

Master’s Thesis 2021 30 ECTS

Realtek

Ulf Geir Indahl

Non-ferrous metal price forecasting with
Recurrent Neural Networks – How do
they perform when forecasting multiple
timesteps ahead?

Martin Bø

M.Sc Data Science

(This page is intentionally left blank)

1

Preface

This thesis concludes my eight years as an NMBU student after first completing a master’s

degree in business administration and now in data science. The data science program has been

a great learning experience with both amazing teachers and classmates. I would like to thank

my supervisor Ulf Geir Indahl for invaluable feedback on my thesis over the past few months.

I would also like to thank Oliver Tomic and Kristian Hovde Liland for engaging and inspiring

courses in machine learning which gave me the inspiration for this thesis. Finally, I would like

to thank my family, friends, and my girlfriend Hedda for motivating and supporting me

throughout my studies and during the pandemic in particular.

2

Abstract
This thesis aims to forecast the daily price of aluminum, copper and zinc from the London

Metal Exchange five days ahead based on prices the previous five days using different

recurrent neural networks. A “last-known observation” approach was used as a baseline for

these models to beat which repeats the price at timestep five of the input data as the prediction

for the next five days. Variables used for training and forecasting includes the prices of oil,

gas, nickel, lead, tin, a US dollar index, aluminum, copper and zinc. Our results find that none

of the single- or multi-layer LSTM or GRU models were able to out-perform the baseline

model and in many cases the baseline significantly out-performed the recurrent neural

network models. In general, the GRU models performed slightly better than the LSTM

models, but not for all the metals. Further work could be done on multi-step commodity price

forecasting by choosing a different time horizon or using intra-day data for a larger dataset.

Other explanatory variables such as iron ore or coal could be included in the modeling and

more complex networks such as the ResNet and LSTnet could be implemented.

3

Abbreviations
ABC – Artificial bee colony

ARIMA – Autoregressive integrated moving average

ARMA – Autoregressive moving average

EMD - Empirical Mode Decomposition

ETF – Exchange-traded fund

GRU – Gated Recurrent Unit

ICE – Intercontinental Exchange

ILZSG – International Lead and Zinc study group

LME – London Metal Exchange

LSTM – Long Short-Term Memory

LSTNet – Long- and short-term time-series network

MAE – Mean Absolute Error

MAPE – Mean Absolute Percentage Error

MSE – Mean Squared Error

NN – Feed-forward Neural Network

NYMEX - New York Mercantile Exchange

RMSE – Root Mean Squared Error

RNN – Recurrent Neural Network

SSA – Singular Spectral Analysis

VAR – Vector autoregression

VMD - Variational Mode Decomposition

WTI – West Texas Intermediary

4

Table of figures

FIGURE 1 - END USES OF COPPER (ILZSG, 2021) ... 13
FIGURE 2 - END USES OF ZINC (ILZSG, 2021) .. 14
FIGURE 3 - PRICE DEVELOPMENT 1995-2020 FOR ALUMINUM, COPPER AND ZINC .. 18
FIGURE 4 - TIME OF YEAR SIGNAL FOR APPROXIMATELY ONE YEAR IN TRADING DAYS 19
FIGURE 5 - CORRELATION MATRIX PLOT AND LOWER CORRELATION MATRIX .. 20
FIGURE 6 - DESCRIPTIVE STATISTICS ON THE RAW DATA ... 21
FIGURE 7 - VIOLIN PLOT SHOWING THE NORMALIZED DATA DISTRIBUTIONS ... 22
FIGURE 8 - TIME SPENT WORKING ON DIFFERENT TASKS IN DATA SCIENCE (ANACONDA, 2020) 25
FIGURE 9 - DIFFERENT TYPES OF SEQUENCE MODELING (RASCHKA & MIRJALILI, 2017) 27
FIGURE 10 - DATA SEQUENCE WITH INPUT WIDTH 6, OFFSET OF 1 AND A LABEL WIDTH OF 1 (TENSORFLOW,

2021) .. 28
FIGURE 11 - DATA SEQUENCE SPLIT INTO INPUTS AND LABEL OR TARGET (TENSORFLOW, 2021) 29
FIGURE 12 - PLOT OF A SEQUENCE WITH 24 AS INPUT AND 24 AS OUTPUT WITH AN OFFSET OF 24 30
FIGURE 13 - ADALINE FOR CLASSIFICATION PROBLEMS (RASCHKA & MIRJALILI, 2017) 31
FIGURE 14 - ONE LAYER FULLY CONNECTED NEURAL NETWORK (RASCHKA & MIRJALILI, 2017) 32
FIGURE 15 - SIMPLIFIED STRUCTURE OF A FEED-FORWARD NEURAL NETWORK AND A RECURRENT NEURAL

NETWORK (RASCHKA & MIRJALILI, 2017)... 34
FIGURE 16 - UNFOLDED STRUCTURE OF A RECURRENT NEURAL NETWORK (RASCHKA & MIRJALILI, 2017) 36
FIGURE 17 - PLOT OF THE SIGMOID FUNCTION AND ITS DERIVATIVE IN THE RANGE -10 TO 10 38
FIGURE 18 - PLOT OF THE HYPERBOLIC TANGENT FUNCTION AND ITS DERIVATIVE IN THE RANGE -10 TO 10 ... 38
FIGURE 19 - OUTPUT FROM THE SIGMOID ACTIVATION FUNCTION AND ITS DERIVATIVE 39
FIGURE 20 - IN DEPT STRUCTURE OF A LSTM CELL (RASCHKA & MIRJALILI, 2017) ... 40
FIGURE 21 - IN DEPT STRUCTURE OF A GATED RECURRENT UNIT (OLAH, 2015) ... 43
FIGURE 22 - PREDICTION OF A SINGLE SEQUENCE (BASELINE ALUMINUM) .. 46
FIGURE 23 - TRAINING- AND VALIDATION LOSS (DENSE NETWORK ALUMINUM). Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 47
FIGURE 24 - PREDICTION OF A SINGLE SEQUENCE (DENSE NETWORK ALUMINUM) ... 48
FIGURE 25 – TRAINING- AND VALIDATION LOSS (SINGLE-LAYER LSTM ALUMINUM). Y-AXIS DISPLAYS THE MSE

AND THE X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 49
FIGURE 26 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER LSTM ALUMINUM) 50
FIGURE 27 – TRAINING- AND VALIDATION LOSS (MULTI-LAYER LSTM ALUMINUM). Y-AXIS DISPLAYS THE MSE

AND THE X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 51
FIGURE 28 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER LSTM ALUMINUM) .. 52
FIGURE 29 - TRAINING- AND VALIDATION LOSS (SINGLE-LAYER GRU ALUMINUM) . Y-AXIS DISPLAYS THE MSE

AND THE X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 53
FIGURE 30 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER GRU ALUMINUM) ... 54
FIGURE 31 - TRAINING- AND VALIDATION LOSS (MULTI-LAYER GRU ALUMINUM) . Y-AXIS DISPLAYS THE MSE

AND THE X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 55
FIGURE 32 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER GRU ALUMINUM) .. 56
FIGURE 33 - PREDICTION OF A SINGLE SEQUENCE (BASELINE COPPER) ... 56
FIGURE 34 - TRAINING- AND VALIDATION LOSS (DENSE NETWORK COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 57
FIGURE 35 - PREDICTION OF A SINGLE SEQUENCE (DENSE NETWORK COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 58
FIGURE 36 - TRAINING- AND VALIDATION LOSS (SINGLE-LAYER LSTM COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 59
FIGURE 37 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER LSTM COPPER) .. 59
FIGURE 38 - TRAINING- AND VALIDATION LOSS (MULTI-LAYER LSTM COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 61

5

FIGURE 39 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER LSTM COPPER) ... 61
FIGURE 40 - TRAINING- AND VALIDATION LOSS (SINGLE-LAYER GRU COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 62
FIGURE 41 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER GRU COPPER) ... 63
FIGURE 42 - TRAINING- AND VALIDATION LOSS (MULTI-LAYER GRU COPPER) . Y-AXIS DISPLAYS THE MSE AND

THE X-AXIS SHOWS THE EPOCHS DURING TRAINING ... 64
FIGURE 43 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER GRU COPPER) .. 64
FIGURE 44 - PREDICTION OF A SINGLE SEQUENCE (BASELINE ZINC) .. 65
FIGURE 45 - TRAINING- AND VALIDATION LOSS (DENSE NETWORK ZINC) . Y-AXIS DISPLAYS THE MSE AND THE X-

AXIS SHOWS THE EPOCHS DURING TRAINING ... 66
FIGURE 46 - PREDICTION OF A SINGLE SEQUENCE (DENSE NETWORK ZINC) ... 67
FIGURE 47 - TRAINING- AND VALIDATION LOSS (SINGLE-LAYER LSTM ZINC) . Y-AXIS DISPLAYS THE MSE AND THE

X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 68
FIGURE 48 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER LSTM ZINC) ... 68
FIGURE 49 - TRAINING- AND VALIDATION LOSS (MULTI-LAYER LSTM ZINC) . Y-AXIS DISPLAYS THE MSE AND THE

X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 70
FIGURE 50 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER LSTM ZINC) .. 70
FIGURE 51 - TRAINING- AND VALIDATION (SINGLE-LAYER GRU ZINC) . Y-AXIS DISPLAYS THE MSE AND THE X-AXIS

SHOWS THE EPOCHS DURING TRAINING ... 71
FIGURE 52 - PREDICTION OF A SINGLE SEQUENCE (SINGLE-LAYER GRU ZINC) ... 72
FIGURE 53 - TRAINING- AND VALIDATION LOSS (MULTI-LAYER GRU ZINC) . Y-AXIS DISPLAYS THE MSE AND THE

X-AXIS SHOWS THE EPOCHS DURING TRAINING .. 73
FIGURE 54 - PREDICTION OF A SINGLE SEQUENCE (MULTI-LAYER GRU ZINC) .. 73
FIGURE 55 - VALIDATION AND TEST RMSE ALUMINUM ... 75
FIGURE 56 - TEST RMSE ALUMINUM .. 76
FIGURE 57 - VALIDATION AND TEST RMSE COPPER .. 77
FIGURE 58 - TEST RMSE COPPER ... 77
FIGURE 59 - VALIDATION AND TEST RMSE ZINC ... 78
FIGURE 60 - TEST RMSE ZINC .. 79

6

Table of contents
Preface ... 1

Abstract ... 2

Abbreviations .. 3

Table of figures .. 4

1. Introduction ... 8

2. Background and theory ... 10

2.1 Non-ferrous metals as financial commodities... 10

2.2 Price drivers ... 12

2.2.1 Aluminum .. 12

2.2.2 Copper ... 13

2.2.3 Zinc .. 14

2.3 Literature review ... 15

2.4 Descriptive analysis of the data... 18

3. Methodology ... 23

3.1 Universal workflow in a machine learning process ... 23

3.2 Sequential data and timeseries ... 27

3.3 Forecast baseline ... 30

3.4 Feed-forward Neural Network (Deep Neural Networks) .. 31

3.5 Recurrent Neural Networks... 34

3.5.1 Brief overview of recurrent neural networks .. 34

3.5.2 Computation of activations in Recurrent Neural Networks .. 36

3.5.3 Vanishing gradient problem .. 37

3.5.4 Long-short term memory (LSTM) .. 40

3.5.5 Gated Recurrent unit (GRU) .. 42

3.6 Performance metrics ... 44

4. Results ... 46

4.1 Aluminum .. 46

4.2 Copper ... 56

4.3 Zinc .. 65

5. Discussion .. 75

5.1 Aluminum .. 75

5.2 Copper ... 77

5.3 Zinc .. 78

5.4 General considerations ... 79

6. Conclusion and further work ... 81

7

Citations ... 83

Appendix .. 85

8

1. Introduction
This thesis will consider short term multi-step metal price forecasting using recurrent neural

networks (RNN). The commodity prices are gathered from Thomson Reuters Datastream

(Datastream, 2021) at NMBU which collects data from various exchanges such as London

Metal Exchange (LME). Aluminum, Copper and Zinc are the metals that will be forecasted as

they are the most traded non-ferrous metals (LME, 2021).

The motivation for the thesis is to determine if RNNs are suitable to forecast prices multiple

days ahead and if the results vary significantly between various metals and the different

model architectures. More specifically, we focus on forecasting the price of various metals

five days ahead based on the price the previous five trading days.

Metal prices are reported daily which means the interval between each observation will be

one day and it is the daily close price that will be used. A direct multi-step ahead forecast will

be utilized where all the predictions (five days ahead) are made simultaneously. This could

also be done in a feed-back or autoregressive fashion but will not be implemented in this

paper.

There are various interested parties when it comes to forecasted prices of the mentioned

metals. Speculators that trade in short-term futures contracts, which is an agreement between

two parties to buy or sell a quantity of for example a commodity at a certain time in the future

at a predetermined price (Carter, 2012), can benefit from price forecasts if they deviate from

the price in the market. This can lead to profits if the model forecasts the price better than the

futures contracts present in the market. If this methodology is effective for even longer-term

forecasting, producers and consumers of the metals can use this information in their hedging

strategies where they can utilize long or short contracts to hedge their risk.

The present thesis will touch on a variety of different subjects, but the focus will be on Data

Science and related methodology. Both econometrics, finance and commodities will not be

studied in dept, but an introduction and definitions will be given where it is deemed

necessary.

The thesis is structured as follows – Chapter 2 will include background information, relevant

literature references, and a description of the dataset together with some relevant descriptive

statistics. Chapter 3 will describe the methodology and theory used in the thesis, which is

divided in to six parts. The first part describes a common workflow in machine learning, the

second part covers sequential data and timeseries while the third part introduces a forecast

9

baseline. The fourth part describes feed-forward neural networks, the fifth part goes in dept on

different recurrent neural networks and final part covers various performance metrics. Chapter

4 presents the results from the modeling, chapter 5 will compare the results and discuss them

and chapter 6 will conclude the thesis.

10

2. Background and theory
In the following we describe some introductory financial- and commodity theory, including

price drivers for the target commodities. We also include references to literature on

forecasting in commodity markets with emphasis on data scientific approaches including

descriptive statistics and some explorative data analysis.

2.1 Non-ferrous metals as financial commodities
Similar to stocks, exchange-traded funds (ETFs) and other financial derivatives, commodities

can be traded on exchanges. A derivative can be defined as a financial contract where the

value is linked to (or derived from) the value of an underlying asset (Carter, 2012). The

underlying of these derivatives can be a commodity as considered in this thesis. There are

often several different interested parties when it comes to dealing with commodities as a

financial instrument. Speculators seeking profitable returns on their investments as well as

consumers and producers that have an interest in forecasting the price of these commodities.

Such contracts are traded on exchanges such as the London Metal Exchange (LME) and the

Intercontinental Exchange (ICE) and will be the main exchanges used in this thesis. The

speculator will commonly use futures or options contracts when making trades. A futures

contract can be defined as an “obligation to buy or sell a specific quantity and quality of a

commodity or financial instrument at a certain price on a specified future date” (Carter, 2012)

while an option can be defined as an “option to buy or sell a specific quantity and quality of a

commodity or financial instrument at a certain price on a specified future date (Carter, 2012).

For example, if trader A agrees on a futures contract with trader B where 100 barrels of crude

oil will be delivered from trader A to trader B in six months at a price of 50$ per barrel. Both

parties are bound to this contract and if the price in the market increases to for example 75$,

trader B would have made a 25$ profit per barrel while trader A would have made a 25$ loss

per barrel. Contracts like these can either have physical delivery on the underlying commodity

or a financial settlement, where speculators mostly trade in cash-settled contracts while

consumers and producers trade in both types of contracts. Options works in a similar fashion

to futures contracts, but the contract does not have to be exercised and the issuer of the

contract gets paid a premium by the counterpart for the right to exercise the option. A call

option (also called a buy option) is an option where one party has the right but not an

obligation to buy a commodity at an agreed upon price before a predetermined date. If the

price in the market is lower than the agreed upon price, it would result in a loss to exercise the

option and would therefore not be exercised. However, if the price of the commodity in the

11

market is higher than the agreed upon price (called strike), exercising the contract would yield

a profit of the difference between the market price and the strike price minus the premium

paid for the contract.

While the abovementioned contracts consider a trade at some point in the future, one can also

trade commodities in the present at the spot market. In the spot market trades are settled

continuously and the spot price represents the price of the commodity when taking delivery

immediately in some ways like purchases in for example the grocery store. For simplicity, this

thesis will only consider spot prices and indices on the various commodities to avoid

problems with settlement and rolling futures contracts.

The dataset used in the thesis includes timeseries with prices or indices of

- Crude oil

- Brent oil

- Nickel

- Lead

- Tin

- US dollar

- Natural gas

- Zinc

- Copper

- Aluminum.

All the data has been acquired from Thomson Reuters Datastream which the School of

Economics and Business at NMBU has licenses for and includes daily observations between

31.12.1994 and 01.01.2020. This equals 6524 rows of data for ten different features. Crude oil

is the West Texas Intermediate grade oil delivered at Cushing Oklahoma, traded at the New

York Mercantile Exchange (NYMEX) and denoted in USD per barrel. Brent oil is the oil

produced in the North Sea traded at the Intercontinental Exchange and is also denoted in USD

per barrel. Natural gas is represented by the S&P GSCI index of natural gas which starts at

100 (S&P, 2021). An index will catch the price changes but not the prices themselves at a

particular time, but since the timeseries data will be normalized prior to the analyses this does

not matter.

12

The ferrous metals, i.e., Nickel, Lead, Tin, Zinc, Copper and Aluminum are traded at the

London Metal Exchange in dollars per metric ton. There are also various requirements such as

purity the metals need to have which are specified in the contracts at LME.

The USD index tracks the dollar value compared to several other currencies. When the dollar

gains value compared to other currencies the index raises and vice versa. Euro, Yen, Pounds,

Canadian Dollars, Swedish Krona and Swiss Franc are the currencies the index is based on

(ICE, 2020).

2.2 Price drivers
As most things, prices on commodities are driven by supply and demand, where a price is

given by the intersection between the supply- and demand curve. To be able to find good

variables for forecasting the prices of aluminum, copper, and zinc, one needs to look into

what drives the supply of the commodity and what drives the demand. Since this thesis is

written in a data scientific perspective, we will not go much more in dept on the economic and

financial theory behind various price drivers but instead look at the fundamentals that can

affect the supply or demand side of a commodity. In short this means that if the supply is low

and the demand is high the prices will rise and vice versa. The production process of the

metals will not be covered in detail as it is outside the scope of this thesis, but a brief

introduction will be given.

2.2.1 Aluminum

In production of Aluminum the main costs are related to the use of electricity when

transforming bauxite to pure aluminum. Additional costs are due to labor, raw materials, and

shipping. Since the price of electricity varies from country to country and region to region it is

hard to use the electricity price itself as input in the models. However, other energy

commodities are often highly correlated with the price of electricity since products like oil

and natural gas are used in electricity production. Therefore, oil and natural gas prices will be

included in the modeling as a proxy for the electricity price.

When it comes to the demand side, aluminum is mostly used in the industry. Some of the

main industries include automobiles, construction, packaging and aviation. Aluminum is

traded in USD worldwide and therefore companies buying or selling aluminum may face

significant currency risk. An important variable to model the aluminum price could therefore

be the US dollar. If the dollar price increases compared to a local currency, the producer will

13

profit from this increase while the consumer will have a loss and vice versa for a decrease in

the price. Therefore, US dollar seems to be an important variable for modeling the aluminum

price.

There exists a vast number of aluminum alloys, where aluminum is the predominant metal

and copper, magnesium, silicon, zinc, tin etc. could be the alloying metal. In microeconomic

terms these other metals could be considered complementary goods (hot dogs and hot dog

buns) and therefore the price of these other metals could affect the price of aluminum. This

does not only occur with alloys of aluminum, but also when aluminum is used together with

other goods and commodities such as polymers, carbon fiber, steel, titanium etc. in for

example airplanes. Therefore, also other metals and fabrics can be used as explanatory

variables for forecasting the aluminum price.

2.2.2 Copper

Copper is a metal with electrical and thermal conductive power and as shown in figure 1 43%

of copper is used within building construction, 21% in electrical and electric products, 19% in

transportation equipment, 10% for consumer and general products as well as 7% for industry

machinery and equipment (ILZSG, 2021).

Figure 1 - End uses of copper (ILZSG, 2021)

Copper is extracted from copper ore through melting at high temperatures, which similarly to

zinc and aluminum require a high amount of energy. As with the other metals, energy is a key

input in production and could therefore be a good explanatory variable. As described in

chapter 2.2.1, the currency risk rationale also applies for copper, and therefore the USD can

also be a good variable to include for modeling the price of copper.

43 %

21 %

19 %

10 %

7 %

End uses of Copper

Building construction Electrical and electric products

Transportation equipment Consumer and general products

Industry machinery and equipment

14

Copper is used in many of the same sectors as aluminum and zinc, so other metals such as

lead, tin, nickel, zinc and aluminum make sense to include.

2.2.3 Zinc

When it comes to production of zinc the main costs are similar to aluminum and copper where

costs related to mining (labor, machines, fuel, electricity) and refining (electricity). In this

case as with the other metals, we therefore consider petroleum products as a proxy for

electricity costs as well as a direct cost for fuel when operating machines used in the mining

process.

Around 50% of all zinc that is produced in the world goes to galvanization which is to coat

iron or steel with a protective layer of zinc. Products galvanized with zinc are used in

construction, industry, automobiles etc. Zinc alloys accounts for 17% of the consumption as

do brass and bronze (ILZSG, 2021).

Figure 2 - End uses of zinc (ILZSG, 2021)

As with aluminum and copper, the same currency risk applies for production and

consumption of zinc and can therefore be a good explanatory variable for modeling zinc

prices as well.

The main take-aways from the complementary- and substitute goods apples for zinc as well,

hence the price of copper, aluminum and other metals will be relevant for forecasting the zinc

price.

50 %

17 %

17 %

6 %
6 %

4 %

End uses of Zinc

Galvanizing Zinc alloying Brass and Bronze

Zinc Semi-Manufactures Chemicals Miscellaneous

15

2.3 Literature review
In this section previous literature of commodity price forecasting will be covered. The focus

will be on data scientific approaches but a brief coverage of papers within the field of

econometrics and finance will be covered as well. Other methods for commodity price

forecasts such as microeconomic theory models, input-output, mathematical programming

and computable general equilibrium models also exists (Labys, 2006), but will not be covered

as they are not within the scope of this thesis.

Lehfeldt (1914) was among the first that analyzed commodity prices and the interactions with

their demands using statistical methods such as regression. Slutsky (1927) and Yule (1927)

used simple linear differential equations influenced by stochastic shocks to forecast and

model a vast number of time series within economics. The equations used by Slutsky and

Yule explained autoregressive processes where a variable was predicted based on previous

values of that variable. This autoregressive approach was formalized by Box et al. (1970)

where they introduced the autoregressive integrated moving average (ARIMA) model. A

methodology for timeseries forecasting referred to as the Box-Jenkins method was introduced

and starts with a model identification, estimation of parameters, validation and finally

predictions.

The volatility of copper and aluminum based on three months futures as well as spot prices

were analyzed by Figuerola-Ferretti and Gilbert (2008). A bivariate FIGARCH model was

applied, which is a fractionally integrated generalized autoregressive conditional

heteroscedastic (FIGARCH) model that describes the persistence of volatility in a timeseries

(Tayefi & Ramanathan, 2016). The volatility in these metal prices showed a long-term

memory process which means that the price changes from day-to-day are related.

Ahti (2009) applied nonlinear models to data on non-ferrous metals from London Metal

Exchange in the period from 1970-2009. He used a Smooth transition autoregressive model

(STAR) and a feed-forward artificial neural network as his non-linear models and compared

the results with linear models such as random-walk and autoregressive moving average

(ARMA) models. The results presented was based on an out-of-sample evaluation for daily,

weekly and monthly data. For the weekly and monthly data, he found negligible differences in

performance between the linear and nonlinear models for all metals besides tin.

Malliaris and Malliaris (2009) implemented an artificial neural network (NN) to forecast the

price and analyze the interactions between gold, oil and the euro. A long- and short-term

16

relationship was observed between the commodities, and they also found that oil had the

biggest impact on the other commodities.

A decision tree algorithm was applied by Liu et al. (2017) on a dataset from London Metal

Exchange containing copper prices and the authors claims this was the first time decision

trees was used for copper price predictions. Their predictions were accurate in both the short

and long term and scored a mean absolute percentage error (MAPE) under 4%. Decision trees

has the advantage that that it is not necessary to set assumptions regarding for example

stationarity, cointegration and the Gauss-Markov assumptions that apply for linear regression

(Theil & Collection, 1971)

So far in this literature review the focus has been on econometric methods performed on

commodity data sets. Bandara et al. (2021) covers several papers using various RNN over the

years, and they find that even though RNNs were used already in the 1990s, their use did not

drastically increase until around 2015. The next few paragraphs will cover different uses of

various RNN models used in various contexts.

Jue et al. (2019) analyzed agricultural commodities as they have very complex price

formations and prices are difficult to forecast. Agricultural commodities, like most other

commodities, display nonlinear characteristics and the authors used a three-part approach to

this problem. First, they used three different denoising techniques specifically singular

spectral analysis (SSA), empirical mode decomposition (EMD) and variational mode

decomposition (VMD). This was done to remove external noise in the time series. As a

secondary step, they combined these denoising techniques with forecasting models such as

autoregressive integrated moving average regression (ARIMA), support vector regression

(SVR), recurrent neural network (RNN), gated recurrent neural network (GRU) and long-

short term memory RNN (LSTM). As the third step, the artificial bee colony algorithm (ABC)

mentioned in the title of the paper, was used to forecast heterogeneous, semi-heterogeneous

and homogeneous combinations. Their results indicated that the semi-heterogeneous forecast

combination performed better than the other two combinations.

Ouyang et al. (2019) forecasted global agricultural futures prices from multivariate time

series. Their dataset included a combination of long- and short-term information as well as

both linear and nonlinear data structures. Therefore, traditional methods within the field of

econometrics such as autoregressive integrated moving average (ARIMA) and vector

autoregression (VAR) are not suitable as they struggle with nonlinear data. Instead, a Long-

17

and Long- and Short-Term Time-series Network (LSTNet) was used. This method is based on

the Lai et al. (2018) paper “modeling Long- and Short-Term Temporal Patterns with Deep

Neural Networks” and applies a combination of a convolutional layer, a recurrent layer, and a

recurrent skip. This method is also autoregressive, meaning it takes the output of one timestep

as input in the prediction of the next timestep. The first convolutional layer “aims to extract

short-term patterns in the time dimension as well as local dependencies between variable”

(Lai et al., 2018) according to the authors. The recurrent component has a Gated Recurrent

Unit (GRU) and uses RELU as the activation function. Their results indicated that the LSTNet

performed better than their baseline RNN, CNN, ARIMA and VAR models, especially as the

time horizon extended further into the future.

18

2.4 Descriptive analysis of the data
In figure 3 the price development for aluminum, copper and zinc on the London Metal

Exchange (LME) from 30.12.1994 to 01.01.2020 is shown. For aluminum, the price has been

fluctuating between 1136 and 3271 dollars per metric ton with a mean around 1800. Before

the financial crisis in 2008 we can see a rapid increase in the prices of the commodities

followed by a sharp decrease during and after the financial crisis. Some of the same

characteristics seems to be apparent for both copper and zinc as well where both had a

significant price increase before the financial crisis and a similar price decrease during and

after the financial crisis. For copper one can see a quick recovery sending the price close to

10000 dollar per metric ton around 2012 before a steady decrease towards 5000 dollars in

2016. The price for zinc seems more stable than the two abovementioned metals, as it had

fairly flat development from 1994-2004. Similar to the other metals a price spike followed by

a decline was apparent around the financial crisis and reached a bottom around 2009 around

1200 dollars per metric ton. From around 2010 the price has been hovering around 2000

dollars per metric ton with a top in 2018 around 3000 dollars.

For all the metals in figure 3 the price movements seem erratic and has no clear direction or

trend over a longer period of time.

Figure 3 - Price development 1995-2020 for aluminum, copper and zinc

19

Some commodities have seasonal characteristics in their prices due to for example weather

and therefore two new features called “Time of year signal” has been included. They are

represented using the sine and cosine functions together with the Pandas function to_datetime

(McKinney & Others, 2010) and the datetime library in python. The signals for the first 250

observations, which is roughly equal to one year in the financial markets can be seen in figure

4.

Figure 4 - Time of year signal for approximately one year in trading days

Figure 5 shows the correlations between the features included in this thesis. As noted earlier

in this chapter, the non-ferrous metals are all relatively highly correlated with each other

where for example the correlation coefficient between copper and lead is 0,92. Copper is also

highly correlated to the oil products (about 0,9) and as well as the other metals above (about

0,73). Aluminum has the highest correlation with nickel (about 0,85) and zinc (about 0,76).

The correlation between aluminum and the brent and crude oil price are also high (about 0,7),

slightly lower for natural gas (about 0,62). Zinc shows the highest correlation with nickel and

lead at about 0,71 and 0,79 respectively, while its correlation to the energy commodities is

lower (oil is about 0,58 and natural gas about 0,31). Other interesting findings in the

20

correlation matrix is that crude and brent oil are almost identical with a correlation coefficient

of 0,99, while the correlation to natural gas is below 0,5.

As described in chapter 2.2, the USD could be a price driver for the various commodities as it

has an inverse relationship with commodities that are being exported. An increase in the US

dollar compared to other currencies leads to an increased cost for consumers to buy

commodities because it is traded in US dollars and vice versa (Ganapathyraman et al., 2018).

This is seen in our dataset as well, where the USD index has a negative correlation with all the

commodities where the strongest negative correlation is to crude oil and copper at 0,69.

Figure 5 - Correlation matrix plot and lower correlation matrix

Crude Oil Europe Brent Oil Nickel Lead Tin US Dollar Index Nat gas index Zinc Aluminum Copper Year sin Year cos

Crude Oil 1,00

Europe Brent Oil 0,99 1,00

Nickel 0,67 0,64 1,00

Lead 0,81 0,81 0,65 1,00

Tin 0,83 0,86 0,50 0,91 1,00

US Dollar Index -0,69 -0,67 -0,63 -0,59 -0,56 1,00

Nat gas index 0,48 0,39 0,63 0,24 0,08 -0,42 1,00

Zinc 0,58 0,59 0,71 0,79 0,66 -0,39 0,31 1,00

Aluminum 0,72 0,69 0,85 0,68 0,57 -0,64 0,62 0,76 1,00

Copper 0,90 0,91 0,73 0,92 0,90 -0,69 0,34 0,80 0,80 1,00

Year sin -0,01 -0,01 0,05 -0,02 0,02 0,01 -0,05 0,01 0,05 0,00 1,00

Year cos -0,06 -0,06 -0,02 0,02 -0,01 0,00 0,04 0,00 0,00 -0,03 0,00 1,00

21

Figure 6 shows descriptive statistics using the .describe() function on the dataset which is

stored in a pandas DataFrame (McKinney & Others, 2010). From the mean column it is clear

that these variables are on different scales and needs to be normalized before modeling.

Because of the differences in scale, the standard deviation also differs by a lot, which means

that the data needs to be adjusted for both the mean and standard deviation. This is done by

subtracting the mean and dividing by the standard deviation from the training data.

Figure 6 - Descriptive statistics on the raw data

The violin plot in figure 7 shows the distribution and some summary statistics for the dataset.

The white dot in the middle of the plot represents the median value of the dataset, the vertical

height represents how wide the distribution is and the horizontal distance within each plot

shows the frequency of observations at that point. From the figure it is clear that especially

nickel, aluminum and lead have the most extreme high values but most of the variables still

have distributions that differ from the gaussian distribution. Lead, Tin and copper appears to

have similar distributions and the same goes for crude oil and brent oil. These observations

match the conclusions drawn from the other figures in the chapter.

22

Figure 7 - Violin plot showing the normalized data distributions

23

3. Methodology
This chapter will cover the methods chosen for forecasting the present work. We start with a

description of sequential data and how the dataset is split up into shorter sequences

representing inputs and targets. Thereafter we discuss a forecast baseline to be used as a

comparison to the various models in this thesis. For comparison with the baseline model, we

describe a vanilla feed-forward neural network (NN) to be used as a first model approach

before the main approach based on recurrent neural networks (RNN) are described. The

various methods presented in this chapter are implemented in python through the Keras

(Chollet & Others, 2015) and TensorFlow (Martín Abadi et al., 2015) libraries, but other

libraries such as Pandas (McKinney & Others, 2010), NumPy (Harris et al., 2020), Matplotlib

(Hunter, 2007) and Seaborn (Waskom et al., 2017) have also been used.

3.1 Universal workflow in a machine learning process
The workflow presented here is based on chapter 4.5 in the book “Deep learning with python”

by Chollet (2017).

1. Defining a problem and preparing a dataset

The first step in this process is to identify a problem and to prepare a dataset. The focus in this

thesis is a regression problem where a timeseries dataset have been acquired with the

variables described in chapter 2. Regression problems within finance are often static forecasts

one timestep ahead. As an extra challenge that can provide a bigger benefit this thesis will

forecast prices multiple days ahead. The focus in this thesis is to search for models that can

predict multiple steps (days) ahead that when successful gives more value to the forecasts as

described in the motivation of this thesis in chapter 1. Domain specific knowledge has been

discussed in chapter 2.2 to identify relevant data to be included in the forecasts. It is important

to acknowledge that using historical data to predict the future outcomes in timeseries

modeling assumes that the response(s) behave consistently with the available historical data,

which is not necessarily always the case.

2. Choosing a measure of success

In a machine learning process, one needs to define what is meant by a successful model, and

how to measure success. In the present work, the candidate models will be compared to a

baseline model using a “last-observation approach”. This approach will be described in

further detail in chapter 3.3. Our definition of success is if some more complex model

24

alternative (such as RNN) can outperform the baseline and simpler models. This leads to the

following question: “Is a more complex model necessarily a better model?”.

Any measure of success requires some precise measurement of model accuracy. Because we

consider a regression problem (timeseries forecasting) in this thesis, various forecast error

metrics will be discussed in chapter 3.6.

3. Evaluation protocol during training

We also need to define a procedure for monitoring the training process of our models.

Examples of this is k-fold cross validation which is useful when you have a low number of

samples, iterated k-fold with shuffling which is used for performing highly accurate model

evaluation when the dataset is not large enough to maintain a hold-out validation set, which is

the method that will be used in this thesis.

4. Pre-processing and visualizing data

Pre-processing and visualization of data is a crucial step in a machine learning process. This

lays the foundation for further model selection, training and scoring. According to Anaconda

(2020), about 2/3 of the time spend in a data science project is spent on data preparation and

visualization.

25

Figure 8 - Time spent working on different tasks in Data Science (Anaconda, 2020)

The dataset we analyze in this thesis has been acquired from Thomson Reuters Datastream

(Datastream, 2021) on a standard timeseries format with variables in the columns and the

price at time t in the rows. Since all the data is gathered from the same source, all the data is

therefore on the same format which simplifies the data cleaning process. Some important

steps is to identify possible missing values and outliers, visualize the distribution and identify

relationships between different variables (see chapter 2.4). Feature engineering can also come

in handy to create new useful features. We will consider catching time-specific information

with a “time of year signal” as described in chapter 2.4.

5. Developing a model that beats the baseline

After defining a baseline model for the problem, the next step is to choose and train a model

that hopefully performs better than the baseline. For a regression problem the choice of

baseline tends to be more problem-specific depending on the characteristics of the regression.

For problems with timeseries data one needs to consider how many steps ahead that is being

predicted. In commodity price forecasting, the prices from one day to another does not change

drastically so a simple choice of a baseline model could be to use the last known price for

26

predicting the price at the next timestep. This will be the choice of baseline model that we will

use in the present work. Performance of the baseline will be measured by the metrics

mentioned in step 2. Further details are described in chapter 3.6.

When it comes to what models to choose, one needs to consider what kind of data that one has

access to and what kind of problem at hand. It is often a good idea to start with a simpler type

of model that is easy to implement and interpret. This is so that the researcher does not have

to spend unnecessary time developing and tuning a very complex model if the problem can be

solved by for example a linear regression. Since we are working with a regression problem

using timeseries data it is logical to consider models that can process data sequentially and has

a concept of time. Therefore, RNNs are the topic of this thesis.

6. Scaling up – Increasing the capacity of the model

If the simple model approach from step 5 was unsuccessful it is time to consider if the model

is sufficiently complex and powerful. If this is not the case, one should increase the capacity

of the model by for example adding layers, adding nodes or units as well as increasing the

number of training epochs. When increasing the complexity of the model, one should monitor

the loss and validation loss of the model and see when the model starts to overfit, resulting in

poorer predictions for the validation data compared to the training data.

7. Regularization and hyperparameter tuning

In the case of overfitting, some inclusion of regularization and further hyperparameter tuning

for the training process must be considered. A good model should be based on a compromise

between capturing the essential patterns in the data without overfitting to the training data.

This can be achieved with regularization parameters such as L1 and L2 in for example Lasso,

Ridge and Elastic Net regression (Raschka & Mirjalili, 2017). Inclusion of the dropout

strategy for regularization to prevent overfitting will be discussed further in chapter 3.5 about

Recurrent Neural Networks. The dropout method is also a common technique used for fully

connected dense networks. Other possibilities like adjusting learning rate, increasing or

decreasing the number of nodes, and increasing or decreasing the number of hidden layers is

commonly used in this step.

27

3.2 Sequential data and timeseries
This thesis will use sequential data and the subset timeseries for forecasting purposes, which

has different characteristics than for example the famous MNIST (LeCun & Cortes, 2010) and

Boston Housing dataset (Harrison & Rubinfeld, 1978) which are much used for illustrating

multiclass classification and regression (without time information) problems. A unique

characteristic of sequential data is that the observations appear in a certain order which means

they are dependent on each other. These dependencies need to be taken into consideration

when facing a forecasting problem.

Raschka and Mirjalili (2017) illustrates the main types of sequence modeling in figure 9

Figure 9 - Different types of sequence modeling (Raschka & Mirjalili, 2017)

where many-to-one refers to a situation where the input data is a sequence, and the output is a

fixed size vector and not a sequence. An example of this can be sentiment analysis where the

input is a text, and the output is a classification label. One-to-many is a situation where the

input data is a standard format (not a sequence) and the output is a sequence. An example of

this can be captioning of images where the inputs are images, and the output is a text

describing the content of the image. Many-to-many sequence modeling comes in two

variations, synchronized and delayed. An example of synchronized many-to-many modeling

can be video classification (sequence of images) where every frame (image) is classified at

various timesteps. The delayed many-to-many approach is similar to the synchronized many-

to-many, but the predictions are offset in time. An example of this can be commodity price

forecasts where the inputs are historical prices and the outputs are future prices for multiple

timesteps.

The latter is the topic covered in this thesis. Here both the inputs and outputs of the model are

sequences, where an input sequence has multiple dimensions (features) while the

corresponding output is a single feature sequence.

28

For making multiple predictions over several timesteps, it is necessary to split the dataset into

smaller sequences. In forecasting one is often interested in predicting some outcome a certain

number of timesteps ahead (the output) based on the information from a certain number of

previous timesteps (the input). The number of input timesteps will be referred to as the input

width and the number of output timesteps will be referred to as the target width, while the

difference between the two will be referred to as the offset, i.e., synchronized or delayed

many-to-many described in the previous paragraph. An illustration is presented in figure 10

where the input width is the first six timesteps and the label width is the seventh timestep with

a width of one. The offset is one which means a delayed many-to-one approach since the

prediction is only one timestep ahead.

Figure 10 - Data sequence with input width 6, offset of 1 and a label width of 1 (Tensorflow, 2021)

Figure 11 shows how the sequence is split into inputs and targets or labels with the same

information as in figure 10. The red array shows the original indices of the entire window, the

blue array shows the inputs after the split and the green box shows the target index. This

window can be adjusted to fit the goals of the problem at hand, and the specific window used

in this thesis will be five timesteps (days) as input width and five timesteps (days) as target

width with an offset of five.

29

Figure 11 - Data sequence split into inputs and label or target (Tensorflow, 2021)

30

3.3 Forecast baseline
As described in chapter 3.1 one needs to define a forecast baseline that suits the problem at

hand. Since timeseries data is order-dependent and we have seen in chapter 2.4 that the data

rarely changes very much from one timestep to another, a reasonable prediction could be that

the price at time t+2 equals the price at price t+1 for a single-step prediction. Figure 12 shows

an example for a data window of total width of 48, where the input width is 24 and the output

width is 24. I.e. the previous 24 timesteps are taken as input to predict the following 24

timesteps. The last known observation at timestep 24 is then chosen as the prediction the next

24 days shown by the crosses in the figure. The true values or targets are the green dots, and

the performance of this baseline approach can be calculated with a variety of performance

metrics as will be discussed in subchapter 3.6. However, in this particular example the mean

absolute error (MAE) was used, meaning a mean absolute error of 0,0934 should be the

minimum requirement for a more complex model to beat in this example.

Figure 12 - Plot of a sequence with 24 as input and 24 as output with an offset of 24

31

3.4 Feed-forward Neural Network (Deep Neural Networks)
A neural network can be considered an extension of the Adaptive Linear Neuron algorithm

(Adaline) (Raschka & Mirjalili, 2017) which can be seen in figure 13.

Figure 13 - Adaline for classification problems (Raschka & Mirjalili, 2017)

Deep Neural Networks extends the structure of the Adaline classifier, by having multiple

neurons in multiple layers. Algorithms such as gradient decent or stochastic gradient descent

are often used in the modeling process for adjusting the weights every time the algorithm

repeats over the whole training set (epoch) for gradient descent or batch-wise for stochastic

gradient descent. The weights are updated on each epoch with formula 3.1

𝑤 ≔ 𝑤 + ∆𝑤, 𝑤ℎ𝑒𝑟𝑒 ∆𝑤 = −∇𝐽(𝑤) (3.1)

which in short means to optimize the cost function j(w) and the weights gets updated

inversely to the gradient ∇𝐽(𝑤). The gradient also gets multiplied by the learning rate assure

proper convergence of the learning process. The activation function in the Adaline classifier is

a linear combination of the net input and through the unit step function connected to the

output layer.

32

For DNN the structure looks similar, but with a few essential changes. Figure 14 shows the

structure of a deep neural network

Figure 14 - One layer fully connected neural network (Raschka & Mirjalili, 2017)

including an input layer with a bias unit a0
in and the inputs x1, …, xm, which is fully connected

to all the neurons in the second (hidden) layer except for the bias a0
(h). This again connects to

the output layer which in a regression case produces a continuous output value. The neurons

inside the network, for example aI
h can be viewed as the net input and activation of a single

Adaline neuron. A fully connected neural network with an input layer with three input units

plus bias, a hidden layer with four hidden units plus bias and three units in the output layer for

a three-class classification problem yields 31 weights in total. 16 weights comes from the

hidden layer with four weights for the bias (1x4) and 12 weights for the input-to-hidden layer

(3x4), while three weights comes from the hidden layer bias(1x3) and 12 weights for the

hidden-to-output layer(3x4), which in total yields 16+15=31 weights to train. This illustrates

that a very small network with only one hidden layer, three inputs, three outputs and four

hidden units in the hidden layer yields a high number of weights. Regularization by

controlling the number of weights, the number of neurons in a layer and the number of layers

is a way to prevent against overfitting in neural network modeling.

While the identity function is used as the activation in Adaline, other functions such as the

sigmoid, the hyperbolic tangent and the rectified linear unit (ReLU) are among the well-

known choices in neural network modeling. The sigmoid/hyperbolic activation functions may

33

cause problems with vanishing gradients in the backpropagation training (Hochreiter et al.,

2001). The reason for this is that the backpropagation method computes the gradients with the

chain rule that may lead to weight updates of very small values when the errors become large,

and if numbers between -1 and 1 are multiplied with each other enough times, the product will

approach zero. As a result of this the training will become very slow and might not converge.

The nonlinear ReLU activation is defined as

(𝑧) = max (0, 𝑧) (3.2)

and does not suffer from this weakness because its derivative is always 0 or 1, (0 when z is

below 0 and 1 when z is above zero). In short, the ReLU activation function eliminates the

vanishing gradient problem for vanilla neural networks, and is therefore often used for deep

neural networks using the backpropagation algorithm. However, vanishing gradients can be

an even bigger problem for RNN and will be covered in chapter 3.5.3.

(Raschka & Mirjalili, 2017)

34

3.5 Recurrent Neural Networks

3.5.1 Brief overview of recurrent neural networks

In chapter 3.4 we gave a description of feed-forward neural networks (NN), where the input

signals flows through various weights and layers to produce an output. Such networks have no

concept of time because the inputs are processed independently. Therefore, standard feed-

forward neural networks are not very suitable for modeling of timeseries problems. Recurrent

neural networks on the other hand include the possibility of feedback mechanisms to process

information the same way as biological intelligence, where the information is processed

incrementally while a memory of what is being processed is being kept so it can consider past

information while processing new information (Chollet, 2017). This is however a

simplification. RNN iterates through information while keeping an internal state where

information from the previous timestep is being stored and used as an input in the next step. A

simple illustration of the difference between a feed-forward neural network and a recurrent

neural network can be seen in figure 15 where h and h(t) is a simplification of the hidden

model architecture.

Figure 15 - Simplified structure of a feed-forward neural network and a recurrent neural network (Raschka & Mirjalili, 2017)

A simple recurrent neural network starts with an internal state at time t which often is

initialized to zero. After the initialization, the network iterates in a simple for-loop over the

inputs at time t, where the output at time t is a function of the input at time t and the internal

state at time t, passed on from the previous timestep t-1. The internal state is then updated

based on the output at time t, then the network iterates over the next timestep. A very simple

implementation of this was done by Collet (2018) which explains this in pseudocode in 3.3.

35

 (3.3)

This pseudocode can be further improved by writing the function f as the activation function

of the dot-product between a weight matrix W and the input at time t plus the dot-product of a

weight matrix U and the state at time t plus a bias vector. This is shown in pseudocode in 3.4

 (3.4)

The pseudocode in 3.3 illustrates the main difference between a NN and a RNN where the

hidden layers in a NN only receives the net preactivation (input signal before the activation

function is applied) from the input layer while the units in a hidden layer in a RNN receives

the net preactivation from the input layer and the activation from the same hidden layer at the

previous timestep, called state_t in formula 3.3. In simple terms the computational

mechanisms in RNN includes feedback information from previous timesteps combined with

the input from the current timestep.

Like with NN, RNN layers can be stacked (called multilayer RNN) to improve the capacity of

the network. This is easily implemented in Keras (Chollet & Others, 2015) by specifying that

all the recurrent layers besides the last recurrent layer should use “return_sequence = True” so

the layers return a 3d tensor with the complete sequence of consecutive outputs with

(batch_size, timesteps, output_features) instead of a 2d tensor with the output from the last

timestep with (batch_size, output_features). However, by stacking multiple layers the model

may easily overfit. After making sure a network has sufficient capacity for the problem at hand,

regularization is usually included in the training process. Recurrent dropout is a common

technique to prevent against overfitting in a fashion similar to the use of dropout when training

feed-forward neural networks. This is done by randomly setting some inputs in a layer to zero

which is supposed to reduce the coincidental connections from the training set that is fed into

that layer. The implementation of recurrent dropout is not as straight forward as dropout in

vanilla neural networks. Gal (2016) worked out in his PHD thesis that the same pattern (also

called mask) of dropout should be applied to every timestep in the network. For other types of

layers such a LSTM and GRU, discussed in chapter 3.5.4 and 3.5.5, Gal proposed that a

temporally constant dropout mask allows the network to properly propagate its learning error

36

through time when it’s applied to the inner recurrent activation of a layer. Gal has contributed

to the Keras package by implementing two dropout arguments in the different RNN layers. One

argument is the dropout argument that specifies the dropout rate for the input units in the layer.

The second argument is the recurrent dropout that specifies the dropout rate of the recurrent

units in the network.

(Chollet, 2017)

3.5.2 Computation of activations in Recurrent Neural Networks

The activations and computations in a recurrent neural network are more complex than in a

feed-forward neural network because of the recurrent edge (also called internal state). The

following section will go through the computation of activation in the hidden units and the

calculation of output units.

The notation in this section is based on Raschka and Mirjalili (2017), where the weight matrix

connecting the input layer 𝑥(𝑡) and the hidden layer ℎ is denoted by 𝑊𝑥ℎ where the 𝑥

represents the input and ℎ represents the hidden layer. The weight matrix connected to the

recurrent edge is denoted as 𝑊ℎℎ and the weight matrix connecting the hidden layer ℎ and the

output layer 𝑦 is denoted as 𝑊ℎ𝑦. In this instance ℎ represents a single hidden layer, but the

same notation can be applied to multilayer RNN using ℎ1 − ⋯ − ℎ𝑛. The notation explained

is shown in figure 16.

Figure 16 - Unfolded structure of a recurrent neural network (Raschka & Mirjalili, 2017)

By defining the net input as 𝑧ℎ
(𝑡)

, the bias vector for the hidden units as 𝑏ℎ and the activation

function of the hidden layer as (∙), one can compute the net input in the hidden layer as

37

𝑧ℎ
(𝑡)

= 𝑊𝑥ℎ𝑥(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ (3.5)

where ℎ(𝑡−1) is the activation from the same hidden layer in the previous timestep. Based on

the net input, the activation in the hidden layer can be calculated as follows in 3.6.

ℎ(𝑡) =
ℎ

(𝑧ℎ
(𝑡)

) =
ℎ

(𝑊𝑥ℎ𝑥(𝑡) + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎ) (3.6)

The activation calculation of the output layer is slightly less complicated compared to the

hidden layer, as it does not take input from different timesteps. This is shown in formula 3.7.

𝑦(𝑡) =
𝑦

(𝑊ℎ𝑦ℎ(𝑡) + 𝑏𝑦) (3.7)

(Raschka & Mirjalili, 2017)

3.5.3 Vanishing gradient problem

In feed-forward neural networks the backpropagation algorithm is used to adjust the weights

in the network. This is done by through so-called backpropagation, which can be understood

as going backwards through the network from one sample at the time from output to input

when updating the weights. The gradient, or derivative, of the loss function with respect to the

weight are calculated using the chain rule. This process is done for one layer in the network at

the time starting at the final layer in the model. When working with recurrent neural networks,

the same type of approach is used but is then called backpropagation through time. The key

take-aways from the backpropagation algorithm is when the errors are computed in the hidden

layers, a multiplication with the derivative of the activation function is done. For activation

functions like the sigmoid and tanh, this becomes a problem because of their derivatives

shown in figure 17 and 18.

38

Figure 17 - Plot of the sigmoid function and its derivative in the range -10 to 10

Figure 18 - Plot of the hyperbolic tangent function and its derivative in the range -10 to 10

From figures 17 and 18 it is clear that the derivative of these two activation functions lies

between 0 and 1 and is close to 1 in a large region. This is the basis for the vanishing gradient

39

problem which occurs in multilayer neural networks because when the backpropagation

algorithm updates its weights, numbers between 0 and 1 will be multiplied repeatedly. An

illustration is shown in figure 19 where a net input has been given to the sigmoid function to

produce an activation. The derivative of the sigmoid function can be written as 𝜎(1 − 𝜎)

where 𝜎 is the sigmoid function.

Figure 19 - Output from the sigmoid activation function and its derivative

As illustrated in figure 19 the gradient when using the sigmoid activation function will always

be a number between 0 and 0.25. This is the process for a single sample in a single layer, so

when multiple gradients eventually are multiplied together, the product will approach 0. This

is known as the vanishing gradient problem. The reason why this is especially relevant for

recurrent neural networks is that the backpropagation algorithm leads to exponentially more

calculations because the gradients are calculated for both the layer aspect and the time aspect

of the network. The same principle applies for so called exploding gradients as well, where

the same logic in figure 19 is applied but with multiplications of numbers larger than 1

leading to very high values. There are several strategies to solve this problem, and in the next

subchapter we will consider two derivatives of RNN, namely Long-short term memory

(LSTM) units and Gated recurrent units (GRU) that was developed to solve the problem of

vanishing and exploding gradients.

Sigmoid activation 1 - sigmoid activation Derivative sigmoid

0,1 0,9 0,09

0,2 0,8 0,16

0,3 0,7 0,21

0,4 0,6 0,24

0,5 0,5 0,25

0,6 0,4 0,24

0,7 0,3 0,21

0,8 0,2 0,16

0,9 0,1 0,09

40

3.5.4 Long-short term memory (LSTM)

Long-short term memory units was suggested by Hochreiter and Schmidhuber (1997) to solve

the issue with vanishing- and exploding gradients. LSTM units are structured similarly to a

simple RNN layer but has some additional advanced features. A simple RNN transfers

information from one timestep to another using the activation from the previous timestep,

which can lead to information getting lost when operating over many timesteps. LSTM units

attempts to solve this by transferring information through the timesteps in a more robust way,

often referred to as carry, denoted by 𝐶. By structuring the LSTM cell in this way, it prevents

older signals from diminishing steadily over time as it injects information from the previous

timestep. Figure 20 illustrates the unfolded structure of a LSTM cell

Figure 20 - In dept structure of a LSTM cell (Raschka & Mirjalili, 2017)

where a cell takes the input data from the current timestep 𝑥(𝑡), ℎ(𝑡−1) which is the hidden

unit activation at the previous timestep and 𝐶(𝑡−1) which is the cell state at the previous

timestep as inputs. As output it gives the activation ℎ(𝑡) to both the next timestep and the next

layer if the networks is a multilayer network as well as the cell state 𝐶(𝑡) to the next timestep.

The carry (the overall process that includes the cell state) is often thought of as a conveyor

belt that runs parallel through a layer of LSTM cells, where the information is not changed

much besides some linear operations like element-wise multiplication denoted ⊙ and the

element-wise addition denoted . The cell has the capability to remove or add information to

the cell state with 𝑓, 𝑖 𝑎𝑛𝑑 𝑔 in figure 20 called gates. The forget gate, 𝑓, the input gate, 𝑖 and

the output gate, 𝑜 uses the sigmoid activation function and the input node, 𝑔 uses the

hyperbolic tangent activation function. The yellow boxes can be thought of as a separate

41

neural network responsible for controlling different pieces of information in the cell,

including weight matrices, 𝑊 and bias units, 𝑏.

With all the parts of the LSTM cell specified, one can walk through the cell to see how the

calculations processing the information are working. The first interaction in the cell is where

the forget gate decides what information to pass on or suppress, essentially meaning how

much of the previous cell value 𝐶(𝑡−1) to use. This is done via element-wise multiplication

with the output of the sigmoid activation, which is shown in figure 17 (chapter 3.5.3) to take

values between 0 and 1 leading to a reduced value of the cell state. A value of 0 means

keeping nothing and 1 means keeping everything. This is done so the cell state does not grow

indefinitely by the element-wise addition used for the input gate and input node. When

computing this activation, the same structure as formula 3.6 with the sigmoid activation

function where the subscript 𝑥 refers to the input, the subscript ℎ refers to the hidden unit

activation in the previous timestep and the subscript 𝑓 refers to the forget gate.

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥(𝑡) + 𝑊ℎ𝑓ℎ(𝑡−1) + 𝑏𝑓) (3.8)

The next step in this process is to decide on what new information to add or remove from the

cell state. This is done by the input gate and the input node. The task of the input gate is to

decide on which values of the input to update while the input node creates a vector of new

candidate values which could be added or removed from the cell state. Afterwards the

activation of these gates is element-wise multiplied together before being added to the cell

state. Hyperbolic tangent is used to produce activations between -1 and 1 so the input node is

able to both add and remove information. The computation of the activation is much like in

formula 3.8 and is shown in formula 3.9 and 3.10.

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥
(𝑡) + 𝑊ℎ𝑖ℎ

(𝑡−1) + 𝑏𝑖) (3.9)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥(𝑡) + 𝑊ℎ𝑔ℎ(𝑡−1) + 𝑏𝑔) (3.10)

Here the weight matrices are denoted with the subscripts 𝑖 for the input gate and 𝑔 for the

input node. Now that all the pieces to calculate the cell state are in place, the computation of

the cell state is shown in formula 3.11.

𝐶𝑡 = (𝐶(𝑡−1) ⊙ 𝑓
𝑡
)(𝑖𝑡 ⊙ 𝑔

𝑡
) (3.11)

42

As described above, the forget gate regulates how much information from the previous cell

state that is being kept, while the input gate and input node adds or removes information from

the input and previous activation ℎ(𝑡−1).

After the information from the input gate and input node are added or removed from the cell

state, the output gate decides on how much of the new cell state that goes to the output. This is

done via a sigmoid activation function computed based on the input and the hidden layer

activation at the previous timestep as shown in formula 3.12.

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥(𝑡) + 𝑊ℎ𝑜ℎ(𝑡−1) + 𝑏𝑜) (3.12)

where the subscript 𝑜 refers to the output gate and while the other notation and subscripts are

equal to the other gates. The final hidden unit activation is then calculated using the activation

from the output gate combined with the hyperbolic tangent of the cell state, shown in figure

18. The computation of this activation is shown in formula 3.13.

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶(𝑡)) (3.12)

This activation is then passed to both the next layer and to the next timestep.

(Olah, 2015)

3.5.5 Gated Recurrent unit (GRU)

Gated Recurrent unit (GRU) is a variation of the LSTM suggested by Cho et al. (2014). The

concept of the GRU is that it combines the input gate and the forget gate to one gate called the

update gate. The cell state and the hidden state activation from the previous timestep is also

merged. These changes to the LSTM cell make the GRU computationally more efficient and

may also work better than the LSTM in some scenarios. However, as is often stated in Data

Science: “Machine learning is often more of an art than a science” is also the case for RNN.

Greff et al. (2015) studied the differences between LSTM variants and found no significant

difference in performance on their tasks of speech recognition, handwriting recognition, and

polyphonic music modeling. Cho et al. (2014) found that GRU tends to show better

performance than LSTM on smaller datasets, which could be an advantage in this paper. An

overview of a Gate Recurrent Unit is shown in figure 21.

43

Figure 21 - In dept structure of a Gated Recurrent Unit (Olah, 2015)

The reset gate 𝑟𝑡 is calculated in formula 3.13

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥(𝑡) + 𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏𝑟) (3.13)

 𝑧𝑡 is called the update gate and is calculated in the same way and is shown in formula 3.14

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑥(𝑡) + 𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏𝑧) (3.14)

The last gate called the candidate activation vector ℎ̃𝑡 is calculated in a similar way but

includes an element-wise multiplication between the reset gate and the hidden unit activation

from the previous layer and utilizes the hyperbolic tangent activation function.

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ̃𝑥(𝑡) + 𝑊ℎℎ̃ (ℎ(𝑡−1) ⊙ 𝑟𝑡) + 𝑏ℎ̃) (3.15)

The output vector is calculated using the gates described above either directly or indirectly

and is shown in 3.16

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ(𝑡−1) + 𝑧𝑡 ⊙ ℎ̃𝑡) (3.16)

(Cho et al., 2014)

44

3.6 Performance metrics
Evaluation of the model predictions of competing models requires some choice of

performance metrics. Since this thesis works with timeseries data and a regression problem, a

metric suitable to those criteria should be used. Most performance metrics used for regression

contains the difference between the predicted value and the observed value, also called the

forecast error. This number can be either positive or negative and will be positive if the

observed value is larger than the predicted value and vice versa. However, this metric is not

very useful by itself, as if you sum all the forecast errors and they contain both positive and

negative errors they might cancel each other out. Therefore, most performance metric uses

either squared or absolute values. Metrics like these are often used for comparison both in-

and out-of-sample evaluation as well as for in-sample validation.

The Mean Squared Error (MSE) can be defined as in formula 3.17:

𝑀𝑆𝐸 =
1

𝑛
𝑆𝑆𝐸, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑆𝐸 = ∑ (𝑦(𝑖) − �̂�(𝑖))2𝑛

𝑖=1 (3.17)

where n is the number of samples, 𝑦(𝑖) the observed value and �̂�(𝑖) is the predicted value and

is interpreted as the average value of the squared errors. MSE will always be non-negative

and a value of 0 means a perfect accuracy for the model as the observed value equals the

predicted value for all samples. Another popular metric is the Mean Absolute Error (MAE)

and using the same notation as in formula 3.17 can be defined as

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦(𝑖) − �̂�(𝑖)|𝑛

𝑖=1 (3.18)

which represents the average of the absolute errors. As with MSE, MAE will always be non-

negative and a value 0 is achieved when the observed values equal the predicted values for all

samples. Based on these two metrics one can define various other metrics. One popular metric

is the Root Mean Squared Error (RMSE) which can be defined as following

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (3.19)

and is interpreted as the quadratic mean of the predicted and observed values. RMSE is

always non-negative and will be 0 if the observed values equal the predicted values for all

samples. Another metric that is popular due to its interpretability is the Mean Absolute

Percentage Error (MAPE) which can be defined as

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦(𝑖)−�̂�(𝑖)

𝑦(𝑖) |𝑛
𝑖=1 (3.20)

45

The main advantage of MAPE is that it can easily be interpreted as the average absolute

percentage error. In practice MAPE can be hard to use and will fail if the observed value is

zero due to zero division. This could be the case in this thesis as the prices are normalized and

some values may end up being zero or very close to zero. Therefore, MAPE will not be used

in this thesis.

RMSE has the advantage that it is more interpretable than the MSE but might still cause

confusion as it is defined as the square root of the average squared errors. A disadvantage of

RMSE is that each error does not influence the sum in direct proportion which is the case with

MAE (Pontius et al., 2008). According to Pontius et al. (2008) MAE is also less sensitive to

outliers than RMSE due to the square and root calculations. MSE will be used to calculate the

loss in the model which will be minimized during training. RMSE will be the choice of

performance metric.

46

4. Results
In this chapter the forecasting results from modeling the aluminum, copper and zinc price is

presented. For each of the metals a baseline model, a dense network model, a single-layer

LSTM network model, a multi-layer LSTM network model, a single-layer GRU network

model and a multi-layer GRU network model has been trained and tested using a training-,

validation-, and test-set containing 70%, 20% and 10% of the original dataset, respectively.

When it comes to training of the models, MSE is the metric that is being minimized during

training while RMSE is being used when the predictions on the validation- and test data is

presented. As previously mentioned, the input to the model is 5 timesteps (days) and the

output is also 5 timesteps (days), which in practice predicts one week ahead (in trading days)

based on the previous week. The models displayed in this chapter has been chosen based on

their training- and validation loss. Training loss was the main criterion, but if the validation

loss differed a lot from the training loss other model architectures were experimented with.

Most models had relatively similar training- and validation loss, but for some of the more

complex architectures we struggled to find a good compromise between training- and

validation loss which is seen in the following subchapters.

4.1 Aluminum
The baseline model

The approach for the baseline model is described in chapter 3.3 and is shown in figure 22 and

uses the last known observation at timestep four (indexed from zero, meaning day five in

practice) to predict the next 5 timesteps.

Figure 22 - Prediction of a single sequence (Baseline aluminum)

From this example we can see that our approach in general will produce useful results as the

price changes from one timestep to another is not very drastic. However, the longer the time

horizon and the more volatility in the commodity price will lead to worse results for this

47

baseline. The code for producing the baseline can be found in the Appendix. This approach

yielded a RMSE of 0,0712 in the validation set and a RMSE of 0,0942 in the test set. The

results from all the models with be summarized and analyzed in the discussion in chapter 5.

The dense network model

The next model is a dense model with a single layer with one unit as well as a layer with the

number of output steps (5) times the number of predicted features (1) as the number of units

used to reshape the output. This can be considered one of the simpler models for a problem

like this. The model does in total have 71 parameters and a more detailed summary of the

model structure can be found in the appendix.

Figure 23 - Training- and validation loss (Dense network aluminum). Y-axis displays the MSE and the x-axis shows the epochs
during training

The loss measured by the MSE for the training set and validation set is shown in figure 23.

We can see the diminishing returns of training when the number of epochs is increased. This

is especially apparent from around epoch five. The model does not seem to overfit, as the

distance between the training loss and validation loss does not increase when increasing the

48

number of epochs. The reason why the training stopped at 18 epochs is that the Patience

parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been set to three

which means the number of epochs with no improvement after which training will be stopped.

This applies for all the other trainable models as well.

Figure 24 - Prediction of a single sequence (Dense network aluminum)

Figure 24 shows an example sequence where the dense model has predicted the output for

fove timesteps. The predictions from the dense model does not change much from one

timestep to another but they are not equal as with the baseline. Since we know that the prices

does not change much from one timestep to another, the kernel_initializer parameter has been

set to initialize to zeros using the Keras zeros initializer (Chollet & Others, 2015). To be able

to predict multiple timesteps ahead the final layer of the model reshapes to match the number

of output steps times the number of targets to predict. In this case we only predict the price of

one metal at the time, five timesteps ahead. This approach yields a slightly higher RMSE than

the baseline with a validation RMSE of 0,0832 and a test RMSE of 0,1106. The model

performs slightly better on the validation data than the test data and could indicate a slight

overfit, but this difference is minimal.

The single-layer LSTM model

The first of the more complex models is a single-layer LSTM model where the number of

units is set to 16, yielding a total of 1 941 parameters. This is calculated by multiplying the

input shape (12) with the number of units in the hidden layer (16), plus the number of units in

the layer squared, plus 16 accounting for the bias. This number is then multiplied by four

because of the four gates inside a LSTM cell. In total this yields # 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

((12 ∗ 16) + (16 ∗ 16) + 16) ∗ 4 = 1856 and is the number of parameters in the LSTM

layer. In this model there is also a dense layer before reshaping the output where the number

of parameters is calculated as the number of units in the previous layer (16) times the number

of units in the dense layer (5) plus the number of units in the dense layer (5) which accounts

49

for the bias. This yields (16*5)+5=85 which gives the model a total of 1856+85 = 1 941

parameters. Calculating the number of weights by hand can be tedious and hard once the

number of layers or units increases. Keras displays the number of parameters in the

summary() method for the model (Chollet & Others, 2015) which is shown in the appendix.

Therefore, we will not provide calculation of the number parameters for the other models. The

return_sequence parameter described in chapter 3.5.1 is set to false so that the layer only

returns the output at the final timestep. A detailed summary of the model can be found in the

appendix.

Figure 25 – Training- and validation loss (single-layer LSTM aluminum). Y-axis displays the MSE and the x-axis shows the
epochs during training

The training of the single-layer LSTM model shown in figure 25, which seems to train at a

faster rate than the dense model, as the training loss is not significantly reduced after epoch 2.

This makes sense as the LSTM model has a higher capacity than the dense model. The

validation loss is slightly higher than the training loss but based on this figure one cannot

prove that the model is overfitting.

50

Figure 26 - Prediction of a single sequence (single-layer LSTM aluminum)

The same example sequence as for the other models is shown in figure 26 and like the two

previous models, the LSTM model seem to predict values near the last known observation in

this specific sample, but closer to the targets than the previous two models. As with the dense

model, the weights are initialized to zero yielding small changes from the last known

observation. In total over the entire validation and test set, the single-layer LSTM model

yielded a RMSE of 0,12 and 0,1327, respectively. A small difference between the validation

and test RMSE indicates a model that does not overfit and generalizes well.

The Multi-layer LSTM model

The multi-layer LSTM model is built up with three LSTM layers consisting of 128 units and a

dense layer with 128 units. The return_sequence parameter described in chapter 3.5.1 is set to

True for the first two layers and False on the third layer. This structure is required when

stacking LSTM layers where all layers need to return outputs for the full sequence except the

last layer, which only returns its output from the final timestep. In total this structure yields

352 517 parameters giving the model a lot more capacity than previous models. A detailed

summary of the model can be found in the appendix.

51

[Grab your reader’s attention with a

great quote from the document or

use this space to emphasize a key

point. To place this text box

anywhere on the page, just drag it.]

Figure 27 – Training- and validation loss (multi-layer LSTM aluminum). Y-axis displays the MSE and the x-axis shows the
epochs during training

The training loss for the multi-layer LSTM model is quite different compared to the previous

models. The training loss have a steady decline over all the epochs. The validation loss

however swings a lot more over the epochs and increases steadily after the third epoch. The

exact reason behind this behavior is hard to conclude, but one possibility could be that since

the dataset is relatively small the model struggles predicting some samples in the validation

set during the training of the model. Since the validation set is so small, this could be more

critical for the validation part. Due to the large capacity of the network, this erratic movement

of the validation loss could also be a result of overfitting. This might be indicated by the

validation RMSE and test RMSE seen in figure 28 as the model performs considerably worse

than the previous models.

52

Figure 28 - Prediction of a single sequence (multi-layer LSTM aluminum)

The example shown in figure 28 we can see that the model predicts the sequence quite well,

especially for timestep five, eight and nine. However, this is just one sample and in total the

model performs worse than all the previous models with a validation RMSE of 0,2022 and a

test RMSE of 0.2122. A small difference between the validation and test RMSE indicates a

model that does not overfit but the learning curves in figure 27 may indicated that the model

is too complex and struggles to make good predictions due to the poor performance on the

validation and test set.

The single-layer GRU model

As an alternative to the LSTM layers, this model applies a single GRU layer where the

number of units is set to 32, yielding a total of 4 581 parameters. The return_sequence

parameter described in chapter 3.5.1 is set to false so that the layer only returns the output of

the final timestep. A detailed summary of the model can be found in the appendix.

53

Figure 29 - Training- and validation loss (single-layer GRU aluminum) . Y-axis displays the MSE and the x-axis shows the
epochs during training

The training of the single-layer GRU is model shown in figure 29, which seems to train at a

faster rate than the single-layer LSTM model, as the training loss is not significantly reduced

after the first epoch. The validation loss is slightly lower than the training loss for a little over

the first half of the epochs and slightly higher for the last epoch. These differences are very

small, and the model seems to train well without overfitting.

54

Figure 30 - Prediction of a single sequence (single-layer GRU aluminum)

From the example shown in figure 30 we can see that the model quite accurately predicts

timestep five, six and nine. However, this is just one sample and in total the model performs

worse than the baseline and the dense model but better than the multi-layer LSTM and about

even with the single-layer LSTM model with a validation RMSE of 0,1198 and a test RMSE

of 0,1337. A small difference between the validation and test RMSE indicates a model that

does not overfit and generalizes well which is the case for this model.

The multi-layer GRU model

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model

with three GRU layers consisting of 128 units and a dense layer with 128 units. The

return_sequence parameter described in chapter 3.5.1 is set to True for the first two layers and

False on the third layer. This is structure required when stacking GRU layers where all layers

need to return outputs for the full sequence except the last layer, which only returns its output

from the final timestep. In total this structure yields 269 829 parameters giving the model a

solid capacity but with fewer parameters than the multi-layer LSTM, even though the model

architecture is the same. This is because of the way the GRU layer is built up compared to the

LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed summary of

the model can be found in the appendix.

55

Figure 31 - Training- and validation loss (multi-layer GRU aluminum) . Y-axis displays the MSE and the x-axis shows the
epochs during training

The training of the multi-layer GRU model shown in figure 31. The training stops after five

epochs where the training loss is reduced in the greatest amount in the first epoch with a

steady decrease until epoch five. The validation loss however is more erratic and largely

varying from one epoch to another, in the same fashion as the multi-layer LSTM model. This

could be due to the large capacity of the model with close to 300 000 weights to be trained.

Results like these could indicate overfitting but comparing the validation and test results in

figure 32 does not directly support this theory.

56

Figure 32 - Prediction of a single sequence (multi-layer GRU aluminum)

The example in figure 32 shows that the multi-layer GRU does not predict well for this

particular sample. All in all, this model performs worse than all the other models besides the

multi-layer LSTM with a validation RMSE of 0,1557 and a test RMSE of 0,163. The learning

curves in figure 31 indicate that the model is too complex and fails to make good predictions

as indicated by the poor performance on the validation and test set in the same way as the

multi-layer LSTM model.

4.2 Copper
The baseline model

The approach for the baseline model is described in 3.3 and is shown in figure 33 and uses the

last known observation at timestep four (indexed from zero, meaning day five in practice) to

predict the next five timesteps.

Figure 33 - Prediction of a single sequence (Baseline copper)

From this example we can again see that this approach in general will produce decent results

when the price changes from one timestep to another are not very drastic. However, the longer

the time horizon and the more volatility in the commodity price will lead to worse results for

this baseline. The first prediction is almost spot on, but as the price increases from timestep

five to nine, the baseline predicts further away from the target. The code for producing the

baseline can be found in the Appendix and is the same for all metals. This approach yielded a

57

RMSE of 0,0454 in the validation set and a RMSE of 0,0432 in the test set. The results from

all the models summarized and discussed in chapter 5.

The dense network model

The next model is a dense model with a single layer with one unit as well as a layer with the

number of output steps (5) times the number of predicted features (1) as the number of units

used to reshape the output. This can be considered one of the simpler models for a problem

like this. The model does in total have 71 parameters and a more detailed summary of the

model structure can be found in the appendix.

Figure 34 - Training- and validation loss (dense network copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training loss measured by the MSE for the training set and validation set is shown in

figure 34. We can see the diminishing returns of training when the number of epochs is

increased. This is especially apparent from around epoch 1 and 2. The model does not seem to

overfit, as the distance between the training loss and validation loss does not increase when

increasing the number of epochs. The reason why the training stopped at five epochs is that

58

the Patience parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been

set to three which means the number of epochs with no improvement after which training will

be stopped. This applies for all the other trainable models as well.

Figure 35 - Prediction of a single sequence (dense network copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

Figure 35 shows an example sequence where the dense model has predicted the output for 5

timesteps. The predictions from the dense model does not change much from one timestep to

another but they are not identical as with the baseline. Since we know that the prices does not

change much from one timestep to another, the kernel_initializer parameter has been set to

initialize to zeros using the Keras’ zeros initializer (Chollet & Others, 2015). This is the case

for all the other models as well and can be seen in the appendix. To be able to predict multiple

timesteps ahead the final layer of the model reshapes to match the number of output steps

times the number of targets to predict. In this case we only predict the price of one metal at

the time, five timesteps ahead. This approach yields a much higher RMSE than the baseline

with a validation RMSE of 0,1438 and a test RMSE of 0,1886.

The single-layer LSTM model

The single-layer LSTM model for forecasting the copper price consists of a single LSTM

layer with 32 units, yielding a total of 5 925 parameters. The return_sequence parameter

described in chapter 3.5.1 is set to false so that the layer only returns the output at the final

timestep. A detailed summary of the model can be found in the appendix.

59

Figure 36 - Training- and validation loss (single-layer LSTM copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training of the single-layer LSTM model is shown in figure 36, and we can see the

training loss is not significantly reduced after the first epoch. This has been the case for

several models with larger capacity, while models with a lower number of parameters often

needs more epochs for the loss to flatten. The validation loss is slightly higher than the

training loss but based on this figure one cannot prove that the model is overfitting.

Figure 37 - Prediction of a single sequence (single-layer LSTM copper)

60

The same example sequence as for the other models is shown in figure 37 and like the two

previous models, the LSTM model seem to predict values near the last known observation in

this specific sample, but closer to the targets than the dense model. As with the dense model,

the weights are initialized to zero yielding small changes from the last known observation.

This is however just one sample and would differ if another sample were picked. In total over

the entire validation and test set, the single-layer LSTM model yielded a RMSE of 0,1292 and

0,1802, respectively. A difference between the validation and test RMSE as large as this may

indicate that the model has been slightly overfit to the training data.

The multi-layer LSTM model

The multi-layer LSTM model used for forecasting the copper price is built up with two LSTM

layers consisting of 32 units and a dense layer with 32 units. The return_sequence parameter

described in chapter 3.5.1 is set to True for the first layer and False on the second layer. This

structure is required when stacking LSTM layers where all the layers need to return outputs

for the full sequence except the last layer, which only returns its output from the final

timestep. This structure yields a total of 15 301 parameters giving the model a lot more

capacity than previous models for copper. A detailed summary of the model can be found in

the appendix.

61

Figure 38 - Training- and validation loss (multi-layer LSTM copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training process for the multi-layer LSTM model stops after nine epochs and have most

of the progress in the first epoch. The training loss have a steady decline over all the epochs

starting to flatten more out after the first epoch. The validation loss is slightly more volatile

without differing too much from the training loss. This model has one less layer and fewer

parameters per layer than the multi-layer LSTM model developed for aluminum and seems to

be a more stable model.

Figure 39 - Prediction of a single sequence (multi-layer LSTM copper)

62

From the example shown in figure 39 we can see that the model seems to predict the sequence

in a similar way to the previous models and the predictions does not change much from one

timestep to another. However, this is just one sample and in total the model performs worse

than the baseline but better than the dense and single-layer LSTM models with a validation

RMSE of 0,1163 and a test RMSE of 0,1083. This model also performs slightly better on the

test data than the validation data and does not indicate any overfitting as the model seems to

generalize well on new data.

The single-layer GRU model

As an alternative to the LSTM layers, this model applies a single GRU layer where the

number of units is set to eight, yielding a total of 573 parameters which is the lowest number

of parameters thus far for the LSTM and GRU models. The return_sequence parameter

described in chapter 3.5.1 is set to false so that the layer only returns the output at the final

timestep. A detailed summary of the model can be found in the appendix.

Figure 40 - Training- and validation loss (single-layer GRU copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

63

The training of the single-layer GRU model shown in figure 40, and we can see that the

majority of the reduction in the loss happens before the third epoch. The validation loss is

slightly higher than the training loss after the first epoch, but as the number of epochs

increases the difference between the training and validation loss does not increase. This

indicates that the model does not overfit to the training data.

Figure 41 - Prediction of a single sequence (single-layer GRU copper)

From the example shown in figure 41 we can see that the model accurately predicts in a

similar fashion to the LSTM models where the first prediction is the best one. However, this

is just one sample and in total the model performs worse than the baseline but better than all

the other models forecasting the copper price with a validation RMSE of 0,0956 and a test

RMSE of 0,1017. A small difference between the validation and test RMSE indicates a model

that does not overfit and generalizes well.

The Multi-layer GRU model

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model

for copper with two GRU layers consisting of 32 units and a dense layer with 32 units. The

return_sequence parameter described in chapter 3.5.1 is set to True for the first layer and

False in the second layer. This structure is required when stacking GRU layers where all

layers need to return outputs for the full sequence except the last layer, which only returns its

output from the final timestep. In total this structure yields 11 973 parameters giving the

model a solid capacity but with fewer parameters than the multi-layer LSTM, even though the

model architecture is the same. This is because of the way the GRU layer is built up compared

to the LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed

summary of the model can be found in the appendix.

64

Figure 42 - Training- and validation loss (multi-layer GRU copper) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training of the multi-layer GRU model is shown in figure 42. Training stops after seven

epochs where the training loss is reduced the most in the first epoch with a steady decrease

until epoch seven. The validation loss however is slightly more erratic and increases after four

epochs. This could be due to the large capacity of the model with 11 973 weights to be

trained. Results like these could indicate overfitting but the validation and test RMSE are

almost identical which does not indicate overfitting.

Figure 43 - Prediction of a single sequence (multi-layer GRU copper)

65

The example in figure 43 shows that the multi-layer GRU predicts this sequence similarly to

the other models for copper. However, this is just one sample and in total the model performs

worse than all the other models in validation but slightly better than the dense model and the

single-layer LSTM model with a validation RMSE of 0,1525 and a test RMSE of 0,1587. A

small difference between the validation and test RMSE indicates a model that does not overfit

and generalizes well.

4.3 Zinc
The baseline model

The approach for the baseline model is described in 3.3 and is shown in figure 44 and uses the

last known observation at timestep four (indexed from zero, meaning day five in practice) to

predict the next five timesteps.

Figure 44 - Prediction of a single sequence (Baseline zinc)

From this example we can again see that this approach in general will produce decent results

when the price changes from one timestep to another is not very drastic. However, the longer

the time horizon and the more volatility in the commodity price will lead to worse results for

this baseline. The first prediction is very close, and the baseline predicts well in general. The

code for producing the baseline can be found in the Appendix and is the same for all metals.

This approach yielded a RMSE of 0,06145 in the validation set and a RMSE of 0,0875 in the

test set. The results from all the models are summarized and discussed in chapter 5.

The dense network model

The next model is a dense model with a single layer with one unit as well as a layer with the

number of output steps (5) times the number of predicted features (1) as the number of units

used to reshape the output. This can be considered one of the simpler models for a problem

like this. The model does in total have 71 parameters and a more detailed summary of the

model structure can be found in the appendix.

66

Figure 45 - Training- and validation loss (dense network zinc) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The loss measured by the MSE for the training set and validation set for the dense model

predicting the zinc price is shown in figure 45. We can see the diminishing returns of training

when the number of epochs is increased. This is especially apparent from around epoch three

for the training data and around epoch six for the validation data. The model does not seem to

overfit, as the difference between the training loss and validation loss decreases over time and

is almost eliminated after training. The reason why the training stopped at 13 epochs is that

the Patience parameter in Keras’ EarlyStopping (Chollet & Others, 2015) function has been

set to three which means the number of epochs with no improvement after which training will

be stopped. This applies for all the other trainable models as well.

67

Figure 46 - Prediction of a single sequence (dense network zinc)

Figure 46 shows an example sequence where the dense model has predicted the output for

five timesteps. The predictions from the dense model does not change much from one

timestep to another but they are not equal to the baseline. Since we know that the prices does

not change much from one timestep to another, the kernel_initializer parameter has been set to

initialize to zeros using the TensorFlow zeros initializer (Chollet & Others, 2015).This is the

case for all the other models as well and can be seen in the appendix. To be able to predict

multiple timesteps ahead the final layer of the model reshapes to match the number of output

steps times the number of targets to predict. In this case we only predict the price of one metal

at the time, five timesteps ahead. This approach yields a higher RMSE than the baseline with

a validation RMSE of 0,1197 and a test RMSE of 0,1695.

The single-layer LSTM model

The single-layer LSTM model for forecasting the zinc price consists of a single LSTM layer

with 64 units, yielding a total of 20 037 parameters. The return_sequence parameter described

in chapter 3.5.1 is set to false so that the layer only returns the output at the final timestep. A

detailed summary of the model can be found in the appendix.

68

Figure 47 - Training- and validation loss (single-layer LSTM zinc) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training of the single-layer LSTM model is shown in figure 47 and we can see the

training loss is not significantly reduced after the first epoch. The validation loss is slightly

higher than the training loss and increasing after the first epoch which may indicate that the

model is overfitting to the training data.

Figure 48 - Prediction of a single sequence (single-layer LSTM zinc)

The same example sequence as for the other zinc models is shown in figure 48 and like the

two previous models, the LSTM model seem to predict values near the last known

69

observation in this specific sample, and in a very similar way as the dense model. As with the

dense model, the weights are initialized to zero yielding small changes from the last known

observation. This is however just one sample and would differ if another sample were picked.

In total over the entire validation and test set, the single-layer LSTM model yielded a RMSE

of 0,2269 and 0,5356, respectively. A difference between the validation and test RMSE as

large as this indicates that the model has been overfit to the training data, as it does not

perform particularly well on neither the validation nor test data compared to the other models.

The multi-layer LSTM model

The multi-layer LSTM model used for forecasting the copper price is built up with two LSTM

layers consisting of 32 units and a dense layer with 32 units. The return_sequence parameter

described in chapter 3.5.1 is set to True for the first layer and False on the second layer. This

structure is required when stacking LSTM layers where all layers need to return outputs for

the full sequence except the last layer, which only returns its output from the final timestep.

In total this structure yields 15 301 parameters giving the model a smaller capacity than the

single-layer LSTM. A detailed summary of the model can be found in the appendix.

70

Figure 49 - Training- and validation loss (multi-layer LSTM zinc) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training process for the multi-layer LSTM model stops after five epochs and have most of

the progress in the first epoch. The training loss have a steady decline over all the epochs

starting to flatten more out after the first epoch. The validation loss is more volatile and starts

to increase after the second epoch. As with the single layer LSTM, the model seems to overfit

as it struggles to generalize on both the validation data and especially the test data.

Figure 50 - Prediction of a single sequence (multi-layer LSTM zinc)

71

From the example shown in figure 50 we can see that the model seems to predict the sequence

in a similar way to the previous models and the predictions does not change much from one

timestep to another. All in all, the model performs worse than the baseline but better than the

dense and single-layer LSTM models with a validation RMSE of 0,2815 and a test RMSE of

0,5761. As with the single-layer LSTM model, the test performance is poor as the test RMSE

is more than double of the validation RMSE.

The single-layer GRU model

As an alternative to the LSTM layers, this model applies a single GRU layer where the

number of units is set to 16, yielding a total of 1 525 parameters which is the around the

average number of parameters thus far for single-layer LSTM and GRU models. The

return_sequence parameter described in chapter 3.5.1 is set to false so that the layer only

returns the output at the final timestep. A detailed summary of the model can be found in the

appendix.

Figure 51 - Training- and validation (single-layer GRU zinc) . Y-axis displays the MSE and the x-axis shows the epochs during
training

72

The training of the single-layer GRU model shown in figure 51, and we can see that the

majority of the reduction in the loss happens before the third epoch. The validation loss is

slightly higher than the training loss after the first epoch, but as the number of epochs

increases the difference between the training and validation loss does not increase except for

the last two epochs where the validation loss has a slight increase. This indicates that the

model does not overfit to the training data and generalizes well on the validation- and test

data.

Figure 52 - Prediction of a single sequence (single-layer GRU zinc)

The example shown in figure 52 we can see that the model predicts in a similar fashion to the

LSTM models where all the predictions comes in an almost straight line based on the

observation on the fourth timestep. This however is just one sample and in total the model

performs worse than the baseline but better than all the other models for zinc on the validation

data with a RMSE of 0,1121 and a test RMSE better than all other zinc models besides the

dense model with a RMSE of 0,2440. A small difference between the validation and test

RMSE indicates a model that does not overfit and generalizes fairly well, which seems to be

truer for the single-layer GRU model than the LSTM models.

The multi-layer GRU model

The multi-layer GRU model is built up in the same fashion as the multi-layer LSTM model

for zinc with two GRU layers consisting of 32 units and a dense layer with 32 units. The

return_sequence parameter described in chapter 3.5.1 is set to True for the first layer and

False in the second layer. This is a required structure when stacking GRU layers where all

layers need to return outputs for the full sequence except the last layer, which only returns its

output from the final timestep. In total this structure yields 11 973 parameters giving the

model a solid capacity but with fewer parameters than the multi-layer LSTM, even though the

model architecture is the same. This is because of the way the GRU layer is built up compared

73

to the LSTM layer, which is described in detail in chapter 3.5.4 and 3.5.5. A detailed

summary of the model can be found in the appendix.

Figure 53 - Training- and validation loss (multi-layer GRU zinc) . Y-axis displays the MSE and the x-axis shows the epochs
during training

The training of the multi-layer GRU model shown in figure 53. Training stops after five

epochs where the training loss is reduced the most in the first epoch with a steady decrease

until epoch five. The validation loss for this model is slightly lower than the training loss,

indicating that the model is generalizing well. Results like these does not indicate overfitting.

Figure 54 - Prediction of a single sequence (multi-layer GRU zinc)

74

The example in figure 54 shows that the multi-layer GRU predicts this sequence similarly to

the other models for zinc. Keep in mind this is just one sample and in total the model

performs worse than the baseline but has the best validation RMSE among all the other

models at 0,1036. It also beats both the LSTM models and the single-layer GRU model on

test RMSE only beaten by the dense model and the baseline with a test RMSE of 0,1995. A

small difference between the validation and test RMSE indicates a model that does not overfit

and generalizes well, which is somewhat the case for this model.

75

5. Discussion
In this chapter the results from chapter 4 will be discussed and analyzed. Since the metric

RMSE measures the error in absolute terms one cannot compare the results directly between

the different metals as they are not necessarily on the same scale. Even though they are

normalized by subtracting the mean and dividing by the standard deviation of the training

data, these means and standard deviations are not equal between the metals. If a metric such

as MAPE was used that measures the error as a percentage it would be interpretable across

different metals, but as discussed earlier in chapter 3.6 this method often leads to zero-

division or extreme values due to very small values in the denominator. Therefore, the focus

of the discussion will be on the suitability of RNN for short-term metal price forecasts for the

specific metals. The first three subchapter will go over each metal individually and chapter

5.4 will discuss pros and cons of the approach in this paper and what may have affected these

results.

5.1 Aluminum
Figure 55 summarizes the forecasting results for the validation- and test set for Aluminum

presented in chapter 4.1.

Figure 55 - Validation and test RMSE aluminum

76

The first and possibly most important finding when forecasting the aluminum price in the

short-term is that the “last-known observation” baseline outperforms all the other models

where the simple dense model comes closest. The multi-layer LSTM model had by-far the

worst performance on the aluminum price with a RMSE of 0,2122 which is more than double

of the baseline at 0,0942 seen in figure 56.

Figure 56 - Test RMSE Aluminum

Another interesting finding is that the single-layer RNNs performed better than the multi-

layer RNNs where the single-layer LSTM and GRU model had a comparable RMSE on the

test set with 0,1327 and 0,1337 respectively. The multi-layer RNNs had problems in training

as seen in figure 27 and 31 where the validation results were erratic and moving a lot in both

directions between epochs. Out of the two multi-layer models, the GRU outperformed the

LSTM model with a test RMSE of 0,1630 and 0,2122 respectively. In general, we had issues

finding good multi-layer models that found a compromise between complexity and

regularization, or over- and underfitting, which to some degree can be seen for copper and

zinc as well in the next two sub-chapters. As described earlier, the choice of layers,

parameters, regularization etc. is often more an art than a science, so more time could be spent

testing out various combinations of weights and layers. However, this is very time consuming

and at one point we must call it a day and accept the results even if it is not as good as desired.

77

5.2 Copper
Figure 57 summarizes the forecasting results for the validation- and test set for copper

presented in chapter 4.2.

Figure 57 - Validation and test RMSE copper

As with aluminum, the “last-known observation” baseline outperforms all the other models

but in an even more significant manner. The dense model performed worse on copper than for

aluminum relatively to the other models. When it comes to the best performing models, the

single-layer GRU and the multi-layer LSTM performs well with a RMSE of 0,1017 and

0,1083 respectively. In comparison the baseline had a RMSE of 0,0432 which is less than half

of the second best performing models. For the dense model and the single-layer LSTM it

appears that the performance on the test set is much worse than for the validation set

compared to the other models. These models seem to struggle generalizing to new unseen

data.

Figure 58 - Test RMSE copper

78

Fewer problems in training appeared for copper than aluminum, and most of the models had

naturally looking loss curves with slightly higher validation RMSE than training RMSE. An

interesting point for the models forecasting copper is that the best performing model besides

the baseline, the single-layer GRU, is the model with the fewest parameters besides the dense

model with only 573 weights. When choosing a model one often wants to find the least

complex models that solves the problem. The single-layer GRU with only eight units seem to

be the best choice of model for predicting the copper price five days ahead based on the

previous five days based on the various models tested in this paper besides the baseline. On

the other hand, the baseline model predicting the same price for all five days outperforms all

the other models by a lot, which leaves the question if making a model forecasting the price is

necessary in the first place.

5.3 Zinc
The RMSE for the validation- and test set for the zinc price can be seen in figure 59

Figure 59 - Validation and test RMSE zinc

79

The first and possibly most important finding when forecasting the zinc price in the short-

term is that the “last-known observation” baseline outperforms all the other models just like

for aluminum and copper. The test RMSE for the baseline were 0,0876 where the dense

model was the second best with at test RMSE of 0,1695.

Figure 60 - Test RMSE zinc

Both the single-layer and multi-layer LSTM models have massive RMSE on the test set with

0,5356 and 0,5761 respectively, which is by far the worst of the models. Both these models

have a high capacity where the single-layer model has 64 units in its layer yielding a total of

20 037 parameters and the multi-layer with a total of 15 301 parameters. This major

difference between the training-, validation- and test performance indicates overfitting, which

also was the case when other combinations of layers and units were tested. Finding a

combination of good performance in-sample without overfitting and performing well out-of-

sample can be hard and was not achieved for these two models.

In comparison with the LSTM models, the GRU models had a more similar performance in-

sample and out-of-sample with validation RMSE around 0,1 and test RMSE of 0,2440 and

0,1995 for the single- and multi-layer models, respectively. These models with the single-

layer GRU in particular performed well in training as well as validation and testing compared

to the other models, where the loss in training decreased at a steady rate where the validation

and training loss were very similar. This was also the case for the multi-layer GRU but over

fewer training epochs.

5.4 General considerations
After reviewing the forecasting results it is important to note that none of the models

outperformed the “last-known observation” baseline. This begs the question if RNN are

suitable for this type of problem and based on the results in this paper the answer is probably

no. Spending time and recourses developing and maintaining a complex recurrent neural

network that performs worse than predicting the price at day two, three, four, five and six is

equal to the price at day one does not make much sense. However, this does not mean that

80

RNN are not suitable for time series regression and commodity price forecasts in general but

that for this specific dataset and timeframe it did not work well with the model specifications

chosen. If other combinations of layers and units or a different timeframe were chosen, the

results could have improved and is an area where further work can be done.

It is important to note that relative to for example sentiment analysis or other text modeling,

the dataset used in this paper is small. 6524 observations for ten different features got split

into 4566 observations for the training set, 1305 for the validation set and 653 for the training

set. When this again got split into sequences of ten (5+5) observations and stored in batches

with 32 sequences, yielding 143 training batches, 41 validation batches and 21 training

batches. Other commodities or financial instruments that reports their prices more often such

as for example Bitcoin could be another interesting task for RNN to tackle, since one would

have access to a much larger dataset.

When ignoring the baseline, there seem to be no clear winner between the LSTM and GRU

models on which models performed the best as the results differ between the different

commodities. However, the single-layer GRU seem to be the model that has the most even

performance on all three commodities and had good performance both in- and out-of-sample

relative to the other trainable models. An advantage GRU has over LSTM is the complexity

and reduced computation required when training the model. For larger networks and datasets

this advantage gets more apparent than in this paper.

When weighing the pros and the cons when using an RNN approach to commodity price

forecasting, the cons seem to outweigh the pros in this present work. Developing a RNN is

time consuming, requires domain knowledge and require a good amount of computational

power. It is also a black-box approach where it is hard for the researcher to figure out what the

model learned or if it actually learned anything. From simpler models such as linear

regression one can inspect the coefficients to see how much each feature contribute to the

output of the model, which is not the case for RNN. On the other side RNN has some

advantages when it comes to handling time information in the data which is important for

timeseries data.

As mentioned previously, the future price of a commodity does not necessarily depend on

previous prices and using historical data as input when forecasting commodity prices will

always have its flaws. Models are only as good as the data it is given and could be a

contributing factor to the results in this paper.

81

6. Conclusion and further work
The goal of this thesis was to determine if RNN could be used successfully to forecast the

prices of non-ferrous metals in the short-term. After identifying other variables that could

influence the price from a fundamental point of view, these variables were analyzed using

descriptive statistics and plots and these results aligned with the analysis done on the

fundamentals of these variables. After the dataset were split into training, validation and test

sets it was then split into smaller sequences consisting of ten sequential observations

including all ten variables and the “time-of-year signal” where the five first observations were

input and the last five were output.

Four RNN networks were trained as well as a “last-known observation” baseline and a simple

dense model. These RNNs failed to out-perform the baseline approach for both aluminum,

copper and zinc, where the performance on aluminum were the best with a RMSE of 0,1327

and 0,1337 for the single-layer- LSTM and GRU, compared to 0,0942 for the baseline on the

test data. For copper and zinc the RNNs struggled in general to make good predictions on the

test data, which was seen by large test RMSE compared to validation RMSE. The

performance in the training- and validation greatly differed from the performance on the test

data for some of the models, especially LSTM models forecasting zinc but also too some

extend the GRU models forecasting zinc. For copper, the GRU models performed best besides

the baseline, but still had a test RMSE of more than double of the baseline.

Based on the results from this work, RNNs does not seem to be a great choice for forecasting

the aluminum-, copper-, and zinc price in the short-term. However, this does not mean that

RNNs are not suitable for similar problems, but the specific model specifications used in this

work did not out-perform the baseline approach. Further work can be done on short-term

metal price forecasting, where a different time horizon could be used, another combination of

explanatory variables could be used as well as other forecasting techniques. When it comes to

the forecasting horizon, it is a difficult compromise to make as with a shorter time horizon the

forecast itself gives less value to the user. If a longer forecasting horizon is chosen, the

number of sequences in the dataset will decrease and may negatively impact the results. If one

is able to obtain intra-day data on a minute- or hourly timescale then one might have more

wiggle room when it comes to the time horizon. As with other explanatory variables, this

paper did not include prices of raw material such as iron ore and other energy commodities

like coal which might have been a better proxy for the energy cost. The demand of these

metals has a correlation with the general economic growth (Zhong et al., 2019) so an indicator

82

of the economic growth in various countries or regions could be used as an explanatory

variable. When it comes to the models themselves, this paper implemented “one-shot” models

where all the five predictions were made at the same time. Another approach to this is an

autoregressive approach where the output at one timestep is used as input in the next timestep

directly. Other model architectures such as the residual networks (ResNet) or the LSTNet

described in the literature section could be used. ResNet could take advantage of the fact that

the prices do not change much from one timestep to another and instead of predicting the

price itself to predict the change in price. The ResNet is built in a way so that each layer adds

to the accumulated result and by initializing the weights to zeros the model will predict small

changes. The LSTNet has shown promising results combining convolutional layers and

recurrent layers and would be interesting to utilize on metal price forecasting.

83

Citations

Ahti, V. (2009). Forecasting Commodity Prices with Nonlinear Models.
Anaconda. (2020). The State of Data Science 2020 - Moving from hype toward maturity.
Bandara, K., Bergmeir, C. & Hewamalage, H. (2021). Recurrent Neural Networks for Time Series

Forecasting: Current status and future directions. International Journal of Forecasting, 37 (1):
388-427. doi: https://doi.org/10.1016/j.ijforecast.2020.06.008.

Box, G. E. P., Jenkins, G. M. & STATISTICS., W. U. M. D. o. (1970). Time Series Analysis: Forecasting
and Control: Holden-Day.

Carter, C. A. (2012). Futures and Options Markets: An Introduction: RebelText.
Cho, K., Chung, J., Gulcehre, C. & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling.
Chollet, F. & Others. (2015). Keras: GitHub. Available at: https://github.com/fchollet/keras.
Chollet, F. (2017). Deep Learning with Python: Manning Publications Company.
Datastream. (2021). Eikon. Refinitiv online database (Datastream).
Figuerola-Ferretti, I. & Gilbert, C. (2008). Commonality in the LME aluminum and copper volatility

processes through a FIGARCH lens. Journal of Futures Markets, 28: 935-962. doi:
10.1002/fut.20338.

Gal, Y. (2016). Uncertainty in Deep Learning.
Ganapathyraman, S., Sugumaran, S., Komatheswari, T., Surulivel, S. T., Selvabaskar, S., Anand, V. V. &

Rengarajan, V. (2018). A study on relationship between price of us dollar and selected
commodities. International Journal of Pure and Applied Mathematics, 119: 203-224.

Greff, K., Srivastava, R., Koutník, J., Steunebrink, B. & Schmidhuber, J. (2015). LSTM: A search space
odyssey. IEEE transactions on neural networks and learning systems, 28. doi:
10.1109/TNNLS.2016.2582924.

Harris, C. R., Millman, K. J., van der Walt, S. & J Gommers, R. a. V., Pauli and Cournapeau, David and
Wieser, Eric and Taylor, Julian and Berg, Sebastian and Smith, Nathaniel J. and Kern, Robert
and Picus, Matti and Hoyer, Stephan and van Kerkwijk, Marten H. and Brett, Matthew and
Haldane, Allan and Fernández del Río, Jaime and Wiebe, Mark and Peterson, Pearu and
Gérard-Marchant, Pierre and Sheppard, Kevin and Reddy, Tyler and Weckesser, Warren and
Abbasi, Hameer and Gohlke, Christoph and Oliphant, Travis E. (2020). Array programming
with NumPy. Nature. Available at: https://numpy.org/.

Harrison, D. & Rubinfeld, D. (1978). Hedonic housing prices and the demand for clean air. Journal of
Environmental Economics and Management, 5: 81-102. doi: 10.1016/0095-0696(78)90006-2.

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9: 1735-80.
doi: 10.1162/neco.1997.9.8.1735.

Hochreiter, S., Bengio, Y., Frasconi, P. & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In Kremer, S. C. & Kolen, J. F. (eds) A Field
Guide to Dynamical Recurrent Neural Networks: IEEE Press.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Available at: https://matplotlib.org/.
ICE. (2020). US Dollar Index Futures. Intercontinental Exchange: Intercontinental Exchange. Available

at: https://www.theice.com/products/194/US-Dollar-Index-Futures (accessed: 02.12.2020).
ILZSG. (2021). End Uses: International Lead and Zinc Study Group. Available at:

https://www.ilzsg.org/static/enduses.aspx?from=1.
Jue, W., Zhen, W., Xiang, L. & Hao, Z. (2019). Artificial bee colony-based combination approach to

forecasting agricultural commodity prices. International Journal of Forecasting. doi:
https://doi.org/10.1016/j.ijforecast.2019.08.006.

Labys, W. C. (2006). Modeling and Forecasting Primary Commodity Prices. 1 ed.: Routledge.
Lai, G., Chang, W.-C., Yang, Y. & Liu, H. (2018). Modeling Long- and Short-Term Temporal Patterns

with Deep Neural Networks. The 41st International ACM SIGIR Conference on Research

https://doi.org/10.1016/j.ijforecast.2020.06.008
https://github.com/fchollet/keras
https://numpy.org/
https://matplotlib.org/
https://www.theice.com/products/194/US-Dollar-Index-Futures
https://www.ilzsg.org/static/enduses.aspx?from=1
https://doi.org/10.1016/j.ijforecast.2019.08.006

84

& Development in Information Retrieval, Ann Arbor, MI, USA, pp. 95–104: Association
for Computing Machinery.

LeCun, Y. & Cortes, C. (2010). MNIST handwritten digit database.
Lehfeldt, R. A. (1914). The Elasticity of Demand for Wheat. The Economic Journal, 24 (94): 212-217.

doi: 10.2307/2222421.
Liu, C., Hu, Z., Li, Y. & Liu, S. (2017). Forecasting copper prices by decision tree learning. Resources

Policy, 52: 427-434. doi: https://doi.org/10.1016/j.resourpol.2017.05.007.
LME. (2021). Annual Trading Volumes: London Metal Exchange. Available at:

https://www.lme.com/Market-Data/Reports-and-data/Volumes/Annual-volumes.
Malliaris, A. & Malliaris, M. (2009). Time series and neural networks comparison on gold, oil and the

euro.
Martín Abadi, A. A., Paul Barham, Eugene Brevdo,, Zhifeng Chen, C. C., Greg S. Corrado, Andy Davis,,

Jeffrey Dean, M. D., Sanjay Ghemawat, Ian Goodfellow,, Andrew Harp, G. I., Michael Isard,
Rafal Jozefowicz, Yangqing Jia,, Lukasz Kaiser, M. K., Josh Levenberg, Dan Mané, Mike
Schuster,, Rajat Monga, S. M., Derek Murray, Chris Olah, Jonathon Shlens,, Benoit Steiner, I.
S., Kunal Talwar, Paul Tucker,, Vincent Vanhoucke, V. V., Fernanda Viégas,, Oriol Vinyals, P.
W., Martin Wattenberg, Martin Wicke, & Yuan Yu, a. X. Z. (2015). Tensorflow: Large-Scale
Machine Learning on Heterogeneous Systems. Available at: https://www.tensorflow.org/.

McKinney, W. & Others. (2010). Data structures for statistical computing in python. Available at:
https://pandas.pydata.org/docs/.

Olah, C. (2015). Understanding LSTM Networks. Github.
Ouyang, H., Wei, X. & Wu, Q. (2019). Agricultural commodity futures prices prediction via long- and

short-term time series network. Journal of Applied Economics, 22 (1): 468-483. doi:
10.1080/15140326.2019.1668664.

Pontius, R., Thontteh, O. & Chen, H. (2008). Components of information for multiple resolution
comparison between maps that share a real variable. Environmental and Ecological Statistics,
15: 111-142. doi: 10.1007/s10651-007-0043-y.

Raschka, S. & Mirjalili, V. (2017). Python Machine Learning: Machine Learning and Deep Learning
with Python, scikit-learn, and TensorFlow, 2nd Edition: Packt Publishing.

S&P. (2021). S&P GSCI Natural Gas. Available at:
https://www.spglobal.com/spdji/en/indices/commodities/sp-gsci-natural-gas/#overview.

Slutsky, E. E. (1927). Slozhenie sluchainykh prichin, kak istochnik tsiklicheskikh protsessov. Voprosy
kon’’yunktury, 3 (1): 34-64.

Tayefi, M. & Ramanathan, T. V. (2016). An Overview of FIGARCH and Related Time Series Models.
Austrian Journal of Statistics, 41 (3): 175–196. doi: 10.17713/ajs.v41i3.172.

Tensorflow. (2021). Time series forecasting. Available at:
https://www.tensorflow.org/tutorials/structured_data/time_series#data_windowing.

Theil, H. & Collection, K. M. R. (1971). Principles of Econometrics: Wiley.
Waskom, M., Botvinnik, O., O'Kane, D., and, P. H., and, S. L., and, D. C. G., and, T. A., and, Y. H., and, J.

B. C., and, J. W., et al. (2017). mwaskom/seaborn: v0.8.1 (September 2017): Zenodo.
Available at: https://seaborn.pydata.org/.

Yule, G. U. (1927). On a method of investigating periodicities in disturbed series, with special
reference to Wolfer's sunspot numbers: Harrison and Sons.

Zhong, M., He, R., Chen, J. & Huang, J. (2019). Time-varying effects of international nonferrous metal
price shocks on China’s industrial economy. Physica A: Statistical Mechanics and its
Applications, 528: 121299. doi: https://doi.org/10.1016/j.physa.2019.121299.

https://doi.org/10.1016/j.resourpol.2017.05.007
https://www.lme.com/Market-Data/Reports-and-data/Volumes/Annual-volumes
https://www.tensorflow.org/
https://pandas.pydata.org/docs/
https://www.spglobal.com/spdji/en/indices/commodities/sp-gsci-natural-gas/#overview
https://www.tensorflow.org/tutorials/structured_data/time_series#data_windowing
https://seaborn.pydata.org/
https://doi.org/10.1016/j.physa.2019.121299

85

Appendix

Baseline (same for all metals)

Dense model (same for all metals)

Single-layer LSTM Aluminum

86

Multi-layer LSTM Aluminum

87

Single-layer GRU Aluminum

Multi-layer GRU Aluminum

88

Single-layer LSTM Copper

89

Multi-layer LSTM Copper

Single-layer GRU Copper

90

Multi-layer GRU Copper

91

Single-layer LSTM Zinc

Multi-layer LSTM Zinc

92

Single-layer GRU Zinc

Multi-layer GRU Zinc

93

