phase, type 2 FastAC, and Fast D.C. charging stations.

Each sample, in the dataset gives a timestamp of a sensor status update, the location
of the charging station (both address and coordinates), type of socket, and the sensor
status. There are four possible sensor statuses included in the dataset. These are Fully
occupied (Occ), partially occupied (par), out of service (Oos), and out of contact (Ooc).
When a station is vacant, there is no recorded measurement, thus when a station is
vacant can be identified by the lack of a measurement [4]. The structure of the dataset
is displayed in Table 3.5.

Table 3.5: The structure of the Ireland and Northern Ireland dataset. The left

column gives the features in the dataset and the right column gives an example

sample with placeholder values. Charge point id is a unique string for each charge
point. It is represented by - for simplicity.

The Ireland and Northern Ireland charging data

Features Ezample
Date 20190701
Time 1
Charge point id -
Charge point type StandardType2
Status Occ
Values -6.923077,52.841045
Address The Parade, Bagenal...
Longitude -6.923077
Latitude 52.841045

Overall, the Ireland and Northern Ireland dataset by J. Burkin [4], gives an insight
into EV charging at public charging stations in Ireland and Northern Ireland. Using
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the charge point status it is possible to track the the number of EVs connecting to
the charging stations. With the connector type and charge level it also provides some
insight into energy demand at the charging stations. Furthermore, as each measurement
is assigned to distinct stations with given locations it is possible to analyse differences
between charging stations. Additionally, the dataset contains a vast amount of samples
making it eligible to use for machine learning. E.g. the dataset was made for the purpose

of predicting charge point availability [4].

3.4 NOBIL database

The NOBIL database is an open, central, and publicly owned database. It was cre-
ated to secure an overview of the Norwegian charging infrastructure, provide valuable
information to EV owners, and developers who aim to create useful tools for EV own-
ers [21]. The database provides information about more than 2500 charging stations
in Norway. Unlike the ACN and Elaad datasets, the NOBIL database does not store
historical transaction data, but offers a description of the charging infrastructure at
stations, and real-time information from some charging stations. Real-time information
is stored in the database for up to 7 days. Thus, with permission from NOBIL, it could
be possible to create a database by regularly downloading real-time information, similar
to the Ireland and Northern Ireland dataset by J. Burkin [4].

Data is available to download from the NOBIL database through an API. The API is
free to use, but one must register as a user at NOBILs web page to receive an API-key.
The API allows for quite advanced requests to retrieve desired information. Specific
methods that are available through the API are described in the API user-manual,
available at the NOBIL web page [34]. An overview of the attributes available in the
NOBIL database are available online at [32]. With a specified request, it is possible to
download data that contains real-time information from several charging stations and

information of their infrastructure through the API.

Table 3.6 shows an example of data that can be downloaded through the NOBIL API.
With a specified request it is possible to to retrieve information about the location, type
of charging available, and real-time information. The real-time information is similar to
that of the Ireland data, in that it provides a timestamp, and connector status for each

of charging points at a station. The available statuses are Vacant and Busy.

Overall, with data displayed in Table 3.6, it is possible to analyse charging patterns at
public charging stations in Norway. With the connector statuses and connector indexes
it is possible to track the number of charging sessions at a charging station. With the

connector type and charge level it is also possible to gain some insight into the charging
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demand from the charging stations. Furthermore, using the connector index it should
be possible to separate between different charging sessions, and analyse charging session
duration. Furthermore, with the connector status and charge mode it could be possible
to analyse how often EV owners leave their EV connected after it has finished charging.
The known location of each charging station also makes it possible to compare the

activity between areas, e.g. inner-city and rural areas.

Table 3.6: The structure of data from the NOBIL database as retrieved through
the API. The left column shows the features retrieved through the API query and
the left and example sample with placeholder values.

NOBIL data
Features Ezxample
Province Trgndelag
City Trondheim
Street Haakon Vii gate
Street # 17
Connectors 8
Connector index 3
Connector type CHAdeMO
Charge level 50 kW - 500VDC max 100A
Timestamp 2021-03-10T06:45:07
Connector status Vacant
Charge mode Mode 4

3.5 Other datasets

A more comprehensive overview of open source datasets is included in the study 'A
review of Electric Vehicle Load Open Data and Models’ conducted by Y. Amara-Ouali
et al. [1]. The study investigated more than 860 data repositories containing charging
station data. The study found 60 data repositories with information relevant for mod-
elling EV charging load from 15 different countries. Like, this thesis the study focused
on transaction data between EVs and EVSEs. However, it also included datasets with

other variables, such as traffic, travels surveys, and air quality [1].



4. Method

The analysis was conducted using the ACN dataset [22]. The historical transaction
data in the ACN dataset allowed for an analysis of charging patterns, and aspects of EV
user-behaviour at a smart charging station. The main aspects of EV user-behaviour that
was investigated in this analysis was, the time of connection, charging session duration,
and energy demand from charging sessions. Moreover, as the ACN data included user-
inputs, which were used for smart scheduling, it was analysed how well the ACN was
able to meet the users demand, and overall if the user-inputs were accurate. In addition
to the data-driven analysis of user-behaviour, it was attempted to predict aspects of
user-behaviour, such as charging session duration and energy delivered in a charging

session, using supervised learning regression.

Data spanning the period 25. April 2018 until 1. January 2021 was downloaded through
the web interface. The downloaded dataset contained 32 307 samples. The dataset had
two main types of samples. Historical transaction data with user-inputs (claimed ses-
sions) and historical transaction data without user-inputs (unclaimed sessions). It was
decided to only use data from the Caltech ACN because the station was representative

of both a workplace charging station and a public charging station [22].

The data processing, analysis and machine learning was done using Python [46]. The
downloaded data was unpacked into a format called Pandas DataFrame, a tool for data
management in python [44], [26]. Visualisation was done using tools from pandas [44],
[26], matplotlib.pyplot [17], and Seaborn [48]. For the machine learning, tools and
models available through the Sci-Kit learn library were used [36].

4.1 Data processing

Before the dataset was used for the analysis, some pre-processing was done. The pre-
processing included detection of duplicated data, detection of missing data, detection of

outliers, and feature engineering.
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4.1.1 Duplicated data

To identify if there was duplicated data in the downloaded dataset, the unique session
ids provided in the dataset was used [22]. If a session id was repeated for several samples
in the data, it suggested that there was duplicated data in the dataset. Overall, there
were 32 307 samples in the downloaded dataset, but only 28 391 unique session ids.
Further investigation found that the samples with the same session id provided the
same information in the transaction data, but some values in the user-inputs varied for
some of the claimed sessions. To prevent the results from being twisted or weakened
by duplicated samples, it was decided to remove them. For unclaimed sessions the first
appearance of a session id was kept, and for the claimed sessions the sample with the
most accurate Energy requested compared to the Energy delivered was kept. If the
input Energy requested was equal for all occurrences of a session id the first occurrence

was kept.

4.1.2 Detection of missing data

Missing values in a dataset are represented by a Non-value (NaN) in Python. According
to S. Raschka and V. Mirjalili [37], it is important to identify and replace missing values
since most computational tools are unable to handle them, and they can produce errors

and unpredictable results.

The downloaded dataset included missing values in the user-inputs for unclaimed ses-
sions, as expected. However, in addition to missing data in the user-inputs of unclaimed
sessions, there where 1152 other values missing from the dataset. These were all in the
Done charging time feature. The Done charging time feature records the timestamp of
when the last non-zero current was drawn from the EVSE [22]. A missing value in this
feature suggested that the vehicle had disconnected before the EV was fully charged, or

before the Energy requested was delivered.

It was decided to impute values from the Disconnect time feature to replace the NaN-
values in the Done charging time feature. The reason for this, was that a missing value
in the Done charging time feature indicated that the EV had disconnected, before it
was done charging. Hence, charging the entire period until it disconnected. On the
other hand, the missing values in the user-input features for unclaimed sessions were
not changed as these data points were not included in any machine learning algorithm,

nor were unclaimed sessions used for analysing user-inputs.
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4.1.3 Outlier detection

An outlier is a value in a feature that deviates from the feature mean by an abnormally
large amount. Hence, it is important to investigate data for outlier values as they can
distort the distribution of the features, and prevent trends and patterns from being
found in the data when an analysis is conducted. Some of the features in the ACN
dataset were prone to contain outlier values. These features were the Energy delivered,
Minutes available, Miles requested and Energy requested features. The Energy delivered
feature contains the Energy delivered to an EV during a charging session. An Outlier
values can occur in this feature if a faulty measurement is stored in the data. The Miles
requested, Minutes available, and Energy requested features can contain outliers if an
EV owner has given inaccurate values when providing the user-inputs to schedule their
charging session. The other features in the dataset either contain boolean values, unique

strings or timestamps, thus, they should not include outliers.

Figure 4.1 displays the distribution of the Minutes available, Energy delivered, Energy

requested, and Miles requested features.
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Figure 4.1: Distribution and characteristics of Minutes available (A), Energy
delivered and Energy requested (B), and Miles Requested (C).

Figure 4.1 (A) shows the distribution of the Minutes available feature. From the figure
it was found that most recorded values were between 150 minutes and 430 minutes. (A)
also identifies that there were large outliers, where EV owners had stated a long period
for the EV to be connected. Figure 4.1 (B) display the distribution of the Energy
delivered and Energy requested features. Most recorded values were between 5 kWh
and 10 kWh, and 10 kWh and 25 kWh for Energy delivered and Energy requested,
respectively. The figure identifies outliers in both features. Moreover, it displays very
large outliers recorded in the Energy requested feature. Figure 4.1 (C) displays the

distribution of values in the Miles requested feature. Most of the recorded values were
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between 10 miles and 80 miles. Additionally, there were large outliers found in the

feature.

When handling outliers it is of high importance to investigate why they appear and if
they can appear again. The largest value that occurred in the Energy delivered feature
was 75.53 kWh. This value appears as an outlier in the data. However, there are EVs
on the market with a larger battery capacities than this. Furthermore, outliers in the
Minutes available, Miles requested, and Energy requested features reflect the unpredict-
ability of EV owners. Erroneous values can appear in user-inputs if, for example, an EV
owner does not know the technical aspects of charging their EV, like how many kWh is

enough to charge the EV.

It was decided to not remove samples from the dataset based on outlier values in any of
the investigated features. The reason for this, was that, outlier values could be expected
to occur again in each of the respective features. Moreover, they provide information
which could be useful in the analysis. E.g. when investigating user-inputs, an important
aspect was to investigate if they were reliable. Inaccurate user-inputs giving outlier
values shows that user-inputs can be erroneous which would also be an important part
of the result.

4.1.4 Feature engineering

Some new features were extracted and added to the dataset. To investigate how long an
EV was connected to the charging station, a Session duration feature was added. This
Session duration feature presented the period an EV was connected in terms of minutes.

It was calculated according to Equation 4.1
Session Duration(i) = Disconnect time(i) — Connection time(i). (4.1)

Here, i represents a sample in the dataset. The calculation was done for all samples.
Similarly a Charging duration feature was calculated using the values from the Done
charging time feature instead of the connection time feature. The reason for this was to

investigate how often EV owners left their car connected after it had finished charging.

The connection time feature was also modified. Instead of the connection time being
represented as a timestamp, it was split into three features, giving the date, the weekday
as a value between 0 and 6, and the time of connection in minutes since midnight. The
main reason for this was to use the Connection time and Weekday features for Machine
Learning, and investigate the average changes in charging pattern during a week. Prior
to using the dataset for machine learning, the Weekday feature was further split into

seven dummy features. Thus each Weekday feature gave either one or zero, depending
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on if the charging session was conducted on the respective day.

Investigating the engineered session duration and charging duration features identified,
that both features included outliers. These features were made on the assumption
that the Connection time and Disconnect time timestamps were correct. However, the

identified outliers suggested otherwise.

It was decided to remove samples with extremely large values in the Session duration
and Charging duration features. All samples with values deviating more than 3 standard
deviations (STD) from the mean feature value were removed. This was 383 samples in
total.

4.1.5 The processed dataset

After pre-processing there were 28 008 sessions left in the data, of which 13 453 were
claimed sessions. Overall, 3 916 samples where removed as duplicates and a further 383
where removed due to outlier values in the engineered features. Table 4.1 shows the

structure of the ACN dataset after processing.

Table 4.1: Table displays the structure of the ACN dataset after prepossessing.
The left column gives the feature left in the dataset and the right column an
example with placeholder values.

Processed ACN dataset

Features Ezrample
Session id -
Connection date 2019-04-25
Weekday 2
Connection time 11:43:11
Session duration [min] Wed, 636
Energy delivered [kW h] 27.6
User id -
Minutes available [KWh] 648
Requested departure 2018-04-26 00:17:49
Miles requested [miles] 70
Energy requested [kWh] 28.0
Payment option True




32 CHAPTER 4. METHOD

4.2 Identifying a charging pattern and significant

events

The first part of the analysis focused on analysing the evolution of the number of con-
necting EVs at the ACN, identify a charging pattern for the ACN and investigate aspects

of user-behaviour on a general level, using an average of all recorded charging sessions.

When analysing the evolution of connecting EVs the entire downloaded period, April
2018 to January 2021, was used. The goal was to investigate if the number of EVs
at the ACN increased throughout the period, identify significant events that overall
changed the charging activity at the ACN, and to investigate if there was any seasonal

dependency for the connecting EVs. E.g. a varying amount of energy charged.

The analysis of the charging pattern at the ACN was conducted for a longer period,
where charging activity was stable. A stable period was defined as a longer period where
the number of connections was similar, and not affected by any external events seen in
the data. The general charging pattern was investigated as the average number of EVs

connecting in each hour.

The analysis of general patterns for the observed EV user-behaviour was conducted in-
vestigating the average Session duration and the average Energy delivered for all char-
ging sessions, for each day of the week. This was done to investigate if there were any
general trends or patterns displayed by the EV owners charging at the ACN. Moreover,

if in general EV owners displayed an inherently different user-behaviour on certain days.

Lastly, as the ACN was a smart charging station. It was investigated how well the ACN
was able to deliver the Energy requested by EV owners within the requested period.
This was done by comparing the user-inputs and service delivered. The user-inputs
were also investigated to observe how they varied from the service delivered by the
ACN. If EV owners disconnected when they stated in the user-inputs, and if EV owners

requested more energy than what they received.

4.3 Analysing user-behaviour in charging groups

After investigating the general charging pattern and a general user-behaviour for EV
owners charging at the ACN, it was analysed if the EV owners could be separated into
charging groups. Using the unique User id provided in claimed sessions, it was possible
to see how many times each EV owner charged at the ACN in the period. EV owners

were categorised into distinct charging groups based on how frequently they charged.

The charging groups were further used to analyse if the EV owners in each charging
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group displayed a distinctly different user-behaviour. This was done by comparing
distributions of Connection time, Session duration, Energy delivered, and inaccuracies
in user-inputs for the EV owners, in each charging group. The user-behaviour of each
EV owner was represented by the average user-behaviour they displayed across all their

charging sessions.

4.4 Predicting user-behaviour with machine learn-
ing

Another part of the analysis was to attempt to predict aspects of EV user-behaviour
using Machine Learning. Supervised learning regression algorithms were trained and
used to predict Session duration and Energy delivered based on the data available in
the ACN dataset.

Five supervised learning regression algorithms were trained and tested for predicting
Session duration. The models were trained on two different subsets of the ACN data-
set. One subset only including information from Connection time and Weekday, and
one subset including some additional information about the EV connecting. Namely,
the User id and Energy requested features. Likewise, for predicting Energy delivered.
Five supervised learning regression algorithms were trained and tested, using the two
subsets of the ACN dataset. However, for the larger subset, instead of including Energy

requested, the Minutes available feature was included.

The goal of training the machine learning models on different subsets, providing a differ-
ent degree of descriptive data, was to investigate how important the time of connection
was for the predictions, and how important information about the individual EV owners

was.

All the machine learning models were trained and tuned using a grid search. A grid
search takes a range of values for each tuneable parameter for a machine learning model,
trains it, and identifies which set of the given parameters provide the best performing
model [36]. Table 4.2 gives a overview of the five supervised learning regression al-
gorithms, and their tuneable parameters, that were used for predictions in this thesis.
Only a general description of the parameters are given in Table 4.2. A more in depth

description is given in the Scikit-learn library [36].

To analyse and validate the performance of the tuned models when input new data,
a KFold cross-validation with 5 folds was used [36]. Furthermore, the metric used to

validate the performance of a model was the R2-score.

The predictions from the best performing machine learning model was then compared
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with the user-inputs. This was done by comparing the MAE of the user-inputs, and the

MAE of the predictions. Finally, the best performing models were also investigated to

identify which features had the greatest importance for the performance of the models.

Table 4.2: Displays the supervised machine learning regression models used to
predict user behaviour. For each of the models, the table also gives the parameters
that are tuned with a grid search, to find the best performing models.

Model: Hyper parameters

OLS regression

OLS regression -
polynomial

Degree:
Order of polynomial to
fit the input data.

KNearest regression

# neighbours:

Number of neighbors to
use for kneighbors
queries.

Weights:
Weight function used in
prediction.

Algorithm:
Algorithm used to compute
the nearest neighbours

P:
Power parameter for
Minkowski metric.

Decision tree regression

Max depth:
The maximum depth of
the tree.

Min sample split:

The minimum number of
samples required to split an
internal node.

Min sample leaf:

The minimum number of
samples required to be at a
leaf node.

Criterion:
The function to measure
the quality of a split.

Random forest regression

Max depth:
The maximum depth of
the trees.

Min sample split:

The minimum number of
samples required to split an
internal node.

Min sample leaf:

The minimum number of
samples required to be at a
leaf node.

Criterion:
The function to measure
the quality of a split.

# estimators:
The number of decision
trees in the forest.




5. Results and discussion

5.1 Identifying a charging pattern and significant
events

5.1.1 Activity at ACN April 2018 to December 2020

Figure 5.1 shows the general evolution of activity at the Caltech ACN for the entire
downloaded period, 25. April 2018 to 1. January 2021.
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Figure 5.1: The figure shows the number of EVs connecting to the ACN per day
for the entire downloaded period, 25. April 2018 to 1. January 2021. Additionally,
the Figure displays two events with a long-term impact, that changed the overall

number of EVs connecting to the ACN.
In the figure, the curve shows the daily number of connections at the ACN. The variation
between local peaks and troughs display the difference in the number of EVs connecting
on weekdays and weekends, respectively. The weekday-weekend variation is repetitive
and systematic, but quite substantial. The figure also distinguishes two events that

abruptly changed the charging activity at the ACN, and left a significant long-term
impact (Event 1 and Event 2).
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In the period April 2018 to September 2018, the number of connections per day in-
creased, both for weekdays and weekends, as seen in Figure 5.1. For weekdays, the
number of connections grew from around 60 connections per day to more than 90, peak-
ing in August at more than 100 connections in a day. Similarly, for weekends the number
of connections grew from around 30 to around 50 in August and September. Such an
increase in connection was not seen at the ACN for the remainder of the downloaded
period. There could be multiple reasons for why there was such a large increase in
connections in 2018. One reason could be due to the electrification of the transport
sector in California. Like Norway, California has seen a broad adoption of EVs over the
last couple of years. Between 2013 and 2018, the number of registered EVs grew from
25 146 to 232 236. In 2018 alone, there were 72 534 new EVs registered. By the end
of 2020, EVs accounted for 1.2 % of the car park in California [6]. Another reason that
could explain the rapid increase of EVs charging at the ACN, was explained by Z. J. Lee
et al. in "ACN-Data: Analysis and applications of an open EV charging dataset’ [22].
According to Z. J. Lee et al. [22], it was free to charge at the ACN prior to November
1. 2018. This could have incentivised EV owners to charge for free at the ACN instead

of charging elsewhere.

After the period with increasing activity at the ACN, the number of connections per day
at the ACN was reduced. This was marked as Event 1 in Figure 5.1. The nature of Event
1 was not explicitly described in the dataset, other than that after it happened there
was a significantly lower amount of EVs connecting to the ACN. Event 1 was, however,
further explained in the article ’ACN-Data: Analysis and applications of an open EV
charging dataset’ by Z. J. Lee et al. [22]. 1. November 2018 a 0.12% charging fee was
introduced [22]. Thus, Event 1 could show how the introduction of paid charging can

affect how EV owners choose to charge.

After the introduction of the charging fee in November 2018, the number of connections
at the ACN was similar until March of 2020, ignoring the weekday-weekend variation.
In march 2020, Event 2 occurred. Event 2 reduced the number of EVs connecting to the
ACN to almost none for the rest of 2020. Like for Event 1, Event 2 was not explicitly
described in the data other than the significant reduction in connections. However,
Event 2 coincided with when the COVID-19 pandemic caused a statewide lockdown
in California. 19. March 2020, The Governor of California, Gavin Newsom, issued an
executive order, calling for California’s residents to ’Stay at home’ to disrupt the spread
of the COVID-19 virus [30]. This led to Caltech closing its doors for everyone except
essential workers on March 19. 2020 [38]. Thus, it could be assumed that Event 2 and
the following period shows how the ACN was affected by the lockdown caused by the

pandemic.
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In addition to Event 1 and Event 2, two short-term periods with a reduced number
of EVs connecting were observed in Figure 5.1. These periods were in December 2018
and December 2019. During these periods, the overall number of EVs connecting to the
ACN on weekdays dropped to a similar level to that of weekends, but only for a short
time and with no significant long-term impact. The reason for these events were not
explained in the data, but with the relevant dates, they were identified to be during the
Christmas holidays, with the Caltech Academic Calendar [7]. Thus, it seems reasonable
to assume that the reduction in EVs charging at the ACN was a consequence of the

Christmas holiday.

It was also investigated how the energy demand at Caltech varied throughout a year.
Using data from 2019, it was possible to investigate how the aggregated energy demand
varied for each month. Figure 5.2 shows the monthly aggregated energy demand at the
ACN in 2019.
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Figure 5.2: Aggregated monthly energy demand for the ACN in 2019.

Figure 5.2 shows that there was some variation in energy demand during the different
months of the year. The highest energy demand was recorded in January, with an
aggregated energy demand of around 10 000 £Wh. The aggregated energy demand
dropped towards the summer months, and in July there was an aggregated energy
demand of around 6 500 kW h. During the fall months, the aggregated energy demand
increased, but a reduction was seen in November and December. An explanation for
the variation in energy demand could be the variation in daily number of connections
as seen in Figure 5.1. However, a larger energy demand in winter months, like January
and February, than for a summer month, like July, could also be a consequence of how a

colder ambient temperatures affected the driving range and battery consumption of the
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EVs. Studies investigating the effects of ambient temperature on distinct EV models
have found that a colder ambient temperature could increase the power consumption
per kilometre for some EV models. E. g. a study by X. Hao et al. [15], and a study
by T. Yuksel and J. J. Michalek [51]. Hence, assuming the EV owners used their EV
similarly for all months of 2019. A colder ambient temperature in the winter months
could have forced the EV owners to charge their EV with more energy to be able to

reach their desired destinations.

5.1.2 Electric vehicles charging in 2019

The further analysis investigating a daily charging pattern and the general EV user-
behaviour was conducted using only charging sessions from 2019. The reason for this,
was to allow for an investigation of how, on average, the EV owners charged at the ACN,
and prevent the impact of Event 1 and Event 2 from affecting the analysis. Figure 5.3
shows the daily number of connections and average daily connections for each week in
2019.
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Figure 5.3: The daily number of EVs connecting and weekly mean number of
connections per day at the ACN in 2019.

As seen in Figure 5.3, the weekly charging pattern was similar for most of 2019. There
were a large amount of EVs charging on weekdays, and significantly less EVs charging
on weekends. On average, around 40 EVs charging every weekday, and around 10 EVs
charging on Saturdays and Sundays. There were, a couple of periods where the number
of connections on weekdays was significantly reduced, identified by the weekly average
in Figure 5.3. Namely, the first week of January, first week of July, and the first and last
week of December. With the Caltech Academic calendar, these periods were identified
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as holidays [7].

5.1.3 Daily charging pattern
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Figure 5.4 shows the average daily charging pattern for the ACN in 2019.

10

# Conncetions
[=]

-10

10

# Conncetions
[=]

-10

10

# Conncetions
o

10

# Conncetions
(=]

-10

Average connections each hour in a week

Connections for Monday

H Connection
Il Departure

1234

56 78 910l1121314151617181920212223
Connection time [hour]

Connections for Wednesday

Hm Connection
B Departure

1234

56 78 91011121319151617181920272223
Connection time [hour]

Connections for Friday

Il Connection
Bl Departure

1234

56 78 9101112131¢4151617181920212223
Connection time [hour]

Connections for Sunday

mmm Connection

B Departure
nm m nmBONRN NBllpinlpnnn
l “"llllllIIlI“IIIIII' -
12345678 91017101314151617181920272223

Connection time [hour]

# Conncetions # Conncetions

# Conncetions

10

10

10

-10

Connections for Tuesday

H Connection
Il Departure

012345678 910l1121319i51617181920212223
Connection time [hour]

Connections for Thursday

HEm Connection
B Departure

0123495678 910l712131¢1516171819202712223
Connection time [hour]

Connections for Saturday

Il Connection
Bl Departure

0123456 78091011121319151617181920212223
Connection time [hour]

Figure 5.4: Daily charging pattern at the ACN, based on the average number of
connections and disconnections each hour.
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Figure 5.4 shows the average number of connections and disconnections each hour for
all the days of the week. In the figure, each bar represents the average number of
connections and disconnections between the given timestamp and the next, E.g. 8 gives
the average number of connections and disconnections between 8 and 9. Connections
are represented by a positive value, as it can be seen as EVs being added to the charging
station, while disconnections are represented by a negative value, as they result in EVs

being removed from the charging station.

According to Z. J. Lee et al. [22], the ACN at Caltech was operated as a combined
workplace and public charging station. This was also seen when investigating the average
daily charging pattern, as seen in Figure 5.4. It was found that there were significantly
more EVs connecting on weekdays than on weekends. Moreover, it was found that the
distribution of the connections throughout the day, the charging pattern was distinctly
different. On weekdays, there was a peak of connecting EVs in the morning between
8 and 10. On average, there were 6 to 9 EVs connecting in each of these hours, each
weekday. The peak in connections were followed by a peak in disconnections between
17 and 18. This pattern was similar to the expected charging pattern for a workplace
charging station presented in Figure 2.2. In addition to this, there were some EVs
connecting during the other hours of the day, with a slight increase in connections around
17 to 18. This suggests that some EV owners used the ACN as a public charging station.
As shown in Figure 2.2, the expected charging pattern for a public charging station has
a small peak in the morning similar to that of a workplace charging station, but also a
small peak in connections in the evening. On weekends on the other hand, there was no
distinct peak in the morning, and the connecting EVs arrived more evenly distributed
throughout the day. From Figure 5.4, it can be seen that around 1-2 EVs connected each
hour during the day, evening and night. The charging pattern observed on weekends

suggests that the ACN was used more as a public charging station on weekends.

Figure 5.5 displays the average Session duration and Energy delivered for charging

sessions conducted in different hours of the day on a weekday.

Average Session duration for a session each hour Average Energy delivered for a session each hour
350
I II mmm Average duration 8 Average kWh
300
1 !
= 250 T6
E o LT £
: HLL II I S
s
= 150 g4
e @
£ oo CHHHAA, ppy . gs
2
» Buuuuaanduutinngdy 2
0
01234567 8 91011121314151617181920212223 0123456 7 8 91011121314151617 181920212223
Connection time [hour] Connection time [hour]
a) Average Session duration for a charging session b) Average Energy delivered for a charging session
Yy
performed each hour of a day. performed each hour of a day.

Figure 5.5: Average Session duration and Average energy delivered for a charging
session conducted during different hours.
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Figure 5.5 (a) shows the average session duration of charging sessions in 2019 based on
their connection time. Figure 5.5 (b) display the energy delivered for charging sessions

based on when the EV connected to charge.

In Figure 5.5 (a), it is observed a general trend that EVs connecting between 8 and
10 are left connected for longer than EVs connecting later in the day, and the EVs are
often connected for a duration of about 320 minutes to 350 minutes. This could suggest
that many of the EV owners leave their EV connected during their workday and only
disconnect when they leave work. In Figure 5.5 (b), it is observed that EVs connecting
in the morning between 8 and 10 usually received more energy than EVs connecting in
the other hours of the day. This could be a consequence of EV owners who charge in
the morning leave their EV to be fully charged, while EVs connecting later in the day

only charge the amount necessary to reach another destination.

5.1.4 Average charging session duration

Figure 5.6 shows the average Session duration, and the average Charging duration for

charging sessions in 2019.
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Figure 5.6: The average charging session duration and average charging duration
for charging sessions performed at the ACN.

The figure shows that on weekdays, the average session duration was around 350 minutes.
Of this connected time, only about half was spent charging. On weekends, the average
charging session duration was significantly lower. The charging duration also decreased

on weekends, but only slightly.

Table 5.1 further shows the average charging session duration, and the STD for charging

session duration for each day of the week.
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Table 5.1: Average charging session duration and variation in charging session
duration, for each day of the week.

Variation in charging session duration

‘ ‘ Mon. ‘ Tue. ‘ Wed. ‘ Thu. ‘ Fri. ‘ Sat. ‘ Sun. ‘

344
43.5

357
45.6

359
36.6

354
41.8

360
58.4

225
80.9

208
69.1

Mean [min]

STD [min]

Table 5.1 shows that there was quite a large variation for charging session duration
for the EVs charging at the ACN. Moreover, a greater variation was seen on weekends
than on weekdays. The smaller variation on weekdays, however, could be a consequence
of the majority of EV owners connecting on weekdays used the ACN as a workplace
charging station. Hence, the charging session duration was more dependent of the work
hours of the EV owners, rather than the time needed to charge the EV. The variation
was still quite substantial, which could be due to EV owners working different hours
or that the charging station also was available as a public charging station. As seen
on weekends, when the ACNs charging pattern was mostly representative of a public
charging station, there was a large variation in the charging session duration. This could
imply that charging sessions conducted at a public charging station are more specific to

the energy needs of the EV owner.

5.1.5 Average energy delivered per session

Figure 5.7 shows the average energy delivered in a charging session in 2019.

Average weekly energy demand 2019

Energy [kWh]
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Figure 5.7: Average energy delivered for charging sessions performed at the ACN.

As seen in Figure 5.7, the energy delivered in a charging session on average ranged
between 8 kWh and 11 kWh throughout the week, with the highest averages found
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for Sundays and Mondays. Table 5.2 further display the average energy delivered in a
charging session and the STD for each day of the week.

Table 5.2: Average Energy delivered and variation in Energy delivered per char-
ging session, for each day of the week.

Variation in Energy delivered

‘ ‘ Mon. ‘ Tue. ‘ Wed. ‘ Thu. ‘ Fri. ‘ Sat. ‘ Sun. ‘

Mean [KWh]
STD [KWh]

8.9
1.7

9.1

1.6 1.6 1.8 2.5 3.2 | 3.8

98 | 84 | 81 | 87

11

As shown in both Figure 5.7 and Table 5.2, the charging sessions where the most energy
was delivered were performed during Mondays and Sundays. The lowest average energy
delivered were recorded on Tuesdays and Wednesdays. Table 5.2 further display that
there was a larger variation in Energy delivered for charging sessions performed on
weekends, than on weekdays. On weekends, there was a STD of 3.2 kWh and 3.8
kWh, on Saturdays and Sundays respectively. This variation it could indicate that EV
owners charging on weekends display a more diverse charging behaviour than the EV
owners charging on weekdays. This could reflect the different charging patterns seen for
weekdays and weekends at the ACN. The observations in Figure 5.6 suggested that on
weekdays a majority of the connecting EV owners left their EV to charge when going
to work, while on weekends a majority of EV owners connect to the ACN solely for
the purpose of charging. As discussed when investigating the charging session duration,
the large variation on weekends could be a consequence of the access EV owners had
to charge elsewhere. EV owners charging a large amount of energy on weekends could
have a limited selection of locations to charge, hence have to charge their EV fully at
the ACN. EV owners charging a low amount of energy might only need to charge their
EV to reach another destination, charging their EV fully elsewhere. In addition, fewer
charging sessions were recorded on weekends, hence the diversity of energy demand

became more prevalent on weekends, as indicated with the larger STD in Table 5.2.

To get a deeper understanding of why there is such a large variance in Session duration
and Energy delivered seen in the data, a more thorough understanding of each EV owner
is needed. E.g. where and how they live, what type of EV they drive, and in general a
better understanding of their driving habits. Unfortunately this is not recorded in the

ACN dataset beyond the distinct User id in claimed sessions.
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5.1.6 User-behaviour and smart scheduling

In the previous sections, the user-behaviour displayed by EV owners charging at the
ACN was investigated, by solely looking at the service they were provided by the ACN.
In reality, the investigated user-behaviour might be skewed by the fact that the ACN is a
smart charging station, applying an ASA to schedule charging sessions interactively [22].
The duration an EV spends charging and the energy delivered in a session is heavily
dependent on how the ASA schedules different charging sessions. As explained by Z.
J. Lee et al., the ASA used to schedule charging sessions at the ACN uses user-input
information about how long the EV owners wants to be connected, and how much energy
the EV owners requests, along with measurements from the local grid to schedule the

charging sessions [23].

Figure 5.8 shows the user inputs compared to the service delivered by the ACN for each

day of the week, for sessions performed in 2019.
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(a) Average energy delivered and user-input energy requested for a
charging session each day of the week.
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Figure 5.8: User-inputs compared to the actual recorded user-behaviour at the
ACN. For each day, the average value for user-inputs and average recorded user-
behaviour, across all claimed sessions performed the respective day, is presented.

Figure 5.8 (a) shows the average user-input energy requested, and energy delivered for
a charging session, for each day of the week. The figure shows that there was a large

difference between the Energy requested by EV owners and the Energy delivered by the
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ACN. In fact, from the figure, only about half of the requested energy was delivered
in an average charging session. The reason for this large difference was not explicitly
described in the data, but could be a consequence of the ASA also using measurements
from the grid when scheduling, and that the ASA mainly focused on not breaking grid
constraints. However, as further shown in Figure 5.8 (b), the charging duration was
on average shorter than the user-input Minutes available. This could suggest that, on
average, the ACN was fully charging the connecting EVs before the requested deadline
of delivery, provided by the EV owners. Furthermore, Figure 5.8 (b) also suggests that
the EV owners charging at the ACN on weekdays, on average, left their EV connected
for longer than what they stated. In addtion, on Sundays, the EV owners on average
disconnected before their requested deadline of delivery. Thus, Figure 5.8, does not
mainly indicate that the ASA struggled to delivered the requested energy, but rather

indicates that the user-inputs given to the ASA from the EV owners were inaccurate.

With Figure 5.8 indicating that the user-inputs given by the EV owners were inaccurate,
it becomes important to discuss what consequences this could have for a smart charging
scheme. For example, reflecting on a DLC approach like the ASA used at Caltech.
The ASA takes user-inputs from connecting EVs to schedule charging sessions for all
the connected EVs. The scheduling is done in such a way that it maximises the power
transfer from the station to each EV while not breaking grid constraints [23]. The main
challenge contributed to erroneous user-inputs, therefore becomes that it could affect
the scheduling for other EVs. If an EV owner requests a large amount of energy, the
ASA could be forced to shift more of the charging load, prolonging the charging duration
of other EVs. Hence, EV owners with only a limited amount of time available, might
not receive their requested energy. Moreover, if EV owners stay connected for a shorter
periods than what they state, it could result in EV owners not receiving their requested
energy. On the other hand, if EV owners stay for longer than what they say, it could
prevent other EVs from connecting and charging their EV.

Overall, for the ACN at Caltech, the EV owners on average provide a sufficient amount
of time to fully charge a majority of the EVs connecting. On average, for all days, EVs
are done charging in a shorter period of time than the user-input Minutes available. On
weekdays, EVs stay connected for longer than the stated minutes available which could
potentially prevent other EV owners from charging at the ACN. On weekends however,
EVs usually stay connected for the period stated in the Minutes available. Additionally,
on Sundays, there was also a trend that EVs were connected for an even shorter amount
of time. However, on average, the ASA was still fully able to schedule and fully charge
EVs before the requested deadline of delivery.
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5.1.7 A further look at events changing charging behaviour

Figure 5.9 displays the average daily charging pattern prior to Event 1, the 1. November
2018, and the average charging pattern for the ACN post Event 1.
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(a) Average number of connections and disconnections at the charging
station in 2018.
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(b) Average number of connections and disconnections at the charging
station in 2019

Figure 5.9: Comparison of charging pattern at the ACN before and after a
charging fee of 0.12% was implemented.

The Figure shows that after Event 1, there was a significant reduction in EVs connecting
for all hours of the day. Prior to Event 1, the number of connections peaked in the
morning hours with around 12 connections between 8 and 9. The number of connections
then dropped to around 2 during the day. In the evening, most of the EVs connecting in
the morning started to disconnect and leave. Figure 5.9 (a) then shows that the number
of connections started to increase again, creating another peak in connections at around
18. However, as shown in Figure 5.9 (b) after Event 1, this changed. Firstly, there was
a significant reduction in connections in the morning. The number of connections still
peaked between 8 to 9, however, the the number of connections was reduced to around 6
EVs connecting. Furthermore, in the evening, when the EVs that connected in morning

started to disconnect, there was no longer a significant increase in connections.

The reduction in activity at the ACN in November 2018 could be a consequence of the

introduction of a charging fee at the ACN. The 1. November 2018, a fee of O.le%If,h was

introduced for charging at the ACN [22]. The charging fee created a cost of charging at
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the ACN which was similar to the price of charging at home. According to California
Center of jobs and the economy, and the US Energy Agency, the residential price of
electricity in California was 0.18 % in November 2018 [5]. Post Event 1, and the
introduction of a charging fee, the charging pattern at the ACN became a more distinct
workplace charging pattern. Before the charging fee was introduced, the ACN functioned
as a combined workplace and public charging station. The ACN had a large morning
peak as expected of a workplace charging station, but also a peak in the evening, as
expected from a public charging station (see Figure 2.2). After the fee was introduced,
this peak in connections in the evening disappeared. Thus, Figure 5.9 could suggest
that the introduction of a charging fee led to many of the customers at the ACN, that
did not work at Caltech, either chose to charge at another public charging station, or

delayed charging until they arrived at home.

The second major event that had a severe impact for EV charging at the ACN was
Event 2, distinguished in Figure 5.1. In March 2020, the number of EVs charging at
the ACN drastically reduced, to where there were almost no EVs charging at the ACN.
The impact of Event 2 can be seen for the rest of 2020. Figure 5.10 shows the average

number of EVs connecting each hour in a day post Event 2.
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Figure 5.10: Comparison of charging pattern at the ACN before and after the
COVID-19 pandemic caused a statewide lock down in California.

As shown in the figure, in 2020 the average number of connections each hour in a day
dropped to almost zero. The peak of activity was still in the morning between 7 and
9, however, whereas in 2019 the average number of connection peaked at almost 6 per

hour, in 2020 it was less than 1 EV connecting.

Event 2 could display the impact the COVID-19 pandemic had on the ACN, and the
EV owners charging at the ACN. The 19. of March 2020, Gavin Newsom, the Governor
of California issued an executive order that prohibited large gatherings and called for
California’s residents to stay and conduct their work at home [30]. The executive order
led to Caltech closing down all in-person activity, except for essential work [38]. For

the ACN this meant that workers that usually charged their EVs during weekdays no
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longer drove to Caltech, and instead charged at home, or closer to home. In addition,
EV owners who used the ACN as a public charging station, no longer drove to Caltech

as all residents were encouraged to stay at home [30].

5.2 Analysing user-behaviour in charging groups

After the general charging pattern for the ACN and patterns in the average user-
behaviour was investigated, the focus shifted to analysing if the EV owners could be
categorised into distinct charging groups. The charging groups could then further be
used to investigate if EV owners displayed different user-behaviour characteristics ac-
cordingly. As mentioned, the ACN dataset contains historical charging data, and for
some of the recorded charging sessions, unique user ids and user-inputs were included
(claimed sessions). Using these claimed sessions, it was possible to investigate the fre-
quency EV owners charged at the ACN, thus enabling the possibility to categorise EV
owners into charging groups based on how often the individual EV owners charged at
the ACN.

The number of claimed sessions recorded in the dataset was, however, significantly lower
than the total number of sessions. Hence, to create and analyse charging groups that
were representative of all charging at the ACN, it was important to identify a period
where the number of claimed sessions was similar to the total number of sessions. Figure
5.11 shows the distribution of all sessions and claimed sessions for the entire downloaded

period.
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Figure 5.11: Distribution of charging sessions and claimed charging sessions for
the period 25. April 2018 to 1. January 2021.

The figure shows that only a small part of the recorded charging sessions in 2018, prior
to the inception of the charging fee, were claimed sessions. The reason for this was that
the ACN only started recording user-inputs from EV owners in August 2018 [22]. In
2019 and 2020, most of the sessions were claimed sessions. Thus, for 2019 and 2020,
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it could be assumed that claimed sessions could be used to analyse EV user-behaviour
representative of all EVs charging at the ACN. Unfortunately, due to the effects of the
COVID-19 pandemic, there was overall very few sessions recorded in 2020. This had
a significant impact on the frequency of which EV owners charged. Some EV owners
charged very frequently at the ACN in 2019, distinctly more than others. The COVID-
19 pandemic reduced this frequency, as almost no EV owners frequently connected to
the ACN in 2020. Hence, blurring the boundary between charging groups. Therefore,
for investigating differences in user-behaviour across charging groups, only sessions from
2019 were used. In 2019, most sessions were recorded as claimed sessions and the overall
charging pattern, and user-behaviour was not impacted by any major external event, at

least none seen in the dataset.

5.2.1 Defining the charging groups

Figure 5.12 shows a distribution of the the number of charging sessions recorded for

each unique user id.
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Figure 5.12: Distribution of number of charging sessions per registered EV owner
charging at the ACN in 2019.

Figure 5.12 shows that most registered EV owners charged less than 50 times at the
ACN during 2019. This means, on average less than once a week. Furthermore, the
figure also show that there was a significant amount of EV owners who used the ACN

more frequently.

The EV owners were separated into three distinct charging groups. These groups were
Sparse users, charging less than once a week (<52), Weekly users, charging on a weekly

basis (>52, <104), and Daily users, who charged more than two times a week (>104).
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Table 5.3 gives the number of EV owners falling into each charging group, and the

number of charging sessions performed by each charging group.

Table 5.3: Number of EV owners and number of charging sessions performed by
the EV owners, in each charging group.

EV Charging groups

‘ ‘ All ‘ Sparse ‘ Weekly ‘ Daily ‘

322
8984

24

# of EV users
4054

# Connections

264 34
2473 2457

The general idea of the charging groups was to capture the differences in displayed user-
behaviour of EV owners who used the ACN inherently different. The reasoning behind
Daily users was to capture trends in EV user-behaviour of EV owners who frequented
Caltech, like students and employees. With the Weekly users, the idea was to capture
trends in EV user-behaviour of EV owners who were often in the vicinity of Caltech, for
example, guest lecturers and EV owners who lived nearby. The idea behind Sparse users
was to capture the EV user-behaviour of EV owners who usually did not visit Caltech,
and might have only stopped to charge to be able to reach their final destination. Figure
5.13 further shows the distribution of number of sessions per EV owner categorised in

each charging group.
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Figure 5.13: Relative distribution of number of charging sessions performed by
each EV owner in each charging group.

These three distinct charging groups were further used to investigate whether EV owners

categorised into each group, displayed a distinctly different EV user-behaviour. This was



5.2. ANALYSING USER-BEHAVIOUR IN CHARGING GROUPS 51

analysed by investigating the times they arrived, how long they usually left their EV
connected, and how much energy they charged their EV. Lastly, the charging groups
were also used to investigate if EV owners in each group, overall, provided a different

accuracy for their user-inputs.

5.2.2 Average connection time for the charging groups

Figure 5.14 shows the relative distribution of the average connection time for each EV

owner in each charging group.
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Figure 5.14: Relative distribution of average connection time for the EV owners
in each charging group.

The figure shows that for all charging groups, and all EV owners in total, most EV
owners on average connected their EV to the ACN in the morning between 9 and 11.
However, this was most significant for the Daily users. For Weekly users, the distribution
of arrival times was a little more spread out, with a more rounded peak in the morning.
For Sparse users, there was less of a significant peak between 9 and 11. The connections

were overall more distributed throughout the day.

Overall, with the distribution of the connection times, it was possible to see how the
EV owners in the different charging groups on average used the ACN. The distribution
for the Daily users suggested that most of these Daily users utilised the ACN as a
workplace charging station, connecting their EV when arriving at work in the morning.
However, the distribution also identified that a small portion of the Daily users that
on average connected later in the day between 16 and 17. This could suggest that

within the Daily users charging group, there were at least two groups of EV owners
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displaying dissimilar behaviour when it came to connection time. For Sparse users, the
distribution displayed that Sparse users connected more spread out throughout the day,
and the observed distribution was similar to that expected for a public charging station,
as seen in Figure 2.2. The Weekly users were somewhere in between, with a large portion
of the Weekly users connecting in the morning, but still a substantial share connecting
later in the day. This could suggest that the connection time might not be a defining

characteristic trend for EV owners categorised as Sparse users and Weekly users.

5.2.3 Average charging session duration for charging groups

Figure 5.15 shows the relative distribution of the average session duration for each EV

owner in each charging group.
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Figure 5.15: Relative distribution of the average Session duration for the EV
owners in each charging group.

The figure shows that the average duration each EV owner left their EV connected,
varied between the charging groups. In Figure 5.15, the distribution of the measured
session duration is shown. As visualised, the Daily users tended to leave their EV
connected for longer than the other groups. For Daily users there were two distinct
peaks in the distribution. One for Daily users leaving their EV connected between 300
minutes and 350 minutes, and a larger one for Daily users leaving their EV connected
between 450 minutes and 500 minutes. For Weekly users, there were also two peaks in
the distribution, a smaller one between 100 minutes and 150 minutes, and larger peak
between 320 minutes and 370 minutes. For Sparse users, most of the EV owners on
average left their EV connected between 100 minutes and 150 minutes. However, the

distribution for Sparse users also displayed that a significant amount of Sparse Users left
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their EV connected for longer, and some even left their EV connected for 700 minutes

or more.

Figure 5.16 shows the relative distribution of the average user-input minutes available

for each EV owner in each charging group.
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Figure 5.16: Relative distribution of the average user-input minutes available
from the EV owners in each charging group.

The distribution for minutes available seen in Figure 5.16, varied significantly from
the distribution of the actual recorded session duration (see Figure 5.15). From the
distribution, it was found that Daily users tended to provide a shorter duration than
what they actually left their EV connected. The minutes available provided by Sparse
users on the other hand, tended to be a longer duration than what they actually left
their EV connected. For the Weekly users, the distribution shows that most of the
Weekly users, either left at a similar time to what they stated in the user-inputs, or

disconnected prior to their stated departure time.

Overall, Figure 5.15 and Figure 5.16 shows that the distributions for Sparse and Weekly
users have two peaks around significantly different durations, both for the session dur-
ation, and the minutes available. This could suggest that within these two charging
groups, there were groups of EV owners displaying a distinctly different user-behaviour
at the ACN. This could be the difference between EV owners who are able to charge
their EV at home, and those who are not. For the Daily users there were also two peaks
in the distributions. These peaks could be a consequence of, for example, Daily users
owning EVs with different battery packs, or Daily users who attend Caltech and have

different work schedules.
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5.2.4 Average energy delivered for the charging groups

Figure 5.17 shows the relative distribution of the average energy requested for each EV

owner in each charging group.
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Figure 5.17: Relative distribution of the average Energy delivered to the EV
owners in each charging group.

Figure 5.17 shows that for daily users there were two distinct peaks for the average
energy delivered, per charging session. One peak around 5 kWh and one around 10 kWh.
For the Sparse and Weekly users however, there was a wider peak in the distribution
ranging from around 5 kWh to around 10 kWh. The distribution also identified a small
share of the Sparse and Weekly users that on average received significantly more energy,

receiving between 40 kWh and 45 kWh on average per charging session.

Figure 5.17 displays that there were two peaks in the distribution for daily users. The
larger of these peaks indicated that more of the Daily users requested less energy than
the majority of the EV owners in the other groups. This could be a consequence of
that these EV owners charged their EV often, and due to their driving habits therefore
required less energy to charge their EV each time they charged. The smaller peak,
around 10 kWh delivered on average per charging session, indicate that a significant
share of Daily users charged their EV with a similar and slightly larger amount of energy
than the EV owners in the other charging groups. This could be a consequence of the
distance these EV owners had to commute to arrive at the ACN or driving could be a

part of their job.

Figure 5.18 shows the relative distribution of the average user-input energy requested

by EV owners in each charging group.



5.2. ANALYSING USER-BEHAVIOUR IN CHARGING GROUPS 55

Relative distribution of Energy requested
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Figure 5.18: Relative distribution of the user-input energy requested from the
EV owners in each charging group.

From the distributions in Figure 5.18 and Figure 5.17, it was found that all EV owners,
on average asked for more energy than what they received. For all groups, most EV
owners requested between 10 kWh and 15 kWh as seen in Figure 5.18. However, there
was also a significant amount of EV owners in each of the charging group that asked for
more than this. For both Weekly and Sparse users, there were multiple EV owners that
on average, asked for upwards of 55 kWh to 60 kWh. The Weekly users that requested a
high amount of energy, did this on a regular basis, as all of the Weekly users had charged
more than 52 times in 2019. The Sparse user distribution however, was based on much
fewer observations per EV owner, thus the mean value used to represent a Sparse user

were more exposed to outlier values.

Overall, Figure 5.17 and Figure 5.18 did not identify an inherently different behaviour
when it came to the energy demand of the EV owners. The distributions for the Daily
users were more concentrated than for the other charging groups, but the majority of EV
owners in each group both asked for and received a similar amount of energy, compared
to the resolution of the distribution. As the distributions were made to capture every
EV owner, the distributions became general and skewed due to some EV owners both
received and requested very large amounts of energy compared to other EV owners. It
is possible that if some of these EV owners were filtered out in the pre-processing, it

could have been easier to identify and describe more differences.
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5.2.5 Error in user-inputs for the charging groups

Figure 5.19 show the relative distribution in MAE for the user-input minutes available

for each EV owner in each charging group.
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Figure 5.19: Distribution of MAE in user-input minutes available from the EV
owners in each charging group.

From the distribution in Figure 5.19, it was found that the Daily users overall provided
the highest MAE of all the charging groups. For the Daily users, the distribution peaked
at a MAE around 120 minutes to 150 minutes, however, some Daily users also provided
a Minutes available with a higher MAE, as identified by a smaller peak at around 270
minutes to 310 minutes. On the other hand, the charging group providing the most

accurate overall user-inputs, with the lowest MAE, were Sparse users.

It is however important to note that the error provided in the user-input minutes avail-
able from the Daily users, was mainly due to the Daily users leaving their EV connected
for longer than stated. For the Sparse users, the error was mainly due to Sparse users dis-
connecting before the stated departure time in the user-input minutes available. Thus,
for scheduling the charging sessions, the error in the Sparse users’ user-inputs could lead
to Sparse users leaving before they received their requested energy. The Daily users on
the other hand, could prevent other EV owners from charging at the ACN, as Daily
users usually left their EV connected for longer than what they stated.

Figure 5.20 shows the relative distribution in MAE of the user-input energy requested

for the EV owners in each charging group.
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Figure 5.20: Relative distribution of MAE in user-input energy requested from
the EV owners in each charging group.

Figure 5.20 shows that charging groups had a similar distribution of MAE for the user-
inputs from the EV owners, with respect to the requested energy. The distribution for
MAE for all three groups peaked at around an MAE of 4 kWh to 6 kWh. It was observed
in Figure 5.17 and Figure 5.18 that this error in the requested energy was mainly due

to EV owners requesting more energy than what they received.

Overall, the analysis of variation in energy demand between charging groups was weakened
by EV owners requesting and receiving large amounts of energy. However, the error in
the user-inputs could still provide some insight into the EV user-behaviour seen at the
ACN. It was observed that the most EV owners generally requested more energy than
they received both in Figure 5.8 and Figure 5.20. Moreover, Figure 5.8 suggested that
EVs charging at the ACN was on average fully charged before they disconnected. Ad-
ditionally, in the pre-processing, only 1152 samples from the entire sample pool where
identified to not have a Done charging time. This could suggest that the EV owners that
charged at the ACN did not understand how much energy was needed to charge their
EV in terms of kWh, which they were requested to provide. Hence, most EV owners
requested a large amount of energy, as a way to ensure that their EV was fully charged.
It is possible that encouraging the EV owners to input a measure of how much energy
they want in terms of something they can more easily relate to, like what is displayed on
the dashboard in their EV, could improve the accuracy of the user-inputs. E. g. it could
be interesting to investigate if asking the EV owners for a requested state-of-charge

instead of a specific amount of energy could lead to a higher accuracy.
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5.2.6 Weaknesses and improvements for the charging groups

Overall, the defined charging groups gave some insight into how EV user-behaviour var-
ied for EV owners that charged at the ACN. However, as was found when investigating
the relative distributions, the charging groups were too general to accurately separate
EV owners. E.g. when investigating the connection time, at least two groups were found
within the Daily users group, and no distinct patterns were found for Sparse and Weekly
users. Likewise, when investigating the session duration, at least two groups were iden-
tified within each of the charging groups. This could suggest that purely separating the
EV owners based on the number of charging sessions they performed, did not accurately
distinguish the charging groups. Additionally, the resolution of the distribution for en-
ergy requested became too general to identify differences between the charging groups.
A reason for this could have been that it was decided to not filter out charging sessions
with abnormally large values in the Energy requested feature. Another weakness of
the analysis of charging groups was that each EV owner was only represented by their
average behaviour based on all their charging sessions. For this to be accurate, it relies
on EV owners charging their EV in a distinct and repetitive manner across all sessions.
In reality, this might not be true. It could be interesting and beneficial to investigate
how diverse the charging sessions of EV owners are. Lastly, the Sparse users charging
group consisted of a majority of EV owners that only charged 2 to 4 times during the
entirety of 2019. Attempting to analyse the user-behaviour of an EV owner with such
an inadequate amount of data is unlikely to represent the general charging behaviour of
the EV owners.
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5.3 Predicting EV user-behaviour with Machine

Learning

Due to the increasing focus of utilising Machine Learning and Big data analytics, for
solving the EV charging problem, and for modelling the EV charging load, it was at-
tempted to use the data available in the ACN dataset to predict some aspects of EV
user-behaviour. Machine Learning models were built for predicting the expected session
duration and the expected energy delivered in a charging session, using two different
subsets of the ACN dataset.

The results from the Machine Learning was compared with the user-inputs to investigate
which gave the most accurate depiction of the observed session duration and energy
delivered. Finally, the most reliable model for predicting session duration, and the most
reliable model for predicting energy delivered were used to identify features that had

the most significance for the performance of the models.

5.3.1 Predicting Session duration

Five Machine Learning models were trained for predicting session duration, using two
different subsets of the ACN dataset. One subset only providing the connection time
and the weekday dummy features, and one providing some additional information about
the EV connecting. This additional information consists of the User id feature and the
Energy requested feature. Figure 5.21 shows the overall performance when training and

predicting on new data, represented with an R2-score.
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Figure 5.21: Performance of the supervised learning regression models predicting
session duration. The figure displays the R2-score for training and predicting for
a 5-fold cross-validation for each model.

Figure 5.21 displays the R2-score for training (orange) and predicting (purple) achieved

in a 5-fold cross-validation for each model. Figure 5.21 (a) visualises the performance
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of the models when trained and tuned, using only information about the connection
times. Overall, the models had a similar performance for training and predicting on
new data, achieving a poor R2-score for both. The KNN model, the DT model and the
RF model had superior performance, achieving an R2-score of around 0.30. Figure 5.21
(b) visualises the performance of the models when trained on a larger subset of the ACN
dataset. This larger subset providing more information about the EV owner connecting
and the requested energy, led to a significantly better R2-score for all models. The RF
model gave the highest performance overall, with a R2-score of around than 0.50 when
predicting on new data. This was significantly better than when trained on the smaller

subset.

Figure 5.21 also indicate how well each of the models generalised when introduced to
new data. Figure 5.21 (a) show that none of the models were suffering from overfitting
when trained on only the connection times. For all models, the training and prediction
scores were similar for all cross-validation folds. This meant that the models were able to
apply the found relationship to predict the target variables when input new data, with a
similar performance to when training. However, the reason for this might be that none
of the models found a clear relationship, as the overall performance was quite poor.
In Figure 5.21 (b) however, overfitting became more prevalent with the larger subset.
Except for the OLS model, all the other models displayed a tendency to overfit, with a
higher R2-score for training than when predicting. The clearest overfitting model was
the KNN model. On the smaller subset, with only connection times, the KNN model
had a similar R2-score for training and predictions, but when trained on the larger
subset with more information, the model overfitted heavily. As a consequence of the
overfitting, the R2-score for the KNN model for training was 1.0, while for predictions

it was around 0.50.

It was attempted to reduce the overfitting of the KNN model by increasing the number
of neighbours used to predict, but with no success. The R2-score for training remained
at 1.0, even with 'k neighbours’ increased to a high number, like 100, 200 and even 500.

The only observed impact was a reduced R2-score for predictions.

5.3.2 Predicting Energy delivered

Five machine learning models were trained for predicting the expected energy delivered
for a charging session, using two different subsets of the ACN dataset. One subset
providing only the connection time and the weekday dummy features. The other subset
providing some additional information about the EV owner connecting, namely, the
User id and Minutes available features. Figure 5.22 shows the overall performance when

training and predicting on new data, represented by a R2-score.
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R2 score: Predicting energy delivered R% geore: Predicting Energy delivered with user-inputs
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Figure 5.22: Performance of the supervised learning regression models predicting
Energy delivered. The figure displays the R2-score for training and predicting for
a 5-fold cross-validation for each model.

Figure 5.21 (a) visualises the performance of the models when trained and tuned using
only information about the connection times. Overall, the models, similarly to the
models predicting session duration, gave poor performance, achieving a low R2-score.
The models were even more limited in their capacity to model a relationship between
the input data and target variable 'Energy delivered’, than the target variable ’Session
duration’ This was indicated by all models achieving a R2-score lower than 0.1, across
all five folds of the cross-validation, both for training and predicting. None of the models
displayed any significantly better performance than the others, and they all struggled
to model a relationship, which was reflected by the poor R2-scores. Figure 5.21 (b)
visualises the performance of the models when trained on the larger subset of the ACN
dataset. This larger subset providing the User id feature and the Minutes available
feature, led to a significantly improved R2-score for all models. As can be seen from
Figure 5.21, all models achieved a greater R2-score, but more significantly, some of the
models went from not modelling a accurate relationship at all, to achieving R2-scores
higher than 0.50. The best performing models were the RF model and the DT model.

As seen from Figure 5.21 (b) training the models on a larger subset of data, made
some of the models overfit, most distinctly the KNN model. During training the KNN
model achieved a R2-score of 1.0. Seemingly modelling a perfect relationship between
the input data and the target variables. However, when introduced to new data, the
R2-score was only around 0.40. This suggested that this KNN model was also severely
overfitting when used with the larger subset. Tuning the KNN model did not reduce
the overfitting, however it reduced the R2-score when new data was input. The fact
that the KNN models overfitted for both cases where the larger subset was used, could
suggest that some of the features that was included in the larger subset could have a

high correlation with the target variables.
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5.3.3 Comparison of predictions and user-inputs

Overall, the Machine Learning models achieved a limited R2-score, and were unable
to produce accurate predictions for session duration and energy delivered. This was
however also the case for the user-inputs provided by the EV owners at the ACN. As
found both when investigating charging groups and investigating user-behaviour at a
general station level, user-inputs where also quite inaccurate compared to the service
delivered by the ACN. Therefore, it was investigated if the accuracy of the predictions
from the best performing Machine Learning models, either rivalled the accuracy of the

user-inputs, or actually gave better estimates.

The best performing Machine Learning models for predicting the session duration and
the energy delivered were both found to be RF models. Table 5.4 shows each of the RF

models with the parameters found in the grid search.

Table 5.4: Overview of the best performing models with the tuned parameters
found in the grid search.

Tuned RF models:

RF model for predicting Session duration

Value 9 3 10 MSE 100

Parameter | Maz depth | Min sample split | Min sample leaf | Criterion | # estimators

RF model for predicting Energy delivered

Value 9 2 10 MSE 100

Parameter | Max depth | Min sample split | Min sample leaf | Criterion | # estimators

The MAE for the predictions for the models presented in Table 5.4, are further given in
Table 5.5, along with the MAE for the user-inputs.

Table 5.5: MAE of predictions from the supervised regression models and the
user-inputs.

Comparison of predictions and user-inputs

‘ ‘ Predictions ‘ User-input ‘

MAE Session Duration [min]

MAE Energy delivered [kW h] 4.0 9.2

104 149

In Table 5.5, the MAE for the user-inputs is the difference between the minutes available

feature and the observed session duration feature, and the difference between the energy
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requested feature and the observed energy delivered feature. Although the MAE for
predictions was quite large, with an MAE of 104 minutes for session duration and 4.0
kWh for energy delivered, the MAE for predictions were significantly lower than for
the user-inputs. Compared to the observed session duration and energy delivered, the
user-inputs had an MAE of 149 minutes and 9.2 kWh for minutes available and energy

requested, respectively.

The RF models were actually able to produce more accurate estimates of the session
duration and the energy delivered, than the user-inputs, when using the data available
in the ACN dataset. This indicates the potential for applying Machine learning to the
smart charging scheme utilised at the ACN. By improving the models further, they could

potentially be to used for smart charging accompanied by a smart scheduling algorithm.

5.3.4 Identifying important factors for user-behaviour

The final investigation of the Machine Learning models was focused on identifying fea-
tures that were important for the performance for the models. This could be interesting
for station operators or other researchers who desire to build datasets to analyse and

model EV user-behaviour further.

To identify important features from the Machine Learning, only the the RF models were
investigated as they achieved the highest R2 score for both predicting session duration
and energy requested. With the RF model provided in the Sci-kit learn library, it was
possible to retrieve feature importances that displayed how important each feature was
for the performance of the model. The calculated feature importances sums to one,
and the importances are distributed to the features based on the average accumulated
impurity decrease each feature is responsible of in the DTs in the RF model [36]. It is
however important to note that due to the limited R2-score achieved for predictions with
the RF models, the feature importances that were found could be inaccurate. This is
because the R2-score describes the amount of variance in the target variable the model
is able to find with the variation in the provided features. As the R2-score was only
about 0.50 for each model, the models were only able to find a relationship describing
about half of the variation in the target variables. Thus indicating that there could be

other features that are of more significance for explaining the true target variables.

Figure 5.23 shows the feature importances for predicting the Session duration with the
tuned RF model.
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Figure 5.23: Feature importances for the performance of the Random Forest
regression model predicting session duration.
The figure shows that the most important features for the performance of the RF model,
was 'Connection time’, "User id” and "Energy requested’. The most important feature was
'Connection time’, with a calculated importance of around 0.48, followed by the "User
id” with an importance of around 0.25, and "Energy requested” with an importance of
around 0.18. In addition to this, some importance was attributed to the Saturday and

Sunday features.

Figure 5.24 gives the feature importances for predicting energy delivered with the tuned
RF model.

Feature importances for predicting Energy delivered
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Figure 5.24: Feature importances for the performance of the Random forest
regression model predicting energy delivered.



5.3. PREDICTING EV USER-BEHAVIOUR WITH MACHINE LEARNING 65

The figure shows that the most important features were the 'User id’, the 'Minutes
available” and the 'Connection time’. The 'User id’ was attributed the greatest feature
importance with around 0.48, followed by 'Minutes Available’ with around 0.41, and
‘Connection time’ with around 0.10. For predicting energy delivered, the Weekday

features were observed to have little importance.

Overall, the feature importances were coherent with the other discoveries in the other
parts of the analysis. For the connection time, it was found when investigating the
general charging pattern across all charging sessions, that the duration an EV was
connected to the ACN was influenced by when the EV connected. In Figure 5.5 it
was observed that EVs connecting in the morning hours between 8 and 10 usually left
their EV connected for longer than the EV owners connecting later in the day. The RF
model predicting session duration also found that weekends had some significance. This
could be a consequence of the observations in Figure 5.6. Figure 5.6 indicate that, on
average, EV owners left their EV connected for longer on weekdays than on weekends.
Similarly, none of the features giving weekdays showed any significant importance for
predicting energy delivered could be reflected in Figure 5.7. Figure 5.7 did not indicate
that there was a significant dependency for weekdays or weekends on how much energy
an EV received during a charging session. Furthermore, the User id was found to have
a relatively large importance for both predicting session duration and energy delivered.
When investigating charging groups, it was found that EV owners charging at different
frequencies at the ACN displayed different behaviour when it came to connection time
and session duration. This could be a reason for the importance of the User id feature,
as during training, the RF model could capture the pattern of distinct groups of users

that either display similar or dissimilar user-behaviour.

Finally, to summarise the factors that were found to display the highest impact and
descriptive value of the EV user-behaviour observed at the ACN. The observations
in this thesis, using the ACN dataset, suggests that the most valuable information for
explaining EV user-behaviour were captured in 3 distinct features. The "User id’ feature,
which made it possible to separate between the EV owners charging at the charging
station. The "Connection time’ and 'Disconnect time’ features, which made it possible
to track how long EV owners left the EV connected. Additionally, when investigating
Event 1 in Figure 5.9, it was observed that the introduction of paid charging could have
had an impact on the EV owners charging at the ACN. Thus, suggesting that logging a

price for charging for each charging session could also be of interest.






6. Conclusion

To conclude, in this thesis, it was conducted a data search to create an overview of
some open source EV charging datasets. In addition, a data-driven analysis of EV

user-behaviour was conducted using one of the datasets identified in the data search.

The data search identified four sources of charging data from four different countries.
These data sources were the ACN-dataset from Caltech in California [22] , the Elaad
dataset provided by Elaad.NL in the Netherlands [11], the Ireland and Northern Ireland
dataset provided by J. Burkin [4], and the NOBIL database in Norway [21].

The first part of the analysis investigated the charging station at an aggregated level, try-
ing to identify significant events that had a long-term impact on the charging activity at
the ACN, a charging pattern, and general trends from the observed EV user-behaviour.
Two major events that had a long-term impact on the ACN, were identified. One event

in November 2018 and one in March 2020. These events could be consequences of

8
kWh

of the lockdown caused by the COVID-19 pandemic 19. March 2020. The identified
charging pattern at the ACN was based on an average across all charging sessions con-
ducted in 2019. It was observed that the charging pattern at the ACN had a significant

weekday-weekend variation, and was mostly representative of the charging pattern ex-

the implementation of a 0.12 charging fee the 1. November 2018, and the impact

pected for a workplace charging station. Furthermore, investigating the aspects of EV
user-behaviour on a general level, found that the EV owners charging at the ACN mostly
left their EV connected for significantly longer than the period it took to charge their
EV. Further investigating the user-inputs also found that EV owners tended to leave
their EV connected for longer than their requested connected time. When investigating
the energy demand at the ACN, it was observed that the EV owners in general asked
for more energy than the ACN was able to provide. This could be due to the ACN
not being able to provide the desired service. However, based on the observations, the
discrepancy between the requested energy and the delivered energy was most likely due

to EV owners requesting more energy than their EVs could receive.

In the second part of the analysis, it was attempted to categorise the EV owners at the

ACN into three distinct charging groups. The charging groups were based solely on the

67



68 CHAPTER 6. CONCLUSION

frequency of which the EV owners charged. It was found that the EV owners categorised
into the three charging groups displayed a different behaviour when in it came to time
of connection and how long they left their EV connected. The most frequent users, the
Daily users, usually connected in the morning between 9 and 11, while the EV owners
in the other charging groups usually connected more spread out through the day. It
was also found that the Daily users tended to leave their EV connected for longer
than the other groups. The charging groups were, however, found to be too general
and not able to separate the EV owners accurately. For both Connection time, and
Session duration, multiple groups of EV owners were found within each charging group
and when investigating differences in energy demand between the charging groups, the

analysis was unable to identify any major differences.

In the third part of the analysis, it was attempted to predict aspects of EV user-
behaviour with Machine Learning. Namely, the duration of a charging session and
the energy delivered in a charging session. Overall, the Machine Learning models were
unable to give accurate predictions for both charging session duration and energy de-
livered. The best models for both cases were found to be RF-models each achieving a
R2-score of around 0.50. However, compared to the accuracy of the user-inputs, the
RF-models’ predictions were more accurate. For Session duration the user-inputs had
an MAE of 149 min, while the predictions of the respective RF model had an MAE
of 104 min. For Energy delivered, the user-inputs had an MAE of 9.2 kWh, while the
predictions of the respective RF had an MAE of 4.0 kWh.

With the observations from all three parts the analysis, factors that could be interesting
to record at a charging station, for the purpose of creating datasets to analyse EV user-
behaviour, were proposed. These factors were the connection and disconnection time,
marking the duration of a charging session, an id to separate between the EV owners

performing the charging sessions, and the price of charging for each charging session.



7. Further work

Overall, this thesis provided a data-driven analysis investigating some aspects of EV
user-behaviour at a charging station. However, there were several aspects of the ana-
lysis that could be improved or elaborated as part of a further work. Firstly, the charging
groups that were used in this analysis were found to be limited in their capacity to sep-
arate the EV owners. It could be possible to apply unsupervised learning and clustering
to improve the charging groups. With clustering, it would be possible to create more
advanced charging groups which could enable a more detailed and accurate separation
of EV owners. Secondly, the machine learning in this thesis attempted to predict the
recorded Session duration and Energy delivered for charging sessions. To do this, Ma-
chine Learning models were trained on the information in the ACN dataset, including
information from the user-inputs. It was however, observed that the user-inputs could
be inaccurate. Thus, another suitable application for Machine learning on the ACN
dataset could be to attempt to predict the error in the user-inputs instead. Finally, as
the continued electrification of the transport sector is set to continue and introduce a
more widespread access to EV fast charging stations, it would be beneficial to analyse
EV user-behaviour using data record at a fast charging station. With access to data re-
corded at the D.C. fast charging station available at the ACN, it could be interesting to
analyse the differences in how the EV owners at the ACN utilise the fast charging station
compared to the Level 2 charging stations. Similarly, a comparison of user-behaviour of
fast charging stations and Level 2 charging stations could possibly be conducted with

data from one of the other data sources that were presented in this thesis.
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