Safety Assurance of a High Voltage Controller for
an Industrial Robotic System

Yvonne Murray®, David A. Anisi''?, Martin Sirevag!, Pedro Ribeiro®, and
Rabah Saleh Hagag!

! Dept. of Mechatronics, Faculty of Engineering and Science, University of Agder
(UiA), Grimstad, Norway, yvonne .murray@uia.no, david.anisi@uia.no,
martsil8@student.uia.no, rabahh18@student.uia.no
2 Robotics Group, Faculty of Science & Technology, Norwegian University of Life
Sciences (NMBU), Norway, david.anisi@nmbu.no
3 Dept. of Computer Science, University of York, UK, pedro.ribeiro@york.ac.uk

Abstract. Due to the risk of discharge sparks and ignition, there are
strict rules concerning the safety of high voltage electrostatic systems
used in industrial painting robots. In order to assure that the system
fulfils its safety requirements, formal verification is an important tool
to supplement traditional testing and quality assurance procedures. The
work in this paper presents formal verification of the most important
safety functions of a high voltage controller. The controller has been
modelled as a finite state machine, which was formally verified using
two different model checking software tools; Simulink Design Verifier
and RoboTool. Five safety critical properties were specified and formally
verified using the two tools. Simulink was chosen as a low-threshold entry
point since MathWorks products are well known to most practitioners.
RoboTool serves as a software tool targeted towards model checking,
thus providing more advanced options for the more experienced user. The
comparative study and results show that all properties were successfully
verified. The verification times in both tools were in the order of a few
minutes, which was within the acceptable time limit for this particular
application.

Keywords: Formal Verification - Model Checking - High Voltage Con-
troller (HVC) - Industrial robots

1 Introduction

ormal verification provides an extra level of assurance by verifying the logic
Fof a system and making sure that it works in accordance to its specifications
in every situation. This will ideally help identify potential pitfalls in a much
earlier phase of the development cycle [I]. The two main approaches are model
checking [2] and theorem proving [3]. Application of formal methods in indus-
trial use cases is an important supplement to the traditional testing and safety
risk identification and mitigation actions which are already taking place [4]. Ob-
taining sufficiently high testing coverage in complex industrial systems may be

very time consuming and tedious. In practice, it may even be impossible to test
for every scenario or situation, which means that testing could possibly fail to
reveal potential safety critical bugs and errors. As a testimony of this, Section [2]
outlines some previous errors that went by undetected by traditional testing
methods.

Industrial paint robots use High Voltage (HV) to perform electrostatic paint-
ing, where particles are electrically charged and attracted to the grounded paint
object, as seen in Fig. [T} In this way, painting quality is ensured while paint con-
sumption and costs are minimized. However, HV also poses certain risks, par-
ticularly in explosive atmospheres where potential discharge sparks may cause
ignition. Fire in the painting cell will result in costly production delays, as well
as damage to the equipment. Therefore, it is of great importance that the High
Voltage Controller (HVC) is working as intended, and there are strict rules to
ensure the safety of the system and personnel. These include both software-based
safety layers such as over current- and max current detection, as well as physical
safety layers based on (optical) fencing, minimum clearance distances, and use
of safety clothes such as anti-static shoes and gloves.

Paint particle Negative ion electron
//""- o —_— - = N A=
Applicator = () / _ \\
- [Workpiece
3 _I‘f_\? ‘\\-7 + //,f
- e 7777

- High voltage

Fig. 1. In electrostatic painting, high voltage (approximately 50-100 kV) charges the
paint particles at the applicator. The particles follow the lines of the electrostatic field
from the applicator (cathode) to the earthed object (anode).

An HVC used in an industrial paint robot has been provided for this case
study. After passing the traditional quality assurance and testing procedures,
some undesired system behavior was discovered. Thus, even though risk mit-
igation plans were identified systematically (e.g., using HAZID/HAZOP), and
thorough testing on both component and system level had been conducted, some
errors still managed to go undetected. The undetected errors had in common that
they happened when certain conditions and situations happened in a very spe-
cific order, and that specific series of events had not been tested. This gave a
strong motivation for performing a formal verification of the HVC, in order to
ensure both that the found errors had been fixed and that there were no other
situations where the same errors could occur.

The logic of the C++ code of the HVC can be modelled as a finite state
machine, which means that model checking is an appropriate method for the for-
mal verification of the properties. The methodology of model checking has some
apparent advantages that fits industrial applications very well; it is a rather gen-
eral verification approach which has some commercial-grade, high-performance
model checkers available. It provides diagnostic information (counter-example)
that can be used for debugging purposes, is easier to integrate with existing
development and engineering practices and last but not least; is more intuitive
and familiar to most practitioners than theorem proving [2].

In this work, two different software tools have been used to model and verify
the HVC system. The first is Simulink Design Verifier (SDV) by MathWorks [5]
and the second is RoboTool [6/7], developed by the RoboStar group at University
of York. Here-within, Simulink was chosen as a low-threshold entry point since
MathWorks products are well known to most practitioners. RoboTool serves as
a software tool targeted towards model checking, thus providing more advanced
options for the more experienced user. In addition to presenting and analyzing
an interesting industrial use case considering formal verification of the safety
aspects of the HVC unit of a paint robot, the main objective of this work is
to do a comparative study of the software tools with regards to functionality,
usability and effectiveness, e.g., modelling, validation and analysis time.

Application of formal verification methodology within the control and robotics
community have mainly adopted the hybrid system and automata framework of
Alur et. al. [89]. In this setting, finite- and infinite-time reachability constitute
the main verification tools, but unfortunately turn out to be an undecidable
problem in general, leaving conservative set approximation as the only viable
approach [I0/TI]. Hybrid automata theory also assumes having infinite accu-
racy and instantaneous reaction which serves as a noticeable discrepancy to the
real system and implementation; potentially invalidating the formal verification
results [12]. Narrowing down to industrial paint robots, [I3] considers formal
verification of the paint spraying use case using ARITADNE tool for reachability
analysis. The focus here is solely on parametric design verification. To the best of
our knowledge, there is no prior art considering formal verification of the safety
aspects of the HVC unit of an industrial paint robot, which is the focus of the
paper at hand.

The remaining of this paper is structured as follows. Section [2| details the
HVC system and previous errors that were not found by traditional testing
methods. It also contains formulation of the properties to be formally verified.
Section 3| presents a simplified finite state machine of the HVC. Section [explains
how the state machine was modelled in RoboTool and SDV, and how these tools
were used to verify the properties. Finally, Section [5] provides some discussion
and conclusions, as well as a comparison between the two tools. Additionally,
suggestions for further research is presented.

2 HVC and Previously Detected Errors

A simplified block diagram of the part of the paint robot that contains the
HVC can be seen in Fig. 2l Here, the r(t) = HV _SetPoint signal is used as

cw

PWIVLOutput | ! Applicator
PWM - Transformer ———-—>
HV.SetPoint ; ;

Fig. 2. Block diagram of one part of the paint robot, containing the HVC.

reference for the desired voltage level on the HVC, while the 24V power signal
provides the HVC with electrical power. The HVC module runs the control
loop and associated control logic. The u(t) = PWM _Output signal shows the
calculated value for the high voltage regulator, from 0 to 100%, which is then
increased in the transformer. In the Cockcroft—Walton (CW) generator, there
are several voltage doubling circuits, and the voltage is rectified and further
increased, before arriving to the applicator. Here, y(t) = [IM; HV _Actual]”
denote current and voltage measurements, respectively, which are fed back into
the HVC.

Referring to Fig. [3] the previous version of the HVC had two main issues,

containing several variations:
1. Issues with the actual voltage level on the HVC, HV__Actual:

(a) Both the set-point and HV__Actual had a non-zero value, but they dif-
fered from each other. The HVC board did not respond to any further
set-point changes, and had a constant actual value.

(b) There was no set-point, but HV__Actual had a non-zero value.

(¢) There was a set-point, but HV__Actual was still zero.

2. Issues with the 24V power signal:

(a) The HVC sometimes reported the 24V power signal missing, even though
it was actually present, resulting in a deadlock.

(b) Sometimes, an additional bug also occurred, where the HVC froze when
the 24V power signal failed. In that case, the HVC limit supervision did
not disable PWM, and the HVC continued to set out high voltage until
it was reset or powered off. This can be seen graphically in Fig.

24V power switched
off, actual voltage and
set-point turned off

PWM output is not

disabled
/

1

24V power switched on,
actual voltage starts to
rise due to PWM not
disabled

| 1 | |

HV.SetPoint
HV.Actual

PWM.Output
— 24\/ Power

Limit alarm, actual

voltage too high,
PWM is disabled
and high voltage
turned off

(a) Error concerning HV__Actual value.

I ————————_— T

24V power switched
off, actual voltage and
set-point turned off

PWM output is not

— disabled

24V power switched
on, actual voltage starts
to rise due to PWM not

disabled \

Limitalarm not
functional, high
voltage remains
on

HV_SetPoint
HV_Actual
PWM_Output
24V Power

1
(b) Error when the 24V power signal failed and the HVC froze.

24V power switched
off, actual voltage and
set-point turned off and
PWM disabled

HV_SetPoint
HV_Actual
PWM_Output

— 04\ Power

24V power switched on
but not detected, no new
set-point

(c) Error when the 24V power signal was falsely reported missing.

Fig. 3. Some errors that were not discovered through traditional testing of a previous
version of the HVC software. These shed light on the need for the industry to adopt
formal verification methodology when developing safety critical systems. The x-axis
unit is time, while the y-axis units are kV for the high-voltage signals, percent for the
PWM and binary on/off for the 24V power signal. Here, the schematic representation
and inter-relation between the signals are in focus, not the exact values.

The issues la-c, regarding the HV__Actual value, occurred if the 24V power
signal was switched off when the set-point had a value other than 0kV. When this
happened, the set-point was turned off due to the missing 24V power signal, and
the HV__Actual signal dropped to 0kV. However, the problem was that the Pulse
Width Modulation (PWM) output which drives the cascade, PWM_ Output,
was not disabled. Thus, when the 24V power signal was switched on again, the
PWM fed the cascade, and the voltage output from the cascade increased. The
HVC limit supervision caught this voltage rise, and disabled the PWM, since the
resulting voltage was too high. This problem can be seen graphically in Fig.
As for issue 2a, the 24V power signal missing issue was due to a deadlock in the
HVC that resulted in the controller reporting the 24V power signal missing, even
though it was actually present. This can be seen graphically in Fig.

Upon rectifying these observed issues in a later software upgrade, the task at
hand is to run formal verification on the upgraded software in order to ensure
both that the previously found errors have been fixed and that there are no other
situations where similar errors could occur.

2.1 Properties for Formal Verification

In this section, the set of properties that are to be formally verified will be
presented and discussed. Most of them are rather natural and generic properties
to be fulfilled by any feedback controller tracking a set-point reference. Also,
the previously detected errors provide a testimony of which properties that are
necessary to formally verify in order to ensure that they will not happen again,
under any circumstances.

As one of the most profound properties of any feedback controller, it is rea-
sonable to require that HV__Actual should always follow HV__SetPoint. This
deserves particular attention in cases with residual voltage as depicted in for
instance Fig. To formalize this, since all voltages here are non-negative,
the following implications were considered:

HV SetPoint=0 ¥ HV Actual =0

1
HV SetPoint>0 ¥ HV Actual >0)

Notice that by logical transposition of , the following implications also hold
true:

HV Actual >0 ¥ HV _SetPoint>0

HV Actual =0 ¥ HV SetPoint=20
As a result, the first property boils down to verification of:

HV SetPoint=0 ¥ HV Actual =0:

To avoid residual effects and windup type of behavior in the HVC, it is also
reasonable to verify that both PWM_ Output and HV_ SetPoint are set to 0
whenever the 24V power signal, and thereby the HVC-module, is switched off.

Additionally, in order to increase the confidence in the correctness of the model,
it is customary to verify that the HVC state machine is not able to go into dead-
lock, and that all the states in the finite state machine are reachable, i.e., the
state machine has no dead logic.

To sum up, the properties chosen for the formal verification are:

P1: That the actual system voltage always follows the set-point:

HV SetPoint=0 ¥ HV Actual=0
P2: That PWM_Output is set to 0 whenever the 24V power signal is off:

24V _Power =0 ¥ PWM _Output =0

P3: That HV__SetPoint is set to 0 when the 24V power signal is switched off:

24V _Power =0 ¥ HV SetPoint=0

P4: That the state machine is not able to go into deadlock
P5: That all states in the state machine are reachable.

3 Finite State Machine Modelling

In order to perform model checking on the HVC, its functionalities were modeled
as a finite state machine. This section presents the general finite state machine,
which was directly derived from the implemented C++ code and depicted in
Fig. [d This state machine was then modelled and verified in RoboTool and
Simulink. This is the topic of Section [

In the state GateDriverRamping, which is the state the HVC first enters when
it is switched on, the PWM duty-cycle is ramped up gradually to ensure stability
and gradual increasing of current and voltage. Then, in the Initialization
state, initial parameters are set, as well as upper and lower limits for the high
voltage.

After the GateDriverRamping and Initialization steps are successfully
finished, the state machine enters the Wait24VPower state. When the HVC has
24V power switched on and stable, the system enters the ClosedLoop state.
This is the ideal state for operation, and is where the controller is regulating the
voltage in relation to the set-point. In case the voltage is breaching the upper or
lower limits, the state machine moves from ClosedLoop to ErrorMode.

There is also a possibility to go straight to ErrorMode from any of the other
states, if certain variables are set or any watchdogs or interrupts are triggered.
For instance, an interrupt is triggered if the supply voltage is below a certain
threshold, and another is triggered if HV__Actual is above or below the up-
per and lower limits, respectively. Getting out of ErrorMode requires manual
acknowledgement of the occurred errors.

_ Do Control (1 ms) T~ -

~

7 N

/—» GateDriverRamping |—GateDriverRamp(true)® Initialization AN

InitParameter(true)

ClosedLoop [<—24V power stable—— Wait24VPower

\ Low24Vpow(true)
CheckLimit(false)
Ei

rroracknowledged(true)

AN
N\ ~ A supply voltage check interrupt (10 ms)
S ErrorMode — / E watchdog interrupt (1 ms)
R : current turn off interrupt (from HW)

Fig. 4. Finite state diagram of the High Voltage Controller (HVC).

4 Model Checking

The finite state machine created from the C++ code of the HVC has to be
modelled in a model checking tool in order to verify the selected properties.
To this end, two different tools are adopted, in order to compare and evaluate
their functionality and effectiveness. In this work, the finite state machine has
been modelled in RoboTool [6] using the modelling language RoboChart, and
in SDV [5] using the modelling language Stateflow. This is done in Section
and [£.2] respectively.

4.1 Model Checking in RoboTool

RoboTool and its modelling language RoboChart are specifically designed to
model robotic systems for formal verification [6]. The tool automatically gener-
ates Communicating Sequential Processes (CSP) [I4] proof models, which are
verified using the Failures-Divergences Refinement (FDR) model-checker [T5/T6].

When using RoboChart for modelling, it is important to be aware that the
model has to be of a higher abstraction level than models used for dynamic sim-
ulation. Capturing the behaviour from the C++ code in an abstract modelling
paradigm like RoboChart can be challenging, especially for practitioners who
are used to work with input-driven, dynamic simulations. Instead, the model
is analyzed by the verification tool by only assuming bounded data-types and
going through all possible transitions in order to verify or disprove a property.
Specific values for variables or inputs could be used, but this would restrict the

range of values provided by the bounded data type. Thus, keeping a high level
of abstraction during the modelling process is essential for getting a meaningful
result from the model checking.

Simpli cations to reduce veri cation time State-space explosion is a well-
known issue for model checkers. For this reason, some lower level functionalities
from the C++ code were simplied. As an example, the ramping function in
GateDriverRamping was modelled simply by staying in the state for a certain
number of time steps, representing the ramping time. This simpli cation, justi-
ed by the fact that GateDriverRamping occurs before the initialization state
and therefore does not in uence neither the veri cation properties nor results,
greatly reduced the veri cation time.

The Model For modelling the state machine as closely as possible to Fig. 4,
the software operations (Op9), variables (IVars), events (IEvent9, external events
(IEvents_ex?) and a robotic platform (RP1), were speci ed as shown in Fig. 5.
The robotic platform (RP1) is an abstraction of the physical system, and only
uses events that require communication with the system iEvents_exf), whereas
the other events and variables are internal to the software. For more details about
the language structure and semantics used in RoboTool, please consult [6,17].

Fig.5. Components and enumerated types used in the RoboChart model.

Fig. 6 shows the RoboChart modulemod_sys which de nes the connections
between the controllers €trl0-3), and the robotic platform (RP1). In RoboChart,
connections with the platform are asynchronous, indicated by the keywordasyng
as interactions with the hardware cannot be refused, only ignored [7, p.3110].

Using the components from Fig. 5, a state machine model was created using
the graphical user interface in RoboTool. An overview of the states and the
transitions between them can be seen in Fig. 7.

All of the top-level states have an entry action, which indicates the current
state via the typed event currentState This is useful for analysis of properties
that are only applicable in certain states. The detailed view of the two most
important states (ClosedLoopand ErrorModé can be seen in Fig. 8 9.

Fig. 6. RoboChart module mod_sys de ning the connections between controllers and
the robotic platform. Controller ctrl0 contains the main State_machine, a recast in
RoboChart of the state machine presented in Fig. 4. The watchdogs have been combined
into one state machine, de ned inside controller ctrll. Controllers ctrl2 and ctrl3 are used
purely for relaying events int_ActualHV and ext_pow24VStatus to other controllers.

Fig. 7. Main State_machine corresponding to that of Fig. 4 recast in RoboChart, with
the internal behaviour of composite states (other than Ramping elided.

	Safety Assurance of a High Voltage Controller for an Industrial Robotic System

