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Summary

Introduction Previous studies on influenza and adverse birth outcomes have pro-

duced conflicting results. Individual-level studies can be biased since only the women

who seek medical care for their symptoms are registered with influenza, and women

with a mild influenza infection are less likely to be classified as influenza cases. I used

time series analysis to study the association between influenza circulation and the risk

of preterm birth and early pregnancy loss in Norway.

Materials and methods Influenza surveillance data was collected from the Norwe-

gian Institute of Public Health (NIPH), and birth data from the Medical Birth Registry

of Norway (MBRN). Poisson regression with cubic splines and regression with ARIMA

errors was used to model preterm birth rates and estimate the effects of influenza cir-

culation on these rates from 2006 to 2018. Two approaches were used to model the

expected birth rate from 2001 to 2019, and to estimate any excess or deficits in births.

Results Some association was found between influenza circulation and preterm (<37

weeks) and very preterm (<32 weeks) birth, but it was not robust with different models,

data sources for influenza circulation, and in sensitivity analysis. A small birth deficit

was found in August of 2004, and an excess of births in late 2009.

Discussion The increased risk that was found for preterm birth with increasing in-

fluenza circulation in early pregnancy was not confirmed by all the models. But time

series analysis may not capture small effects, and perhaps there could be a small effect

of mild influenza on the risk of preterm birth in reality. The birth deficit found in 2004

may be a result of early pregnancy loss due to influenza, but was not found in any other

influenza seasons. The excess of births in 2009 could correspond to more preterm births

during the 2009 pandemic, but it is also likely that other causes are the reason for this

excess.

Conclusion Little to no association was found with mild influenza illness and the

risk of preterm birth or first-trimester miscarriage.
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Sammendrag

Introduksjon Effekten av influensa på fødselsutfall er uklar, og studier av dette har

funnet motstridende resultater. Studier på individnivå kan feilklassifisere hvilke kvinner

som har hatt influensa, fordi kun de som har oppsøkt lege med influensasymptomer blir

registrert med influensa. Dermed vil de som opplever få eller ingen symptomer ha lavere

sjanse for å bli klassifisert som influensatilfeller. I denne masteroppgaven brukte jeg tid-

srekkeanalyse for å utforske sammenhengen mellom influensasirkulasjon i samfunnet, og

risiko for prematur fødsel og tidlig spontanabort i Norge.

Materialer og metoder Data om influensaovervåking ble hentet fra Folkehelsein-

stituttet (FHI), og fødselsdata fra Medisinsk Fødselsregister (MFR). Poisson-regresjon

med tredjegrads splines og regresjon med ARIMA-feilledd ble brukt for å modellere pre-

mature fødselsrater og estimere effekten av influensasirkulasjon på disse ratene fra 2006

til 2018. To metoder ble brukt for å modellere forventede fødselsrater, og studere om

avvikene samsvarer med tidlige spontanaborter i en influensaperiode fra 2001 til 2019.

Resultater Noe økt risiko ble funnet for prematur (<37 uker) og veldig prematur

(<32 uker) fødsel ved økt eksponering av influensa. Men det gjaldt ikke for alle model-

lene eller med forskjellige datakilder for virusovervåking. I august i 2004 ble det funnet

noe færre fødsler enn forventet, og flere enn forventet i slutten av 2009.

Diskusjon Den økte risikoen som ble funnet for premature fødsler ved økende influ-

ensasirkulasjon i samfunnet ble ikke bekreftet i sensitivitetsanalyser. Dersom influensa

i virkeligheten har en positiv, men svak effekt på risiko for premature fødsler, kan det

hende at denne effekten ikke blir fanget opp i en tidsrekkeanalyse. At det ble født færre

barn enn forventet i 2004 samsvarer med tidlige spontanaborter i en influensasesong,

men dette funnet ble ikke bekreftet i andre sesonger. Det ble funnet flere fødsler enn

forventet i 2009, og dette kan samsvare med at det var flere premature fødsler under

svineinfluensaen, men andre årsaker til dette fødselsoverskuddet er like trolig.

Konklusjon Lite til ingen sammenheng ble funnet mellom mild influensasykdom og

risiko for prematur fødsel eller tidlig spontanabort.
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1. Introduction

1.1 Motivation

Pregnant women may be more susceptible to severe infectious disease [1], and knowledge

about how this affects the pregnancy can help prevent adverse birth outcomes. Infectious

diseases can have a large impact, both health-wise [2] and economically [3]. Influenza

will for many people manifest in a harmless disease, but for certain risk groups, like

patients with chronic diseases, elderly, or any person with an increased susceptibility for

infections, it can cause severe illness or death [2]. Pregnancy generally makes a woman

more vulnerable, which can put her and her fetus at risk of adverse outcomes following

an infection [1]. Influenza is a common disease, Hayward et al. [4] found that 18%

of the British population was infected on average each winter, suggesting that many

pregnant women go through an influenza infection during pregnancy. Knowledge about

how influenza infections affect pregnancy and the fetus is important to prevent adverse

outcomes.

1.2 Influenza virus

Influenza virus is an RNA virus, typically divided into types A, B, C, and D [2]. Types

A and B are most common in humans and cause seasonal epidemics. Influenza type A is

classified after the proteins neuraminidase (NA) and hemagglutinin (HA) that lie on the

surface of the virus. Type A is the only type that is known to have caused pandemics.

The Spanish flu in 1918 and the swine flu in 2009 were both caused by influenza virus

A(H1N1). Influenza is characterized by symptoms like fever, cough, sore throat, muscle

pains, and headaches. For most people, influenza symptoms pass after a week, but some

1



2 CHAPTER 1. INTRODUCTION

experience a more severe infection. The World Health Organization (WHO) estimates

that influenza causes between 290 000 and 650 000 deaths annually. Influenza usually

occurs every year in the winter season, but this pattern varies between different regions.

In Norway, influenza virus mainly circulates during the winter season. Hauge et al.

[5] found that an average of 1.7% of the Norwegian population was diagnosed with

influenza-like illness (ILI) in primary care every season between 2008 and 2017. The

number was higher (3.9%) in 2009/2010 due to the pandemic. The same study also found

that the mean number of hospitalized patients each season was 2470 with a mean age of

56 years, and an average of 3% of these died in hospital. Many influenza-related deaths

are not registered with influenza as the cause of death. Gran et al. [6] estimated excess

deaths due to influenza, using information on influenza activity and the reproduction

number R. They found that 910 deaths per season were due to influenza. The 2009

pandemic had a higher count of younger age groups hospitalized where the average age

of influenza-related deaths was 47 years [5]. The medical burden of both seasonal and

pandemic influenza can be high, which also leads to large economic costs. An estimation

of the direct costs of influenza in Norway was made to 22 million dollars a year, and

the number of workdays lost in a year was predicted to 793 000 days [3]. During a

pandemic, it would be even more. Another potential cost of influenza is the effects on

pregnancy and fetuses.

1.3 Influenza in pregnancy

Several physiological changes occur in the woman during pregnancy, and many infections

may have a more severe course of disease in pregnant women [1]. Complications can also

affect the fetus, and in the worst case lead to miscarriage or permanent injury of the

mother or child. One possible complication is preterm birth, that the child is born too

early. It can be a challenging start in the life of a baby, and the survival rate is lower

for young children after a preterm delivery [7]. It has also been found that preterm

birth can have consequences later in life, with increased risks of death by cardiovascular

disease, diabetes, and chronic lung disease [8]. Moster et al. [9] also found that shorter

gestational age was associated with medical and social disabilities. Because of these

possible consequences, it is important to know what can increase the risk of preterm
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birth.

Influenza infection during pregnancy may lead to adverse outcomes. In a review of

studies on maternal and fetal outcomes following influenza infection, several studies

found an increased risk of being hospitalized among pregnant women relative to the rest

of the population [10]. Among hospitalized pregnant women, there was an increased

risk of preterm birth. In outpatients, i.e. those who were not admitted to hospitals,

influenza was not found to increase the risk of preterm birth. Fell et al. [11]’s review of

maternal influenza and birth outcomes found several studies that reported an increased

risk of preterm birth following severe maternal illness caused by the 2009 pandemic.

However, the evidence on mild to moderate maternal influenza illness and preterm

birth was limited. Richards et al. [12] found an increased risk of preterm births among

unvaccinated women during the 2009 pandemic, suggesting that pandemic influenza

increases the risk of preterm birth. Gunnes et al. [13] and Håberg et al. [14] found an

association between maternal influenza during the 2009 pandemic and an increased risk

of fetal death. Some increased risk of adverse birth outcomes has been found with severe

seasonal influenza or pandemic influenza, but less is known about how mild symptoms

affect birth outcomes.

A few studies assessed the association between influenza and adverse pregnancy out-

comes using an ecological design, a study at the population level. Fell et al. [15] found

no association with influenza and preterm birth, stillbirth, and perinatal death using

a time series analysis. Rasmussen et al. [16] also used an ecological design and found

no association with spontaneous abortions or stillbirths. Bloom-Feshbach et al. [17]

investigated the 1918 pandemic and found a depression of birth rates following the pan-

demic, followed by a sudden increase. Studies at the population level can be useful at

measuring the effects of mild influenza disease on adverse pregnancy outcomes.

1.4 Measuring influenza

Using individual-level data when studying the association of influenza and adverse birth

outcomes can lead to an information bias, i.e. errors in collecting information about

exposure or outcome variables [18]. In general, only women who were diagnosed with
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ILI after seeking medical care are included as influenza cases. Thus, the women who

are classified with ILI are more likely to be severe influenza cases, because they have

to seek medical care for it, while women with mild influenza illness are less likely to be

included among influenza cases. Accurate numbers on influenza cases can be difficult

to obtain, because many who have an influenza infection experience mild symptoms or

can be asymptomatic [4], showing no symptoms at all. They will then not be officially

diagnosed with it, and are not counted as influenza cases even though they might have

gone through a mild or asymptomatic infection. And in the case of pregnant women,

those who are more likely to have adverse pregnancy outcomes, because of other risk

factors, may be more likely to seek medical care. This can lead to a bias in individual-

level studies since more women who are at risk of adverse birth outcomes are more

likely to be classified as influenza cases than those who are less at risk. This can make it

difficult to look at the consequences of mild influenza infections in the whole population

of pregnant women, and not just those who are more at risk of severe illness and adverse

pregnancy outcomes. An approach that can be used to include the whole population is

an ecological design, using time series analysis.

Time series are observations that are collected at equal time intervals. A single time

series can be used to study patterns or predict future observations, or multiple time

series can be used to study associations. The association between influenza virus and

birth outcomes can be studied using time series analysis. The circulation of influenza

virus in the general population can be used as a measure of influenza exposure for

pregnant women, and the association with incidences of adverse pregnancy outcomes

can be studied.

In Norway, both influenza circulation and births are well documented. The Norwegian

Institute of Public Health (NIPH) monitors influenza using influenza surveillance sys-

tems. All births in Norway must be reported to the Medical Birth Registry of Norway

(MBRN). MBRN’s records can be used by collecting the incidences of preterm birth

and study the association with influenza circulation data from NIPH. MBRN does not

include pregnancies that last less than 12 weeks, so first trimester miscarriages are not

reported [19].

Early miscarriages may not be caught by the system. Miscarriage in the first trimester is
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quite common [20] and may not be noticed. But if influenza infection increases the risk

of miscarriage, one would expect to see a lower birth rate 6-9 months after a period of

influenza. Exploring the birth rates subsequent to influenza pandemics have been done

for the 2009 pandemic [15] and the 1918 pandemic [17]. It is possible to do using birth

records from MBRN, population data from Statistics Norway, and virus surveillance

data from NIPH.

1.5 Aims of the thesis

The aims of this thesis are to use time series analysis to explore:

(i) Whether influenza circulation is associated with an increased risk of preterm birth

(ii) Whether influenza circulation is associated with subsequent lower birth rates





2. Material and Methods

2.1 Collection of data

2.1.1 Influenza virus exposure

NIPH monitors influenza virus circulation in Norway to obtain information about when

outbreaks occur, what types of influenza virus is circulating, and the level of immu-

nization in the population [21]. Health care utilization due to influenza, hospitaliza-

tions and deaths, and vaccination coverage are also monitored. The influenza moni-

toring from Norway is also used by WHO to develop influenza vaccines. Two different

virus surveillance systems, the Norwegian Syndromic Surveillance System (NorSySS)

and laboratory-confirmed influenza surveillance, are used to monitor the influenza cir-

culation in the general population.

Norwegian Syndromic Surveillance System (NorSySS)

NorSySS is monitoring infectious diseases and is run by NIPH. [22]. The purpose of

NorSySS is to detect early signs of outbreaks of infectious diseases. The general practi-

tioners (GPs) and primary care facilities report all diagnoses set on patients through the

KUHR system which manages reimbursements by the government. 80 different diagno-

sis codes that are characterized by symptoms of infectious diseases are sent anonymized

from KUHR to NorSySS. Type of consultation (physical, over phone, or digital) and in-

formation about age, gender, and county of the patient is also included. The diagnosis

is most often based on clinical symptoms, and not laboratory-confirmed tests.

I received data from NorSySS with the code R80 in the International Classification

of Primary Care-2. R80 consultations are based on clinical symptoms that classify

7
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influenza illness, such as cough, fever, and muscle aches [21]. The weekly number of

consultations with an ILI diagnosis and the total number of consultations was received

from week 1 in 2006 to week 41 in 2020, on the age groups 20-29 years, 30-39 years, and

40-49 years, the years when women are most likely to have a child.

Influenza virus surveillance

I also received data from NIPH’s virus surveillance, which uses laboratory-confirmed

influenza cases [21]. They have a network of around 70 GPs who contribute by sending in

tests from patients with influenza-like symptoms to NIPH’s influenza laboratory. Local

laboratories around the country also send weekly reports and influenza specimens to

NIPH. Specimens are sent throughout the whole year, but the surveillance is intensified

from week 40 to week 20 of the following year. I received data containing the weekly

number of tests and number of confirmed influenza cases from week 1 in the year 2000

to week 35 in 2020. For some of the years, information on the type of influenza was also

provided.

2.1.2 Preterm births and birth rates

Medical Birth Registry of Norway (MBRN)

MBRN collects information on all births in Norway [19]. MBRN was created after the

Thalidomide Catastrophe, where a sleeping drug lead to thousands of children being

born with birth defects [23]. The purpose of the registry is to monitor the health of

the mother and baby, collect information for research and to advise and inform. Name

and social security number of all children and parents must be notified to MBRN, as

well as information on maternal health during pregnancy, gestational week of birth, and

complications during pregnancy or birth. All live- and stillbirths occurring after week

12 are notifiable.

I received tables from MBRN with information on the number of births and preterm

births. Number of births was aggregated by week of birth from week 1 in 2001 to the

last week of 2019. Number of births and preterm births were provided, aggregated by

week of conception from week 1 in 2001 to the last week in 2018. I also received number

of births aggregated by month of birth from 2001 to 2019. Both singleton and multiple
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births were included.

Population count

To find birth rates, a population count is needed. This is available at Statistics Norway

[24]. Only the population of women of fertile age is required, so the yearly count of

women aged 20-44 was collected for the years 2001-2019.

2.1.3 Data processing

Some modifications were needed after receiving the data. The data from MBRN was

accumulated with weekly counts. In the raw data, the last week of the year, i.e. the

week starting with the last Monday of the year, was split into that week and the first

week of the following year. All years where the last week was split into two were handled

by summing the two parts and placing them in the last week of the year. Birth rates and

preterm rates were required for analysis. Weekly and monthly birth rates were calcu-

lated with number of births as the numerator and the yearly population count of women

of fertile age as the denominator. Preterm birth was defined as births where the gesta-

tional age was less than 37 weeks, and very preterm birth was defined as births where

gestational age was less than 32 weeks. Weekly preterm and very preterm conception

rates were calculated with the number of weekly conceptions as the denominator. The

reason conception date is used is that the population at risk for preterm birth is all the

fetuses that are conceived at the same time, thereby being exposed to the same seasonal

risk factors [25]. The number of conceptions is also seasonal, changing the number of

fetuses-at-risk, which is the denominator. The conception date was defined as 14 days

after the last menstrual period (LMP).

The virus surveillance data was received in several excel files, for different time periods.

All sheets were imported, variables were given the same names, and they were bound

together. NIPH’s virus surveillance is mainly active between week 40 and week 20 the

following year. Some data was recorded outside of this period, but the number of tests

was low, sometimes resulting in a very high percentage of positive tests. For this reason,

the number of influenza cases was set to 0 from week 21 to 39. The percentage of positive

tests among all tests was calculated in a new variable. The NorSySS data was divided
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into three age groups, and three types of consultations. They were summed and the

percentage of primary care consultations with an ILI diagnosis was calculated in a new

variable.

For all data sets, week numbers were set according to the ISO week standard. I also

added a variable for the date, setting the date as the Monday of the week. Having a

variable with a date format simplifies the analysis and presentation of time series data

in statistical analysis. When all variables were finished, all tables were merged by the

date variable.

2.2 Statistical analysis

Time series analysis

When dealing with time series, some function of time must be included in the model.

Time series behave in different ways than other types of data and one thing that char-

acterizes time series is the presence of autocorrelation. This means that observations

in the time series are correlated with themselves. For example in an influenza season,

the number of influenza cases registered one day is correlated with the number of cases

the day before. Some time series are seasonal, meaning that they are autocorrelated

within a time period. For the influenza example, the number of influenza cases one day

is quite similar to the number of cases on the same date one year before, because the

influenza season happens around the same time each year. Both autocorrelation and

seasonality are examples of non-stationary behavior. For a time series to be stationary,

the series’ observations must not be dependent on the time it is observed, and there

should be no trend or seasonality in the series [26]. Many statistical models are based

on the assumption of independent residuals, which is violated by non-stationary time

series data. Because of these characteristics, time series analysis is different than other

types of statistical analysis.
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Association of influenza circulation and preterm births (Aim i)

Poisson regression with cubic splines

One possibility when using time series data is including splines in a regression model.

Splines are piecewise polynomials that are fitted to shorter regions on the x-axis. To

make a smooth transition between the different polynomials, three constraints are set:

the curve and its first and second derivatives must be continuous [27]. The point where

they change are called knots, and the knots are often separated by equal intervals of x.

Splines are flexible, and may provide a good fit to both short- and long-time patterns in

a time series. In other words, they can capture seasonality, and the seasons do not have

to occur at exactly the same time each year. They can be used in a regression model by

making a set of variables that are functions of the time variable, in this case the weeks,

and including them in the model [28].

A Poisson regression model with splines can be used in epidemiological models where

one is interested in looking at the effect of an exposure, such as influenza, on an out-

come, such as the occurrence of adverse pregnancy outcomes. The adverse pregnancy

outcomes that I’m looking into in this analysis are the rates of preterm births and very

preterm births. The exposure is the circulation of influenza virus, measured by the per-

centage of positive influenza tests or percentage of primary care consultations diagnosed

with ILI. The exposure window, i.e. what time period of the pregnancy the effect of

influenza exposure was studied on, was set to the first month of gestation. The influenza

exposure variable was calculated as a 4 week forward moving average [15] as a measure

of influenza levels for the first four weeks of pregnancy, from the week of conception:

IEt = (it + it+1 + it+2 + it+3)/4 (2.1)

where IEt is the influenza exposure at time t, and it is the percentage of positive

influenza tests or percentage ILI cases in primary care at time t. it+1 is the measurement

of influenza circulation in the subsequent week and so on.

A Poisson regression model was built using a general linear model. The response variable

was either number of preterm births (<37 weeks) or very preterm births (<32 weeks)
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conceived in each week. To be able to get the rate of preterm births with the denominator

as the total number of births conceived, an offset of the log of the denominator was

included in the model. This is because a rate is not Poisson distributed, but the count

of the occurrences is. The explanatory variables were influenza exposure (equation 2.1),

either with data from NorSySS or the laboratory-confirmed virus surveillance, as well

as cubic splines (equation 2.2). Cubic splines were built using the bs() function [29],

using a time variable from week 1 to week n. The number of knots per year were chosen

based on what gave the least autocorrelation in the residuals of the model and using

Akaike’s information criterion (AIC). Autocorrelation in the residuals was checked using

partial autocorrelation function (PACF) plots, which displays the correlation between

weeks at different lags, after removing autocorrelation from intervening weeks [29] .

Ljung-Box tests were also used on the models to test for residual autocorrelation. The

alternative hypothesis for the test is that the residuals are not random, i.e. displaying

some remaining patterns of autocorrelation. Different models with different number of

knots were also run in the sensitivity analysis.

The analyses were performed using data on virus exposure from both the laboratory-

confirmed virus surveillance and NorSySS from 2006 to 2018. Sensitivity analyses were

also done on the virus surveillance data from 2009 and after because the surveillance

was improved in 2009 when the pandemic hit Norway. Separate models were made using

data on preterm conceptions and very preterm conceptions. The models were tested for

overdispersion, using a dispersion test from the package AER [30]. Confidence intervals

and estimations of relative risks (RR) were calculated using the function ci.lin() from

the package Epi ([31]). An RR of 1 can be interpreted as an identical risk of the outcome

for the exposed and unexposed groups. An RR of more than 1 means that the exposed

group is more at risk of the outcome than the unexposed group. When the exposure is

a continuous variable as in this case, an RR of for example 1.1 means that the risk of

preterm birth increases by 10% when the influenza exposure increases by 1 unit, i.e. 1

percentage point more positive cases of ILI or influenza.

The Poisson regression model with cubic splines can be written as:

ln(E(yt)) = β0 + β1IEt +
k−1∑
i=2

βi · Ci(t) + ln(BCt) (2.2)
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Where yt is the number of preterm or very preterm births conceived at time t, and

BCt is the offset: total number of births conceived in the week. β’s are the regression

coefficients, where β1 is the slope of the influenza exposure variable IEt (equation 2.1)

estimating how much y change when x increases, which the RR estimate is derived from.

k is the number of knots, and Ci is the cubic component of the spline that falls in the

ith window.

Regression with ARIMA errors

Another tool to model time series data is the ARIMA model. It is built with three

different components, the first part being the Auto-Regressive (AR) model, which is a

regression model of linear combinations of previous values of the time series, using the

fact that the values are autocorrelated [26]. An AR(p)-model of order p can be written

as:

yt = c+ φ1yt−1 + ...+ φpyt−p + εt (2.3)

where yt is the current value that is being predicted by a constant c, and the previous

values of the time series where yt−1 is the preceding value and so on. φi are the coefficients

in the regression-like model, and εt is the error term which should be similar to white

noise. The order p is the number of preceding values used in the model.

The second part of the model is I for integrated, which is used if the time series is

non-stationary, and needs differencing. Differencing is when previous values of the time

series are subtracted from the current value. First order differencing can be considered

as the change from each time unit to the next. It can be differenced up to lag d, or with

a seasonal lag, for instance if one wants to adjust for seasonality. The moving average

(MA) part of the model is a regression model of the linear combination of previous

prediction errors. An MA(q)-model can be described as:

yt = c+ εt + θ1εt−1 + ...+ θqεt−q (2.4)

Where yt is the value at time t that is being predicted by a constant c and the preceding

white noise error terms εt up to order q. θi are the coefficients in the model.
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An ARIMA model is often used in forecasting, but can also be used in a combination

with a regression model [32]. I used the function auto.arima() from the forecast package

[33], which fits a regression model with ARIMA errors. The function determines the

best model for the errors, and the order of AR, I, and MA according to AIC, AICc, or

BIC. Influenza exposure was defined with the same exposure window as in the Poisson

regression model and added to the model as a regressor (equation 2.5). This model was

also run with the two data sources of virus surveillance like the Poisson regression model,

and in sensitivity analysis using laboratory-confirmed virus surveillance after 2009. The

rate of preterm or very preterm conceptions were the response variables for the models.

RR estimates and confidence intervals were also calculated for this regression model

in the same manner as the Poisson regression model. The models were also tested for

autocorrelation with the Ljung-Box test, and with PACF plots.

The model can be written as:

yt = β0 + β1IEt + ηt (2.5)

Where yt is the preterm rate, β’s are the regression coefficients, IEt is the influenza

exposure variable (equation 2.1) and ηt is the errors modeled using ARIMA(p, d, q):

ηt = φ1ηt−1 + ...+ φpηt−p + εt + θ1εt−1 + ...+ θqεt−q (2.6)

and

εt ∼ iid N(0, σ2)

This is the ARMA part of the model, where the coefficients are the same as in equations

2.3 and 2.4. If the data is non-stationary, the differenced series can be modeled as an

ARMA model to get an ARIMA model.

Association of influenza circulation and birth rates (Aim ii)

To investigate whether influenza exposure increases the risk of pregnancy loss in the first

trimester, potentially affecting the birth rates, two methods were used. Both methods

include making a baseline birth rate, or expected birth rate, and then looking into the

residuals to find when there was an excess or deficit of births.
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Linear model

Two components were built from the observed monthly birth rates: a centered moving

average (CMA) captures the long-term trend and a seasonal component (S) that captures

seasonal variation. Two windows of moving average were used, 6 years (73 months) and

2 years (25 months). I performed additional analyses where data from a period after the

pandemic was excluded from the calculation of CMA. The period that was excluded was

the year 2010, 6-9 months after the pandemic peak plus a few extra surrounding months.

The seasonal component was calculated by taking the average difference between each

month and the moving average [17].

The centered moving average was calculated with the following equation, shown with a

6-year window:

MAt = 1
73

t+36∑
i=t−36

BRi (2.7)

Where MAt is the moving average at time t, and BRi are the observed birth rates in

the surrounding months.

The seasonal component was calculated according to the following equation, shown with

19 years of data:

Sm = 1
19

18∑
y=0

BRm+12·y −MAm+12·y (2.8)

where Sm is the seasonal component in month m, BR is the observed monthly birth

rate, and MA is the moving average. A linear model is then derived from these two

variables [15]:

Bt = β0 + β1MAt + β2Sm + εt (2.9)

where Bt is the estimated birth rate at time t, β’s are the coefficients, MAt is the

centered moving average at time t, Sm is the seasonal component of month m and εt

is the error term. A 95% confidence interval for the residuals was calculated with the

following equation: CI = 0 ± zα · σ√
n
, assuming a normal distribution. The variance is

calculated as the sum of the squared residuals, excluding residuals from the pandemic
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period for the models where the pandemic period is not used in the moving average

calculations [17]. If there are at least two consecutive months with observed values

above or below the confidence interval, these are to be counted as excess or deficit

births, respectively.

FluMOMO-model

A collaboration between 30 partners in 27 European countries, called the EuroMOMO

network, has made an algorithm to monitor mortality. They have developed a model to

monitor excess mortality due to influenza, called FluMOMO. It calculates a baseline, or

expected, mortality and excess mortality due to influenza virus. Part of this model was

used with some modifications, to fit the data of expected birth rates [34].

The FluMOMO model consists of a baseline mortality rate, and then uses the baseline

in a model including influenza activity and extreme temperatures to predict the number

of deaths attributable to influenza and extreme temperatures. I only used the baseline

model, following the same line of thought as the linear model where deviations from the

expected number of births are investigated [17]. The baseline model for birth rates is

composed using a general linear model with a quasipoisson distribution. Two pairs of

sine/cosine functions are used to detect the seasonality, where one is yearly, equation

2.10, and one is half-yearly, equation 2.11:

sin52(t) = sin

(
2π · t

365.25/7

)
+ cos

(
2π · t

365.25/7

)
(2.10)

sin26(t) = sin

(
4π · t

365.25/7

)
+ cos

(
4π · t

365.25/7

)
(2.11)

The FluMOMO model was advised to only be used for a period of maximum 5 years,

as it is not designed to model long-term trends. To avoid this problem, a second-degree

global polynomial was added to the model to capture the long-term trend. The baseline

model can be shown as:

BRt = β0 + β1t+ β2t
2 + β3sin52 + β4sin26 + εt (2.12)
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Where BRt is the birth rate, β’s are the coefficients, and t is the time variable going

from week 1 to week n. Sine/cosine pairs are shown in equations 2.10 and 2.11.

The FluMOMO algorithm calculates the residual variance and uses a 2/3-power cor-

rection for skewness [35]. A detailed description can be found in the appendix of

the article by Nielsen et al. [36]. Using the normalized residual variance, a point-

wise confidence interval is calculated. R-code can be found at the EuroMOMO website

(www.euromomo.eu). Significant deviations from the baseline model are investigated

and compared to the timing of the 2009 pandemic and seasonal influenza.

All analyses were done using version 4.0.2 of R [37].

https://www.euromomo.eu/how-it-works/flumomo




3. Results

3.1 Descriptive analysis

The influenza surveillance showed a strong seasonal pattern, where the main waves

are in the winter season as seen in figure 3.1. The NorSySS surveillance data had a

similar pattern to the laboratory-confirmed virus surveillance. The percentages of ILI

patients were lower in the NorSySS data, where the denominator was the total number of

consultations in primary health care. The percentages were higher for the laboratory-

confirmed surveillance, where the denominator was the number of ILI cases sent to

laboratory testing. Both data sources showed a peak in 2009. Summary statistics for

the time series are shown in table 3.1, where the highest number of positive influenza

tests from the influenza surveillance was 43.9% in 2009.

Figure 3.1: Weekly data of percentages of influenza cases from influenza
surveillance with both laboratory-confirmed and primary health care consulta-
tions(NorSySS) from year 2001 to 2019.

19
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Min Max Mean N weeks Years
Positive influenza per 100 ILI tests 0.00 43.87 6.20 990 2001-2019
ILI per 100 consultations 0.13 7.98 0.90 729 2006-2019
Birth rate per 100 women 0.08 0.16 0.13 990 2001-2019
Preterm births per 100 conceptions 3.47 9.33 5.79 939 2001-2018
Very preterm births per 100 conceptions 0.17 1.79 0.86 939 2001-2018

Table 3.1: Summary statistics of the weekly time series used in the analyses.

Descriptive characteristics of births and conceptions are shown in table 3.2 for the

years 2001 to 2019. The total number of births for the 19 years was 1, 099, 411. The

number of births increased from 2001 to 2009 and then decreased, while the number

of preterm births showed a somewhat decreasing trend. Both the number of births

and preterm births exhibited seasonality. Births peaked around July and conceptions

peaked 8-9 months earlier in October, while rates of preterm conceptions peaked around

February-April. Summary statistics of the weekly time series are shown in table 3.1.

The percentage of conceptions being born preterm ranged from 3.47% to 9.33%, and

very preterm ranged from 0.17% to 1.79% for the years 2001 to 2018.
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Year Births Conceptions Preterm Very preterm

2001 55786 54204 3574 573

2002 54788 55163 3403 542

2003 55959 55873 3541 537

2004 57173 57010 3558 506

2005 56003 57158 3387 481

2006 57858 57097 3621 526

2007 57786 58949 3553 543

2008 59826 60725 3515 526

2009 62562 61842 3528 537

2010 61177 60063 3211 462

2011 59968 59499 3350 478

2012 59857 58662 3165 481

2013 58633 58474 3179 482

2014 58682 58702 3264 486

2015 59535 59384 3248 472

2016 58616 56516 3028 442

2017 56281 55070 2963 413

2018 54787 54227 2924 414

2019 54134

Table 3.2: Summary table of number of births, conceptions and preterm deliveries
in Norway in 2001-2019.

3.2 Models of preterm births (Aim i)

Poisson regression model with cubic splines

Models were fitted using Poisson regression with cubic splines, where preterm or very

preterm birth rates were the outcomes. The exposure variable of interest was influenza

exposure in the first month of pregnancy. The models were fitted with 1, 2, and 3 knots

per year. The models with 1 knot per year are shown in figure 3.2 together with the

observed data. The models used data from 2006 to 2018, with influenza exposure data
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from both primary care ILI patients (NorSySS) and laboratory-confirmed tests. Models

with different numbers of knots per year were tested, and the models with the least

number of knots per year gave the lowest AIC and least autocorrelation in the residuals.

AIC was lowest in the models with only 1 knot, and the models with NorSySS data had

a lower AIC for 3 knots than 2 knots per year, while the laboratory-confirmed data had

a lower AIC for 2 knots than for 3 knots per year. Autocorrelation plots can be found

in appendix A, and residual plots in appendix B. The models with 1 and 2 knots per

year showed little autocorrelation outside the confidence interval, while the model with

3 knots show some more, especially for the laboratory-confirmed virus data. The models

were tested for autocorrelation using the Ljung-Box test, and all of the Poisson models

displayed some remaining autocorrelation in the residuals (p < 0.05). The residual plots

show no specific patterns. The models did not display overdispersion (p < 0.05).

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure 3.2: Fitted Poisson regression models with cubic splines and original
data with 1 knot per year. The number of preterm or very preterm births per
1000 conceptions are shown on the y axis, and date of conception on the x axis
from 2006 to 2018. (a) Virus surveillance data and preterm birth as the outcome.
(b) Virus surveillance data and very preterm birth as the outcome. (c) NorSySS
data and preterm births as the outcome. (d) NorSySS data and very preterm
births as the outcome.
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Knots Outcome Data Source Estimated RR Lower Bound Upper bound

1 knot per

year

Preterm
Virus surveillance 1.001719 1.000656 1.002783

NorSySS 1.008736 0.998004 1.019583

Very

preterm

Virus surveillance 1.004318 1.001578 1.007066

NorSySS 1.019863 0.992209 1.048288

2 knots per

year

Preterm
Virus surveillance 1.001539 1.000297 1.002784

NorSySS 1.004523 0.991756 1.017454

Very

preterm

Virus surveillance 1.004576 1.001351 1.007812

NorSySS 1.017539 0.984572 1.051610

3 knots per

year

Preterm
Virus surveillance 1.000196 0.998290 1.002106

NorSySS 0.996549 0.980466 1.012896

Very

preterm

Virus surveillance 1.001545 0.996617 1.006498

NorSySS 1.001650 0.960517 1.044546

Table 3.3: Poisson models RR estimates and 95% confidence intervals with 1, 2
and 3 knots per year.

Table 3.3 shows relative risk (RR) estimates and confidence intervals for the Poisson

regression models with cubic splines. RRs showed an increased risk of preterm birth

and very preterm births for influenza exposed pregnancies (RR > 1), though only in

the models that used laboratory-confirmed influenza data, and only with 1 or 2 knots

per year. When only virus surveillance data after 2009 was used, there was also a weak

association (data not shown, RR > 1). This indicates a small increase in the risk of

preterm birth or very preterm birth when influenza circulation increases. All models

with the NorSySS data and the models with 3 knots per year had a confidence interval

that included 1, i.e. identical risk for influenza exposed and unexposed groups.
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Regression with ARIMA errors

Similar models were fitted using a different approach, regression with ARIMA errors.

The fitted models and observed data of weekly preterm and very preterm conceptions

are shown in figure 3.3. The two data sources of influenza surveillance were used, and the

years studied were 2006 to 2018. The models that were fit for the virus surveillance data

had ARIMA(1, 1, 1) and ARIMA(2, 1, 1) errors, for preterm and very preterm births,

respectively, as the outcome. The models where NorSySS data was used had ARIMA(1,

1, 1) and ARIMA(4, 1, 2) errors for preterm and very preterm births, respectively, as

the outcome. PACF plots showed little autocorrelation in the residuals(appendix A)

and the residual plots showed no clear patterns(appendix B). None of the regression

models with ARIMA errors showed autocorrelation with the Ljung-Box test (p > 0.05)

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure 3.3: Fitted regression models with ARIMA errors and original data. Rate
of preterm or very preterm births per 1000 births on y axis and date of conception
on x axis from 2006 to 2018. (a) Virus surveillance data and preterm birth as the
outcome. (b) Virus surveillance data and very preterm birth as the outcome. (c)
NorSySS data and preterm births as the outcome. (d) NorSySS data and very
preterm births as the outcome.

Risk ratios and their confidence intervals from the ARIMA models are shown in table

3.4. No increased risk of preterm or very preterm birth was found for pregnant women

exposed to influenza in the first month of gestation. All models gave estimated RRs of
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about 1, and all confidence intervals included the number 1. Sensitivity analysis using

virus surveillance data only from 2009 gave similar results (data not shown).

Outcome Data Source Estimated RR Lower Bound Upper bound

Preterm
Virus surveillance 1.000101 0.999999 1.0002043

NorSySS 1.000529 0.999822 1.001237

Very

preterm

Virus surveillance 1.000030 0.999952 1.000108

NorSySS 1.000158 0.999935 1.000381

Table 3.4: ARIMA models RR estimates and 95% confidence intervals.

3.3 Models of birth rates (Aim ii)

Linear model

A baseline of monthly birth rates was modeled using a moving average component and

a seasonal component. The models were made using two different windows of moving

average, two years and six years, and with or without birth data in a period following

the 2009 pandemic. Figure 3.4a shows the linear model with a 2-year moving average,

where the pandemic period is excluded from the moving average. The data showed a

strong seasonality with peaks in the middle of the year. The residuals from the model

are shown in figure 3.4b, plotted together with the influenza activity. The residuals are

to be considered as excess or deficit births in the model and are shown as the number

of monthly excess/deficit births per 100 women, and they vary from around -0.03 to

0.04 births per 100 women. There were not many consecutive births with excess births

outside of the 95% confidence interval(3.4c), but some continuous deficit of birth was

found in early 2011. More than one model found birth deficits in August 2004, April

2012, January 2013, and March 2015. Birth excess was found in all models in the

autumn of 2009. More than one model found positive excess in October 2003, January

2004, March 2006, September 2010, and August 2012.
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(a) Linear model of monthly birth rates

(b) Excess births linear model

(c) Linear model with confidence band

Figure 3.4: Linear model with a 2 year moving average, and excluded pandemic
period . (a) Model and observed data. (b) Excess births. (c) Linear model with
confidence band.
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FluMOMO model

A baseline of weekly birthrates was modeled using the part of the FluMOMO algorithm

that was designed to model a baseline for mortality [34]. Harmonics were used in a

Poisson model, to model the expected birth rates in the years 2001 to 2019. A second-

degree polynomial was also added to take into account the long-term trend of the birth

rates. The fitted model is shown in figure 3.5a together with the observed weekly birth

rates. Following the same line of thought as the linear model, the residuals of the models

are considered excess births(3.5b), and a 95% confidence interval was calculated to see

which observed values deviate from the baseline of birth rates(3.5c). The FluMOMO

model found continuous birth deficits in two consecutive weeks in august of 2004. Birth

excess was found in the 4 first weeks of 2001, and in the autumn of 2009 and 2010. The

deficit in 2004 and excess in the autumn of 2009 and 2010 correspond to the results of

the linear model.
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(a) FluMOMO model of weekly birth rates

(b) Excess births FluMOMO model

(c) FluMOMO model with confidence band

Figure 3.5: FluMOMO model. (a) Model and observed data. (b) Excess births.
(c) FluMOMO model with confidence band.



4. Discussion

In this thesis I wanted to explore whether influenza circulation was associated with an

increased risk of preterm birth, or with first trimester miscarriages, resulting in lower

birth rates. Using an ecological time series approach, little to no association was found

between circulating influenza and the adverse birth outcomes investigated.

4.1 Preterm births (Aim i)

In the first outcome of preterm and very preterm birth, a weak association was found

with influenza exposure in some of the Poisson regression models. However, it was

not robust in sensitivity analysis, with different numbers of knots per year, and with

different sources of data for virus exposure. The associations that were found were weak,

with less than a 1% increased risk of preterm (<37 weeks) or very preterm (<32 weeks)

birth when influenza circulation increased by 1 percentage point in the first month

of gestation. Partial autocorrelation function (PACF) plots showed that the Poisson

models with fewer knots had less autocorrelation (appendix A), but none of the models

passed the Ljung-Box test, indicating that some autocorrelation is left in the models. In

the regression model with ARIMA errors, no significant association between influenza

exposure and preterm birth was found. This was also the case in sensitivity analysis with

the laboratory-confirmed virus surveillance after 2009. Autocorrelation in the residuals

of these models was not an issue (appendix A), confirmed by the Ljung-Box tests. Using

two different models, Poisson regression with cubic splines and regression with ARIMA

errors, can increase the robustness of the analysis. But the two models gave slightly

different results, and so it cannot be inferred that the weak association found in the

Poisson models is real. The regression models with ARIMA errors might be a better fit,

29
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as it does not display signs of remaining autocorrelation.

Some issues can arise with the time series design. Confounding by other time-varying

factors is a possibility if they co-vary with exposure and outcome. Conceptions exhibit

seasonal variation, and this could be a potential confounder. But because conceptions

have been used as the denominator, and not the number of births, the rate of preterm

births are from the pool of fetuses-at-risk. There could also be individual factors, leading

to differences in seasonality of conceptions among different sociodemographic groups.

If one of these groups has a different risk of preterm births, and the seasonality of

conceptions in the group co-vary with the influenza season, other factors could influence

the results. Darrow et al. [25] found different seasonal patterns in conceptions and

preterm rates among different education levels, ethnic groups, and marital status of the

mother. Similar patterns may exist in Norway, potentially leading to confounding in a

time series analysis.

A limitation to the study is that only one type of adverse outcome is investigated.

Only livebirths that are preterm are included, and other outcomes could be studied,

such as stillbirth or perinatal death. A weakness of the study design is that influenza

circulation is not the same as influenza exposure. Influenza circulation in the population

is just a measure of how likely the woman is to be infected, but it is not an accurate

measure of actual infection. Influenza exposure was only studied in the first month of

gestation. Because the data was aggregated on conception date to get fetuses-at-risk

as the denominator, it was not possible to look at an exposure window at the end of

gestation. Other exposure windows might give different results.

Other studies have also looked at the association between maternal influenza and the

risk of preterm birth. Few of them have used time series analysis, but Fell et al. [15]

also used a Poisson regression with cubic splines. They did not find an increased risk

of preterm birth. Meijer et al. [10] found in their review article that the risk of preterm

births among hospitalized women was 8-55% higher, but among outpatients the risk was

not increased. Many of the hospitalized women had other underlying conditions. This

supports the hypothesis that individual-level studies find higher associations because

of information bias. The hospitalized women are more likely to have other underlying

conditions, increasing both the probability of severe influenza illness and of adverse
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pregnancy outcomes. Different studies found an increased risk of preterm birth following

2009 pandemic maternal illness [11, 12]. This suggests that there could be an increased

risk of preterm birth following 2009 pandemic maternal illness. In an ecological study

over many years, the possible effect of the 2009 pandemic on preterm birth could be too

small to be detected. Perhaps the results from the Poisson regression model with virus

surveillance could indicate a small association.

4.2 Birth rates (Aim ii)

For the second outcome of birth rates, little evidence was found of continuous deficits

of births that could correspond to early miscarriages during an influenza season. The

only birth deficits that were found following an influenza peak were in August of 2004,

which fits the time slot of 6-9 months after the seasonal influenza wave in 2003 with a

peak in December. Two different models were used to model a baseline birth rate. For

the linear model, two different windows of moving average were used, with and without

data around the 2009 pandemic. All models gave the same results; that there were no

persistent deficits of births following the pandemic influenza and only one occurrence of

birth deficit following a seasonal influenza wave.

The deficit found in 2004 could be caused by influenza infections leading to early mis-

carriages. The data from the virus surveillance shows a peak of influenza levels around

December of 2003, with 32% positive tests at most. Influenza type A was dominating

in this period. More information about the 2003 seasonal influenza period is difficult to

obtain, and the virus surveillance was less extensive before 2009, but perhaps this was a

type of influenza that affected pregnancy differently than in other seasons, or that more

pregnant women were infected. But because similar effects on the birth rate were not

found for any of the other influenza periods, it may be more likely that this finding is

random or is caused by other exposures or trends.

One possible reason that no birth deficits were found after the 2009 pandemic, could

be health awareness. There was a substantial amount of news articles about the 2009

pandemic, possibly leading to increased health awareness. Maybe it made women plan

their pregnancies differently, or seek more health care when feeling ill. One consequence
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of health awareness was vaccination, and many pregnant women were vaccinated dur-

ing the pandemic. 54% of women who were pregnant during the 2009 pandemic were

vaccinated, but the vaccine was recommended for pregnant women in the second or

third trimester, and most vaccinations were set in this period of the pregnancy [14].

Many women were not protected in the first trimester, but some were vaccinated before

pregnancy, and this could have balanced out a possible negative effect that pandemic

influenza had on the birth rates.

An excess of births was found in the last months of 2009. One possible explanation for

this could be that the 2009 pandemic, which was at its peak around this time, lead to

more preterm births, giving a higher birth rate than normal. But there is also a rising

trend in birth rates in general towards 2009-2010, and then a decreasing trend after

that. The excess of births observed in 2009 could be a result of a long term rising trend,

peaking because of a decreasing trend that could be explained by other reasons, such

as economic insecurity following the financial crisis between 2007 and 2009 and fewer

families choosing to have more than two children [38]. Thus, it is highly likely that

the excess births found in the analysis are due to other trends in birth rates than an

increased rate of preterm births.

Method selection for this analysis has been challenging. The model was supposed to

capture the long-term trend, but not fit the data too well, as the chosen method was

based on studying the deviations from the trend. Similar analyses done by others [17,

15, 34] were not always described in adequate detail, but I attempted to fit similar

models to the available data. These types of models give no information about the

effect of influenza on pregnancy loss, or about the causality for deviating birth rates,

but are merely an indication of association. Perhaps a similar approach as aim (i) could

be more reliable, with a regression model with the number of births as the outcome, and

influenza circulation as an exposure variable. The influenza circulation variable would

need to have a lag of 6-9 months in order to study the effect on the pregnancy loss in

the first trimester. Possible confounders could also have been included in the model,

like data on temperature which can affect the number of conceptions [25].

Bloom-Feshbach et al. [17] found a deficit of births after the 1918 pandemic. Because

of this, it was of interest to see if this could apply to the 2009 pandemic or seasonal
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influenza. No such association was found. Fell et al. [15] also looked at the birth rates

after the 2009 pandemic and found no decrease corresponding to early pregnancy losses

due to influenza illness. The difference in results here could indicate that the influenza

virus in the 2009 pandemic had a different pathology, with different severity of disease

or spreading abilities, or that the health care was more advanced in 2009. Differences

in models could also be the case, but the linear model was inspired by the methods of

Bloom-Feshbach et al. [17].

Rasmussen et al. [16] and Fell et al. [15] studied the association between influenza and

fetal death, also using a time series approach. They did not find an association with

influenza circulation. Even though they did not include first trimester miscarriages, this

could also support the result that mild influenza disease is not associated with fetal

death. Gunnes et al. [13] and Håberg et al. [14] found an increased risk of fetal death

in the second and third trimester following ILI during the 2009 pandemic. Conflicting

results might be because of different study designs, as they used cohort studies which

could be a better measure of severe pandemic disease. Also, if the effect of influenza on

fetal death was only with the 2009 pandemic, the potential effect might not be visible

in the other studies with time series over many years.

4.3 Implications

Information about what causes pregnancy complications and adverse birth outcomes is

important to have in order to prevent adverse outcomes. Because most people experi-

ence mild or asymptomatic disease [4], an ecological study is mainly a measure of mild

influenza illness. My results indicate that there is no clear association between mild

influenza illness and preterm birth or early pregnancy loss. These results are obtained

using methods that avoid a bias where women with a higher risk of pregnancy compli-

cations might be more likely to be classified as an influenza case. An individual study

might be more suited to study risks of adverse pregnancy outcomes following severe

influenza disease and can give different results than an ecological design. The effects of

influenza infection on adverse pregnancy outcomes could also be too weak to be detected

at a population level. This thesis contributes to the knowledge on how mild influenza

infection can affect adverse birth outcomes, and how time series analysis can be used to
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study associations between seasonal exposures and health outcomes in epidemiology.



5. Conclusions

The analyses in this thesis did not support the hypothesis that influenza circulation

is associated with preterm birth or early pregnancy loss. Seasonality was found in

preterm birth rates, but in this thesis, it was not explained further by influenza. A

small increased risk of preterm birth was found in some of the analyses, but the results

were not robust with different models and data sources of influenza circulation. One

instance of a deficit in birth rates that corresponded with the timing of early pregnancy

loss during an influenza period (in 2003) was found. No other occurrences of this were

found, leading to the conclusion that other causes of the birth deficit are more likely.

Using an ecological design with influenza circulation in the general population as an

indicator of influenza exposure is mainly a measure of mild influenza disease. It can not

be excluded that severe influenza illness increases the risk of adverse birth outcomes.
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Appendix A. PACF plots preterm models

Poisson model with 1 knot per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure A.1: Partial Autocorrelation Function plots for Poisson regression models
with 1 knot per year.

Poisson model with 2 knots per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure A.2: Partial Autocorrelation Function plots for Poisson regression models
with 2 knots per year.
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Poisson model with 3 knots per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure A.3: Partial Autocorrelation Function plots for Poisson regression models
with 3 knots per year.

Regression with ARIMA errors

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure A.4: Partial Autocorrelation Function plots for regression models with
ARIMA errors.



Appendix B. Residual plots preterm models

Poisson model with 1 knot per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure B.1: Residual plots for Poisson models with 1 knot per year.

Poisson model with 2 knots per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure B.2: Residual plots for Poisson models with 2 knots per year.
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Poisson model with 3 knots per year

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure B.3: Residual plots for Poisson models with 3 knots per year.

Regression with ARIMA errors

(a) virus surveillance preterm (b) virus surveillance very preterm

(c) NorSySS preterm (d) NorSySS very preterm

Figure B.4: Residual plots for regression models with ARIMA errors.
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