

Master’s Thesis 2021 30 ECTS
Faculty of Science and Technology

Determining the origin of impulsive
noise events using wireless sound
sensors

Fabian Nemazi
Master of Science in Data Science

Preface

This thesis was a use case for Politiets Nasjonale Beredskapsenter in collaberation
with Soundsensing A/S. It was written at the Norwegian University of Life Sci-
ences in the spring of 2021 and marked the end of my study time at NMBU.

Firstly, I would like to thank my supervisor from NMBU, Associate Professor
Ulf Geir Indahl. Your guidance and help provided me significantly. Furthermore,
I owe a special thanks to my supervisor from Soundsensing A/S, Jon Nordby.
His willingness to respond to my messages at any given day or time was invalu-
able.

Moreover, I thank my great friend Meron Haile for taking the time to review my
thesis and provide input to improve. I also owe a special thank you to Emil Skar.
He must’ve had 22 conversations with me, sparring over solutions and helping me
immensely.

Lastly, I thank my mother and brother for their support throughout my years at
NMBU. I would like to emphasize the influence my brother had guiding me in the
right direction in life. I firmly believe I would not be where I am without him. I
dedicate this thesis to him.

Oslo, 01.06.2021

Fabian Nemazi

i

Abstract

Environmental noise is a serious and growing pollution problem, with over 100
million people affected in Europe just by road traffic. Measuring and monitoring
noise using a wireless sensor network is therefore getting more common. How-
ever, many scenarios consist of multiple sources of noise, with each source vary-
ing over time. That presents a challenge in determining which noise source is
the cause of high noise levels, which is necessary to identify to reduce the prob-
lem.

This work investigates how to identify the source of impulsive noise events using
a pair of wireless noise sensors. One sensor is placed at a known noise source, and
another sensor is placed at the noise receiver. Machine learning models receive
data from the two sensors and estimate whether a given noise event originates
from the known noise source or another source.

In order to avoid privacy issues, the approach uses on-edge preprocessing that
converts the sound into privacy compatible spectrograms and sound level repre-
sentations. These different representations of sound can be stored, combined, and
processed at a central server.

The system was evaluated at a shooting range and explosives training facility,
using data collected during noise emission testing. The combination of convolu-
tional neural networks with cross-correlation achieved the best results (denoted
bundled model). We created multiple bundled models with different stacking of
delta-spectrograms. The best model detected 70.8% of the impulsive noise events
and correctly predicted 90.3% of the noise events in the optimal trade-off between
recall and precision score.

ii

Sammendrag

Miljøstøy er et seriøst og økende forurensingsproblem med over 100 millioner
mennesker påvirket i Europa av veitrafikk. Målinger og monitorering av støy
ved hjelp av trådløse sensor nettverk er derfor stadig vanligere. Mange scenarioer
består derimot av flere kilder med støy, hvor hver kilde varierer i tid. Dette presen-
terer en utfordring når det gjelder å avgjøre hvilken støykilde som er årsaken til de
høye støynivåene, som er nødvendig å identifisere for å redusere problemet.

Dette arbeidet undersøker hvordan støykilden til impulsive støybegivenheter kan
identifiseres ved bruk av et par trådløse støy sensorer. En sensor er plassert hos en
kjent støykilde, og en annen er plassert hos støymottakeren. Maskinlærings mod-
eller mottar data fra de to sensorene og estimerer hvorvidt en gitt støy begivenhet
kommer fra den kjente støykilden eller noe annet.

For å unngå problemer med personvern bruker denne tilnærmingsmåten ‘on-edge’
preprosessering som konverterer lyd til personvernskompatible spektrogrammer
og lydnivå representasjoner. Disse ulike representasjonene av lyd kan bli lagret,
kombinert og prosessert hos en server.

Systemet ble evaluert på skytebaners og eksplosivers treningsfasilitet, ved bruk
av data innsamlet fra testingen av støy forurensing. Kombinasjonen av konvo-
lusjonalt nevrale nettverk sammen med kryss-korrelasjon oppnådde best resultater
(betegnet samlet modell). Vi skapte flere samlede modeller med ulike stablinger
av ulike delta-spektrogrammer. Den beste samlede modellen detekterte 70.8%
av de impulsive støy hendelsene og predikerte korrekt på 90.3% av hendelsene
identifiserte som støy i den optimale kompromisset mellom precision og recall
score.

iii

Contents

1 Introduction 1
1.1 Noise . 1
1.2 Monitoring noise with wireless sensor networks 2
1.3 PNB . 3
1.4 Problem statement . 5

2 Theory 6
2.1 Physics of sound . 6

2.1.1 Sound . 6
2.1.2 Amplitudes . 7
2.1.3 Frequency . 8
2.1.4 Sounds speed, propagation and absorption 8
2.1.5 Measuring sound . 10
2.1.6 Limits for noise . 11

2.2 Audio classification . 12
2.2.1 Digital audio . 12
2.2.2 Spectrograms . 13
2.2.3 Mel-spectrograms . 14
2.2.4 Delta-spectrograms . 14
2.2.5 Analysis windows . 15

2.3 Combining signals . 17
2.3.1 Time series . 17
2.3.2 Cross-correlation . 17
2.3.3 Fourier transform of the cross-correlation 18

2.4 Machine learning . 20
2.4.1 Random forest classification 21
2.4.2 Classification problems and performance metrics 24
2.4.3 The bias-variance trade-off 26

iv

2.4.4 Grid search and model-validation 28
2.5 Neural networks . 30

2.5.1 Multi-layer neural network 31
2.5.2 Activation functions . 33
2.5.3 Loss functions . 35
2.5.4 Optimization . 36
2.5.5 Training a neural network 37
2.5.6 Convolutional neural networks (CNN) 39

3 Materials and methods 43
3.1 Soundsensing IoT soundsensors 43
3.2 Data collection . 43
3.3 Data labelling . 44
3.4 Handling privacy issues . 46
3.5 Choosing evaluation metric . 46
3.6 Preprocessing . 47

3.6.1 Time delay and creation of windows 47
3.6.2 Overlapping within windows - data augmentation 48
3.6.3 Mel-spectrograms and delta-spectrograms 49
3.6.4 Stacking delta-spectrograms 50
3.6.5 Feature engineering . 51

3.7 Model evaluation . 51
3.7.1 Predicting noise with random forest 52
3.7.2 Bundled model - convolutional neural networks combined

with cross correlation . 53
3.7.3 Difference in representation of data 56

v

4 Results 58
4.1 Noise detection with a random forest classifier 59
4.2 Convolution Neural Network models result 61

4.2.1 Detection of impulsive noise at the settlement 61
4.2.2 Detection of impulsive noise at PNB 63

4.3 Impulsive noise detection with the bundled models 64
4.4 Comparing recall/precision trade-off between the models 67

5 Discussion 69
5.1 Discussion of method . 69

5.1.1 Shortage in data collection 69
5.1.2 The creation of data labels 69
5.1.3 Choosing models . 70
5.1.4 Architecture selection for CNN’s 71

5.2 Discussion of results . 71
5.2.1 Random forest results 71
5.2.2 Bundled models results 72
5.2.3 Comparing the models 72
5.2.4 Regarding thresholds . 73

5.3 Practical evaluation of the solution 74
5.4 Future work . 74

6 Summary and conclusion 76

Bibliography i

vi

List of Tables

2.1 The speed of sound dependent on temperature and humidity . . . 10
2.2 Table overview of decibel measurements of sounds 11
2.3 Overview of noise around the facility 12

3.1 Hyperparameters for random forest 53

4.1 Mean average precision and standard deviation for CNN models
at the settlement . 62

4.2 Mean average precision and standard deviation for PNB’s CNN
models . 64

4.3 Optimal F1 tradeoff for the models 68

vii

List of Figures

1.1 The system for a low cost sound sensor 2
1.2 Picture of the PNB’s training facility 3
1.3 Sound recorders placement at training facility 4

2.1 Example of a vibrating string . 6
2.2 Amplitudes . 8
2.3 Illustration of the digital result dependent on the amount of mea-

surement per second . 13
2.4 Audio pressure wave converted to spectogram 15
2.5 Audio stream split . 16
2.6 The workings of cross-correlation 18
2.7 Fourier transform . 19
2.8 Fourier transform applied on cross-correlation 20
2.9 Random forest tree . 22
2.10 Majority voting in the random forest model 24
2.11 The bias-variance trade-off . 27
2.12 Splitting of dataset in cross-validation 29
2.13 How the scores are kept in every split in k-fold cross-validation . . 30
2.14 Single layer neural network . 31
2.15 Multi-layer neural network . 32
2.16 Sigmoid function and its derivative 33
2.17 ReLU activation function and its derivative 34
2.18 Binary Cross-Entropy . 36
2.19 Gradient descent . 37
2.20 The anatomy of a neural network 38
2.21 Dimensions of an image . 39
2.22 Kernel shifts in a convolutional layer 40
2.23 Padding in CNN . 41
2.24 Poling . 41
2.25 CNN architecture . 42

viii

3.1 Flow chart of the data collection steps 44
3.2 Overview of Audacity . 45
3.3 Data creation on sound sensor 46
3.4 Creating overlapping windows 48
3.5 Creating overlapping sub-windows 49
3.6 Spectrogram dataframe . 50
3.7 Feature engineered dataset . 51
3.8 Convolutional neural network models combined with cross corre-

lation . 54
3.9 Architecture of the CNN models 55
3.10 Decibel representation of the data 56
3.11 Spectrogram representation of the data 57

4.1 Cross validation score from the random forest model 59
4.2 Precision-recall curve for the random forest model on test data . . 60
4.3 Boxplot of the average precision scores from the settlements CNN

models . 61
4.4 Boxplot of the average precision scores from PNB’s CNN models 63
4.5 Precision-recall curve for the bundled models on test data 65
4.6 Bundled models multiple chances to detect noise 66
4.7 Precision-recall curve for all the models 67

ix

Chapter 1

Introduction

1.1 Noise
”Noise makes no good, good makes no noise” said Saint Vincent de Paul, a priest
who dedicated his entire life helping the poor. Some would agree, and some
would argue that noise is unavoidable. Regardless, noise has been an increasing
issue over the years. With the steadily more urbanizing, recreational activities,
and humans implementing new technology, noise is here to stay. The increasing
noise caused by humans has led to the discovery of noise’s effect on health.

Around 50% of humans in several European countries are regularly exposed to
noise levels of 55 decibels or higher during the day. In Oslo, a total of 508 400
people are exposed to day-evening-night average sound levels of 55 dB or higher
from road traffic [1]. According to Worlds Health Organization (WHO), this has
negative impacts on health [2]. European Economic Area (EEA) has estimated
that long-term exposure to environmental noise causes around 12000 premature
death each year across Europe [2].

Noise and sound are for many inseparably. Noise is perceived differently from
person to person. Noise is, therefore, a very subjective term. It can be described
as any unwanted sound. Humans detect these sounds like a less pleasant sensation
and often try to screen it out [3].

The emission of noise from sources has been monitored and regulated by the
EU for many years. In 2002, the introduction of Environmental Noise Directive
(END) sought to monitor EU regulations’ effectiveness by assessing environmen-

1

tal noise at the Member State level (members of the EU). That meant that if mea-
sured noise at a given source preceded the given limit, actions had to be taken
to reduce exposure. Since then, noise maps have been created every fifth year
and cover all urban areas, railways, major roads, and airports over a specific size
[4].

1.2 Monitoring noise with wireless sensor networks
An increasing number of cities have deployed networks of sound sensors. Gener-
ally, the sensors have been positioned in areas of interest. Correspondingly, this
permits control of which districts having high emission of noise. There have been
high costs related to sensors that deal with these issues. However, in recent years
a low-cost sound sensor with dense coverage has emerged on the market, and it
can be designed to operate wirelessly.

Figure 1.1: Building block diagram of a noise monitoring system [5].

Illustration of how the sound registered is sent up to the cloud.

This typical noise monitoring system includes smart sensors that connect through
a wireless uplink to a cloud service. The smart sensors have a measurement mi-
crophone and single-board computer, which could be described as a complete
computer built on a single circuit board. This smart sensor sends out data via a
wireless transition unit [5]. It is privacy issues regarding recording. However, this
smart sensor processes the ability to prepossess and classify on the sensor. This
ability could help to alleviate the privacy issue.

2

1.3 PNB
This thesis is regarding a feasibility study for Soundsensing A/S and Politiets
Nasjonale Beredskapssenter (PNB). Soundsensing is a start-up company that spe-
cializes in environmental noise data. They have created a sensor device called the
”Soundsensing Noise Monitor”, a noise monitor. In combination with machine
learning which analyzes collected data, its purpose is to differentiate between var-
ious noise sources.

PNB has recently moved into a new training base, where the police’s special force
team undergoes their training. As this is the special force team, their training
includes simulation of possible terror and high-threat attacks. Furthermore, they
use different weapon types. These weapons vary from hand weapons with and
without silencers to bombs with distinct amounts of explosives.

The issue surrounding this training facility is the settlement laying approximately
1 kilometer away. Accordingly, the municipality has expressed a desire to have a
solution that tracks noise generated by PNB and its effect on the settlement.

Figure 1.2: Picture of the training facility [6]. Facility consists of three

different shooting ranges (all with different length) and one houses for

explosives training.

Figure 1.2 displays the appearance of the training facility. PNB and the munici-
pality have increased focus on limiting noise emissions. Therefore the facility is
built in a specific manner where sound is contained. They have collaborated with
acousticians to achieve the best noise reduction solutions possible. Figure 1.2
shows how each shooting range is built into the ground, with hills surrounding the
entire field. This makes the sound travel in the shooting direction and minimizes

3

the spread of sound.

Soundsensing, in collaboration with PNB, placed professional sound recorders
around the facility and the settlement during the noise emission testing. During
the data collection, the activity tested at PNB was intended to be ’worst-case’
scenarios, where one can research whether this affects the settlement close by.
These sound recorders will work as temporary stand-ins for sound sensors until a

Figure 1.3: Graphics showing the different sound recorders placement

around the facility. [6]. In total five different sound recorders were placed

at PNB.

potential solution is achieved.

4

1.4 Problem statement
To summarize, PNB and the municipality have built the training facility such that
noise should not negatively affect the nearby settlement. However, they are in-
terested in monitoring their actual noise emissions and have collaborated with
Soundsensing A/S. In a trial project, sound recorders were placed around the fa-
cility and recorded sound data under ’worst-case’ scenarios. This allows analyzing
how noise from PNB spreads to the settlement. Since a residential area also has
many other noise sources, it is critical to differentiate between noise originating
from PNB and noise originating from other sources.

That above distills the following research question to be addressed and explored
in this thesis:
Is it possible to detect and track origin of impulsive noise events with the help of
multiple wireless sound sensors?

5

Chapter 2

Theory

2.1 Physics of sound

2.1.1 Sound
Sound is a change in the air pressure, moving or swinging back and forth in a
regular rhythm around the atmospheric pressure [7]. Humans are familiar with
the concept of sound through hearing, but that is a perception of sound. More
specifically, the sound is a wave that in many instances operates as a periodic
wave [8]. A periodic wave is a wave with a continuous repeating pattern. This
pattern describes the wavelength and frequency [9].

Figure 2.1: A vibrating string producing a sound wave[8].

6

Figure 2.1 illustrates how the string oscillates back and forth and transfers energy
to the air. Some small part of the strings compresses and expands the surrounding
air, which creates slightly higher and lower local pressures. It could be further
explained in-depth:

a) The vibrating string moves to the right and expands the air behind it.

b) When the string moves to the left, it creates another compression and rar-
efaction as the one in a).

c) After a series of many vibrations, multiple compressions and rarefactions
are moving away from the string as a sound wave. The graph shows gauge
pressure (pressure relative to atmospheric pressure) versus distance from
the source.

2.1.2 Amplitudes
The amplitude of a periodic wave could be expressed as the maximum difference
of the wave’s waves’ extreme values (minimum or maximum value of a wave)
over one period. That is usually the distance between the top and bottom of the
curve. The sound wave could either have a large amplitude or a low amplitude.
Large amplitude signifies high sound levels, and low amplitude would signify the
opposite; low sound levels (quiet) [8]. No matter the size of the amplitude, it
decreases with distance from the source.

7

Figure 2.2: Visualization of what could be described as amplitudes

[3].

2.1.3 Frequency
The measuring method for a unit of frequency is Hertz (Hz). Hz describes the
number of cycles repeated per second, where one cycle per second equals 1 Hz.
The human ear can normally hear sound frequencies between 20 and 20 000 Hz
[10]. Each sound wave has a length that depends on the frequency and the wave’s
speed in a specific direction. This frequency is defined more precisely by the pe-
riod, measured by the time it takes to repeat a cycle. Typical high-frequency sound
has short wavelengths and contains low energy, while low-frequency sounds have
long wavelengths and contain high energy [11]. That could be observed in figure
2.2, where the lower pitch has a longer wavelength.

2.1.4 Sounds speed, propagation and absorption
In section 2.1.1 on page 6 we established that sound is a change in the air pressure,
I.E., pressure waves traveling through the air. The frequency is the how often, and
speed is the quantity that defines how fast. Speed is defined as the distance that
a point on a wave travels per unit of time [12]. The speed could therefore be
elaborated as speed = distance

time
. There are conditions related to the speed of a

8

sound wave. One is the property of the medium in which the wave is propagating
[13]. For example, a sound wave will travel faster in a less dense material than
a denser material [14]. The following will affect the speed (moving through the
air): [15]:

• Coherence between density and pressure, could, due to the temperature,
affect the speed of sound.

• The motion of the medium, meaning the wind. If the motion of the moment
is in a tailwind, it will be further transported.

• The medium’s resistance to deformation at a given rate, which affects the
rate at which the sound is attenuated.

• The humidity, which is the result of water vapor being present in air.

Furthermore, sound waves propagating could be absorbed along the way. Sound
absorption is a measure of energy reduction when a sound wave propagates through
a material. When a sound wave spreads, it could strike the surface of a material. If
this occurs, the wave is either reflected or penetrates the material [7]. Therefore,
sound waves are generally absorbed by objects when spreading [8]. The speed of
sound depends on temperature and humidity and is approximated by the following
equation:

c =
√
γ ∗R ∗ T (2.1)

Here γ = cp
cv

is the ratio of specific heats, R is the specific gas and T is the temper-
ature. Both γ and R depends on the composition of gas, which includes humidity
in the air. Based on equation (2.1), one can derive the following table:

9

Temp

(°C)

Speed of sound (m/s)

Relative Humidity (%)

10 20 30 40 50 60 70 80 90

-15 322.23 322.24 322.25 322.26 322.27 322.28 322.29 322.30 322.31

-5 328.43 328.45 328.47 328.49 328.51 328.53 328.55 328.57 328.59

5 334.52 334.56 334.61 334.65 334.70 334.74 334.79 334.83 334.88

15 340.52 340.61 340.7 340.79 340.88 340.97 341.06 341.15 341.24

25 346.44 346.62 346.79 346.96 347.13 347.30 347.47 347.65 347.82

30 349.38 349.62 349.85 350.08 350.31 350.55 350.78 351.01 351.24

Table 2.1: The table shows the speed of sound as a function of tempera-

ture and humidity. The upper and lower temperatures are chosen based

on the maximum and minimum temperatures in Oslo in 2020.

From table 2.1, it can be concluded (calculated from the mean of the values) that
the average speed of sound is about 337 m/s.

2.1.5 Measuring sound
2.1.2 on page 7, described how the amplitude was the height of waves from their
middle position. This height determines loudness measured in decibels (dB), re-
flecting the intensity in pressure waves. Decibel is a dimensionless unit, which
expresses the logarithmic ratio between two physical quantities and quantifies the
relative loudness [3]. The formula used for decibel is

dB = 10log10(
S1

S2

), (2.2)

where S1 and S2 are the intensity of two sounds. S1 is the measured quantity, and
S2 the reference quantity. The reference quantity is usually an intensity of sound
around the hearing threshold. Due to decibel being measured on a logarithmic
scale, the intensity would double on a 3 dB increase [16].

10

Noise source Decibel level Decibel effect

Jet take-off (at 25 meters) 150 Eardrum rupture.

Thunderclap, chain saw 120 Painful. 32 times as loud as 70 dB.

Boeing 737 or DC-9 aircraft at one

nautical mile before landing
90

4 times as loud as 70 dB.

Likely damage in 8 hour exposure.

Garbage disposal 80
2 times as loud as 70 dB.

Possible damage in 8 hour exposure.

Vacuum cleaner 70

Arbitrary base of comparison.

Upper 70s are annoyingly loud

to some people.

Conversation in restaurant 60 Half as loud as 70 dB. Fairly quiet.

Quiet suburb, conversation at home 50 1/4 as loud as 70 dB.

Library 40 1/8 as loud as 70 dB.

Quiet rural area 30 1/16 as loud as 70 dB. Very quiet.

Breathing 10 Barely audible.

Table 2.2: An overview of different measurements of sounds and human

perception of it [17].

2.1.6 Limits for noise
The European Noise Directive (END) operates with two leading indicators, Lden
and LAFmax [18]. They use the indicators to determine noise levels. Lden is the
average noise level for a day and stands for noise throughout the day, evening,
and night. The moments are 07-19 as day, 19-23 as evening, and 23-07 as night.
LAFmax is the maximum noise level measured during a time period. From the fol-
lowing information, the following boundaries exist for the shooting range:

11

Noise source

Noise level in

outdoor facilities and

outside the windows

of rooms used to noise

increasing activities

Noise level outside

bedrooms in timeframe

night 23-07

Noise level in outdoor

facilities and outside

the windows of rooms

used to noise increasing

activities. In timeframe

day and night, 07-23.

Shooting ranges Lden 35 dB
No activity should

be taking place
LAFmax 65 dB

Table 2.3: Overview of acceptable noise level from noise source [6].

Furthermore, noisy training activity at PNB is only allowed on weekdays between
07:00 and 19:00.

2.2 Audio classification

2.2.1 Digital audio
Digital audio is incorporated in many different technologies and serves properties
as computers, phones, and speakers. A digital audio interface incorporates analog-
to-digital and digital-to-analog converters [19]. These converters allow recording
analog audio data from a microphone to a digital data stream. The sound’s pres-
sure waves can be measured on a physical medium for later reproduction by re-
generating the pressure waves. When the data is converted to digital data streams,
it becomes possible to manipulate with computers.

The sample rate is an essential aspect of converting pressure waves to digital au-
dio. Samples rate is the number of samples captured per second to represent a
sound wave [20]. These sample rates are measured in Hz or cycles per second. In
converting audio pressure wave to digital audio, the wave is converted into data
through a series of samples. The sample is taken at a particular time and records
the amplitude. Finally, the recorded amplitude is converted into binary data.

Figure 2.3 on the following page illustrate how the sample rate affects the digital
result. When the sample rate is high, an analog wave’s complexity grows, and the

12

reconstruction possibilities increase. The typical sampling frequency is 44100 Hz
and captures most perceivable human information in acoustic sound [20].

Figure 2.3: Illustration of the digital result dependent on the samples rate

[21].

2.2.2 Spectrograms
A spectrogram is described as a detailed audio view, representing time, frequency,
and amplitude all in one graph. Different sounds often have characteristics not
just in time but also in frequency content [22]. Therefore, the spectrogram is
commonly used when analyzing audio.

Spectrograms are two-dimensional graphs, with a third dimension represented by
the color. The vertical axis represents frequency, the horizontal axis represents

13

time, and the color represents a sound wave’s amplitude [23].

One generates a spectrogram by dividing the time domain signal into shorter seg-
ments of equal length, then, lastly, applying Fast-Fourier-Transform (FFT). The
spectrogram is, therefore, a plot of the spectrum in each segment. A ”frame count”
parameter further defines the number of FFTs used to create a spectrogram. Con-
sequently, it determines the amount of overall time signal split into independent
FFTs [24].

2.2.3 Mel-spectrograms
The mel-spectrogram is a spectrogram with the mel-scale at its y-axis. This scale
describes the perceptual distance between pitches of different frequencies [25].
The mel-scale is built in a manner where different ’sounds’ sound alike when
the distance is equal. Contrary to the Hz scale, where the difference in sound
between 500 and 1000 Hz is significant, while between 7500 and 8000 is barely
noticeable.

2.2.4 Delta-spectrograms
One obtains a delta spectrogram by taking the discrete cosine transform (DCT)
of the frequency points where the distance is equal (mel-scale) [25]. The delta
spectrogram has a delta feature, where delta order 1 is the first derivative, delta
order 2 is the second derivative, etc.

Visually, the difference between the different spectrograms is illustrated in the
figure below.

14

Figure 2.4: The figure displays the conversion of audio pressure waves

to different spectrograms. At the top are the audio pressure wave, linear

spectrogram, normalized mel-spectrogram, and delta-spectrogram (order

1).

2.2.5 Analysis windows
When training and applying machine learning models with data, fixed size vectors
are usually required. That differs from the recording of sound, as it forms a con-
tinuous stream of data. In order to account for this difference, the sound signals
are often split up into analysis windows of fixed length [22]. Furthermore, the
classification is done on the windows independently. There is no universal choice
of window length; however, the window length is usually longer than the longest
target sound.

15

Figure 2.5: Audio stream split into windows before subsequent analysis.

In figure 2.5, an audio stream has been split up into four overlapping windows,
covering 30 seconds each. Overlapping windows are a form of data augmentation.
Data augmentation is described as a method where one can synthetically generate
new labels from existing samples [22].

As the window lengths are chosen manually, they could be adjusted to increase
data samples. Case in point, the overlapping windows could be set to 10 sec-
onds with 5 seconds of overlap, creating eleven samples. Additionally, creating
overlapping windows (data augmentation) has proven to increase classification
accuracy [26]. With the overlapping windows, one can vary wherein the window
an event occurs.

16

2.3 Combining signals

2.3.1 Time series
Data for time series are collected repeatedly at different times [27]. Due to the
collection of data points at adjacent periods, there is potential for correlation be-
tween observations. Time series models can be used for predictions of future
outcomes and understanding past recordings. Furthermore, a time series represen-
tation helps compare lagged signals reflecting shifts in time. There are numerous
statistical and machine learning techniques handling the complexity of time series.
The cross-correlation-based statistical methods and recurrent neural networks in
deep learning are among the most popular choices.

2.3.2 Cross-correlation
Cross-correlation is a measure of similarity between two-time series or signals,
where a potential dislocation of one signal relative to another is taken into con-
sideration [28]. Conceptually, it creates or chooses a reference signal and deter-
mines to which degree the object under question resembles the reference signal
[29]. Cross-correlation is a traditional concept in analyzing, signal processing,
and image analysis. In signal processing, cross-correlation is used to measure the
similarity between two time series as a function of time shift, where one series is
relative to the other [30].

From this theory it is elaborated that the process has means µx(t), µy(t) and vari-
ances σ2

x, σ2
y at time t, for every t. The definition of cross correlation between

signals X and Y at times t1 and t2 is formulated as:

RXY (t1, t2) = E[Xt1 , Yt2], (2.3)

where E is the expected value. After calculating the cross-correlation between two
signals, the maximum cross-correlation as a function of time delay would indicate
the point in time where the signals are best-aligned [30]. Furthermore, the optimal
time delay is calculated by the following equation:

τdelay = argmax
t∈R

(E[Xt1 , Yt2]), (2.4)

where τdelay is the optimal time delay between two signals at time t, determined
by the argmax function.

17

Figure 2.6: In the figure above, the cross-correlation between two signals

is depicted. The cross-correlation chooses a peak in correlation depen-

dent on the time delay between the two-time series [31].

2.3.3 Fourier transform of the cross-correlation
The Fourier transform is a mathematical tool that deconstructs signals or waves
into its sinusoidal components [32]. Sinusoidal components have three charac-
teristics: frequency, amplitude, and phase. Fourier transform gives the ability
to decompose multiple signals into pure frequencies, making it a powerful tool
within signal comparison. The following equation could describe Fourier trans-
form:

F{g(t)} = G(f)

G(f) =

∫ −∞
∞

g(t)e−2πift dt
(2.5)

18

F is in this equation the frequency, G(t) (the spectrum of g(t)) tells how much
power g(t) contains at the given frequency. One obtains g with the inverse of
G:

F−1{g(t)} =

∫ −∞
∞

G(f)e2πift df

F−1{g(t)} = g(t)

(2.6)

From 2.6 it is observed that one obtains the original function g(t) from the func-
tion G(f) via an inverse Fourier transform [32]. Fourier transform is something
that is best explained visually due to its complex being. Below is a graphic that
displays how the transform decomposes a sum of air pressure into pure frequen-
cies:

Figure 2.7: The original air pressure is displayed at the top. Below is

the four different frequencies that creates the sum. Fourier transform de-

composes the sum down to the unique frequencies that makes it possible

to ”separate the ingredients from the soup” [33].

The use of Fourier transform within cross-correlation is understood once the ap-
plication and results of a transformation are obtained. The Fourier transforms
decomposition makes it possible to filter out the parts created by ’noise’.

19

Figure 2.8: Graphics which displays how Fourier transform changes the

signals in question [34].

Figure 2.8 displays two signals prior to Fourier transformation and calculation of
the cross-correlation in the frequency domain. The signals are initially contam-
inated by background noise. After Fourier transformation and noise filtering in
the frequency domain, the cross-correlation of the filtered signals can be calcu-
lated.

2.4 Machine learning
In a time where massive amounts of data are easily available, learning algorithms
from the field of machine learning can turn data into knowledge. Machine learning
has evolved as a subfield of artificial intelligence and involves self-learning algo-
rithms that derive knowledge from unlimited data to make predictions. Within
the field of machine learning, there are three distinct types: supervised learning,
unsupervised learning, and reinforcement learning.

In supervised learning, a model learns from labeled training data as examples of
the input-output relationship to be learned. The term ”supervised” refers to the
output values, usually provided by manual annotations by humans inspecting the
data. Subsequently, the correct output values are known prior to the training pro-
cess in supervised learning. Unsupervised learning deals with unlabeled and often
unstructured data. The purpose of unsupervised learning is to extract meaningful

20

information without the guidance of a known outcome variable or reward func-
tion [35]. Lastly, reinforcement learning builds on training an agent, where one
defines a measure of reward for particular actions carried out by the said agent. In
this thesis, we will focus on supervised learning problems.

2.4.1 Random forest classification
Random forest is an ensemble based learning method built from multiple deci-
sion tree classifiers. The method is known for its good scaleability and ease of
use. Conceptually, the trees are made by iteratively splitting its nodes to obtain
the largest information gain. The root node of the three represents a subset of
data, while on the contrary branches represent a smaller subset of data from the
previous node [36]. Ultimately, the leaves on the tree are the value dedicated to
the corresponding branch as illustrated below:

21

Figure 2.9: The decisions and outputs of a decision tree. Based on the

features in a dataset, a decision tree model learns a series of questions

to infer the class labels of examples [37]. In the following figure cut-off

values is defined and binary questions is asked. Prediction of noise in the

leaf is therefore based upon the answer to the binary question. The deci-

sion tree is applied to data from audio recorders, where the explanatory

value are sound levels. Furthermore, the response value is whether or not

noise was caused by PNB. Inspired by [36].

For the sake of reducing combinatorial search space the random forest implements
binary decision trees. Each parent node are split into two child nodes (dleft and
dright) based upon the largest information gain (IG) as indicated by the following
equation [38]:

IG(Dp, f) = I(Dp)−
Nleft

Np

I(Dleft)−
Nright

Np

I(Dright) (2.7)

Here, f is the feature to perform the split; Dp is the parent node dataset; I denotes
the choice of impurity measure; Np is the number of training examples at the
parent node: Nleft and Nright is the number of examples in respectively Dleft and
Dright.

22

There are three impurity measures or splitting criteria commonly used in binary
decision trees: Gini impurity (IG), Entropy (IH), and the classification error (Ie).

For the sake of simplicity, only Gini impurity is elaborated (for the I-function in
2.7) in this section. The Gini impurity is used as a criterion for minimizing the
probability of misclassification [38]:

IG(t) =
c∑
i=1

p(i|t)(1− p(i|t)) = 1−
c∑
i=1

p(i|t)2 (2.8)

Here, p(i|t) is the proportion of samples that belong to class i for some particular
node (t). The impurity is 0 (minimum) if all examples at a node belong to the
same class and 0.5 (maximum) when classes are uniformly distributed.

Additionally, a decision tree has a maximum depth that indicates the number of
nodes made from the root node to the leaf node, to be tuned for a good bias-
variance trade-off. The tree will generate leaves until it reaches maximum depth.
However, one has to be careful, as the deeper a decision tree gets, the more com-
plex the decision boundary and the risk of overfitting increases. Random forest is
based upon taking the average of multiple decision trees, which may individually
suffer from high variance, to achieve a more robust model that generalizes well.
The training algorithm can be summarized in the following four steps [39]:

Random forest algorithm
1. Draw a random bootstrap sample of size n (randomly choose n examples

from the training dataset with replacement)

2. Grow a decision tree from the bootstrap sample. At each node:

(a) Randomly select d features without replacement

(b) Split the nodes using the features that provided the best split according
to the information gain.

3. Repeat the steps 1-2 k times

4. Aggregate the prediction by each three to assign class label by majority
voting.

The majority voting in step 4 chooses the class label, which occurred most through-
out the individual decision trees’ predictions. It could be further understood in the
visualization in figure 2.10.

23

Figure 2.10: Visualization that explains the last step in the random forest

algorithm. Each decision tree predicts a class, and the most frequently

occurring classification is chosen as the final prediction

2.4.2 Classification problems and performance metrics
Classification problems are a subcategory of supervised learning problems. The
goal is to build a classification model to predict the categorical class label based
on some measured feature characteristics [35]. For instance, classifying whether
an e-mail is spam or not, determine from an image which number is written, or
deciding from sound recordings if noise is present or not.

The previous example of classifying whether an e-mail is spam represents a typi-
cal example of a binary (2-class) classification problem. Classification problems
with more than two classes (such as the classification of digital images of hand-
written digits between 0 and 9) are referred to as multi-class classification prob-
lems.

Accuracy

Multiple metrics can quantify the performance of a classification model. Most
commonly is accuracy - the ratio of correct predictions to total predictions.

24

Recall

Other metrics may be useful when dealing with unbalanced data in binary clas-
sification problems, such as recall (sensitivity) - the number of correct positive
predictions divided by the total number of positive samples [22]. The recall is
acquired with the formula [40]:

Recall =
TP

TP + FN
, (2.9)

where TP is the number of true positives (the samples correctly predicted as posi-
tives) and FN is the number of false negatives (the samples predicted as negatives
by mistake).

Precision

Precision is the number of of true positives divided by the total number of positive
predictions defined by the formula [41]:

Precision =
TP

TP + FP
. (2.10)

Here, FP denotes the false positive (the samples predicted as positives by mis-
take).

F1

The F1 score is defined as the combination of the recall- and precision scores
obtained by taking the harmonic mean of the scores [42]:

F1 =
2RP

R + P
, (2.11)

where R denotes recall and P denotes precision as defined above.

Average precision

One uses thresholds to convert predictions into a class label. When the prediction
is equal to or greater than the thresholds, the prediction is classified as one class.
Otherwise, it is classified as the other class.

However, the average precision score separates itself from the different metrics in
regards to having no threshold. One calculates the average precision by using a
range of thresholds (from 0 to 1) and calculating the weighted sum of the scores at
every threshold. The sum is divided by the number of thresholds used to acquire
the average precision score.

25

2.4.3 The bias-variance trade-off
Models with large bias typically oversimplify the input-output relationship by
putting too little emphasis on the training. Subsequently, the model underfits the
training data. In comparison, variance is the variability in the model prediction
for a given data point or a value that explains the data’s spread. Models with
high variance tend to overfit the training data and fail to generalize on unseen
data [43]. Models achieving bias-variance trade-offs learn from the training data
without overfitting nor underfitting, making it desirable to realize.

Mathematically, bias and variance can best be explained by expressing the ex-
pected prediction of a regression model. The expected prediction error of a model
f̂(X) with given explanatory variables X = x0 and actual values Y , where
Y = f(x) + ε and E(ε) = 0 has squared error losses as [36]:

Err(x0) = IrreducibleError +Bias2 + V ariance (2.12)

Where Err(x0) is the sum of Bias2, V ariance and the IrreducibleError. The
Irreducible term is the variance of the response value around the true mean
and can be explained as the noise in the data [43]. Bias2 is the squared bias
and the amount by which the average of the prediction differs from the actual
mean. Lastly, variance is the expected squared deviation of f̂(X) around its
mean.

Based on this the bias-variance trade-off could be illustrated:

26

Figure 2.11: Illustration of the bias-variance trade-off [44]. In this ex-

ample the y-axis and the x-axis is the explanatory variables. First plot

illustrates high bias which leads to underfitting. The plot in the middle

illustrates a good trade-off which gives the best results. The last plot

shows a model with high variance (memorises the data) which leads to

overfitting.

In conclusion, a model with high bias will have poor performance on the response
value due to the lack of complexity in capturing relationships in the training data.
Consequently, the model will underfit and have poor performance on both training
and test data. A model that suffers from overfitting (high variance) will memorize
the data and have good results on training data. However, when encountering test
data (unseen data), it will fail to generalize and achieve poor results. Therefore,
machine learning models’ end goal is to achieve a bias-variance trade-off as illus-
trated in the middle of figure 2.11. The model will achieve good results on both
the train and test data when achieving the bias-variance trade-off.

In practice, results from a machine learning model tend to have the issue of over-
fitting. Issues of this sort could be resolved by introducing regularization or re-
ducing the model’s complexity. Regularization works by adding penalties when
a model’s complexity increases. This regularization parameter penalizes all the
parameters except the intercept, expecting the model to generalize the data and
not overfit [45].

27

2.4.4 Grid search and model-validation
In machine learning, there are two types of parameters: those that are learned
from the training data (model parameters) and the parameters of a learning algo-
rithm that are optimized separately (hyperparameters) [37]. The weights of the
random forest model are one type of model parameter. Contrarily, three depth is
a hyperparameter.

Furthermore, the model parameters are properties learned by the training data,
whereas hyperparameters are manually chosen [46]. Grid search, a popular hy-
perparameter optimization technique, can help to improve a model’s performance
by finding good combinations of hyperparameter values. Grid search is based
on a ”brute-force” approach where one specifies lists of values for the different
hyperparameters. For all the hyperparameter value combinations, the learning al-
gorithm trains and evaluates the separate resulting models to identify the optimal
combination of hyperparameter settings [37].

Before training the models, splitting of the dataset to obtain training- and valida-
tion samples is required. Such splits should be done in a random manner, usually
by including more samples in the training set than in the validation set. Each
model is trained on training data and its predictive performance is evaluated on
the validation data as a basis for the model selection.

K-fold cross validation

With grid search, one may obtain the optimal combinations of parameters for the
training set. It was mentioned in 2.4.3 on page 26, machine learning models’ end
goal is to achieve a bias-variance trade-off. The cross-validation is complementary
to the grid search and presents the model to unseen data, which gives a better
evaluation of the model’s performance.

With K-fold cross-validation, the training data is split into k equally sized folds.
Out of these k folds, one fold is used as a validation set, and k − 1 folds are used
in the training process. The folds that are used for validation is then cycled until
it has been trained and validated k times - each time with a unique training and
validation set.

28

Figure 2.12: Graphics that shows how the cross-validation splits the

training data. For each split, there is a unique set of training and val-

idation set [47].

Figure 2.12 shows how the k-fold cross-validation splits the data into folds and
then chooses a unique set of validation data. Furthermore, it fits the model on the
training data and evaluates the validation data. The score from this evaluation is
kept, the model is discarded, and a new process occurs. This continues until the
model has been trained k-times. Lastly, the average of scores is calculated to give
a good estimate of the model’s performance. It is further explained in the graphic
below:

29

Figure 2.13: From the figure, it is observed how the k-fold cross-

validation calculates a validation accuracy in each split. When it has

completed all the rounds, the average score is calculated as a final accu-

racy [47].

2.5 Neural networks
Neural networks (NN) modelling represent a subfield of machine learning for flex-
ible learning in layers of increasingly meaningful representations [48]. Neural
Networks was first introduced in the 1950s by Rosenblatt’s perceptron model.
What started as a significant interest slowly faded, as no good solutions for train-
ing neural networks with multiple layers was found. However, thanks to break-
throughs in the previous decade, NN is more popular today than ever. This subsec-
tion will explain the neural network building blocks and the various components
implemented in later model building.

30

2.5.1 Multi-layer neural network
To understand multi-layer neural networks (MLP), one must first understand the
single ”neuron” model:

Figure 2.14: Illustration of a single layer neural network [49].

Consider a case in supervised learning where one has labeled training exam-
ples (xi, yi). This simple neural network is a computational unit that takes input
X1, X2, X3 (and an +1 intercept term) from the training examples and weights
Wi. Aditionally, it outputs Hw,b(X) = f(W Tx) = f(

∑3
i=1Wixi + b), where

f : R −→ R is called the activation function [49].

Moreover, a neural network is put together by hooking together multiple single
neurons as shown in 2.14. This could be observed in figure 2.15:

31

Figure 2.15: Illustration of a multi-layer neural network [49] with two

hidden layers.

.

The input layer is from the training examples with a bias unit (+1). In this case, the
input is vectors, but the network possesses the ability to handle multidimensional
data (such as images) by formally representing them as vectors. Layers 2 and 3
are called hidden layers.

Each neuron in a hidden layer computes a weighted sum of its inputs, offset by a
bias before transformation by a non-linear activation function. The hidden layers
contribute to the network’s capacity for learning complex non-linear functions.
The downside to this is that the model becomes more complex and thus more
prone to overfitting.

The final layer is called the output layer and calculates the output of the network.
Usually, when training and applying a neural network for predictions, data is fed
as input to the first (input) layer. The network then executes its computations in the
subsequent hidden layers before the output layer calculates the network output (a
prediction). This characteristic forward propagation of information is emphasized
by referring to these models as feedforward neural networks.

32

2.5.2 Activation functions
It was mentioned earlier in section 2.5.1 that activation functions are used in neu-
ral networks to non-linearly transforms the weighted sum (including the bias) in a
neuron. We will primarily focus on two choices of activation functions: sigmoidal
function and rectified linear unit (ReLU). Firstly presented is the sigmoidal func-
tion.

Sigmoidal activation function

The sigmoidal activation function is primarily known for its characterized S-
shaped curve. It is most commonly found in machine learning in the logistic
function [50]. The function is given by:

θSigmoid(x) =
1

1 + e−x
(2.13)

The output of this function is a number in a small range between 0 and 1. There-
fore, the sigmoid function can convert a real value into one interpreted as a prob-
ability. A plot of the sigmoid function and its derivative is observed in figure
2.16:

Figure 2.16: Plot of the sigmoidal activation function and its derivative

[51].

33

One issue with the derivative of the sigmoidal function is that the derivative will
be close to zero if the input is sufficiently large. There is a use of the derivative
in neural networks when using backpropagation. Backpropagation was briefly
mentioned in chapter 2.5.1, and is in essence a computationally efficient approach
to compute the partial derivative of complex cost functions in multi-layer neural
networks [52].

In this efficient approach, a first-order optimization method is used to minimize
the loss. Therefore, the network weights update is proportional to the partial
derivative of the loss function concerning the weights. As the gradient’s magni-
tude is proportional to the function’s derivative, the weight will be negligible when
the derivative is small. This presents the vanishing gradient problem [53].

Rectified linear unit

The rectified linear unit (ReLU) is defined as:

θ(x) = max(0, x) (2.14)

The introduction of the ReLU activation function is mainly known for solving
the computational problem of vanishing gradients in neural network training as
the derivative of θ(x) is 0 for all negative inputs and 1 for all positive inputs, see
figure 2.17:

Figure 2.17: Plot of the ReLU activation function and its derivative [53].

34

2.5.3 Loss functions
In most networks, a distance score is calculated through the following equation:

J(w) = p− p̂ (2.15)

Here, p is the actual class label, p̂ is the predicted label, and J(W) is the distance
score. Furthermore, the function that calculates this distance is known as the
loss function. The distance score gives the network an impression of how well
it performed [54]. Different loss functions will return different errors, making
loss functions critical regarding the learning for a model [55]. There are different
loss functions for unique types of tasks. For example, Binary cross-entropy for
binary classification, categorical cross-entropy for multi-classification, and mean
squared error for regression problems [56]. As this thesis deals primarily with a
binary classification problem, only binary cross-entropy is of relevance.

Binary Cross-Entropy / Log Loss

The loss function could further be elaborated [57]:

Hp(q) = − 1

N

n∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.16)

Where y is the actual label and p(y) is the predicted probability that the sample
belongs to class 1 (binary). When examining the equation closer, it is observed
that when the actual label is 1, the log(p(y)) (log probability of the label being 1)
is added to the loss. On the contrary, it adds log(1− p(y)) (log probability of the
label being 0) to the loss when the actual label is 0, see figure 2.18:

35

Figure 2.18: Plot of the binary cross-entropy loss function and how it

behaves. In this figure, the behavior when the actual label is 1 and 0 is

illustrated, respectively.

Figure 2.18 details how the worst predictions get penalized hardest. The further
the prediction is from the actual target, the higher the loss. Vice-versa, the closer
the prediction is to the actual label, the lower the loss.

2.5.4 Optimization
Training of non-trivial NN models is known to be a non-convex optimization prob-
lem. Non-convex optimization regards functions that typically have multiple local
optima where a global optimum on the loss surface is hard to find [58]. In the de-
scriptions below, we will focus on the Gradient Descent method.

Gradient Descent

Gradient descent is one of the most popular optimization methods. One can de-
scribe the main idea behind gradient descent as climbing down a hill until a local
or global minimum is reached. This is seen in figure 2.19 [59]:

36

Figure 2.19: In each iteration, a step in the opposite direction of the

gradient is taken. The step size is further determined by the learning rate

and the slope of the gradient.

Mathematically, by iteratively computing the gradient of J(w) with respect to
the model parameters w, the loss affiliated with each network parameter can be
calculated. Each iteration updates the parameters in the opposite direction of the
gradient of J(W) with respect to the parameters where the gradient gives the
direction of the steepest ascent [60]. With the assumption that J is differentiable
with respect to w, gradient descents update rule states [61]:

w ←− w − α∆wJ(w), (2.17)

where α is the learning rate. The step size in each iteration to reach the local
minimum is determined by the learning rate. The direction of the slope is followed
until a local minimum is reached, per figure 2.19. It is worth mentioning that
algorithms like Stochastic gradient and Adam also use the concept of utilizing the
gradient for updating parameters.

2.5.5 Training a neural network
In summary, based on the above theoretical descriptions, the training process of a
neural network with a dataset D = (x1, y1), (x2, y2), ..., (xN , yN) consisting of N
input vectors (x) with known target outputs (y) goes as follows:

37

Figure 2.20: Relationship between layers, activation function, loss func-

tion, and optimizer. Inspired by [54].

The inputs pass on to a layer, where an activation function is applied. After pass-
ing through each hidden layer, the activation functions provide a non-linear trans-
formation. Finally, a loss score (depending on the choice of loss function) is
calculated. The acquired loss score is passed forward to an optimizer to adjust
the network parameters before the next training epoch. With every example (new
input) the model processes, the weights are adjusted in the correct direction [62].
This is the training loop. With enough repetitions, the network should yield weight
values that minimize the loss function.

38

2.5.6 Convolutional neural networks (CNN)

Convolutional layers

Network models with convolutional layers are an alternative to the fully connected
layers in neural network modeling. Convolution layers can handle (multidimen-
sional) arrays such as images as input data. Images are comprised of their height
times width represented as matrices. The inclusion of colors, formally called
’channels’, expands the image to 3-dimensional arrays. Grayscale and audio spec-
trograms are represented by only one channel, while RGB images have three chan-
nels.

Figure 2.21: The dimension of an image [63]. This image have 3 chan-

nels (RGB).

The figure above shows a 4 × 4 × 3 image, where the color information is repre-
sented in the channels: red, green, and blue. Convolutional layers are designed to
process input of this type by performing discrete convolutions. Convolution ker-
nels carry out the operations in the first part of a convolutional layer [63].

39

By convolving the following kernel of size 2× 2

[
1 0
0 1

]
in strides of 2 with the first layer of the above 4× 4× 3 image we obtain:

Figure 2.22: The shifting process for the red image with a 2 × 2 kernel

with strides = 2.

The sum of each matrix multiplication yields the convolved features, and convo-
lutions with the other image layers are calculated similarly.

Generally, the output size depends on the choice of padding strategy and stride
length [64]. There exist three padding strategies: full, same, and valid. Full
padding increases the dimension of the output and is therefore rarely used in CNN
architectures. The same padding ensures that the output vector has the same size
as the input vector (given a stride length of 1). Valid padding refers to the case
where no padding is done Below is an example of the three different padding
strategies for a 5 x 5 input with a kernel size of 3 x 3 and a stride of 1.

40

Figure 2.23: The three different padding modes for a 5 x 5 input with a

kernel size of 3 x 3 [64].

Subsampling layers - pooling

Subsampling is an essential operation that is often used in CNNs. The subsam-
pling can be applied in two forms of pooling: max pooling and mean pooling. The
pooling layer is denoted by Pn1xn2 , which determines the pooling size [64].

Figure 2.24: How max and mean-pooling works. [63].

The figure above displays how the pooling process is done. It determines a pool-
ing size (3x3) and chooses the max value/mean value from each pool. Max pool-
ing has an advantage over mean-pooling in terms of not being affected by small
changes in the pool. Pooling gives the advantage of decreasing the size of the
features. This reduces computational time and may reduce the degree of overfit-
ting.

41

Convolutional network

Figure 2.25: A convolution neural networks architecture [63].

The convolutional network is defined by introducing convolutional layers in addi-
tion to fully connected layers. The example above displays a network that takes an
image as input and uses convolution layers and max-pooling in the building blocks
of the network architecture. The model is then flattened after the last max pooling,
making it possible to apply subsequent traditional (fully connected) layers in the
final parts of the network architecture.

To summarize, a convolutional neural network is a neural network that include
convolution layers, in addition to/or instead of the ordinary hidden layers. A con-
volutional neural network can be considered as constructed by feature hierarchy,
combining low-level features in a layer-wise fashion to form subsequent high-
level features [64].

42

Chapter 3

Materials and methods

The following chapter will describe how the sound data sets were acquired, the
data-prepossessing steps and detailed description of the model building (training)
procedures.

3.1 Soundsensing IoT soundsensors
The sensors used by PNB are small IoT (Internet of things) sound sensors that
stream real-time sound data. When installed, the sensor automatically connects
to a mobile network and actively uploads data to Soundsensing’s cloud database.
This cloud platform possesses the ability to integrate a sound classification solu-
tion. The sensor uploads data with timestamps every 15-minutes. When using
multiple sensors, alignment mismatches in timestamps could occur. One sensor
may be ±10 seconds ahead/behind another sensor in the worst cases.

3.2 Data collection
In most applications, good data quality is essential to obtain good results. One
wishes to acquire data that represents the normal situation for regular days around
the facility at PNB. However, the data available for this thesis was collected before
the training facility was operational. The data was collected while acousticians
tested the noise abatement measures. In such tests, each type of weapon was fired

43

every thirty seconds in five rounds. This specific task tries to obtain a solution with
the help of wireless sound sensors, but sound recorders were used for collecting
data.

The data collection was done on four different days. The first two trips collected
data from different gun types, while the final two trips acquired data from different
types of explosions. In total, 512 different events took place on the four days
of recording. Neighbors at the settlement were notified ahead of the tests and
data collection, and signs with information were in place during data collection.
The recorders were placed away from areas where pedestrians abide, avoiding
recording of speech. All recordings were stored on a Google Drive folder for the
later data analysis and classification modeling presented in this thesis.

Figure 3.1: Flow chart that describes the steps taken in collecting data.

3.3 Data labelling
All activity at PNB took place under controlled environments, where we noted
the specific time of activities. Based on the notes, recordings from PNB acted as
verification on whether activity had taken place. When the activity was confirmed,
the recordings from the settlement were checked to verify whether the noise was
detected.

44

The program Audacity was used for the listening, which provides spectrograms
and audio for a sound clip. Three labels were created from these clips:

• not heard

• faint

• clear

There were challenges regarding the distinction between faint and clear. It could
be a misconception regarding how clear a sound is when actively listening for
sounds. Therefore, when detecting a sound of high noise in the correct timeframe,
the spectrograms were actively used to separate faint from clear. This task is
handled as a binary issue where faint and not heard was labeled 0, while clear
would be 1. The purpose of introducing the label faint was to serve as a helper
for later evaluation of models. In total, 114 of the 512 events taking place at PNB
were labeled as clearly heard around the settlement.

Figure 3.2: The layout of Audacity. The program displays the spectro-

gram and sound for an audio clip.

45

3.4 Handling privacy issues
The goal was to create a solution that could be implemented on wireless sound
sensors. Due to privacy laws prohibiting speech recording, audio data should not
be transmitted from or stored on the sensor. Wireless sound sensors possess the
ability to preprocess data on the sensor. That allows the sensor to record audio,
process it, and send only acoustical information to the cloud. The audio must be
preprocessed with an integration time of at least 125 ms seconds for speech not to
be understandable [65].

Figure 3.3: Illustration that describes how the data is preprocessed on

the sensor before being sent up to the cloud. This is to avoid the privacy

issues regarding storing audio.

Figure 3.3 shows how the sensor would preprocess the data before sending it to the
cloud, where implementation of the final solution is done. The sensor will send
up audio in the form of spectrograms and dB measurements. These two types of
data representation are what the solution of this thesis will build upon.

3.5 Choosing evaluation metric
The choice of evaluation metric represents a significant part of evaluating results,
especially when handling data with a skewed distribution of classes. For this
particular binary classification problem, we have around 3.6% of the input data
(windows in the time series) being noise (group 1), whereas the remaining 96.4%

46

is no noise (group 0). Because of the group imbalance in the data, a simple
evaluation metric as accuracy will most likely cause misleading models (if one
were to predict no noise on all windows, an accuracy score of 96.4% would be
achieved). Even though this score is good, such a classifier will detect no events
(noise) of interest (the purpose of the current work is to establish a solution that
detects noise around the settlement).

Therefore, we will consider the alternative metrics precision and recall described
in chapter 2.4.2. The recall will serve as a metric giving an estimate regarding
detecting noise events. Precision will serve as the metric evaluating the quality
of predictions of noise. These metrics will serve as a good indicator regarding
the performance of the different models. We will use the F1 score as a metric
summarising the precision and recall score. Additionally, the average precision
score is the metric used in optimizing some of the models.

3.6 Preprocessing

3.6.1 Time delay and creation of windows
Our problem had multiple time delay aspects. One was the time delay regarding
the noise’s movement from its source to the receiver. Based on the movement of
sound, noise generated from PNB would take approximately 3 seconds to reach
the settlement. Moreover, the sensors could have alignment mismatches regarding
time. If this were to occur, the worst-case scenario would have one sensor +- 10
seconds ahead/behind another. Taking these aspects into consideration, we created
overlapping windows. Each window covered 26 seconds of data with 13 seconds
overlap to the next window.

47

Figure 3.4: Visualizing how overlapping windows catch a noise event

in the worst-case scenario regarding time alignment. In this example, it

takes 4 seconds before the sound generated at PNB reaches the settlement.

The figure above displays how the overlapping windows govern the worst-case
time delay. Window 1 at the source catches the event, while window 1 at the
receiver misses it. However, due to overlap, window 2 at both the origin and the
receiver catches the event.

3.6.2 Overlapping within windows - data augmentation
One creates overlapping windows to prevent a model from overfitting on where
noise is detected. The technique is known as data augmentation. Data augmen-
tation prohibits the model from learning patterns regarding the location of an im-
pulsive noise event. We first created the windows and then implemented further
overlap. From a window, sub-windows were created with 0.375 second overlap to
the following sub-window. Each sub-window had 1 second of data.

With this implementation, each window would consist of multiple sub-windows.

48

Figure 3.5: The figure shows the creation of two overlapping windows

from the continuous audio stream. Furthermore, multiple sub-windows

are created from window 1.

3.6.3 Mel-spectrograms and delta-spectrograms
Some of the models received spectrograms as input features. The spectrograms
features were preprocessed with the following settings designed to prohibit recov-
ery of speech [65]:

Settings Values

Samplerate (Hz) 16000

Melfilter bands 32

FFT length (samples) 2048

FFT hop (samples) 2000

The models received input in the form of mel-spectrograms and delta-spectrograms.

49

The Python package Librosa was used in the creation of the spectrograms. For
mel-spectrograms, one feature was decisive for detecting noise through spectro-
grams: the reference decibel level. Consequently, the reference level was the
median of the data. With a reference level, every value lower than the reference
will be negative. Contrarily, every value higher than the reference will be posi-
tive.

The delta-spectrograms were created with different delta order, varying in the
range from 1 to 3.

3.6.4 Stacking delta-spectrograms
In search of increasing data quality to feed the model, we stacked multiple delta-
spectrograms on each other. Different stacking combinations were used, but one
constant was the inclusion of mel-spectrograms. The stacking consisted of dif-
ferent delta-spectrograms with varying delta order in the range of 1 to 3. The
final data frame for the models taking spectrogram as input looked the following:

Figure 3.6: The dataset was created for models taking spectrogram as

input. Only the spectrogram and target columns were input to the models.

The window column is used in the the final evaluation.

50

3.6.5 Feature engineering
Feature engineering is best described as good layers of representation for a dataset
[66]. A machine learning model is only as good as the data it receives, hence the
phrase ’garbage in, garbage out’. As explained earlier, this thesis works with
window representations of the continuous stream of data. Each window has a
classification mapped to it, and the prediction is made windows-wise with the
random forest model. With feature engineering, a representation of the dataset is
created.

Figure 3.7: The dataset created with feature engineering. It has 10 ex-

ploratory variables. Only the first 10 rows are displayed.

One window contains multiple samples, with decibel measurement and timestamp
mapped to it. The feature engineering process creates the ten exploratory variables
observed in the figure above, window-wise.

3.7 Model evaluation
Throughout the process, the models trained on different representations of the
same data. The data from the settlement had an additional 10 seconds added to its
timestamps to reflect a worst-case scenario of time delay between sensors.

Splitting the data

The movement of sound is affected by multiple factors but mainly the weather.
The weather affects how fast the sound moves and how clear its heard. Higher

51

temperature creates an increase in the speed of sound. Contrarily, the speed de-
creases when it is cold. Due to sound propagating slower in a less dense material,
different types of weather would affect how well sound is heard [14].

The factors of the weather contributed to the splitting of data. Data within specific
timeframes was in the same train/test split to assure no correlation between the
splits. That was due to weather and environmental surroundings’ effect on the
sound. Additional quality checks were done based on the timestamps to ensure no
data leakage between the splits.

Training phase

Every model was trained with K-fold cross-validation to achieve the best gener-
alized model. The number of folds used in the training process was K = 5. For
models based on CNN, the epoch with the highest score on the validation data
were selected in each k-fold. Based on the scores achieved in the cross-validation,
the best performing models were used to evaluate the test data.

The models were evaluated differently in the training phase. The random forest
model was optimized and trained on window-wise data, while the neural networks
were trained on sub-windows. That is explained in detail in chapters 3.6.1 and
3.6.2 below.

However, the models were compared based on their precision and recall score
achieved on the test data. The prediction on test data was made window-wise for
both models, making the results comparable.

3.7.1 Predicting noise with random forest
After finalizing the training and test splits for the decibel representation of the
data, the data were standardized. Optimization of the hyperparameters was done
with Sklearn’s built-in grid search. From this optimization, the parameters that
returned the highest precision score would serve as the final model. Optimizing
on precision appeared to give better overall results when training on decibel rep-
resentation of the data. The hyperparameters tuned could be observed in the table
below:

52

Parameter Value

number of estimators [10,50,100,200,500]

maximum depth [1,10,50,100]

minimum samples leaf [2, 50, 200, 1000, 2000]

max features [1,3,5,8,10]

Table 3.1: The hyperparameters tuned in the random forest model

3.7.2 Bundled model - convolutional neural networks combined

with cross correlation
In order to utilize the two sensors placed at PNB and around the settlement, a com-
bined solution was created. Firstly, two individual convolutional neural network
models were created based on the data from the two locations (PNB and the set-
tlement). Hence, a model for the data from PNB and a separate model for the data
from the settlement. CNN was a natural choice due to achieving good results on
environmental sound classification [67][68]. Each model got data from the same
windows, broken down into sub-windows within the main window as described in
3.6.2. The sub-windows give a more detailed spectrogram from which the model
could learn patterns.

Subsequently, the two models predicted whether or not an impulsive noise event
was detected in the sub-windows. The output (prediction) for each sub-window
inside a window was stored and compared. The steps could be summarized in the
following way:

1. If the PNB model detects no activity (noise) at the training facility, noise
around the settlement must have another origin. The final prediction for the
window is 0.

2. If the PNB model detects activity (prediction > 0.8),
the maximum prediction from the settlement model is collected.

3. If the settlement model has a maximum prediction higher than 0.6, it is
considered the representative prediction for the window.

4. If the maximum prediction is lower than 0.6, we calculate the maximum
cross-correlation between the predictions from both models. The maximum

53

cross-correlation between the prediction stands as the final prediction for
the window.

Figure 3.8 shows how the model uses the PNB and settlement model predictions
to acquire a prediction for a window.

Figure 3.8: The process of combining two convolutional neural networks

to predict noise. Each model gives a prediction on sub-window n created

from the 26 seconds window. Every prediction is stored in an array, and

the highest probability for noise predicted is extracted. If the prediction at

the PNB model is over 0.8, an event at PNB has taken place. Additionally,

if the settlement model’s max prediction is bigger than 0.6, that will serve

as the final prediction.

The model explained above (implementing and combining the PNB and settle-
ment model) will be referred to as the bundled model.

Both the models for predicting noise at PNB and the settlement were optimized
regarding the average precision score. The two models had the same architecture.
The architecture can be seen in the figure below:

54

Figure 3.9: The architecture of the models to predict noise. Both the PNB

and settlement model have simple architectures.

55

3.7.3 Difference in representation of data

Figure 3.10: The figure displays the decibel measurement representation

of the data.

The figure above visualizes the decibel measurement representation of the data.
The first plot displays an event where PNB was the origin of the impulsive noise
event at the settlement. We observe a peak in the decibel measurements at the
settlement and PNB within the same timeframe. The second plot displays another
scenario. No event transpired at PNB, but there is a clear spike in the decibel
measurements from the settlement.

56

Figure 3.11: The figure displays the spectrogram representation of the

data.

Figure 3.11 shows the spectrogram representation of the same data. The top plot
displays the event where PNB was the origin of the noise measured at the set-
tlement. The bottom plot displays the event where PNB was not the origin of
the noise measured at the settlement. Note how different the two noise patterns
in the settlements spectrogram are. There is a higher amplitude/dB in the lower
frequency of the spectrogram when PNB is the origin of the noise.

57

Chapter 4

Results

The following chapter presents and discusses the classification results obtained
by the different modeling approaches (the random forest modeling and bundled
model).

58

4.1 Noise detection with a random forest classifier

Figure 4.1: The figure displays the precision score from the cross-

validation for the random forest model.

The figure above visualizes the precision score obtained by the random forest
model in the cross-validation. The plot indicates a low mean precision score and
high variation in scores. The mean precision score from the cross-validation is
46.6% and has a standard deviation of 23.3%, which confirms the high variation.
That implies that some of the models in the cross-validation process score a very
low precision.

From the cross-validation process, the best model was chosen for predicting the
test data:

59

Figure 4.2: The precision-recall curve for the random forest model

Figure 4.2 shows the trade-off between recall and precision. The lower the pre-
cision score, the higher the recall score. Note that the precision score decreases
relatively slowly until the recall reaches about 0.5. From this point, the precision
decreases rapidly, and when the recall is approximately 1, the precision is close to
0. The optimal F1 trade-off appears to be where the score is 61.7% (when the pre-
cision is 76.0% and the recall 52.0%). In this situation, the model detects 52.0%
of the events where PNB causes noise at the settlement and correctly detects noise
in 76.0% of the positive predictions.

60

4.2 Convolution Neural Network models result
Here we present PNB’s and settlement’s convolutional neural network models
results from the training process. These models were trained on sub-windows,
consisting of 1 second of audio in a spectrogram representation.

4.2.1 Detection of impulsive noise at the settlement

Figure 4.3: Boxplot of the average precision scores from the cross-

validation. Mel-spec is the model evaluated simply on the mel-

spectrogram representation. 1 delta stack is the model that stacks the

delta stack of first-order onto the mel-spectrogram. 2 delta stack is the

model that stacks the delta stack of first and second-order onto the mel-

spectrogram. 3 delta stack stacks three delta stacks with an order from 1

to 3 onto the mel-spectrogram.

Figure 4.3 shows the convolutional neural network’s average precision scores
when predicting impulsive noise around the settlement with different stacking
methods.

61

The method using mel-spectrogram achieves a better mean average precision score
than 2 and 3 delta stacks. However, 1 delta stack scored the highest mean aver-
age precision. The improvement is an increase of 2.8% from the next best model,
the mel-spec. The boxplot indicates a considerable variation between scores from
each fold in the cross-validation. That is due to some folds of validation data
consisting mainly of noise generated from explosions at PNB. Generally, such
impulsive noise events are easily detected. Oppositely, noise originating from
weapons with silencers is harder to detect. The results from the different methods
are shown in the table below:

Model Mean average precision Standard deviation

Mel-spec 66.5% 27.8%

1 Delta Stack 69.3% 23.3%

2 Delta Stacks 63.4% 27.3%

3 Delta Stacks 62.0% 28.3%

Table 4.1: The scores from the cross validation for the settlement models.

The table displays that the mean average precision of the 1 delta stack model is
the highest. Coincidentally, the model has the lowest variation (23.3%) in score
from each fold in the cross-validation. The Mel-spec model performs better than
the 2 and 3 delta stack models, which scores some percentages lower.

62

4.2.2 Detection of impulsive noise at PNB

Figure 4.4: The figure displays the mean average precision of the models.

The definition of the columns is the same as in figure 4.3

The same stacking of delta spectrograms for the settlement models was used in
the PNB models. The models mel-spec, 1 delta stack, and 2 delta stacks achieve
similar scores. However, 3 delta stacks shows a slightly larger value in the mean
average precision score (by 0.9%). The variation in scores between each fold
was significantly lower than for the settlement models. Activity at PNB appears
relatively easy to detect, regardless of the weapon type. The table below shows the
mean average precision scores with corresponding standard deviations for each of
the PNB models:

63

Model Mean average precision Standard deviation

Mel-spec 89.2% 1.1%

1 Delta stack 89.3% 1.1%

2 Delta stacks 88.9% 1.6%

3 Delta stacks 90.1% 2.3%

Table 4.2: The average precision scores from cross validation for the PNB

models.

Table 4.2 displays the mean average precision and standard deviation for the mod-
els. As mentioned above and confirmed by the table, all the models have low
variation within the folds.

4.3 Impulsive noise detection with the bundled mod-

els
Section 4.2.1 and 4.2.2 presented the individual models created for detecting im-
pulsive noise around the settlement and PNB. These models would serve as the
foundation of a bundled model, consisting of a model each from PNB and the set-
tlement (ref section 3.7.2). Furthermore, two bundled models were created. These
two models are denoted bundled one and bundled two. The bundled one model
was a compound of the mel-spec model from the settlement and PNB’s 3 delta
stacks. The bundled two model consisted of the best models from the settlement
(1 delta stack) and PNB (3 delta stacks).

The bundled models were used to predict the test data (window-wise) and deter-
mine whether PNB caused impulsive noise around the settlement. The scores are
visualized in the figure below.

64

Figure 4.5: Precision-recall curve for the two best models from the set-

tlement. The labels bundled one and bundled 2 represent the bundled

solutions.

We observe an optimal trade-off for the bundled one model in terms of maxi-
mum F1 score (79.43%). In this optimal trade-off, the recall score is 70.8%, and
the precision score is 90.3%. Conclusively, this model identifies 70.8% of the
impulsive noises caused by PNB and correctly predicts these on 90.3% of the
instances.

For the bundled two model, an optimal trade-off result yields an F1 score of
75.13% based on a recall score of 86.07% and a precision score of 66.6%. In
the optimal trade-off point, the model would identify 86.07% of the instances
where PNB causes noise in the settlement, and 66.6% of its noise predictions are
correct.

The two bundled models achieve optimal trade-offs, which is contrary to one
another. The bundled one model detects fewer cases of impulsive noise events.
However, it detects the events with high accuracy. The bundled two model detects
many cases of impulsive noise but detects these with moderate accuracy.

Note that the bundled solution benefited from the settlement and the PNB model
overlaps from sub-windows. Recall the results from section 4.1.1 and 4.1.2, where
the PNB and settlement models’ results were presented. The results were based

65

on the mean average precision score achieved on detecting noise in sub-windows.
Furthermore, the sub-windows had overlaps that exposed the models to impulsive
noise events at different points in a spectrogram. Both bundled models stored
predictions from each window, taking the highest prediction from the settlement
model and PNB model. Thus, creating multiple chances for the model to detect
impulsive noise in a window.

Figure 4.6: The spectrograms from the same windows at PNB and the

settlement are visualized. The overlapping spectrograms in a window

are merged for the visualization. Below the spectrograms is the models’

prediction within the same window.

The figure above shows the spectrograms for a window at PNB and the settle-
ment where noise is detected. Furthermore, it displays the bundled one model’s
prediction on the sub-windows within a window. The PNB model detects each
overlapping sub-window with impulsive noise. In contrast, the settlement model
detects one of the two sub-windows with impulsive noise in them. Subsequently,
the overlap gave the settlement model two chances to detect the noise. The max-
imum prediction from the settlement stood as the final prediction for the window

66

(predictions higher than 0.6 do not use cross-correlation), giving the bundled so-
lution the benefit of overlap.

4.4 Comparing recall/precision trade-off between the

models
To summarize this section, the three final models will be compared in regards
to the precision-recall trade-offs. The training process was different for the two
models, as the random forest model trained on window-wise data. Contrarily,
the foundation models (PNB and settlement models) in the bundled models were
trained on sub-windows. However, prediction on test data was similar for both
models (window-wise predictions), making them comparable.

Figure 4.7: The precision-recall curves for all the models.

Figure 4.7 shows the precision-recall curves for all the models. The bundled mod-
els separate from the random forest model, achieving better recall and precision
scores independent of the choice of thresholds. The decrease in the precision
score is rapid for the random forest model around a recall score of 0.5. There is
a trade-off in precision and recall score following this point. The precision de-
creases significantly as the recall score increases. The bundled one and bundled

67

two models decrease in precision around a recall score of 0.5 and 0.57, respec-
tively. The precision score of the bundled one model is higher than bundle two
until a recall score of 0.8. Following this point, bundled two have higher precision
with an equivalent recall score, giving it the better F1 score.

Model Optimal tradeoff (F1)

Random Forest Classifier 61.7%

Bundled one model 75.13%

Bundled two model 79.43%

Table 4.3: The F1-optimal tradeoffs for the different models results. The

numbers are obtained from the underlying data of figure 4.7.

The table above summarizes the F1-optimal trade-offs from all the models. The
bundled two model scores the best, followed by the bundled one. Both CNN solu-
tions combined with cross-correlations (denoted bundled model) achieve a better
F1-score than the random forest model based on decibel measurements. To sum-
marize, the results were decent for the bundled models. The random forest model
resulted in poorer predictions and a correspondingly low optimal F1 score.

68

Chapter 5

Discussion

5.1 Discussion of method

5.1.1 Shortage in data collection
In this study, data was, as mentioned in chapter 3.1, collected under controlled
conditions. Every activity was completed once every 30 seconds, which in future
cases is not realistic. Activity at shooting fields will typically consist of multiple
gunshots within few seconds. We assume that multiple gunshots will create an
increase in noise. Therefore, the results could look different with these scenarios
included.

5.1.2 The creation of data labels
The processes of data labeling lacked the robustness of multiple operators. Clas-
sifying whether impulsive noise was detected at the settlement was largely sub-
jective. Throughout listening to recordings, the times of the noise events at PNB
were known. That created a situation where the listener was aware of activity at
PNB with a specific timeframe and actively listened for impulsive noise in the
recordings from the settlement. There could be a significant difference between
pedestrians walking around the settlement and their perception of noise heard.
The spectrogram displayed in Audacity provided remarkably, but more clarity
would be achieved with none active listeners. Detailed in section 2.4, a model

69

learns from labeled training data as examples of the input-output relationship to
be learned. The model could struggle to learn patterns if the difference between
faint (labeled 0) and clear (labeled 1) is unclear.

5.1.3 Choosing models
We evaluated different approaches to solve the task. One fundamental inter-
est was creating two different models trained on different representations of the
same data. Hence, the random forest on decibel measurements and the bundled
model (CNN’s) on spectrograms. Cross-correlation emerged initially as a natu-
ral technique to detect impulsive noise events with decibel measurements. Cross-
correlation would compare two signals and account for time delays. However, this
approach had little success in predicting the data. We, therefore, chose the random
forest classifier to represent the model based on decibel measurements.

Centered on the promising results achieved by CNN’s on environmental sound
classification [67][68], the thesis sought to create a solution implementing it.
The bundled model was created, implementing two individual CNN’s and cross-
correlation. Creating a bundled model was a consequence of the time delay issues
this thesis encountered.

Time delays implication on model choice

One significant aspect of this thesis was the multiple time delays. We had time
delays regarding the movement of sound from PNB to the settlement and mis-
alignment between sensors.

This issue was dealt with by creating overlapping windows. The overlap from
one window into the subsequent window had to be long enough to capture both
the time delay in the movement of sound from PNB and the worst-case scenario
of misalignment between the sensors. We assumed that the sound would take
approximately 3 seconds to move from PNB to the settlement. Conclusively, the
overlap was 13 seconds to account for the time delays.

The time delay affected the final solution. In a scenario with no time delays, we
would implement a Siamese network. One convolutional neural network taking
two inputs. The inputs would be spectrograms (1 second long) from PNB and
the settlement for a specific timestamp. That approach would utilize the two data
streams, possibly enhancing a model’s ability to detect PNB’s effects on the settle-
ment. Nonetheless, time delays prohibited this approach. The timeframe between

70

two inputs in the form of spectrograms would not be alike in a time delay situa-
tion.

One could, however, implement a siamese network receiving spectrogram repre-
sentation of data from a window (26 seconds long). The issues concerning this are
the lack of data. The dataset (for spectrograms) would be significantly reduced in
size with 26 seconds long spectrograms as input.

Due to this, the bundled model presented itself as a promising approach. The
bundled model is simple and does not optimally utilize the two data streams. How-
ever, it tackles the issues of time delays while implementing the use of CNN’s.

5.1.4 Architecture selection for CNN’s
This thesis presented one architecture for the CNN models. However, multiple ar-
chitectures were implemented and tested. The architectures evaluated built upon
the present architecture, increasing the complexity. The increasing complexity im-
plied adding further convolutional and dense layers. Subsequently, the increased
complexity led to overfitting. Therefore, we chose the presented architecture as it
achieved the best bias-variance tradeoff. Coincidentally, both the PNB and settle-
ment model achieved the best results with identical architecture.

5.2 Discussion of results

5.2.1 Random forest results
The random forest model differed from the other models in regards to optimiz-
ing the precision score. The better results stemming from this could be due to
the effects noise had on decibel measurements. When detecting noise around the
settlement, the sudden increase in decibel was easily observed. However, there
were issues surrounding noise not originating from PNB having similar patterns
and noises not creating sudden spikes in decibel. Therefore, optimizing on preci-
sion would detect the noise events originating from PNB with a better percentage.
Consequently, it would lead to detecting fever impulsive noise events.

Overall, the random forest model had substandard noise detection, with a mean
precision score of 46.60%. Figure 4.4 showed the model achieving an optimal
tradeoff with an F1 score of 61.7% on the test data.

71

5.2.2 Bundled models results
The bundled model had the advantage of comparing and extracting the highest
prediction from each window. With overlaps within the sub-windows, impulsive
noise events could appear multiple times in a window. That gave the bundled
model the benefit of only needing to detect one sub-window with impulsive noise,
which we observed in figure 4.6.

With PNB being the origin of impulsive noises generated, we assumed that the
PNB model would easily detect activity taken place. The models’ performance
confirmed the assumption that falsely predicting activity at PNB was a rare inci-
dent.

Detecting noise at the settlement originating from PNB had a different degree of
difficulty. That proved to be a more difficult task due to the background noises
originating from other sources in the surroundings (such as lifting containers, cars
driving, people screaming, and birds singing). We used different approaches for
increasing detection, such as the use of delta stacks. The delta stacks did not
improve the average precision scoring percentage, except with the 1 delta stack.
This model scored the highest mean average precision during the training process
with a precision score of 69.3%. The multiple delta stackings’ poorer results could
stem from the increased channel dimension in the shape of the spectrograms. With
each stacking of delta-spectrograms, we get an extension in channel dimensions.
That created increased variation in the models (2 and 3 delta stacks), which lead
to overfitting.

Figure 4.5 showed that the bundled two model achieved an optimal F1 trade-off
score of 79.43%, followed by the bundled one model achieving 75.13%. The best
model (bundled two), which included 1 delta stacking in the settlement, achieved
a better optimal trade-off by approximately 4%. The results suggest that including
one delta spectrograms in the training process leads to more precise models.

5.2.3 Comparing the models
The models (bundled models) trained on spectrograms predicted significantly bet-
ter than the random forest model based on decibel measurements. The random
forest model was relatively insensitive to the impulsive noise events not creating
sudden spikes in the decibel level. Furthermore, as visualized in chapter 3.6.3,
there are more details in a spectrogram. The impulsive noise events originating
from PNB had detectable patterns, especially in the frequency level. The frequen-
cies were rarely above 4000 Hz, making it possible to separate the noise events
originating from PNB from some of the daily background noise around the set-

72

tlement. Contrarily, spikes in decibels originating from PNB were challenging
to separate from spikes created by regular background noise around the settle-
ment.

Note that the models rarely produced false positives (predicting that PNB caused
impulsive noise in the settlement when there were no activities at PNB). That
implied that the models detected activity conducted at PNB with good precision.
Data recording happens continually throughout a day when implemented in a real-
istic situation. Due to PNB only being allowed to carry out activity between 7-19
(described in 2.1.6), a considerable proportion of the data recording is when PNB
is closed. Models detecting activity at PNB with good precision prohibit the model
from predicting noise at the settlement when no activity at PNB is conducted. That
filters out the models predicting noise originating from elsewhere.

5.2.4 Regarding thresholds
In chapter 4.4, focusing on the summary and presentation of the results, no thresh-
olds were selected. That was mainly due to the specific use case with PNB and
Soundsensing AS. When training machine learning and neural network models,
one would usually explore multiple thresholds during the training process. From
this process, the best threshold could be identified. Due to this thesis focusing on
both precision and recall score, we would optimize the threshold based on these
metrics. However, as this thesis sought to create a solution to a real-life prob-
lem, skepticism raised whether an optimized threshold would capture what was
needed.

The focus of PNB is to detect whether the impulsive noise events they generate
affect the settlement. As illustrated in the trade-off curve presented in figure 4.4,
there is a continuous trade-off in precision and recall score when the threshold
changes. If the optimal threshold obtained from training were low, the recall score
would be excellent. That implies that the model detects a good portion of the
noise events generated by PNB. Contrarily, the low threshold would give a lower
precision score, increasing the false positive detection of the model.

In summary, the preferred trade-offs should be decided by the customer, i.e., the
threshold should be chosen according to the preferences of PNB. Assuming that
they want to detect as many noise events as possible, a low threshold may be
chosen. Alternatively, if they want to detect noise events with a low fraction of
false positives, a higher threshold should be chosen.

73

5.3 Practical evaluation of the solution
The specific use case has mainly two interest parties, PNB/municipality and the
population in the settlement. One assumes that PNB/municipality wants a solution
that detects impulsive noise events with high precision. That is due to PNB taking
responsibility when such an event occurs. A solution with low precision creates
situations where PNB takes responsibility for noise not originating from them.
Contrarily, the neighbors in the settlement may prefer a solution that detects most
of the noise events originating from PNB.

Per the solution presented and evaluated in chapter 4.4 the bundled two model
had an optimal trade-off (based on optimal F1 score) predicting 90.3% of the
noise events correctly and detecting 70.8% of the events. PNB would benefit
significantly from this model’s optimal trade-off, as precision is high. Contrarily,
the detection of noise events is not high enough for the settlement. The next
best model (bundled one) had an opposite optimal trade-off scenario, where the
detection of noise events was high. However, the precision was low, causing false
detection of some events.

As the developed solution has a considerable trade-off between precision and re-
call, the performance may not be sufficient to implement into an automated noise
monitoring system. The solution could alternatively be used as a semi-automated
tool, where detected events can be verified afterward by a human.

5.4 Future work
Future work should include a collection of data that represents days of more real-
istic PNB-activities. The present models are trained and optimized based on data
where an event took place every 30 seconds. Activities with multiple shots in
the same time frame could create different impulsive noise patterns. The model
building could benefit significantly from learning the patterns of noise generated
by such activities. It is likely to assume that multiple gunshots fired at the same
time may generate more noise. However, future work could implement synthesiz-
ing noise events with more than one activity per window with the current data if
this is not possible. There may also be challenges regarding synthesizing the data
around the settlement due to the constant background noise.

The author argues that a large proportion of difficulty in this thesis is creating the
pipeline, handling privacy concerns, and handling time delays. Therefore, future
work could focus on optimizing the model that represents the settlement in the
bundled solution.

74

The implementation of siamese networks is of interest in future work. If one
could develop a method handling the variation in time (time delays), the siamese
network presents itself as a promising idea. It could utilize the two sources of data
(data from PNB and the settlement) better than the bundled model.

In future work, one could implement more wireless sound sensors as this thesis
focused on solving the problem using only two sound sensors (one at PNB and one
at the settlement). An additional sensor could be placed somewhere between the
two already existing sensors, gathering additional information. The inclusion of
thresholds for the classification models must be done in future work to determine
the model’s primary focus: Detection of many noise events or detection of noise
events with high accuracy.

75

Chapter 6

Summary and conclusion

In the present work, we described the entire pipeline for implementing a noise
detection solution based on data from sound recorders. The process included data
collection, data labelling, pre-processing, and model building.

There were two primary concerns regarding the audio recording with wireless
sound sensors: i) privacy concerns and ii) misalignment between multiple sensors.
The work in this thesis has suggested a solution to handle both concerns.

Two different data representations were generated for exploring different solution
approaches to the detection of impulsive noise. The two solutions were

1. Random forest classifier trained on the decibel measurement data.

2. Convolutional neural networks combined with a cross-correlation trained
on the spectrogram representation of data (bundled model).

The model evaluations showed that the model based on convolutional neural net-
works and cross-correlation in combination were the best, achieving useful de-
tecting results.

Furthermore, we arrived at an answer to the initial question: Is it possible to detect
and track the origin of impulsive noise events with the help of multiple wireless
sound sensors?

One could indeed determine whether PNB’s activity, which revolves around shoot-
ing events and explosions, caused noise in the nearby settlement with the help of
wireless sound sensors. Detecting the origin of impulsive noise events with wire-
less sensors is possible, but there is a trade-off between cases detected and cases

76

correctly detected.

77

78

Bibliography

[1] “The NOISE Observation & Information Service for Europe.” [Online].
Available: https://noise.eea.europa.eu

[2] B. Stephanie, “Loud Noises Aren’t Just Annoying, They’re Bad for Your
Health.” [Online]. Available: https://www.healthline.com/health-news/
loud-noises-bad-for-your-health

[3] “Measuring sound,” Published 10 May 2011. [Online]. Available:
https://www.sciencelearn.org.nz/resources/573-measuring-sound

[4] “Noise.” [Online]. Available: https://www.eea.europa.eu/themes/human/
noise

[5] T. H. T. V. Panu Maijala, Zhao Shuyang, “Environmental noise monitoring
using source classification in sensors,” Tech. Rep. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003682X17307533

[6] J. Nordby, “Sounsensing pictures.”

[7] “What is sound?” [Online]. Available: https://www.fibertex.com/
business-areas/acoustics/theory

[8] “Sound.” [Online]. Available: https://courses.lumenlearning.com/physics/
chapter/17-1-sound/

[9] C. Andrew, “Periodic Wave.” [Online]. Available: https://www.eeweb.com/
periodic-wave/

[10] “Speed of Sound, Frequency, and Wavelength.” [On-
line]. Available: https://courses.lumenlearning.com/physics/chapter/
17-2-speed-of-sound-frequency-and-wavelength/

[11] “Sound Theory.” [Online]. Available: https://acoustics.no/
sound-measurement/sound-theory

i

https://noise.eea.europa.eu
https://www.healthline.com/health-news/loud-noises-bad-for-your-health
https://www.healthline.com/health-news/loud-noises-bad-for-your-health
https://www.sciencelearn.org.nz/resources/573-measuring-sound
https://www.eea.europa.eu/themes/human/noise
https://www.eea.europa.eu/themes/human/noise
https://www.sciencedirect.com/science/article/pii/S0003682X17307533
https://www.fibertex.com/business-areas/acoustics/theory
https://www.fibertex.com/business-areas/acoustics/theory
https://courses.lumenlearning.com/physics/chapter/17-1-sound/
https://courses.lumenlearning.com/physics/chapter/17-1-sound/
https://www.eeweb.com/periodic-wave/
https://www.eeweb.com/periodic-wave/
https://courses.lumenlearning.com/physics/chapter/17-2-speed-of-sound-frequency-and-wavelength/
https://courses.lumenlearning.com/physics/chapter/17-2-speed-of-sound-frequency-and-wavelength/
https://acoustics.no/sound-measurement/sound-theory
https://acoustics.no/sound-measurement/sound-theory

[12] “The Speed of Sound.” [Online]. Available: https://www.physicsclassroom.
com/class/sound/Lesson-2/The-Speed-of-Sound

[13] “The Propagation of sound.” [Online]. Available: https://pages.jh.edu/
virtlab/ray/acoustic.htm

[14] “The Speed of Sound in Other Materials.” [Online]. Available: https:
//www.nde-ed.org/Physics/Sound/speedinmaterials.xhtml

[15] F. Nemazi, “Using cross correlation to classify probability of origin of
sound,” Tech. Rep.

[16] E. B. editors, “Decibel, unit of measurement.” [Online]. Available:
https://www.britannica.com/science/decibel

[17] “Comparative Examples of Noise Levels.” [Online]. Available: https://www.
iacacoustics.com/blog-full/comparative-examples-of-noise-levels.html

[18] “NIGHT NOISE GUIDELINES (NNGL) FOR EUROPE,” Tech. Rep.
[Online]. Available: https://ec.europa.eu/health/ph projects/2003/action3/
docs/2003 08 frep en.pdf

[19] R. Brice, “Got to Get You into My Life – Sound recording,”
Tech. Rep. [Online]. Available: https://www.sciencedirect.com/topics/
engineering/digital-audio

[20] “Digital Audio Fundamentals,” Jun. 2020. [Online]. Available: https:
//manual.audacityteam.org/man/digital audio.html

[21] G. Brown, “Digital Audio Basics: Sample Rate and Bit Depth,”
Jul. 2019. [Online]. Available: https://www.izotope.com/en/learn/
digital-audio-basics-sample-rate-and-bit-depth.html

[22] J. Nordby, “Environmental Sound Classification on Microcontrollers using
Convolutional Neural Networks,” Ph.D. dissertation, NMBU, 2019. [On-
line]. Available: https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/
11250/2611624/report-print1.pdf?sequence=3&isAllowed=y

[23] “What is a Spectrogram?” [Online]. Available: https://pnsn.org/
spectrograms/what-is-a-spectrogram

[24] “https://vibrationresearch.com/blog/what-is-a-spectrogram/.” [Online].
Available: https://vibrationresearch.com/blog/what-is-a-spectrogram/

[25] T. Bäckström, “Cepstrum and MFCC.” [Online]. Available: https:
//wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC

ii

https://www.physicsclassroom.com/class/sound/Lesson-2/The-Speed-of-Sound
https://www.physicsclassroom.com/class/sound/Lesson-2/The-Speed-of-Sound
https://pages.jh.edu/virtlab/ray/acoustic.htm
https://pages.jh.edu/virtlab/ray/acoustic.htm
https://www.nde-ed.org/Physics/Sound/speedinmaterials.xhtml
https://www.nde-ed.org/Physics/Sound/speedinmaterials.xhtml
https://www.britannica.com/science/decibel
https://www.iacacoustics.com/blog-full/comparative-examples-of-noise-levels.html
https://www.iacacoustics.com/blog-full/comparative-examples-of-noise-levels.html
https://ec.europa.eu/health/ph_projects/2003/action3/docs/2003_08_frep_en.pdf
https://ec.europa.eu/health/ph_projects/2003/action3/docs/2003_08_frep_en.pdf
https://www.sciencedirect.com/topics/engineering/digital-audio
https://www.sciencedirect.com/topics/engineering/digital-audio
https://manual.audacityteam.org/man/digital_audio.html
https://manual.audacityteam.org/man/digital_audio.html
https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-depth.html
https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-depth.html
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2611624/report-print1.pdf?sequence=3&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2611624/report-print1.pdf?sequence=3&isAllowed=y
https://pnsn.org/spectrograms/what-is-a-spectrogram
https://pnsn.org/spectrograms/what-is-a-spectrogram
https://vibrationresearch.com/blog/what-is-a-spectrogram/
https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC
https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC

[26] L. P. Jason Wang, “The Effectiveness of Data Augmentation in
Image Classification using Deep Learning.” [Online]. Available: http:
//cs231n.stanford.edu/reports/2017/pdfs/300.pdf

[27] Erica, “Introduction to the Fundamentals of Time Series Data and
Analysis,” Feb. 2020. [Online]. Available: https://www.aptech.com/blog/
introduction-to-the-fundamentals-of-time-series-data-and-analysis/

[28] “Cross Correlation Functions and Lagged Regressions.” [Online]. Available:
https://online.stat.psu.edu/stat510/lesson/8/8.2

[29] a. R. D. B. V. K Vijaya Kumar, Abhijit Mahalanobis, “Correlation Pattern
Recognition.” Cambridge university, 2010, vol. 1. eidtion.

[30] “Cross correlation.” [Online]. Available: https://en.wikipedia.org/wiki/
Cross-correlation

[31] P. S. G. Ricardo Queiros, Raul Carneiro Martins, “A new method
for high resolution ultrasonic ranging in air,” Tech. Rep., Jan. 2006.
[Online]. Available: https://www.researchgate.net/publication/239912163
A new method for high resolution ultrasonic ranging in air

[32] “The fourier transform,” 2010. [Online]. Available: https:
//www.thefouriertransform.com

[33] G. Sanderson, “But what is the Fourier Transform? A visual
introduction,” Jan. 2018. [Online]. Available: https://www.youtube.com/
watch?v=spUNpyF58BY

[34] “Cross-Correlation.” [Online]. Available: https://www.sciencedirect.com/
topics/chemistry/cross-correlation

[35] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, p. 2.

[36] M. H. Tesfazion, “A data-driven approach for power
loss detection in utility-scale solar power plants,”
Ph.D. dissertation, NMBU, 2019. [Online]. Available:
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2612002/
A%20data-driven%20approach%20for%20power%20loss%20detection%
20in%20utility-scale%20solar%20power%20plants%20Thesis%20MHT%
20%28Final%29%20%282%29.pdf?sequence=1&isAllowed=y

[37] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, pp. 207–210.

[38] ——, “Python Machine Learning,” 2019, p. 92.

[39] ——, “Python Machine Learning,” 2019, p. 100.

iii

http://cs231n.stanford.edu/reports/2017/pdfs/300.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/300.pdf
https://www.aptech.com/blog/introduction-to-the-fundamentals-of-time-series-data-and-analysis/
https://www.aptech.com/blog/introduction-to-the-fundamentals-of-time-series-data-and-analysis/
https://online.stat.psu.edu/stat510/lesson/8/8.2
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Cross-correlation
https://www.researchgate.net/publication/239912163_A_new_method_for_high_resolution_ultrasonic_ranging_in_air
https://www.researchgate.net/publication/239912163_A_new_method_for_high_resolution_ultrasonic_ranging_in_air
https://www.thefouriertransform.com
https://www.thefouriertransform.com
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.sciencedirect.com/topics/chemistry/cross-correlation
https://www.sciencedirect.com/topics/chemistry/cross-correlation
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2612002/A%20data-driven%20approach%20for%20power%20loss%20detection%20in%20utility-scale%20solar%20power%20plants%20Thesis%20MHT%20%28Final%29%20%282%29.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2612002/A%20data-driven%20approach%20for%20power%20loss%20detection%20in%20utility-scale%20solar%20power%20plants%20Thesis%20MHT%20%28Final%29%20%282%29.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2612002/A%20data-driven%20approach%20for%20power%20loss%20detection%20in%20utility-scale%20solar%20power%20plants%20Thesis%20MHT%20%28Final%29%20%282%29.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2612002/A%20data-driven%20approach%20for%20power%20loss%20detection%20in%20utility-scale%20solar%20power%20plants%20Thesis%20MHT%20%28Final%29%20%282%29.pdf?sequence=1&isAllowed=y

[40] “sklearn metrics - recall score.” [Online]. Available: https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.recall score.html

[41] “sklearn metrics - precision score.” [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.precision score.html

[42] “sklearn metrics - f1 score.” [Online]. Available: https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.f1 score.html

[43] S. Singh, “Understanding the Bias-Variance Tradeoff,”
May 2018. [Online]. Available: https://towardsdatascience.com/
understanding-the-bias-variance-tradeoff-165e6942b229

[44] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, p. 76.

[45] A. Nagpal, “Over-fitting and Regularization.” [Online]. Available: https:
//towardsdatascience.com/over-fitting-and-regularization-64d16100f45c

[46] “Difference between model parameters vs hyperparam-
eters.” [Online]. Available: https://www.geeksforgeeks.org/
difference-between-model-parameters-vs-hyperparameters/

[47] G. Bland, “Train/Test Split and Cross Validation – A Python Tutorial,” Oct.
2020. [Online]. Available: https://algotrading101.com/learn/train-test-split/

[48] F. Chollet, “Deep Learning with Python,” 2018, p. 1.

[49] “Multi-Layer Neural Network.” [Online]. Available: http://deeplearning.
stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

[50] T. Wood, “What is the Sigmoid Function?” [Online]. Available:
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function

[51] “Role derivative of sigmoid function in neural networks,” 2018. [On-
line]. Available: https://datascience.stackexchange.com/questions/30676/
role-derivative-of-sigmoid-function-in-neural-networks

[52] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, p. 416.

[53] Y. M. Moe, “Deep learning for automatic delineation of tumours from
PET/CT images,” Ph.D. dissertation, NMBU, 2019. [Online]. Available:
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2597305/
Yngve Mardal Moe Masteroppgave.pdf?sequence=1&isAllowed=y

[54] F. Chollet, “Deep Learning with Python,” 2018, p. 11.

[55] A. Agrawal, “Loss Functions and Optimization Algorithms. Demys-

iv

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/over-fitting-and-regularization-64d16100f45c
https://towardsdatascience.com/over-fitting-and-regularization-64d16100f45c
https://www.geeksforgeeks.org/difference-between-model-parameters-vs-hyperparameters/
https://www.geeksforgeeks.org/difference-between-model-parameters-vs-hyperparameters/
https://algotrading101.com/learn/train-test-split/
http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://deeplearning.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function
https://datascience.stackexchange.com/questions/30676/role-derivative-of-sigmoid-function-in-neural-networks
https://datascience.stackexchange.com/questions/30676/role-derivative-of-sigmoid-function-in-neural-networks
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2597305/Yngve_Mardal_Moe_Masteroppgave.pdf?sequence=1&isAllowed=y
https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2597305/Yngve_Mardal_Moe_Masteroppgave.pdf?sequence=1&isAllowed=y

tified.” [Online]. Available: https://medium.com/data-science-group-iitr/
loss-functions-and-optimization-algorithms-demystified-bb92daff331c

[56] F. Chollet, “Deep Learning with Python,” 2018, p. 60.

[57] D. Godoy, “Understanding binary cross-entropy / log loss: a visual expla-
nation,” Nov. 2018. [Online]. Available: https://towardsdatascience.com/
understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

[58] M. Stewart, “Neural Network Optimization,” Jun.
2019. [Online]. Available: https://towardsdatascience.com/
neural-network-optimization-7ca72d4db3e0

[59] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, pp. 36,37,38.

[60] I. Dabbura, “Gradient Descent Algorithm and Its Vari-
ants.” [Online]. Available: https://towardsdatascience.com/
gradient-descent-algorithm-and-its-variants-10f652806a3

[61] D. Tavakoli, “Autonomous Drone Landing using Deep Reinforcement
Learning,” Ph.D. dissertation, NTNU, Jun. 2020.

[62] F. Chollet, “Deep Learning with Python,” 2018, p. 10.

[63] S. Saha, “A Comprehensive Guide to Convolutional Neural Net-
works,” Dec. 2018. [Online]. Available: https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[64] S. R. . V. Mirjalili, “Python Machine Learning,” 2019, pp. 519–524.

[65] P. A. A. C. a. C. L. Felix Gontier, Mathieu Lagrange, “An Efficient Audio
Coding Scheme for Quantitative and Qualitative Large Scale Acoustic Mon-
itoring Using the Sensor Grid Approach,” Ph.D. dissertation, Nov. 2017.

[66] F. Chollet, “Deep Learning with Python,” 2018, p. 18.

[67] Q. Kong, M. Yin Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern
Recognition.”

[68] J. P. B. Justin Salamon, “Deep Convolutional Neural Networks and Data
Augmentation for Environmental Sound Classification,” Nov. 2016.

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0
https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

	Introduction
	Noise
	Monitoring noise with wireless sensor networks
	PNB
	Problem statement

	Theory
	Physics of sound
	Sound
	Amplitudes
	Frequency
	Sounds speed, propagation and absorption
	Measuring sound
	Limits for noise

	Audio classification
	Digital audio
	Spectrograms
	Mel-spectrograms
	Delta-spectrograms
	Analysis windows

	Combining signals
	Time series
	Cross-correlation
	Fourier transform of the cross-correlation

	Machine learning
	Random forest classification
	Classification problems and performance metrics
	The bias-variance trade-off
	Grid search and model-validation

	Neural networks
	Multi-layer neural network
	Activation functions
	Loss functions
	Optimization
	Training a neural network
	Convolutional neural networks (CNN)

	Materials and methods
	Soundsensing IoT soundsensors
	Data collection
	Data labelling
	Handling privacy issues
	Choosing evaluation metric
	Preprocessing
	Time delay and creation of windows
	Overlapping within windows - data augmentation
	Mel-spectrograms and delta-spectrograms
	Stacking delta-spectrograms
	Feature engineering

	Model evaluation
	Predicting noise with random forest
	Bundled model - convolutional neural networks combined with cross correlation
	Difference in representation of data

	Results
	Noise detection with a random forest classifier
	Convolution Neural Network models result
	Detection of impulsive noise at the settlement
	Detection of impulsive noise at PNB

	Impulsive noise detection with the bundled models
	Comparing recall/precision trade-off between the models

	Discussion
	Discussion of method
	Shortage in data collection
	The creation of data labels
	Choosing models
	Architecture selection for CNN's

	Discussion of results
	Random forest results
	Bundled models results
	Comparing the models
	Regarding thresholds

	Practical evaluation of the solution
	Future work

	Summary and conclusion
	Bibliography

