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Abstract

Genomes in living organisms consist of the nucleotides adenine
(A), guanine (G), cytosine (C) and thymine (T). All prokaryotes have
genomes consisting of double-stranded DNA,| where the A’s and G’s
(purines) of one strand bind respectively to the T’s and C’s (pyrim-
idines) of the other. As such, the number of A’s on one strand nearly
equals the number of T’s on the other, and the same is true of one
strand’s G’s and the other’s C’s. Globally, this relationship is formal-
ized as Chargaff’s first parity rule; its strandwise equivalent is Char-
gaff’s second parity rule. Therefore, the GC content of any double-
stranded DNA genome can be expressed as %GC = 100% — %AT.

Variation in prokaryotic GC content can be substantial between
taxa but is generally small within microbial genomes. This variation
has been found to correlate with both phylogeny and environmental
factors. Since novel single-nucleotide polymorphisms (SNPs) within
genomes are at least partially linked to the environment, SNP GC
content can be considered a compound measure of an organism’s envi-
ronmental influences, lifestyle and phylogeny.

We present a mathematical model that describes how SNP GC
content in microbial genomes evolves over time as a function of the
AT—GC and GC—AT mutation rates with Gaussian white noise dis-
turbances. The model suggests that, in non-recombining bacteria, mu-
tations can first accumulate unnoticeably and then abruptly fluctuate
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out of control. Thus, minuscule variations in mutation rates can sud-
denly become unsustainable, ultimately driving a species to extinction
if not counteracted early enough. This model, which is suited specif-
ically to symbiotic prokaryotes, conforms to scenarios predicted by
Muller’s ratchet and may suggest that this is not always a gradual,
degrading process. It is also in agreement with some of the empirical
evidence that motivated the formulation of the Red Queen hypothesis.
We apply our model to different lineages of Renibacterium salmoni-
narum and find a substantial increase in SNP GC content within the
most disseminated lineage, la. That increase could be due to a dra-
matic change in environment for this lineage.

1 Introduction

GC content varies considerably between prokaryotic species but is remark-
ably stable genome-wide, despite the fact that bacterial genomes are pre-
dominantly functional and expressed in some sense [I]. Bacteria can have
an average genomic GC content of as low as 13.5% (Candidatus Zinderia in-
secticola) or of as high as 75% (Anaeromyzobacter dehalogenans) [2]. While
both large and small bacteria can be either GC-rich or AT-rich, there seems
to be a tendency—at least in some phylogentic groups—for symbionts with
smaller genomes to be more AT-rich, while soil-dwelling bacteria with large
genomes tend to be more GC-rich [4, [5].

The mechanisms responsible for GC richness in bacteria with large genomes
are poorly understood; far more can be deduced from AT-rich bacteria with
small genomes (see [5] for a general review of GC content in prokaryotes).
For instance, it was conjectured [6] (before being later demonstrated [7])
that mutations are generally AT-biased due to frequent methylation of cy-
tosine that can subsequently change to thymine. Bacteria in a symbiotic
relationship with their host (often an insect) undergo reductive evolution
through the loss of genes rendered unnecessary by the within-host envi-
ronment. There is a clear evolutionary drive towards economizing energy
expenditure [8, 21]. When host organisms have low effective population size
(Ne) or density, genetic drift also influences the size and base composition of
symbiont genomes [9] [10]. The outside environment can also affect genomic
base composition in bacteria [12].

Phylogenetic relatedness, on the other hand, exerts strong pressure against
changes in GC content. This is due in large part to the significant role that
protein coding genes play in bacteria and to the fact that mutations in
the first two positions of a codon can change the amino acid defined by that
codon [13]. Phylogenetic influence on base composition in prokaryotes seems
to be most prominent at the genus level and below [18].

There are several indicators that genome size reduction occurs before
genomic GC content drops [9]. Loss of DNA mismatch repair (MMR) genes



and proofreading enzymes can nevertheless lead to a relatively quick decrease
in genomic GC content [I4]. An increase in genomic GC content, on the
other hand, can result in increased fitness [I5], and this is associated with
stronger selection on base composition [17), I8, [19]. Abundance of nitrogen,
as in soil, has been identified as a driver for increased genomic GC content
[16].

A recent study [2] found that single-nucleotide polymorphisms (SNPs)
in microbial core genomes from different taxa were surprisingly GC-rich,
except in cases where the genomes themselves were already among the most
GC-rich. The study presented a mathematical model describing SNP GC
content as a function of core genome GC content. The model indicated
that GC—AT mutations occurred at roughly double the rate of AT—GC
mutations, which suggests that most GC—AT mutations are lost prior to
fixation [2].

In another recent study [3], it was shown that while GC—AT mutation
rates are remarkably consistent across bacterial taxa, AT—GC mutation
rates vary considerably. Since the environment exerts selective pressure on
bacterial base composition [12] [13], it should, at least partly, be reflected in
core genome SNPs, together with evolutionary history, lifestyle and taxon.

Stochastic events strongly impact the influence of the environment on
genomic base composition in bacteria. Inspired by Motoo Kimura’s seminal
paper [11], we modify a previously described model [2] to investigate SNP
GC content evolution with respect to time. Furthermore, we extend the
model with the assumption of Gaussian white noise perturbations in the
mutation rates. We assume that SNP GC content is subject to Chargaff’s
parity rules. In practice, this means that core genome SNP GC content
depends on the bases that are selected (including through hitchhiking [37])
and not on random mutations that are purged before fixation. We employ
It6 calculus to solve the stochastic differential equation (SDE) that accounts
for the random perturbations in the AT—-GC and GC—AT mutation rate
parameters. We then discuss implications of the model and present out-
comes that show striking concordance with Muller’s ratchet [22] and with
evolutionary mechanisms described by the Red Queen hypothesis [23], 24].
Finally, we apply the model to a genomic data set consisting of SNP GC
content differences in lineages of the fish pathogen Renibacterium salmoni-
narum (taken from [20]).

2 Mathematical model

2.1 Motivation

The mathematical model presented here is an extension of the model pre-
sented in [2]. The original model, which describes the change in core genome



SNP GC content with respect to core genome GC content, is

dFgc(x)

e afgo(z) + B(1 = Fee(w)). (1)

x represents core genome GC content, while Fgo(z) represents SNP GC
content. These terms are subject to the constraints 0 < x < 1 and 0 <
Fge(x) < 1. In [2], the parameters o and 3 were estimated by fitting the
model to empirical data using either non-linear least square regression [2] or
Bayesian inference [3].

In the present study, we are concerned with the change in SNP GC
content with respect to time in a stochastic setting. That is, we are now
interested in the relation

Fron(w) = Fy(w) + aFy(w)At + B(1 — Fy(w))At, 2)

where Fi(w) represents SNP GC content at time ¢. The change in Fi(w)
with respect to trajectory w during time At is a parameter « times Fy(w)
times At plus a parameter § times 1 — Fi(w) (SNP AT content at time t)
times At. In other words, the difference in SNP GC content with respect to
time is assumed to be equal to parameter multiples of SNP GC content and
SNP AT content. In classical calculus notation, we write

dFt (w)
dt

Here, F;(w) is a stochastic process, and we let a = a + Wi(w) and g =
b+ Wi(w), where a,b € R and Wy(w) is a Gaussian white noise process.
Equation (3] is subject to the probability space (€2, F;, P) as well as the
measure space (R*,G,dt). Q is the space of all trajectories w, F; is its
filtration with respect to each time t € RT (i.e. [0,00) of which G is the cor-
responding Borel algebra and dt Lebesgue measure), and P is a probability
measure on 2. We now have:

= aFi(w) + (1 - Fi(w)), (3)

T (0t W) Blw) + b+ W) (1 - Fw)
= aFy(w) + Fi(w)Wi(w) +
(1 = Fi(w)) + Wilw)(1 — Fi(w))
= aF;(w) +b(1 — Fi(w)) + Wi(w).
Hence,
W) _ 0By w) + b1 = Fiw)) + Wy(w). @

dt
It is important to note that, in the present form, this derivative does not exist
in the classical sense or in the Radon-Nikodym sense for Fy(w). However, if
we assume that F}(w) is a continuous semimartingale (allowing for countable



and bounded jumps), the Doob—Meyer decomposition theorem (pp. 129-
133 of [25]) guarantees that Fy(w) = Fy + A(t) + X¢(w), where A(t) is a
function of bounded variation and X;(w) is a local martingale. Moreover,
this decomposition is unique, and both A(t) and X;(w) are adapted to F;.
If we assume that X;(w) is a Brownian motion, then by chapter 3 of [26],
@) can be written as

dF;(w) = (aFy(w) +b(1 — F(w)))dt + dBy(w). (5)

Though the term (aF}(w)+b(1—F;(w)))dt resembles (II), we must handle
the Brownian motion term dBy(w) in a non-classical way. We allow for scaled
volatility ¢, as it is not unreasonable to expect variance differences across
organisms and/or environments in addition to time ¢. It can be shown that
a scaled Brownian motion is also a Brownian motion: Let U; be a Brownian
motion (see, for instance, ch. 2 of [26]). Then,

E(U;) =

-5 du

\/_

Letting u = ¢z and % = ¢, it follows that

i

/ T dz—IE(cZ%).

% du = —Sr cdz

Vi

\/QT_

We do not presume that Fj(w) can see into the future. Thus, the
martingale condition E(Fs(w)|F;) = Fi(w) with s > t holds when E is
the expectation operator with respect to probability measure P(w), i.e.
E(X) = JoXdP. As such, we assume that F(w) is adapted to the fil-
tration J; for each t, which motivates the use of the It6 integral instead of
the Fisk—Stratonovich integral [25]. It is therefore enough to assume that
Fy(w) is a cadlag process, i.e. lim,_,;+ Fs(w) = Fy(w) (left-continuous with
right limits; see ch. 2 of [25]), implying that F;(w) has a countable number
of bounded jumps. We can then use the It6 formula (see ch. 4 of [26])
to solve (Bl). Furthermore, since we assume that 0 < Fi(w) < 1 and that
a, b are finite constants, it is guaranteed that (B]) has a strong and unique
solution (see ch. 5 of [26]).

First, we must identify an integrating factor that removes Fj(w) from
the right-hand side. Let

dFi(w) = (aFy(w) 4 b(1 — Fy(w)))dt + dBy(w)
= (aF)(w) — bE,(w) + b)dt + dBy(w)
= ((a — b)Fy(w) + b)dt + dBy(w),



where E’t(w) is a c-scaled Brownian motion. Letting g(t,z) = e(=(¢=0z we

get the integrating factor g(t, Fy(w)) = Y;(w) = e~ F,(w). Applying
It6’s formula (p. 44 of [26]), we see that

dg 0g 10%g 9
AVifw) = (8, Fy (@)t + 2 (1, Fyw))dF(w) + 5 55 (8 Fy(w)) (dFy ()
2 (6)
Because %(t, x) = 0, the last term of (@) is equal to zero. As a result,
9g 9g
Wiw) = 2t F@)dt+ St Fw)dF ()
= —(a—b)eTO D E (w)dt + e~ gF (W)
= —(a—b)eT D B (w)dt +
+e7@=0) (((q — b)Fy(w) + b)dt + dBy)
— pe(@b gy 4 o~V g,
Thus, we have the differential
dYi(w) = bel == gt 4 o(Zl@=0) g, (7)

and so
dYi(w) = d(e O F(w)) = bel = (@D gt 4 (a0 g B,
We can then find the formula for F;(w), by setting s € [0,¢], and letting
d(e=@00 By (w)) = bel = (@700 gp 4 o(—le=b) g3,

which gives

t t
@00 B () — Fy(w) = / be(—(@=0)3) g 1 / @) g
0 0

and

t t
Fy(w) = Fy(w)el@™dt 4 / bela0=9) g 1 / el 0t=9)gp,. (8)
0 0

Assuming that Fj(w) is a semimartingale, we have from the Doob—Meyer
decomposition that fg be(a=b)(t=5) 75 is of bounded variation and that

t
/ ea-D)(t=9) 4B
0

is a local martingale, which is in fact a martingale (see pp. 129-133 of
[25]). While the latter martingale term must be solved numerically, the



antiderivative of the bounded variation term can be solved using the chain
rule:

t
bel@=0(t=8) gs — ¢y +
/0 " a-b)

We thus obtain the explicit equation for Fj(w):

(e(a—b)t _ 1).

t
Fwt(w) _ Fo(w)e(a—b)t + L(e(a—b)t o 1) +/ e(a—b)(t—s)dés
(a—10) 0
that can be written as:
Fy(w) = — L (Fy(w) + L)ew—b)t + / t el =slgp,  (9)
(a—"b) (a—1b) 0 ’

which is subject to the constraints ¢ € [0,00) and 0 < Fi(w) < 1. The
integration constant c¢g is just assumed included in Fy. It should be noted

that for Fy =0,
b

(a =)
Since the martingale term vanishes (see p. 30 of [26]), we get the solution
to () when ¢t = z [2]. Furthermore, we do not need to bother with the

martingale term when estimating parameters a and b. The variance is given
by Var(Fi(w)) = E((F;(w) — E(F;(w))?), which we can solve by setting

E(Fy(w)) = (el — 1), (10)

b

A:=F (a=b)t o 7
o(w)e + (@=1)

(e(a—b)t - 1)

and .
B = / (a0 t=5) g3
0

This gives:

Var(Fi(w)) = E((Fy(w) — E(Fy(w))?

(A+B)* —2(A+ B)A + A?)
A% +2AB + B% - 2A% — 2AB + A?)

t
B2) = B(( / (@09 4 )2,
0

The It6 isometry (see p. 26 of [26]) gives:

t t
E((/ @D E=5) g )2) :IE(/ (@B E=5))2 )

0 0

t
_ / 2a-b)(i—s) g
0



2(a—b)(t—s)

We can solve fg e ds explicitly by calculating its antiderivative,

t
1
2(a—b)(t—s) 7. _ 2(a=b)t _q
/0 ¢ ds = do 2(a —b) (e -

Hence, we recover the expectation for Fy(w),

b

E(F () = Fo(w)e ™ + ==

(ela=b)t _ 1), (11)

and the corresponding variance (integration constant dy set to zero),

_ 1 2a—b)t
Var(F;(w)) = 3@ —1b) (e 1). (12)
2.2 The parameters a and b
We note that
0 < E(Fi(w)) = Fy(w)el® Dt + ﬁ(e(ab)t —1)<1. (13)

For t = 0 we see from condition (I3]) that 0 < Fy(w) < 1. For (a — b) >
0 el@=bt approaches inifinity so this condition is not reasonable. We are
therefore left with the condition (a — b) < 0. Since 0 < Fy < 1 we get

b

0< Fo(w)e(“_b)t + m(

el Mt _ 1) <1
Letting t — oo we see that
b
0<——x<1
b—a

which implies that b > 0 and that a < 0. For a = b the bounded variation
term A(t) in eq.(@)) collapses into a linear equation:

b

A(t) = m(e<a—b>'f -1)
b (a — b)?t? (a —b)"t"
= ottt T e - )
1 (a —b)1t? (@ —b)"1n 1 (14)
_b(a—b+t+ 2! o n! +.”_a—b)
B (a —b)1t? (@ —b)"1n
_b(t_|_72! _{_...4_7”! +e0)
=bt

We will henceforth assume that Fy > 0 and (a — b) < 0.



2.3 The martingale term

We use Gaussian white noise to model perturbations in the AT—GC (a)
and GC—AT (b) mutation rates. We also allow for scaling of ¢ > 0, as men-
tioned above. The scale can be determined by factors such as species/strain,
environment, host and presence of MMR genes. The martingale term,

t
/ e@=D)t=5) g (15)
0

depends on the parameters a and b as well as on the duration of the time
period. Since we assume that (a — b) < 0, the martingale term approaches
0 as t — oo and Brownian motion B;(w) for a = b. For (a — b) < 0 it can
be seen that (3] increases as s — t.

We can reach the same conclusion by examining the variance of Fi(w)
(described in ([I2]) above). The Brownian motion is assumed to have mean
p = 0 and variance E(B?(w)) = t. Thus, the variance of Browninan motion
is in general expected to increase with time ¢. Since there is no simple way
to calculate the integral in (I5]) analytically, we do so numerically:

t SN
/ @D B, = 37 @D, () - Wi (@)Asi,  (16)
0 -
where Ws(w) is c-scaled white noise, As; = s;41 — 84, and s9 = 0,...,8; =

ti,...,SN:t.

2.4 The Girsanov transform
Equation (7)) can be written as
dFy(w) = ((a — b)Fy(w) + b)dt + dBy(w).

Since we know from () that

b ¢ R
I b / (a=b)(t—s) 373
TG T et

t
Zu(w) = / eab)t=5) g 3
0

then Z;(w) is an It6 process (see [26]). After some rearrangements we can
set

Ko(w) = (a = D)((Fo(w) + —5)el*" + Z4(w),

and since Z;(w) is a martingale, we know from the Doob—Meyer decompo-
sition that K;(w) is also a martingale. We can thus write

dFy(w) = Ky(w)dt + dBy(w).



The Girsanov theorem allows us to compute the Radon—-Nikodym derivative
(see ch. 3, p. 146 of [25]) of a measure @) with respect to the probability
measure P as follows:

d t 5 1
d—g = exp(—/o Ks(w)dBs — 5/0 K2 (w)ds).

This means that F;(w) is a Brownian motion under the measure @, since we
assume that (a—b) < 0 which implies that Kazamaki’s (and hence Novikov’s
condition) apply V¢ (see chs. 4 and 8 of [26]).

2.5 Further generalizations

The model describing SNP GC content can be made more general if we as-
sume that the parameters a and b are functions. It is important to note that
if @ and b are functions with respect to time, obtaining an analytical solution
may be impossible. While up to this point we have assumed that variation
in the model is described by a white noise process, a more complicated noise
term X; could also be used. For instance, if we let

dFt (W)
dt

= (0 + Xi(w) Fr(w) + (b+ X (w))(1 = Fy(w)),

we have

dFt (UJ)
dt

=aF(w) + Xp(w)F(w) + b+ X (w) — (b4 X¢(w)) Fr(w).

This reduces to

dF(w)
T (a —b)Fi(w) + b+ Xt (w),
where )
Xi(w) = 0(t,w) + k(t, w)Wi(w).
Thus,
dF;iw) =aF(w) +b(1 — Fy(w)) + (6(t,w) + /{(t,w)Wt(w)),

and after rearranging:
dF(w) = ((a — b)Fy(w) + 0(t,w) + b)dt + k(t,w)dBy(w). (17)

We could, for instance, let X;(w) be a mean-reverting Ornstein—Uhlenbeck

process, i.e.
dXt (w)

dt

= GCy — Fi(w) + Wi(w).
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Figure 1: The model (@) with different combinations of parameters a, b and
Brownian scaling coefficient ¢, all starting at Fy = 0.5. The vertical axis
describes SNP GC content, while the horizontal axis describes time ¢ from
TO =0toT =1.

Hence, we let 0(t,w) = GCy — Fy(w) and k(t,w) = 1. Plugging these into

(7)), we see
dFy(w) = ((a — b)Fy(w) + GCy + b)dt + dB;(w). (18)

We can now use the integrating factor g(t, Fy(w)) = Y;(w) = e(~(¢=0% Fy (w)
to solve (I8) in a similar fashion to ().

3 Results and Discussion

Equation (@) describes a model for core genome SNP GC content in prokary-
otes. It obeys Chargaff’s parity laws [27]. As discussed in section [I, SNPs
are subject to natural selection, which is in turn mediated by the environ-
ment of the organism(s) at hand. While a drop in SNP GC content could
indicate relaxed selective pressures with ensuing mutations from genetic drift
and AT mutational bias [7], increased negative or purifying selection may
favor GC-biased SNPs [I], 17, [I8] [19]. Selective pressure for improved fitness
could also lead to increased GC content [I5]. Carbon starvation [41] and/or
nitrogen abundance [I6] have also been found to have an effect on genomic
base composition.
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All in all, microbial organisms in the same environments often acquire
the same nucleotide biases if enough time is allowed to pass [12] 13]. Such
environmental signatures become particularly evident in SNPs since, as dis-
cussed above and in section [I], these polymorphisms arise as a consequence
of natural selection regulated by the environment. By fitting (@) to empiri-
cal data with either non-linear regression models or Bayesian inference, we
can estimate the relative proportions of mutation from AT—GC (a) and
GC—AT (b) over time. The model described by () estimates analogous
parameters for AT—-GC (a) and GC—AT (5), but with respect to core
genome GC content rather than time.

3.1 The accumulating effects of stochastic processes

Figure [ shows different paths of SNP GC content with respect to time;
increase, decrease and stasis for various Brownian scaling coefficients c.

All stochastic fluctuations observed in the curves in figure [Tl are a con-
sequence of the Brownian motion term (I5). These SNP GC content curves
all become more unstable as time passes, to varying degrees depending on
c. The mathematical mechanisms behind these stochastic fluctuations are
outlined in section 2.3l Equation (I5]) indicates that both the mutation pa-
rameters a and b are responsible for how the stochastic fluctuations progress
with respect to time (see also section [2.2]).

Some of the paths in figure [ initially exhibit barely visible stochastic
fluctuations, but these grow in magnitude as the SNP GC content mutation
rates start to vary out of control, especially for low values of c.

The progression of the stochastic fluctuations in the SNP GC content
curves for low ¢ is not at all expected a priori. Below, we demonstrate that
the nature of the abruptly exploding mutation rates is supported both in
theory [22] 23] 24] and in practice. In the following examples, we focus on
mechanisms resulting in genome reduction [8, 9] and subsequent AT bias in
the base composition of many symbionts. We end this section with a case
study utilizing real genetic data on SNP GC content in different lineages of
the fish pathogen R. salmoninarum.

3.2 Evolution of microbial obligate symbionts

Free-living bacteria that develop a sustained symbiotic relationship with a
host [34] will often, over time, undergo genome reduction [8]. This process
of genome reduction is preceded by a phase of pseudogenization, in which
the symbiont’s genome retains its usual size [29], but the genes are not un-
der selective constraints imposed by the host and thus become abundant.
Accumulated mutations eventually render many genes defective [9, 28]. The
process of pseudogenization may drag on for a long time [30], but eventu-
ally non-expressed genetic regions will be excised due to energy economiza-
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tion [21], lack of recombination, and/or the absence of streamlining due to
low population density and reduced selective pressure from the environment
[10, 22]. The first genes lost are typically those least conserved within a
species [35]. It is only after a continuous symbiotic relationship and the
pseudogenization phase that a drop in genomic GC content seems to oc-
cur, most likely because of the loss of MMR genes that counter the AT
mutational bias [§].

After the decrease in genomic GC content, there is usually no return
to a free-living lifestyle for the bacterium [30]. Non-recombining symbionts
ultimately disintegrate, as described by the concept of Muller’s ratchet [22].
According to some recent findings, the host, which eventually becomes de-
pendent on the symbiont, can establish similar relationships with other bac-
teria [28] [33], 30, 9] 34].

Intracellular pathogens, on the other hand, do not appear to engage
in symbiotic relationships with a host, most likely due to the increased
constraints of a pathogen-host relationship [36]. As such, though these
pathogens may undergo genome reduction, they do not seem to experience
the same dramatic gene loss observed in some symbionts, which are reduced
to mere organelles in their hosts [28]. It is not uncommon, however, for the
genomic base composition of intracellular pathogens to be AT-biased [36].

There do appear to be some similarities between the evolutionary mecha-
nisms of symbionts and those of free-living bacteria that undergo changes in
environment even if not through attachment to a host. There are only a few
documented examples of free-living bacteria that experience genome reduc-
tion with subsequent genomic AT bias after a change in environment /niche.
One of these is the cyanobacterium Prochlorococcus spp. [31], whose high-
light ecotypes living close to the water surface are more AT-rich and have
smaller genomes than the low-light ecotypes living at greater depths [32].
Indeed, genomic GC content and genome size increase, respectively, from
30.8% and 1.66 megabase pairs (Mbp) in the high-light strains to 50.0% and
2.68 Mbp in the low-light strains [32].

3.3 Modeling AT bias in microbial genomes

As mentioned above, microbial genomes appear to become more AT-rich
after the loss of MMR genes, regardless of niche and/or environment. This
is most likely due to AT mutational bias [7], and it may be mediated by
genetic drift in light of relaxed selective pressures [§].

The model in (I5]) was formulated in a recent study [2] that assumed that
the change in SNP GC content with respect to core genome GC content was
a constant multiple of SNP GC content and another constant multiplied by
SNP AT content. In the present study, we investigated how SNP GC content
evolves over time, allowing for stochastic fluctuations. We modeled these
fluctuations using a Gaussian white noise process Wt(w), which is subject to
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a scaled ¢ > 0, in the AT—GC and GC— AT mutation rates. We introduced
the scaling to account for differences between species, environment /niche,
and selective pressures or lack thereof.

From figure[T], it can be seen that the mutation rates remain fairly stable,
at least in the increasing and decreasing curves, before abruptly fluctuating
out of control. Once we decrease ¢ the random fluctuations start sooner and
escalate a bit more. Since the mutation rates fluctuate so drastically as time
t — T, it is natural to expect that the outcome predicted by Muller’s ratchet
will be achieved [22], i.e. that the bacterial population will go extinct. How-
ever, (@) suggests that although the random fluctuations start relatively late,
the species’ fate may be sealed far earlier, before any stochastic fluctuation
can be observed.

A loss of MMR genes could imply that the scaling parameter ¢ adds
more weight to the martingale term (2.II), which triggers the amplification
of the stochastic fluctuations. However, the similarity of the mutation rate
parameters a and b can also influence the magnitude of the stochastic fluc-
tuations. Indeed, from (IH]), it can be seen that low mutation rates magnify
the effect of the martingale term as a — b — 0, since e(®=®) — 1.

3.4 Connections with theories from evolutionary biology

Leigh Van Valen wanted a model to confirm that extinction rates correlate
with age in the fossil record. However, after testing this hypothesis, he found
no such correlation [23]. Thus, he formulated the Red Queen hypothesis,
taking its name from Lewis Carroll’s 1871 book Through the Looking-Glass,
and What Alice Found There. In that book, the Red Queen utters to Alice
about the nature of Looking-Glass Land, "Now, here, you see, it takes all
the running you can do, to keep in the same place.”

Later on, the Red Queen hypothesis was expanded to account for molec-
ular data as well [24]. The model presented in (@) demonstrates related
mechanisms for prokaryotes and sheds light on the case of microbial sym-
bionts that have undergone genome reduction with a subsequent drop in GC
content. If mutations are not kept in check, extinction will ensue. In other
words, the martingale term (I5]) must be kept as low as possible in order
to avoid the random fluctuations that lead to extinction. Since the choice
of ¢ is shaped by factors such as species, environment, host and mutation
rates, extinction rates will differ between populations, as predicted by the
Red Queen hypothesis (See also Figure [Il). Furthermore, non-recombining
clonal organisms will sooner or later accumulate deleterious mutations that
decrease the organisms’ fitness to the point of driving their species to ex-
tinction.

In the previous section, we discussed how microbial symbionts undergo
genome reduction together with a drop in GC content, most likely as a con-
sequence of lost MMR genes. The genomes of these symbionts eventually
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Figure 2: R. salmoninarum lineage 1la SNP GC content (vertical axis) plot-
ted against year (horizontal axis). SNP GC content of lineages 1b and 2 is
similar to R. salmoninarum genomic GC content (red line).

disintegrate due to accumulated hitchhiking effects [37] and genetic drift, as
posited by Muller’s ratchet [22]. There are experimental findings to support
these hypotheses [44]. Our model in (9) provides insight to this by delineat-
ing the stochastic fluctuation in mutation rates that will ultimately spiral
out of control, depending on the mutation parameters a and b and on the
scaling parameter c.

3.5 Mutation rates in R. salmoninarum

The fish pathogen R. salmoninarum is the causative agent of bacterial kid-
ney disease (BKD), which predominantly afflicts salmonoids. R. salmoni-
narum belongs to the GC-rich, gram-positive Actinobacteria family. It is an
intracellular pathogen with a genome size of approximately 3.15 Mbp and a
genomic GC content of 56.5%. Its genome is remarkably well conserved and
thus appears not to recombine [20].

In a previous publication, we examined the SNP GC content over time
of R. salmoninarum lineage 1, consisting of sublineages la (isolated from
North America and Europe) and 1b (isolated from North America), and
of lineage 2 (isolated from the UK and Norway) [20]. While sublineage
1b (3 isolates) and lineage 2 (7 isolates) are more endemic to particular
environments, sublineage la (52 isolates) is widely dispersed across North
America and Norway. We found that SNP GC content in sublineage 1b and
in lineage 2 was equal to 56.5%, i.e. the genomic GC content. The SNP GC
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content of sublineage la, however, was approximately 75% (see figure [2)).

Therefore, we here set ¢ = 1 and Fy = 0.565 to correspond to the genomic
GC content. We estimate a and b using Bayesian inference, selecting non-
informative uniform distributions as priors for both parameters. The median
posterior estimates are a = —22.668 and b = 67.421, which suggests that the
martingale term (I3 holds minimal influence. Furthermore, the GC—AT
mutation rate is substantially higher than the AT—GC mutation rate; there
is a ratio of almost 3:1 between them (67.421/22.668 = 2.98), which is highly
unusual [3].

Though the increased SNP GC content is puzzling, it may indicate that
sublineage la is subject to stronger selective pressure than sublineage 1b
and lineage 2 [17, [19], since recombination is not known to take place in R.
salmoninarum. Recent publications argue that nitrogen abundance and car-
bon starving, which can occur at great ocean depths, may push for increased
GC content [16], 41], but further research is needed before any conclusion
can be drawn.

4 Conclusions

We have presented a mathematical model that describes change in SNP GC
content over time as a function of mutation parameters a and . The model
contains a stochastic term that describes how minuscule, random changes
in mutation rates early on can lead to abrupt, disastrous fluctuations later.
We treated examples of this phenomenon in host-associated and symbiotic
bacteria.

The model, with its incorporated stochastic term and corresponding scal-
ing parameter ¢, shows remarkable congruence with at least some parts of
the Red Queen hypothesis. In the model, ¢ must not be too large to avoid
genomic disintegration. Varying ¢ among species implies that the lifespan
of a species need not correlate with the time to its extinction. Furthermore,
the model demonstrates how Muller’s ratchet operates and suggests that
extinction may occur rapidly, depending on ¢, as opposed to arising slowly.

When we applied the model to different lineages of R. salmoninarum,
we found that one sublineage, la, exhibited a dramatic increase of approxi-
mately 20% in SNP GC content, while no differences were detected in sub-
lineage 1b or lineage 2. Dramatic drops in genomic GC content have been
documented in both host-associated and free-living bacteria; increases in ge-
nomic GC content are less common. The substantial rise in SNP GC content
observed in sublineage 1a may thus be the start of a process leading to in-
creased genomic GC content. Since recombination is absent, or at least very
rare, in R. salmoninarum, the increase in SNP GC content may also indi-
cate that the genome is subject to increased selective pressure, which drives
the genomic GC content upwards. Alternatively, sublineage la could have
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moved to a different environmental niche than sublineage 1b and lineage 2,
one in which carbon is scarce [41].

Our use of stochastic differential equations, which allow for deterministic
modeling of random processes, revealed how bacterial mutation rates may be
influenced by stochastic fluctuations. Although simple, the model described
here provides novel insight into evolutionary processes with mathematical
rigour.

5 Materials and Methods

The genomes utilized in our study were taken from a previous publication
[20]. They are all available from the European Bioinformatics Institute
(accession number: PRJEB4487). The genomic data files were assembled
using MAQ 0.7.1 [38] against the reference R. salmoninarum ATCC33209
(NCBI accession number: NC 010168.1), as described in [20].

In the present study, 6 isolates were excluded due to missing date infor-
mation or poor assembly quality. The removed isolates were Rs3, 5223, 684,
MT3106, Cow-chs-94 and NCIMB 1111 (see [20] for details). SNPs were ex-
tracted using parSNP from HarvestTools [39], and Seaview [42] was used to
examine the base composition of the SNPs to confirm that Chargaff’s par-
ity laws were followed, i.e. to verify that there were approximately similar
numbers of A’s and T’s and of G’s and C’s. Both sublineage la (52 iso-
lates, > 1400 SNPs) and sublineage 1b (3 isolates, > 400 SNPs) conformed
to these rules within 2%, while a 5% deviation was found for lineage 2 (7
isolates, > 500 SNPs). This deviation could be due to recent mutations, nat-
ural selection and/or sequencing/assembly errors, as SNP base composition
was similar to genomic GC content (i.e. 56.5%).

All figures were generated and statistical analyses performed in R [40].
Bayesian parameter estimates were obtained using JAGS [43]. Non-informative
uniform priors from —100 to 100 were assumed for both a and b, and model
precision was set to 1.0E-2. The Markov chain ran for 5,000,000 iterations
with thinning set to 1,000. 12,500 iterations were saved. All chains con-
verged.
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