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Abstract

Usage of sensing technology has increased rapidly for the last decade. Measurements
of gas concentrations can are used in a wide variety of areas like medical applications,
monitoring in wastewater plants and air quality monitoring. The use of gas sensors
is critical to plan and perform regular maintenance. It will in the near future provide
a basis for improved predictive maintenance that uses data to detect anomalies and
possible defects in equipment.

Currently, the gas sensor market is dominated by expensive optical or electro-
chemical sensors with low selectivity. Therefore, a focus has been on developing
new cost-efficient technology that can counter the current limitations of the existing
sensing technologies.

Better understanding of the physical principles behind attenuation of sound
waves allows new sensing technology to be developed from traditional piezoelec-
tric ultrasonic transducers. Attenuation of ultrasonic signals cause reduced kinetic
energy as the sound wave travels in time. This is caused by friction, heat conduc-
tion, diffusion, and acoustic molecular relaxation for some gas mixtures in a certain
specific frequency range.

Recent development in understanding of the acoustic molecular relaxation allows
improved theoretical models for predicting acoustic attenuation and speed of sound
in a wide variety of gas mixtures. In conjunction with the recent developments the
interest in solving the reverse problem has increased which consists of using the
attenuation of sound waves to predict gas compositions. This would allow a new
generation of inexpensive, simple and robust gas sensing devices to be developed.

This thesis describes a method for determining the gas concentration based on
acoustic attenuation. This is achieved using ultrasonic transducers operating at
different frequencies. Machine learning is used on the transducer signals to detect
and predict the gas concentration. In order to achieve this the following objectives
for this work has been set:

• Research and review of theoretical work - investigation of the nonlinear behav-
ior of the acoustic attenuation in mixtures of increasing CO2 concentration.

• Technical review of existing acoustic attenuation models.

• Development of a theoretical method for predicting attenuation and speed of
sound in gas mixtures.

• Obtain experimental attenuation data for nitrogen and carbon dioxide mix-
tures.

• Create a method for calculating attenuation and speed of the ultrasonic sig-
nals.



• Development and evaluation of predictive models using machine learning to
predict the composition of carbon dioxide in nitrogen based on experimental
data.

• Evaluate the algorithms and suggest a final model used for composition de-
tection.

• Suggest further work to improve the concept.

Using a self developed experimental test rig fitted with off- the shelf transducers,
and a range of pre-mixed N2—CO2 gas mixtures a set of ultrasound burst signals
is created and measured. These measurements were verified using an identified the-
oretical model based on recent work on acoustic relaxation effects in attenuation of
ultrasonic signals. Based on experimental data, machine learning was used to pro-
vide a final model which predicts the concentration of carbon dioxide. It performs
with an average error of 0.7% (absolute CO2 mole fraction), the error is expected to
be below 0.5% in mixtures with less than 20% carbon dioxide. This is an improve-
ment compared to recent studies where the applied theoretical models gave errors
above 2.4%.

The method developed in this work is transferable to applications like moderate
carbon dioxide monitoring in exposed areas like mines or similar where high carbon
dioxide levels might cause direct harm. In addition, it represents a possible method
of reducing the complexity of the current sensor designs by focusing on intelligent
signal processing in combination with simple transducers.

The results in this thesis show that further work on the concept could enable
composition detection in mixtures of many gas components.



Sammendrag

Bruk av sensorteknologi har økt raskt det siste tiåret. Måling av gasskonsentrasjoner
blir brukt i mange forskjellige områder som medisinske applikasjoner, overvåking av
avløpsanlegg og luftkvalitetsovervåking. Gassensorer er avgjørende for å planlegge
og utføre regelmessig vedlikehold, og vil i nær fremtid gi grunnlag for forbedret
prediktivt vedlikehold som bruker data for å oppdage avvik og mulige feil i utstyr.

For tiden domineres markedet for gassensorer av dyre optiske eller elektrokjemiske
sensorer med lav selektivitet. Derfor har det vært et økt fokus på å utvikle ny og
kostnadseffektiv teknologi som kan overgå begrensningene med dagens eksisterende
sensorteknologier.

Bedre forståelse av de fysiske prinsippene bak demping av lydbølger gjør det
mulig for ny sensorteknologi å utvikles fra tradisjonelle piezoelektriske ultralyd-
transdusere. Demping av ultralydsignaler er forårsaket av friksjon, varmeledning,
diffusjon, og akustisk molekylær relaksasjon for noen gassblandinger i bestemte
frekvenser.

Nylig utvikling i forståelsen av akustisk relaksasjon tillater bedre teoretiske mod-
eller for å forutsi akustisk demping og hastigheten til lydbølger i et bredt spekter
av gassblandinger. I forbindelse med denne utviklingen har interessen for å løse det
omvendte problemet økt, som består av å bruke dempning av lydbølger for å forutsi
gassammensetninger. Dette vil tillate utvikling av en ny generasjon billige, enkle og
robuste gassensorer.

Denne oppgaven beskriver en metode for å bestemme gasskonsentrasjoner basert
på demping av lydbølger. Det oppnås ved bruk av ultralydtransdusere som oper-
erer med forskjellige frekvenser. Maskinlæring blir deretter brukt på data fra trans-
duserne for å oppdage og forutsi gasskonsentrasjoner. For å oppnå dette er følgende
mål for arbeidet satt:

• Gjennomgang av teoretisk bakgrunn - forståelse av ulineariteten ved lyddemp-
ing i blandinger med økende konsentrasjon av CO2.

• Gjennomgang av eksisterende modeller for å predikere akustisk demping.

• Utvikling av en modell for å predikere akustisk demping og lydens hastighet
i gitte gassblandinger.

• Skaffe eksperimentell data for gassblandinger av nitrogen og karbondioksid.

• Utvikle en metode for å beregne demping og hastigheten til ultralydsignalene.

• Utvikle og evaluere prediktive modeller som bruker maskinlæring til å forutsi
konsentrasjonen av karbondioksid i gassblandingene basert på den eksperi-
mentelle dataen.



• Evaluere algoritmene og foreslå en endelig modell for å detektere gasskonsen-
trasjon.

• Foreslå videre arbeid for å forbedre konseptet.

Ved hjelp av en egenutviklet eksperimentell testrigg utstyrt med ultralydtrans-
dusere og en rekke forhåndsblandede gassblandinger av nitrogen og karbondioksid
ble et sett med eksperimentelle ultralydsignaler generert og målt. Disse målingene
ble verifisert ved hjelp av en teoretisk modell basert på nylig arbeid med akustisk re-
laksasjon og demping av lyd. Basert på den eksperimentelle dataen ble maskinlæring
brukt til å gi en modell som predikerer konsentrasjonen av karbondioksid i gassb-
landingene. Modellen har en gjennomsnittlig feil på 0,7% absolutt CO2 molfraksjon,
feilen forventes å være under 0,5% i blandinger med mindre enn 20% karbondioksid.
Dette er en forbedring sammenlignet med nyere studier der de anvendte teoretiske
modellene ga snittfeil på over 2,4%.

Metoden utviklet i dette arbeidet kan overføres til applikasjoner som moderat
karbondioksidovervåking i eksponerte områder som gruver eller lignende der høye
karbondioksidnivåer kan forårsake direkte skade. I tillegg representerer det en mulig
metode for å redusere kompleksiteten til eksisterende sensorsystemer ved å fokusere
på intelligent signalbehandling i kombinasjon med enkle transdusere.

Resultatene i dette arbeidet viser at videre arbeid med konseptet kan muliggjøre
gassdeteksjon i et bredt spekter av gasser.
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1. Introduction
In a quest to empower our ability to perceive our surroundings in new ways and
provide end-users with improved data driven decisions the use intelligent sensing
technology has exponentially increased during the previous decade.

One such sensing technology that is experiencing a surge in popularity is the
measurements of concentration of a certain gas in an operational environment such
as chemical industry, monitoring in wastewater plants, medical applications and
environmental air quality monitoring [1]. For example air quality monitoring; The
World Health Organization (WHO) estimates that poor air quality is linked to about
6.5 million deaths each year and the global health and welfare losses in 2013 were
valuated at $5.1 trillion [2]. By employing air quality sensors one can enable the end
user to make informed decisions that can help reduce the amount of air pollution in
an urban area or at a workplace.

Another industrial demanding application is condition monitoring of industrial
equipment that use gaseous dielectric mediums for high-voltage circuit breakers,
switchgear and other electrical equipment, often replacing oil filled circuit breakers
(OCBs). Leakage of these dielectric mediums can cause significant emissions of
potent climate gases like SF6 [3]. The use of gas sensors is critical to plan and
preform regularly maintenance and will in the near future provide the basis for an
improved predictive maintenance that uses data to detect anomalies and possible
defects in equipment [1].

Currently, the gas sensor market is dominated by expensive optical sensors or
electrochemical sensors with low selectivity like Metal-Oxide Semiconductor (MOS).
These solutions tend to become increasingly expensive depending on the applica-
tion. This is caused by an increased complexity using advanced materials to increase
sensitivity in addition to complex signal processing often resulting in a limited lifes-
pan [4]. Therefore, a focus has been on developing new cost-efficient technology
that can counter the current limitations of the existing sensing technologies.

Recent development in understanding of the acoustic molecular relaxation al-
lows theoretical models for predicting acoustic attenuation and the related speed
of sound in a wide variety of gases and gas mixtures. In conjunction with the re-
cent developments the interest in solving the reverse problem has increased, which
consists of using the attenuation of sound waves to predict gas compositions. This
would allow a new generation of inexpensive, simple and robust gas sensing devices
to be developed.

This thesis describes a method for determining the gas concentration based on
acoustic attenuation. This is achieved using ultrasonic transducers operating at
different frequencies. Machine learning is used on the transducer signals to detect
and predict the gas concentration.

The method proposed here can be used for moderate gas concentration mea-
surements of carbon dioxide or similar. Another thought application of ultrasonic
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sensors is anomaly detection which can be applied when the gas composition is
not expected to change over time. This can be used in smoke detectors and other
alerting systems.

1.1 Problem Statement
The main purpose of this work is to investigate how ultrasonic signals are affected
by the gas it is travelling in, and how the attenuation and speed of sound can be
used for predicting and monitoring gas compositions. This will be accomplished
using ultrasonic transducers operating at specific frequencies. The overall goal is to
develop a method of predicting the gas composition in a system based on machine
learning and ultrasonic signals.

1.2 Goals and Objectives
In order to achieve this the following objectives for this work has been set.

1.2.1 Research and Review of Theoretical Work
Investigation of the nonlinear behavior of the acoustic attenuation in mixtures of
increasing CO2 concentration.

• Identify key concepts and existing work.

• Obtain experimental data to be used for reference.

• Technical review of existing attenuation models.

• Suggest and develop a theoretical method for predicting attenuation and speed
of sound in gas mixtures.

1.2.2 Obtain Experimental Data
The experimental data will be used for validation of the theoretical model and
development of the gas composition sensing model. In order to do this the test rig
needs to be able to transmit and receive ultrasonic signals at multiple frequencies.

An important part of this objective is to extract valuable information like atten-
uation and speed of sound. Only mixtures of nitrogen and carbon dioxide will be
used for experiments due to limited time.

The main objectives here are:

• Create an experimental test rig for transmitting ultrasonic signals.

• Obtain experimental data.

• Create a method for calculating attenuation of the ultrasonic signals.

2
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• Find and verify a method for calculating the speed of sound of the ultrasonic
signals.

1.2.3 Development and Evaluation of Predictive Models
Machine learning will be used to predict the composition of carbon dioxide in ni-
trogen.

• Obtain relevant parameters from the experimental data to be used for com-
position prediction.

• Development of machine learning algorithms for predicting carbon dioxide
concentration based on experimental data.

• Evaluate the algorithms and suggest a final model used for composition de-
tection.

1.3 Limitations
Since the amount of required experimental work increases rapidly with the amount
of gas compositions used the development of the models are limited to mixtures of
nitrogen and carbon dioxide.
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2. Theory
2.1 Gases and Mixtures
Most of the work here is done on binary gas mixtures which is a mixture consisting
of two gas components. However, all theories are applicable to mixtures of more gas
components

2.1.1 Properties
A set of common properties will be used for each gas. These include heat capacity,
thermal conductivity and viscosity amongst others.

When mixing components the properties are multiplied with the mole fraction
of each gas component, which should be close enough for approximations done in
this work.

In table 2.1 relevant properties for used gases are listed. Viscosities are retrieved
from the collection in Viscosity of Gases [5] and conductivities are retrieved from
Thermal Conductivity of Gases [6]. Molar weights are retrieved from [7, 8].

Table 2.1: Properties of relevant gases at 300K

Gas Viscosity η/µPa s Conductivity κ/mWm−1K−1 Molar Weight M/kgmol−1

Nitrogen 17.9 25.9 28.014
Carbon Dioxide 15.0 16.8 44.009

2.2 Ultrasound
Sound waves in gases occur when external forces acts on the gas causing pressure
waves to travel through the medium. This causes elastic, pressurized oscillations
where the amplitude of pressure is proportional to the particle displacements.

Ultrasonic sound is sound with frequencies higher than the human ear can hear.
This occurs at frequencies larger than 20 kilohertz (kHz). There is no upper fre-
quency limit, and frequencies up to multiple gigahertz (GHz) can be seen used in
various applications [9, 10].

2.2.1 Ultrasonic Transducers
The ultrasonic transducer is an electronic device that generates ultrasound. Usually
piezoelectric materials are used which converts electrical signals into the mechan-
ical forces. Other transducers use moving electrical coils or conducting materials
(EMAT).
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For the transducers to work an external oscillating voltage is applied. The fre-
quency of the oscillations should equal the frequency of the sound. Some frequencies
give resonance on the materials which causes higher amplitudes, this frequency is
often chosen as the frequency of the transducer. Although other frequencies can
be applied as well these do not give as high sound amplitude and might not be
detectable from distance [9].

The transducers can also be used as ultrasonic receivers [9]. In these cases the
sound pressure induces an electric voltage on the circuit. This would normally only
work at frequencies which corresponds to the transducers’ resonance frequency. A
transducer used as a receiver is often referenced to as a transceiver.

2.3 Speed of Sound
The speed of sound is the speed of the sonic pressure wave. In classic acoustics it is
normally expressed as [11]:

c =

√
γRT

M
(2.3.1)

where R is the universal gas constant (R ≈ 8.314 J
mol·K ) [12], M is the molecular

weight of the gas, T is the absolute gas temperature in kelvin and γ is the ratio of
specific heats (γ = Cp

Cv
).

For a mixture of gases the speed of sound is calculated as:

cmix =

√
γmixRT∑

i[xiMi]
(2.3.2)

where γmix is the ratio of the specific heats for the mixture.

2.4 Acoustic Attenuation
As the ultrasonic waves travel trough a medium it is exposed to friction, heat con-
duction and diffusion, which causes attenuation of the sound wave [11, 13].

The Attenuation can be described with the amplitude exposed to an exponential
decay [14, p. 38]:

A = A0e
−αz (2.4.1)

where A is the amplitude of pressure, A0 is the initial amplitude, z is distance
travelled and α is the absorption coefficient.

Figure 2.1 below illustrates how a sound wave travelling in a medium is gradually
absorbed.

2.4.1 Absorption coefficient
The absorption coefficient (α) can be described by two parts:

α = αc + αr (2.4.2)
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Distance

Pressure

Figure 2.1: Illustration of how attenuation affects a sound wave. The red solid
curve resembles the pressure for a single wave amplitude, and the dashed black line
shows how the pressure is distributed over distance at a specific time for multiple
sound waves.

where the subscripts indicate classical and relaxation, respectively. Classical at-
tenuation is caused by absorption due to viscous losses from friction (as described
by G.G Stokes). The attenuation caused by relaxation is the part which cannot
be described with classical physics and stokes equation, and is caused by acoustic
molecular relaxation, see section 2.5.

When describing relaxation a ”dimensionless” variant of the absorption coeffi-
cient is often used, and is described as [15]:

αλ = α · c
f

(2.4.3)

where λ is the wave-length, c is the speed of sound and f is the sound frequency.

2.4.2 Classical Attenuation
In classical physics attenuation of a sound waves is described by G. G. Stokes as a
frequency-dependent value [11]. The following equation shows a generalized version
which also takes thermal conductivity into account:

α =
ω2

2ρ0c3

(
4

3
η + (γ − 1)

κ

Cp

)
(2.4.4)

ω is the angular frequency of the wave, η is the dynamic viscosity of the gas mixture,
ρ is the density of the gas mixture, γ is the ratio of specific heats, Cv, Cp are
the specific heats respectively for constant volume and pressure, κ is the thermal
conductivity of the mixture, and c is the speed of sound in the mixture.

As can be seen in eq. (2.4.4) the absorption factor grows quadratic with the
frequency of sound. This causes high-frequent sound to be relatively short-lived.
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2.5 Molecular Relaxation
Molecular relaxation occurs when the sound wave hits a molecule and the molecule
excites to a new energy level. At this point energy captured by the excitation
needs some time to be released (de-excitation). If the sound pressure wave passes
before the energy is recaptured, the pressure wave loses more energy which causes
absorption of the sound wave.

Sound waves moving in excitable gases will also be exposed to relaxation which
causes absorption of wave energy. The excitation occurs when energy from molecular
collisions is transformed to any internal Degree Of Freedom (DOF) in the molecules
(excitation). For a sound wave, the transferred energy would lead to energy loss until
de-excitation occurs. The time needed for reversing the adjustment in the DOF to
a factor of e−1 is called the relaxation time τ [14, p. 56]. The energy loss increases
with the sound frequency.

The dimensionless absorption factor for a single relaxation process is propor-
tional to:

ωτ

1 + (ωτ)2
(2.5.1)

where ω is the angular frequency of the sound wave, and τ is the relaxation period.
This expression has its maximum when ωτ = 1. The sound frequency at the pole
can thereby be found at f ′ = 1

2πτ
, where f ′ = ω

2π
is the sound frequency. A sound

wave is exposed to the particular relaxation process when its frequency approaches
or exceeds f ′ [14].

ω

α
r
λ

Figure 2.2: Change of absorption caused by a single relaxation process. The x-axis
has a logarithmic scale.

There are three groups of DOFs: vibrational, translational, and rotational. Ro-
tational adjustments only yield relatively small relaxation times. The effect caused
by these are negligible for most gases at room temperature since the classical atten-
uation is fairly large when the sound frequency approaches higher frequencies [16].

For relaxation to be detectable it must occur at relatively low frequencies (below
1000kHz). At higher frequencies it can be assumed that the contribution of classical
absorption is orders of magnitude larger and relaxation effects can therefore be hard
to detect.
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2.5.1 Effect on Specific Heat
In molecular relaxation study it has been found that the isochoric specific heat Cv

is dependent on the state of the gas. When in an excited state the changes in speed
and attenuation can be described by the change of the effective isochoric and isobar
specific heats, Ceff

v (ω) and Ceff
p (ω) [13], ω is the angular frequency of the sound

wave. Changes in the specific heat is expressed with the effective Isochoric Molar
Heat (IMH), Cvib

v . For the effective specific heats, Mayer’s relation holds for any
state of the gas:

Ceff
P (ω)− Ceff

v (ω) = R (2.5.2)

where R = 8.314 J
mol K is the universal gas constant. And the effective specific heat

ratio is:

γeff (ω) =
Ceff

p (ω)

Ceff
v (ω)

=
Ceff

v +R

Ceff
v (ω)

(2.5.3)

The effective isochoric specific heat for a single degree of freedom can be found
with the complex relation [14, p. 59]:

Ceff
v (ω) = C∞

v +
Cint

1 + iωτ
(2.5.4)

where C∞
v is the specific heat belonging to the external degree of freedom (external

IMH), and equals the effective specific heat as the angular frequency approaches
infinity:

C∞
v = lim

ω→∞
Ceff

v (ω) (2.5.5)

The external IMH depends on molecular symmetry. For a linear molecule the
external IMH is C∞

v = 5R/2, where R is the universal gas constant.
Cint is the internal specific heat which belongs to the corresponding degree of

freedom:
Cint = C0

v − C∞
v (2.5.6)

where C0
v is the specific heat at any static state:

C0
v = lim

ω→0
Ceff

v (ω) (2.5.7)

Now looking at eqs. (2.3.1), (2.5.2) and (2.5.4) it is evident that the sound speed
will change as the ratio of heats changes. High frequent waves cause a decrease in
the effective isochoric heat capacity, then the heat capacity ratio γ = CP

Cv
increases

which leads to an increase in speed of sound.
Zhang, Wang, and Zhu used ultrasonic measurements to show how the frequency

affects the speed of sound. They found that mixtures with CO2 could have large
speed variations from low to high frequencies [17].
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2.5.2 Attenuation Spectra
The relaxation attenuation spectrum, often referenced to as GARAS (Gas Acoustic
Attenuation Spectrum), shows the dimensionless absorption coefficient from relax-
ation at the given frequency spectrum.

The acoustic relaxation spectra is given with the relaxation part of the dimen-
sionless absorption constant such that µ(ω) = (αr · λ). Therefore:

µ(ω) = αr ·
c

f
(2.5.8)

=⇒ αr = µ(ω)
f

c
(2.5.9)

2.5.3 Single Relaxation Process
A single relaxation process can be described in terms of the energy required for
excitation and the relaxation time as [18]:

µs(ω) = AsC
vib
v

ωτ

1 + (ωτ)2

As =
πR

C∞2
v +RC∞

v + C∞
v Cvib

v + 1
2
RCvib

v + 1
2
Cvib2

v

(2.5.10)

2.5.4 Multimode Relaxation Processes
If only a single relaxation process exists, eq. (2.5.10) holds, and the dimensionless
absorption is proportional to the equation. However, when multiple relaxation pro-
cesses exist there are different theories on whether the relaxation shows up at the
same time or not [14, p. 90]. Fundamental theories of relaxation is divided into two
different theories, developed with different molecular energy transfer mechanisms.

Parallel theory assumes that each degree of freedom is vibrational, and excita-
tion/de-excitation occurs in parallel [14, p. 93].

Series relaxation theory assumes excitations of the different degrees of freedom
behaves like chemical reactions in series [14, p. 105].

Recent research shows that it is probably some combination of the two theories
above [15, 18, 19].

Relaxation Model

The model developed by Zhang, Wang, Zhu, Ding, and Hu shows good results for
gas mixtures where there are few dominant vibrational modes [15, 18]. This model
will be used for reference and verification of the experiments in this work.

The effective heat capacity is found as:

Ceff
v = C∞

v +
N∑
i

Cint
i

1 + (iωτi)2
(2.5.11)
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where N is the total number of internal vibrational modes of the mixture, Cint
i is

the contribution from the IMH for the specific vibrational mode and τi is the relax-
ation time. C∞

v =
∑W

l alC
∞
vl is the external IMH, W is the number of molecules,

C∞
vl is the external IMH for the molecule and al is the mole fraction of the molecule.
Cint

i is calculated as the sum of the internal vibrational heat and mole fraction:

Cint
i = alC

vib
i (2.5.12)

where al is the mole fraction of the corresponding molecule.
Taking the real part of Ceff

v , the acoustic spectra from eq. (2.5.10) becomes:

µs(ω) = Am

N∑
i

Cint
i

ωτi
1 + (ωτi)2

Am =
πR

C∞2
v +RC∞

v + C∞
v

∑N
i Cint

i + 1
2
R
∑N

i Cint
i + 1

2
(
∑N

i Cint
i )2

(2.5.13)

The interior relaxation processes µi(ω) are calculated as in eq. (2.5.10) replacing
vibrational IMH with Cint

i :

µi(ω) = AiC
vib
i

ωτ

1 + (ωτ)2

Ai =
πR

C∞2
v +RC∞

v + C∞
v Cvib

i + 1
2
RCvib

i + 1
2
Cvib2

i

(2.5.14)

The multimode relaxation spectra µm(ω) can be approximated taking the sum
of the interior processes:

µm(ω) ≈
N∑
i

µi(ω) (2.5.15)

2.5.5 Modes of Vibration
The number of vibrational modes for a gas depends on the molecule structure.
Nitrogen only has translational stretching, while carbon-dioxide has four modes of
vibration [20].

The related vibrational modes and relevant properties are shown in table 2.2.
Note that the second mode of carbon-dioxide (v2) includes two actual modes of
bending which has the same wavelength. Relaxation times are from experimental
results from Zhang, Wang, Zhu, Ding, and Hu [15].
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Table 2.2: Vibrational modes for nitrogen and carbon-dioxide at 300K

Gas Mode Wavenumber/cm−1 Type Cvib
V /Jmol−1K−1 τ/s

N2 v1 2331 Stretching 1.38 · 10−2 5.8

CO2 v1 1388 Sym. stretch 4.73 · 10−1 1.45 · 10−6

v2 677 Bending 7.53 5.01 · 10−6

v3 2349 Assym. stretc 1.34 · 10−2 9.08 · 10−2

As seen in table 2.2 the internal heat capacity of nitrogen is orders of magnitude
lower than the internal heat capacity of the primary mode of carbon dioxide (v2).
Therefore, the relaxation strength caused by carbon dioxide is expected to cause
significantly more attenuation of the sound waves.

Using table 2.2 and eqs. (2.4.1), (2.4.4) and (2.5.13) the absolute attenuation in
nitrogen and carbon dioxide in fig. 2.1 is shown. For sound frequencies in the range
between 10kHz and 600kHz relaxation is the major contributor to the attenuation.

Figure 2.3: Attenuation of soundwaves in N2 and CO2. The solid black lines show
the total attenuation α. The dashed orange lines show the attenuation caused by
relaxation and the dotted green line show the classical attenuation.

In comparison, nitrogen shows no sign of relaxation at these frequencies due to
low vibrational heat capacity and higher relaxation time τ.

Using data from table 2.2 the speed of sound for carbon-dioxide is shown in
fig. 2.4. The inflection point is where the imaginary part has its maximum and
corresponds to the point at ωτ = 1 for the primary relaxation mode (v2), the non-
significant modes, v1 and v3 gives negligible changes of the speed.
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Figure 2.4: Speed of sound for carbon-dioxide. The real part is shown as the blue
line on the left axis, and the imaginary part is the orange line on the right axis.

2.6 Model for Attenuation and Speed of Sound
The theoretical model from section 2.5.4 is used for calculating the molar heats and
attenuation for the transducers.

Then the formulas for speed of sound and absorption is applied to create a
simulation of the expected results. This is modeled using the python programming
language.

The model is applied to mixtures of carbon dioxide and nitrogen. In fig. 2.5 below
the relative amplitude A/A0 is shown using three dimensional plots. The effects of
relaxation can easily be seen as the amplitude shrinks for larger concentrations of
carbon dioxide and high frequencies. The speed of sound in fig. 2.6 shows that the
speed of sound behaves mostly linearly with concentration, except in mixtures with
higher concentrations of carbon dioxide where it can be seen that the speed of sound
is dependent on frequency, eg at 100% CO2.
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Figure 2.5: Surface plot of the simulated amplitudes from two perspectives. The
distance z is set to the same as used in the experiments. The Z axis (not labeled)
shows the relative amplitudes A/A0.

Figure 2.6: The simulated speed of sound in a surface with frequency and CO2
concentration.
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2.7 Machine Learning
In this work machine learning will be used to create predictive models for gas com-
position sensing.

The purpose of utilizing machine learning is to be able to create robust estimators
which does not necessarily require knowledge of the complex nature for each specified
gas.

2.7.1 Regression
Linear regression is a simple but fundamental form of regression, and is described
as:

Xβ = ŷ (2.7.1)

where X is a matrix of dependent variables (features), β is the vector of regression
coefficients and ŷ is the predicted independent variable (predicted target).

In eq. (2.7.1) the output has a single dimension, but if the coefficients was a
matrix with N columns the model gives an N-dimensional output.

Linear Least Squares

The linear least squares problem is to find the coefficients, β, that minimizes ||Xβ−
y||22, where y is the target. This is often done using singular value decomposition [21].

The function to minimize, ||Xβ − y||22, is called the objective function.

Regularization

Most algorithms need some sort of regularization to avoid overfitting. Overfitting
occurs when the machine learning model tries to explain unlogical variations in the
training set. This often caused by noise or overly complex modeling which is not
present in the validation set. The validation set is used to verify that the model is
performing well: the model is overfitted if the training accuracy is notable larger
than the validation accuracy.

L1 and L2 regularization are techniques where the target is to minimize the
complexity of the weight coefficients (β). This helps reduce the complexity of the
machine learning model. Using L2 regularization the following term is added to the
objective function [21]:

α · ||β||22 (2.7.2)

where α is the regularization strength. For L1 regularization the root and power is
set to 1 (||β||11). This means that the L1 regularization does not penalize fluctuations
in the coefficients as much as the L2 regularizer does.

Many other regularization techniques exist where many are made for specific
algorithms, for example the kernel parameter, γ, for the Support Vector Machine
(SVM).
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Support Vector Machine

The SVM is a popular algorithm in many fields. It has especially shown its strength
in various medical applications like tumor detection [22].

Its main application is for classification tasks since it is creating a hyperplane
for separation of classes, but the libsvm implementation uses the same techniques
for regression which has been proved to be a good regressor [23].

The machine uses a kernel function with a set of support vectors for calculating
the output variable. The gaussian Radial Basis Function (RBF) is the most common
kernel and is calculated as:

K(xi, xj) = e−γ||xi−xj ||2 (2.7.3)

where γ is a regularization parameter for the kernel.

2.7.2 Neural Networks
Neural networks have existed for many decades but has recently experienced an
increase in usage as it has shown its strength in many fields like image analysis [24].

The neural network is composed of a set of layers each having a function fi(Xi)
such that the network can be represented as f(X) = fN(. . . f 2(f 1(X))), where N
is the number of layers. Each layer consists of parallel estimations known as units.
These resemble the neurons in the human brain where the name ”neural network”
comes from.

A Convolutional Neural Network (CNN) is a network which uses convolutions
to extract information from the data. This is very useful where information is
dependent on the position of the variable in, for example, a grid. Normally, the first
layers of a convolutional network uses convolutions, then information is gradually
extracted using normal dense (feed forward) layers.

CNN’s are widely used in image classification, but can also be applied to time
series or similar data. The ultrasonic signals are time series. Therefore, a CNN can
give useful results in this work.

2.7.3 Preprocessing and Training Techniques
Raw unprocessed data is seldom used to train machine learning models on. Prior to
deploying the algorithm the data often needs to be transformed into a representable
state.

This is especially true for the received ultrasonic signals, these are oscillating
signals where the time for the discrete samples is not necessarily consistent. The
methods used for transformation are presented in section 4.3.
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Standardization

When standardizing a training set all features are set to have a standard variation
of 1 and values centered around zero:

x′
i =

xi − µ

σ
(2.7.4)

where xi is the ith training feature vector, x′
i is the standardized vector, µ is the

mean of xi and σ is the standard deviation of xi.
This is useful to make values comparable that otherwise would have completely

different scales, which is important due to regularization of weights.

2.7.4 Evaluation
A machine learning model can be evaluated with many methods which might give
different results when it comes to model selection.

The Mean Absolute Error (MAE) is a very intuitive evaluation metric for error
estimation. It is calculated as the mean of the absolute residuals:

MAE =
1

N

N∑
i

|ri| (2.7.5)

where N is the number of samples and r is the residuals.
The residuals are calculated as the distance from the actual value to the predicted

value:
ri = yi − ŷi (2.7.6)

where y is the vector of actual values, ŷ is the vector of the predicted values.
Mean Squared Error (MSE) is better at penalizing errors, but can give unreliable

results if there are many outliers:

MSE =
1

N

N∑
i

r2i (2.7.7)

Root Mean Squared Error (RMSE), the root of MSE gives a more intuitive
metric which has the same magnitude as MAE:

RMSE =

√√√√ 1

N

N∑
i

r2i (2.7.8)

The coefficient of determination, R2, is a metric describing the linear relationship
between two variables. In linear regression it is a usable metric to describe how good
fit the model actually has. R2 is calculated as:

R2 = 1−
∑

i r
2
i∑

i [yi − µy]
(2.7.9)
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where µy is the mean of the target, ie sum of squared residuals divided by the sum
of squares.

If the R2 is 1 the model has a perfect fit, a value of 0 indicates that the model is
as good as a model giving the expected value of y (µy). A negative value indicates
an even worse fit and should not be considered for predictions.
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3. Review of Related Work
In this chapter the objective is to review existing work on applying acoustics as a
method of recognizing different gas mixtures.

3.1 Ultrasonic Sensing
There seems to be little ultrasonic sensing technology used in production. How-
ever, recent research on acoustic molecular relaxation has revealed some proposed
methods using ultrasonic transducers for gas sensing.

3.1.1 Attenuation Based Detection
These sensors can be used for binary classification or anomaly detection.

In [25] the authors used a coupled transducer pair on a direct gas flow of air.
When switching to pure nitrogen they showed that an increase in attenuation gives
a shift in the sensor output which can be measured within few milliseconds. The
proposed use case is real-time gas monitoring, where the system can detect changes
in the concentration, but the application is not able to identify the actual mixture.

3.2 Sensing Based on Relaxation Models
Even tough acoustic relaxation has been known for many decades [14], recent studies
of multimode relaxation processes has increased the interest of reconstructing the
relaxation processes from ultrasonic measurements.

The Quantitative Acoustic Relaxation Spectroscopy is a method proposed by
Petculescu and Lueptow in 2012 for moderate real-time monitoring of gas compo-
sitions. Use cases mentioned are identification of contamination in air for mining
safety and impurity detection in natural gases [16].

3.2.1 Reconstruction Algorithms
An accurate algorithm which reconstructs the relaxation processes in excitable gases
is a challenging subject since most transducers have fixed frequencies.

In 2005 Petculescu and Lueptow proposed an algorithm requiring a two frequency
measurement for capturing the primary relaxation processes in a gas mixture [13].
The algorithm can reconstruct the peak of αλ with a relative error of 15% and the
relaxation frequency, frelax, with a relative error of 11% in a mixture of 95%N2 and
5%CO2. This model was used for creating a prototype acoustic gas sensor in [26].

A real-time monitoring application was proposed in [27] by Hu, Wang, Zhu,
Zhang, Liu, and Xu. Using the peak of a reconstructed relaxation spectrum, a
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method for monitoring the actual concentration is proposed. The method is based
on the two frequency reconstruction mentioned in [28] which is used to capture the
primary relaxation frequency. This algorithm can however only capture a single
relaxation process.

In [18] an algorithm which captures the entire relaxation spectra for a gas com-
position is proposed. Using frequency measurements which cover the interior relax-
ation processes the entire spectra is reconstructed based on the theories in [15]. The
same model is applied for reference in this work.

3.2.2 Classification of Mixtures Based on GARAS
Jia, Yu, Du, and Wang used wavelet decomposition on synthesized relaxation spectra
for mixture classification in [29]. Using wavelet Multi Resolution Analysis (MRA)
and feature extraction a SVM was trained on the relaxation spectrum (see sec-
tion 2.5.2).

The problem was solved as a classification problem for mixtures obtained from
the theoretical model for a total of four mixtures. Even tough the value of training
a machine learning application on a theoretical model is questionable, the model
also gives full testing accuracy. This shows that the relaxation spectrum is distin-
guishable under the right conditions. The same methods can be used for a more
general approach where the gas composition is solved as a regression problem.

Another problem is that this requires a fully reconstructed relaxation spectrum.
This requires many frequency measurements as seen in [18].

3.2.3 Detecting Inflection Point of Frequency-dependent Ve-
locity

In [17] the authors of the relaxation models used speed of sound measurements for
estimation of gas composition.

Using a reconstruction algorithm the authors managed to locate the inflection
point of the frequency dependent speed of sound curve (see the real part of fig. 2.4).
The inflection point is located at the frequency which corresponds to the primary
relaxation mode in the mixture. Using the location of the inflection point the final
composition of a CO2-N2 mixture was calculated with high accuracy.

The method is highly relevant but lacks justification of measurements in mixtures
where the speed of sound contribution of relaxation is indistinguishable from noise
like CO2-N2 with high concentration of nitrogen. Looking at fig. 2.6 it is evident
that the sound speeds do not decrease enough for mixtures with a carbon dioxide
concentration below ≈ 30%.
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3.2.4 Concentration Measurements from Mixtures of CO2
and N2

In [30] the authors used experimental results from a good spectrum of the CO2-N2
spectra similar to what is done in this work.

Using a two frequency measurement, the concentration is estimated based on
the reconstructions from the decompositions in [28]. A fitting method is used to
establish the relationship with the actual sound absorption from relaxation, µ(ω).
Using these values the concentrations are measured with errors ranging from 2% to
10% absolute molar concentration.

This work is the most relevant to the methods applied here since it uses a set of
nitrogen and carbon dioxide mixtures for concentration prediction.

20



4. Method
Based on the theories for attenuation of ultrasonic waves it becomes obvious that
sound waves can be used to model a gas-composition detection algorithm utilising
ultrasonic transducers.

Thanks to relaxation effects there are differences in the attenuation at different
frequencies. This makes it possible to distinguish mixtures that otherwise would
have equal attenuation, provided that there are significant relaxation effects. This
could be done using the theoretical models, as pointed out in [16, 17], which requires
accurate data about relaxation modes and the physical properties of the gas mixture.
Using machine-learning techniques the need for physical data is effectively exchanged
with experimental data.

This chapter provides several methods for gas composition sensing using machine
learning and known theories based on experimental data achieved using off-the-shelf
transducers in a custom-made rig.

Figure 4.1 shows the relationship between the theoretical and predictive model.
Using machine learning on experimental raw signals the predictive model does not
need to be dependent on the physical properties.

Figure 4.1: Model diagram showing the relationship of the theoretical model and
the gas-sensing models.
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4.1 Experimental Test Rig
Data is acquired using a test rig that was constructed for the purpose of transmitting
and receiving ultrasonic signals in calibrated gas mixtures.

Figure 4.2: Chart showing the setup of the rig.

4.1.1 Equipment
The following is a list of the main equipment used for the experiments:

• Brüel & Kjær Ultrasonic Microphone

• Brüel & Kjær Pre-Amplifier (Sig Out)

• Chamber

• Oscilloscope

• Frequency Generator

• Amplifier (Sig In)

• Transducers

• Gases (mixtures of nitrogen and carbon dioxide, see table 4.3)

22



Sander Wittwer Chapter 4

4.1.2 Chamber
The chamber holds the gas during the measurements. It is not designed for pres-
surization and should hold atmospheric pressure.

Since echoes from the structure around the gas might be a problem the inner of
the chamber is covered with a sound-absorbing material.

The endcaps have fittings on each end which is used for mounting the trans-
ducer and microphone. The transducer fittings are made to simplify the change of
transducer. In addition, the end with the microphone has a gas outlet valve, and
the end with the transducer has two gas inlets.

Figure 4.3: Picture of the test rig during operation.

4.1.3 Transducers
In table 4.1 below all transducers used for the experiments are listed.

Table 4.1: List of transducers and relevant parameters

Id Drive frequency /kHz Max input voltage / Vpp

Tx1 25.0± 1 56
Tx2 32.8± 1 56
Tx3 40.0± 1 56
Tx4 49.5
Tx5 60.0
Tx6 50.0 1000
Tx7 100± 8 600
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Signal in

The signal in is generated in the frequency generator. It is set to send bursts of
a specific number of cycles. The signal is amplified in the Sig-In amplifier which
gives a signal amplitude of approximately ±12V (Vpp ≈ 24V). Some transducers
can handle higher voltages (up to 1000 Vpp for tx6). For these transducers the signal
is additionally amplified using a transformer with a ratio of 1:6 which is attached
after the amplifier.

Signal Out

A high-frequent microphone is used to sample the signals on the receiver side. The
Sig-Out amplifier has settings of 1x, 10x and 100x. For the transducers giving low
impulses it is set to 100x, and 10x for the remaining transducers (see table 4.4).

The signal is then captured in a PicoScope™ oscilloscope.

4.1.4 Characterization of Transducers
In order to establish a baseline of how the transducers will behave and for verification
of the resonance frequencies, a characterization of the transducers is useful.

The transducers can be characterized using the equivalent RLC || C circuit
in fig. 4.4 [31].

C0

C1 R1 L1

Figure 4.4: Equivalent circuit for piezo-electrical transducers

The resonance frequency can be calculated from the RLC arm of fig. 4.4. Reso-
nance occurs when the resistance is at its minimum when XC = XL:

XC = XL =
1

ωrC1

= ωrL

=⇒ ωr =
1√
L1C1

fr =
1

2π
√
L1C1

(4.1.1)

Using an impedance analyzer the equivalent values C0, C1, R1, L1 have been
found in table 4.2. The resonance frequency fr is calculated from eq. (4.1.1).
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Table 4.2: Transducer characteristics

Id fr/kHz C0/pF C1/pF R1/Ω L1/mH

Tx1 25.6 2498 293.5 671.7 131.9
Tx2 33.0 2301 125.0 462.7 186.2
Tx3 39.1 2617 144.0 764.8 114.8
Tx4 50.1 495 20.2 1920.8 500.4
Tx5 60.3 778 123.3 211.3 56.5
Tx6 55.2 1059 353.8 154.0 23.5
Tx7 98.0 633 119.8 511.2 22.0

4.2 Data Acquisition
The transducers from section 4.1.3 and the test rig is used to obtain data for a set
of N2 —CO2 mixtures.

4.2.1 Gas Compositions
In table 4.3 the gas mixtures for the experiments are listed. The fraction (Xn) indi-
cates the molar fractions. These are all calibrated mixtures of the Mapcon® series
from Nippon Gases®.

Table 4.3: Gas compositions for the experiments

Id XCO2 XN2

n2 0.0 1.0
nd20 0.2 0.8
nd30 0.3 0.7
nd50 0.5 0.5
nd60 0.6 0.4
co2 1.0 0.0

4.2.2 Estimation of Experimental Parameters
Since the transducers have different characteristics the transmitted burst is modified
to yield good results. These parameters are estimated when the gas-chamber is filled
with pure nitrogen.

The peak-to-peak voltage (Vpp) is set as large as possible to give high impulse
responses on the microphone. Either max Vpp from table 4.2 or the maximum of the
test-rig (96Vpp) is used. The voltage is 96Vpp on the transducer when the generator
is set to 1000mV and the transformer is used.
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The number of pulses of the transmitted burst is set to maximize amplitude of
the received signal. When echoes are observed the number of pulses is reduced such
that the pulses do cause interference.

The frequency of the transmitted burst will vary. It was observed that the opti-
mal frequency changes over time, this is possible due to some transducers requiring
to ”warm up”, for these transducers the optimal frequency are estimated after be-
ing driven for some time (typical 15 minutes). The frequency is set such that the
received response has high amplitude which should be at the resonance frequency.
However, it can be observed that the frequency differs from table 4.2. This might
be caused by the warm-up period or errors from the impedance measurement. For
the analysis and experiments the frequencies found here (in table 4.2) will be used
instead.

Table 4.4: Experimental parameters

Id Vppg/mV Ncyc Frequency/kHz Transformer Pre-amp

Tx1 350 33 25.0 Yes 100x
Tx2 350 33 32.9 Yes 100x
Tx3 350 20 40.0 Yes 10x
Tx4 1000 16 49.7 Yes 100x
Tx5 800 12 59.7 No 100x
Tx6 800 9 49.9 Yes 100x
Tx7 800 7 102.5 Yes 100x

The voltage Vppg in table 4.4 is the voltage of the generator setting.

4.2.3 Acquiring Signals
The general procedure is described in appendix A.

All gas mixtures in table 4.3 are tested with each of the transducers from ta-
ble 4.1. For each combination of transducer and gas mixture a set of minimum three
runs are done. The PicoScope software for the oscilloscope stores 32 samples for
each run.
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4.3 Preprocessing
This section contains the methods used for preprocessing and extracting data from
the ultrasonic signals, which will be used later for predictive models and comparison
with the theoretical models.

4.3.1 Filtering of Signals
Signal filtering is used to remove unwanted noise and/or parts of a signal in order
to isolate the interesting frequencies.

For measuring the burst response from the transducers, only the given resonance
frequency is of interest. Other responses come from environmental noise and can
typically be observed as high-frequency responses.

Applying a filter G in the frequency domain can be described as [32]:

X ′ = GX (4.3.1)

X ′, X is the unfiltered and the filtered signal, respectively.

Forward-backward Filtering

Applying a Infinite Impulse Response (IIR) filter to a signal will almost always
cause a phase delay. This is caused by the phase differences of the signal and the
filter itself [32].

Changing the phase of the signal cause inaccuracy in the velocity calculation
and should therefore be avoided. A method to avoid any phase shifts caused by
filtering is to apply the filter twice, where the signal is time-reversed on the second
filtering [33].

Any phase delay δ will then be reversed:

X ′′R = GX ′R

= GGRXR

X ′′ = (GGRXR)R

= GGRX

X ′′ is the forward-backward filtered signal. As a result, any phase delay will be
zeroed out.

Forward and backward filtering does not give the same result as normal filtering,
Gustafsson’s [33] method for determining initial states will be used to avoid changes
at the beginning and end of the filtered signal.

Figure 4.5 shows the received signal together with the filtered and the double-
filtered signal. The signal was generated using Tx4 with the parameters in table 4.4
and the nd30 mixture (30%CO2). Filtering is done using a Butterworth IIR filter
having bandpass cutoffs at 30kHz and 60kHz. Looking closely it can be observed
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that the phase has changed after the initial filtering, but is normalized after the
reverse filter.

Figure 4.5: Comparison of raw and filtered signal with forward-reverse filtering

All signals are preprocessed with a bandpass filter having cutoffs at ±20kHz
around the transducer’s resonance frequency. As seen in fig. 4.6 the filtering enchants
the signal largely and can find responses that are barely visible prior to filtering.

Figure 4.6: Comparison of unfiltered and filtered signal (Tx4)
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4.3.2 Calculating Attenuation of Signals
The amplitude can be obtained from the signal as the maximum of the absolute
signal:

A = max
t

|x(t)| (4.3.2)

The initial amplitude A0 depends on the transducer, applied voltage, frequency
and number of waves. For any given transducer Ai

0 is constant for all measurements.
In [26, 30] the amplitudes were corrected for diffraction. This is not needed using

the method described here since it is implicit in the calculated initial amplitude, A0,
and is constant for the given frequency.

A0, can be obtained for transducer i from eq. (2.4.1) as:

Ai
0 =

Ai
x

e−zαxi
, αxi = αc(ωi) + αr(ωi) (4.3.3)

where i is the transducer id, ωi = 2πfi is the angular frequency applied to the
transducer and x is the gas composition from table 4.3. However, this requires that
the predictions e−zαxi are correctly explaining the attenuation of the received signal
which might be prone to errors.

The relative amplitude A/A0 is given as:
A

A0

= e−zα (4.3.4)

It is beneficial to use the relative amplitude as it is normalized and gives equal
scale for all transducers. A0 is found using a calibrated gas from table 4.3. For
this, nitrogen was chosen since it primarily is not affected by relaxation and should
therefore give more confident results with little noise. For each training sample, Ai

0

is calculated, and then the average is taken as the initial amplitude.

Table 4.5: Initial amplitudes for the transducers

Id Standard Deviation Coefficient of Variation Mean Outliers

Tx1 35.58 0.0030 11714.81 0
Tx2 8.08 0.0013 6175.13 2
Tx3 14.41 0.0102 1409.88 0
Tx4 1.35 0.0041 328.48 0
Tx5 13.31 0.0075 1784.44 0
Tx6 27.99 0.0037 7643.96 0
Tx7 136.86 0.0094 14618.12 0

In table 4.5 the average of the initial amplitudes are calculated using eq. (4.3.4).
The Coefficient of Variation is the relative standard deviation (CV = σ/µ, where
σ, µ is the standard deviation and mean respectively). It shows that the highest
variation is at Tx7 and Tx3, 0.01 is still reasonable low. The outliers are calculated
as values outside the Interquartile Range (IQR) multiplied with 1.5.

In fig. 4.7 the data from table 4.5 is represented using box-plots.
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Figure 4.7: Boxplot of the calculated initial amplitudes for the transducers from
table 4.2. Outliers are marked as diamonds, the whiskers (horizontal lines) show
the outlier limits of 1.5 times the IQR, and the box shows the quartiles.

4.3.3 Noise Detection
Looking at fig. C.4 it can be seen that for larger concentrations of carbon dioxide the
speed measurements can give incorrect results and this increases when the signal is
lost in noise. This causes the speed of sound measurements to be more or less random
in the situations where the signal disappears. Most machine learning algorithms
have little or no error correction and cannot identify a feature as ”noisy” in specific
circumstances. The normal result when training models on such features is heavy
regularization on the relevant model weights which cause the features, which are
otherwise useful if correct, being ignored by the model.

This can be corrected by adding noise-detection for reducing the speed of sound
measurements in noisy measurements. The idea is to apply a multiplier to the
speed of sound measurements which degrades heavily when the Signal to Noise
Ratio (SNR) decreases to a certain level.

When detecting noise SNR is an often used measurement technique for explain-
ing the relationship between the signal and the noise. There are multiple methods
for calculating SNR [34, 35]. Most important is that it gives a relationship between
the signal and noise where a SNR of 1 or lower indicates that the noise and signal
is indistinguishable.

In this work the ratio will be defined as follows:

SNR =
µ|s|

σn

(4.3.5)

where µ|s| is the mean of the absolute values in a selected portion of the signal, and
σn is the standard deviation of the sample prior to the signal wavelet.
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Since the signals cannot be received earlier than 1ms after transmission the
deviation in noise is calculated in the period from 0 to 1ms. The absolute mean of
the signal is calculated in the period from 1.25 to 1.75ms, which should include all
signals as can be seen in appendix C.

As seen in fig. 4.8 the requirements for the ratio fits well with eq. (4.3.5). The
value falls below 1 only in samples without signal (tx7 in CO2), meaning that the
definition of SNR is highly applicable in this case.

Figure 4.8: SNR in some samples from tx6 and tx7. The orange line is the
envelope, and the SNR is shown in the subtitles. The plots in the right column are
from tx7 which loses signal in the nd50 mixtures and above. The plots in the left
column are from tx6 which has signal in co2. The upper row consists of samples in
nitrogen and the lower row are from carbon dioxide.

The decay function ε(x) will then be defined as a sigmoid:

ε(x) =
1

1 + e−α(SNR(x)−β)
(4.3.6)

where α is the decay strength and β is the center of the sigmoid. When SNR(x) = β
the decay is 0.5. The values for α and β were chosen in an iterative approach to
make the speed of sound measurements from tx6 in co2 to be conserved and at the
same time to decrease the calculations in tx7 for concentrations above 0.4. The
most optimal values were found visually as α = 50 and β = 1.25. The decay with
these values are plotted in fig. 4.9. Any value multiplied by the decay will converge
towards zero if the signal is expected to disappear in noise.
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Figure 4.9: The decay as a function of SNR with α = 50 and β = 1.25.

4.3.4 Transformation of Raw Signals
When looking at the raw signals it is important to consider that the signal strength
varies by several orders of magnitude, as can be seen in appendix C. Since the
machine learning algorithms normally does not scale inputs logarithmically this has
to be done as a preprocessing step. The transformation takes the logarithm of the
envelope of the signal, it is mathematically described as:

x′ = log [|x+ iH(x)|+ ε] (4.3.7)

where x′ is the transformed signal, x + iH(x) is the analytic signal of x, H(x) is
the hilbert transformed signal [32], ε is a very small number to prevent taking the
logarithm of zero.

The original raw signal is filtered and then eq. (4.3.7) is applied. Then the signal
is linearly interpolated to a time-range from 1.0 ms to 2.2ms with 200 samples. In
fig. 4.10 an example from the tx6 transducer is shown. Note that after transfor-
mation the values have approximately the same magnitude in nitrogen and carbon
dioxide. This is not the case prior to transformation where the amplitude in nitrogen
is approximately 2000 times larger than in carbon dioxide.
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Figure 4.10: Transformation of raw signals for the predictive models. These
samples are from tx6 in nitrogen and carbon dioxide. The plots on the left side are
the original filtered signals, and the plots on the right side the transformed signals.

The number of samples in the transformed signal was estimated experimentally,
which lead to a total of 200 samples being chosen. This gave good results for all
models using this transformation.

4.4 Estimation of Speed of Sound
The speed of sound is an important parameter for composition detection and should
be calculated as precisely as possible. It is also a part of the verification of the
relaxation and mixing models.

By knowing the distance between the microphone and the transducer the speed
is achieved using the definition of velocity:

c =
z

∆t
(4.4.1)

where z is travelled distance, ∆t is the calculated time-delay, c is the speed of
sound. Since the distance z is known, Time Delay Estimation (TDE) will be used
to estimate ∆t.

The transmission from the frequency generator to the microphone can be de-
scribed as a Linear Time Invariant (LTI) system [36]:

xr = xg ∗ h (4.4.2)

where ∗ is the convolutional operator, xr is the signal received on the microphone,
xg is the generated signal, and h is the system impulse response.

The impulse response can be decomposed to the relevant steps:

h = τ ∗ η ∗ ht (4.4.3)
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where η is noise, ht is the impulse response of the transducer and τ is the impulse
response of the time delay.

Since the impulse response of the transducer should be constant, the transmitted
signal xg is constant for all signals from the respective transducer independent of
the gas mixture.

The transmitted signal xg and the impulse response ht is unknown. Instead of
calculating time delay from the transmitted signal, the time delay is calculated from
a calibration signal received in nitrogen, xc.

Speed of the sound in nitrogen is calculated using eq. (2.3.1) and the constant
time-delay from the transmitted signal to the calibration signal is calculated us-
ing eq. (4.4.1).

The total time delay of the transfer is then represented as:

τ = τc ∗ τδ (4.4.4)

or
∆t = ∆tc +∆tδ (4.4.5)

where ∆tc is the time delay from the calibration gas, ∆tδ is the time delay between
xc and xr. There are multiple methods for evaluating the time difference between a
delayed signal.

4.4.1 Cross Correlation
A Generalized Cross-Correlator (GCC) takes a cross-correlation of two equal sig-
nals, giving a symmetric signal that can be used for TDE.

This is a widely used method for time-delay estimation, and is often robust to
noise since noise tends to cancel out itself when correlating [37].

For two real signals f, g, the cross-correlation f ∗ g is the same as a convolution
of the time-reversed complex-conjugate g(−t), such that f ∗ g = f ∗ g(−t).

If the noise is ignored the received signal is a delayed version of the calibrated
signal, such that xr = xc ∗ τδ. Then the correlation becomes:

xr ? xc = (xc ∗ τδ) ? xc

= (xt ∗ τδ) ∗ xc(−t) (4.4.6)

Since convolutions are commutative eq. (4.4.6) is rewritten as:

xr = [xc(−t) ∗ xc(t)] ∗ τδ (4.4.7)

The signal xc(−t) ∗ xt(t) has its maximum at t = 0, then the delay ∆t can be
retrieved as:

argmax
t

[xr ? xt] = argmax
t

[xc(−t) ∗ xc(t)]−∆t

= ∆t (4.4.8)
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where the argmax operator takes the maximum of the function and returns the
corresponding time. Now ∆t can be used with eq. (4.4.1) to find the speed of
sound.

Note that the discrete time array is centered around zero. The actual time delay
is therefore calculated as:

∆t = argmax
k

[xr(k) ? xt(k)]−Nk
1

2
(4.4.9)

where k is the sample number, Nk is the number of samples.

4.4.2 Peak to Peak
The method used by Zhang, Wang, and Zhu was to calculate the time difference be-
tween the peak of two signals [17]. This can be done using the maximum amplitude
calculated from section 4.3.2 for the calibration signal and the received signal.

If the signal is a clean wavelet and the highest point of the impulse is conserved
from the transmission this method is expected to perform nearly perfect.

The peak to peak method seemed to outperform the GCC. However, it was
observed that the largest point of the signal could be offset with some cycles which
would give incorrect calculations in noisy environments. This can be seen in fig. C.4
in the nd50 and nd60 mixtures. In order to improve the method the peak of the
envelope was taken, giving slightly better results.

4.4.3 Threshold
A single thresholding approach could also be used between two known signals. Since
the amplitudes vary, the signals should be scaled to A/A0 = 1. The threshold should
be large enough to overcome noise caused by low amplitudes, like the signals from
tx4 (fig. C.4).

4.4.4 Evaluation
The discussed methods are tested against the theoretical model in order to find the
TDE model best suited for estimations.

Since errors in the model or experiments might occur the method giving the
lowest variance for each gas/transducer combination was assumed to be more correct
as long the error from the theoretical model was in acceptable range.

All signals are discrete. This means that the calculated time delay is a multiple
of the sample period which was interpolated to 4ms / 5000 samples, giving an
uncertainty in time of ±0.8µs. This should give an uncertainty of less than 0.05%
for speed measurements in nitrogen and lower in the other mixtures since the time-
delay is longer.

Overall, using peak to peak on the envelope of the filtered signals gave the best
results. The method is therefore used for all speed of sound calculations. The results
of the speed calculations using this method is represented in section 5.2.2.
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4.5 Predictive Models
The predictive models are modeled to do the inverse of the theoretical model. In-
stead of predicting expected attenuation and speed of sound the sensing models takes
a raw signal and gives the predicted gas mixture. This is illustrated in fig. 4.11. The
goal is to not being dependent on the theoretical model for predictions since it is
difficult to find reasonable properties to a large variety of gases. The models repre-
sented here only relies on the theoretical model for calibration. For prediction, the
model takes the raw signals, applies the appropriate transformations and predicts
the gas mixture.

Figure 4.11: Diagram showing how the gas composition predictions are made.

4.5.1 Dataset Creation
The dataset is created by coupling each run-id with its file index for all transducers.
Each measurement is represented once together with one measurement from each of
the other transducers. The first run (run1) is kept for the test set.

Since the experiments only included specific gases a model might falsely look
at the targets as classes instead of doing a reasonable regression which is a case
of overfitting. This can be a problem for models which that normally prune to
overfitting like random tree based models and neural networks. To identify models
doing this the nd20 mixture (20%CO2) is put in the testing set and is not used for
training. If a model is overfitted, it can be seen that the predictions of nd20 are
moved towards any of the other gas mixtures, affecting the validation metrics like
MSE and R2.

The test set now contains all the measurements in the first run (run1) and the
experiments in nd20, giving a total of 268 test samples and 477 training samples.
A complete overview can be found in table 4.6 below.
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Table 4.6: Samples in the dataset

n2 nd20 nd30 nd50 nd60 co2 Total

Test 32 108 32 32 32 32 268
Train 96 0 96 96 93 96 477

Total 128 108 128 128 125 128 475

4.5.2 Support Vector Machine Regression
This model uses a SVM with the amplitudes and decayed speed of sound in com-
bination with the transformed raw signals from section 4.3.4 to do gas composition
predictions.

The raw signals are transformed to 200 samples each in combination with the
speed multiplied with the decay from section 4.3.3 and amplitude. Giving a total of
202 ·3 = 606 features (only three transducers were used due to the issues mentioned
in section 5.1). Any other preprocessing steps like standardization did not improve
the regression results and was therefore omitted.

The SVM has two hyper parameters, a regularization parameter C and a pa-
rameter for the RBF kernel γ. The optimal parameters in table 4.7 were found
using cross validation on a parameter grid as recommended in the documentation of
libsvm [23]. The best parameter combination was chosen from the model yielding
lowest MSE.

Table 4.7: SVM - Optimal parameters

Kernel C γ

RBF (gaussian) 105 10−10

Results

The support vector machine gave good results with an R2 of 0.961997 for the test
set, and 0.969982 for the training set. In fig. 4.12 the actual values are plotted
against the predicted values.
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Figure 4.12: The results from the support vector regression, shows predicted
fractions with actual fraction. The red dots are from the training set and the blue
dots are from the test set.

Figure 4.13: Residual plot from the support vector regression model, shows actual
fractions against residuals. The red dots are from the training set and the blue dots
are from the test set.

As seen in figs. 4.12 and 4.13 the SVM is not able to create hyperplanes which
explains the data correctly. This can be seen as the predicted values have tight
distributions which are offset from the correct values.

The output from the SVM can be calibrated using polynomial regression as
interpolation. This is expected to improve the predictions significantly.

4.5.3 Calibration of the Support Vector Machine
As mentioned in section 4.5.2 the output from this model can take advantage of
calibration. This means that a value is added to the output of the model. The
value is determined based on the predicted value ŷ.
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The linear regression with p polynomials will look like:

ε =
[
ŷ0 ŷ1 ŷ2 . . . ŷp

]
·


c0
c1
c2
...
cp

 (4.5.1)

where c0 . . . cp are the linear regression coefficients, ŷ is the predicted fraction from
the SVM and ε is the calibrated output. Then the calibrated ŷ is recalculated as:

ŷc = ŷ + ε (4.5.2)

where ŷc is the calibrated predicted value.
To give a good fit many polynomials are used with some L2 regularization. The

calibration model ended with using 5 degrees of polynomials and a L2 regularization
strength of α = 10−4.

As seen in fig. 4.14 below the calibration reduced the residuals significantly. The
green dotted calibration curve in the upper shows the residuals from the calibrated
fraction, such that the fraction is ŷc = ŷ + ε(ŷ), and the residuals are ε(ŷ). These
are in the same plot for showing approximate good fit, but the curve is not valid
outside the range of the dataset (0, 1). The calibration curve will be the origo for
the new residuals rc = y − ŷc which can be seen in the lower plot where the new
residuals are shown.

Figure 4.14: Residuals before and after calibration, the upper plot shows the
original residuals with the calibration curve and the lower shows the calibrated new
residuals.
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Figure 4.15: The new calibrated values plotted against the actual values for the
SVM.

The calibration gave good results, with a new R2 score of 0.999583 for the
training set and 0.998997 for the test set. MAE for the training set is 0.004463 and
0.006969 for the test set.

4.5.4 Convolutional Neural Network
The previously models required the calibration curve from nitrogen due to the time
delay and amplitude measurements. Using convolutions a model might look at the
raw signal samples instead of extracting features like delay and amplitude. The
neural network is only trained on the transformed signal from section 4.3.4.

Model Construction

The model is simple and constructed with few hidden layers. This is to prevent
overfitting and reduce complexity. The nature of the problem is not expected to
require complex architectures.

Table 4.8: Architecture of the convolutional neural network.

Type Activation Number of units

Convolution 1D Tanh 32
Convolution 1D Tanh 64

Dense Tanh 16
Dense Linear 1
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The model was trained with a batch size of 32 random samples from the training
set at 150 epochs. This means that the model has seen the training set 150 times
and updated the weights accordingly. Weights were updated with the RMSProp
(Root Mean Square Propagation) optimizer [38].

Results

In fig. 4.16 the actual values are plotted against the predicted values. Note that
even though the model has never seen the nd20 mixture (at 0.2 co2) it still predicts
this mixture accurately.

Figure 4.16: The results from the CNN, shows predicted fractions with actual
fraction. The red dots are from the training set and the blue dots are from the test
set.

Figure 4.17: Residual plot from the CNN model, shows actual fractions against
residuals. The red dots are from the training set and the blue dots are from the test
set.
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As seen in figs. 4.16 and 4.17, the model showed good results for both training
and test sets. The MAE was estimated to 0.009145 for the test set, and coefficient
of determination (R2) was 0.997974.
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5. Results and Discussion
5.1 Analysis of the Sample Signals
In appendix C sample signals for all transducers and gases are shown.

By roughly looking at the samples it can be concluded that there are unwanted
effects in the received samples. The actual cause of the variations is unknown, but
they seem to be constant for the relevant transducer.

One possible cause might be that the gas affects the transducers vibration and
resonance. This can be seen in the low-frequency transducers tx1, tx2, and tx3
(figs. C.1 to C.3 in appendix C).

5.1.1 Echoes
Echoes from the surrounding materials are also present, in fig. 5.1 below it can be
seen that there is a second pulse at 3.6ms in nitrogen. This is probably caused by
reflections from the gas chamber.

Figure 5.1: Echo in nitrogen (nd20) using Tx7 (100kHz). The orange line is the
envelope calculated using hilbert-transforms.

In fig. 5.2 it can be seen that echoes disturb the major wavelet. There are at least
4 major reflections after the original wavelet. Since the speed of sound changes with
higher concentrations of carbon dioxide the time delay between each echo is larger
in the nd60 mixture. The number of cycles could not be set larger in nitrogen due
to the second echo since it would have caused interference with the original wavelet.
The interference would then have caused the amplitude and speed calculations to
be incorrect for nitrogen and mixtures with low carbon-dioxide concentration. In
mixtures with higher concentrations of carbon-dioxide this is not a problem due to
the reduced speed of sound which causes the echo to arrive later.
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Figure 5.2: Comparison of echoes in Tx6 for nitrogen (upper) and the nd60 (lower)
gas mixture. The envelope is calculated using hilbert-transforms.

By changing the number of cycles on the signal generator and observing the
wavelets, echoes were found for all transducers except for tx4. However, tx4 could
not give results in carbon dioxide due to the large sound absorption as seen in fig. C.4.

The low-frequency transducers (tx1, tx2, tx3) was largely disrupted by echoes
and other effects. This could be explained by resonance in the surrounding materials
having lower resonance frequencies.

5.1.2 Conclusion of Signal Quality
Due to the low-quality signals from the transducers with low frequency (tx1, tx2,
tx3), these were chosen to not be included in the modeling later.

Tx5 also had insufficient quality of the response and was not included for the
modeling.

Therefore, only the transducers tx4, tx6, and tx7 was included for further anal-
ysis, whereas only tx6 gave signals in carbon dioxide.

5.2 Comparison with Theoretical Model
When comparing the theoretical model with the experimental results it was chosen
to look at the attenuation factor (α) and the speed of sound (c). In these estimations,
it was chosen to use relative errors since it is more intuitive. The mean relative error
is calculated as:

ε =
1

N

N∑
i

|v̂i − vi|
vi

(5.2.1)

where N is the total number of samples, v̂i is the estimated value (speed of sound
or attenuation) and vi is the theoretical value.
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5.2.1 Attenuation
In fig. 5.3 below the attenuation is plotted for each transducer with the theoretical
model. Note that for pure nitrogen the results fit very well since the model was
calibrated in nitrogen.

α is calculated from the raw signals as:

α = −1

z
ln

A

A0

(5.2.2)

For the higher concentrations of carbon dioxide the signal is not detectable in
tx4 and tx6 due to noise. This causes the attenuation to flatten out.

Figure 5.3: Attenuation in the carbon-dioxide nitrogen spectra for the chosen
transducers. The dotted line shows the expected result from the theoretical model.
The blue markers mark the experimental results. The y-axis shows the attenuation,
α, and the carbon dioxide concentration is shown in the x-axis.

The relative amplitudes are shown in fig. 5.4 below. These give a good overview
of how much the sound waves have been absorbed in the mixtures (100 is the original
amplitude).
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Figure 5.4: Amplitudes in the carbon-dioxide nitrogen spectra for the chosen
transducers. The dotted line shows the expected result from the theoretical model.
The blue markers mark the experimental results. The y-axis shows the relative
amplitude, A/A0, and the carbon dioxide concentration is shown in the x-axis.

The table 5.1 shows the mean relative error of the experimental results for at-
tenuation, in average the error is 15.5% of the attenuation factor, α. Tx7 (100kHz)
has lowest relative error at 7.6%. It can also be seen visually in fig. 5.3 that the
experimental values fit the theoretical values well except for the measurements in
CO2.

Table 5.1: Mean relative errors for the experimental attenuations (α)

Tx4 Tx6 Tx7 Avg

n2 0.0162 0.0171 0.0136 0.0156
nd20 0.6534 0.4127 0.1450 0.4037
nd30 0.5237 0.1818 0.0545 0.2533
nd50 0.1162 0.0881 0.0314 0.0786
nd60 0.0431 0.1357 0.0498 0.0762
co2 0.0785 0.0597 0.1601 0.0994

Avg 0.2385 0.1492 0.0757 0.1545

5.2.2 Speed of Sound
The results for speed of sound gave better results than for attenuation. For the
combinations giving high SNR, the estimated speed of sound had an average relative
error of less than 10%. In fig. 5.5 the estimated experimental values are plotted with
the theoretical values. Note that for pure nitrogen the results fit very well since it
was calibrated in nitrogen.
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Figure 5.5: Speed of sound in the carbon-dioxide nitrogen spectra for the chosen
transducers. The dotted line shows the expected result from the theoretical model.
The blue markers are the experimental results using the envelope peak TDE esti-
mator from section 4.4.4.

As expected the estimated speed of sound gives unconfident results in high con-
centrations of carbon dioxide for Tx4 and Tx7. This can be seen in table 5.2, tx6
has high SNR for all concentrations but seems to have increasing errors with the
carbon dioxide concentration.

Table 5.2: Mean relative errors for the estimated speed of sound

Tx4 Tx6 Tx7 Avg

n2 0.0009 0.0002 0.0004 0.0005
nd20 0.0119 0.0015 0.0083 0.0072
nd30 0.0123 0.0020 0.0072 0.0072
nd50 0.0619 0.0074 2.4619 0.8437
nd60 0.0633 0.0124 2.0708 0.7155
co2 1.8566 0.1482 21.0627 7.6892

Avg 0.3345 0.0286 4.2686 1.3294

The results in Tx6 gave best results when the SNR was sufficient high. For
these measurements the average relative error was 0.13% on n2, nd20 and nd30.
The error increases with the fraction of carbon dioxide, and the average error for
Tx6 is at 2.6%.

5.3 Comparison of the Predictive Models
In table 5.3 all models are evaluated with the relevant metrics on the train and
testing set. The MAE can be interpreted as the average error in the carbon dioxide
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fraction, meaning that a MAE of 0.01 gives an average of ±1% error in the carbon
dioxide fraction.

Table 5.3: Results from the various models

Model Ref Train Test
R2 MAE R2 MAE

SVR 4.5.2 0.969982 0.051814 0.961997 0.052518
SVR Calibrated 4.5.3 0.999583 0.004463 0.998997 0.006969
CNN 4.5.4 0.999289 0.006495 0.997974 0.009145

None of the models showed sign of overfitting. It was surprising how well the al-
gorithms managed to explain the nd20 mixture correctly considering the complexity
of the theoretical model. This shows that machine learning algorithms has a huge
potential in gas sensing applications, and a good model can be created on a subset
of the relevant gas mixtures.

The calibrated SVM proved to be the best suited model with an MAE of
0.006969 for the test set. This is the same as an error of ±0.697% in the carbon
dioxide fraction estimates.

5.3.1 Final Model
The calibrated support vector machine proved to be the best suited model. In
table 5.4 error estimates for all gases are shown. For the nd20 gas only test results
are available since these have not been used for training. Since the error decreases
with the fraction of carbon dioxide it can be assumed that in mixtures with carbon
dioxide fraction below 20% the absolute errors should be less than 0.5%.

Table 5.4: Error estimations as percentage for the final predictive model

Gas mixture % CO2 Train Test
MAE /% RMSE /% MAE /% RMSE /%

n2 0 0.066 0.082 0.056 0.070
nd20 20 0.313 0.392
nd30 30 0.185 0.216 0.723 0.730
nd50 50 0.626 0.750 1.427 1.454
nd60 60 0.705 1.020 1.579 1.620
co2 100 0.657 0.812 0.998 1.135

Overall 0.446 0.678 0.697 0.920
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5.3.2 Comparison with Related Work
Compared to the model proposed by Zhao, Lou, and Xu in [30] the model provided in
this work does better in predicting the carbon dioxide fraction. While their model
had RMSE ranging from 3.1% up to 7.7% the model provided here has RMSE
ranging from 0.39% to 1.6% (invalidating the results in nitrogen due to calibration).

While Zhao, Lou, and Xu used curve fitting to find the correct parameters (which
requires knowledge of the physical properties of the gas components), the predictive
model proposed here only relies on calibration in nitrogen and the experimental data
already needed for model validation. This shows that machine learning has a huge
potential in gas sensing for predicting gas concentrations, and it does not require
knowledge of the physical properties of the relevant gas as long as experimental data
can be obtained.

5.4 Problems and Uncertainties with Experimen-
tal Testing

During the experiments some problems were revealed as potential causes of uncer-
tainty, noise or even incorrect data.

The first experiments were done on damaged coaxial cables which gave varying
results. This was corrected by changing to newer cables. After changing the cables,
it was not found evidence of this happening in the results presented here.

Some transducer fittings were found to leak gas. This was most notable in the
fitting for tx6. Since the experiments show good compliance with theory and the
predictive model, this is not assumed to have given any significant errors in the
experiments. But for further work the leakage should be resolved.
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6. Conclusion
6.1 Summary
In this work there was a wide focus on the theoretical fundamentation causing a
non-linear relationship in the attenuation and speed of sound in mixtures of carbon
dioxide and nitrogen. Based on the theories of relaxation a model was developed in
the python programming language which models any mixture of nitrogen and carbon
dioxide and predicts speed of sound and attenuation for any given frequency.

Using a custom-made test rig, experimental data was obtained for a set of trans-
ducers with frequencies ranging from 25 to 100 kHz together with a set of gas
mixtures in the CO2—N2 spectrum. The results showed that the theoretical model
has good assumptions which fits the experimental results well. Even tough, there
are some offsets between predicted and experimental attenuation. In average the
relative error for the attenuation factor, α, was 15.5% and 7.57% for the transducer
tx7 which gave best results.

The predicted and experimental speed of sound shows a better fit than for at-
tenuation. For the transducer giving signal in all gas mixtures, Tx6 (49.9kHz), the
average relative error for the speed of sound was 2.86%.

For solving the inverse problem of predicting the gas mixture the experimental
data was used for training a machine learning model. The test set consisted of a
series of samples from the first experimental run and all data from the gas mixture
containing 80%N2 and 20%CO2. Using the remaining data for training, a set of ma-
chine learning models were tested and evaluated. The final model, using a Support
Vector Machine for regression, achieved a mean error (MAE) of 0.697% for the test
set, meaning that the predicted concentration is in average 0.697% offset from the
actual concentration (not relative). This is an improvement compared to the related
work using transducers for gas sensing, where the errors were seen larger than 2.4%
absolute error in the CO2 fraction.

6.2 Further Work
The method described here gave promising results, but there are some improvements
which could improve the concept of using transducers for gas sensing.

6.2.1 Improving the Experimental Data
Improving the test rig for further analysis can give beneficial results. To summarize,
the following bullets are the suggested further work for improved results:

• Ensure proper sealing of the chamber.
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• Improve transducer fittings to avoid potential echoes.

• Improve pre-amplification to allow higher voltages on the transducers to obtain
signals in carbon dioxide.

• Usage of gas-mixers to allow experimenting with more gas mixtures.

• Find more usable transducers which can replace those that were not used due
to bad quality.

These improvements are expected to give higher quality of the data and by
having more gas mixtures the accuracy of the model should be improved.

6.2.2 Improving the Models
The predictive models gave satisfactory results, but it is possible they can be im-
proved to give better results.

Improving and testing more preprocessing methods can give beneficial results.
For example by using wavelet decomposition (similarly as it was done in [29]) or
looking at the signals in a frequency domain other useful features might be extracted
from the signals.

6.2.3 Extended Analysis
The work described here only included a limited set of gas mixtures and trans-
ducer frequencies. Using more gases and gas mixers, a wider spectra with multiple
components can be used to create better predictive models.

Finding more usable transducers which allows having more frequencies, or even
allowing frequency sweeping, could have a large potential for predictive models as
stated in [16, 17].
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A. Data Acquisition Protocol
This protocol is to be followed when doing measurements in the test rig.

A.1 Objectives
• Measure the attenuation and velocity over a frequency range using provided

transducers (25kHz-100kHz)
• The tests should result in .csv files containing one array for time, transmitted

signal and received signal.
Folder structure should be like:

data/tx<id>/<gas_id>/run<n>/run<n>_<m>.csv

where n is the run number (each run consists of 32 measurements) and m is
the measurement number. The transducers are identified by tx<id> and the gas is
identified by <gas_id>.

In each transducer folder data/tx<id> a file named parameters.txt should de-
scribe the parameters used for the transducer. Eg:

freq: 102.5kHz
vpp: 0.800V (x6 trafo)
n_cycles: 7
pre-amp: 100x

A.2 Determination of test parameters
Test parameters are determined based on tests in nitrogen. Optimal frequency is
set as the frequency giving the highest amplitude of the received signal. Voltage
(vpp) from the generator is set as near the transducers max voltage as possible.

Number of cycles should be set such that the bursts have as high amplitude as
possible and giving signals which are not disrupted by echoes or off-phase responses.

Pre-amp setting of the microphone is set to 100x if the signal does not overload
in nitrogen, if it does it is set to 10x.

A.3 Setup
Oscilloscope:

• Set window div to 500us/div
• Number of samples should be set such that the sample frequency is near 1

MS/s, at 500us/div the setting should be 6kS.
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• Configure channels (no Auto range, set range as low as possible for the given
gas without overrange)

– A: Frequency generator burst (sig-out on the amplifier)
– B: Microphone

• Trigger setting
– Trig on channel A,
– Set pre-sample to 10%
– Trigger to rising, at 100mV

Frequency Generator:
1. Set to continuous mode:

• Set amplitude from parameters.txt
• Set frequency from parameters.txt

2. Set to burst mode:
• Set n_cycles to the value from parameters.txt

Power Supply:
• Set voltage to 9V
• Current limit to 0.2A
• If OC, turn off voltage, plug out BNC cables, turn on voltage, and plug cables

in again
Microphone Pre-Amplifier:
• Set Pre-amp to the value in parameters.txt
• Linear convolve

A.4 Procedure
1. Fill the gas chamber with the target gas:

• Open outlet valve
• Attach the regulator and the tubes
• Set regulator to 1L/s
• Fill for at least 4 minutes
• Close the main valve
• Close outlet valve
• Wait for 4 minutes to let the gas settle

2. Take measurements:
• Set channel B voltage range to as low as possible without overrange.
• The PicoScope software should have buffered at least 32 samples before

saving
• Ensure that there are no errors, overranges, or outer disturbances amongst

the 32 samples
• Save the samples as csv files with the folder data/tx<id>/<gas_id>/run<n>
• Repeat for at least 4 runs
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B. Transducer Characteristics
The following are the results from characterization with the impedance analyzer,
the quality of the measurements are unknown but expected to be high.

Frequency are taken from the respective transducers’ data sheet, and the voltages
are the maximum peak to peak ratings.

B.1 Equivalent Circuit:
----C0----

-| |-
-L1-C1-R1-

B.2 Characteristics
Id Frequency [kHz] Vpp [V] C0 [F] C1 [F] R1 [Ohm] L1 [H]

Tx1 25.0 ± 1.0kHz 56 2.497e-009 2.935e-010 6.716e+002 1.318e-001
Tx2 32.8 ± 1.0kHz 56 2.300e-009 1.250e-010 4.627e+002 1.861e-001
Tx3 40.0 ± 1.0kHz 56 2.616e-009 1.440e-010 7.647e+002 1.148e-001
Tx4 49.5 N/A 4.949e-010 2.020e-011 1.920e+003 5.003e-001
Tx5 60.0 N/A 7.783e-010 1.233e-010 2.111e+002 5.650e-002
Tx6 50.0 1000 1.058e-009 3.538e-010 1.540e+002 2.352e-002
Tx7 100.0 ± 8.0kHz 600 6.325e-010 1.198e-010 5.112e+002 2.202e-002

58



C. Sample Signal Responses
C.1 Tx1

Figure C.1: Filtered signal samples from Tx1 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.2 Tx2

Figure C.2: Filtered signal samples from Tx2 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.3 Tx3

Figure C.3: Filtered signal samples from Tx3 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.4 Tx4

Figure C.4: Filtered signal samples from Tx4 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.5 Tx5

Figure C.5: Filtered signal samples from Tx5 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.6 Tx6

Figure C.6: Filtered signal samples from Tx6 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.
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C.7 Tx7

Figure C.7: Filtered signal samples from Tx7 in the nitrogen/carbon-dioxide spec-
trum. The blue signal is the generated burst normalized to the maximum of the
received signal for illustration purposes, the orange signal is the received signal A.
Compositions of the gas mixtures can be found in table 4.3.

65







  


	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Goals and Objectives
	Research and Review of Theoretical Work
	Obtain Experimental Data
	Development and Evaluation of Predictive Models

	Limitations

	Theory
	Gases and Mixtures
	Properties

	Ultrasound
	Ultrasonic Transducers

	Speed of Sound
	Acoustic Attenuation
	Absorption coefficient
	Classical Attenuation

	Molecular Relaxation
	Effect on Specific Heat
	Attenuation Spectra
	Single Relaxation Process
	Multimode Relaxation Processes
	Modes of Vibration

	Model for Attenuation and Speed of Sound
	Machine Learning
	Regression
	Neural Networks
	Preprocessing and Training Techniques
	Evaluation


	Review of Related Work
	Ultrasonic Sensing
	Attenuation Based Detection

	Sensing Based on Relaxation Models
	Reconstruction Algorithms
	Classification of Mixtures Based on GARAS
	Detecting Inflection Point of Frequency-dependent Velocity
	Concentration Measurements from Mixtures of CO2 and N2


	Method
	Experimental Test Rig
	Equipment
	Chamber
	Transducers
	Characterization of Transducers

	Data Acquisition
	Gas Compositions
	Estimation of Experimental Parameters
	Acquiring Signals

	Preprocessing
	Filtering of Signals
	Calculating Attenuation of Signals
	Noise Detection
	Transformation of Raw Signals

	Estimation of Speed of Sound
	Cross Correlation
	Peak to Peak
	Threshold
	Evaluation

	Predictive Models
	Dataset Creation
	Support Vector Machine Regression
	Calibration of the Support Vector Machine
	Convolutional Neural Network


	Results and Discussion
	Analysis of the Sample Signals
	Echoes
	Conclusion of Signal Quality

	Comparison with Theoretical Model
	Attenuation
	Speed of Sound

	Comparison of the Predictive Models
	Final Model
	Comparison with Related Work

	Problems and Uncertainties with Experimental Testing

	Conclusion
	Summary
	Further Work
	Improving the Experimental Data
	Improving the Models
	Extended Analysis


	Bibliography
	Data Acquisition Protocol
	Objectives
	Determination of test parameters
	Setup
	Procedure

	Transducer Characteristics
	Equivalent Circuit:
	Characteristics

	Sample Signal Responses
	Tx1
	Tx2
	Tx3
	Tx4
	Tx5
	Tx6
	Tx7


