
Safety Assurance of a High Voltage Controller for
an Industrial Robotic System

Yvonne Murray1, David A. Anisi1,2, Martin Sirevåg1, Pedro Ribeiro3, and
Rabah Saleh Hagag1

1 Dept. of Mechatronics, Faculty of Engineering and Science, University of Agder
(UiA), Grimstad, Norway, yvonne.murray@uia.no, david.anisi@uia.no,

martsi18@student.uia.no, rabahh18@student.uia.no
2 Robotics Group, Faculty of Science & Technology, Norwegian University of Life

Sciences (NMBU), Norway, david.anisi@nmbu.no
3 Dept. of Computer Science, University of York, UK, pedro.ribeiro@york.ac.uk

Abstract. Due to the risk of discharge sparks and ignition, there are
strict rules concerning the safety of high voltage electrostatic systems
used in industrial painting robots. In order to assure that the system
fulfils its safety requirements, formal verification is an important tool
to supplement traditional testing and quality assurance procedures. The
work in this paper presents formal verification of the most important
safety functions of a high voltage controller. The controller has been
modelled as a finite state machine, which was formally verified using
two different model checking software tools; Simulink Design Verifier
and RoboTool. Five safety critical properties were specified and formally
verified using the two tools. Simulink was chosen as a low-threshold entry
point since MathWorks products are well known to most practitioners.
RoboTool serves as a software tool targeted towards model checking,
thus providing more advanced options for the more experienced user. The
comparative study and results show that all properties were successfully
verified. The verification times in both tools were in the order of a few
minutes, which was within the acceptable time limit for this particular
application.

Keywords: Formal Verification · Model Checking · High Voltage Con-
troller (HVC) · Industrial robots

1 Introduction

Formal verification provides an extra level of assurance by verifying the logic
of a system and making sure that it works in accordance to its specifications

in every situation. This will ideally help identify potential pitfalls in a much
earlier phase of the development cycle [1]. The two main approaches are model
checking [2] and theorem proving [3]. Application of formal methods in indus-
trial use cases is an important supplement to the traditional testing and safety
risk identification and mitigation actions which are already taking place [4]. Ob-
taining sufficiently high testing coverage in complex industrial systems may be

very time consuming and tedious. In practice, it may even be impossible to test
for every scenario or situation, which means that testing could possibly fail to
reveal potential safety critical bugs and errors. As a testimony of this, Section 2
outlines some previous errors that went by undetected by traditional testing
methods.

Industrial paint robots use High Voltage (HV) to perform electrostatic paint-
ing, where particles are electrically charged and attracted to the grounded paint
object, as seen in Fig. 1. In this way, painting quality is ensured while paint con-
sumption and costs are minimized. However, HV also poses certain risks, par-
ticularly in explosive atmospheres where potential discharge sparks may cause
ignition. Fire in the painting cell will result in costly production delays, as well
as damage to the equipment. Therefore, it is of great importance that the High
Voltage Controller (HVC) is working as intended, and there are strict rules to
ensure the safety of the system and personnel. These include both software-based
safety layers such as over current- and max current detection, as well as physical
safety layers based on (optical) fencing, minimum clearance distances, and use
of safety clothes such as anti-static shoes and gloves.

Fig. 1. In electrostatic painting, high voltage (approximately 50-100 kV) charges the
paint particles at the applicator. The particles follow the lines of the electrostatic field
from the applicator (cathode) to the earthed object (anode).

An HVC used in an industrial paint robot has been provided for this case
study. After passing the traditional quality assurance and testing procedures,
some undesired system behavior was discovered. Thus, even though risk mit-
igation plans were identified systematically (e.g., using HAZID/HAZOP), and
thorough testing on both component and system level had been conducted, some
errors still managed to go undetected. The undetected errors had in common that
they happened when certain conditions and situations happened in a very spe-
cific order, and that specific series of events had not been tested. This gave a
strong motivation for performing a formal verification of the HVC, in order to
ensure both that the found errors had been fixed and that there were no other
situations where the same errors could occur.

The logic of the C++ code of the HVC can be modelled as a finite state
machine, which means that model checking is an appropriate method for the for-
mal verification of the properties. The methodology of model checking has some
apparent advantages that fits industrial applications very well; it is a rather gen-
eral verification approach which has some commercial-grade, high-performance
model checkers available. It provides diagnostic information (counter-example)
that can be used for debugging purposes, is easier to integrate with existing
development and engineering practices and last but not least; is more intuitive
and familiar to most practitioners than theorem proving [2].

In this work, two different software tools have been used to model and verify
the HVC system. The first is Simulink Design Verifier (SDV) by MathWorks [5]
and the second is RoboTool [6,7], developed by the RoboStar group at University
of York. Here-within, Simulink was chosen as a low-threshold entry point since
MathWorks products are well known to most practitioners. RoboTool serves as
a software tool targeted towards model checking, thus providing more advanced
options for the more experienced user. In addition to presenting and analyzing
an interesting industrial use case considering formal verification of the safety
aspects of the HVC unit of a paint robot, the main objective of this work is
to do a comparative study of the software tools with regards to functionality,
usability and effectiveness, e.g., modelling, validation and analysis time.

Application of formal verification methodology within the control and robotics
community have mainly adopted the hybrid system and automata framework of
Alur et. al. [8,9]. In this setting, finite- and infinite-time reachability constitute
the main verification tools, but unfortunately turn out to be an undecidable
problem in general, leaving conservative set approximation as the only viable
approach [10,11]. Hybrid automata theory also assumes having infinite accu-
racy and instantaneous reaction which serves as a noticeable discrepancy to the
real system and implementation; potentially invalidating the formal verification
results [12]. Narrowing down to industrial paint robots, [13] considers formal
verification of the paint spraying use case using ARIADNE tool for reachability
analysis. The focus here is solely on parametric design verification. To the best of
our knowledge, there is no prior art considering formal verification of the safety
aspects of the HVC unit of an industrial paint robot, which is the focus of the
paper at hand.

The remaining of this paper is structured as follows. Section 2 details the
HVC system and previous errors that were not found by traditional testing
methods. It also contains formulation of the properties to be formally verified.
Section 3 presents a simplified finite state machine of the HVC. Section 4 explains
how the state machine was modelled in RoboTool and SDV, and how these tools
were used to verify the properties. Finally, Section 5 provides some discussion
and conclusions, as well as a comparison between the two tools. Additionally,
suggestions for further research is presented.

2 HVC and Previously Detected Errors

A simplified block diagram of the part of the paint robot that contains the
HVC can be seen in Fig. 2. Here, the r(t) = HV_SetPoint signal is used as

Fig. 2. Block diagram of one part of the paint robot, containing the HVC.

reference for the desired voltage level on the HVC, while the 24V power signal
provides the HVC with electrical power. The HVC module runs the control
loop and associated control logic. The u(t) = PWM_Output signal shows the
calculated value for the high voltage regulator, from 0 to 100%, which is then
increased in the transformer. In the Cockcroft–Walton (CW) generator, there
are several voltage doubling circuits, and the voltage is rectified and further
increased, before arriving to the applicator. Here, y(t) = [IM, HV_Actual]T

denote current and voltage measurements, respectively, which are fed back into
the HVC.

Referring to Fig. 3, the previous version of the HVC had two main issues,
containing several variations:
1. Issues with the actual voltage level on the HVC, HV_Actual :

(a) Both the set-point and HV_Actual had a non-zero value, but they dif-
fered from each other. The HVC board did not respond to any further
set-point changes, and had a constant actual value.

(b) There was no set-point, but HV_Actual had a non-zero value.
(c) There was a set-point, but HV_Actual was still zero.

2. Issues with the 24V power signal:
(a) The HVC sometimes reported the 24V power signal missing, even though

it was actually present, resulting in a deadlock.
(b) Sometimes, an additional bug also occurred, where the HVC froze when

the 24V power signal failed. In that case, the HVC limit supervision did
not disable PWM, and the HVC continued to set out high voltage until
it was reset or powered off. This can be seen graphically in Fig. 3(b).

(a) Error concerning HV_Actual value.

(b) Error when the 24V power signal failed and the HVC froze.

(c) Error when the 24V power signal was falsely reported missing.

Fig. 3. Some errors that were not discovered through traditional testing of a previous
version of the HVC software. These shed light on the need for the industry to adopt
formal verification methodology when developing safety critical systems. The x-axis
unit is time, while the y-axis units are kV for the high-voltage signals, percent for the
PWM and binary on/off for the 24V power signal. Here, the schematic representation
and inter-relation between the signals are in focus, not the exact values.

The issues 1a-c, regarding the HV_Actual value, occurred if the 24V power
signal was switched off when the set-point had a value other than 0kV. When this
happened, the set-point was turned off due to the missing 24V power signal, and
the HV_Actual signal dropped to 0kV. However, the problem was that the Pulse
Width Modulation (PWM) output which drives the cascade, PWM_Output,
was not disabled. Thus, when the 24V power signal was switched on again, the
PWM fed the cascade, and the voltage output from the cascade increased. The
HVC limit supervision caught this voltage rise, and disabled the PWM, since the
resulting voltage was too high. This problem can be seen graphically in Fig. 3(a).
As for issue 2a, the 24V power signal missing issue was due to a deadlock in the
HVC that resulted in the controller reporting the 24V power signal missing, even
though it was actually present. This can be seen graphically in Fig. 3(c).

Upon rectifying these observed issues in a later software upgrade, the task at
hand is to run formal verification on the upgraded software in order to ensure
both that the previously found errors have been fixed and that there are no other
situations where similar errors could occur.

2.1 Properties for Formal Verification

In this section, the set of properties that are to be formally verified will be
presented and discussed. Most of them are rather natural and generic properties
to be fulfilled by any feedback controller tracking a set-point reference. Also,
the previously detected errors provide a testimony of which properties that are
necessary to formally verify in order to ensure that they will not happen again,
under any circumstances.

As one of the most profound properties of any feedback controller, it is rea-
sonable to require that HV_Actual should always follow HV_SetPoint. This
deserves particular attention in cases with residual voltage as depicted in for
instance Fig. 3(b). To formalize this, since all voltages here are non-negative,
the following implications were considered:

HV_SetPoint = 0→ HV_Actual = 0

HV_SetPoint > 0→ HV_Actual > 0
(1)

Notice that by logical transposition of (1), the following implications also hold
true:

HV_Actual > 0→ HV_SetPoint > 0

HV_Actual = 0→ HV_SetPoint = 0

As a result, the first property boils down to verification of:

HV_SetPoint = 0←→ HV_Actual = 0.

To avoid residual effects and windup type of behavior in the HVC, it is also
reasonable to verify that both PWM_Output and HV_SetPoint are set to 0
whenever the 24V power signal, and thereby the HVC-module, is switched off.

Additionally, in order to increase the confidence in the correctness of the model,
it is customary to verify that the HVC state machine is not able to go into dead-
lock, and that all the states in the finite state machine are reachable, i.e., the
state machine has no dead logic.

To sum up, the properties chosen for the formal verification are:

P1: That the actual system voltage always follows the set-point:

HV_SetPoint = 0←→ HV_Actual = 0

P2: That PWM_Output is set to 0 whenever the 24V power signal is off:

24V_Power = 0→ PWM_Output = 0

P3: That HV_SetPoint is set to 0 when the 24V power signal is switched off:

24V_Power = 0→ HV_SetPoint = 0

P4: That the state machine is not able to go into deadlock
P5: That all states in the state machine are reachable.

3 Finite State Machine Modelling

In order to perform model checking on the HVC, its functionalities were modeled
as a finite state machine. This section presents the general finite state machine,
which was directly derived from the implemented C++ code and depicted in
Fig. 4. This state machine was then modelled and verified in RoboTool and
Simulink. This is the topic of Section 4.

In the state GateDriverRamping, which is the state the HVC first enters when
it is switched on, the PWM duty-cycle is ramped up gradually to ensure stability
and gradual increasing of current and voltage. Then, in the Initialization
state, initial parameters are set, as well as upper and lower limits for the high
voltage.

After the GateDriverRamping and Initialization steps are successfully
finished, the state machine enters the Wait24VPower state. When the HVC has
24V power switched on and stable, the system enters the ClosedLoop state.
This is the ideal state for operation, and is where the controller is regulating the
voltage in relation to the set-point. In case the voltage is breaching the upper or
lower limits, the state machine moves from ClosedLoop to ErrorMode.

There is also a possibility to go straight to ErrorMode from any of the other
states, if certain variables are set or any watchdogs or interrupts are triggered.
For instance, an interrupt is triggered if the supply voltage is below a certain
threshold, and another is triggered if HV_Actual is above or below the up-
per and lower limits, respectively. Getting out of ErrorMode requires manual
acknowledgement of the occurred errors.

Fig. 4. Finite state diagram of the High Voltage Controller (HVC).

4 Model Checking

The finite state machine created from the C++ code of the HVC has to be
modelled in a model checking tool in order to verify the selected properties.
To this end, two different tools are adopted, in order to compare and evaluate
their functionality and effectiveness. In this work, the finite state machine has
been modelled in RoboTool [6] using the modelling language RoboChart, and
in SDV [5] using the modelling language Stateflow. This is done in Section 4.1
and 4.2 respectively.

4.1 Model Checking in RoboTool

RoboTool and its modelling language RoboChart are specifically designed to
model robotic systems for formal verification [6]. The tool automatically gener-
ates Communicating Sequential Processes (CSP) [14] proof models, which are
verified using the Failures-Divergences Refinement (FDR) model-checker [15,16].

When using RoboChart for modelling, it is important to be aware that the
model has to be of a higher abstraction level than models used for dynamic sim-
ulation. Capturing the behaviour from the C++ code in an abstract modelling
paradigm like RoboChart can be challenging, especially for practitioners who
are used to work with input-driven, dynamic simulations. Instead, the model
is analyzed by the verification tool by only assuming bounded data-types and
going through all possible transitions in order to verify or disprove a property.
Specific values for variables or inputs could be used, but this would restrict the

range of values provided by the bounded data type. Thus, keeping a high level
of abstraction during the modelling process is essential for getting a meaningful
result from the model checking.

Simplifications to reduce verification time State-space explosion is a well-
known issue for model checkers. For this reason, some lower level functionalities
from the C++ code were simplified. As an example, the ramping function in
GateDriverRamping was modelled simply by staying in the state for a certain
number of time steps, representing the ramping time. This simplification, justi-
fied by the fact that GateDriverRamping occurs before the initialization state
and therefore does not influence neither the verification properties nor results,
greatly reduced the verification time.

The Model For modelling the state machine as closely as possible to Fig. 4,
the software operations (IOps), variables (IVars), events (IEvents), external events
(IEvents_ext) and a robotic platform (RP1), were specified as shown in Fig. 5.
The robotic platform (RP1) is an abstraction of the physical system, and only
uses events that require communication with the system (IEvents_ext), whereas
the other events and variables are internal to the software. For more details about
the language structure and semantics used in RoboTool, please consult [6,17].

Fig. 5. Components and enumerated types used in the RoboChart model.

Fig. 6 shows the RoboChart module mod_sys, which defines the connections
between the controllers (ctrl0-3), and the robotic platform (RP1). In RoboChart,
connections with the platform are asynchronous, indicated by the keyword async,
as interactions with the hardware cannot be refused, only ignored [7, p.3110].

Using the components from Fig. 5, a state machine model was created using
the graphical user interface in RoboTool. An overview of the states and the
transitions between them can be seen in Fig. 7.

All of the top-level states have an entry action, which indicates the current
state via the typed event currentState. This is useful for analysis of properties
that are only applicable in certain states. The detailed view of the two most
important states (ClosedLoop and ErrorMode) can be seen in Fig. 8–9.

Fig. 6. RoboChart module mod_sys defining the connections between controllers and
the robotic platform. Controller ctrl0 contains the main State_machine, a recast in
RoboChart of the state machine presented in Fig. 4. The watchdogs have been combined
into one state machine, defined inside controller ctrl1. Controllers ctrl2 and ctrl3 are used
purely for relaying events int_ActualHV and ext_pow24VStatus to other controllers.

Fig. 7. Main State_machine corresponding to that of Fig. 4 recast in RoboChart, with
the internal behaviour of composite states (other than Ramping) elided.

ClosedLoop

entry currentState!State::ClosedLoop

s1

entry lim = false; disableHV(true)

s2

s0

entry checkLimits()

s1

entry ext_setPoint?setPoint

s3

entry checkLimits()

s4

entry supplyVoltCheck()

[lim==true]

/ActualHV = setPoint

/int_ActualHV!ActualHV

[lim==false]/ext_pwmSignal!Power::On

[lim==true]

[lim==true]

[lim==false]

[lim==true]

/wait (1)

/int_ActualHV!ActualHV

/ActualHV = setPoint

[lim==true]

[lim==false]/ext_pwmSignal!Power::On

Fig. 8. ClosedLoop state of State_machine.

ErrorMode

entry currentState!State::ErrorMode; disableHV(false)

s1

entry setPoint = 0

s2

entry ActualHV = 0

[setPoint==0/\ActualHV==0]/errorAck = true

/errorAck = false

/ext_setPoint!setPoint

[setPoint!=0\/ActualHV!=0]

/int_ActualHV!ActualHV

/ext_setPoint!setPoint

/errorAck = false

/int_ActualHV!ActualHV

[setPoint!=0\/ActualHV!=0]

Fig. 9. ErrorMode state of State_machine.

Verification of Selected Properties In order to verify the properties from
Section 2 in FDR, the properties had to be formally written in CSP. To specify
simple assertions, such as deadlock freedom, RoboTool provides a simple textual
domain-specific language. More complex properties, however, have to be specified
directly in CSPM, the machine-readable version of CSP. A full account of the CSP
specifications for all properties discussed in what follows can be found online4.

The first property to verify, P1 as described in Section 2, is that HV_Actual
follows HV_SetPoint. Due to the necessary simplifications that were made when
modelling HV_Actual and HV_SetPoint, a binary version of property P1 had to
be considered, where the signals HV_Actual and HV_SetPoint are considered
to be either on or off. Notice that this modification is without loss of generality.
4 https://github.com/robo-star/hvc-case-study

https://github.com/robo-star/hvc-case-study

// Specification for property P1 while in the ClosedLoop state
untimed csp Spec1A csp−begin
Spec1A = (Behaviour [| {| buff_ActualHV |} |] BufferedOutput) \ {|buff_ActualHV|}
Behaviour = CHAOS(Events) [| {| mod_sys::currentState.out.State_ClosedLoop |} |>

(Follow /\ (mod_sys::currentState.out.State_ErrorMode −> Behaviour))
Follow = mod_sys::ext_setPoint.in?x −> buff_ActualHV!x −> Follow csp−end

The CSP process Spec1A is a parallel composition ([|...|]) of Behaviour,
synchronising on the event buff_ActualHV, with BufferedOutput (omitted) that
accounts for the asynchronous communication of the output int_ActualHV in
mod_sys (as shown in Fig. 6), and where the event buff_ActualHV, used to com-
municate with the buffer, is hidden (\). Behaviour behaves as CHAOS(Events), that
can perform any event in the set Events (of all events) non-deterministically un-
til ([|...|>) the event mod_sys::currentState.out.State_ClosedLoop happens, and
then behaves as Follow. Events in the CSP semantics of RoboChart are named
according to the hierarchy, where :: is a delimiter, and have a parameter in or
out to indicate whether an event is an input or output. This states that when the
system is in the ClosedLoop state, then it behaves as Follow, which establishes
that the input (?) value x received via ext_setPoint is followed by an output (!)
of the same value via buff_ActualHV, and a recursion. Follow may be interrupted
(/\) if an error occurs, indicated by the currentState event with value ErrorMode.
To ensure appropriate behaviour in that state, we specify the following property.

// Specification for property P1 while in the ErrorMode state
untimed csp Spec1B csp−begin
Spec1B = (Behave1B [|{| buff_ActualHV |}|] BufferedOutput) \ {|buff_ActualHV|}
Behave1B = CHAOS(Events) [|{| mod_sys::currentState.out.State_ErrorMode |}|>

(mod_sys::ext_setPoint.out.0 −> buff_ActualHV!0 −> Behave1B) csp−end

Similarly to Spec1A, in Spec1B we have that in the ErrorMode state the value of
the HV_SetPoint is 0, in this case observed as an output of the system via
ext_setPoint, and that the value of int_ActualHV should also follow.

The specification for verifying P1 is written as two assertions, reproduced
below, which were verified in FDR. Here, mod_sys_noppwm is a version of mod_sys
where the unrelated events ext_pow24VStatus and int_pwmSignal are hidden,
to ensure that the verification with respect to Spec1A and Spec1B is meaningful.
It is verified in the traces model that ensures safety [14, p.36], that is, an imple-
mentation P refines Spec if, and only if, every behaviour of P is also a behaviour
of Spec. Both of the assertions passed, thus successfully verifying property P1.

untimed csp mod_sys_noppwm associated to mod_sys csp−begin
mod_sys_noppwm = mod_sys::O__(0)\{|mod_sys::int_pwmSignal,mod_sys::ext_pow24VStatus|}
csp−end // Assertions for property P1
assertion A1A : mod_sys_noppwm refines Spec1A in the traces model
assertion A1B : mod_sys_noppwm refines Spec1B in the traces model

The second property (P2) requires that PWM_Output should be set to 0
when the 24V power signal switches off. The CSP specification is shown below.

// Specification for property P2
untimed csp PWM csp−begin
PWM = mod_sys::ext_pow24VStatus.in.Power_Off −> PWM

[] mod_sys::int_pwmSignal.out.Power_Off −> PWM

[] mod_sys::int_pwmSignal.out.Power_On −> PWM_on
PWM_on = (mod_sys::ext_pow24VStatus.in.Power_Off −>

(RUN({|mod_sys::ext_pow24VStatus.in.Power_Off|})
/\ mod_sys::int_pwmSignal.out.Power_Off −> PWM)

[] mod_sys::int_pwmSignal.out.Power_Off −> PWM
[] mod_sys::int_pwmSignal.out.Power_On −> PWM_on) csp−end

In PWM, there is an external choice ([]) where the power status can be switched
off via ext_pow24VStatus, or the int_pwmSignal may be switched Off. Once the
int_pwmSignal becomes On, then the process behaves as PWM_on, where there is
another choice: if the power status changes to Off via ext_pow24VStatus, then
the output int_pwmSignal should follow as Off, while allowing further readings
of the power status, specified using RUN, via ext_pow24VStatus, to take place.
Observe that P2 is specified by tracking the changes of int_pwmSignal relative
to the input value of ext_pow24VStatus.

The assertion to verify the specification in FDR, as seen below, also passed,
thus successfully verifying property P2, where mod_sys_pwm is a constrained form
of mod_sys where other events are hidden similarly to previous assertions.

//Assertion for property P2
assertion A2 : mod_sys_pwm refines PWM in the traces model

The third property to verify, P3, is that HV_SetPoint is set to 0 when the 24
power signal switches off. The specification in CSP is as follows.

//Specification for property P3
untimed csp Spec3 csp−begin
Spec3 = CHAOS(Events) [| {|mod_sys::ext_pow24VStatus.in.Power_Off|} |>

(RUN({|mod_sys::ext_pow24VStatus.in.Power_Off|})
/\ mod_sys::ext_setPoint.out.0 −> Spec3) csp−end

The assertion to verify P3 in FDR was written similarly to the ones for P1 and
P2, as seen below. It passed in FDR, thus successfully verifying P3.

//Assertion for property P3
assertion A3 : mod_sys_setpoint refines Spec3 in the traces model

The assertion-specific language in RoboTool was used to specify and validate P4
and P5, which are that the state machine should be deadlock free and that all
states should be reachable. The assertions written in RoboTool can be seen in
the code below.

//P4: Checks if the model is deadlock free
assertion A4 : mod_sys is deadlock−free
//P5: Checks for reachability of states:
assertion A5 : State_machine::Ramping is reachable in State_machine
assertion A6 : State_machine::Init is reachable in State_machine
assertion A7 : State_machine::Wait24Vpower is reachable in State_machine
assertion A8 : State_machine::ClosedLoop is reachable in State_machine
assertion A9 : State_machine::ErrorMode is reachable in State_machine

All these assertions passed in FDR, which implies that the state machine is
in fact deadlock free, and all the states are reachable. Thus, also P4 and P5 were
verified successfully.

4.2 Model Checking in Simulink Design Verifier (SDV)

Simulink is a popular tool for traditional, input-driven simulation, and the mod-
elling in SDV is similar to regular modelling used for simulation [5]. Thus, it
requires less abstraction than in RoboTool, and it is more straightforward to
translate the C++ code directly to the modelling language. The graphical lan-
guage Stateflow, which is specifically created to model state machines, can be
used with SDV, and was chosen to model the finite state machine from Section 3.
SDV uses Prover Plug-In® products from Prover® Technology to do the model
checking and prove the model properties [18]. It is built upon Gunnar Stål-
marck’s proof procedure, which uses tautology checks to prove that an assertion
holds true in every possible interpretation [19].

Simplifications to reduce verification time Also in the Simulink Design
Verifier model, some simplifications had to be made in order to keep verification
times reasonable. For example when modelling the transformer and CW genera-
tor from Fig. 2. The transformer is modelled as a simple transfer function, with
non model-fitted values, poles and zeroes. The CW block is simply modelled
with a gain block from the Simulink library, also this with an arbitrary value.

Additionally, the 24V power signal and the PWM output signal have been
simplified to being modelled binary, so they can be either on or off. Knowing if
the signal is on or off is sufficient for verifying the properties listed for this use
case.

The Model An overview of the Simulink model can be seen in Fig. 10.

Fig. 10. Overview of the Simulink model.

The main state machine from Fig. 4 can be found within the purple box, while
variables, inputs and outputs are connected to it as seen in the figure. The grey
box to the right contains the model of the transformer and CW block from Fig. 2.
The green boxes are the verification subsystems containing the code for verifying
the selected properties.

As seen in Fig. 10, the model used in SDV allows for defining inputs and
outputs, similarly to a traditional simulation model. This made it possible to
model the finite state machine very closely to the C++ code. However, some
extra variables were introduced in order to model the ramping function.

Verification of Selected Properties In order to verify the properties from
Section 2, the properties had to be formally modelled in SDV, using logical oper-
ator blocks. For verifying property P1, the following implications were considered
and modelled in Simulink, as seen in Fig. 11:

HV_SetPoint = 0→ HV_Actual = 0,

HV_SetPoint > 0→ HV_Actual > 0.

Fig. 11. Property P1 modelled and verified in SDV. It is checked that whenever the
value of HV_SetPoint is 0 or above 0, it implies the same for HV_Actual. The green
rectangles to the right indicate that the properties were successfully verified.

For verifying property P2, the following implication was modelled in Simulink:

24V_Power = 0→ PWM_Output = 0.

The assertion written in Simulink can be seen in Fig. 12. As indicated by the
green rectangle to the right, also this property was successfully verified.
For verifying property P3, the following implication was modelled in Simulink:

24V_Power = 0→ HV_SetPoint = 0.

Fig. 12. Property P2 modelled and verified in SDV. The assumption blocks assume
the values of 24V_Power and PWM_Output to be either 0 or 1, which is reasonable
since they are modelled as binary.

Fig. 13. Property P3 modelled and verified in SDV.

The Simulink assertion can be seen in Fig. 13, and was successfully verified.
As far as SDV is considered, it does not offer the possibility to verify deadlock

freedom5. Thus, P4 was not verified.
By using the Design Error Detection mode in SDV, it is possible to check the
reachability of the states in the finite state machine and the results proved that
all the states were reachable. Thus, P5 was verified successfully.

5 Concluding Remarks and Future Work

As detailed in Section 4, some simplifications had to be made to the models used
in RoboTool and SDV. In RoboTool, all properties were verified. Since SDV is
not able to verify deadlock freedom, P4 was not verified in this tool.

The collective results formally show that all five specifications as listed in Sec-
tion 2.1 are fulfilled, and thus the previously detected errors from Section 2 have
been corrected. As these errors went undetected by traditional testing methods
in an earlier version of the software, the results in this paper also serve as a
testimony of the strength and suitability of using formal verification methods
for industrial safety critical systems.

Both tool-chains offered the necessary functionality to model the HVC state
machine and perform model checking. The verification times in both tools were
typically about 2-3 minutes when running on a Windows laptop with Intel®
Core© i5 CPU @ 2.71GHz. These computation times are well within acceptable
5 Deadlock detection is instead provided by MathWorks Polyspace toolbox.

limits for offline, one-time verification purposes. However, it can be a potential
bottleneck if used for development and debugging purposes.

As most industrial practitioners are used to using MathWorks products but
are not as familiar with CSP, the use of SDV will most likely be the fastest and
easiest way to do a formal verification. Unfamiliarity with CSP and RoboTool,
which required a different way of thought and modelling, resulted in some chal-
lenges during both the modelling and verification processes. However, RoboTool
has the advantage of being designed specifically for robotic systems, which gives
it more targeted modelling options. During this work, we often learned about
new functionalities and new ways to solve problems in RoboTool, which indicates
that it is the better choice for more advanced use cases and experienced users.

To tap into this, future work involves further improvement of the RoboTool
model. Instead of the simplifications made to the RoboTool model in order to
reduce computation time, as mentioned in Section 4.1, it would be preferable to
utilize distributed computation and parallel refinement checking capabilities of
FDR. In this way, it could be possible to explore the possibility to include timed
assertions and formulate requirements capturing the dynamic convergence of the
HV_Actual to HV_SetPoint. By increasing the model’s complexity, future work
will also look into how the tools perform with increasingly computationally heavy
models. Also, the potential of using RoboSim to generate (verified) simulations
from RoboChart, is currently being further investigated.

As far as MathWorks is considered, the Polyspace software tools provide some
complementary verification capabilities, such as deadlock detection, that should
be examined and utilized in future work. In order to continue the comparative
study, updates and improvements will be made to the Simulink model as well
in future work, to ensure a fair comparison with RoboTool. This includes, for
instance, formulating a specification property that captures the dynamics of the
set-point following.

In this work, formal verification has been used on the already rectified code, in
order to ensure that the errors have been corrected. However, to further demon-
strate the abilities of formal verification as a supplement to testing, it would be
interesting to repeat the process on the faulty code. This would increase the con-
fidence that our modelling captures the behaviour properly, by showing that the
errors would have been detected earlier if formal verification had been applied.
Thus, future work will include repeating the verification steps on the faulty code
as well.

6 Acknowledgements

The authors gratefully acknowledge the value of all the input and support pro-
vided by ABB Robotics research group at Bryne, Norway, most prominently by
Dr. Morten Mossige and Cato Jensen.

The research presented in this paper has received funding from the Norwegian
Research Council, SFI Offshore Mechatronics, project number 237896. Pedro
Ribeiro is funded by the UK EPSRC under grant EP/M025756/1.

References

1. E. Seligman, T. Schubert, and M. V. A. K. Kumar, Formal Verification: An Es-
sential Toolkit for Modern VLSI Design. 2015.

2. C. Baier, Principles of model checking. Cambridge, MA, USA: MIT Press, 2008.
3. C. Chang and R. Lee, Symbolic Logic and Mechanical Theorem Proving. Computer

science and applied mathematics, Academic Press, 1973.
4. M. Weißmann, S. Bedenk, C. Buckl, and A. Knoll, “Model checking industrial robot

systems,” in Model Checking Software, pp. 161–176, 2011.
5. MathWorks, “Simulink Design Verifier.” https://www.mathworks.com/products/

simulink-design-verifier.html, (visited March 5, 2020).
6. A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock, and J. Timmis,

“RoboChart Reference Manual,” Technical report, University of York, Feb. 2016.
7. A. Miyazawa, P. Ribeiro, L. Wei, A. L. C. Cavalcanti, J. Timmis, and J. C. P.

Woodcock, “Robochart: modelling and verification of the functional behaviour of
robotic applications,” Software & Systems Modeling, Jan. 2019.

8. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems,” in
Hybrid Systems (R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.),
pp. 209–229, Springer Berlin Heidelberg, 1993.

9. R. Alur, “Formal verification of hybrid systems,” in Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT ’11, (New York, NY,
USA), p. 273–278, Association for Computing Machinery, 2011.

10. T. A. Henzinger and V. Rusu, “Reachability verification for hybrid automata,” in
Hybrid Systems: Computation and Control (T. A. Henzinger and S. Sastry, eds.),
pp. 190–204, Springer Berlin Heidelberg, 1998.

11. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about
hybrid automata?,” Journal of Computer and System Sciences, vol. 57, no. 1, pp. 94
– 124, 1998.

12. D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and T. Villa,
“Open problems in verification and refinement of autonomous robotic systems,” in
2012 15th Euromicro Conference on Digital System Design, pp. 469–476, 2012.

13. L. Geretti, R. Muradore, D. Bresolin, P. Fiorini, and T. Villa, “Parametric formal
verification: the robotic paint spraying case study,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 9248 – 9253, 2017. 20th IFAC World Congress.

14. A. W. Roscoe, Understanding concurrent systems. Springer, 2010.
15. Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, A.W. Roscoe,

“FDR3 — A Modern Refinement Checker for CSP,” in Tools and Algorithms for
the Construction and Analysis of Systems (Ábrahám, Erika and Havelund, Klaus,
ed.), vol. 8413 of Lecture Notes in Computer Science, pp. 187–201, 2014.

16. University of Oxford, “FDR4 — The CSP Refinement Checker.”
https://cocotec.io/fdr, (visited May 11, 2020).

17. A. Miyazawa, RoboTool RoboChart Tool Manual. University of York, May 2019.
18. MathWorks, “Acknowledgments.” https://se.mathworks.com/help/sldv/ug/

acknowledgments.html. Visited September 10, 2020.
19. M. Sheeran and G. Stålmarck, “A Tutorial on Stålmarck‘s Proof Procedure for

Propositional Logic,” Form. Methods Syst. Des., vol. 16, p. 23–58, Jan. 2000.

https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://se.mathworks.com/help/sldv/ug/acknowledgments.html
https://se.mathworks.com/help/sldv/ug/acknowledgments.html

	Safety Assurance of a High Voltage Controller for an Industrial Robotic System

