
 

Master’s Thesis 2021    30 ECTS  

Realtek 

Ulf Geir Indahl 

 

Non-ferrous metal price forecasting with 
Recurrent Neural Networks – How do 
they perform when forecasting multiple 
timesteps ahead?  
 

Martin Bø 

M.Sc Data Science 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally left blank) 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Preface 
 

This thesis concludes my eight years as an NMBU student after first completing a master’s 

degree in business administration and now in data science. The data science program has been 

a great learning experience with both amazing teachers and classmates. I would like to thank 

my supervisor Ulf Geir Indahl for invaluable feedback on my thesis over the past few months. 

I would also like to thank Oliver Tomic and Kristian Hovde Liland for engaging and inspiring 

courses in machine learning which gave me the inspiration for this thesis. Finally, I would like 

to thank my family, friends, and my girlfriend Hedda for motivating and supporting me 

throughout my studies and during the pandemic in particular. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 
This thesis aims to forecast the daily price of aluminum, copper and zinc from the London 

Metal Exchange five days ahead based on prices the previous five days using different 

recurrent neural networks. A “last-known observation” approach was used as a baseline for 

these models to beat which repeats the price at timestep five of the input data as the prediction 

for the next five days. Variables used for training and forecasting includes the prices of oil, 

gas, nickel, lead, tin, a US dollar index, aluminum, copper and zinc. Our results find that none 

of the single- or multi-layer LSTM or GRU models were able to out-perform the baseline 

model and in many cases the baseline significantly out-performed the recurrent neural 

network models. In general, the GRU models performed slightly better than the LSTM 

models, but not for all the metals. Further work could be done on multi-step commodity price 

forecasting by choosing a different time horizon or using intra-day data for a larger dataset. 

Other explanatory variables such as iron ore or coal could be included in the modeling and 

more complex networks such as the ResNet and LSTnet could be implemented.  
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1. Introduction 
This thesis will consider short term multi-step metal price forecasting using recurrent neural 

networks (RNN). The commodity prices are gathered from Thomson Reuters Datastream 

(Datastream, 2021) at NMBU which collects data from various exchanges such as London 

Metal Exchange (LME). Aluminum, Copper and Zinc are the metals that will be forecasted as 

they are the most traded non-ferrous metals (LME, 2021). 

The motivation for the thesis is to determine if RNNs are suitable to forecast prices multiple 

days ahead and if the results vary significantly between various metals and the different 

model architectures. More specifically, we focus on forecasting the price of various metals 

five days ahead based on the price the previous five trading days.  

Metal prices are reported daily which means the interval between each observation will be 

one day and it is the daily close price that will be used. A direct multi-step ahead forecast will 

be utilized where all the predictions (five days ahead) are made simultaneously. This could 

also be done in a feed-back or autoregressive fashion but will not be implemented in this 

paper. 

There are various interested parties when it comes to forecasted prices of the mentioned 

metals. Speculators that trade in short-term futures contracts, which is an agreement between 

two parties to buy or sell a quantity of for example a commodity at a certain time in the future 

at a predetermined price (Carter, 2012), can benefit from price forecasts if they deviate from 

the price in the market. This can lead to profits if the model forecasts the price better than the 

futures contracts present in the market. If this methodology is effective for even longer-term 

forecasting, producers and consumers of the metals can use this information in their hedging 

strategies where they can utilize long or short contracts to hedge their risk. 

The present thesis will touch on a variety of different subjects, but the focus will be on Data 

Science and related methodology. Both econometrics, finance and commodities will not be 

studied in dept, but an introduction and definitions will be given where it is deemed 

necessary. 

The thesis is structured as follows – Chapter 2 will include background information, relevant 

literature references, and a description of the dataset together with some relevant descriptive 

statistics. Chapter 3 will describe the methodology and theory used in the thesis, which is 

divided in to six parts. The first part describes a common workflow in machine learning, the 

second part covers sequential data and timeseries while the third part introduces a forecast 
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baseline. The fourth part describes feed-forward neural networks, the fifth part goes in dept on 

different recurrent neural networks and final part covers various performance metrics. Chapter 

4 presents the results from the modeling, chapter 5 will compare the results and discuss them 

and chapter 6 will conclude the thesis. 
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2. Background and theory 
In the following we describe some introductory financial- and commodity theory, including 

price drivers for the target commodities. We also include references to literature on 

forecasting in commodity markets with emphasis on data scientific approaches including 

descriptive statistics and some explorative data analysis. 

2.1 Non-ferrous metals as financial commodities 
Similar to stocks, exchange-traded funds (ETFs) and other financial derivatives, commodities 

can be traded on exchanges. A derivative can be defined as a financial contract where the 

value is linked to (or derived from) the value of an underlying asset (Carter, 2012). The 

underlying of these derivatives can be a commodity as considered in this thesis. There are 

often several different interested parties when it comes to dealing with commodities as a 

financial instrument. Speculators seeking profitable returns on their investments as well as 

consumers and producers that have an interest in forecasting the price of these commodities. 

Such contracts are traded on exchanges such as the London Metal Exchange (LME) and the 

Intercontinental Exchange (ICE) and will be the main exchanges used in this thesis. The 

speculator will commonly use futures or options contracts when making trades. A futures 

contract can be defined as an “obligation to buy or sell a specific quantity and quality of a 

commodity or financial instrument at a certain price on a specified future date” (Carter, 2012) 

while an option can be defined as an “option to buy or sell a specific quantity and quality of a 

commodity or financial instrument at a certain price on a specified future date (Carter, 2012). 

For example, if trader A agrees on a futures contract with trader B where 100 barrels of crude 

oil will be delivered from trader A to trader B in six months at a price of 50$ per barrel. Both 

parties are bound to this contract and if the price in the market increases to for example 75$, 

trader B would have made a 25$ profit per barrel while trader A would have made a 25$ loss 

per barrel. Contracts like these can either have physical delivery on the underlying commodity 

or a financial settlement, where speculators mostly trade in cash-settled contracts while 

consumers and producers trade in both types of contracts. Options works in a similar fashion 

to futures contracts, but the contract does not have to be exercised and the issuer of the 

contract gets paid a premium by the counterpart for the right to exercise the option. A call 

option (also called a buy option) is an option where one party has the right but not an 

obligation to buy a commodity at an agreed upon price before a predetermined date. If the 

price in the market is lower than the agreed upon price, it would result in a loss to exercise the 

option and would therefore not be exercised. However, if the price of the commodity in the 
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market is higher than the agreed upon price (called strike), exercising the contract would yield 

a profit of the difference between the market price and the strike price minus the premium 

paid for the contract. 

While the abovementioned contracts consider a trade at some point in the future, one can also 

trade commodities in the present at the spot market. In the spot market trades are settled 

continuously and the spot price represents the price of the commodity when taking delivery 

immediately in some ways like purchases in for example the grocery store. For simplicity, this 

thesis will only consider spot prices and indices on the various commodities to avoid 

problems with settlement and rolling futures contracts. 

The dataset used in the thesis includes timeseries with prices or indices of  

- Crude oil  

- Brent oil  

- Nickel  

- Lead 

- Tin 

- US dollar 

- Natural gas 

- Zinc 

- Copper 

- Aluminum.  

All the data has been acquired from Thomson Reuters Datastream which the School of 

Economics and Business at NMBU has licenses for and includes daily observations between 

31.12.1994 and 01.01.2020. This equals 6524 rows of data for ten different features. Crude oil 

is the West Texas Intermediate grade oil delivered at Cushing Oklahoma, traded at the New 

York Mercantile Exchange (NYMEX) and denoted in USD per barrel. Brent oil is the oil 

produced in the North Sea traded at the Intercontinental Exchange and is also denoted in USD 

per barrel. Natural gas is represented by the S&P GSCI index of natural gas which starts at 

100 (S&P, 2021). An index will catch the price changes but not the prices themselves at a 

particular time, but since the timeseries data will be normalized prior to the analyses this does 

not matter. 
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The ferrous metals, i.e., Nickel, Lead, Tin, Zinc, Copper and Aluminum are traded at the 

London Metal Exchange in dollars per metric ton. There are also various requirements such as 

purity the metals need to have which are specified in the contracts at LME.  

The USD index tracks the dollar value compared to several other currencies. When the dollar 

gains value compared to other currencies the index raises and vice versa. Euro, Yen, Pounds, 

Canadian Dollars, Swedish Krona and Swiss Franc are the currencies the index is based on 

(ICE, 2020). 

 

2.2 Price drivers 
As most things, prices on commodities are driven by supply and demand, where a price is 

given by the intersection between the supply- and demand curve. To be able to find good 

variables for forecasting the prices of aluminum, copper, and zinc, one needs to look into 

what drives the supply of the commodity and what drives the demand. Since this thesis is 

written in a data scientific perspective, we will not go much more in dept on the economic and 

financial theory behind various price drivers but instead look at the fundamentals that can 

affect the supply or demand side of a commodity. In short this means that if the supply is low 

and the demand is high the prices will rise and vice versa. The production process of the 

metals will not be covered in detail as it is outside the scope of this thesis, but a brief 

introduction will be given. 

2.2.1 Aluminum  

In production of Aluminum the main costs are related to the use of electricity when 

transforming bauxite to pure aluminum. Additional costs are due to labor, raw materials, and 

shipping. Since the price of electricity varies from country to country and region to region it is 

hard to use the electricity price itself as input in the models. However, other energy 

commodities are often highly correlated with the price of electricity since products like oil 

and natural gas are used in electricity production. Therefore, oil and natural gas prices will be 

included in the modeling as a proxy for the electricity price.  

When it comes to the demand side, aluminum is mostly used in the industry. Some of the 

main industries include automobiles, construction, packaging and aviation. Aluminum is 

traded in USD worldwide and therefore companies buying or selling aluminum may face 

significant currency risk. An important variable to model the aluminum price could therefore 

be the US dollar. If the dollar price increases compared to a local currency, the producer will 
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profit from this increase while the consumer will have a loss and vice versa for a decrease in 

the price. Therefore, US dollar seems to be an important variable for modeling the aluminum 

price.  

There exists a vast number of aluminum alloys, where aluminum is the predominant metal 

and copper, magnesium, silicon, zinc, tin etc. could be the alloying metal. In microeconomic 

terms these other metals could be considered complementary goods (hot dogs and hot dog 

buns) and therefore the price of these other metals could affect the price of aluminum. This 

does not only occur with alloys of aluminum, but also when aluminum is used together with 

other goods and commodities such as polymers, carbon fiber, steel, titanium etc. in for 

example airplanes. Therefore, also other metals and fabrics can be used as explanatory 

variables for forecasting the aluminum price.  

2.2.2 Copper 

Copper is a metal with electrical and thermal conductive power and as shown in figure 1 43% 

of copper is used within building construction, 21% in electrical and electric products, 19% in 

transportation equipment, 10% for consumer and general products as well as 7% for industry 

machinery and equipment (ILZSG, 2021).  

 

Figure 1 - End uses of copper (ILZSG, 2021) 

Copper is extracted from copper ore through melting at high temperatures, which similarly to 

zinc and aluminum require a high amount of energy. As with the other metals, energy is a key 

input in production and could therefore be a good explanatory variable. As described in 

chapter 2.2.1, the currency risk rationale also applies for copper, and therefore the USD can 

also be a good variable to include for modeling the price of copper. 

43 %

21 %

19 %

10 %

7 %

End uses of Copper

Building construction Electrical and electric products

Transportation equipment Consumer and general products

Industry machinery and equipment
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Copper is used in many of the same sectors as aluminum and zinc, so other metals such as 

lead, tin, nickel, zinc and aluminum make sense to include.  

 

2.2.3 Zinc 

When it comes to production of zinc the main costs are similar to aluminum and copper where 

costs related to mining (labor, machines, fuel, electricity) and refining (electricity). In this 

case as with the other metals, we therefore consider petroleum products as a proxy for 

electricity costs as well as a direct cost for fuel when operating machines used in the mining 

process.  

Around 50% of all zinc that is produced in the world goes to galvanization which is to coat 

iron or steel with a protective layer of zinc. Products galvanized with zinc are used in 

construction, industry, automobiles etc. Zinc alloys accounts for 17% of the consumption as 

do brass and bronze (ILZSG, 2021).  

 

Figure 2 -  End uses of zinc (ILZSG, 2021) 

As with aluminum and copper, the same currency risk applies for production and 

consumption of zinc and can therefore be a good explanatory variable for modeling zinc 

prices as well.  

The main take-aways from the complementary- and substitute goods apples for zinc as well, 

hence the price of copper, aluminum and other metals will be relevant for forecasting the zinc 

price.  
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2.3 Literature review 
In this section previous literature of commodity price forecasting will be covered. The focus 

will be on data scientific approaches but a brief coverage of papers within the field of 

econometrics and finance will be covered as well. Other methods for commodity price 

forecasts such as microeconomic theory models, input-output, mathematical programming 

and computable general equilibrium models also exists (Labys, 2006), but will not be covered 

as they are not within the scope of this thesis. 

Lehfeldt (1914) was among the first that analyzed commodity prices and the interactions with 

their demands using statistical methods such as regression. Slutsky (1927) and Yule (1927) 

used simple linear differential equations influenced by stochastic shocks to forecast and 

model a vast number of time series within economics. The equations used by Slutsky and 

Yule explained autoregressive processes where a variable was predicted based on previous 

values of that variable. This autoregressive approach was formalized by Box et al. (1970) 

where they introduced the autoregressive integrated moving average (ARIMA) model. A 

methodology for timeseries forecasting referred to as the Box-Jenkins method was introduced 

and starts with a model identification, estimation of parameters, validation and finally 

predictions.  

The volatility of copper and aluminum based on three months futures as well as spot prices 

were analyzed by Figuerola-Ferretti and Gilbert (2008). A bivariate FIGARCH model was 

applied, which is a fractionally integrated generalized autoregressive conditional 

heteroscedastic (FIGARCH) model that describes the persistence of volatility in a timeseries 

(Tayefi & Ramanathan, 2016). The volatility in these metal prices showed a long-term 

memory process which means that the price changes from day-to-day are related. 

Ahti (2009) applied nonlinear models to data on non-ferrous metals from London Metal 

Exchange in the period from 1970-2009. He used a Smooth transition autoregressive model 

(STAR) and a feed-forward artificial neural network as his non-linear models and compared 

the results with linear models such as random-walk and autoregressive moving average 

(ARMA) models. The results presented was based on an out-of-sample evaluation for daily, 

weekly and monthly data. For the weekly and monthly data, he found negligible differences in 

performance between the linear and nonlinear models for all metals besides tin.  

Malliaris and Malliaris (2009) implemented an artificial neural network (NN) to forecast the 

price and analyze the interactions between gold, oil and the euro. A long- and short-term 
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relationship was observed between the commodities, and they also found that oil had the 

biggest impact on the other commodities. 

A decision tree algorithm was applied by Liu et al. (2017) on a dataset from London Metal 

Exchange containing copper prices and the authors claims this was the first time decision 

trees was used for copper price predictions. Their predictions were accurate in both the short 

and long term and scored a mean absolute percentage error (MAPE) under 4%. Decision trees 

has the advantage that that it is not necessary to set assumptions regarding for example 

stationarity, cointegration and the Gauss-Markov assumptions that apply for linear regression 

(Theil & Collection, 1971) 

So far in this literature review the focus has been on econometric methods performed on 

commodity data sets. Bandara et al. (2021) covers several papers using various RNN over the 

years, and they find that even though RNNs were used already in the 1990s, their use did not 

drastically increase until around 2015. The next few paragraphs will cover different uses of 

various RNN models used in various contexts.   

Jue et al. (2019) analyzed agricultural commodities as they have very complex price 

formations and prices are difficult to forecast. Agricultural commodities, like most other 

commodities, display nonlinear characteristics and the authors used a three-part approach to 

this problem. First, they used three different denoising techniques specifically singular 

spectral analysis (SSA), empirical mode decomposition (EMD) and variational mode 

decomposition (VMD). This was done to remove external noise in the time series. As a 

secondary step, they combined these denoising techniques with forecasting models such as 

autoregressive integrated moving average regression (ARIMA), support vector regression 

(SVR), recurrent neural network (RNN), gated recurrent neural network (GRU) and long-

short term memory RNN (LSTM). As the third step, the artificial bee colony algorithm (ABC) 

mentioned in the title of the paper, was used to forecast heterogeneous, semi-heterogeneous 

and homogeneous combinations. Their results indicated that the semi-heterogeneous forecast 

combination performed better than the other two combinations. 

Ouyang et al. (2019) forecasted global agricultural futures prices from multivariate time 

series. Their dataset included a combination of long- and short-term information as well as 

both linear and nonlinear data structures. Therefore, traditional methods within the field of 

econometrics such as autoregressive integrated moving average (ARIMA) and vector 

autoregression (VAR) are not suitable as they struggle with nonlinear data. Instead, a Long- 
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and Long- and Short-Term Time-series Network (LSTNet) was used. This method is based on 

the Lai et al. (2018) paper “modeling Long- and Short-Term Temporal Patterns with Deep 

Neural Networks” and applies a combination of a convolutional layer, a recurrent layer, and a 

recurrent skip. This method is also autoregressive, meaning it takes the output of one timestep 

as input in the prediction of the next timestep. The first convolutional layer “aims to extract 

short-term patterns in the time dimension as well as local dependencies between variable” 

(Lai et al., 2018) according to the authors. The recurrent component has a Gated Recurrent 

Unit (GRU) and uses RELU as the activation function. Their results indicated that the LSTNet 

performed better than their baseline RNN, CNN, ARIMA and VAR models, especially as the 

time horizon extended further into the future.  
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2.4 Descriptive analysis of the data 
In figure 3 the price development for aluminum, copper and zinc on the London Metal 

Exchange (LME) from 30.12.1994 to 01.01.2020 is shown. For aluminum, the price has been 

fluctuating between 1136 and 3271 dollars per metric ton with a mean around 1800. Before 

the financial crisis in 2008 we can see a rapid increase in the prices of the commodities 

followed by a sharp decrease during and after the financial crisis. Some of the same 

characteristics seems to be apparent for both copper and zinc as well where both had a 

significant price increase before the financial crisis and a similar price decrease during and 

after the financial crisis. For copper one can see a quick recovery sending the price close to 

10000 dollar per metric ton around 2012 before a steady decrease towards 5000 dollars in 

2016. The price for zinc seems more stable than the two abovementioned metals, as it had 

fairly flat development from 1994-2004. Similar to the other metals a price spike followed by 

a decline was apparent around the financial crisis and reached a bottom around 2009 around 

1200 dollars per metric ton. From around 2010 the price has been hovering around 2000 

dollars per metric ton with a top in 2018 around 3000 dollars.  

For all the metals in figure 3 the price movements seem erratic and has no clear direction or 

trend over a longer period of time.  

 

Figure 3 - Price development 1995-2020 for aluminum, copper and zinc 
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Some commodities have seasonal characteristics in their prices due to for example weather 

and therefore two new features called “Time of year signal” has been included. They are 

represented using the sine and cosine functions together with the Pandas function to_datetime 

(McKinney & Others, 2010) and the datetime library in python. The signals for the first 250 

observations, which is roughly equal to one year in the financial markets can be seen in figure 

4. 

 

Figure 4 - Time of year signal for approximately one year in trading days 

Figure 5 shows the correlations between the features included in this thesis. As noted earlier 

in this chapter, the non-ferrous metals are all relatively highly correlated with each other 

where for example the correlation coefficient between copper and lead is 0,92. Copper is also 

highly correlated to the oil products (about 0,9) and as well as the other metals above (about 

0,73). Aluminum has the highest correlation with nickel (about 0,85) and zinc (about 0,76). 

The correlation between aluminum and the brent and crude oil price are also high (about 0,7), 

slightly lower for natural gas (about 0,62). Zinc shows the highest correlation with nickel and 

lead at about 0,71 and 0,79 respectively, while its correlation to the energy commodities is 

lower (oil is about 0,58 and natural gas about 0,31). Other interesting findings in the 
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correlation matrix is that crude and brent oil are almost identical with a correlation coefficient 

of 0,99, while the correlation to natural gas is below 0,5.  

As described in chapter 2.2, the USD could be a price driver for the various commodities as it 

has an inverse relationship with commodities that are being exported. An increase in the US 

dollar compared to other currencies leads to an increased cost for consumers to buy 

commodities because it is traded in US dollars and vice versa (Ganapathyraman et al., 2018). 

This is seen in our dataset as well, where the USD index has a negative correlation with all the 

commodities where the strongest negative correlation is to crude oil and copper at 0,69.  

 

 

Figure 5 - Correlation matrix plot and lower correlation matrix 

Crude Oil Europe Brent Oil Nickel Lead Tin US Dollar Index Nat gas index Zinc Aluminum Copper Year sin Year cos

Crude Oil 1,00

Europe Brent Oil 0,99 1,00

Nickel 0,67 0,64 1,00

Lead 0,81 0,81 0,65 1,00

Tin 0,83 0,86 0,50 0,91 1,00

US Dollar Index -0,69 -0,67 -0,63 -0,59 -0,56 1,00

Nat gas index 0,48 0,39 0,63 0,24 0,08 -0,42 1,00

Zinc 0,58 0,59 0,71 0,79 0,66 -0,39 0,31 1,00

Aluminum 0,72 0,69 0,85 0,68 0,57 -0,64 0,62 0,76 1,00

Copper 0,90 0,91 0,73 0,92 0,90 -0,69 0,34 0,80 0,80 1,00

Year sin -0,01 -0,01 0,05 -0,02 0,02 0,01 -0,05 0,01 0,05 0,00 1,00

Year cos -0,06 -0,06 -0,02 0,02 -0,01 0,00 0,04 0,00 0,00 -0,03 0,00 1,00
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Figure 6 shows descriptive statistics using the .describe() function on the dataset which is 

stored in a pandas DataFrame (McKinney & Others, 2010). From the mean column it is clear 

that these variables are on different scales and needs to be normalized before modeling. 

Because of the differences in scale, the standard deviation also differs by a lot, which means 

that the data needs to be adjusted for both the mean and standard deviation. This is done by 

subtracting the mean and dividing by the standard deviation from the training data. 

 

Figure 6 - Descriptive statistics on the raw data 

The violin plot in figure 7 shows the distribution and some summary statistics for the dataset. 

The white dot in the middle of the plot represents the median value of the dataset, the vertical 

height represents how wide the distribution is and the horizontal distance within each plot 

shows the frequency of observations at that point. From the figure it is clear that especially 

nickel, aluminum and lead have the most extreme high values but most of the variables still 

have distributions that differ from the gaussian distribution. Lead, Tin and copper appears to 

have similar distributions and the same goes for crude oil and brent oil. These observations 

match the conclusions drawn from the other figures in the chapter. 
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Figure 7 - Violin plot showing the normalized data distributions 
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3. Methodology 
This chapter will cover the methods chosen for forecasting the present work. We start with a 

description of sequential data and how the dataset is split up into shorter sequences 

representing inputs and targets. Thereafter we discuss a forecast baseline to be used as a 

comparison to the various models in this thesis. For comparison with the baseline model, we 

describe a vanilla feed-forward neural network (NN) to be used as a first model approach 

before the main approach based on recurrent neural networks (RNN) are described. The 

various methods presented in this chapter are implemented in python through the Keras 

(Chollet & Others, 2015) and TensorFlow (Martín Abadi et al., 2015) libraries, but other 

libraries such as Pandas (McKinney & Others, 2010), NumPy (Harris et al., 2020), Matplotlib 

(Hunter, 2007) and Seaborn (Waskom et al., 2017) have also been used. 

3.1 Universal workflow in a machine learning process 
The workflow presented here is based on chapter 4.5 in the book “Deep learning with python” 

by Chollet (2017). 

1. Defining a problem and preparing a dataset 

The first step in this process is to identify a problem and to prepare a dataset. The focus in this 

thesis is a regression problem where a timeseries dataset have been acquired with the 

variables described in chapter 2. Regression problems within finance are often static forecasts 

one timestep ahead. As an extra challenge that can provide a bigger benefit this thesis will 

forecast prices multiple days ahead. The focus in this thesis is to search for models that can 

predict multiple steps (days) ahead that when successful gives more value to the forecasts as 

described in the motivation of this thesis in chapter 1. Domain specific knowledge has been 

discussed in chapter 2.2 to identify relevant data to be included in the forecasts. It is important 

to acknowledge that using historical data to predict the future outcomes in timeseries 

modeling assumes that the response(s) behave consistently with the available historical data, 

which is not necessarily always the case.   

2. Choosing a measure of success 

In a machine learning process, one needs to define what is meant by a successful model, and 

how to measure success. In the present work, the candidate models will be compared to a 

baseline model using a “last-observation approach”. This approach will be described in 

further detail in chapter 3.3. Our definition of success is if some more complex model 
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alternative (such as RNN) can outperform the baseline and simpler models. This leads to the 

following question: “Is a more complex model necessarily a better model?”.  

Any measure of success requires some precise measurement of model accuracy. Because we 

consider a regression problem (timeseries forecasting) in this thesis, various forecast error 

metrics will be discussed in chapter 3.6. 

3. Evaluation protocol during training 

We also need to define a procedure for monitoring the training process of our models. 

Examples of this is k-fold cross validation which is useful when you have a low number of 

samples, iterated k-fold with shuffling which is used for performing highly accurate model 

evaluation when the dataset is not large enough to maintain a hold-out validation set, which is 

the method that will be used in this thesis. 

4. Pre-processing and visualizing data 

Pre-processing and visualization of data is a crucial step in a machine learning process. This 

lays the foundation for further model selection, training and scoring. According to Anaconda 

(2020), about 2/3 of the time spend in a data science project is spent on data preparation and 

visualization.  
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Figure 8 - Time spent working on different tasks in Data Science (Anaconda, 2020) 

The dataset we analyze in this thesis has been acquired from Thomson Reuters Datastream 

(Datastream, 2021) on a standard timeseries format with variables in the columns and the 

price at time t in the rows. Since all the data is gathered from the same source, all the data is 

therefore on the same format which simplifies the data cleaning process. Some important 

steps is to identify possible missing values and outliers, visualize the distribution and identify 

relationships between different variables (see chapter 2.4). Feature engineering can also come 

in handy to create new useful features. We will consider catching time-specific information 

with a “time of year signal” as described in chapter 2.4. 

5. Developing a model that beats the baseline 

After defining a baseline model for the problem, the next step is to choose and train a model 

that hopefully performs better than the baseline. For a regression problem the choice of 

baseline tends to be more problem-specific depending on the characteristics of the regression. 

For problems with timeseries data one needs to consider how many steps ahead that is being 

predicted. In commodity price forecasting, the prices from one day to another does not change 

drastically so a simple choice of a baseline model could be to use the last known price for 
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predicting the price at the next timestep. This will be the choice of baseline model that we will 

use in the present work. Performance of the baseline will be measured by the metrics 

mentioned in step 2. Further details are described in chapter 3.6.  

When it comes to what models to choose, one needs to consider what kind of data that one has 

access to and what kind of problem at hand. It is often a good idea to start with a simpler type 

of model that is easy to implement and interpret. This is so that the researcher does not have 

to spend unnecessary time developing and tuning a very complex model if the problem can be 

solved by for example a linear regression. Since we are working with a regression problem 

using timeseries data it is logical to consider models that can process data sequentially and has 

a concept of time. Therefore, RNNs are the topic of this thesis. 

6. Scaling up – Increasing the capacity of the model 

If the simple model approach from step 5 was unsuccessful it is time to consider if the model 

is sufficiently complex and powerful. If this is not the case, one should increase the capacity 

of the model by for example adding layers, adding nodes or units as well as increasing the 

number of training epochs. When increasing the complexity of the model, one should monitor 

the loss and validation loss of the model and see when the model starts to overfit, resulting in 

poorer predictions for the validation data compared to the training data.   

7. Regularization and hyperparameter tuning 

In the case of overfitting, some inclusion of regularization and further hyperparameter tuning 

for the training process must be considered. A good model should be based on a compromise 

between capturing the essential patterns in the data without overfitting to the training data. 

This can be achieved with regularization parameters such as L1 and L2 in for example Lasso, 

Ridge and Elastic Net regression (Raschka & Mirjalili, 2017). Inclusion of the dropout 

strategy for regularization to prevent overfitting will be discussed further in chapter 3.5 about 

Recurrent Neural Networks. The dropout method is also a common technique used for fully 

connected dense networks. Other possibilities like adjusting learning rate, increasing or 

decreasing the number of nodes, and increasing or decreasing the number of hidden layers is 

commonly used in this step. 
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3.2 Sequential data and timeseries 
This thesis will use sequential data and the subset timeseries for forecasting purposes, which 

has different characteristics than for example the famous MNIST (LeCun & Cortes, 2010) and 

Boston Housing dataset (Harrison & Rubinfeld, 1978) which are much used for illustrating 

multiclass classification and regression (without time information) problems. A unique 

characteristic of sequential data is that the observations appear in a certain order which means 

they are dependent on each other. These dependencies need to be taken into consideration 

when facing a forecasting problem. 

Raschka and Mirjalili (2017) illustrates the main types of sequence modeling in figure 9  

 

Figure 9 - Different types of sequence modeling (Raschka & Mirjalili, 2017) 

where many-to-one refers to a situation where the input data is a sequence, and the output is a 

fixed size vector and not a sequence. An example of this can be sentiment analysis where the 

input is a text, and the output is a classification label. One-to-many is a situation where the 

input data is a standard format (not a sequence) and the output is a sequence. An example of 

this can be captioning of images where the inputs are images, and the output is a text 

describing the content of the image. Many-to-many sequence modeling comes in two 

variations, synchronized and delayed. An example of synchronized many-to-many modeling 

can be video classification (sequence of images) where every frame (image) is classified at 

various timesteps. The delayed many-to-many approach is similar to the synchronized many-

to-many, but the predictions are offset in time. An example of this can be commodity price 

forecasts where the inputs are historical prices and the outputs are future prices for multiple 

timesteps. 

The latter is the topic covered in this thesis. Here both the inputs and outputs of the model are 

sequences, where an input sequence has multiple dimensions (features) while the 

corresponding output is a single feature sequence. 
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For making multiple predictions over several timesteps, it is necessary to split the dataset into 

smaller sequences. In forecasting one is often interested in predicting some outcome a certain 

number of timesteps ahead (the output) based on the information from a certain number of 

previous timesteps (the input). The number of input timesteps will be referred to as the input 

width and the number of output timesteps will be referred to as the target width, while the 

difference between the two will be referred to as the offset, i.e., synchronized or delayed 

many-to-many described in the previous paragraph. An illustration is presented in figure 10 

where the input width is the first six timesteps and the label width is the seventh timestep with 

a width of one. The offset is one which means a delayed many-to-one approach since the 

prediction is only one timestep ahead.  

 

Figure 10 - Data sequence with input width 6, offset of 1 and a label width of 1 (Tensorflow, 2021) 

Figure 11 shows how the sequence is split into inputs and targets or labels with the same 

information as in figure 10. The red array shows the original indices of the entire window, the 

blue array shows the inputs after the split and the green box shows the target index. This 

window can be adjusted to fit the goals of the problem at hand, and the specific window used 

in this thesis will be five timesteps (days) as input width and five timesteps (days) as target 

width with an offset of five. 
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Figure 11 - Data sequence split into inputs and label or target (Tensorflow, 2021) 
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3.3 Forecast baseline 
As described in chapter 3.1 one needs to define a forecast baseline that suits the problem at 

hand. Since timeseries data is order-dependent and we have seen in chapter 2.4 that the data 

rarely changes very much from one timestep to another, a reasonable prediction could be that 

the price at time t+2 equals the price at price t+1 for a single-step prediction. Figure 12 shows 

an example for a data window of total width of 48, where the input width is 24 and the output 

width is 24. I.e. the previous 24 timesteps are taken as input to predict the following 24 

timesteps. The last known observation at timestep 24 is then chosen as the prediction the next 

24 days shown by the crosses in the figure. The true values or targets are the green dots, and 

the performance of this baseline approach can be calculated with a variety of performance 

metrics as will be discussed in subchapter 3.6. However, in this particular example the mean 

absolute error (MAE) was used, meaning a mean absolute error of 0,0934 should be the 

minimum requirement for a more complex model to beat in this example.    

 

Figure 12 - Plot of a sequence with 24 as input and 24 as output with an offset of 24 
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3.4 Feed-forward Neural Network (Deep Neural Networks) 
A neural network can be considered an extension of the Adaptive Linear Neuron algorithm 

(Adaline) (Raschka & Mirjalili, 2017) which can be seen in figure 13. 

 

Figure 13 - Adaline for classification problems (Raschka & Mirjalili, 2017) 

Deep Neural Networks extends the structure of the Adaline classifier, by having multiple 

neurons in multiple layers. Algorithms such as gradient decent or stochastic gradient descent 

are often used in the modeling process for adjusting the weights every time the algorithm 

repeats over the whole training set (epoch) for gradient descent or batch-wise for stochastic 

gradient descent. The weights are updated on each epoch with formula 3.1 

𝑤 ≔ 𝑤 + ∆𝑤, 𝑤ℎ𝑒𝑟𝑒 ∆𝑤 = −∇𝐽(𝑤)    (3.1) 

which in short means to optimize the cost function j(w) and the weights gets updated 

inversely to the gradient ∇𝐽(𝑤). The gradient also gets multiplied by the learning rate  assure 

proper convergence of the learning process. The activation function in the Adaline classifier is 

a linear combination of the net input and through the unit step function connected to the 

output layer.  
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For DNN the structure looks similar, but with a few essential changes. Figure 14 shows the 

structure of a deep neural network

 

Figure 14 - One layer fully connected neural network (Raschka & Mirjalili, 2017) 

including an input layer with a bias unit a0
in and the inputs x1, …, xm, which is fully connected 

to all the neurons in the second (hidden) layer except for the bias a0
(h). This again connects to 

the output layer which in a regression case produces a continuous output value. The neurons 

inside the network, for example aI
h can be viewed as the net input and activation of a single 

Adaline neuron. A fully connected neural network with an input layer with three input units 

plus bias, a hidden layer with four hidden units plus bias and three units in the output layer for 

a three-class classification problem yields 31 weights in total. 16 weights comes from the 

hidden layer with four weights for the bias (1x4) and 12 weights for the input-to-hidden layer 

(3x4), while three weights comes from the hidden layer bias(1x3) and 12 weights for the 

hidden-to-output layer(3x4), which in total yields 16+15=31 weights to train. This illustrates 

that a very small network with only one hidden layer, three inputs, three outputs and four 

hidden units in the hidden layer yields a high number of weights. Regularization by 

controlling the number of weights, the number of neurons in a layer and the number of layers 

is a way to prevent against overfitting in neural network modeling.  

While the identity function is used as the activation in Adaline, other functions such as the 

sigmoid, the hyperbolic tangent and the rectified linear unit (ReLU) are among the well-

known choices in neural network modeling. The sigmoid/hyperbolic activation functions may 
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cause problems with vanishing gradients in the backpropagation training (Hochreiter et al., 

2001). The reason for this is that the backpropagation method computes the gradients with the 

chain rule that may lead to weight updates of very small values when the errors become large, 

and if numbers between -1 and 1 are multiplied with each other enough times, the product will 

approach zero. As a result of this the training will become very slow and might not converge. 

The nonlinear ReLU activation is defined as 

(𝑧) = max (0, 𝑧)    (3.2) 

and does not suffer from this weakness because its derivative is always 0 or 1, (0 when z is 

below 0 and 1 when z is above zero). In short, the ReLU activation function eliminates the 

vanishing gradient problem for vanilla neural networks, and is therefore often used for deep 

neural networks using the backpropagation algorithm. However, vanishing gradients can be 

an even bigger problem for RNN and will be covered in chapter 3.5.3. 

(Raschka & Mirjalili, 2017) 
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3.5 Recurrent Neural Networks 

3.5.1 Brief overview of recurrent neural networks 

In chapter 3.4 we gave a description of feed-forward neural networks (NN), where the input 

signals flows through various weights and layers to produce an output. Such networks have no 

concept of time because the inputs are processed independently. Therefore, standard feed-

forward neural networks are not very suitable for modeling of timeseries problems. Recurrent 

neural networks on the other hand include the possibility of feedback mechanisms to process 

information the same way as biological intelligence, where the information is processed 

incrementally while a memory of what is being processed is being kept so it can consider past 

information while processing new information (Chollet, 2017). This is however a 

simplification. RNN iterates through information while keeping an internal state where 

information from the previous timestep is being stored and used as an input in the next step. A 

simple illustration of the difference between a feed-forward neural network and a recurrent 

neural network can be seen in figure 15 where h and h(t) is a simplification of the hidden 

model architecture. 

 

Figure 15 - Simplified structure of a feed-forward neural network and a recurrent neural network (Raschka & Mirjalili, 2017) 

 

A simple recurrent neural network starts with an internal state at time t which often is 

initialized to zero. After the initialization, the network iterates in a simple for-loop over the 

inputs at time t, where the output at time t is a function of the input at time t and the internal 

state at time t, passed on from the previous timestep t-1. The internal state is then updated 

based on the output at time t, then the network iterates over the next timestep. A very simple 

implementation of this was done by Collet (2018) which explains this in pseudocode in 3.3. 
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      (3.3) 

 

This pseudocode can be further improved by writing the function f as the activation function 

of the dot-product between a weight matrix W and the input at time t plus the dot-product of a 

weight matrix U and the state at time t plus a bias vector. This is shown in pseudocode in 3.4 

   (3.4) 

The pseudocode in 3.3 illustrates the main difference between a NN and a RNN where the 

hidden layers in a NN only receives the net preactivation (input signal before the activation 

function is applied) from the input layer while the units in a hidden layer in a RNN receives 

the net preactivation from the input layer and the activation from the same hidden layer at the 

previous timestep, called state_t in formula 3.3. In simple terms the computational 

mechanisms in RNN includes feedback information from previous timesteps combined with 

the input from the current timestep.  

Like with NN, RNN layers can be stacked (called multilayer RNN) to improve the capacity of 

the network. This is easily implemented in Keras (Chollet & Others, 2015) by specifying that 

all the recurrent layers besides the last recurrent layer should use “return_sequence = True” so 

the layers return a 3d tensor with the complete sequence of consecutive outputs with 

(batch_size, timesteps, output_features) instead of a 2d tensor with the output from the last 

timestep with (batch_size, output_features). However, by stacking multiple layers the model 

may easily overfit. After making sure a network has sufficient capacity for the problem at hand, 

regularization is usually included in the training process. Recurrent dropout is a common 

technique to prevent against overfitting in a fashion similar to the use of dropout when training 

feed-forward neural networks. This is done by randomly setting some inputs in a layer to zero 

which is supposed to reduce the coincidental connections from the training set that is fed into 

that layer. The implementation of recurrent dropout is not as straight forward as dropout in 

vanilla neural networks. Gal (2016) worked out in his PHD thesis that the same pattern (also 

called mask) of dropout should be applied to every timestep in the network. For other types of 

layers such a LSTM and GRU, discussed in chapter 3.5.4 and 3.5.5, Gal proposed that a 

temporally constant dropout mask allows the network to properly propagate its learning error 
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through time when it’s applied to the inner recurrent activation of a layer. Gal has contributed 

to the Keras package by implementing two dropout arguments in the different RNN layers. One 

argument is the dropout argument that specifies the dropout rate for the input units in the layer. 

The second argument is the recurrent dropout that specifies the dropout rate of the recurrent 

units in the network. 

(Chollet, 2017) 

3.5.2 Computation of activations in Recurrent Neural Networks 

The activations and computations in a recurrent neural network are more complex than in a 

feed-forward neural network because of the recurrent edge (also called internal state). The 

following section will go through the computation of activation in the hidden units and the 

calculation of output units.  

The notation in this section is based on Raschka and Mirjalili (2017), where the weight matrix 

connecting the input layer 𝑥(𝑡) and the hidden layer ℎ is denoted by 𝑊𝑥ℎ where the 𝑥 

represents the input and ℎ represents the hidden layer. The weight matrix connected to the 

recurrent edge is denoted as 𝑊ℎℎ and the weight matrix connecting the hidden layer ℎ and the 

output layer 𝑦 is denoted as 𝑊ℎ𝑦. In this instance ℎ represents a single hidden layer, but the 

same notation can be applied to multilayer RNN using ℎ1 − ⋯ − ℎ𝑛. The notation explained 

is shown in figure 16. 

 

Figure 16 - Unfolded structure of a recurrent neural network (Raschka & Mirjalili, 2017) 

By defining the net input as 𝑧ℎ
(𝑡)

, the bias vector for the hidden units as 𝑏ℎ and the activation 

function of the hidden layer as (∙), one can compute the net input in the hidden layer as 
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𝑧ℎ
(𝑡)

=  𝑊𝑥ℎ𝑥(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ                                         (3.5)                  

where ℎ(𝑡−1) is the activation from the same hidden layer in the previous timestep. Based on 

the net input, the activation in the hidden layer can be calculated as follows in 3.6. 

ℎ(𝑡) = 
ℎ

(𝑧ℎ
(𝑡)

) =  
ℎ

(𝑊𝑥ℎ𝑥(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ)                (3.6) 

The activation calculation of the output layer is slightly less complicated compared to the 

hidden layer, as it does not take input from different timesteps. This is shown in formula 3.7. 

𝑦(𝑡) =  
𝑦

(𝑊ℎ𝑦ℎ(𝑡) + 𝑏𝑦)                                                       (3.7) 

(Raschka & Mirjalili, 2017) 

3.5.3 Vanishing gradient problem 

In feed-forward neural networks the backpropagation algorithm is used to adjust the weights 

in the network. This is done by through so-called backpropagation, which can be understood 

as going backwards through the network from one sample at the time from output to input 

when updating the weights. The gradient, or derivative, of the loss function with respect to the 

weight are calculated using the chain rule. This process is done for one layer in the network at 

the time starting at the final layer in the model. When working with recurrent neural networks, 

the same type of approach is used but is then called backpropagation through time. The key 

take-aways from the backpropagation algorithm is when the errors are computed in the hidden 

layers, a multiplication with the derivative of the activation function is done. For activation 

functions like the sigmoid and tanh, this becomes a problem because of their derivatives 

shown in figure 17 and 18. 
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Figure 17 - Plot of the sigmoid function and its derivative in the range -10 to 10 

 

Figure 18 - Plot of the hyperbolic tangent function and its derivative in the range -10 to 10 

From figures 17 and 18 it is clear that the derivative of these two activation functions lies 

between 0 and 1 and is close to 1 in a large region. This is the basis for the vanishing gradient 
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problem which occurs in multilayer neural networks because when the backpropagation 

algorithm updates its weights, numbers between 0 and 1 will be multiplied repeatedly. An 

illustration is shown in figure 19 where a net input has been given to the sigmoid function to 

produce an activation. The derivative of the sigmoid function can be written as 𝜎(1 − 𝜎) 

where 𝜎 is the sigmoid function.  

 

Figure 19 - Output from the sigmoid activation function and its derivative 

As illustrated in figure 19 the gradient when using the sigmoid activation function will always 

be a number between 0 and 0.25. This is the process for a single sample in a single layer, so 

when multiple gradients eventually are multiplied together, the product will approach 0. This 

is known as the vanishing gradient problem. The reason why this is especially relevant for 

recurrent neural networks is that the backpropagation algorithm leads to exponentially more 

calculations because the gradients are calculated for both the layer aspect and the time aspect 

of the network. The same principle applies for so called exploding gradients as well, where 

the same logic in figure 19 is applied but with multiplications of numbers larger than 1 

leading to very high values. There are several strategies to solve this problem, and in the next 

subchapter we will consider two derivatives of RNN, namely Long-short term memory 

(LSTM) units and Gated recurrent units (GRU) that was developed to solve the problem of 

vanishing and exploding gradients.  

 

 

 

 

 

Sigmoid activation 1 - sigmoid activation Derivative sigmoid

0,1 0,9 0,09

0,2 0,8 0,16

0,3 0,7 0,21

0,4 0,6 0,24

0,5 0,5 0,25

0,6 0,4 0,24

0,7 0,3 0,21

0,8 0,2 0,16

0,9 0,1 0,09
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3.5.4 Long-short term memory (LSTM)  

Long-short term memory units was suggested by Hochreiter and Schmidhuber (1997) to solve 

the issue with vanishing- and exploding gradients. LSTM units are structured similarly to a 

simple RNN layer but has some additional advanced features. A simple RNN transfers 

information from one timestep to another using the activation from the previous timestep, 

which can lead to information getting lost when operating over many timesteps. LSTM units 

attempts to solve this by transferring information through the timesteps in a more robust way, 

often referred to as carry, denoted by 𝐶. By structuring the LSTM cell in this way, it prevents 

older signals from diminishing steadily over time as it injects information from the previous 

timestep. Figure 20 illustrates the unfolded structure of a LSTM cell

 

Figure 20 - In dept structure of a LSTM cell (Raschka & Mirjalili, 2017) 

where a cell takes the input data from the current timestep 𝑥(𝑡), ℎ(𝑡−1) which is the hidden 

unit activation at the previous timestep and 𝐶(𝑡−1) which is the cell state at the previous 

timestep as inputs. As output it gives the activation ℎ(𝑡) to both the next timestep and the next 

layer if the networks is a multilayer network as well as the cell state 𝐶(𝑡) to the next timestep. 

The carry (the overall process that includes the cell state) is often thought of as a conveyor 

belt that runs parallel through a layer of LSTM cells, where the information is not changed 

much besides some linear operations like element-wise multiplication denoted ⊙ and the 

element-wise addition denoted . The cell has the capability to remove or add information to 

the cell state with 𝑓, 𝑖 𝑎𝑛𝑑 𝑔 in figure 20 called gates. The forget gate, 𝑓, the input gate, 𝑖 and 

the output gate, 𝑜 uses the sigmoid activation function and the input node, 𝑔 uses the 

hyperbolic tangent activation function. The yellow boxes can be thought of as a separate 
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neural network responsible for controlling different pieces of information in the cell, 

including weight matrices, 𝑊 and bias units, 𝑏. 

With all the parts of the LSTM cell specified, one can walk through the cell to see how the 

calculations processing the information are working. The first interaction in the cell is where 

the forget gate decides what information to pass on or suppress, essentially meaning how 

much of the previous cell value 𝐶(𝑡−1) to use. This is done via element-wise multiplication 

with the output of the sigmoid activation, which is shown in figure 17 (chapter 3.5.3) to take 

values between 0 and 1 leading to a reduced value of the cell state. A value of 0 means 

keeping nothing and 1 means keeping everything. This is done so the cell state does not grow 

indefinitely by the element-wise addition used for the input gate and input node. When 

computing this activation, the same structure as formula 3.6 with the sigmoid activation 

function where the subscript 𝑥 refers to the input, the subscript ℎ refers to the hidden unit 

activation in the previous timestep and the subscript 𝑓 refers to the forget gate. 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑥(𝑡) +  𝑊ℎ𝑓ℎ(𝑡−1) + 𝑏𝑓)                                   (3.8) 

The next step in this process is to decide on what new information to add or remove from the 

cell state. This is done by the input gate and the input node. The task of the input gate is to 

decide on which values of the input to update while the input node creates a vector of new 

candidate values which could be added or removed from the cell state. Afterwards the 

activation of these gates is element-wise multiplied together before being added to the cell 

state. Hyperbolic tangent is used to produce activations between -1 and 1 so the input node is 

able to both add and remove information. The computation of the activation is much like in 

formula 3.8 and is shown in formula 3.9 and 3.10. 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥
(𝑡) + 𝑊ℎ𝑖ℎ

(𝑡−1) + 𝑏𝑖)                                      (3.9) 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥(𝑡) +  𝑊ℎ𝑔ℎ(𝑡−1) + 𝑏𝑔)                           (3.10) 

Here the weight matrices are denoted with the subscripts 𝑖 for the input gate and 𝑔 for the 

input node. Now that all the pieces to calculate the cell state are in place, the computation of 

the cell state is shown in formula 3.11. 

𝐶𝑡 =  (𝐶(𝑡−1) ⊙  𝑓
𝑡
)(𝑖𝑡 ⊙ 𝑔

𝑡
)                            (3.11) 
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As described above, the forget gate regulates how much information from the previous cell 

state that is being kept, while the input gate and input node adds or removes information from 

the input and previous activation ℎ(𝑡−1). 

After the information from the input gate and input node are added or removed from the cell 

state, the output gate decides on how much of the new cell state that goes to the output. This is 

done via a sigmoid activation function computed based on the input and the hidden layer 

activation at the previous timestep as shown in formula 3.12. 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥(𝑡) +  𝑊ℎ𝑜ℎ(𝑡−1) + 𝑏𝑜)                                      (3.12) 

where the subscript 𝑜 refers to the output gate and while the other notation and subscripts are 

equal to the other gates. The final hidden unit activation is then calculated using the activation 

from the output gate combined with the hyperbolic tangent of the cell state, shown in figure 

18. The computation of this activation is shown in formula 3.13. 

ℎ𝑡 =  𝑜𝑡 ⊙  tanh (𝐶(𝑡))                                      (3.12) 

This activation is then passed to both the next layer and to the next timestep. 

(Olah, 2015) 

3.5.5 Gated Recurrent unit (GRU) 

Gated Recurrent unit (GRU) is a variation of the LSTM suggested by Cho et al. (2014). The 

concept of the GRU is that it combines the input gate and the forget gate to one gate called the 

update gate. The cell state and the hidden state activation from the previous timestep is also 

merged. These changes to the LSTM cell make the GRU computationally more efficient and 

may also work better than the LSTM in some scenarios. However, as is often stated in Data 

Science: “Machine learning is often more of an art than a science” is also the case for RNN. 

Greff et al. (2015) studied the differences between LSTM variants and found no significant 

difference in performance on their tasks of speech recognition, handwriting recognition, and 

polyphonic music modeling. Cho et al. (2014) found that GRU tends to show better 

performance than LSTM on smaller datasets, which could be an advantage in this paper. An 

overview of a Gate Recurrent Unit is shown in figure 21.  
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Figure 21 - In dept structure of a Gated Recurrent Unit (Olah, 2015) 

The reset gate 𝑟𝑡 is calculated in formula 3.13 

𝑟𝑡 =  𝜎(𝑊𝑥𝑟𝑥(𝑡) +  𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏𝑟)                                   (3.13) 

 𝑧𝑡 is called the update gate and is calculated in the same way and is shown in formula 3.14 

𝑧𝑡 =  𝜎(𝑊𝑥𝑧𝑥(𝑡) +  𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏𝑧)                                   (3.14) 

The last gate called the candidate activation vector ℎ̃𝑡 is calculated in a similar way but 

includes an element-wise multiplication between the reset gate and the hidden unit activation 

from the previous layer and utilizes the hyperbolic tangent activation function. 

ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥ℎ̃𝑥(𝑡) +  𝑊ℎℎ̃ (ℎ(𝑡−1) ⊙ 𝑟𝑡) + 𝑏ℎ̃)                                   (3.15) 

The output vector is calculated using the gates described above either directly or indirectly 

and is shown in 3.16 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ(𝑡−1) + 𝑧𝑡 ⊙ ℎ̃𝑡)                                   (3.16) 

(Cho et al., 2014) 
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3.6 Performance metrics 
Evaluation of the model predictions of competing models requires some choice of 

performance metrics. Since this thesis works with timeseries data and a regression problem, a 

metric suitable to those criteria should be used. Most performance metrics used for regression 

contains the difference between the predicted value and the observed value, also called the 

forecast error. This number can be either positive or negative and will be positive if the 

observed value is larger than the predicted value and vice versa. However, this metric is not 

very useful by itself, as if you sum all the forecast errors and they contain both positive and 

negative errors they might cancel each other out. Therefore, most performance metric uses 

either squared or absolute values. Metrics like these are often used for comparison both in- 

and out-of-sample evaluation as well as for in-sample validation.  

The Mean Squared Error (MSE) can be defined as in formula 3.17: 

𝑀𝑆𝐸 =  
1

𝑛
𝑆𝑆𝐸, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑆𝐸 =  ∑ (𝑦(𝑖) − �̂�(𝑖))2𝑛

𝑖=1                  (3.17) 

where n is the number of samples, 𝑦(𝑖) the observed value and �̂�(𝑖) is the predicted value and 

is interpreted as the average value of the squared errors. MSE will always be non-negative 

and a value of 0 means a perfect accuracy for the model as the observed value equals the 

predicted value for all samples. Another popular metric is the Mean Absolute Error (MAE) 

and using the same notation as in formula 3.17 can be defined as 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦(𝑖) − �̂�(𝑖)|𝑛

𝑖=1                                                      (3.18) 

which represents the average of the absolute errors. As with MSE, MAE will always be non-

negative and a value 0 is achieved when the observed values equal the predicted values for all 

samples. Based on these two metrics one can define various other metrics. One popular metric 

is the Root Mean Squared Error (RMSE) which can be defined as following 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸                                                                        (3.19) 

and is interpreted as the quadratic mean of the predicted and observed values. RMSE is 

always non-negative and will be 0 if the observed values equal the predicted values for all 

samples. Another metric that is popular due to its interpretability is the Mean Absolute 

Percentage Error (MAPE) which can be defined as  

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑦(𝑖)−�̂�(𝑖)

𝑦(𝑖) |𝑛
𝑖=1                                                       (3.20) 
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The main advantage of MAPE is that it can easily be interpreted as the average absolute 

percentage error. In practice MAPE can be hard to use and will fail if the observed value is 

zero due to zero division. This could be the case in this thesis as the prices are normalized and 

some values may end up being zero or very close to zero. Therefore, MAPE will not be used 

in this thesis. 

RMSE has the advantage that it is more interpretable than the MSE but might still cause 

confusion as it is defined as the square root of the average squared errors. A disadvantage of 

RMSE is that each error does not influence the sum in direct proportion which is the case with 

MAE (Pontius et al., 2008). According to Pontius et al. (2008) MAE is also less sensitive to 

outliers than RMSE due to the square and root calculations. MSE will be used to calculate the 

loss in the model which will be minimized during training. RMSE will be the choice of 

performance metric. 
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4. Results 
In this chapter the forecasting results from modeling the aluminum, copper and zinc price is 

presented. For each of the metals a baseline model, a dense network model, a single-layer 

LSTM network model, a multi-layer LSTM network model, a single-layer GRU network 

model and a multi-layer GRU network model has been trained and tested using a training-, 

validation-, and test-set containing 70%, 20% and 10% of the original dataset, respectively. 

When it comes to training of the models, MSE is the metric that is being minimized during 

training while RMSE is being used when the predictions on the validation- and test data is 

presented. As previously mentioned, the input to the model is 5 timesteps (days) and the 

output is also 5 timesteps (days), which in practice predicts one week ahead (in trading days) 

based on the previous week. The models displayed in this chapter has been chosen based on 

their training- and validation loss. Training loss was the main criterion, but if the validation 

loss differed a lot from the training loss other model architectures were experimented with. 

Most models had relatively similar training- and validation loss, but for some of the more 

complex architectures we struggled to find a good compromise between training- and 

validation loss which is seen in the following subchapters.   

 

4.1 Aluminum 
The baseline model 

The approach for the baseline model is described in chapter 3.3 and is shown in figure 22 and 

uses the last known observation at timestep four (indexed from zero, meaning day five in 

practice) to predict the next 5 timesteps.  

 

Figure 22 - Prediction of a single sequence (Baseline aluminum) 

From this example we can see that our approach in general will produce useful results as the 

price changes from one timestep to another is not very drastic. However, the longer the time 

horizon and the more volatility in the commodity price will lead to worse results for this 
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baseline. The code for producing the baseline can be found in the Appendix. This approach 

yielded a RMSE of 0,0712 in the validation set and a RMSE of 0,0942 in the test set. The 

results from all the models with be summarized and analyzed in the discussion in chapter 5. 

The dense network model 

The next model is a dense model with a single layer with one unit as well as a layer with the 

number of output steps (5) times the number of predicted features (1) as the number of units 

used to reshape the output. This can be considered one of the simpler models for a problem 

like this. The model does in total have 71 parameters and a more detailed summary of the 

model structure can be found in the appendix.  

 

Figure 23 - Training- and validation loss (Dense network aluminum). Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The loss measured by the MSE for the training set and validation set is shown in figure 23. 

We can see the diminishing returns of training when the number of epochs is increased. This 

is especially apparent from around epoch five. The model does not seem to overfit, as the 

distance between the training loss and validation loss does not increase when increasing the 
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number of epochs. The reason why the training stopped at 18 epochs is that the Patience 

parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been set to three 

which means the number of epochs with no improvement after which training will be stopped. 

This applies for all the other trainable models as well.  

 

Figure 24 - Prediction of a single sequence (Dense network aluminum) 

Figure 24 shows an example sequence where the dense model has predicted the output for 

fove timesteps. The predictions from the dense model does not change much from one 

timestep to another but they are not equal as with the baseline. Since we know that the prices 

does not change much from one timestep to another, the kernel_initializer parameter has been 

set to initialize to zeros using the Keras zeros initializer (Chollet & Others, 2015). To be able 

to predict multiple timesteps ahead the final layer of the model reshapes to match the number 

of output steps times the number of targets to predict. In this case we only predict the price of 

one metal at the time, five timesteps ahead. This approach yields a slightly higher RMSE than 

the baseline with a validation RMSE of 0,0832 and a test RMSE of 0,1106. The model 

performs slightly better on the validation data than the test data and could indicate a slight 

overfit, but this difference is minimal. 

The single-layer LSTM model 

The first of the more complex models is a single-layer LSTM model where the number of 

units is set to 16, yielding a total of 1 941 parameters. This is calculated by multiplying the 

input shape (12) with the number of units in the hidden layer (16), plus the number of units in 

the layer squared, plus 16 accounting for the bias. This number is then multiplied by four 

because of the four gates inside a LSTM cell. In total this yields # 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

((12 ∗ 16) + (16 ∗ 16) + 16) ∗ 4 = 1856 and is the number of parameters in the LSTM 

layer. In this model there is also a dense layer before reshaping the output where the number 

of parameters is calculated as the number of units in the previous layer (16) times the number 

of units in the dense layer (5) plus the number of units in the dense layer (5) which accounts 



49 
 

for the bias. This yields (16*5)+5=85 which gives the model a total of 1856+85 = 1 941 

parameters. Calculating the number of weights by hand can be tedious and hard once the 

number of layers or units increases. Keras displays the number of parameters in the 

summary() method for the model (Chollet & Others, 2015) which is shown in the appendix. 

Therefore, we will not provide calculation of the number parameters for the other models. The 

return_sequence parameter described in chapter 3.5.1 is set to false so that the layer only 

returns the output at the final timestep. A detailed summary of the model can be found in the 

appendix. 

 

Figure 25 – Training- and validation loss (single-layer LSTM aluminum). Y-axis displays the MSE and the x-axis shows the 
epochs during training 

The training of the single-layer LSTM model shown in figure 25, which seems to train at a 

faster rate than the dense model, as the training loss is not significantly reduced after epoch 2. 

This makes sense as the LSTM model has a higher capacity than the dense model. The 

validation loss is slightly higher than the training loss but based on this figure one cannot 

prove that the model is overfitting.  
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Figure 26 - Prediction of a single sequence (single-layer LSTM aluminum) 

The same example sequence as for the other models is shown in figure 26 and like the two 

previous models, the LSTM model seem to predict values near the last known observation in 

this specific sample, but closer to the targets than the previous two models. As with the dense 

model, the weights are initialized to zero yielding small changes from the last known 

observation. In total over the entire validation and test set, the single-layer LSTM model 

yielded a RMSE of 0,12 and 0,1327, respectively. A small difference between the validation 

and test RMSE indicates a model that does not overfit and generalizes well. 

The Multi-layer LSTM model 

The multi-layer LSTM model is built up with three LSTM layers consisting of 128 units and a 

dense layer with 128 units. The return_sequence parameter described in chapter 3.5.1 is set to 

True for the first two layers and False on the third layer. This structure is required when 

stacking LSTM layers where all layers need to return outputs for the full sequence except the 

last layer, which only returns its output from the final timestep. In total this structure yields 

352 517 parameters giving the model a lot more capacity than previous models. A detailed 

summary of the model can be found in the appendix. 
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Figure 27 – Training- and validation loss (multi-layer LSTM aluminum). Y-axis displays the MSE and the x-axis shows the 
epochs during training 

The training loss for the multi-layer LSTM model is quite different compared to the previous 

models. The training loss have a steady decline over all the epochs. The validation loss 

however swings a lot more over the epochs and increases steadily after the third epoch. The 

exact reason behind this behavior is hard to conclude, but one possibility could be that since 

the dataset is relatively small the model struggles predicting some samples in the validation 

set during the training of the model. Since the validation set is so small, this could be more 

critical for the validation part. Due to the large capacity of the network, this erratic movement 

of the validation loss could also be a result of overfitting. This might be indicated by the 

validation RMSE and test RMSE seen in figure 28 as the model performs considerably worse 

than the previous models. 
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Figure 28 - Prediction of a single sequence (multi-layer LSTM aluminum) 

The example shown in figure 28 we can see that the model predicts the sequence quite well, 

especially for timestep five, eight and nine. However, this is just one sample and in total the 

model performs worse than all the previous models with a validation RMSE of 0,2022 and a 

test RMSE of 0.2122. A small difference between the validation and test RMSE indicates a 

model that does not overfit but the learning curves in figure 27 may indicated that the model 

is too complex and struggles to make good predictions due to the poor performance on the 

validation and test set. 

The single-layer GRU model 

As an alternative to the LSTM layers, this model applies a single GRU layer where the 

number of units is set to 32, yielding a total of 4 581 parameters. The return_sequence 

parameter described in chapter 3.5.1 is set to false so that the layer only returns the output of 

the final timestep. A detailed summary of the model can be found in the appendix. 
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Figure 29 - Training- and validation loss (single-layer GRU aluminum) . Y-axis displays the MSE and the x-axis shows the 
epochs during training 

The training of the single-layer GRU is model shown in figure 29, which seems to train at a 

faster rate than the single-layer LSTM model, as the training loss is not significantly reduced 

after the first epoch. The validation loss is slightly lower than the training loss for a little over 

the first half of the epochs and slightly higher for the last epoch. These differences are very 

small, and the model seems to train well without overfitting.  
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Figure 30 - Prediction of a single sequence (single-layer GRU aluminum) 

From the example shown in figure 30 we can see that the model quite accurately predicts 

timestep five, six and nine. However, this is just one sample and in total the model performs 

worse than the baseline and the dense model but better than the multi-layer LSTM and about 

even with the single-layer LSTM model with a validation RMSE of 0,1198 and a test RMSE 

of 0,1337. A small difference between the validation and test RMSE indicates a model that 

does not overfit and generalizes well which is the case for this model. 

The multi-layer GRU model 

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model 

with three GRU layers consisting of 128 units and a dense layer with 128 units. The 

return_sequence parameter described in chapter 3.5.1 is set to True for the first two layers and 

False on the third layer. This is structure required when stacking GRU layers where all layers 

need to return outputs for the full sequence except the last layer, which only returns its output 

from the final timestep. In total this structure yields 269 829 parameters giving the model a 

solid capacity but with fewer parameters than the multi-layer LSTM, even though the model 

architecture is the same. This is because of the way the GRU layer is built up compared to the 

LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed summary of 

the model can be found in the appendix. 
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Figure 31 - Training- and validation loss (multi-layer GRU aluminum) . Y-axis displays the MSE and the x-axis shows the 
epochs during training 

The training of the multi-layer GRU model shown in figure 31. The training stops after five 

epochs where the training loss is reduced in the greatest amount in the first epoch with a 

steady decrease until epoch five. The validation loss however is more erratic and largely 

varying from one epoch to another, in the same fashion as the multi-layer LSTM model. This 

could be due to the large capacity of the model with close to 300 000 weights to be trained. 

Results like these could indicate overfitting but comparing the validation and test results in 

figure 32 does not directly support this theory. 
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Figure 32 - Prediction of a single sequence (multi-layer GRU aluminum) 

The example in figure 32 shows that the multi-layer GRU does not predict well for this 

particular sample. All in all, this model performs worse than all the other models besides the 

multi-layer LSTM with a validation RMSE of 0,1557 and a test RMSE of 0,163. The learning 

curves in figure 31 indicate that the model is too complex and fails to make good predictions 

as indicated by the poor performance on the validation and test set in the same way as the 

multi-layer LSTM model. 

4.2 Copper 
The baseline model 

The approach for the baseline model is described in 3.3 and is shown in figure 33 and uses the 

last known observation at timestep four (indexed from zero, meaning day five in practice) to 

predict the next five timesteps.  

 

Figure 33 - Prediction of a single sequence (Baseline copper) 

From this example we can again see that this approach in general will produce decent results 

when the price changes from one timestep to another are not very drastic. However, the longer 

the time horizon and the more volatility in the commodity price will lead to worse results for 

this baseline. The first prediction is almost spot on, but as the price increases from timestep 

five to nine, the baseline predicts further away from the target. The code for producing the 

baseline can be found in the Appendix and is the same for all metals. This approach yielded a 
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RMSE of 0,0454 in the validation set and a RMSE of 0,0432 in the test set. The results from 

all the models summarized and discussed in chapter 5. 

The dense network model 

The next model is a dense model with a single layer with one unit as well as a layer with the 

number of output steps (5) times the number of predicted features (1) as the number of units 

used to reshape the output. This can be considered one of the simpler models for a problem 

like this. The model does in total have 71 parameters and a more detailed summary of the 

model structure can be found in the appendix.  

 

Figure 34 - Training- and validation loss (dense network copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training loss measured by the MSE for the training set and validation set is shown in 

figure 34. We can see the diminishing returns of training when the number of epochs is 

increased. This is especially apparent from around epoch 1 and 2. The model does not seem to 

overfit, as the distance between the training loss and validation loss does not increase when 

increasing the number of epochs. The reason why the training stopped at five epochs is that 
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the Patience parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been 

set to three which means the number of epochs with no improvement after which training will 

be stopped. This applies for all the other trainable models as well.  

 

 

Figure 35 - Prediction of a single sequence (dense network copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

Figure 35 shows an example sequence where the dense model has predicted the output for 5 

timesteps. The predictions from the dense model does not change much from one timestep to 

another but they are not identical as with the baseline. Since we know that the prices does not 

change much from one timestep to another, the kernel_initializer parameter has been set to 

initialize to zeros using the Keras’ zeros initializer (Chollet & Others, 2015). This is the case 

for all the other models as well and can be seen in the appendix. To be able to predict multiple 

timesteps ahead the final layer of the model reshapes to match the number of output steps 

times the number of targets to predict. In this case we only predict the price of one metal at 

the time, five timesteps ahead. This approach yields a much higher RMSE than the baseline 

with a validation RMSE of 0,1438 and a test RMSE of 0,1886. 

The single-layer LSTM model 

The single-layer LSTM model for forecasting the copper price consists of a single LSTM 

layer with 32 units, yielding a total of 5 925 parameters. The return_sequence parameter 

described in chapter 3.5.1 is set to false so that the layer only returns the output at the final 

timestep. A detailed summary of the model can be found in the appendix. 
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Figure 36 - Training- and validation loss (single-layer LSTM copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training of the single-layer LSTM model is shown in figure 36, and we can see the 

training loss is not significantly reduced after the first epoch. This has been the case for 

several models with larger capacity, while models with a lower number of parameters often 

needs more epochs for the loss to flatten. The validation loss is slightly higher than the 

training loss but based on this figure one cannot prove that the model is overfitting.  

 

Figure 37 - Prediction of a single sequence (single-layer LSTM copper) 
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The same example sequence as for the other models is shown in figure 37 and like the two 

previous models, the LSTM model seem to predict values near the last known observation in 

this specific sample, but closer to the targets than the dense model. As with the dense model, 

the weights are initialized to zero yielding small changes from the last known observation. 

This is however just one sample and would differ if another sample were picked. In total over 

the entire validation and test set, the single-layer LSTM model yielded a RMSE of 0,1292 and 

0,1802, respectively. A difference between the validation and test RMSE as large as this may 

indicate that the model has been slightly overfit to the training data.  

The multi-layer LSTM model 

The multi-layer LSTM model used for forecasting the copper price is built up with two LSTM 

layers consisting of 32 units and a dense layer with 32 units. The return_sequence parameter 

described in chapter 3.5.1 is set to True for the first layer and False on the second layer. This  

structure is required when stacking LSTM layers where all the layers need to return outputs 

for the full sequence except the last layer, which only returns its output from the final 

timestep. This structure yields a total of 15 301 parameters giving the model a lot more 

capacity than previous models for copper. A detailed summary of the model can be found in 

the appendix. 
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Figure 38 - Training- and validation loss (multi-layer LSTM copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training process for the multi-layer LSTM model stops after nine epochs and have most 

of the progress in the first epoch. The training loss have a steady decline over all the epochs 

starting to flatten more out after the first epoch. The validation loss is slightly more volatile 

without differing too much from the training loss. This model has one less layer and fewer 

parameters per layer than the multi-layer LSTM model developed for aluminum and seems to 

be a more stable model.  

 

Figure 39 - Prediction of a single sequence (multi-layer LSTM copper) 
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From the example shown in figure 39 we can see that the model seems to predict the sequence 

in a similar way to the previous models and the predictions does not change much from one 

timestep to another. However, this is just one sample and in total the model performs worse 

than the baseline but better than the dense and single-layer LSTM models with a validation 

RMSE of 0,1163 and a test RMSE of 0,1083. This model also performs slightly better on the 

test data than the validation data and does not indicate any overfitting as the model seems to 

generalize well on new data. 

The single-layer GRU model 

As an alternative to the LSTM layers, this model applies a single GRU layer where the 

number of units is set to eight, yielding a total of 573 parameters which is the lowest number 

of parameters thus far for the LSTM and GRU models. The return_sequence parameter 

described in chapter 3.5.1 is set to false so that the layer only returns the output at the final 

timestep. A detailed summary of the model can be found in the appendix. 

 

Figure 40 - Training- and validation loss (single-layer GRU copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 
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The training of the single-layer GRU model shown in figure 40, and we can see that the 

majority of the reduction in the loss happens before the third epoch. The validation loss is 

slightly higher than the training loss after the first epoch, but as the number of epochs 

increases the difference between the training and validation loss does not increase. This 

indicates that the model does not overfit to the training data. 

 

Figure 41 - Prediction of a single sequence (single-layer GRU copper) 

From the example shown in figure 41 we can see that the model accurately predicts in a 

similar fashion to the LSTM models where the first prediction is the best one. However, this 

is just one sample and in total the model performs worse than the baseline but better than all 

the other models forecasting the copper price with a validation RMSE of 0,0956 and a test 

RMSE of 0,1017. A small difference between the validation and test RMSE indicates a model 

that does not overfit and generalizes well. 

The Multi-layer GRU model 

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model 

for copper with two GRU layers consisting of 32 units and a dense layer with 32 units. The 

return_sequence parameter described in chapter 3.5.1 is set to True for the first layer and 

False in the second layer. This structure is required when stacking GRU layers where all 

layers need to return outputs for the full sequence except the last layer, which only returns its 

output from the final timestep. In total this structure yields 11 973 parameters giving the 

model a solid capacity but with fewer parameters than the multi-layer LSTM, even though the 

model architecture is the same. This is because of the way the GRU layer is built up compared 

to the LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed 

summary of the model can be found in the appendix. 
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Figure 42 - Training- and validation loss (multi-layer GRU copper) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training of the multi-layer GRU model is shown in figure 42. Training stops after seven 

epochs where the training loss is reduced the most in the first epoch with a steady decrease 

until epoch seven. The validation loss however is slightly more erratic and increases after four 

epochs. This could be due to the large capacity of the model with 11 973 weights to be 

trained. Results like these could indicate overfitting but the validation and test RMSE are 

almost identical which does not indicate overfitting. 

 

Figure 43 - Prediction of a single sequence (multi-layer GRU copper) 
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The example in figure 43 shows that the multi-layer GRU predicts this sequence similarly to 

the other models for copper. However, this is just one sample and in total the model performs 

worse than all the other models in validation but slightly better than the dense model and the 

single-layer LSTM model with a validation RMSE of 0,1525 and a test RMSE of 0,1587. A 

small difference between the validation and test RMSE indicates a model that does not overfit 

and generalizes well. 

4.3 Zinc 
The baseline model 

The approach for the baseline model is described in 3.3 and is shown in figure 44 and uses the 

last known observation at timestep four (indexed from zero, meaning day five in practice) to 

predict the next five timesteps.  

 

Figure 44 - Prediction of a single sequence (Baseline zinc) 

From this example we can again see that this approach in general will produce decent results 

when the price changes from one timestep to another is not very drastic. However, the longer 

the time horizon and the more volatility in the commodity price will lead to worse results for 

this baseline. The first prediction is very close, and the baseline predicts well in general. The 

code for producing the baseline can be found in the Appendix and is the same for all metals. 

This approach yielded a RMSE of 0,06145 in the validation set and a RMSE of 0,0875 in the 

test set. The results from all the models are summarized and discussed in chapter 5. 

The dense network model 

The next model is a dense model with a single layer with one unit as well as a layer with the 

number of output steps (5) times the number of predicted features (1) as the number of units 

used to reshape the output. This can be considered one of the simpler models for a problem 

like this. The model does in total have 71 parameters and a more detailed summary of the 

model structure can be found in the appendix.  
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Figure 45 - Training- and validation loss (dense network zinc) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The loss measured by the MSE for the training set and validation set for the dense model 

predicting the zinc price is shown in figure 45. We can see the diminishing returns of training 

when the number of epochs is increased. This is especially apparent from around epoch three 

for the training data and around epoch six for the validation data. The model does not seem to 

overfit, as the difference between the training loss and validation loss decreases over time and 

is almost eliminated after training. The reason why the training stopped at 13 epochs is that 

the Patience parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been 

set to three which means the number of epochs with no improvement after which training will 

be stopped. This applies for all the other trainable models as well.  
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Figure 46 - Prediction of a single sequence (dense network zinc) 

Figure 46 shows an example sequence where the dense model has predicted the output for 

five timesteps. The predictions from the dense model does not change much from one 

timestep to another but they are not equal to the baseline. Since we know that the prices does 

not change much from one timestep to another, the kernel_initializer parameter has been set to 

initialize to zeros using the TensorFlow zeros initializer (Chollet & Others, 2015).This is the 

case for all the other models as well and can be seen in the appendix. To be able to predict 

multiple timesteps ahead the final layer of the model reshapes to match the number of output 

steps times the number of targets to predict. In this case we only predict the price of one metal 

at the time, five timesteps ahead. This approach yields a higher RMSE than the baseline with 

a validation RMSE of 0,1197 and a test RMSE of 0,1695. 

The single-layer LSTM model 

The single-layer LSTM model for forecasting the zinc price consists of a single LSTM layer 

with 64 units, yielding a total of 20 037 parameters. The return_sequence parameter described 

in chapter 3.5.1 is set to false so that the layer only returns the output at the final timestep. A 

detailed summary of the model can be found in the appendix. 
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Figure 47 - Training- and validation loss (single-layer LSTM zinc) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training of the single-layer LSTM model is shown in figure 47 and we can see the 

training loss is not significantly reduced after the first epoch. The validation loss is slightly 

higher than the training loss and increasing after the first epoch which may indicate that the 

model is overfitting to the training data. 

 

Figure 48 - Prediction of a single sequence (single-layer LSTM zinc) 

The same example sequence as for the other zinc models is shown in figure 48 and like the 

two previous models, the LSTM model seem to predict values near the last known 
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observation in this specific sample, and in a very similar way as the dense model. As with the 

dense model, the weights are initialized to zero yielding small changes from the last known 

observation. This is however just one sample and would differ if another sample were picked. 

In total over the entire validation and test set, the single-layer LSTM model yielded a RMSE 

of 0,2269 and 0,5356, respectively. A difference between the validation and test RMSE as 

large as this indicates that the model has been overfit to the training data, as it does not 

perform particularly well on neither the validation nor test data compared to the other models. 

The multi-layer LSTM model 

The multi-layer LSTM model used for forecasting the copper price is built up with two LSTM 

layers consisting of 32 units and a dense layer with 32 units. The return_sequence parameter 

described in chapter 3.5.1 is set to True for the first layer and False on the second layer. This 

structure is required when stacking LSTM layers where all layers need to return outputs for 

the full sequence except the last layer, which only returns its output from the final timestep.  

In total this structure yields 15 301 parameters giving the model a smaller capacity than the 

single-layer LSTM. A detailed summary of the model can be found in the appendix. 
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Figure 49 - Training- and validation loss (multi-layer LSTM zinc) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training process for the multi-layer LSTM model stops after five epochs and have most of 

the progress in the first epoch. The training loss have a steady decline over all the epochs 

starting to flatten more out after the first epoch. The validation loss is more volatile and starts 

to increase after the second epoch. As with the single layer LSTM, the model seems to overfit 

as it struggles to generalize on both the validation data and especially the test data.  

 

Figure 50 - Prediction of a single sequence (multi-layer LSTM zinc) 



71 
 

From the example shown in figure 50 we can see that the model seems to predict the sequence 

in a similar way to the previous models and the predictions does not change much from one 

timestep to another. All in all, the model performs worse than the baseline but better than the 

dense and single-layer LSTM models with a validation RMSE of 0,2815 and a test RMSE of 

0,5761. As with the single-layer LSTM model, the test performance is poor as the test RMSE 

is more than double of the validation RMSE. 

The single-layer GRU model 

As an alternative to the LSTM layers, this model applies a single GRU layer where the 

number of units is set to 16, yielding a total of 1 525 parameters which is the around the 

average number of parameters thus far for single-layer LSTM and GRU models. The 

return_sequence parameter described in chapter 3.5.1 is set to false so that the layer only 

returns the output at the final timestep. A detailed summary of the model can be found in the 

appendix. 

 

Figure 51 - Training- and validation (single-layer GRU zinc) . Y-axis displays the MSE and the x-axis shows the epochs during 
training 
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The training of the single-layer GRU model shown in figure 51, and we can see that the 

majority of the reduction in the loss happens before the third epoch. The validation loss is 

slightly higher than the training loss after the first epoch, but as the number of epochs 

increases the difference between the training and validation loss does not increase except for 

the last two epochs where the validation loss has a slight increase. This indicates that the 

model does not overfit to the training data and generalizes well on the validation- and test 

data. 

 

Figure 52 - Prediction of a single sequence (single-layer GRU zinc) 

The example shown in figure 52 we can see that the model predicts in a similar fashion to the 

LSTM models where all the predictions comes in an almost straight line based on the 

observation on the fourth timestep. This however is just one sample and in total the model 

performs worse than the baseline but better than all the other models for zinc on the validation 

data with a RMSE of 0,1121 and a test RMSE better than all other zinc models besides the 

dense model with a RMSE of 0,2440. A small difference between the validation and test 

RMSE indicates a model that does not overfit and generalizes fairly well, which seems to be 

truer for the single-layer GRU model than the LSTM models. 

The multi-layer GRU model 

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model 

for zinc with two GRU layers consisting of 32 units and a dense layer with 32 units. The 

return_sequence parameter described in chapter 3.5.1 is set to True for the first layer and 

False in the second layer. This is a required structure when stacking GRU layers where all 

layers need to return outputs for the full sequence except the last layer, which only returns its 

output from the final timestep. In total this structure yields 11 973 parameters giving the 

model a solid capacity but with fewer parameters than the multi-layer LSTM, even though the 

model architecture is the same. This is because of the way the GRU layer is built up compared 
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to the LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed 

summary of the model can be found in the appendix. 

 

Figure 53 - Training- and validation loss (multi-layer GRU zinc) . Y-axis displays the MSE and the x-axis shows the epochs 
during training 

The training of the multi-layer GRU model shown in figure 53. Training stops after five 

epochs where the training loss is reduced the most in the first epoch with a steady decrease 

until epoch five. The validation loss for this model is slightly lower than the training loss, 

indicating that the model is generalizing well. Results like these does not indicate overfitting. 

 

Figure 54 - Prediction of a single sequence (multi-layer GRU zinc) 
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The example in figure 54 shows that the multi-layer GRU predicts this sequence similarly to 

the other models for zinc. Keep in mind this is just one sample and in total the model 

performs worse than the baseline but has the best validation RMSE among all the other 

models at 0,1036. It also beats both the LSTM models and the single-layer GRU model on 

test RMSE only beaten by the dense model and the baseline with a test RMSE of 0,1995. A 

small difference between the validation and test RMSE indicates a model that does not overfit 

and generalizes well, which is somewhat the case for this model. 
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5. Discussion 
In this chapter the results from chapter 4 will be discussed and analyzed. Since the metric 

RMSE measures the error in absolute terms one cannot compare the results directly between 

the different metals as they are not necessarily on the same scale. Even though they are 

normalized by subtracting the mean and dividing by the standard deviation of the training 

data, these means and standard deviations are not equal between the metals. If a metric such 

as MAPE was used that measures the error as a percentage it would be interpretable across 

different metals, but as discussed earlier in chapter 3.6 this method often leads to zero-

division or extreme values due to very small values in the denominator. Therefore, the focus 

of the discussion will be on the suitability of RNN for short-term metal price forecasts for the 

specific metals. The first three subchapter will go over each metal individually and chapter 

5.4 will discuss pros and cons of the approach in this paper and what may have affected these 

results. 

5.1 Aluminum 
Figure 55 summarizes the forecasting results for the validation- and test set for Aluminum 

presented in chapter 4.1. 

 

Figure 55 - Validation and test RMSE aluminum 
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The first and possibly most important finding when forecasting the aluminum price in the 

short-term is that the “last-known observation” baseline outperforms all the other models 

where the simple dense model comes closest. The multi-layer LSTM model had by-far the 

worst performance on the aluminum price with a RMSE of 0,2122 which is more than double 

of the baseline at 0,0942 seen in figure 56.  

 

Figure 56 - Test RMSE Aluminum 

Another interesting finding is that the single-layer RNNs performed better than the multi-

layer RNNs where the single-layer LSTM and GRU model had a comparable RMSE on the 

test set with 0,1327 and 0,1337 respectively. The multi-layer RNNs had problems in training 

as seen in figure 27 and 31 where the validation results were erratic and moving a lot in both 

directions between epochs. Out of the two multi-layer models, the GRU outperformed the 

LSTM model with a test RMSE of 0,1630 and 0,2122 respectively. In general, we had issues 

finding good multi-layer models that found a compromise between complexity and 

regularization, or over- and underfitting, which to some degree can be seen for copper and 

zinc as well in the next two sub-chapters. As described earlier, the choice of layers, 

parameters, regularization etc. is often more an art than a science, so more time could be spent 

testing out various combinations of weights and layers. However, this is very time consuming 

and at one point we must call it a day and accept the results even if it is not as good as desired. 
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5.2 Copper 
Figure 57 summarizes the forecasting results for the validation- and test set for copper 

presented in chapter 4.2. 

 

Figure 57 - Validation and test RMSE copper 

As with aluminum, the “last-known observation” baseline outperforms all the other models 

but in an even more significant manner. The dense model performed worse on copper than for 

aluminum relatively to the other models. When it comes to the best performing models, the 

single-layer GRU and the multi-layer LSTM performs well with a RMSE of 0,1017 and 

0,1083 respectively. In comparison the baseline had a RMSE of 0,0432 which is less than half 

of the second best performing models. For the dense model and the single-layer LSTM it 

appears that the performance on the test set is much worse than for the validation set 

compared to the other models. These models seem to struggle generalizing to new unseen 

data. 

 

Figure 58 - Test RMSE copper 
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Fewer problems in training appeared for copper than aluminum, and most of the models had 

naturally looking loss curves with slightly higher validation RMSE than training RMSE. An 

interesting point for the models forecasting copper is that the best performing model besides 

the baseline, the single-layer GRU, is the model with the fewest parameters besides the dense 

model with only 573 weights. When choosing a model one often wants to find the least 

complex models that solves the problem. The single-layer GRU with only eight units seem to 

be the best choice of model for predicting the copper price five days ahead based on the 

previous five days based on the various models tested in this paper besides the baseline. On 

the other hand, the baseline model predicting the same price for all five days outperforms all 

the other models by a lot, which leaves the question if making a model forecasting the price is 

necessary in the first place. 

 

5.3 Zinc 
The RMSE for the validation- and test set for the zinc price can be seen in figure 59  

 

Figure 59 - Validation and test RMSE zinc 
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The first and possibly most important finding when forecasting the zinc price in the short-

term is that the “last-known observation” baseline outperforms all the other models just like 

for aluminum and copper. The test RMSE for the baseline were 0,0876 where the dense 

model was the second best with at test RMSE of 0,1695.  

 

 

Figure 60 - Test RMSE zinc 

Both the single-layer and multi-layer LSTM models have massive RMSE on the test set with 

0,5356 and 0,5761 respectively, which is by far the worst of the models. Both these models 

have a high capacity where the single-layer model has 64 units in its layer yielding a total of 

20 037 parameters and the multi-layer with a total of 15 301 parameters. This major 

difference between the training-, validation- and test performance indicates overfitting, which 

also was the case when other combinations of layers and units were tested. Finding a 

combination of good performance in-sample without overfitting and performing well out-of-

sample can be hard and was not achieved for these two models.  

In comparison with the LSTM models, the GRU models had a more similar performance in-

sample and out-of-sample with validation RMSE around 0,1 and test RMSE of 0,2440 and 

0,1995 for the single- and multi-layer models, respectively. These models with the single-

layer GRU in particular performed well in training as well as validation and testing compared 

to the other models, where the loss in training decreased at a steady rate where the validation 

and training loss were very similar. This was also the case for the multi-layer GRU but over 

fewer training epochs.  

5.4 General considerations 
After reviewing the forecasting results it is important to note that none of the models 

outperformed the “last-known observation” baseline. This begs the question if RNN are 

suitable for this type of problem and based on the results in this paper the answer is probably 

no. Spending time and recourses developing and maintaining a complex recurrent neural 

network that performs worse than predicting the price at day two, three, four, five and six is 

equal to the price at day one does not make much sense. However, this does not mean that 
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RNN are not suitable for time series regression and commodity price forecasts in general but 

that for this specific dataset and timeframe it did not work well with the model specifications 

chosen. If other combinations of layers and units or a different timeframe were chosen, the 

results could have improved and is an area where further work can be done.  

It is important to note that relative to for example sentiment analysis or other text modeling, 

the dataset used in this paper is small. 6524 observations for ten different features got split 

into 4566 observations for the training set, 1305 for the validation set and 653 for the training 

set. When this again got split into sequences of ten (5+5) observations and stored in batches 

with 32 sequences, yielding 143 training batches, 41 validation batches and 21 training 

batches. Other commodities or financial instruments that reports their prices more often such 

as for example Bitcoin could be another interesting task for RNN to tackle, since one would 

have access to a much larger dataset. 

When ignoring the baseline, there seem to be no clear winner between the LSTM and GRU 

models on which models performed the best as the results differ between the different 

commodities. However, the single-layer GRU seem to be the model that has the most even 

performance on all three commodities and had good performance both in- and out-of-sample 

relative to the other trainable models. An advantage GRU has over LSTM is the complexity 

and reduced computation required when training the model. For larger networks and datasets 

this advantage gets more apparent than in this paper. 

When weighing the pros and the cons when using an RNN approach to commodity price 

forecasting, the cons seem to outweigh the pros in this present work. Developing a RNN is 

time consuming, requires domain knowledge and require a good amount of computational 

power. It is also a black-box approach where it is hard for the researcher to figure out what the 

model learned or if it actually learned anything. From simpler models such as linear 

regression one can inspect the coefficients to see how much each feature contribute to the 

output of the model, which is not the case for RNN. On the other side RNN has some 

advantages when it comes to handling time information in the data which is important for 

timeseries data.  

As mentioned previously, the future price of a commodity does not necessarily depend on 

previous prices and using historical data as input when forecasting commodity prices will 

always have its flaws. Models are only as good as the data it is given and could be a 

contributing factor to the results in this paper.  
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6. Conclusion and further work 
The goal of this thesis was to determine if RNN could be used successfully to forecast the 

prices of non-ferrous metals in the short-term. After identifying other variables that could 

influence the price from a fundamental point of view, these variables were analyzed using 

descriptive statistics and plots and these results aligned with the analysis done on the 

fundamentals of these variables. After the dataset were split into training, validation and test 

sets it was then split into smaller sequences consisting of ten sequential observations 

including all ten variables and the “time-of-year signal” where the five first observations were 

input and the last five were output.  

Four RNN networks were trained as well as a “last-known observation” baseline and a simple 

dense model. These RNNs failed to out-perform the baseline approach for both aluminum, 

copper and zinc, where the performance on aluminum were the best with a RMSE of 0,1327 

and 0,1337 for the single-layer- LSTM and GRU, compared to 0,0942 for the baseline on the 

test data. For copper and zinc the RNNs struggled in general to make good predictions on the 

test data, which was seen by large test RMSE compared to validation RMSE. The 

performance in the training- and validation greatly differed from the performance on the test 

data for some of the models, especially LSTM models forecasting zinc but also too some 

extend the GRU models forecasting zinc. For copper, the GRU models performed best besides 

the baseline, but still had a test RMSE of more than double of the baseline. 

Based on the results from this work, RNNs does not seem to be a great choice for forecasting 

the aluminum-, copper-, and zinc price in the short-term. However, this does not mean that 

RNNs are not suitable for similar problems, but the specific model specifications used in this 

work did not out-perform the baseline approach. Further work can be done on short-term 

metal price forecasting, where a different time horizon could be used, another combination of 

explanatory variables could be used as well as other forecasting techniques. When it comes to 

the forecasting horizon, it is a difficult compromise to make as with a shorter time horizon the 

forecast itself gives less value to the user. If a longer forecasting horizon is chosen, the 

number of sequences in the dataset will decrease and may negatively impact the results. If one 

is able to obtain intra-day data on a minute- or hourly timescale then one might have more 

wiggle room when it comes to the time horizon. As with other explanatory variables, this 

paper did not include prices of raw material such as iron ore and other energy commodities 

like coal which might have been a better proxy for the energy cost. The demand of these 

metals has a correlation with the general economic growth (Zhong et al., 2019) so an indicator 
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of the economic growth in various countries or regions could be used as an explanatory 

variable. When it comes to the models themselves, this paper implemented “one-shot” models 

where all the five predictions were made at the same time. Another approach to this is an 

autoregressive approach where the output at one timestep is used as input in the next timestep 

directly. Other model architectures such as the residual networks (ResNet) or the LSTNet 

described in the literature section could be used. ResNet could take advantage of the fact that 

the prices do not change much from one timestep to another and instead of predicting the 

price itself to predict the change in price. The ResNet is built in a way so that each layer adds 

to the accumulated result and by initializing the weights to zeros the model will predict small 

changes. The LSTNet has shown promising results combining convolutional layers and 

recurrent layers and would be interesting to utilize on metal price forecasting.  
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Appendix 
 

Baseline (same for all metals) 

 

Dense model (same for all metals) 

 

 

 

Single-layer LSTM Aluminum 
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Multi-layer LSTM Aluminum 
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Single-layer GRU Aluminum 

 

 

Multi-layer GRU Aluminum 
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Single-layer LSTM Copper 
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Multi-layer LSTM Copper 

 

 

Single-layer GRU Copper 
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Multi-layer GRU Copper 
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Single-layer LSTM Zinc 

 

 

Multi-layer LSTM Zinc 
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Single-layer GRU Zinc 

 

 

 

Multi-layer GRU Zinc 
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