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Abstract

The primary goal of this thesis is to model the heart function. This thesis investigates how

data-driven modelling might help with this. Mechanistic models, which are theory-driven

and guided by a system of differential equations that describe a well known mechani-

cal, biological and chemical phenomenon or processes, are used to model a majority of

complex biological processes. These models exhibit a complex high-dimensional system

and a high computational cost. However, metamodels are data-driven, and are calibrated

using the input-output data obtained by running a large number of simulations using the

mechanistic model. Metamodels are known to reduce computational demand, aid in sensi-

tivity analysis, model comparison, and assist in model parameterization with reference to

measured data. This thesis explores two metamodelling approaches, HC-PLSR, and Deep

Learning to emulate the Pandit-Hinch-Niederer model that couples cellular functions for

rat cardiac excitation-contraction. The input parameters for simulating the mechanistic

model were varied using Latin hypercube sampling and the generated action potentials

were recorded for 250ms. Additionally, both the classical and inverse metamodelling

techniques were used to map input-output relationships. The results reveal that meta-

modelling using deep learning is a powerful emulator, while the HC-PLSR metamodelling

enables a more comprehensive inference of the model behavior. The results also highlight

the importance of subspace analysis in explaining the broad spectrum of behavior that

complex models display.
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1. INTRODUCTION

1 Introduction

The mechanistic models aimed at realistically describing biological processes such as the

generation of the cardiac action potential are complex. They incorporate a large number

of parameters and state variables [1]. These parameters and state variables are linked

together by a set of non-linear differential equations interconnected by complex feedback

mechanisms [2]. Hence, it is very challenging to determine the relationship between such

model outputs and input parameter variation. The complex nature of these models also

make them computationally expensive [3].

Metamodels, i.e. statistical/machine learning-based approximation models, have been

successfully used to decipher the input-output relationships of such mechanistic models

[4]. A metamodel is calibrated from the outputs generated by simulating these mechanistic

models with a large number of varied inputs. The inputs are varied so that they cover the

entire biologically relevant input space, thus ideally covering the space of feasible model

outcomes/behaviour. Metamodels are practical tools in sensitivity analysis, parameter

fitting and reduction of computational cost [2].

Ordinary Least Squares (OLS) regression and response surface methods based on

OLS are common choices for creating metamodels. These methods deal with predicting

a single variable at a time, often neglecting the high correlation between output variables

[2]. These methods also require the regressors to be linearly independent [5] . However, Li

et.al.[6] argue that the regressors are not linearly independent in most biological modelling

situations, making the OLS-based metamodels less reliable. Artificial Neural Networks

(ANN) and Partial Least Squares Regression (PLSR) have been portrayed as effective

tools to emulate complex mechanistic models as these do not require the regressors to be

linearly independent [2]. ANNs emulate complex dynamic models with high precision,

but a drawback in this approach is the interpretability [7]. ANNs do not provide insights

into how all the inputs, auxiliaries, and outputs are related.
1



1. INTRODUCTION

PLSR is an efficient tool as it maximizes the covariance between regressors and the

responses. It also accounts for model stability by considering intercorrelations between

response variables [2]. PLSR aids in dimensionality reduction by converting the input,

intermediate states, and output variables into PLS components which are the important

features that describe the complex system. Hierarchical Cluster Based Partial Least

Squared Regression (HC-PLSR) [2] is an extension of PLS regression that divides the

data with different behaviour into several subsets and performs local PLSR modelling

on each of the subsets. Thus, HC-PLSR handles highly non-linear and non-monotone

input-output relationships through local modelling [2].

In this paper, deep learning and HC-PLSR are used as metamodelling techniques to

emulate the Pandit-Hinch-Niederer [8] model that couples cellular functions for cardiac

excitation-contraction in rats. In order to test the performance of different metamodelling

approaches, it was necessary to select a model that possessed a certain level of complexity

and was reasonably simple such that it would be suitable for a Master Thesis to implement

and run simulations. Hence, the PHN model fulfilling all the requirements is used as a

basis for metamodelling in this thesis. This project investigates how efficiently these

metamodels emulate the complex model and how these methods provide better insights

for understanding the model behaviour.

2



2. THEORY

2 Theory

2.1 Metamodelling

A metamodel, also known as a surrogate model, is a model that replaces an original

model which is characterized by high complexity and computational cost. A metamodel

is a data-driven approximation model and is calibrated with input-output data achieved

from many simulations with the original, complex model.

Metamodelling aids in sensitivity analysis, i.e., determining the degree of dependency

of the model output on variations in the input parameters and identifying hidden patterns

and co-variance in the data [9][10]. It further helps model reduction by getting rid of

the model insensitive parameters, resulting in reduced computational cost. Moreover,

metamodels can be used as surrogate models to further reduce computational demand.

Thus, metamodelling can improve fitting of the parameters’ values to measured data

and the interpretations of the modelling results, which again facilitates real-world use

of the computational models. Metamodelling is used in several applications such as risk

assessment, manufacturing systems, hospitals, fire stations, and by the military [11][12].

For instance, in medical analysis, metamodels are used to develop patient-specific models

by analyzing model behaviour under various input conditions and determining the values

of the parameters that replicate measured data.

Several supervised and unsupervised machine learning techniques can be used to de-

velop a metamodel. Metamodels are categorized as classical or inverse. In a classical

metamodel, the outputs are predicted functions of the input parameters, calibrated using

e.g. regression. In an inverse metamodel, the outputs of a complex model are used to pre-

dict the input parameters. Since complex dynamic models are ‘sloppy’ by nature, meaning

that many different combinations of the input parameter values can produce very similar

model outputs [13], the inverse metamodelling is often much more challenging than the
3



2. THEORY

classical metamodelling.

2.2 PLSR

Multivariate regression correlates the information in one data matrix (X) to another

matrix (Y). PLSR models the complex multivariate relationships by breaking down the

input and the output matrix into independent covariance features [3]. PLSR is used

extensively in the fields of chemometrics, bioinformatics, sensometrics, and neuroscience

[14][15].

Let us consider a multivariate input data matrix X with ’I’ rows and ’J’columns. The

multivariate output matrix Y also has ’I’ rows and’K’columns. The decomposition of

the X and Y matrices into latent variables called scores and loadings yield:

Y = UAQA + FA (2.2.1)

X = TAPA + EA (2.2.2)

PLSR works by developing the scores and loadings so that the first score in X, i.e., t1

has maximum covariance with the first score in Y, u1. This enables us to predict the first

score in Y from the first score in X. Thus, if we can predict the score value in Y, we can

predict Y. This is the main working principle of PLSR, it finds the components in such

a way that their score values have maximum covariance [15]. Referring to the Figure 2.1,

u1 has maximum covariance with t1, and u2 has maximum covariance with t2.

PLSR is related to the more commonly known technique Principal Component Anal-

ysis (PCA). PCA is a feature extraction technique that helps in data compression, whilst

retrieving the most relevant information from the data. PCA finds the direction with

the maximum variance in the data and projects it into a new subspace that has fewer

dimensions compared to the original data [16]. The Principal Components (PCs) point

towards the direction with maximum variance with a requirement that the new feature

axes are perpendicular to each other. Hence, all the resulting PCs are uncorrelated as
4
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they are mutually orthogonal.

PLSR does not consist of just doing PCA on X and PCA on Y in determining the

scores and the loadings of the respective matrices. Instead of finding the significant

variations in X and Y separately (as in PCA), PLSR looks for a direction in both which

is suitable for correlating X scores with Y scores. Thus, it looks for the relevant ’Y’

information. In PLSR, the loadings in X and Y are rotated from the PCA solution.

Hence, as the loadings are rotated, the scores change correspondingly. The correlation

between T and U increases as the loadings change because PLSR is trying to maximize

the covariance, leading to a higher correlation.

Figure 2.1: Illustration of the working of PLSR. Here, γ is the co-variance between the scores in

X (tn) and the scores in Y (un).

Iterative algorithms such as SIMPLS and NIPALS are used to minimize the residuals

and maximize the covariance [15]. The scores and loadings obtained after the final itera-

tion are known as the PLS components which describe the variation in the output matrix.
5
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The PLS component’s ordering is such that the first few components describe the largest

parts of the variation in the output matrix.

The number of included PC, is typically chosen as the minimum number of components

that together explain a sufficiently large portion of the Y-variance. In selecting the

optimal number of PCs, one seeks the number of PCs where the explained Y-variance

no longer increases by increasing the number of PCs. The information contained in the

remaining PCs (amounting to the residuals) is then considered as noise and discarded from

the model. The PCs included in the model thus represent a lower-dimensional subspace

of the data, explaining the main patterns of covariance between X and Y. When all PCs

are included, PLSR is identical to OLS regression.

2.3 HC-PLSR

HC-PLSR was presented by Tøndel et.al.[17] as a new approach for multivariate analysis

in modelling highly non-monotone and non-linear input-output relations. HC-PLSR is

a locally linear regression method that aims to split the regressor subspace into several,

local, subspaces and identify each of the subspaces’ distinct behaviour through local PLSR

modelling. As a result, improved prediction accuracy and more in-depth insights into the

input-output relations can be achieved. In an experiment by Tøndel et.al. HC-PLSR

outperformed OLS and PLSR in metamodelling of dynamic models of a mouse ventricular

myocyte [17] and the mammalian circadian clock [4].

In this method, a global PLSR model is calibrated using all available data in the

calibration set. Clustering is then used to separate the data based on the global PLSR X

and Y scores, and local PLSR models are calibrated based on the observations belonging

to each cluster. For prediction of new/test data, the test set X -matrix is projected

into the global PLSR model to predict the X and Y scores. Based on these scores, the

test samples are classified into one of the clusters and the final prediction is made based

on the local PLSR model of the cluster. HC-PLSR can be used with any clustering
6
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Figure 2.2: Illustration of HC-PLSR [2]

and classification method. In the original implementation, fuzzy C -means clustering was

used, giving membership probabilities for each cluster. Hence, alternatively, the predicted

response can be calculated as a weighted sum of the predictions achieved with each of

the local models, where the cluster membership values serve as weights (an option only

achieved when using soft clustering methods) [2].

2.4 Latin Hypercube Sampling

Latin hypercube sampling is a popular statistical sampling method used to generate ran-

dom samples of input variables used for computer simulation experiments [18]. These

samples are taken from a multi-dimensional distribution. This approach generates sam-
7
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Figure 2.3: Illustration of a Latin Square

ples by stratifying the input probability distribution, which breaks down the cumulative

curve into equal intervals [19]. A sample is drawn at random from each of these intervals.

A Latin square (Figure 2.3), is a square grid if it contains a single sample in each row and

each column. The Latin hypercube generalizes this concept to any number of dimensions.

LHS is efficient in multivariate statistical analysis because it is a memory-based approach.

It ensures that a sample was taken in each row and column generating near-random sam-

ples. This type of stratified sampling is especially useful in high-dimensional systems,

since it ensures that all regions of the sampling space are covered.

2.5 Feature Importance

Feature importance is a technique that ranks the input features based on their ability

to predict the target variable. The feature importance aids in dimensionality reduction
8
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by getting rid of input features that are irrelevant in predicting the target variable and,

thus, insensitive. Selection of the critical features during model training can improve the

model’s test accuracy as they have a significant influence in predicting the target and are

sensitive [20]. Thus, feature importance helps determine the degree of dependency of the

model output in relation to the varied input features termed as a sensitivity analysis.

Figure 2.4: Illustration of drop column feature importance

One of the approaches for determining the feature importance is the drop column

method. It works by dropping feature columns one at a time, exactly as it sounds. An

illustration of the dropout feature importance algorithm is shown in Figure 2.4. Firstly,
9
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a baseline model is fitted by including all the features. The base model error eb, which

represents the model performance, is evaluated from the baseline model. In the next

step, the first feature f1 is removed from the training and the test set. A new model is

fitted and the model performance e1 is evaluated. The performance of the baseline model

(original model with all features) is compared to that of the dropout model to determine

the feature importance. The importance of the first feature is thus evaluated as:

Importance of feature f1 = baseline performance − dropout performance = eb − e1

(2.5.1)

The larger the decrease in performance, the more important the feature is for predict-

ing the target variable. This process is repeated for each of the features in the model. The

drawback with this approach is that an increasing number of features causes an increase

in the number of models that are to be fitted, making this approach computationally

expensive.

Another approach for evaluating feature importance is the feature importance per-

mutation. The schematic illustration of the feature importance permutation method is

shown in the Figure 2.5. Like the dropout feature importance method, a baseline model is

trained and its baseline performance eb on the test data is recorded. Instead of dropping

the first feature, the rows of the first feature (f1) are permuted. The predictions are made

from this modified test set, and its performance e1 is determined. The feature importance

calculation method is the same as shown in the equation 2.5.1. This procedure also needs

to be repeated for each of the features in the model, however, this approach does not

require retraining the model as for the dropout method since the importance is evaluated

just from the permuted test set. Hence, the feature importance permutation method is

utilized in this paper due to its low computation cost. A drawback of this method is that

if the features are correlated, this approach tends to provide higher importance to one of

the features and suppresses the other’s importance.
10
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Figure 2.5: Illustration of feature importance permutation

2.5.1 Regression coefficients as measures of feature importance

In regression analysis, the regression coefficient quantifies the relationship between the

input and the output (given that the regressors are scaled to equal variance prior to the

analysis). A lower absolute value of the regression coefficient indicates a low correlation

between the feature and the quantity of interest [21]. Thus, discarding the features with

lower correlation, we improve the metrics associated with our prediction.
11
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2.6 Classification

Classification is a supervised machine learning approach that predicts the categorical class

of the observations. The classification model is trained with samples whose categorical

label is known. The class label represents the group membership of each of the samples.

The model learns a set of rules such that it can predict the class labels of the test samples.

A problem can also have multiple class labels, giving multiclass classification.

2.6.1 Logistic Regression

Despite its name, logistic regression is a classification model. The performance of logistic

regression is best when the classes are linearly separable [22]. It is often used in binary

classification problems but can also be implemented in multiclass classification by applying

the one-versus-rest technique (OvR). The OvR breaks down multi-class classification into

one binary classification problem per class.

The logistic regression predicts the class probability of a particular sample with a

sigmoid function. The sigmoid function takes the real values as inputs and transforms

them into the range [0,1] with an intercept at φ(z) = 0.5. The prediction probability is

converted to the binary outcome through a threshold function.

φ(z) =
1

1 + e−z
(2.6.1)

ŷ =

 1 if φ(z) ≥ 0.5

0 otherwise
(2.6.2)

J(w) =
n∑
i=1

[
−y(i) log

(
φ
(
z(i)
))
−
(
1− y(i)

)
log
(
1− φ

(
z(i)
))]

(2.6.3)

The equations 2.6.1, 2.6.2, 2.6.3 describe the sigmoid function, threshold function and

the cost function of logistic regression, respectively.
12



2. THEORY

2.6.2 K Nearest Neighbors (KNN)

The KNN classifier is a so-called lazy learning algorithm. Unlike the parametric models

such as logistic regression, linear discriminant analysis, and perceptron, it does not esti-

mate a set of parameters to learn the classification problem. Instead, KNN memorizes

the training data and is therefore referred to as lazy, implying that the model training

cost is zero [16].

The workflow of the KNN algorithm can be summarized in the following three points:

1. The algorithm starts with the user choosing the number of neighbours ‘k’.

2. It finds the nearest neighbours from the training samples, i.e., neighbouring samples

that have similar properties or are closest to the test sample. The closeness is eval-

uated by using distance metrics. Commonly, Euclidean and Minkowski’s distance

metrics are used.

3. The sample is classified based on a majority vote from its ‘k’ - nearest neighbours.

An advantage of this method is that it adapts quickly to new data, as it memorizes

the training data and excludes training. A drawback of this approach is that the compu-

tational complexity increases linearly with the number of samples in the training dataset.

2.6.3 Support Vector Machines (SVMs)

SVMs (Figure 2.6) are another widely used classification algorithm, where the margin, i.e.,

the distance between the training samples and the decision boundary, is maximized. The

samples that are closest to this boundary are referred to as support vectors. The basic

intuition is that a wider margin leads to a lower generalization error [23]. In contrast,

smaller margins often lead to overfitting.

The positive and negative hyperplanes which are parallel to the decision boundary can

be described as:
13
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Figure 2.6: Illustration of maximum margin and support vectors

w0 +wTxpos = 1 (2.6.4)

w0 +wTxneg = −1 (2.6.5)

The distance between the positive and negative hyperplane or the “margin” is achieved

by subtracting equation 2.6.4 and 2.6.5.

wT (xpos − xneg ) = 2 (2.6.6)

We normalize the equation 2.6.6 by the length of weight vector w as follows:

‖w‖ =

√√√√ m∑
j=1

w2
j (2.6.7)

14
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wT (xpos − xneg)
‖w‖

=
2

‖w‖
(2.6.8)

Thus, the objective of SVM is to maximize the margin by maximization of 2
‖w‖ provided

that the samples are classified correctly. However, in practice, the inverse term 1
2
‖w‖2 is

minimized as it can be solved efficiently using quadratic programming [24].

Dealing with non-linearly separable cases Vladimir Vapnik introduced in 1995 the

idea of slack variables which gave rise to the soft-margin classification. The idea behind the

slack variable was relaxing the linear constraints when dealing with non-linearly separable

data [25]. This allows the optimization process to converge by penalizing misclassification

by adding suitable cost penalty.

The slack variables are added to the linear constraints as follows:

w0 +wTx(i) ≥ 1− ξ(i) if y(i) = 1

w0 +wTx(i) ≤ −1 + ξ(i) if y(i) = −1
(2.6.9)

The new objective to be minimized is then:

1

2
‖w‖2 + C

(∑
i

ξ(i)

)
(2.6.10)

The variable ’C’ controls the penalty for misclassification. A high value of ’C’ means a

large error penalty and a lower value corresponds to a lower penalty. Thus, the parameter

’C’ controls the width of the margin and adjusts the bias-variance tradeoff [16].

2.6.4 Decision Trees

Decision trees are popular classification models when the interpretability of the model

result is of high importance. Decision trees separate data into classes by asking a number

of questions learned from the features [26]. The decision tree starts at the root and divides

the data based on the largest information gained. This is an iterative process which is
15
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repeated until a pure child node is achieved. This often leads to overfitting as the depth

of the tree is increased, and it is thus often necessary to set a maximum limit for the

tree depth, something known as pruning the tree [22]. The objective is to maximize the

information gained by splitting the nodes at the most informative features.

IG (Dp, f) = I (Dp)−
m∑
j=1

Nj

Np

I (Dj) (2.6.11)

where: f = feature on which the split is performed

Dp = parent dataset

Dj = dataset of the jth child node

I = impurity measure

Np = number of samples in the parent node

N j = number of samples in the jth child node

Thus, information gain is the difference between the parent node’s impurity and the

sum of the impurities of the child nodes. Hence, the information gain is higher when the

sum of the impurities of the child nodes is lower.

The impurity measures used in binary decision trees are Gini impurity (IG) and entropy

(IH) [27].

IH(t) = −
c∑
i=1

p(i | t) log2 p(i | t) (2.6.12)

IG(t) =
c∑
i=1

p(i | t)(1− p(i | t)) = 1−
c∑
i=1

p(i | t)2 (2.6.13)

where, p(i | t) is the proportion of the samples that belong to class c and node t.

If all the samples at a particular node belong to the same class, the entropy is zero.

In contrast, it is at maximum if the class distribution at a node is uniform. Thus, it is
16
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evident that entropy tries to maximize joint information in a tree. Likewise, Gini impurity

tries to minimize the probability of misclassification.

2.6.5 Random Forests

Random forests are extensively used in classification problems because of their good clas-

sification performance, simple interface and scalability [22]. In this method, multiple

decision tress are overfitted by making them deep. These trees with high variance help

build a robust final model [28]. The algorithms for random forests can be summarized as:

1. Selecting random samples from training data with replacement. These samples of

data are also known as bootstrap samples.

2. Building a decision tree from the randomly selected samples by selecting a subset

‘d’ without replacement and splitting the tree node where the information gain is

at maximum.

3. The steps 1 and 2 are repeated ‘k’ times, where k is the total number of trees in

random forest.

The model’s final prediction depends on a majority vote of the classes predicted by

all the individual decision trees in the random forest.

A user does not have to worry much about hyperparameter tuning in random forest.

It is not necessary to prune the trees, as it performs best when the trees are overfitted and

the final prediction depends on a majority vote [22]. Also, a greater number of trees in the

forest leads to an increased performance as compared to using less trees. However, keeping

a small bootstrap size decreases the model performance, as it increases the randomness

of the forest and decreases overfitting. This means that the trees in the forest will be

very different from each other, as a single sample might not be placed multiple times in

the bootstrap [22]. Thus, it does not fit the training data more closely, leading to a lower
17
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generalization performance. Meanwhile, increasing the bootstrap sample size increases

overfitting, making the trees in the forest more similar to each other. Hence, fitting the

training data more closely and making robost predictions.

2.7 Regularization

Regularization helps reduce the complexity of a model, handles collinearity, filters the

noise, and prevents overfitting [16]. It adds additional bias to the weights by penalizing

higher weight values.

L2 : λ‖w‖22 = λ
m∑
j=1

w2
j (2.7.1)

The λ is a regularization parameter and controls the strength of regularization. A high

value of lambda keeps the values of the weights lower. In scikit-learn [29], the parameter

‘C’ is used to control the strength of regularization. ‘C’ is the inverse of λ. Consequently,

decreasing the value of C increases the regularization strength.

L1 : ‖w‖1 =
m∑
j=1

|wj| (2.7.2)

Compared to L2 regularization, L1 regularization replaces the square of the weights by

the sum of the absolute values of the weights. In contrast to L2 regularization, it produces

sparse feature vectors, i.e., the weights of some of the features are zero. Sparsity is useful

when handling high-dimensional data as it removes irrelevant dimensions. Intuitively, L1

regularization can also be used for feature selection.

Referring to the Figure 2.7, the contours are the cost function for weight coefficients

w1 and w2. The cost function is the sum of squared errors (SSE) [30]. The aim is to

find the optimal combination of weight coefficients which yields a low cost for the training

data. The shaded ball represents the L2 regularization term which is quadratic in nature.

The combination of weights cannot fall outside the shaded area. Thus, increasing the
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Figure 2.7: Illustration of L2 regularization [22]

lambda value will increase regularization and reduce the shaded area, giving extremely

low weights. However, this might not lead to the shaded area’s intersection with any of

the cost contours. Hence, it is necessary to find a suitable value of lambda that increases

the regularization budget while decreasing the cost [22].

The concept behind L1 regularization, is the same as that of L2, but since it is a sum

of absolute weight coefficients, its regularization term is represented by a diamond shape.

In Figure 2.8 , we can see that the contour of the cost function and the diamond area

intersects where the w1 = 0. Hence, the intersection of the cost function (ellipses) and

the boundary of the L1 diamond is bound to be located at the axes, which favors sparsity

[22].

λenet (β) = γ [αλ1(β) + (1− α)λ2(β)] (2.7.3)

Elastic Net regularization is a combination of both L1 and L2 regularization. Equation
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Figure 2.8: Illustration of L1 regularization [22]

2.7.3 shows that the L1 part (λ1(β)) of the penalty generates a sparse model, whereas the

quadratic part of the penalty (λ2(β)) removes the limitation on the number of selected

features, encourages a grouping effect and stabilizes the L1 regularization path. The

parameter γ controls the regularization strength.
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2.8 Feature Selection

Feature selection refers to the selection of only a subset of meaningful features from

the original features of a dataset. Feature selection supports dimensionality reduction

by getting rid of irrelevant features and,in turn, avoids overfitting. It further reduces

the generalization errors, increases computational efficiency, and sometimes increases the

predictive capability of a model [31].

2.8.1 Sequential Backward Selection (SBS)

The SBS algorithm reduces the number of features in the original subspace to the user

defined feature counts. A criterion function ‘J’, which is to be minimized, decides whether

to select a feature or not. The criterion function can be as simple as the difference in the

model’s performance before and after the removal of a feature [32]. Thus, getting rid of

the features that cause the lowest performance loss.

SBS is a greedy algorithm. A greedy algorithm produces sub-optimal results as it

utilizes locally optimal solutions whilst an exhaustive search algorithm evaluates all pos-

sible outcomes. Hence, the latter is computationally expensive but guarantees an optimal

solution to a problem.

2.8.2 Repeated Elastic Net Technique (RENT)

RENT is a feature selection technique that selects features from an ensemble of models.

These models are trained from different subsets of data and are approximately unique.

The elastic net regularization might select different features in each of these unique models.

RENT analyzes the weight distribution of the weight sizes of the features in all the models

and uses a user defined specific threshold value for feature selection criteria [33].

As described in equation 2.7.3, a pre-defined combination of several values of γ and α

is passed before RENT. The best combination of γ and α is determined through five-fold
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Figure 2.9: Illustration of working of RENT [34]

cross-validation. This best combination of values is utilized by RENT to train the unique

ensemble models for feature selection.

The RENT starts by building ‘k’ different models from the input data set. It performs

‘k’ train-test-splits from the original dataset giving different test and training datasets.

This results in a weight matrix having weights for each of the ‘k’ models. For example, in

Figure 2.9, β11 is the weight of the first feature in Model 1. Utilizing the weight matrix, we

obtain a statistical summary of each of the feature weights. An example of a distribution

of weights of the second feature is shown in the histogram.

τ1 (βn) = c (βn)

τ2 (βn) = 1
K

∣∣∣∑K
k=1 sign (βn,k)

∣∣∣
τ3 (βn) = tK−1

(
µ(βn)√
σ2(βn)
K

) (2.8.1)

A feature should pass all the three criteria (2.8.1) embedded in RENT to get selected.

The first criterion deals with the number of times a feature is selected on these ‘k’ different

models. The idea behind this is that a feature that is selected on most of the models is most

likely important. Hence, the first criterion gets rid of the features that don’t contribute

much to the prediction. The second criterion is all about the stability of the weights of

the features. A feature is deemed unstable if its weights are sometimes nearly zero and
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at other times it shifts between a positive and a negative value. The second criterion

removes the unstable features. Likewise, the third criterion eliminates the features that

have weights close to zero in all the ‘k’ models. The third criterion is important because

even if a feature passes the first and the second criteria, it ensures that the features with

weights close to zero are not selected. All these criteria are directed by thresholds τ 1, τ 2,

and τ 3 respectively [33].

Figure 2.10: Illustration of the feature selection criteria [34]

The threshold values in this example (2.10) are τ 1 = 0.9, τ 2 =0.9 and τ 3 = 0.975. This

means that a feature should be selected ninety percent of the times in ‘k’ models, the

stability of the sign of the weight should be above ninety percent and the weights should

be far from zero. We can see that all three criteria are fulfilled by the third, fourth and

the fifth feature and thus are selected. On the other hand, we do not select the first and

the second feature as they do not pass the first and the second criteria despite fulfilling

the third criteria.

2.9 Cross-Validation

Cross-validation approaches are used to evaluate the generalization performance of a

model, i.e., how well it performs on unseen data. It helps find a sweet spot in bias-

variance tradeoff. The two most popular cross-validation approaches are leave-one-out

cross-validation and k-fold cross-validation.
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2.9.1 Holdout Cross-Validation

This is a classical cross-validation technique that splits the input data into a training set,

a validation set and a test set. The training set is used to set different models while the

validation set is utilized for hyperparameter tuning and performance evaluation for model

selection. The test set which the model has never seen before is then used to evaluate the

generalization performance of the model. This gives a less biased estimate of the model

as compared to using only a training set and a test set [35]. On the contrary, this method

is sensitive to how the input data is split into the three different subsets, as the estimates

might vary between different splits [22].

2.9.2 K Fold Cross-Validation

‘k’ repetitions of the holdout method on ‘k’ subsets of the data leads to k-fold cross-

validation [22]. This method splits the training data into ‘k’ subsets and ‘k-1’ of the

subsets are used for model training. The remaining single fold is then used for model per-

formance evaluation. Each of the‘k’ folds are held out once. This results in ‘k’ models and

‘k’ estimates. The overall performance of the model is evaluated as the average between

the estimates of the ‘k’ models. These estimates are bound to be less sensitive than that

of the individual predictions. Often K-fold cross-validation is used for hyperparameter

tuning and finally all of the data is used to train the model with the selected hyperparam-

eter values. As k-fold samples the observations without replacement, each of the samples

get selected into the training set and the validation set exactly once. Consequently, the

estimates have lower variance [22].

Figure 2.11 illustrates a five fold cross-validation. In the initial iteration, the last four

training data subsets are used for training while the first subset is used for validation. The

final performance of the model is evaluated as the average of all errors of the iterations.

Studies show that a ten-fold cross-validation is a good choice for most problems [37].

However, an increasing number of folds leads to an increase in computational demand.
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Figure 2.11: Illustration of five fold cross-validation [36]

Another approach known as stratified K-fold yields better bias-variance tradeoff when

the data’s class labels are disproportionate [37]. This method ensures that the class

proportions are equal in each of the folds of the training dataset.

2.10 Evaluating the performance of a model

2.10.1 Confusion Matrix

A confusion matrix is a square matrix that reports the performance of a model. It

provides the count of true positives (TP), false positives (FP), true negatives (TN), and
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false negatives (FN).

2.10.2 Evaluation Metrics

Prediction accuracy is the most widely used metric when evaluating a model’s perfor-

mance. Nevertheless, several other metrics are used to measure the relevance of a model

such as precision, recall, and f1 score. In classification problems, accuracy and prediction

error provide information on the number of samples that are misclassified. The prediction

error and accuracy are evaluated as:

PredictionError =
FP + FN

FP + FN + TP + TN
(2.10.1)

PredictionAccuracy =
TP + TN

FP + FN + TP + TN
= 1− PredictionError (2.10.2)

In most of the imbalanced class problems, True positive rate (TPR) and False Positive

Rates (FPR) are used as the evaluation metrics.

FPR =
FP

N
=

FP

FP + TN
(2.10.3)

TPR =
TP

P
=

TP

FN + TP
(2.10.4)

The precision and recall are related to TPR and TNR. The recall is the same as the true

positive rate. The precision describes how surely the model predicts true positives whilst

the recall explains the degree by which the model does not miss any positive predictions.

Precision =
TP

TP + FP
(2.10.5)

Recall = TPR =
TP

P
=

TP

FN + TP
(2.10.6)
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In general, another score metric called f1 score is used, which is a combination of

precision and recall.

F1 = 2 ∗ PRE ×REC
PRE +REC

(2.10.7)

In regression analysis, Mean Squared Error (MSE) is commonly used to evaluate model

performance. MSE is the average value of the sum of squared cost that is minimized while

fitting the regression model. To get a metric that is on the same scale as the predicted

values, one often reports the square-root of this value, i.e. the Root Mean Squared Error

(RMSE).

MSE =
1

n

n∑
i=1

(
y(i) − ŷ(i)

)2
(2.10.8)

Alternatively, a standardized version of MSE known as the coefficient of determination

(R2) can be used. R2 is evaluated as:

SST =
n∑
i=1

(
y(i) − µy

)2
(2.10.9)

R2 = 1− SSE

SST
(2.10.10)

where, SSE= sum of squared error and SST= total sum of squares

The value of R2 lies between 0 and 1 for the training dataset but it can be negative

for the test data. The coefficient of determination is 1 if the model fits the data perfectly

with zero MSE.

2.11 Clustering

Clustering is an unsupervised classification technique that organizes unlabelled data into

meaningful clusters. This technique does not have any prior information about the group

memberships of the observations. Clustering helps identify the hidden structures in the
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data. Groups of observations that are similar or share a certain degree of similarity (and

are dissimilar to other observations) are gathered together. Clustering is e.g. used to iden-

tify customer behaviours, developing distinct marketing programs, and in recommender

systems [38].

2.11.1 Hard and Soft Clustering

Hard clustering algorithms such as the K-means algorithm assigns each sample strictly to

a single cluster. In contrast, soft clustering (fuzzy clustering) algorithms assign a sample

to more than one cluster. The most widely used soft clustering algorithm, FCM (Fuzzy

C-means) [39], was developed by James C. Bedzek in the 1980s, which improved Joseph

C. Dunn’s original idea.

2.11.2 K-Means Clustering

K-Means is a prototype-based clustering technique. Each of the clusters is represented by

a prototype, i.e., centroid (average) of similar points with continuous features. K-means

performs better with spherical clusters, but a downside with this approach is that we have

to specify the ’k’ (number of clusters) value [16]. An inappropriate value of ’k’ leads to

poor clustering.

The workflow of the K-Means algorithm is summarized in the following points:

1. Randomly assigning ’k’ cluster centroids from the observations as initial clusters.

2. Assigning each of the observations to its nearest centroid.

3. Moving centroids to the centre of the observations that were assigned to it. The

steps 2 and 3 are repeated until the clusters do not change or after the tolerance or

the maximum number of iterations is reached.

Euclidean distance measure is used to determine the similarity between the samples.
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The lower distance between the two points x and y indicates that the samples are similar.

The distance between two points x and y on m-dimensional space is calculated as:

d(x,y)2 =
m∑
j=1

(xj − yj)2 = ‖x− y‖22 (2.11.1)

Where ’j’ refers to the jth feature column of the sample points x and y. This Euclidean

distance metric is used to modify the K-means algorithm as an optimization problem by

minimizing the within-cluster sum of squared error (SSE). SSE is also sometimes referred

to as cluster inertia.

SSE =
n∑
i=1

k∑
j=1

w(i,j)
∥∥x(i) − µ(j)

∥∥2
2

(2.11.2)

2.11.3 Fuzzy Clustering

The working principle of FCM is similar to that of the K-means algorithm except that,

unlike K-means, the FCM assigns each observation a cluster probability. This value

describes the belongingness of the sample to different clusters. The sum of the membership

values for a given sample is one. The algorithm starts by assigning ’k’ number of centroids

and randomly setting membership values for each observation. The cluster centroids are

computed as the mean of the cluster members. The cluster membership for each point

and the centroids are updated iteratively until convergence or the maximum number of

iterations has been reached [22]. The loss function to minimize in FCM is the within-

cluster sum of squared error, based on a chosen distance measure:

Jm =
n∑
i=1

k∑
j=1

wm(i,j)
∥∥x(i) − µ(j)

∥∥2
2

(2.11.3)

where, w(i,j) is a real value that represents cluster membership. The exponent m is

the fuzziness coefficient which typically takes the value two and controls the fuzziness.
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Increasing the fuzziness coefficient leads to fuzzier clusters as the cluster memberships

become smaller.

w(i,j) =

 k∑
p=1

(∥∥x(i) − µ(j)
∥∥
2

‖x(i) − µ(p)‖2

) 2
m−1

−1 (2.11.4)

µ(j) =

∑n
i=1w

m(i,j)x(i)∑n
i=1w

m(i,j)
(2.11.5)

Equation 2.11.4 and 2.11.5 describe how the cluster membership and the cluster centres

are calculated respectively.

2.11.4 The Elbow Method

The main issue in unsupervised learning is not knowing the conclusive answer. We do

not have the ground truth values to evaluate the model performance. Thus, intrinsic

methods such as a within-cluster sum of squared errors, also known as ’distortion’, are

used to compare clustering models’ performance with different numbers of clusters [22].

The Elbow method is a graphical tool used to evaluate the optimal number of clusters for a

task at hand. This method follows the idea that choosing a large number of clusters leads

to a decrease in distortion. This is true, since the samples will be closer to their cluster

centroids. However, this should be balanced against the complexity of the cluster model.

Thus, this method plots the distortion for different values of ’k’ (number of clusters)

and its optimal value is the one where the distortion no longer decreases significantly by

increasing the number of clusters.

2.11.5 Silhouette Plots

Silhouette analysis [40] is a graphical tool that describes how tightly the samples in a

cluster are grouped. The silhouette coefficient s(i) is evaluated as a difference between
30



2. THEORY

the cluster cohesion (a(i)) and cluster separation (b(i)) divided by the greater of the two

values, shown as:

s(i) =
b(i) − a(i)

max {b(i), a(i)}
(2.11.6)

Cluster cohesion is the mean distance between an observation x(i) and all other samples

in that cluster. In contrast, the cluster separation is the average distance between the

observation x(i) and all the samples in the nearest cluster. The silhouette coefficient values

range from -1 to 1. From equation 2.11.6 we can observe that if the cluster cohesion and

the cluster separation values are equal, the silhouette coefficient is zero. To get the

perfect clustering, i.e. the silhouette coefficient of 1, b(i) >> a(i), since the high value

of b(i) indicates that the cluster samples are very dissimilar from other clusters’ samples.

Also, smaller a(i) means that a cluster sample is very similar to the other samples in its

own cluster.

2.12 Artifical Neural Networks

Biological neurons are interconnected nerve cells in the brain which transmit and process

electrical and chemical signals. McCullock and Pitts [41] describe these neurons as simple

logic gates producing two binary outputs. As the signals arrive in the dendrites (Figure

2.12), they are integrated into the cell body. If the accumulated signals exceed a certain

threshold, an output signal is generated, carried by the axon. A general model of ANN

inspired by biological neurons is shown in Figure 2.13.

2.13 Deep Learning

Deep learning is a subfield of machine learning that incorporates many successive layers

that learn meaningful representations from the data. Thus, the ’deep’ in deep learning

indicates the depth of these layers (i.e., the number of layers) in a model. Most machine
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Figure 2.12: Illustration of a biological neuron [42]

Figure 2.13: Illustration of an artificial neural network. A single layer neural network is also

referred to as Perceptron.
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learning methods focus on learning only one or two layers of representations of the data

and are thus referred to as "shallow learning". Meanwhile, modern deep learning models

use tens or even hundreds of successive layers stacked on top of each other to learn data

representations [43].

Figure 2.14: Digit classification model using deep learning [43]

Figure 2.14 shows the illustration of a digit classification model using deep learning.

The network transforms the image such that the learning representation of the layers are

very different from the original image. These representations are also very informative

in comparison to the original image in predicting the final result. The layers can be

interpreted as a series of filters in a distillation process, through which there is a flow of

purified information [43]. Basically, learning means finding the optimal weight values for

all the network layers such that the network maps the input to their targets as correctly

as possible, where the weights are numeric values that guide the transformation of a layer.

The loss or the objective function of the network measures how far the model pre-

dictions are from the actual target value. The loss functions calculate a score value by

computing the distance score between the true value and the predicted value. This score

is the performance evaluation metric of the model. At the start, the weights of the net-
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Figure 2.15: Illustration of the backpropagation algorithm [22]

works are set to random values; thus, the output of such models are naturally far off

from the target values and likewise, the model loss is high. In a process referred to as

backpropagation, Figure 2.15, an optimizer uses this score as a feedback signal to adjust

the weight values with the goal of reducing the loss score [16]. Backpropagation is thus

the backbone of neural networks. The gradient of the prediction error is computed as

a function of the weights of the neurons, and the weights are adjusted to minimize this

error. These output errors are propagated back to deduce the error in the hidden layers.

The gradient of the error in the hidden layers are computed, and the layer weights are

adjusted in the same manner [43].

For example, the Adam optimizer monitors the earlier partial derivatives and if the

consecutive gradient points are in the same direction, it adds momentum leading to a

faster training time and increasing the chances to avoid saddle points [44]. This process is
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repeated for each of the samples many times, and is called a training loop. At the end of

the training loop, a trained network with a minimal loss produces outputs that are close

to the target values.

2.14 Feed-Forward Neural Network (FFN)

In an FFN, several artificial neurons are stacked on top of each other. Figure 2.16 illus-

trates a data flow in a neural network with the input layer, output layer, and n hidden

layers between them. The circles represent the nodes, while the arrows indicate the di-

rection of data flow. The input layer x = [x1, x2,. . . . . . ..,xm] consists of m neurons which

are the unprocessed input data. As the m inputs are passed onto the next layer, it is

multiplied by weights w= [w1, w2,. . . . . . wd], and a bias is added. An activation function

is applied to the linear combination of the previous layer’s node output. Hence, in a

neural network, the output of the previous layers is an input to the following layer, and

the output of the final layer is the predictions. In short, a neural network’s learning goal

is to find all the weight matrices such that the final predictions are as close as possible to

the actual results. In an FFN, all the neurons in a layer are connected to all other neurons

in the following layer and are referred to as dense layers. FFNs have demonstrated their

ability to detect complex non-linear relationships between the dependent and independent

variables along with the detection of possible interactions between the predictor variables.
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Figure 2.16: Illustration of a feed-forward neural network. ai
(j) denotes the ith activation unit

of the jth layer. W(j)
s × t denotes the weight matrix between the (j-1)th layer with s units and jth layer

with t units.
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2.15 Convolutional Neural Network (CNN)

CNN is another type of deep learning model that is primarily used in computer vision

applications. Unlike FFN, it is characterized by a smaller number of parameters and

consequently less training time. Another difference between FFN and CNN is that a

convolutional network learns the local patterns while the former learns the data’s global

patterns [43]. Similar to working with images, time can be considered a spatial dimension

as an image height or width. These kinds of 1D convolutional neural networks have

considerably cheap computational costs.

LetA and B be tensors with shape (m1, m2,.......,mn) and (n1, n2,.......,nn) respectively.

The convolution of A and B is defined as:

[A ∗B]i1,...,iN =

n1∑
j1=1

. . .

nN∑
jN=1

Ai1−j1,...,iN−jNBj1,...,jN (2.15.1)

Here, B is also referred to as the convolution kernel.

Figure 2.17: Illustration of 1D convolution operation with padding. The input vector is rep-

resented by the row of numbers in the bottom. The convolution vector B is (-1,2,1), and the top row

represents the output of the convolution. (a) - (c) illustrates the computation of first, second and last

elements of A*B while (d) presents the input-output vectors of the convolution.

However, from the definition above, we can see that it is not easy to deal with the
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boundary pixels. The filter begins at the left of the image with the filter’s left-hand side

positioned on the image’s far left pixels. The filter is then moved across the image, a

single column at a time until the filter covers the far-right pixels of the image. Thus, to

ensure that each pixel in an image takes the center position of the filter and maintains

the output feature map’s size, padding is used. Padding expands an input tensor in all

directions by creating new tensor elements whose values are set to zero.

The 1D convolutional network extracts local 1D patches from the input sequences.

This ability to extract features from local input patches increases the data efficiency

representation modularity. These 1D layers can recognize the local patterns anywhere

in the sequence as the same input transformation is done in every patch, making them

translation invariant [43]. Filters help in extracting these local patterns. Filters are a set

of vectors that are trainable and are thus adjusted by the gradient descend. The filter

features such as the width and strides (steps) are predefined. Each of these filters also has

another trainable parameter called a bias. The output produced by the filters is referred

to as "feature maps" [45]. The number of spatial features extracted by the filters depends

on the number of features, whereas the filter’s width guides the range from which the

spatial dependencies are extracted.

Pooling (Figure 2.18) is a technique used to downsample the image tensors in CNN

spatially. Likewise, in 1D convolution, pooling can extract 1D patches from inputs and

yield the maximum value (max pooling) and the average value (average pooling) as the

output [44]. It helps in reducing the lengths of 1D inputs. There is a sparse connection

between several layers of a CNN, such as convolution layers, pooling layers, and even

dense layers. The dense layer is commonly used in the final layer to map spatial features

into a set of output nodes.

CNN is also a feed-forward neural network since the input parameters are propagated

throughout the layers. Therefore, to avoid confusion, only FFN without convolutions are

referred to as FFN in this thesis.
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Figure 2.18: Illustration of 1D pooling operation. A max pooling operation is performed, where

the output is the maximum value in the input image. (a) - (c) shows the output and the computational

process of max pooling operation while (d) shows the final input and output from the max pooling

operation.

2.16 Activation Functions

Activation functions like ReLU, sigmoid and tanh enable the layers to learn non-linear

dependencies [46]. A drawback of the linear activation functions is that they shrink

the hypothesis space of the layers. No matter how many layers are added, if the layer

activations are linear, the hypothesis space cannot be broadened, since a stack of linear

layers always learns linear representations.

φsigmoid(x) =
1

1 + exp(−x)
. (2.16.1)

φtanh(x) =
ex − e−x

ex + e−x
(2.16.2)

φsoftmax(x)i =
exp(xi)∑
j exp(xj)

. (2.16.3)
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φReLU(x) = max(0, x). (2.16.4)

ReLU, sigmoid and tanh aid in non-linear learning but have different activation ranges.

The sigmoid and ReLU limit the activation to a positive value, whereas the tanh provides

a broader activation range from -1 to 1. ReLU is a piecewise linear function that sets all

negative values to zero. ReLU is the most widely used activation function in the hidden

layers in recent years [47], because it avoids the vanishing and exploding gradient problem

since its derivative is zero for negative inputs and one for positive inputs [48][49]. In ad-

dition, it contributes to larger update steps and leads to efficient convergence. The choice

of activation in the output layer of a neural network is dependent on the specific problem

type. For example, softmax is used in multiclass single-label classification, whereas a lin-

ear activation function is used in most of the regression problems. Unlike other activation

functions, the softmax takes vectors as inputs, as a results it’s output sums up to one.

The nature of these activation functions is illustrated in Figure 2.19.

Figure 2.19: Illustration of various activation functions
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2.17 Regularization in Neural Networks

The primary issue in any machine learning algorithms is the balance between optimization

and generalization. The process of getting the best out of a model during training is called

optimization. Generalization refers to how well the model performs on data which it has

never seen. The goal of any machine learning model is to gain better generalization, but

we cannot control generalization. Instead, it is only possible to adjust the model based

on the training data. Trying to generalize to samples outside of the space of the training

data is referred to as extrapolation, and often leads to unreliable predictions.

At the start of the model training, optimization and generalization are correlated.

This means that lower loss on training data yields a lower loss on the test data. In this

context, the model is said to be underfitting, i.e., the model has not yet learnt all the

relevant patterns in the training data. As the number of training iterations increase, at

a certain point, the generalization stops improving. Following this, the validation metric

value flattens and starts falling. In this case, the model is said to be overfitting, i.e., it

has started to focus on the patterns that are only specific to the training data but are

ambiguous when it comes to unseen data.

The best solution for preventing a model from overfitting is getting more data. Usually,

a model that is trained on more data generalizes better provided that the new data is

sufficiently different from the original data [16]. Another approach is called regularization,

i.e., adding constraints to the model, preventing it from memorizing irrelevant patterns

found in the data. Weight regularization is a technique that penalizes higher weights

and forces the weights to be smaller. The weight regularization is achieved by adding a

cost to the loss function. In L1 regularization, the added cost is directly proportional to

the absolute value of the weight coefficient. In contrast, in L2 regularization [50], it is

proportional to the square of the value of the weight coefficient.

Another way of reducing overfitting is to reduce the model’s capacity (number of
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learnable parameters of the model). This will reduce the memorization capacity of the

model, and make it generalize better [43]. On the other hand, if the model’s capacity is

low, the models tend to underfit. Therefore, it is necessary to find the sweet spot between

too much capacity and not enough capacity.

2.17.1 Dropout

Dropout is the most popular regularization technique used in neural networks. It was

developed by Geoff Hinton and his students at the University of Toronto [16]. The dropout

works by setting zero values to random output features during training. The fraction of

the features that is converted to zero is called the dropout rate. None of the units are

dropped during the test, but the output values from the layer are scaled down by the

dropout rate. This ensures that all the units are available at testing as compared to

training. Hence, the dropout reduces the model’s capacity during training and forces a

redundancy between various features learnt in various hidden units, leading to increased

robustness [51].

Figure 2.20: Illustration of the dropout method

2.18 Callbacks

A callback is an object (class instance) passed to a model in the fit method. The model

calls this object at various steps during training. The Keras/TensorFlow [52] callbacks

module has several built-in callbacks.
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2.18.1 Earlystopping

This callback interrupts training once the validation or the target metric stops improving

after several epochs. It stops training as soon as the model starts overfitting, eliminating

the need to retrain it to the optimal number of epochs [53].

2.18.2 Reduce Learning Rate on Plateau

This callback reduces the learning rate when the validation loss stops improving. In-

creasing and decreasing the learning rate is an effective technique to avoid local minima

[43].

2.19 Batch Normalization

Normalization brings all the features to the same scale. Normalization centers the data

on zero by subtracting the mean and dividing by its standard deviation. The data after

normalization follows a standard normal distribution, with a mean value of zero and a

standard deviation of one.

It is common practice to normalize the data before feeding it to the fitting method.

There is no guarantee that a neural networks’ transformations (its output) are normalized.

The batch normalization is a layer that normalizes the output activations from a layer

before forwarding it to the next layer. This assists in developing deeper networks by

aiding gradient propagation [48][47].
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An introduction to the basic mechanisms of the heart physiology are presented in

Appendix C.

2.20 Heart Muscle Cells

Cardiac muscles are striated muscles since they have alternating dark and light bands.

They are also involuntary as the autonomous nervous system innervates them. A cardiac

muscle cell consists of numerous myofibrils that extend throughout the length of the

muscle fiber. Myofibrils are contractile elements that constitute up to 80% of the total

volume of the muscle fiber. Each of the myofibrils constitutes a thick and a thin filament

made up of myosin and actin proteins respectively. A sarcomere is the functional unit of

cardiac muscle, i.e., the smallest muscle fiber unit that can contract. Small bridge-like

structures can be spotted on the thick filaments stretching toward the thin filaments in

the overlap zone at high magnification. They’re called cross-bridges, and are responsible

for the movement and the force generated during contraction. Each of the cross-bridges

has two sites necessary for the contraction process: an actin-binding site and a myosin

ATPase (ATP-splitting). Actin is the dominant protein in the thin filaments and consists

of a binding site to bind with myosin. This binding between an actin molecule and myosin

at a cross-bridge results in contraction of heart muscle cells [54].

2.21 Generation of a Cardiac Action Potential

A brief illustration of the process of generation of cardiac action potential is presented

in Figure 2.21. The Phase 0 follows a depolarization process allowing the sodium ions to

move rapidly into the cell. At Phase 1, the sodium channels are closed. Phase 2 is also

known as a plateau phase where the potassium ions rapidly move out of the cell while the

calcium ions slowly enter the cell. During the rapid repolarization (Phase 3) the calcium

channels close and the potassium ions still continue to move out of the cell rapidly. In
44



2. THEORY

the Phase 4, the sarcolemma becomes impermeable to sodium ions and leaky potassium

channels open out modulating the cell responsiveness and modularity.

Figure 2.21: Illustration of the generation of cardiac action potential. Figure adapted from

[55]
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2.22 Initiation of contraction by an Action Potential (AP)

The generated AP in the cardiac contractile cells travels down to the transverse (T)-

tubules, where the L-type Ca2+ channels are located. The Ca2+ ions from the extracel-

lular fluid (ECF) travel along these channels and diffuse into the cytosol triggering the

opening of ryanodine Ca2+ release channels in the lateral sacs of the sarcoplasmic reticu-

lum (SR). This process is called Ca-induced Ca-release and releases a massive amount of

Ca2+ from SR through ryanodine Ca2+ release channels into the cytosol. This release of

Ca2+ ions is known as a Ca2+ spark. The increased concentration of cytosolic Ca2+ initi-

ates the contractile process. The cytosolic Ca2+ combines with the troponin-tropomyosin

complex in thin filaments, which are pulled aside to form Ca2+ cross-bridge cycling and

contraction between the thick and thin filaments. The excess Ca2+ in the cytosol is re-

moved by processes such as the Na+−Ca2+ exchanger in the plasma membrane and the

sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump in the SR. This

reinstates the blocking action of troponin and tropomyosin, causing the heart muscle cells

to relax [54]. This process is also illustrated graphically in Figure 2.22.
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Figure 2.22: Illustration of excitation-contraction coupling and muscle relaxation. The steps

1-7 describe events coupling the neurotransmitter release and consequent electrical excitation of the

muscle cell with muscle contraction. The cross bridge cycle returns to step 5 if the Ca2+ ions are still

present in step 7. If the Ca2+ ions are no longer present, relaxation occurs as a result of step 8 [54]. Figure

adapted from the book Human Physilogy [54][9 th Edition, Page 260] Reprinted with Permission c©

Cengage Learning

47



2. THEORY

The following sections on model descriptions are based on [56],[57], [58],and[8] respec-

tively.

2.23 The Pandit Model

Scientific works have revealed that there is a difference in AP waveforms in epicardial

and endocardial cells in the left ventricle (LV) of the mammalian heart. This difference

is termed as ‘transmural heterogeneity’, and occurs in feline, rabbits, mouse, rat, and

humans. The electrophysiological properties in epicardial myocytes are characterized by

a shorter AP duration (APD) than in endocardial myocytes.

Adult rats have been extensively used in LV studies of the electrical heterogeneity, not

only under normal conditions but also in pathophysiological conditions such as diabetes,

thyroid dysfunction, and myocardial infraction. It is observed that endocardial myocytes

have longer APD in healthy adult rats making it an important inotropic (causing changes

in the strength of contraction) variable. This APD has a more observable rate-dependent

effect and higher peak overshoot in comparison to epicardial APD. The ionic mechanisms

and their interactions are important to understand the electrical heterogeneity in adult

rat LV.

Scientific literatures suggest that Ca2+ independent transient outward K+ current (It)

is a key factor contributing to the differences in the endocardial and epicardial myocytes

APD. The endocardial cells have a smaller density of (It) and a slower recovery from

inactivation kinetics than epicardial cells. Also, the endocardium in LV is reported to

have a higher density of transmural gradient of Na+ current (INa). Transmural gradient

is the differenece between the intracavitary pressure and the extracavitary pressure. The

extracavitary pressure approximates to zero, thus the filling pressure usually equals the

ventricular diastolic mean pressure. Pandit et.al. developed a mathematical model to

analyze these differences in endocardial and epicardial cells by reconstructing the APs

under normal conditions.
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Figure 2.23: A schematic diagram of the CellML Model [59]
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The mathematical formulation of the epicardial and endocardial cells of the rat LV is

based on the Hodgkin Huxley model (1952). The electrical equivalent circuit of the Pandit

model describing pumps, ion channels in sarcolemma and the Na+ - Ca2+ exchanger

in adult rat LV is shown in Figure 2.24 A. A fluid compartment model, Figure 2.24

B, is coupled together with the electrical equivalent circuit. The fluid compartment

describes the changes in Na+, Ca2+ , K+ ions in the myoplasm, and the Ca2+ ions in the

sarcoplasmic reticulum.

2.24 The Hinch Model

Most local control Ca2+ release models utilize stochastic simulation between L-type Ca2+

channels (LCCs) and ryanodine-sensitive Ca2+ release channels (RyRs). However, they

are characterized by a high computational cost even in single-cell simulations. The Hinch

model provides a simplified approach for modelling the local control of Ca2+ induced-

calcium release (CICR) in cardiac ventricular myocytes.

The formulated model referred to as the LCC-RyR gating model consists of a low

dimensional system of ODEs since it incorporates only the essential biophysical features

from electromechanical (EC) coupling. This gives a system of model equations that can

be simplified using timescale-based approximations. For example, Ca2+ in dyadic space

equilibrates rapidly relative to the gating dynamics of LCCs and RyRs. Also, the model

utilizes the Markov model in describing the cooperative behavior of LCCs and RyRs.

The transition probabilities between the interacting states are solely a function of global

variables enabling the calculation of collective calcium release units (CaRUs) behavior

through ODEs. Despite its simplicity, the model accurately describes the main properties

of CICR, which include graded release and voltage dependence of EC coupling gain. The

EC gain is computed as peak SR Ca2+ release flux divided by the peak flux of Ca2+ across

the cell membrane and quantifies the amplification provided by CICR.
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Figure 2.24: Electrical equivalent circuit (A) and fluid compartment model (B) of the rat

cardiac cell [56]
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2.25 The Niederer Model

This model formulates the phenomenon of cardiac myocyte relaxation. The relaxation and

tension development at each heartbeat is governed by cellular mechanisms and takes place

in sarcomere spatial scale. The interdigitated protein filaments of actin and myosin make

up the sarcomere. The crossbridges that perturbate from myosin bind to actin. When

these crossbridges undergo a conformational change, the bound crossbridges start to pull

the filaments in the opposite direction, generating tension. This procedure is regulated

by Ca2+ ions, which are locally free and by the intrinsic properties of the sarcomere.

A rise in the local [Ca2+]i causes contraction. The binding of Ca2+ ions and troponin

C (TnC) leads to the movement of tropomyosin. This in turn exposes the actin binding

sites, allowing the actin binding of the crossbridges whilst generating tension. The events

such as the unbinding of Ca2+ and TnC, obstruction of the binding sites by tropomyosin,

separation of crossbridges, and the drop in the tension value back to zero is followed

after the [Ca2+]i is removed. A lot of research has been done on the process of tension

generation , but the steps controlling the relaxation are not extensively studied.

Relaxation is measured as the time at which the peak tension value decays by fifty

percent. The [Ca2+]i transient and intrinsic properties of the myofilaments are the deter-

minants of relaxation. Relaxation is affected when the [Ca2+]i is altered or the simulation

frequency is increased. The intrinsic properties of myofilaments that affect the relaxation

are sarcomere length, tension dependent binding of Ca2+ to TnC, inhomogeneous sarcom-

ere shortening, phosphorylation of troponin I, and crossbridges inhibiting tropomyosin

returning to its resting state. Each of the parameters in the simulation of the Niederer

et.al model are adapted from a number of articles from the literature and experiments.

The model of the active contraction is based on the structure suggested by Hunter

et.al., illustrated in Figure 2.25. The inputs to the model are sarcomere length, velocity

and intracellular [Ca2+]i. Crossbridge kinetics, tropomyosin kinetics and Ca2+binding
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to TnC kinetics are the processes described by the differential equations. The model

utilizes steady state and transient experimental data in describing the Ca2+ binding to

TnC. Likewise, the model uses light-activated Ca2+ chelator experiments and Force -

Ca2+ curves to expose the actin binding sites because of the movement of tropomyosin.

The active tension is calculated as a product of available actin sites, maximum isomeric

tension, and a sarcomere-velocity dependent scalar. The maximum isomeric tension is

described by a linear function of sarcomere length and is produced when the length of

muscle’s sarcomeres are on plateau of the length-tension curve. The function parameters

are maximum velocity, rapid length step and sinusoidal perturbation experimental results.

Figure 2.25: Flow diagram illustrating the relationships between the active contraction [58]

2.26 The Pandit-Hinch-Niederer (PHN) Model

Most of the scientific works are developed on the basis of previous experiments and results

in the same field. In the computational field, the same is achieved by the use of accepted

standards which describe and simulate the models. The cardiac model used for metamod-

elling in this paper is a combination of an electrophysiological model, a cellular calcium

dynamics model, and a mechanics model, which together formulate the Pandit-Hinch-

Niederer (PHN) model. Sarcolemmal K+ and Na+ currents are described by the Pandit

endocardial model, the description of Ca2+ fluxes is derived from the Hinch model, while

the binding mechanism of Ca2+ to troponin C and the tension development is related to

the Niederer model.

The XML based programming language (Cell ML) facilitates the reuse and combina-
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tion of these models. A primary issue in creating ensemble models is model incompati-

bility. PHN describes three types of incompatibility issues, namely unit inconsistencies,

structural inconsistencies and parameter inconsistencies.

Unit inconsistency is one of the simplest forms of inconsistencies that can be easily

solved. It refers to the variables that vary in the dimension but have equivalent units.

For example; the current obtained from the Pandit model is in nA whereas the PHN

model uses µA. This issue is automatically resolved by the integration software PCEnv

by converting the dimensions to equivalent units.

Structural inconsistencies reflect the various ways in which bilology is integrated in

mathematical equations. For example, the ion fluxes and the whole-cell current both

describe the movement of ions across the cell membrane but are not in equivalent units

and cannot be converted into one another. This conversion requires the valance of the

species (i.e. Ca2+) and the volume of myocytes. The conversion equation can be described

as :

I = j × z × F × volmyo (2.26.1)

where the current (’I’ ) is in microamperes, volmyo is in microlitres, F is the Faradays

constant, the flux of calcium ions (j) in millimolar per milliseconds, and z is the valence

for Ca2+ ions which is 2. Even so, the dependence of myocyte volume in this conversion

leads to parameter inconsistency.

The parameter inconsistencies are caused by the differences in the mathematical equa-

tions used in several models. Although these equations may describe the same biological

process, the units of the measurement may be different. From equation 2.26.1 it is evident

that the conversion of fluxes to current is dependent on cell myoplasm volume. However,

the Pandit model uses picolitre and the Hinch model uses micrometrecube as the unit to

measure cell volume. Thus, it was necessary to choose a uniform value of the cell volume

in the final PHN model. In comparison to other cellular ions in ventricular myocytes,
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Ca2+ has significantly lower ion concentration. Consequently, it has a higher sensitivity

to the volume of myoplasm, creating a strong dependence between the results of Ca2+

dynamics and the cellular dimensions in the Hinch model. Hence, the cell dimensions from

the Hinch model was used as it accurately measured the intracellular Ca2+ concentration

and this in turn regulated both cellular electrophysiology and contraction. Also, the mem-

brane currents described in the Pandit model are whole-cell current and are independent

of cell volume. This further aided the integration of these models.

The full set of modified equations of the PHN model are listed in the Appendix B.
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3 Methods

3.1 Data generation

The cardiac membrane potentials analysed in this paper were simulated using the Pandit-

Hinch-Niederer model. The python implementation of the model was obtained from

the Physiome Project repository https://models.physiomeproject.org. The original

implementation was modified to allow for varying the parameter values. 76 parameters

(set as ’constants’ in the original implementation) were varied by ±50% from their default

values, using a Latin Hypercube sampling procedure. This resulted in 10,000 combinations

of values of those 76 parameters. See Appendix A for a complete list of the varied

parameters and their default values. However, six of the parameters were left unchanged

and are described in Table 1. The membrane potential was evaluated over time for each

set of parameter values to analyse the variance in the model output, resulting from the

variation in the input parameters. Each of the 10,000 simulations was run for 250ms

with a resolution of 1ms, resulting in a recording of the cardiac membrane potential over

250 timesteps. These simulations ran for 43 hours and 33 minutes on a computer with a

processor powered by Intel R© CoreTM i5-8250U CPU@1.60GHz (8CPU) ∼ 1.8GHz, and a

memory of 8GB.
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Table 1: Default values in simulations of PHN Model

Parameter Description Value

R in component membrane (mJ/mole K) −8314.5 mJ/moleK

T in component membrane (kelvin) 295 K

F in component membrane (C/mole) 96487 C/mole

Stimulation period in component membrane (ms) 1e3 ms

Stimulation duration in component membrane (ms) 10 ms

Stimulation amplitude in component membrane (uA) −0.6e-3 ms

Figure 3.1: Illustration of the calculation of the aggregated phenotypes. The threshold for

the action potential is set to -20mV while the width of an AP is calculated at 50% prominence height.

Likewise, Time to peak and Amplitude are calculated at the maximum AP.
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3.2 Classical Metamodelling

3.2.1 Classical Metamodelling of the time series data

Classical Metamodelling of the time series data using HC-PLSR

The parameter combinations that generated the AP were collected and further divided

into a training (70%) and a testing set (30%). Feature engineering was used to increase

the feature space by including cross-interaction terms, second order terms and sinus and

cosine terms. A widely held belief is that the introduction of sinus and cosine terms might

benefit the classical metamodelling problem taking care of abrupt non-linearities in the

data [60]. Including cross-interaction terms may help identify the interactions between

the main effects.

The training data was standardized to zero mean and unit standard deviation, forcing

the features to form a standard normal distribution. An initial PLSR model, referred

to as the global PLSR model, was calibrated with the training set, using ten-fold cross-

validation. The PCs that explained one percent or more of the total validated Y variance

were selected in the global PLSR model, while the rest of the PCs were considered as

noise and therefore omitted. In HC-PLSR, the X scores obtained from the global PLSR

model are utilized for clustering. The k-means clustering algorithm was used and the

optimal number of clusters was determined by the elbow method. Depending on the

optimal number of clusters, the equivalent number of PLSR models, referred to as local

PLSR models, were fitted from the respective cluster samples with the same settings as

that of the global model.

Prior to prediction with the test set, the cluster memberships of the test set sam-

ples must be determined by classification. For this purpose, classification models were

developed using the training set. Several classification algorithms were used to train a

classification model and examine the classification accuracy with the global X scores as

the training data. These classification algorithms are listed below:
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• Random Forests
• Support Vector Machines
• Logistic Regression
• K-Nearest Neighbors

The test set was standardized using the mean and the standard deviation from the

training set. This resulting scaled test set was projected into the global PLSR model to

obtain the X scores of the test set. These projected X score matrices were used to predict

the cluster labels for the test samples, using the best classification model obtained. The

final Y-prediction for the test set samples was based on the prediction from the local

PLSR model that the sample was classified into.

Classical Metamodelling of the time series data using deep learning

The classical metamodelling of the generated time series AP data was done using FFN

and CNN. RENT and SBS were used as feature selection techniques to identify and select

the important features for the deep learning models. The total dataset was divided into

a training (70%) set and a test set (30%). The training set was further divided into a

validation set (20%) and an actual training set (80%). The data was standardized as

described above.

CNNs are also powerful tools as they can look for spatial dependencies in the data,

unlike FFNs. Adam was used as the default optimizer as it handles sparse gradients

on noisy problems. The number of epochs, batch size, and the learning rate were tuned

using the validation set. The coefficient of determination (R2) was used as the performance

evaluation metric, while the mean squared error was used as the loss function. To avoid

overfitting, dropout was used in combination with early stopping and reducing the learning

rate on the plateau. Likewise, the output from each of the layers was normalized using

batch normalization, enabling the weights to take smaller values. The final performance

of the model was evaluated on the test set that the model had never seen before.

The model architecture for the classical metamodelling of the PHN model using FFN

is described in Appendix F Figure F.1. All hidden layers in FFN used ReLU as the
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activation function and utilized Adam as an optimizer. A linear activation function was

used in the output layer of all the metamodels, handling them as a regression problem.

The FFN comprised of three fully connected dense layers, each with 232 neurons.

Likewise, the model architecture for the classical metamodelling of the PHN model

using CNN is described in Appendix F Figure F.2. The network consists of four hidden

layers in which the first three are 1D convolution layers while the last one is a dense layer

with 500 neurons. The convolutional layers comprised of 128 filters and a kernel size of

10. Max pooling, average pooling, dropout, batch normalization and flatten were also

introduced in between the layers. The activation function and the optimizer in both the

models were the same as that of the FFN model.

3.2.2 Classical Metamodelling of the aggregated phenotypes

The classical metamodelling of the aggregated phenotypes was carried out using HC-

PLSR, FFN and CNN. The Y matrix consisted of extracted features such as “time to

peak”, “width of the first AP”, and “amplitude of the first AP” while all of the 76 param-

eters were used in the X matrix for a fair comparison between the model performances.

The exact same methods and constraints were applied in this metamodelling process while

using HC-PLSR as described in the section 3.2.1.

Likewise, for FFN, the choice of activation function, optimizer, loss function, and the

evaluation metric were the same as that of the classical metamodelling of time series data

using FFN. Batchnormalization, dropout and callabcks were also implemented to reduce

overfitting. The architecture of the FFN model used for metamodelling of the aggregated

phenotypes is shown in Appendix F Figure F.3. It consists of a single dense layer with

15 neurons.

Similarly, the model architecture for the metamodelling of aggregated phenotypes

using CNN is shown in Appendix F Figure F.4. It consists of a single 1D convolutional

layer, and a dense layer with four neurons. The convolutional layer utilized two filters
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and a kernel size of two. The choice of activation function, loss function, optimizer and

the intermediate layers were identical to the model used in the classical metamodelling of

the time series data using CNN.

3.3 Inverse Metamodelling

3.3.1 Inverse Metamodelling of the time series data

The inverse metamodelling of the time series data was carried out using HCPLSR, FFN

and CNN. The Y matrix consisted of the 76 parameters that were varied, while the X

matrix was the time series data. The inverse metamodelling process using HC-PLSR

followed the same methods and constraints as introduced in the classical metamodelling

except for the cross-interaction terms, which were not included here.

The inverse metamodelling of the time series data using FFN followed the similar

setup to that introduced in section 3.2.1. The network architecture is shown in Appendix

F Figure F.5. It consisted of three densely connected hidden layers with 216 neurons each,

with ReLU as the activation function while the output layer comprised of 76 neurons with

linear activation.

The inverse metamodelling using CNN (Appendix F Figure F.6) composed of five

hidden layers among which the last two layers were dense layers with 200 and 500 neurons

whereas the first three layers were 1D convolutional layers with 128 filters and a kernel

size of 10. The convolutional layer was same padded, confirming that the data size was

not reduced. The same intermediate layers used in the classical metamodelling of time

series data using CNN were utilized. A fully connected layer with seventy six neurons

was introduced to link the feature map with the output layer.
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3.4 Permuted Feature Importance

The feature importance was calculated from multiple permutations for stability and the

adjustment of random effects. Finally, the mean and the standard deviation of the im-

portance of each of the features were listed.

62



4. RESULTS

4 Results

4.1 Data Generation

Out of 10,000 simulations, only 5344 simulations generated a membrane potential. A wide

range of differently behaving membrane potentials were generated through the combina-

tion of sampled parameters as illustrated in Figure 4.1 A. The mean and the standard

deviation of the 5344 simulations are also shown in Figure 4.1 B. The time for the first

AP generation for all the parameter combinations was around 0.673 ms.

Figure 4.1: Plot of membrane potentinals generated from PHN model. A) The 5344 membrane

potentials simulated from the PHN model. B) The mean and standard deviation of the 5344 membrane

potentials simulated from the PHN model, blue: mean and green: standard deviation.

4.2 Classical Metamodelling

4.2.1 Classical Metamodelling of the time series data using HC-PLSR

The global PLSR model trained with the features selected from RENT and SBS presented

a significant decrease in model performance in comparison to using all available features.

Likewise, there was no improvement in the model performance with the introduction of
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sinus, cosinus, and cross-interaction terms. Hence, all the features were used to train

the global PLSR model. The optimal number of PCs was found to be six (Appendix D

Figure D.1) as the seventh PC failed to explain the total cross-validated Y variance with

an increment of one percent. The first six PCs explained 68% of the total cross-validated

variance in the Y-matrix.

Since the elbow method was unsuccessful in determining the distinct number of clus-

ters, a number of HC-PLSR models were trained with clusters ranging from four to eight.

Using prediction accuracy as a basis for selection, the optimal number of clusters and the

value of the silhouette coefficient taking the globalX-scores as the input matrix was found

to be five and 0.12 respectively. The elbow plot and the silhouette plots are illustrated

in Figure 4.2. The clustering of the X-scores with the five cluster centroids is plotted in

Figure 4.3. We can observe that there is no clear cluster pattern, and this might subdue

the performance of HC-PLSR which aims to identify simulations with similar behavior

and model them separately.

The final accuracy of the HC-PLSR model was 0.73, with an increase of 4% compared

to the initial global PLSR model. The global regression coefficients and the local regression

coefficients for the five PLSR models fitted within each cluster are plotted in Figure 4.4

A and Figure 4.4 B-F. The ten most significant features were selected by sorting the

standardized regression coefficients. The ten features were selected because the constraints

introduced (described in the later sections) in selecting the important features using FFN

and CNN resulted in similar number of features. It can be observed that regression

coefficients of the fourth cluster are different compared to the other clusters. Similarly,

"Na_o" and "g_Na" have high coefficient values at the initial stages of the AP generation,

while "g_D" and "N" play an important role in describing the latter stages of the AP. The

parameters "g_t", a_endo", and "V_myo" have a negative coefficient value, indicating

a negative correlation between them and the time series AP.
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Figure 4.2: Elbow and silhouettee plots for the classical metamodelling of PHN model using

HC-PLSR. A) Elbow plot considering upto nine clusters. B) The silhouettee plot for five clusters.

4.2.2 Classical Metamodelling of time series data using FFN

The initial FFN models when trained with the features selected from SBS achieved a test

accuracy of 0.82 while the test accuracy was 0.78 for the features gathered from RENT.

Moreover, it outclassed the initial model trained with all the features by 6%. The SBS

selected 49 features from the 76 features to enhance the model performance. The selected

features are colour-listed in Appendix A. Appendix G Figure G.1 illustrates the training

plots used in hyperparameter tuning of the FFN model in classical metamodelling. Thus,

the final model was trained with 49 features selected from SBS for 200 epochs and achieved

a test set prediction accuracy of 0.83.

The feature importance ranking of the 49 variables was calculated using five permuta-

tions for each of the features using the feature importance permutation approach described

in the Section 2.5. The features were sorted based on the their importance, and from this

set, the features with minimal difference in the absolute value of the importance between

them were selected (Figure 4.5). From the figure, it is clear that the effect of "g_t" is the

highest in determining the initial AP, followed by "del_VL" and "V_myo".
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Figure 4.3: Clustering results from HCPLSR metamodelling of the PHN model using five

clusters. A) Scatter plot of the X-scores from the global metamodel. The red stars indicate the

cluster centroids and the samples are coloured according to their cluster membership. Cluster1=green,

cluster2=orange, cluster3=blue, cluster4=yellow, cluster5=brown. B-F) illustrates the nature of the

cluster membrane potentials for clusters 1-5, respectively.
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Figure 4.4: Global and local regression coefficients for the input parameters of the PHN

model. The regression coefficients illustrate the sensitivity of the input parameters with time. A) shows

the global regression coefficients. B-F) shows the local regression coefficients for cluster 1-5, respectively.

The standard deviation of the membrane potentials belonging to each individual clusters is plotted off

scale in the background for comparison.
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Figure 4.5: Feature importance for the input parameters of the PHN model using FFN. The

feature importance is calculated with five permutations of each input variable. The standard deviation

of the simulated membrane potentials is plotted off scale in the background for comparison.
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4.2.3 Classical Metamodelling of the time series data using CNN

The 49 features selected from SBS were again used to train the CNN model. Figure

Appendix G G.2 illustrates the training plots used in hyperparameter tuning of the CNN

model in classical metamodelling. Thus, the final model was trained for 20 epochs and

achieved a test set prediction accuracy of 0.93.

The feature importance of the 49 variables was calculated using five permutations

for each of the features using the feature importance permutation approach described

in the Section 2.5. From this, the features having a weight coefficient greater than 0.05

were gathered (Figure 4.6). The threshold was determined using the same approach as

described in the previous section. It can be observed that the volume of the sarcoplasmic

reticulum is the most important feature in guiding the initial AP, followed by i_NaK_Max

and "g_NCX".

4.2.4 Classical Metamodelling of the aggregated phenotypes using HC-PLSR

The X-scores were chosen as the clustering basis for k-means clustering for the classical

metamodelling of aggregated phenotypes using HC-PLSR. The model was trained using all

available features as the feature selection techniques did not improve the model prediction

accuracy. The first four PC’s were chosen (Appendix D Figure D.2) since the fifth PC

failed to increase the explained variance of the first four PCs by more than one percent.

The first four PCs explained 60% of the total cross-validated variance in Y. Likewise,

the elbow method Figure(4.7(A)) failed to provide the optimal number of clusters. As a

result, cluster numbers ranging from four to ten were tried before landing into the optimal

number of clusters which was six. The prediction accuracy achieved from each trial of the

cluster number was the basis in choosing the optimal number of clusters.

In selecting the important features, a constraint was introduced such that the fea-

tures having at least 40% of the highest regression coefficient values were selected. This

different requirement was essential since all of the 76 features were used in training the
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Figure 4.6: Feature importance for the input parameters of the PHN model using CNN. The

feature importance is calculated with five permutations of each input variable. The standard deviation

of the simulated membrane potentials is plotted off scale in the background for comparison.

Figure 4.7: Elbow and silhouettee plots for the classical metamodelling of PHN model using

HC-PLSR. A) Elbow plot considering upto fourteen clusters. B) The silhouettee plot for six clusters.
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metamodel. This resulted in a more evenly distributed coefficient values without an ob-

servable significant decrease between them, which could be used as a basis for selection.

The regression coefficients for the main effects of the extracted aggregated phenotypes

are shown in Figure 4.8. The results indicate that "g_t" is an important parameter in

determining all three phenotypes while "Na_o" guides both the time to the first AP

and the amplitude of the first AP. Similarly, the width of the AP is highly sensitive to

"K_RyR" and "g_D".

4.2.5 Classical Metamodelling of the aggregated phenotypes using FFN

Appendix G Figure G.3 illustrates the training plots used in hyperparameter tuning of

the FFN model in classical metamodelling. The model was trained for 500 epochs with

a batch size of 64. The feature importance of the input variables was calculated with the

same method as elaborated in the Section 2.5 and is illustrated in Figure 4.9. The results

suggest that "Na_o" and "g_Na" are the important determinants of the time to the first

AP and the amplitude of the first AP, while "g_D" and "K_RyR" mainly govern the

AP width.

4.2.6 Classical Metamodelling of the aggregated phenotypes using CNN

Appendix G Figure G.4 illustrates the training plots used in hyperparameter tuning of

the FFN model in classical metamodelling. The model was trained for 79 epochs with

a batch size of 64. The feature importance of the input variables was calculated with

the same method as elaborated in the Section 2.5 and is illustrated in Figure 4.10. The

findings imply that "Na_o" and "g_Na" are primarily responsible for time of AP and

its amplitude while "g_t" is important in determining all of three extracted phenotypes.

"K_RyR" is another factor that influences the width of the first AP.

The test set prediction accuracies comparing the performance of FFN, global PLSR

and HC-PLSR in predicting the aggregated phenotypes are listed in Table 2.
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Table 2: Prediction results (R2) for metamodelling of the aggregated phenotypes extracted from the

PHN model using FFN, CNN, PLSR and HC-PLSR.

FFN CNN Global PLSR HC-PLSR

time to peak 0.6738 0.6857 0.6822 0.6096

width of first AP 0.9521 0.9218 0.9135 0.8999

amplitude of first AP 0.3972 0.2659 0.2438 0.1696

4.3 Inverse Metamodelling

4.3.1 Inverse Metamodelling of the time series data using HC-PLSR

The response matrix to the global PLSR model in the inverse metamodelling comprised

the set of all the 76 features that were varied. The ideal number of PCs was determined

as 10 (Appendix D Figure D.3) using the same method described in earlier sections,

explaining 35% of the total cross-validated variance in Y. Following this, the optimal

number of clusters and the value of the silhouette coefficient taking the global X-scores

as the input matrix, and using the Elbow method, were two and 0.58 respectively. The

clustering of the X-scores with the two cluster centroids is plotted in Figure 4.11. The

elbow plot and the silhouette plots are illustrated in Figure 4.12. Hence, two local PLSR

models were trained, and the final results are presented in Table 3.
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Figure 4.11: Clustering results from the inverse HC-PLSR metamodelling of the PHN

model using two clusters. A) Scatter plot of the X-scores from the global metamodel. The red

stars indicate the cluster centroids and the samples are coloured according to their cluster membership.

cluster1=green, cluster2=orange, B-C) illustrates the nature of the cluster membrane potentials for

clusters 1 and 2, respectively.
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Figure 4.12: Elbow and silhouettee plots for the inverse metamodelling of PHN model using

HC-PLSR. A) Elbow plot considering upto nine clusters. B) The silhouettee plot for two clusters.

Table 3: Prediction accuracies (R2) for inverse metamodelling of the PHN model using HC-PLSR. The

red color indicates a decrease in prediction accuracy while the green color indicates an increase.

Parameter Global PLSR HC-PLSR

V_myo 0.138 0.108

K_o 0.820 0.821

Na_o 0.354 0.357

V myo uL 0.157 0.157

g_Na 0.417 0.440

g_t 0.470 0.494

a_endo 0.208 0.212

g_D 0.215 0.206

N 0.146 0.080
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4.3.2 Inverse Metamodelling of the time series data using FFN and CNN

The response matrix to the FFN and the CNN model in the inverse metamodelling com-

prised of all the initial parameters that were varied. Most of the variables selected from

the FFN model have higher prediction accuracy than the important features selected from

the high-performing CNN model. The results of inverse metamodelling for the variables

selected from the FFN and CNN are listed in Table 4.

Table 4: Prediction accuracies (R2) for inverse metamodelling of the PHN model using FFN and CNN.

Parameter Prediction Accuracy (FFN)

V_myo 0.1717

phi_L 0.0572

Na_o 0.4435

V myo uL 0.2339

g_t 0.5248

K_L 0.1466

g_D 0.2394

N 0.1643

del_VL 0.2463

tau_L 0.1421

K_RyR 0.1580

Parameter Prediction Accuracy (CNN)

V_SR_uL 0.0234

i_NaK_max 0.0046

g_ss 0.0046

J_K 0.0049

g_Ncx 0.0087

g_SERCA 0.0371

k_SERCA 0.0012

K_Ref_off 0.0243

gamma_TRPN 0.0042

-

-
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5 Discussion

5.1 Classical Metamodelling of the time series data

A good prediction accuracy (0.69) achieved from the global PLSR model suggests that

the PHN model exhibits soft non-linear behavior, since this can be modelled using the

nonlinear terms included in the set of independent variables. Nonetheless, the slightly

increased accuracy (4%) achieved by using HC-PLSR shows that in order to better emulate

the model outputs, some abrupt non-linearities must be taken into consideration. Since

a clear cluster pattern was not identified, it diminished the efficiency of HC-PLSR in

modelling these abrupt non-linearities. However, the slight increase in the prediction

accuracy from HC-PLSR and the lower prediction accuracy achieved with the PLSR

compared to FFN and CNN indicates that there are complex non-linearities present. The

best HC-PLSR model achieving a test set accuracy of 0.73 was surpassed by FFN (0.84)

and CNN (0.93) model indicating that CNN is more efficient at emulating the PHN model.

The k-means clustering used in HC-PLSR, to some extent, was able to differentiate

the divergent behavior of the PHN model. Figure 4.4 shows how the parameter space was

divided into subspaces (B-F) using clustering. This further increased the interpretability

of the importance of the input parameters to different model behavior. It is a well known

fact that the initial AP is caused by the sodium current and followed by the repolarization

of the membrane potential with the potassium current. These mechanics are confirmed by

the local regression coefficients of the input parameters in Figure 4.4 (B-F), which illus-

trates the influence of "Na_o" which is governed by the somatic conductance of sodium

"g_Na", is increasing with the membrane potential. When inspecting these regression co-

efficients closely, their value are lower in clusters Figure 4.4 (D-E) in comparison to other

clusters, which explains the reason behind their lower peak AP. The parameter "g_t"

is a component associated with the Ca independent transient outward K current which
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explains the early phase shaping of the AP [61]. It is responsible for the prolongation

or the shortening of APD with a high correlation between it and prominence of Phase-1

notch [61]. Likewise, dyadic space conductance ("g_D") and the number of release units

("N") are associated components in CaRU which describe the behavior of the membrane

potential during the final stages.

The permuted feature importance calculated from the FFN and CNN model were not

able to provide a thorough explanation of the model behaviors, since it is based on the

complete dataset. As a result, it falls short of characterizing highly non-linear input-

output correlations and revealing additional patterns of covariation, unlike cluster-based

approaches to regional metamodeling. The generalized overview provided by the per-

muted feature importance of the FFN model is somewhat similar to the global regression

coefficients Figure 4.4 A. It can be elucidated from the feature importances that "g_t" is

the most important parameter that explains the behavior leading to the initial AP. They

also indicate that "del_VL" (width of opening potentials), a component in CaRU transi-

tion, "Na_o" and the volume of myocytes (uL) are the other main parameters influencing

the generation of the AP.

However, the best emulating model recognized the volume of the sarcoplasmic reticu-

lum "V_SR" and "i_NaK_max" which is a component related to the sodium potassium

pump as the significant parameters which guide the initial phase of the AP. Likewise,

the components "g_NCX" (component in sodium-calcium exchanger), "g_SERCA" and

"k_SERCA" are important in describing the latter phase of the AP. It is apparent that

CNN focuses in predicting the latter stages of the AP, which is often difficult to predict.

5.2 Classical Metamodelling of the aggregated phenotypes

Overall, FFN achieved higher prediction score for the extracted phenotypes from the PHN

model. However, the CNN model achieved a slightly better score (by 1%) in predicting

"time to peak". All models performed well in predicting the "width of the first AP"
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(FFN being the best). However, all of them struggled in predicting the "amplitude of

first AP" with HC-PLSR making predictions that were worse than the calculated average

amplitude of the first AP. From the results, it is apparent that XY relationships are too

complex for all the methods to make predictions regarding the first AP amplitude.

Both the feature importance permutation from FFN and CNN the local regression

coefficients identified "g_Na" as the most critical parameter in predicting the time until

the first AP, followed by "Na_o," "g_t" and "del_VL" (width of opening potentials).

Not surprisingly, the amplitude of the initial AP was mainly explained by "Na_o" and

"g_Na" in all three methods. While the HC-PLSR was unable to predict the width of

AP accurately, the permuted feature importance in FFN and CNN recognized "K_RyR"

(half concentration of activation) as the most important feature followed by "g_D" and

"V_myo".

5.3 Inverse Metamodelling of the time series data

The inverse metamodelling using HC-PLSR had difficulties predicting "N" and "V_myo",

but it did better than the global PLSR model in predicting other important variables.

Most of the sensitive parameters from HC-PLSR and FFN were overlapping. The FFN

model outperformed the HC-PLSR model in predicting these important common param-

eters. The prediction ability of CNN was worst of all in predicting the features selected

from the permuted feature importance. The prediction accuracy for all variables was

below 1%.

The sloppiness of the models might explain the low prediction accuracies in inverse

metamodelling. Even though a parameter is considered important, it might be that

several different combinations of parameter values can give similar outputs. An increase

in a parameter value and a decrease in an other parameter value might balance the

changes. The outputs can still be similar for different simulations resulting in a many

to one problem in predicting back to the parameters. There is no efficient method to fix
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this problem. However, one can try to identify manifolds or the ranges of the parameter

values that generate similar outputs instead of directly predicting them.

5.4 Comparison between HC-PLSR and Deep Learning

Considering the emulation capacities, it is evident that the deep learning models (both

FFN and CNN) surpass the HC-PLSR model. While it may well be true that increasing

the number of clusters in the HC-PLSR model might achieve a greater prediction ability,

this eventually leads to an increased computational cost due to a longer clustering time and

a large number of PLSR models that must be calibrated. In addition, when dealing with

experimental data, with the increase in the number of clusters, the number of observations

required to model each cluster’s behavior increases simultaneously. However, when using

simulated data, the total number of observations is usually high. Also, difficulties arise

in explaining the model behavior when the number of clusters is high. Similarly, deep

learning models are unable to explain its predictions and interpret in terms of human

intuition. It is also worth noting that the deep learning models used in this study could

be improved further.

HC-PLSR’s strength lies in revealing regional differences in the model sensitivity to

various input parameters. This is aided by exploring regression coefficients or the loading

plots from the local and global modelling. The local models also help identify the oper-

ative domains of the parameter space more efficiently. However, the behavioral insights

presented by the HC-PLSR metamodelling might be restricted by its ability to emulate

highly complex models with high granularity such that it hinders the local interpolation

in the parameter space [62]. Hence, an important question arises on the amount of infor-

mation that HC-PLSR is unable to explain. Another downside with the PLSR subspace

methodology is that it fails to generate informative component plots in situations where

the mechanistic model does not have a robust input-output relationship but only a wide

range of of equally important relationships [62].
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When comparing the time consumption for the sensitivity analysis, HC-PLSR has

an advantage as the PLSR coefficients that are examined are predicted simultaneously.

Usually, the PLSR modelling is carried out with standardized variables to ensure that the

regression coefficients for different input variables are comparable. However, the permuted

feature importance method permutes and analyzes each variable at a time, and becomes

computationally demanding with the increase in the number of input parameters.
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6 Conclusion

The results in this thesis indicate that deep learning metamodels are highly effective

compared to the HC-PLSR at emulating the PHN model, which is a complex non-linear

mathematical model. Likewise, the findings show that HC-PLSR is an efficient tool for

model analysis as it divides the original parameter space into subspaces. This allows for

a detailed investigation of the input parameters that influence the model outputs without

prior knowledge about the model through the scores and the loadings plots. Despite their

higher emulation capacity, deep learning methods require adjustments relating to a prior

knowledge (data augmentation, encoding input vectors, and use of pre-trained models) of

the model output to achieve similar insights.

6.1 Further Works

This thesis utilizes a crisp clustering algorithm for the implementation of the HC-PLSR

model. One can explore and implement clustering methods like FCM [63] and Robust

Agglomeration Algorithm (RCA) to determine optimal number of clusters [64], which

might produce better clustering results allowing for the metamodelling of complex models.

As more and more high-dimensional measuring devices are used in computational

biology, the size and complexity of the mathematical models are ever-increasing. An

extension of HC-PLSR termed as N-way HC-PSLR [4] is another efficient approach that

combines several regional N-way PLSR models. A benefit of this approach is that it

enables the modelling of multiple state variables at a time. Hence, it is a useful tool for

multivariate metamodelling of spatiotemporal models.

Similarly, clustering techniques could be used in combination with deep learning such

that it too generalizes on the local parameter space, thereby increasing its interpretability.

The deep embedding approach described by [65] could be utilized for subspace analysis.
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A Default Parameter Values

Table 5: The 76 parameters that were varied using LHS and their default values. The features selected

using SBS are highlighted in purple.

Parameter Default Value

V_myo in component cell geometry (um3) 25.85e3

V_SR in component cell geometry (um3) 2.098e3

V_myo_uL in component cell geometry (uL) 25.85e-6

V_SR_uL in component cell geometry (uL) 2.098e-6

i_NaK_max in component sodium-potassium pump (uA) 0.95e-4

K_m_K in component sodium-potassium pump (mM) 1.5

K_m_Na in component sodium-potassium pump (mM) 10

K_o in component standard ionic concentrations (millimolar) 5.4

Na_o in component standard ionic concentrations (millimolar) 140

Ca_TRPN_Max in component troponin (mM) 70e-3

g_Na in component sodium current (microS) 0.8

g_t in component Ca independent transient outward K current (microS) 0.035

a_endo in component Ca independent transient outward K current (dimensionless) 0.583

b_endo in component Ca independent transient outward K current (dimensionless) 0.417

g_ss in component steady state outward K current (microS) 0.007

g_K1 in component inward rectifier (microS) 0.024

g_f in component hyperpolarisation activated current (microS) 0.00145

f_Na in component hyperpolarisation activated current (dimensionless) 0.2

g_B_Na in component background currents (microS) 0.00008015

g_B_Ca in component background currents (microS) 0.0000324

g_B_K in component background currents (microS) 0.000138

E_Ca in component background currents (millivolt) 65

Ca_o in component standard ionic concentrations (millimolar) 1.2

g_D in component CaRU (um3/ms) 0.065

J_R in component CaRU (um3/ms) 0.02

J_L in component CaRU (um3/ms) 9.13e-4
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Parameter Default Value

N in component CaRU (dimensionless) 5000

K_mNa in component Na-Ca Exchanger (mM) 87.5

K_mCa in component Na-Ca Exchanger (mM) 1.38

eta in component Na-Ca Exchanger (dimensionless) 0.35

k_sat in component Na-Ca Exchanger (dimensionless) 0.1

g_NCX in component Na-Ca Exchanger (mM/s) 38.5e-3

g_SERCA in component SERCA (mM/ms) 0.45e-3

K_SERCA in component SERCA (mM) 0.5e-3

g_pCa in component Sarcolemmal Ca pump (mM/ms) 0.0035e-3

K_mpCa in component Sarcolemmal Ca pump (mM) 0.5e-3

g_CaB in component Background Ca current (mM_per_mV_ms) 2.6875e-8

g_SRl in component SR Ca leak current (per_ms) 1.8951e-5

k_CMDN in component calmodulin Ca buffer (mM) 2.382e-3

B_CMDN in component calmodulin Ca buffer (mM) 50e-3

k_on in component troponin (per_mM_per_ms) 100

k_Ref_off in component troponin (/ms) 0.2

gamma_trpn in component troponin (dimensionless) 2

alpha_0 in component tropomyosin (/ms) 8e-3

alpha_r1 in component tropomyosin (/ms) 2e-3

alpha_r2 in component tropomyosin (/ms) 1.75e-3

n_Rel in component tropomyosin (dimensionless) 3

K_z in component tropomyosin (dimensionless) 0.15

n_Hill in component tropomyosin (dimensionless) 3

Ca_50ref in component tropomyosin (mM) 1.05e-3

z_p in component tropomyosin (dimensionless) 0.85

beta_1 in component tropomyosin (dimensionless) -4

beta_0 in component filament overlap (dimensionless) 4.9

T_ref in component length independent tension (N/mm2) 56.2

a in component Cross Bridges (dimensionless) 0.35

A_1 in component Cross Bridges (dimensionless) -29

A_2 in component Cross Bridges (dimensionless) 138

A_3 in component Cross Bridges (dimensionless) 129

alpha_1 in component Cross Bridges (/ms) 0.03

alpha_2 in component Cross Bridges (/ms) 0.13
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Parameter Default Value

alpha_3 in component Cross Bridges (/ms) 0.625

V_L in component CaRU Transitions (mV) -2

del_VL in component CaRU Transitions (mV) 7

phi_L in component CaRU Transitions (dimensionless) 2.35

t_L in component CaRU Transitions (ms) 1

tau_L in component CaRU Transitions (ms) 650

t_R in component CaRU Transitions (ms) 1.17

tau_R in component CaRU Transitions (ms) 2.43

phi_R in component CaRU Transitions (dimensionless) 0.05

theta_R in component CaRU Transitions (dimensionless) 0.012

K_RyR in component CaRU Transitions (mM) 41e-3

K_L in component CaRU Transitions (mM) 0.22e-3

a in component CaRU Transitions (dimensionless) 14

b in component CaRU Transitions (dimensionless) 14

c in component CaRU Transitions (dimensionless) 0.01

d in component CaRU Transitions (dimensionless) 100

tau_s_ss in component steady state outward K current s_ss gate (second) 2.100
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B PHN Model Equations

The original model equations for the individual models can be found in the individual

papers. Here, only the corrected model equations that gave rise to a combined PHN

model are enlisted.

B.1 Corrected Pandit Equations

The initial conditions for the Pandit endocardical cell model are described in Figure B.1.

Figure B.1: Initial conditions for the Pandit endocardial cell model
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τm =
0.00136

0.32(Vm+47.13)

1−e−0.1(Vm+47.13)
+ 0.08e−Vm

11

(B.1.1)

τh =

 0.0004537
(

1 + e−(γa+10.66)
11.1

)
if Vm ≥ −40mV

0.00349

0.135e
−(ra+50)

0.5
+3.56c0.079 Vm+310000e0.35 Vtn

otherwise
(B.1.2)

τf11 = 0.105e−(Vm+45
12 )

2

+

(
0.04

1 + e
−Vm+25

25

)
+

(
0.015

1 + e
Vm+75

25

)
+ 0.0017 (B.1.3)

τf12 = 0.041e
−
(
Vm+47

12

)2
+

(
0.08

1 + e
Vm+55
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)
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(
0.015

1 + e
Vm+75

25
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+ 0.0017 (B.1.4)

iK1 =

(
48

e
Vm+37

25 + e
Vm+37
−25

+ 10
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1 + e
V
m−(EK+7.77)

−17

+
gK1 (Vm − (EK + 1.73))(
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INaK = ĪNaK

(
1

1 + 0.1245e
−0.1 VmF

RT + 0.0365σe
−VWF
RT

)(
Ko

Ko +KmK

) 1

1 +
(
KmN

Nai

)1.5


(B.1.6)

dVm
dt

=
− (INa + ICaL + It + ISS + If + IK1 + IB + INaK + INaCa + ICaP − Istim )

Cm

(B.1.7)

where, Istim is 0.6 nA for 5 ms.
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B.2 Corrected Hinch Equations

d
[
Ca2+

]
i

dt
= βi (ILCC + IRyR − ISERCA + ISR,1 + INCX − IpCa + ICaB + ITRPN) (B.2.1)

[TRPN]0 =
k−TRPN[B]TRPN

k−TRPN + k+TRPN

[
Ca2+

]
i,0

(B.2.2)

B.3 Corrected Niederer Equations

zmax =

 α0(
CaTRPN 50

TRPNtot

)nHill
−K2

 1

αr1 +K1 + α0(
CaTRPN 50
TRPN tot

)nHill

(B.3.1)
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C. CARDIAC COMPUTATIONAL MODELLING

C Cardiac Computational Modelling

The following report is for the coursework DAT 390 Data Science Seminar in NMBU.

The report describes various cardiac physiological processes and sheds light on several

efforts in cardiac modelling, which was a preparation of this Master’s thesis.
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ABSTRACT
In this paper, I review some of the relevant theories and literature in
cardiac modelling and metamodelling. The review summarizes the
cellular models and the whole organ models as well as highlights
their applications in treatment predictions, drug discovery and
testing. The article outlines the development of cardiac models
and the intrinsic need of these models to shorten the diagnostic
and therapeutic strategies in clinical applications along with cost
savings.

1 INTRODUCTION
Cardiovascular diseases are the principal reason behind mortality
claiming around 17.9 million life every year globally. [1]. Twenty-
one percent of the Norwegian population lives with a type of car-
diovascular disease or has a risk of developing the disease and
1.1 million of them use therapeutic drugs to treat or prevent the
disease [2]. The diagnostic, as well as the therapeutic assessment
of the patient, is still done by statistical studies which retrieves
information from a large group of patients who have common
pathologies [3]. Since every patient has a unique disease profile, the
choice of treatment obtained from this model is thus not necessarily
optimal.

Numerous cellular and mathematical models are developed for
various parts of the heart. These models together form anatomically
detailed whole organ models with applications in drug discovery
and testing. They are also used to simulate cardiac defibrillators [4].
Simulating whole organ cardiac bio-physiology requires a large
amount of medical imaging and diagnostic data in order to build
a robust computational model. These along with revised cell, tis-
sue and organ models as well as the significant advancement in
computing devices has boosted the simulation of patient-specific
models in determining the optimal treatment. Unlike the models
that are based on statistics, these models are based on physics and
physiology which facilitate uncovering diagnostic details that may
have remained hidden thereby aiding in predicting patient-specific
treatment[5].

Simulating whole organ cardiac biophysiology requires devel-
oping a complete model that simulates electrophysiology, blood
flow mechanism, and muscular contraction [6]. The anatomical
structure of the human heart is derived from in vivo medical im-
ages namely computed tomography (CT) and magnetic resonance
(MRI). Improvement in mathematical modelling in conjunction with
computational advancements enables us to simulate tightly cou-
pled complex mechanisms that encompass feedback mechanisms
to perform virtual heart studies [3]. These studies aid in treatment
planning, patient risk assessment, and virtual heart clinical trials.

The mathematical models are represented by a system of ordi-
nary differential equations which are governed by the parameters
that describe the underlying processes in the heart. These mod-
els produce dynamic (spatio) temporal outputs. A patient-specific

Figure 1: Working of a computational model in cardiology,
adapted from Niederer et.al(2019)

A computationalmodel of a human heart combines diagnos-
tic data obtained from electrocardiography, genetics, blood-
pressure, MRI and electrocardiography[5]. Such personal-
ized data from a patient enables running model simulations
as a ’virtual-patient’ that provides insights in determining
the disease optimal treatment[5]

.

simulation is obtained by feeding patient-specific parameters to
the model such that the results from the simulation agree with the
clinical measurements. [5]. Figure 1 illustrates how a computation
model works in cardiology. Generally, a model is considered reli-
able if it replicates the validation data and can predict efficiently
as well as successfully simulate the physiology of the individual
considering the measurements that are provided[5]. Besides, this
model can also be used for further enhancement of diagnosis as
well as planning of treatment, and thereby contribute to increasing
time and cost savings in clinical and preclinical trials[5].

Despite the emerging needs of precision medicine in cardiology,
patient-specific modelling is a complex task that involves a team
of experts from several disciplines. A team of clinical researchers
provide the anatomical and physiological details of the heart and
validate the model predictions[3]. Likewise, the professionals from
fields like physics, mathematics, and engineering formulate equa-
tions for heart modelling and develop software to solve and simulate
those models in normal as well as pathological heart conditions[3].

In this paper different types of cardiac models and their appli-
cations will be described. The paper further provides insights on
metamodelling as a data-driven approach for analysing the behav-
ior of such mechanistic models that can aid in the construction and
validation of the models.
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Figure 2: Electrical conduction system of the heart illustrat-
ing the flow of cardiac excitation, adapted from[8]

2 THEORY
2.1 Electrical System of the Heart
The Right Atrium (RA), Right Ventricle (RV) along with the Left
Atrium (LA) and Left Ventricle (LV) make up the four chambers
of the heart. Blood flows through all the chambers and then is
pumped to the rest of the body aided by the coordinated contraction
and expansion of the heart. A cell is usually negatively charged.
However, it can gain positive charge by depolarization which is
a process shifting from a more negative membrane potential to
a positive potential. Depolarization causes the heart muscles to
contract[7].

Referring to Figure 2, in the sinoatrial (SA) node, there are
unique cells that can depolarize themselves without any assistance.
This ability of the cells is called automaticity. Once the cell is self-
depolarized, it spreads out the depolarization waves to neighboring
cells through the junctions that connect them. As the process contin-
ues, the neighboring cells also get depolarized. This depolarization
initiated in the SA node is then transferred to the left atrium along
the interatrial pathway called Bachmann’s bundle. This depolar-
ization in RA and LA occurs in a coordinated way. The internodal
tracks guide the signal to the atrio-ventricular (AV) node which
is the sole electrical connection between the atria and the ventri-
cles. The conduction in the AV node is slow creating a delay in
contraction between atria and ventricles by one-tenth of a second
enabling the blood circulation through the atria to ventricles and
then throughout the heart in a coordinated way[8].

The signal from the SA node is carried by the Bundle of His
which is breaks into right and left bundle. The latter additionally
divides into left posterior fascicle and left anterior fascicle that
reaches down the septum and to the tip of ventricular chamber and
back to the atria. Small fibers called Purkinje fibers emerge from the
bundle of His and spreads the electrical signal in all directions[7].

2.2 Action potential in pacemaker cells
Pacemaker cells having the property of automaticity are responsible
for the beating of the heart in a certain rhythm and a certain pace.
There are three groups of pacemaker cells in the heart, each present
in the SA node, AV node, and on Bundle of His and Purkinje fibers.
Each of these sets of pacemaker cells are included in the electrical
conduction system associated with the heart and are responsible
for the appropriate pacing of the heart[9].

Calcium, Potassium, and Sodium ions move in and out of the
cells which help us determine the voltage of a cell. For instance, if
calcium is the only ion moving in and out of a cell, it would have a

Figure 3: Graphical illustration of generation of action po-
tential in pacemaker cells

cell potential of 123mV. This gives the information about the cell
potential if calcium was the only ion that could permeate the cell.
Likewise, if the sodium ion and potassium ion were only the ions
that could permeate the cell, the cell membrane potential would
be 67mV and -92mV which is their resting potential respectively.
In reality, the cells are permeable to multiple ions and not just
permeable to a single ion. Thus, depending on how permeable a
cell is to different ions we get the information about the membrane
potential[9].

Figure 3 shows a graphical illustration of the generation of the
action potential in pacemaker cells. Let us assume that a pacemaker
cell is predominantly permeable to sodium ions and say its voltage
is -60mV. Now, the sodium ions from outside the cells start moving
inside as the cell is permeable to sodium ions. This will start increas-
ing the cell potential and would eventually be close to 67mV which
is the resting potential of sodium ion. But something interesting
happens in between the process, as the cell potential increases it
will hit a threshold at -40mV. This threshold is for a new type of ion
which leads to the opening of voltage-gated calcium channels. Now,
the calcium ions start pouring into the cell and since it is the ion,
which the cell is dominantly permeable, the cell membrane poten-
tial would rise to the resting potential of the calcium ion which is
even larger than that of the sodium ion. As the membrane potential
increases quickly towards a positive value, and let’s say it reaches
10mV, the voltage-gated calcium channels are now shut, and the
potassium channels open, making it the dominant permeable ion.
The potassium ions will escape from the cell following the direction
of the concentration gradient, reducing the cell potential. Thus, the
membrane potential decreases, reaches -60mV and stops. It does not
decrease further because the potassium gated channels are shut at
this point. Here, we have only the sodium ions entering the cell just
like when the process started. Thus, this whole process happens
each time the heart beats.

This process is divided into 3 phases which are Phase 4, Phase
0, and Phase 3. The action potential at Phase 0 in pacemaker cells
grows slower than that of the action potential of the muscle cells
and is hence referred to as “slower action potential”. Phase 0 and 4
indicate the slow depolarization while phase 3 depicts repolariza-
tion. Repolarization can be described as the reduction of the cell
membrane potential back to its most negative voltage just after
depolarization[9].
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Figure 4: Graphical illustration of generation of action po-
tential in cardiac myocytes

2.3 Action Potential in Cardiac Myocytes
The contraction of the heart is controlled by the heart muscle cells
called cardiac myocytes. The trigger for the contraction of the heart
is calcium. Similar to the action potential in pacemaker cells, the
main ions that influence the heart muscle cells are sodium, calcium,
and potassium.

Referring to Figure 4 ,let us assume that a cell is dominated by
potassium ions and the ions are leaving the cell causing a negative
membrane potential at around -90mV. Now, as a neighboring cell
undergoes depolarization, this depolarization wave also transmits
to this cell and a little bit of sodium and calcium ions start to leak
into the cell. This results in the membrane potential becoming a
little more positive. Now, it is -70mV up from -90mV.

At this point, new channels start opening and these channels
are sodium channels. As the sodium ions start flowing into the
cell, they drive the membrane potential to a very positive value
somewhere around 67mV. These voltage-gated sodium channels
close just as quickly as they opened. Thus, as the cell membrane
potential is quite positive, we could say that the channels have
caused a depolarization. No more sodium ions are flowing in but the
potassium ions are still leaving the cell. At this point, new voltage-
gated potassium channels open because of depolarization. Now,
that the cell potential is positive (about 20mV) and the potassium
voltage-gated channels have opened, the membrane potential will
go down at around 5mV, and if it continued this way it would reach
-90mV. However, an interesting development takes place at this
point, the calcium ions start leaking into the cell. As both events are
happening simultaneously, both potassium ions leaving and calcium
ions entering the cell, we get a flat line depicting that the membrane
potential stays somewhat the same. The voltage-gated calcium
channels close just as suddenly as they opened, blocking the flow of
calcium ions. As this flow of calcium ions was only responsible for
keeping the membrane potential somewhat constant, now due to
the leaving of the potassium ions the membrane potential decreases
and goes back to somewhere around -90mV. These voltage-gated
potassium channels also close at this point and we finally get back
to our initial state waiting for another cycle[10].

All these processes are named with different stages. State 4 de-
scribes the baseline negative state when the muscle cell is relaxed.
The action potential at -70mV is called a threshold and when it gets

to 20mV we call it state 0. State-1 is the point where just the voltage-
gated potassium channels open. State-2 is where they’re balanced
with calcium channels and state-3 is when only the voltage-gated
potassium channels are open. And then the state-4 is following
again in the next cycle[10].

As the state 0 occurs quickly compared to how an action potential
develops in a pacemaker cell due to the quick voltage-gated sodium
channels, this action potential is also called a fast action potential.

2.4 Sodium Calcium Exchanger
The intracellular calcium levels in cardiac cells range from 10−7to
10−5Mwhereas the extracellular concentration is about 2mM. Thus,
in order to maintain this concentration, it is necessary to remove
the calcium that entered the cell during the action potential to avoid
the accumulation of calcium which can cause cellular dysfunction.
This mechanism of removing the calcium from the cell is called
sodium-calcium exchanger. As sodium and calcium can move freely
in the sarcolemma(cell membrane of a muscle fiber), in the process,
for each calcium ion three sodium ions are exchanged releasing a
small electric potential[11].

The movement of ions(in or out) is guided by the cell membrane
potential. In the case of depolarization(positive membrane poten-
tial), the sodium ion leaves the cell as the calcium ion enters the cell.
In contrast, during repolarization, the calcium ions are carried out
of the cell by the exchanger while sodium ions enter the cell[11].

2.5 The Electrocardiogram (ECG)
The ECG (Figure 5) illustrates the electrical activity of the heart.
It provides information on the alteration in voltage with time. The
recording of the ECG by electrodes, involves only the activity
present in the body fluids which subsequently reaches the body
surface through the cardiac impulse.

An ECG has three waveforms: The P wave, QRS complex and
the T wave.The SA node sets off the waves of depolarization which
move across the atria. This signal travels further to the AV node.
The P-wave represents the atrial depolarization resulting in a sub-
sequent contraction of the atria. The conduction in the AV node is
slow because the diameter of the AV nodal cells is small. Another
reason for the slow conduction is the presence of calcium channels
in the AV node which are naturally slow moving compared to that
of sodium channels that are specific to the conduction system in
the ventricles. This time delay is of great importance since it allows
the ventricles to fill blood as well as provide time for contraction
and relaxation of the atria.

As the SA node fires, spreading waves of depolarization across
the atria, the P-wave is obtained. The atrial contraction is followed
immediately after 100ms of the P-wave. The time taken by the
signals to travel from the SA node to the AV node is represented by
P-Q. The depolarization of the interventricular septum is described
by the Q-wave. The PR segment indicates the time taken from the
beginning of atrial depolarization until ventricular depolarization.

The fast-acting sodium channels are responsible for quick de-
polarization in the Bundle of His and this wave of depolarization
is further carried down to the branches and Purkinje fibers. This
leads to the depolarization of ventricular cells. All of this process
is seen as a QRS complex in ECG and it describes the ventricular
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Figure 5: Electrocardiogram waveforms , adapted from[8]

depolarization. The time taken by the ventricles in contraction and
pumping of the blood is represented by the S-T segment whereas
the T-wave reflects the repolarization of ventricles.The ST segment
represents a period where there is no net current,i.e., there aren’t
any large electrical vectors in any directions. As repolarization
occurs slower than depolarization, the T wave is flatter and longer
than the QRS complex. The T wave reflects ventricular repolariza-
tion. Likewise, the TP segment explains the time during which the
ventricles are relaxing and filling.

2.6 Cellular Models
Cell type models combine measurements and models of protein
functions into a physically and physiologically coerce framework
[5]. In the past 30 years modelling of mammalian cardiac myocytes
has shifted from combination of large amounts of data frommultiple
species to data from specific species [12].

The newer cellular models include many sub-cellular organelles
like diadic space, sacroplasmic reticulum, mitochondria or simply
focus on individual ion transporters [13].The primary function of
the sarcoplasmic reticulum is the regulation of calcium ion con-
centration in the cytoplasm and controlling muscular contraction
and relaxation. The calcium found in the human body (calcium
carbonate and calcium phosphate) helps to make teeth and bones.
Thus, higher concentration of calcium in the cells leads to the
hardening of the cellular structures which eventually causes cell
death. The cytoplasmic volume in the cellular region, where the
cell membrane and a cellular organelle is in close vicinity, generally
10-12nm, is referred to as a dyadic space. The space aids in ionic
signaling. Mitochondria are responsible for the production of ATP
(adenosine triphosphate) which aids in powering the metabolic
processes in the cell. Oxidative phosphorylation is a process that
converts the consumed food into a form of energy that a cell can
utilize. Mitochondria also plays a role in apoptosis (cell death) in
deciding which of the cells to destroy (aged cells/broken cells) by
releasing cytochrome C. This release of cytochrome C activates a
major enzyme “caspase” that is responsible for destroying cells.

Nobel et.al have developed a a model consisting of 26 ODE’s that
describe the rate at which the dominant cellular ion K+, Na+, Ca2+
concentration varies[14]. Also, models with K+, Na+, Ca2+, includ-
ing physiological processes like pH regulation and Ca2+ homeosta-
sis have been developed [15].Calcium homeostasis refers to the

maintenance of a consistent concentration of calcium ions within
the extracellular fluid. The extracellular calcium ions are kept con-
stant by maintaining a constant Ca2+ concentration in the plasma.
Keeping plasma Ca2+ concentration is important for cell adhesion,
cardiac contractility, muscle contraction, and blood clotting[16].

The behavior of ion channels, transporters, pumps and buffers
can be uncovered by cellular models. These properties are evaluated
by mathematical models and are used in examining the changes in
channel function due to mutation, drugs or any other physiological
changes [5]. Biophysical cardiac cell models are used effectively to
simulate Ca2+ dynamics, electrophysiology in the sinoatrial node
as well as in myocytes in atria and ventricles [5].

2.6.1 Effects of protein Mutation. Protein mutations in cells are
often associated with the risk of arrhythmia. To link the causative
relationship between the disease and mutation it is essential to find
the mechanistic relation between mutation and change in protein
function [5].

The successful identification of a channel mutated protein, and
linking it to a specific protein function does not guarantee that a
particular mutation is the cause of a disease. [5]. Thus, linking the
change in protein function to arrhythmia and ECG morphologies
is challenging[5].

In order to overcome it, the biophysical models capable of un-
derstanding complex cellular electrophysiology and models that
represent fluctuation in kinetic channels are combined together,
the result of which is sufficient to demonstrate that certain channel
mutations can explain observed cellular and clinical phenotypes
[5]. Under further advancement, the models are capable enough
to mechanistically explain channel mutations and specific clinical
manifestation of channelopathies resulted by multiple channel mu-
tation or genetic mosaicism [17]. Mosaicism is existence of cells
with different genetic component than the other cells in the body.
It occurs due to mutation in early phase of development. Recently,
models to predict mutation effect on sarcomeric protein and change
in tension development have also been developed [5].

Current models enable us to express gene variation which is fun-
damental for heart condition and diseases such as heart failure[18].
The models are now advanced enough to reach the genetic level
by constructing mutation effects which are originally indicated by
alternation in protein function. For instance, during the formulation
and validation of the models of wild-type and mutant Na+ channel,
a three amino acid ΔKPQ mutation was simulated that affected
channel inactivation which was also connected to a long QT[19].
It was observed that the failure of inactivation resulted in mutant
channel reopening from inactivated state causing a continuous Na+
flow in the mutant cell. This led to longer repolarization period and
early after-depolarization which is also the same in bradycardia-
related arrhythmogenic episodes in LQT3 patients while they are
asleep or relaxed[18].

2.6.2 Electrophysiological andMechanicalModels. The patch-clamp
method is an experimental method that is used to measure bio-
logical as well as physical attributes of cardiac muscle cells. This
method aids the development of computational models for each
myocyte.[3]. These models are based on the mathematical formula-
tion of Hodgkin-Huxley which reveals that there exists a system of
equations that describe the cellular action potential provided that
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these equationsmodel the kinetics of individual ion channels,pumps
and exchangers including their electrical interactions[20]. Over the
years, ventricular models, atrial myocytes models and Purkinge
fiber models which describe the cardiac electrical activity have been
developed[3].

The excitation-contraction coupling must be considered in 3D
cardiac computational models that focus on electromechanical
simulations[3]. Whenever the calcium inside a cell increases, a
contraction in the cardiac tissue is initiated that induces an elec-
trical activation which further affects the action potential through
stretch activated currents[21].

Assessing and Predicting Drug Action
Models that simulate the perturbing protein activity and it’s for-

mation are applicable on a large scale to predict the drug action[18].
This is because receptor, channel, transporter, and enzyme proteins
when acted on by the drugs, affect the channels differently[18].
Present-day models are now able to detect the response of the ion
channels for the applied drug through the dose-response relation-
ship which gives an estimation of functioning channels, and this
model further can be incorporated in whole-cell models[5]. Models
can predict the drug-drug interaction, an underlying mechanism
such as Na/Ca exchange, and how a drug can have multiple actions.
This is because the drugs that act on only one receptor are rare,
which is particularly true for Na/Ca exchange[5].

Simulating drugs for multiple actions comes with a bright side
that open possibilities for the discovery of antiarrhythmic drugs
[18]. These simulations can also predict the efficiency of the drug
or risk associated with them and effects of a certain compound
and it’s corresponding metabolites on human electrophysiology [5].
Approaches such as Comprehensive In vitro Proarrhythmia(CiPA)
[5] are now proven effective in screening cardiac toxicity in hu-
mans.This method is used in the analysis of cardiac toxicity to
evaluate the risk of Torsade de Pointes(TdP) which is recognized
by the elongation of the QT interval. TdP leads to abnormal heart
rhythm and can even cause sudden death. The goal of CiPA is to
develop a model of ventricular cells to examine cardiac response
and cardiac toxicity risk and formulate a metric for TdP risk assess-
ment. With the advancement in these approaches, cardiac model
simulations can predict the heart’s response to compounds or drugs
[21].

2.7 Whole Organ Models
Arrhythmias are highly dependent on cellular and molecular mech-
anisms, and are fatal due to their actions at organ level[22].There
has been a lot of debate among the researchers on deciding the
best approach for incorporating cellular models into whole organ
models, whether it should be a bottom-up, top-down or a combi-
nation of these[23][24]. A general agreement is that it should be
"middle-out" which means that we should start modelling when
large biological data is available and then only jump or fall back to
other levels[18].

In order to reconstruct the complete electrical and mechanical
behavior of the whole heart, anatomically detailed models of ven-
tricles with fibre orientations and sheet structures are combined
with cellular models[18].Cardiac modelling has benefited from data
rich cellular levels and the 3D geometry modelling of the whole

Figure 6: Schematic illustration for building a 3D cardiac
computational model, adapted from Bragard et.al(2020)

The process is initiated by constructing a 3D cardiac geometry of the
heart from MRI and CT images, followed by the generation of car-
diac conduction system, myocardial structure and biophysical mod-
elling leading to the multiscale multihphysics simulation. Patient
specific models can be designed by utilizing the ECG of the patient.
Pointers indicate the stream of clinical as well as biologial data into
the ultimate computational model and electromechanical simula-
tions. The blue boxes indicate the methods that enable us to specify
patient specific personalized properties in the models whereas the
grey boxes represent population based properties[3].

organ[18] The geometrical modelling utilizes MRI and CT images,
from which the volume of various internal structures of the heart
are extracted.

The images acquired from MR or CT are utilized in building 3D
heart models[3].High resolution ex-vivo images provide more pre-
cise anatomical reconstruction of the heart as compared to in-vivo.
Although ex-vivo images are much more informative, during the
tissue preparation while acquiring histologial slices, the shape,size
and volume of the cardiac structures may be altered because of
distortion as a consequence of the slicing process in histological
sections[6]. In the absence of anatomical data and when the simplic-
ity of the model is of main priority rather than building a realistic
model, population based data are found to be useful. These data
are generally the measurements of cardiac wall thickness or the
chamber volumes. [6].

As there is a large number of cells in the heart, it is difficult to
model tissues by creating models for each and every cell. Due to
this the heart is visualized in a such a way that it is composed of
two continuous spaces which can be broken down into intracellular
and extracellular domains. The geometries associated with two do-
mains are way too complex and cannot be portrayed correctly.The
biodomain concept assumes that the geometry of the two domains
are overlapping. Hence, accepting that both the domains fill the
heart muscle volume completely, the biodomain model does not
primarily take the accuracy into account. A complex biodomain
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model is reduced into a simple monodomain model by making non-
physiological assumptions such as equal anisotropy ratios. Bido-
main and monodomain models when coupled with cellular models
form multiscale models that simulate the tissue propagation[25].

Also, it is very important to incorporate characteristics such as
cardiac fiber orientation and pathologies that influence myocardial
structure in the whole organ models. Thus, mathematical models
that explain the property of electrical excitation or mechanical
deformation to it’s neighbors is essential[3]. Finally, these models
also include a cardiac conduction system which is modelled to work
at a functional level or are derived from ex-vivo images[26]. The
pipeline for building a 3D cardiac computational model is presented
in Figure 6One of the advanced models that has been used recently
includes the Purkinjie network using inverse estimation that is
based on electro-anatomical based data[27].

3 SOME CLINICAL APPLICATIONS
Arrythmia is a pathology denoted by the irregular heart rhythms
which can be tachycardia (too fast) and bradycardia (too slow). The
main cause of arrhythmia is the coronary artery disease which
leads to myocardial ischemia (insufficient blood flow to provide
adequate oxygenation). Having less oxygen in cardiac myocytes
causes them to depolarize resulting in altered impulse formation
or modified impulse condition. Altered impulse formation triggers
partial or complete blockage of electrical conduction in the heart.
This not only affects the automaticity of the pacemaker cells but
also initiates action potential on different locales of the heart other
than the SA node. Likewise, antiarrhythmic drugs along with the
electrolyte(Ca+, Na+) imbalances can cause arrhythmias[11].

Computational models ease understanding the relationship be-
tween atrial activation patterns and the characteristics of electro-
grams recorded by catheters. These models also predict improved
electrogram biomarkers that describe atrial fibrillation(AF) dynam-
ics and it’s drivers. Computational models also aid in studying
electrophysiological differences between various patients and also
in patient specific remodelling to AF initiation, and maintenance
which guide treatment[3].

Cardiac ablation is a treatment procedure that is used for restor-
ing the optimal heart rhythm. In this process, the tissue in the
heart that causes abnormal heart rhythm is scarred. Catheters are
inserted in the groin region through arteries and veins which are
threaded to the heart. This helps in supplying energy (heat or cold)
to modify the tissue in the heart that causes arrhythmia[28]. How-
ever, this method of treatment depends on several elements , for
instance, the AF type which can be paroxysmal(occurs occasionally
and stops spontaneously), persistent or permanent as well as factors
like age, atrium size, use of antiarrhythmic drugs and the frequency
that the patient has undergone ablation procedure. Thus, it is very
important to select correct patients and identify the required size
of generated lesions in order to prevent atrium impairment[3].

Boyle et.al carried out an experiment with 10 patients who had
persistent AF symptoms and atrial fibrosis for targeted optimum
ablation. Gadolinium is one of the contrast agents that help enhance
the MR images for increased visibility of internal structures of the
body. The authors utilized each patients late gadolinium enhance-
ment MR imaging scans and created personalized computational

atria models thereby locating the regions maintaining the AF as
well as the sites that might become the possible sources of the AF
in future[29].

The computational models are also used to enhance the tech-
nology behind pacemakers and defibrillators. It is now proven that
fiber orientations and membrane kinetics are important to predict
the result of defibrillation. However, the most precisely optimized
personal electrical device is still a work in progress. The simulations
show that the defibrillation success rate increases with increasing
shock strength and traces a typical logistic curve[3].

4 METAMODELLING
A metamodel or surrogate model is a model of a model. An original
model which is distinguished by high complexity and high compu-
tational cost(e.g. a computational model of the heart) is replaced by
a metamodel. The input-output data from a complex model after
a large number of simulations is used to calibrate a metamodel,
which is a data-driven approximation of the original model based
on e.g. regression. In cardiac modelling, the simulations are set up
by varying the input parameters of the model and (spatio-)temporal
outputs are generated from the simulations that resemble real quan-
tities that can be measured on the myocytes or whole heart, and that
represent the cardiac functionality.The metamodelling can be of ei-
ther the classical or the inverse type. A classical metamodel predicts
the output by taking the input parameters as functions whereas in
inverse metamodelling, the input parameters of the mathematical
models are predicted from the output of a complex model. The
metamodelling can be carried out using various supervised and
unsupervised machine learning techniques.

Metamodelling is used in estimation of model sensitivity (the
degree of dependency of the model output on variations in the
different input parameters), visualization and analysing the param-
eters as well the output space[30]. Metamodels also help identifying
the hidden patterns of co-variance in the data[31]. The aim is to
analyse and overview the model behaviour under different input
conditions, as well as estimation of the parameter values that allow
the model to replicate measured data (parameter fitting). The latter
is crucial for practical use of the computational models, e.g. in the
development of patient-specific models. Metamodelling can also
be used for model reduction, by identification of redundant model
components (e.g. by sensitivity analysis, where model components
controlled by parameters which the model is insensitive to are
removed). Moreover, metamodelling is widely used for reducing
computational demand, by using the less computationally demand-
ingmetamodels as surrogates for the original, more complexmodels.
Metamodelling has a variety of application areas, including fire sta-
tions, hospitals, manufacturing systems, risk assessment, military,
and manufacturing systems[32].

5 DISCUSSION
The massive advancements in technology and increased research
have now opened new possibilities for the application of biophysical
models in clinical use. These advancements include high computing
infrastructures, open-access medical databases, and increased de-
velopment in open-source software. Computational models of the
heart encompass the majority of the biophysical complexities of an
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individuals heart and therefore is an aspect to be understood in de-
signing medical devices as well as in therapies. Simulating models
with virtual patients and therapies can not only save time but also
minimize the developmental cost of innovation in pharmaceutical
industries.

Although simulation models come up with several advantages,
these models are still in the start-up phase for their application in
diagnosis and treatment. We only discussed models that predict
the short-term responses to treatments like termination of arrhyth-
mia and prolonging action potential. However, the cardiologist’s
primary interest is in knowing how the patient responds to the
given treatment in the long run rather than the patient’s immediate
response. Thus, it is essential to predict the remodeling of the heart
after treatment such that we can also make long-term estimations
associated with the clinical outcomes which will tremendously
enhance the cardiological simulations. Cardiac remodelling is a
technique that maintains the cardiac output during conditions such
as abnormal loading and depressed contractility.

Several factors are responsible for restricting the application
of biophysical models into a more common and efficient clinical
practice. To predict realistic clinical results, biophysical models
need pre-existing clinical information and a lot of data. In most of
the cases, the data required is not available for most of the clinical
applications as well as cannot be measured accurately in most of
the clinical context. Similarly, most of the data in hand are not
suited for model design, and data curation and annotation is a
long, tedious, and time-consuming process. Thus, improvisation in
existing methods which consequently lead to the translation of pre-
clinical measurements into the patient-specific model is required.
This will enable us to create a more robust model that fits with
a number of pathologies and provides reliable predictions when
making clinical decisions. Metamodelling with various machine
learning approaches can be used to emulate dynamic biological
models that aid in sensitivity analysis and variable selection.

To tackle these challenges and broaden the application of sim-
ulation models in cardiology, technological advancements in the
clinical field to ensure proper harmonized, anonymized and stan-
dardized data is a must. Biomedical engineers, therefore, should be
incorporated in the clinical units. The availability of high quality
and relevant patient-specific data will add value to the simulations.
The development of heart models demands a multi-disciplinary ap-
proach involving expertise in numerical analysis, computer science,
cardiac electrophysiology, and image processing.

6 CONCLUSION
The computational models are still in their infancy period, but are
much more economic and efficient compared to that of the classical
statistical studies in treatment prediction and therapeutic assess-
ment. As long as the clinicians are ready to embrace the support
from the advancements of the models, the future of computational
tools in cardiology is bright and holds more interesting human-
related tasks.
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D. EXPLAINED Y VARIANCE PLOTS

D Explained Y Variance Plots

Figure D.1: Explained Y variance plot with increasing number of principal components for

the classical metamodelling of the time series data.

Figure D.2: Explained Y variance plot with increasing number of principal components for

the classical metamodelling of the aggregated phenotypes.
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D. EXPLAINED Y VARIANCE PLOTS

Figure D.3: Explained Y variance plot with increasing number of principal components for

the inverse metamodelling of the time series data.
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E. VALIDATION ACCURACY SCORES TABLE

E Validation Accuracy Scores Table

Table 6: Validation accuracy scores achieved by various classification algorithms in different types of

metamodelling using HC-PLSR

Type of Metamodelling

Algorithm
LR RF DT KNN SVM

Classical Metamodelling 0.994 0.986 0.790 0.833 0.894

Classical Metamodelling of Aggregated Phenotypes 0.386 0.425 0.338 0.361 0.420

Inverse Metamodelling 0.998 0.996 0.995 0.968 0.972
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F. NETWORK ARCHITECTURES

F Network Architectures

dense_input: InputLayer
input:

output:

[(None, 49)]

[(None, 49)]

dense: Dense
input:

output:

(None, 49)

(None, 232)

batch_normalization: BatchNormalization
input:

output:

(None, 232)

(None, 232)

dropout: Dropout
input:

output:

(None, 232)

(None, 232)

dense_1: Dense
input:

output:

(None, 232)

(None, 232)

batch_normalization_1: BatchNormalization
input:

output:

(None, 232)

(None, 232)

dropout_1: Dropout
input:

output:

(None, 232)

(None, 232)

dense_2: Dense
input:

output:

(None, 232)

(None, 232)

batch_normalization_2: BatchNormalization
input:

output:

(None, 232)

(None, 232)

dropout_2: Dropout
input:

output:

(None, 232)

(None, 232)

dense_3: Dense
input:

output:

(None, 232)

(None, 232)

batch_normalization_3: BatchNormalization
input:

output:

(None, 232)

(None, 232)

dropout_3: Dropout
input:

output:

(None, 232)

(None, 232)

dense_4: Dense
input:

output:

(None, 232)

(None, 250)

Figure F.1: Network architecture of the FFN model used in the classical metamodelling of

the PHN model. Left box: Type of layer. middle: shape of input/output data.
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conv1d_input: InputLayer
input:

output:

[(None, 49, 1)]

[(None, 49, 1)]

conv1d: Conv1D
input:

output:

(None, 49, 1)

(None, 40, 128)

max_pooling1d: MaxPooling1D
input:

output:

(None, 40, 128)

(None, 40, 128)

conv1d_1: Conv1D
input:

output:

(None, 40, 128)

(None, 31, 128)

max_pooling1d_1: MaxPooling1D
input:

output:

(None, 31, 128)

(None, 31, 128)

conv1d_2: Conv1D
input:

output:

(None, 31, 128)

(None, 22, 128)

max_pooling1d_2: MaxPooling1D
input:

output:

(None, 22, 128)

(None, 22, 128)

conv1d_3: Conv1D
input:

output:

(None, 22, 128)

(None, 13, 128)

flatten: Flatten
input:

output:

(None, 13, 128)

(None, 1664)

dense: Dense
input:

output:

(None, 1664)

(None, 500)

dense_1: Dense
input:

output:

(None, 500)

(None, 250)

Figure F.2: Network architecture of the CNN model used in the classical metamodelling of

the PHN model. Left box: Type of layer. middle: shape of input/output data.
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dense_input: InputLayer
input:

output:

[(None, 76)]

[(None, 76)]

dense: Dense
input:

output:

(None, 76)

(None, 15)

dense_1: Dense
input:

output:

(None, 15)

(None, 3)

Figure F.3: Network architecture of the FFN model used in the classical metamodelling

of the aggregated phenotypes of the PHN model. Left box: Type of layer. middle: shape of

input/output data.
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Figure F.4: Network architecture of the CNN model used in the classical metamodelling

of the aggregated phenotypes of the PHN model. Left box: Type of layer. middle: shape of

input/output data.
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F. NETWORK ARCHITECTURES

Figure F.5: Network architecture of the FFN model used in the inverse metamodelling of

the PHN model. Left box: Type of layer. middle: shape of input/output data.
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conv1d_input: InputLayer
input:

output:

[(None, 250, 1)]

[(None, 250, 1)]

conv1d: Conv1D
input:

output:

(None, 250, 1)

(None, 250, 128)

conv1d_1: Conv1D
input:

output:

(None, 250, 128)

(None, 250, 128)

batch_normalization: BatchNormalization
input:

output:

(None, 250, 128)

(None, 250, 128)

max_pooling1d: MaxPooling1D
input:

output:

(None, 250, 128)

(None, 50, 128)

conv1d_2: Conv1D
input:

output:

(None, 50, 128)

(None, 50, 128)

conv1d_3: Conv1D
input:

output:

(None, 50, 128)

(None, 50, 128)

batch_normalization_1: BatchNormalization
input:

output:

(None, 50, 128)

(None, 50, 128)

global_average_pooling1d: GlobalAveragePooling1D
input:

output:

(None, 50, 128)

(None, 128)

dense: Dense
input:

output:

(None, 128)

(None, 500)

dropout: Dropout
input:

output:

(None, 500)

(None, 500)

dense_1: Dense
input:

output:

(None, 500)

(None, 200)

dense_2: Dense
input:

output:

(None, 200)

(None, 76)

Figure F.6: Network architecture of the CNN model used in the inverse metamodelling of

the PHN model. Left box: Type of layer. middle: shape of input/output data.
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G. TRAINING PLOTS

G Training Plots

Figure G.1: Training plots from the training of the FFN used in the classical metamodelling

of the PHN model.
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G. TRAINING PLOTS

Figure G.2: Training plots from the training of the CNN used in the classical metamodelling

of the PHN model
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G. TRAINING PLOTS

Figure G.3: Training plots from the training of the FFN used in the classical metamodelling

of the aggregated phenotypes of the PHN model
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G. TRAINING PLOTS

Figure G.4: Training plots from the training of the CNN used in the classical metamodelling

of the aggregated phenotypes of the PHN model
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