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Abstract: In this paper, the multi-state synchronization of chaotic systems with non-identical, un-
known, and time-varying delay in the presence of external perturbations and parametric uncertain-
ties was studied. The presence of unknown delays, unknown bounds of disturbance and uncer-
tainty, as well as changes in system parameters complicate the determination of control function 
and synchronization. During a synchronization scheme using a robust-adaptive control procedure 
with the help of the Lyapunov stability theorem, the errors converged to zero, and the updating 
rules were set to estimate the system parameters and delays. To investigate the performance of the 
proposed design, simulations have been carried out on two Chen hyper-chaotic systems as the slave 
and one Chua hyper-chaotic system as the master. Our results showed that the proposed controller 
outperformed the state-of-the-art techniques in terms of convergence speed of synchronization, pa-
rameter estimation, and delay estimation processes. The parameters and time delays were achieved 
with appropriate approximation. Finally, secure communication was realized with a chaotic mask-
ing method, and our results revealed the effectiveness of the proposed method in secure telecom-
munications. 
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1. Introduction 
Applications of digital telecommunications can be seen in all aspects of daily life and 

all industries including medicine and education, as well as social interactions [1]. Hence, 
there is a need to have secure communication. To do this, many cryptography methods 
have been introduced, mainly encoding the data from the sender and decoding them at 
the receiver [1]. Cryptographical methods are based on various schemes, and a number of 
related papers have been published in this field [2–5]. There has been a considerable 
amount of work done in this field, and chaotic systems play a significant role among all 
cryptographical schemes [6–8]. 

One of the fundamental characteristics of chaotic systems is the extreme response to 
small changes in initial circumstances. The main goal of proposing synchronization meth-
ods is the suitable tuning of controller parameters in chaotic systems [9–12]. In chaotic 
synchronization, the vector state of the master system follows the slave system [13]. Vari-
ous control-based schemes have been used previously for synchronization, such as adap-
tive [14–16], sliding mode [17,18], back stepping [19], fuzzy [20], predictive [21], and ro-
bust [22]. 

The work on applications of chaotic synchronization in secure communication has 
grown dramatically in recent years [23–36]. Developing control systems for synchroniza-
tion of various chaotic systems has been one of the main focuses of prior works, aiming to 
improve security in communication. Furthermore, few researchers have concentrated on 
the hardware implementation of these systems in order to create reliable and rapid hard-
ware for sending and receiving data securely [23]. The summary of various works done 
on this topic is given below. 

Çiçek et al. [24] conducted the design and implementation of an analog circuit of a 
secure telecommunications system based on slipping mode control (SMC). The chaos sys-
tem is the jerk, which is less complex than other chaotic systems. The most significant 
novelty of this work is applying SMC synchronization along with the jerk chaos system, 
which was introduced for the first time. The results of Op-Amp-based analog circuit sim-
ulation in SMC and jerk-based synchronization demonstrated the effectiveness of the pro-
posed method. 

A method based on a four-dimensional chaotic system has been proposed by Ayub 
Khan et al. [25]. The chaotic system proposed is of the fractional-order type, contributing 
greatly to the confidentiality of information. The results obtained justified the theoretical 
scheme and simulation results. 

Yu et al. [26] recommended a system based on hyper-chaotic theory for secure tele-
communications. The proposed chaotic system is multistable four-wing memristive 
(FWMHS), which is five-dimensional and was used to conduct the experiments. The dis-
turbance included in the inputs of the proposed method enhanced the security factor in 
telecommunications. The sliding mode control is also used in this method, the parameters 
of which are unknown. 

A novel model for synchronization in secure telecommunications based on the frac-
tional-order complex chaotic system has been proposed in [27]. The fractional difference 
function synchronization (FDFS) method used in this work yielded good results. 

In [28], a new synchronization approach for utilization in internet of things (IoT) ap-
plications has been used. The design of the synchronization system in their work is based 
on the Lyapunov stability theorem. Synchronization is based on a nonlinear adaptive con-
troller. In their work, the input signals are first decomposed into small segments and then 
combined and transmitted with chaotic signals. Subsequently, important information is 
separated from the chaotic signals at the receiver. The simulation results proved the effec-
tiveness of the proposed scheme in sending and receiving confidential information. 

Another work by [29] proposed the design of an Op-Amp-based analog circuit to 
obtain secure communication. The proposed analog circuit of the seven-dimensional cha-
otic system is designed and implemented. The results of the circuit simulation confirm the 
greater capability of the circuit designed for secure communication. 
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Chen et al. [30] proposed a novel methodology for the synchronization of secure tel-
ecommunications. This new technique is based on the polynomials fuzzy model applied 
to the Chen chaotic system. The approach proposed in this paper is implemented on sev-
eral various examples, and the results showed that the receiver worked successfully in 
retrieving the signals transmitted by the transmitter. 

Wangli He et al. [31] introduced a new approach based on quantized synchronization 
of neural networks. In their work, the implementation of the master and slave section of 
the chaos system is done on the Chua circuit. In order to perform experiments, different 
images for synchronization with the proposed procedure are employed, and successful 
results were achieved. 

The idea of utilizing adaptive control for synchronization is proposed in [32]. The 
master and slave chaos systems discussed in this work are of the memristor type. Addi-
tionally, to enhance the security of information, an unknown parameter in the slave sys-
tem is applied. The most significant contribution of this scheme is that it is simple to im-
plement, and it helps to achieve valuable results in secure communication applications. 

Ouannas et al. [33] adopted linear and nonlinear controllers to synchronize in secure 
telecommunications applications. The improved Robinovich chaotic system employed in 
this study is of the fractional order type. The stability investigation of the proposed tech-
nique is proven by means of the Lyapunov theorem. Numerical results illustrated the ef-
fectiveness of their proposed scheme in maintaining the confidentiality of information. 

In a study, Wang et al. [34] proposed a novel idea of synchronization in secure tele-
communications based on neural networks. Associative memory neural networks are 
widely employed in various applications for synchronization. This network has been cho-
sen based on memristor. In the Lyapunov stability theorem, two controllers with different 
activation functions are applied. The proposed approach ensured synchronization of 
drive and response systems in a finite time. 

Jing Wang et al. [35] conducted the implementation of analog hardware for a syn-
chronization method; the chaotic system tested in this method is six-dimensional. In order 
to implement the hardware, all conditions are considered so that the theory of the pro-
posed scheme is consistent with the simulation results. 

Zirkohi et al. [36] used terminal slipping model control (TSM) for synchronization. 
The Duffing–Holmes oscillator is considered the first chaotic system, and the chaotic gyro 
oscillator as the second chaotic system. Uncertainty, unknown parameters, and ultimately 
external disturbances are taken into account in both chaotic systems. In the controller sec-
tion, Chebyshev polynomials are applied to approximate the master and slave systems. 

In this paper, a robust adaptive controller was proposed for multi-mode synchroni-
zation of chaotic systems. In the proposed method, both slave and master systems have 
uncertainty, disturbance, unknown parameters, and time-varying delay characteristics. 
By defining a suitable Lyapunov function, rules for updating parameters, time delays, and 
estimation errors of uncertainty and disturbance bounds were determined. The proposed 
controller guarantees that convergence of disturbance and uncertainty bounds estimation 
error and synchronization error to zero. To prevent the chattering phenomenon, the con-
trol law is a continuous function. By using the masking method and using chaotic signals 
as a carrier signal, the security of communication channels was improved. In the provided 
example, a 3D Chua system was chosen as the master system, and two Rössler systems 
were chosen as the slave system. Given the proper and quick reconstruction of message 
signals and also the convergence of all errors to zero, it was shown that the proposed 
method has the ability to obtain better performance for synchronization of chaotic sys-
tems. 

In time-delayed chaotic systems, little work has been done on delay uncertainty with 
parametric uncertainties, external perturbations, and uncertainty in modeling the multi-
state synchronization problems of chaotic systems. The novelties of this paper are as fol-
lows: 
(1) synchronization of chaotic systems with unknown time delays; 
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(2) synchronization of chaotic systems in the presence of disturbance and uncertainty 
with unknown boundaries and variable parameters; 

(3) guarantee of convergence of tracking errors and parameters estimation to zero; 
(4) Determining the rules for updating parameters, time delays, and disturbance and 

uncertainty boundaries. 
The paper is organized as follows. First, the concept of multi-state synchronization 

in the presence of perturbation and uncertainty is described. Then, the essential theorems 
to prove the convergence of errors to zero are explained. Adaptive rules for updating pa-
rameters and delays are achieved. Finally, the concept of masking the synchronization of 
three chaotic systems and its application in secure communication is presented. 

2. Multi-State Synchronization of Chaotic Systems in the Presence of Disturbance and 
Uncertainty 

In multi-state synchronization of chaotic systems, a master chaotic system is synchro-
nized with multiple chaotic systems. Figure 1 shows the synchronization of the master 
system with multiple system slave systems. 

We represent the driver system with the following equation [30]: 𝑥ሶଵ(t)  = 𝑓ଵ(𝑥ଵ) + 𝐹ଵ(𝑥ଵ(𝑡 − 𝜏ଵ)) + 𝐻ଵ(𝑥ଵ)𝜃ଵ(𝑡) + ∆𝑓ଵ(𝑥ଵ) + 𝐷ଵ(𝑡) (1)

The N-1 slave systems control function can be represented as [30] 𝑥ሶ௜(t) = 𝑓௜(𝑥௜) + 𝐹௜൫𝑥௜(𝑡 − 𝜏௜)൯ + 𝐻௜(𝑥௜)𝜃௜(𝑡) + ∆𝑓௜(𝑥௜) + 𝐷௜(𝑡).   𝑖 = 2,3, ⋯ , 𝑁 (2)

where 𝑥௜(𝑡)  = [𝑥௜ଵ, 𝑥௜ଶ, ⋯ , 𝑥௜௡]்  is the state vector of i-th system, 𝑓௜(𝑥௜(𝑡))  =[𝑓௜ଵ, 𝑓௜ଶ, ⋯ , 𝑓௜௡]் is a continuous function, 𝐹௜(𝑥௜(𝑡 − 𝜏௜)) is a continuous function with Lip-
schitz [30] condition and constant ℎ௜,  𝜏௜  is the unknown variable system delay, and 𝐻௜(𝑥௜(𝑡))  = [𝐻௜ଵ, 𝐻௜ଶ, ⋯ , 𝐻௜௡]்  is a matrix function. Moreover, 𝜃௜(𝑡)  = [𝜃௜ଵ, 𝜃௜ଶ, ⋯ , 𝜃௜௡]் 
are the main parameters with unknown step changes, ∆𝑓௜(𝑥௜) uncertainties, and bounded 
disturbance 𝐷௜(𝑡). 

 
Figure 1. Synchronization of the master system with multiple slave systems. 

Based on Equations (1) and (2), the synchronization of chaotic system with control 
function is as follows: 

⎩⎪⎨
⎪⎧ 𝑥ሶଵ = 𝑓ଵ(𝑥ଵ) + 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏ଵ)൯ + 𝐻ଵ(𝑥ଵ)𝜃ଵ(𝑡) + ∆𝑓ଵ(𝑥ଵ) + 𝐷ଵ(𝑡).             𝑥ሶଶ = 𝑓ଶ(𝑥ଶ) + 𝐹ଶ(𝑥ଶ(𝑡 − 𝜏ଶ)) + 𝐻ଶ(𝑥ଶ)𝜃ଶ(𝑡) + ∆𝑓ଶ(𝑥ଶ) + 𝐷ଶ(𝑡) + 𝑢ଵ(𝑡).⋮          𝑥ሶே = 𝑓ே(𝑥ே) + 𝐹ே(𝑥ே(𝑡 − 𝜏ே)) + 𝐻ே(𝑥ே)𝜃ே(𝑡) + ∆𝑓ே(𝑥ே) + 𝐷ே(𝑡) + 𝑢ேିଵ(𝑡). (3) 

in which it is assumed that 𝑢௜ିଵ(𝑡) = [𝑢௜ିଵ.ଵ(𝑡), 𝑢௜ିଵ.ଶ(𝑡), ⋯ , 𝑢௜ିଵ.௡(𝑡)]்  is the i-th slave 
system control function, uncertainties and disturbance have unknown bounds, |∆𝑓௜(𝑥௜)| ≤ 𝛾௜𝑔௜(𝑥௜) , |𝐷௜(𝑡)|  ≤ 𝑑௜     𝑖 =  1,2, … , 𝑁. (4) 
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In Equation (4) 𝛾௜ and 𝑑௜ are unknown constants, 𝑔௜(𝑥௜) is a known function, and 
in few cases 𝑔௜(𝑥௜)  =  |𝑥௜|. 

In multi-state synchronization, the synchronization error is defined as [37] e௜ିଵ(𝑡) = 𝑥௜(𝑡) − 𝑥ଵ(𝑡). 𝑖 = 2,3, ⋯ 𝑁. (5) 

Hence, the error dynamics can be represented as [37] 𝑒ሶ௜ିଵ(t)  = 𝑓௜(𝑥௜) + 𝐹௜൫𝑥௜(𝑡 − 𝜏௜)൯ − 𝑓ଵ(𝑥ଵ)− 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏ଵ)൯ + 𝐻௜(𝑥௜)𝜃௜(𝑡)− 𝐻ଵ(𝑥ଵ)𝜃ଵ(t) + ∆𝑓௜(𝑥௜)− ∆𝑓ଵ(𝑥ଵ) + 𝐷௜(𝑡) − 𝐷ଵ(𝑡)+ 𝑢௜ିଵ(𝑡). 𝑖 =  2,3, ⋯ , 𝑁 − 1. (6) 

Assuming that the control function is defined as 𝑢௜ିଵ(t)  =  −𝑓௜(𝑥௜) + 𝑓ଵ(𝑥ଵ) − 𝐻௜(𝑥௜)𝜃෠௜(𝑡)+ 𝐻ଵ(𝑥ଵ)𝜃෠ଵ(𝑡) + 𝐾௜ିଵ𝑒௜ିଵ− 𝐹௜൫𝑥௜(𝑡 − 𝜏̂௜)൯+ 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯ + 𝑢ത௜ିଵ(𝑡).      𝑖 =  2,3, ⋯ , 𝑁 − 1, (7) 

The control function is selected in such a way that first it removes well-determined 
sentences ( 𝑓ଵ(𝑥ଵ) , 𝑓௜(𝑥௜)) from the error dynamics, and then it approximates the sentences 
with variable parameters (𝐻ଵ(𝑥ଵ)𝜃෠ଵ(𝑡) and 𝐹௜൫𝑥௜(𝑡 − 𝜏̂௜)൯). To stabilize the system, it ex-
ploits the 𝐾௜ିଵ𝑒௜ିଵ state feedback, and finally the sentence 𝑢ത௜ିଵ(𝑡) determines the proper 
estimation of the disturbance and uncertainty boundaries. 

Where 𝜃෠௜(𝑡) and 𝜏̂௜(𝑡) are the estimates of 𝜃௜(𝑡) and 𝜏௜(𝑡), and 𝑢ത௜ିଵ(𝑡) is a part of 
the control function (introduced later in the paper), the feedback gain matrix is defined as 𝐾௜ିଵ = −diag൫𝑘௜ିଵ,ଵ, 𝑘௜ିଵ,ଶ, ⋯ , 𝑘௜ିଵ,௡൯. 𝑘௜ିଵ,௝ > 0 𝑗 = 1,2, ⋯ , 𝑛. (8) 𝐾௜ିଵ is a diagonal matrix with negative elements that result in the synchronization 
error to converge to zero in the design. 

Plugging the control function into Equation (6), the errors dynamics read as eሶ ୧ିଵ(t)  = 𝐻௜(𝑥௜)𝜃෨௜(𝑡) − 𝐻ଵ(𝑥ଵ)𝜃෨ଵ(t) + ∆𝑓௜(𝑥௜) −∆𝑓ଵ(𝑥ଵ) + 𝐹௜൫𝑥௜(𝑡 − 𝜏௜)൯ − 𝐹௜൫𝑥௜(𝑡 − 𝜏̂௜)൯ − 𝐹ଵ൫𝑥ଵ(𝑡 −𝜏ଵ)൯ + 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯ +  𝐷௜(𝑡) − 𝐷ଵ(𝑡) + 𝐾௜ିଵ𝑒௜ିଵ +𝑢ത௜ିଵ(𝑡).  𝑖 =  2,3, ⋯ , 𝑁 − 1  
(9) 

where 𝜃෨௜(𝑡)  = 𝜃௜(𝑡) − 𝜃෠௜(𝑡) is the approximation error. 
Theorem 1. If the derivative of function 𝑓(𝑡) is bounded in (𝑎, 𝑏) i.e., ቚௗ௙ௗ௧ቚ ≤ 𝑀, then 𝑓(𝑡) 

is Lipschitz. 
Proof of Theorem 1. Considering the mean value theorem, ∀𝑡ଵ, 𝑡ଶ ∈ (𝑎, 𝑏) ∃𝑐 ∈ (𝑎, 𝑏): 𝑓(𝑡ଵ) − 𝑓(𝑡ଶ)𝑡ଵ − 𝑡ଶ = 𝑓ᇱ(𝑐), (10) 

⟹ |𝑓(𝑡ଵ) − 𝑓(𝑡ଶ)| = |𝑡ଵ − 𝑡ଶ||𝑓ᇱ(𝑐)| ≤ |𝑡ଵ − 𝑡ଶ| 𝑠𝑢𝑏𝑡 ∈ (𝑎, 𝑏) |𝑓ᇱ(𝑐)| ≤ 𝑀|𝑡ଵ − 𝑡ଶ|. 
Theorem 2. In a chaotic system, all the state variables are Lipschitz. 
Proof of Theorem 2. Considering a chaotic system characteristic, all of its state vari-

ables are bounded. On the other hand, the derivative of state variables is nothing but a set 
of addition, subtraction, and multiplication operations. Hence, the state variable deriva-
tives are bounded so according to Theorem 1, the state variables are Lipschitz with 𝛿௜ con-
stant, which in turn implies ∀𝑡1, 𝑡2 ∈ 𝑅 ∃𝛿𝑖 > 0 ∶  |𝑥𝑖(𝑡1) − 𝑥𝑖(𝑡2)| ≤ 𝛿𝑖|𝑡1 − 𝑡2|. (11) 

where 𝑥௜(𝑡) is the state vector of i-th system. 
Theorem 3. The errors dynamics System (6), controlled by (46), using updating Rules (29-

34) is stable. Moreover, the synchronization errors assuming uncertainty and disturbance will 
converge to zero. 

Proof of Theorem 3. Defining the Lyapunov function as 
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𝑉 =  12 (𝑉௘ +  𝑉ఏ + 𝑉ఊ + 𝑉ௗ + 𝑉ఛ). (12) 

where 𝑉௘  =  ෍ 𝑒௜ିଵ் 𝑒௜ିଵ , 𝑉ఏ  =   ෍ 𝜃෨௜் 𝜃෨௜ே
௜ ୀ ଵ

ே
௜ ୀ ଶ . (13) 

𝑉ఊ  =  ෍ γ෤୧ଶ + γ෤ଵଶ, 𝑉ௗ  =  ෍ d෨୧ଶே
௜ ୀ ଵ , 𝑉ఛ  =  ෍ 𝜗௜τ෤୧ଶ   𝜗௜ > 0.ே

௜ ୀ ଵ
ே

௜ ୀ ଶ  
(14) 

In Equation (14), γ෤୧  =  γ௜ − γො୧, d෨୧  =  d௜ − d෠୧, τ෤୧  =  𝜏௜ − 𝜏̂௜  are the estimation errors. 
Computing the Lyapunov function derivative, 𝑉ሶ  =  ෍[𝑒௜ିଵ் ቆ𝐻௜(𝑥௜)𝜃෨௜  − 𝐻ଵ(𝑥ଵ)𝜃෨ଵ + ∆𝑓௜(𝑥௜)ே

௜ ୀ ଶ − ∆𝑓ଵ(𝑥ଵ) + 𝐷௜(𝑡) − 𝐷ଵ(𝑡)+ 12 ൫𝐾௜ିଵ + 𝐾௜ିଵ்൯𝑒௜ିଵ+ 𝐹௜(𝑥௜(𝑡 − 𝜏௜)) − 𝐹௜൫𝑥௜(𝑡 − 𝜏̂௜)൯− 𝐹ଵ(𝑥ଵ(𝑡 − 𝜏ଵ))+ 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯ + 𝑢ത௜ିଵ(𝑡)ቇ+ 𝜃෨௜் 𝜃෨ሶ௜ + γ෤୧𝛾෤ሶ௜ + d෨୧d෨ሶ ௜ + 𝜗௜τ෤୧τ෤ሶ ௜]+ 𝜃෨ଵ் 𝜃෨ሶଵ + γ෤ଵ𝛾෤ሶଵ + d෨ଵd෨ሶ ଵ + 𝜗ଵτ෤ଵτ෤ሶଵ. 

(15) 

The adapting rules of system parameters are determined as 𝜃෨ሶ௜  =  −൫ 𝐻௜(𝑥௜)்𝑒௜ିଵ + 𝜎௜𝜃෨௜ ൯.    𝜎௜ > 0   𝑖 =  2,3, ⋯ , 𝑁 
(16) 

𝜃෨ሶଵ  =  ෍ 𝐻ଵ(𝑥ଵ)்𝑒௜ିଵ−𝜎ଵ𝜃෨ଵ.ேିଵ
௜ ୀ ଶ     𝜎ଵ > 0. (17) 

If 𝜃௜𝑠 are constant, then their derivatives are zero (𝜃ሶ௜  =  0), and the update rules for 
the parameters estimation are computed as 𝜃෠ሶ௜   =    𝐻௜(𝑥௜)்𝑒௜ିଵ + 𝜎௜𝜃෨௜.     𝜎௜ > 0   𝑖  =   2,3, ⋯ , 𝑁 (18) 

𝜃෠ሶଵ   =   − ෍ 𝐻ଵ(𝑥ଵ)்𝑒௜ିଵ+𝜎ଵ𝜃෨ଵ.    ேିଵ
௜ୀଶ 𝜎ଵ > 0 (19) 

Plugging the updating rules (16-17) in Equation (15) yields 𝑉ሶ   =   ෍ [𝑒௜ିଵ் ቀ∆𝑓௜(𝑥௜) − ∆𝑓ଵ(𝑥ଵ) + 𝐷௜(𝑡) − 𝐷ଵ(𝑡) + 𝐾௜ିଵ𝑒௜ିଵே
௜  ୀ  ଶ + 𝐹௜(𝑥௜(𝑡 − 𝜏௜)) − 𝐹௜൫𝑥௜(𝑡 − 𝜏̂௜)൯ − 𝐹ଵ(𝑥ଵ(𝑡 − 𝜏ଵ))+ 𝐹ଵ൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯ + 𝑢ത௜ିଵ(𝑡)ቁ + γ෤୧γ෤ሶ ௜ + d෨୧d෨ሶ ௜ + 𝜗௜τ෤୧τ෤ሶ ௜] + γ෤ଵγ෤ሶ ଵ+ d෨ଵd෨ሶ ଵ + 𝜗ଵτ෤ଵτ෤ሶଵ − ෍ 𝜎௜𝜃෨௜் 𝜃෨௜ே

௜  ୀ  ଵ .  
(20) 

If  ∆𝑓௜ ௝, 𝐹௜ ௝, 𝐷௜ ௝, 𝑒௜ିଵ௝ , and 𝑢ത௜ିଵ௝ are the j-th component of vectors ∆𝑓௜, 𝐹௜, 𝐷௜, 𝑒௜ିଵ, and 𝑢ത௜ିଵ(𝑡), respectively, then 
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𝑉ሶ  =  ෍ ෍ 𝑒௜ିଵ௝ ൫∆𝑓௜ ௝ − ∆𝑓ଵ௝ + 𝐷௜ ௝ − 𝐷ଵ௝௡
௝ ୀ ଵ

ே
௜ ୀ ଶ + 𝐹௜௝(𝑥௜(𝑡 − 𝜏௜))− 𝐹௜௝൫𝑥௜(𝑡 − 𝜏̂௜)൯− 𝐹ଵ௝(𝑥ଵ(𝑡 − 𝜏ଵ))+ 𝐹ଵ௝൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯ + 𝑢ത௜ିଵ௝൯+ ෍ ቀγ෤୧γ෤ሶ ௜ + d෨୧d෨ሶ ௜ + 𝜗௜τ෤୧τ෤ሶ ௜ቁே

௜ ୀ ଶ+ ෍ 12 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே
௜ ୀ ଶ + γ෤ଵγ෤ሶ ଵ+ d෨ଵd෨ሶ ଵ + 𝜗ଵτ෤ଵτ෤ሶଵ− ෍ 𝜎௜𝜃෨௜் 𝜃෨௜ே
௜ ୀ ଵ .  

(21) 

Therefore, 𝑉ሶ ≤ ෍ ෍ ൣห𝑒௜ିଵ௝ ห൫ห∆𝑓௜ ௝ห + ห∆𝑓ଵ௝ห + ห𝐷௜ ௝ห௡
௝ ୀ ଵ

ே
௜ ୀ ଶ + ห𝐷ଵ௝ห+ ห𝐹௜௝൫𝑥௜(𝑡 − 𝜏௜)൯− 𝐹௜௝൫𝑥௜(𝑡 − 𝜏̂௜)൯ห+ ห𝐹ଵ௝൫𝑥ଵ(𝑡 − 𝜏̂ଵ)൯− 𝐹ଵ௝൫𝑥ଵ(𝑡 − 𝜏ଵ)൯ห൯+ 𝑒௜ିଵ௝ 𝑢ത௜ିଵ௝൧+ ෍ ቀγ෤୧γ෤ሶ ௜ + d෨୧d෨ሶ ௜ + 𝜗௜τ෤୧τ෤ሶ ௜ቁே

௜ ୀ ଶ+ ෍ 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே
௜ ୀ ଶ + γ෤ଵγ෤ሶଵ+ d෨ଵd෨ሶ ଵ + 𝜗ଵτ෤ଵτ෤ሶଵ− ෍ 𝜎௜𝜃෨௜் 𝜃෨௜ே
௜ ୀ ଵ .  

(22) 

In Equation (22), bounds of disturbance and uncertainty can be applied on compo-
nents Δ𝑓௜ and 𝐷௜(𝑡) as follows: ห∆𝑓௜ ௝ห ≤ 𝑚𝑎𝑥௝ ห∆𝑓௜ ௝ห ≤ |∆𝑓௜(𝑥௜)| ≤ 𝛾௜𝑔௜(𝑥௜). (23)

ห𝐷௜ ௝(𝑡)ห ≤ 𝑚𝑎𝑥௝ ห𝐷௜ ௝(𝑡)ห ≤ |𝐷௜(𝑡)| ≤ 𝑑௜. (24)

Since 𝐹௜(𝑥௜(𝑡 − 𝜏௜)) and 𝑥௜(𝑡 − 𝜏௜) are Lipschitz, their components are Lipschitz as 
well: ห𝐹௜௝൫𝑥௜(𝑡 − 𝜏௜)൯ − 𝐹௜௝൫𝑥௜(𝑡 − 𝜏̂௜)൯ห ≤ ℎ௜|𝑥௜(𝑡 − 𝜏௜) − 𝑥௜(𝑡 − 𝜏̂௜)|≤ ℎ௜𝛿௜|(𝑡 − 𝜏௜) − (𝑡 − 𝜏̂௜)| = ℎ௜𝛿௜|𝜏௜ − 𝜏̂௜|  =  ℎ௜𝛿௜|τ෤୧|  =  𝜗௜|τ෤୧|   (25) 𝜗௜ ≜ ℎ௜𝛿௜. 

Substituting the above equation in Equation (22) yields 
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𝑉ሶ ≤ ෍ ෍ ൣห𝑒௜ିଵ௝ ห(𝛾௜𝑔௜(𝑥௜) + 𝛾ଵ𝑔ଵ(𝑥ଵ) + d௜௡
௝ ୀ ଵ

ே
௜ ୀ ଶ + dଵ) + 𝜗௜|τ෤୧| + 𝜗ଵ|τ෤ଵ|)+ 𝑒௜ିଵ௝ 𝑢ത௜ିଵ௝൧+ ෍ ቀγ෤୧γ෤ሶ ௜ + d෨୧d෨ሶ ௜ + 𝜗௜τ෤୧τ෤ሶ ௜ቁே

௜ ୀ ଶ+ ෍ 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே
௜ ୀ ଶ + γ෤ଵγ෤ሶଵ

+ d෨ଵd෨ሶ ଵ + 𝜗ଵτ෤ଵτ෤ሶଵ − ෍ 𝜎௜𝜃෨௜் 𝜃෨௜ே
௜ ୀ ଵ . 

(26) 

Defining 𝑢ത௜ିଵ௝(𝑡) as 𝑢ത௜ିଵ௝(𝑡)  =  −(γො୧𝑔௜(𝑥௜) + γොଵ𝑔ଵ(𝑥ଵ) + d෠୧ + d෠ଵ) ∙ sgn൫𝑒௜ିଵ௝ ൯. (27) 
yields 𝑉ሶ ≤ ෍ ෍ ൣห𝑒௜ିଵ௝ ห൫γ෤୧𝑔௜(𝑥௜) + γ෤ଵ𝑔ଵ(𝑥ଵ) + d෨୧௡

௝ ୀ ଵ
ே

௜ ୀ ଶ + d෨ଵ + 𝜗௜|τ෤୧| + 𝜗ଵ|τ෤ଵ|൯൧+ ෍ ቀγ෤୧γ෤ሶ ௜ + d෨୧d෨ሶ ୧ + 𝜗௜τ෤୧τ෤ሶ ௜ே
௜ ୀ ଵ− 𝜎௜𝜃෨௜் 𝜃෨௜ቁ + ෍ 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே

௜ ୀ ଶ .
=  ෍ (ห𝑒௜ିଵ௝ หγ෤୧𝑔௜(𝑥௜) + γ෤୧γ෤ሶ ௜)௡

௝ ୀ ଵ+ ෍ (ห𝑒௜ିଵ௝ ห𝜗௜|τ෤୧| + 𝜗௜τ෤୧τ෤ሶ ௜)௡
௝ ୀ ଵ+ ෍ (ห𝑒௜ିଵ௝ หd෨୧ + d෨୧d෨ሶ ୧)௡
௝ ୀ ଵ + (γ෤ଵγ෤ሶ ଵ

+ ෍ ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ

ே
௜ ୀ ଵ γ෤ଵ𝑔ଵ(𝑥ଵ))

+ (d෨ଵd෨ሶ ଵ + ෍ ෍ ห𝑒௜ିଵ௝ หd෨ଵ௡
௝ ୀ ଵ

ே
௜ ୀ ଵ )+ (𝜗ଵτ෤ଵτ෤ሶଵ+ ෍ ෍ ห𝑒௜ିଵ௝ ห𝜗ଵ|τ෤ଵ|௡

௝ ୀ ଵ
ே

௜ ୀ ଵ )
− ෍ 𝜎௜𝜃෨௜் 𝜃෨௜ே

௜ ୀ ଵ+ ෍ 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே
௜ ୀ ଶ . 

(28) 

To determine the update rules, we determine the derivatives of the signals in (28) in 
such a way that 𝑉ሶ  is negative. To that end, the updating rules can be set as follows: 
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෍ (ห𝑒௜ିଵ௝ ห𝜗௜|τ෤୧| + 𝜗௜τ෤୧τ෤ሶ ௜)௡
௝ ୀ ଵ  =  −𝜔௜τ෤୧ଶ ⇒ τ෤ሶ ௜  =  − ෍ ห𝑒௜ିଵ௝ ห௡

௝ ୀ ଵ sgn(τ෤୧) − 𝜌௜τ෤୧. 𝜌௜  =  𝜔௜𝜗௜ .   (29) 

𝜗ଵτ෤ଵτ෤ሶଵ + ෍ ෍ ห𝑒௜ିଵ௝ ห𝜗ଵ|τ෤ଵ|௡
௝ ୀ ଵ

ே
௜ ୀ ଵ  =  −τ෤ଵଶ ⇒ τ෤ሶଵ  

=  − ෍ ෍ ห𝑒௜ିଵ௝ หsgn(τ෤ଵ)௡
௝ ୀ ଵ

ே
௜ ୀ ଵ − 𝜌ଵτ෤ଵ. 𝜌ଵ  =  𝜔ଵ𝜗ଵ . (30) 

෍ (ห𝑒௜ିଵ௝ หγ෤୧𝑔௜(𝑥௜) + γ෤୧γ෤ሶ ௜)௡
௝ ୀ ଵ  =  −𝛼௜γ෤୧ଶ  ⇒ γ෤ሶ ௜  

=  − ෍ ห𝑒௜ିଵ௝ ห𝑔௜(𝑥௜)௡
௝ ୀ ଵ − 𝛼௜γ෤୧. (31) 

γ෤ଵγ෤ሶ ଵ + ෍ ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ

ே
௜ ୀ ଵ γ෤ଵ𝑔ଵ(𝑥ଵ)  =  −𝛼ଵγ෤ଵଶ ⇒ γ෤ሶ ଵ  

=  −𝑔ଵ(𝑥ଵ) ෍ ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ

ே
௜ ୀ ଵ− 𝛼ଵγ෤ଵ.  

(32) 

෍ ቀห𝑒௜ିଵ௝ หd෨୧ + d෨୧d෨ሶ ୧ቁ  =  −𝛽௜d෨୧ଶ௡
௝ ୀ ଵ ⇒ d෨ሶ ௜  

=  − ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ − 𝛽௜d෨୧. (33) 

d෨ଵd෨ሶ ଵ + ෍ ෍ ห𝑒௜ିଵ௝ หd෨ଵ௡
௝ ୀ ଵ

ே
௜ ୀ ଵ  =  −𝛽ଵd෨ଵଶ ⇒ d෨ሶ ଵ  =  − ෍ ෍ ห𝑒௜ିଵ௝ ห௡

௝ ୀ ଵ
ே

௜ ୀ ଵ − 𝛽ଵd෨ଵ. 
 

(34) 

where 𝛼௜, 𝛽௜, and 𝜔௜ are positive values. Substituting the update rules (Equations 29-34) 
in Equation (28) yields 𝑉ሶ ≤ ෍ 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵே

௜ ୀ ଶ − ෍(ே
௜ ୀ ଵ 𝛼௜γ෤୧ଶ + 𝛽௜d෨୧ଶ + 𝜔௜τ෤୧ଶ + 𝜎௜𝜃෨௜் 𝜃෨௜). (35) 

Given that the matrixes 𝐾௜ିଵ are diagonal and have negative elements (Hurwitz). 
Therefore: 𝑒௜ିଵ் 𝐾௜ିଵ𝑒௜ିଵ < 0. 

Defined μ as 𝜇 =  𝑚𝑖𝑛௜.௝ (𝛼௜, 𝛽௜, 𝜎௜ , 𝜔௜, 𝑘௜ିଵ,௝) > 0 (36) 

Using (35) for the derivative of the Lyapunov function, the following inequality is 
established: 𝑉ሶ ≤ −𝜇𝑉 ⇒ 𝑉(𝑡) ≤ 𝑉(0)𝑒ିஜ୲ ⇒ 𝑉(𝑡) → 0 (37) 

As the values of the parameters 𝛼௜, 𝛽௜, 𝜎௜ , 𝜔௜, 𝑘௜ିଵ,௝ augment, the convergence speed 
of synchronization errors and estimation error signals to zero increases. 

Therefore, the system stability is proved. Additionally, the convergence of synchro-
nization errors to zero in the presence of time delay, uncertainty, and disturbance is guar-
anteed. The update rules for delays estimation, disturbance bounds, and uncertainty are 
as follows 
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τොపሶ  =  ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ sgn(τ෤୧) + 𝜌௜τ෤୧.  𝑖 =  2,3, … , 𝑁 (38) 

τොଵሶ =  ෍ ෍ ห𝑒௜ିଵ௝ หsgn(τ෤ଵ)௡
௝ ୀ ଵ

ே
௜ ୀ ଵ + 𝜌ଵτ෤ଵ.        (39) 

γොపሶ  =  𝑔௜(𝑥௜) ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ + 𝛼௜γ෤୧.  𝑖 =  2,3, … , 𝑁 (40) 

γොనሶ  =  𝑔ଵ(𝑥ଵ) ෍ ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ

ே
௜ ୀ ଵ + 𝛼ଵγ෤ଵ.        (41) 

d෠నሶ  =  ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ +𝛽௜d෨୧.  𝑖 =  2,3, … , 𝑁    (42) 

d෠ଵሶ  =   ෍ ෍ ห𝑒௜ିଵ௝ ห௡
௝ ୀ ଵ

ே
௜ ୀ ଵ + 𝛽ଵd෨ଵ.           (43) 

Theorem 4. If 𝜏௜(𝑡) are constant values, then 𝜏̃௜(𝑡) → 0. In other words, the delays are iden-
tified accurately. 

Proof of Theorem 4. Based on Equations (29-30), τ෤୧τ෤ሶ ୧ < −𝜔௜τ෤୧ଶ 𝑖 = 1,2,3, ⋯ , 𝑁, as 𝑡 
approaches infinity (𝑡 → ∞),τ෤୧(𝑡) approaches zero (τ෤୧(𝑡) → 0). Therefore, estimation 𝜏̂௜(𝑡) 
approaches the true value. 

Theorem 5. If the delays change in a step-wise manner and the steps are large enough, the 
update Rules (17) and (19) hold. 

Proof of Theorem 4. Similar to Theorem 4 with the exception that t → ∞ condition 
is replaced with condition “the step changes are large enough”. 

Note 1: If the delays vary with time and |𝜏పሶ (𝑡)| ≤ 𝑠௜ holds with 𝑠௜ < 1, then the up-
date rules in (38-39) are valid with reasonable approximation. 

Considering that 𝜏̃୧(𝑡)  =  𝜏௜(𝑡) − 𝜏̂௜(𝑡), τොሶ ୧  =  𝜏పሶ (𝑡) − 𝜏̃ሶ௜ ≈ −𝜏̃ሶ௜ , the update rules (38-
39) are valid with reasonable approximation. Moreover, under such conditions, update 
Rule (29-30) is exactly valid. 

Note 2: If the systems vary with time, i.e., 𝜃௜ = 𝜃௜(t), Equations (16) and (17) hold, 
which allow us to apply Theorem (3) based on which Lyapunov Function (12) can be used, 
and its derivative satisfies Condition (35) as well. Hence, the Lyapunov function ap-
proaches zero: 𝑉 → 0 ⇒ 𝑉ఏ =  ෍ 𝜃෨௜் 𝜃෨௜ே

௜ୀଵ → 0 ⇒ ห𝜃෨௜ห → 0 (44) 

Therefore, if 𝜃௜(t) is a vector function with step changes and appropriate temporal 
distance between the changes, the update Rules (16) and (17) hold and parameter are es-
timated accurately. Let ห𝜃పሶ (𝑡)ห < 𝑞௜  <  1, then update Rules (18) and (19) are valid with 
reasonable accuracy. 

Note 3: To guarantee the continuity of the control function, the following equation 
can be used: 𝑢ത௜ିଵ௝(𝑡)  =  −(γො୧𝑔௜(𝑥௜) + γොଵ𝑔ଵ(𝑥ଵ) + d෠୧ + d෠ଵ) ∙ tanh (𝜆𝑒௜ିଵ௝ )).      𝜆 ≥ 10 (45) 

Note 4: If the uncertainties are in their typical form, i.e.,  |∆𝑓௜(𝑥௜)| ≤ 𝛾௜|𝑥௜| 𝑖 = 1.2. … . 𝑁.., it suffices to set 𝑔௜(𝑥௜)  =  |𝑥௜| in the update equations and the control rule. 
Note 5: The final control function is as below: 𝑢௜ିଵ(t)  =  −𝑓௜(𝑥௜) + 𝑓ଵ(𝑥ଵ) − 𝐻௜(𝑥௜)𝜃෠௜(𝑡) + 𝐻ଵ(𝑥ଵ)𝜃෠ଵ(𝑡) + 𝐾௜ିଵ𝑒௜ିଵ(t) − (γො୧𝑔௜(𝑥௜)+ γොଵ𝑔ଵ(𝑥ଵ) + d෠୧ + d෠ଵ) ∙ tanh(𝜆𝑒௜ିଵ(𝑡)).      𝜆 ≥ 10 (46) 
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3. Application in Secure Communication Based on Chaotic Masking 
In chaotic masking, an information signal is added to the linear combination of base 

state signals. Given that Q(t) is the primary signal carried by the master system and W(t) 
is the transfer message given by [38,39]: 𝑊(𝑡)  =  𝑄(𝑡) + ෍ 𝜂௜𝑧௜(𝑡).୬

௜ ୀ ଵ  (47) 

where 𝑧௜(𝑡) is the i-th component of the master system, and W(t) is masked using the 
chaotic signal. This signal is transmitted via the communication channel from sender to 
the receiver. Using the proposed controller, the multi-state chaotic synchronization is per-
formed in one of its states. The received signal can be recovered using the following equa-
tion [40]: 𝑃(𝑡)  =  𝑊(𝑡) − ෍ 𝜂௜𝑦௜(𝑡).୬

௜ ୀ ଵ  (48) 

where 𝑦௜(𝑡) is the i-th component of the slave system. Considering the synchronization 
concept, the following equation is obtained [40]: 

𝑃(𝑡)  =  𝑄(𝑡) + ෍ 𝜂௜𝑧௜(𝑡)୬
௜ ୀ ଵ − ෍ 𝜂௜𝑦௜(𝑡)୬

௜ ୀ ଵ  =  𝑄(𝑡) + ෍ 𝜂௜(𝑧௜(𝑡)୬
௜ ୀ ଵ − 𝑦௜(𝑡))  

=  𝑄(𝑡) + ෍ 𝜂௜𝑒௜(𝑡)୬
௜ ୀ ଵ → 𝑄(𝑡) 

(49) 

Figure 2 shows the block diagram of chaotic masking using multi-state synchroniza-
tion. Since we have one master and two slave systems, two independent messages are sent 
to the master which are encrypted, then the master is synchronized with two slaves. After 
the synchronization with the receiver side, the signals are decrypted and the original mes-
sages are recovered. 

 
Figure 2. Block diagram of chaotic masking using multi-state synchronization. 

Using chaotic masking, we demonstrated the encryption and decryption of two si-
nusoidal signals using our proposed multi-state synchronization approach. The simula-
tion is carried out with Matlab software. The encryption and decryption are applied when 
the chaotic signals are synchronized. To evaluate this, two sinusoidal signals are added to 
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the master system signals. Next, the master system is synchronized with two slave sys-
tems. Finally, based on the synchronization error, the signal is decrypted and recovered 
at the receiver side. 

4. Simulation and Results 
We used one Chua chaotic system and two Rössler time-delayed chaotic systems as 

master and slaves, respectively. These systems are defined as follows: 

⎩⎪⎨
⎪⎧ 𝑥ሶଵଵ = 𝜃ଵଵ൫𝑥ଵଶ − 𝑥ଵଵ − 𝑓(𝑥ଵଵ)൯.                 𝑥ሶଵଶ = 𝑥ଵଵ(𝑡 − 𝜏ଵ) − 𝑥ଵଶ + 𝑥ଵଷ.                  𝑥ሶଵଷ = −𝜃ଵଶ𝑥ଵଶ.                               𝑓(𝑥ଵଵ) = 𝑎𝑥ଵଵ + 0.5(𝑎 − 𝑏)(|𝑥ଵଵ + 1| − |𝑥ଵଵ − 1|).       (50) 

ቐ 𝑥ሶଶଵ = −𝑥ଶଶ − 𝑥ଶଷ + 𝑢ଵଵ.           𝑥ሶଶଶ = 𝑥ଶଵ(𝑡 − 𝜏ଶ) + 𝜃ଶଵ𝑥ଶଶ + 𝑢ଵଶ.   𝑥ሶଶଷ = 𝜃ଶଶ𝑥ଶଵ − 𝜃ଶଷ𝑥ଶଷ + 𝑥ଶଵ𝑥ଶଷ + 𝑢ଵଷ       (51) 

ቐ 𝑥ሶଷଵ = −𝑥ଷଶ − 𝑥ଷଷ + 𝑢ଶଵ.            𝑥ሶଷଶ = 𝑥ଷଵ(𝑡 − 𝜏ଷ) + 𝜃ଷଵ𝑥ଷଶ + 𝑢ଶଶ.    𝑥ሶଷଷ = 𝜃ଷଶ𝑥ଵଵ − 𝜃ଷଷ𝑥ଷଷ + 𝑥ଷଵ𝑥ଷଷ + 𝑢ଶଷ.       (52) 

where 𝜃௜,௝, 𝑏, 𝑎 are system parameters. The values of the parameters are set as      𝑎 = − ଺ଵସସ , 𝑏 =  ଷସ , 𝜃ଵଵ  =  10, 𝜃ଵଶ  =  18, 𝜃ଶଵ  =  𝜃ଷଵ  =  0.34, 𝜃ଶଶ  =  𝜃ଷଶ  =  0.4, 𝜃ଶଷ  =  𝜃ଷଷ  = 4.5 . 𝜏ଵ(𝑡) = ቐ 1      0 ≤ 𝑡 ≤ 2             0.3     2 < 𝑡 ≤ 4             1       𝑡 > 4                       (53) 

𝜏ଶ(𝑡) = ቐ 2      0 ≤ 𝑡 ≤ 3               5     3 < 𝑡 ≤ 6.5              3       𝑡 > 6.5                       (54) 

          𝜏ଷ(𝑡) = ൞ 3                0 ≤ 𝑡 ≤ 2.5             5 + 0.4sin (2𝜋𝑡)  2.5 < 𝑡 ≤ 5.5             10 + 0.6sin (𝜋𝑡2 )     𝑡 > 5.5                       (55) 

The initial values of the parameters are set as below: 𝜃෠ଵ(0)  =  ቎10101010቏ 𝜃෠ଶ(0)  =  ቎2222቏ 𝜃෠ଷ(0)  =  ቎3333቏ 𝜎௜  =  10 . 𝑖 =  1.2.3.4.5 (56) 

Under such circumstances, the parameters have step changes. In addition, the dis-
turbance and uncertainties influencing the master and slave systems are expressed as ∆𝑓1  =  ቎ 0.2𝑥11 sin(𝑥11 + 𝑥13)0.01𝑥13 sin(𝑥11 + 𝑥13)0.02(𝑥11 + 𝑥12) cos(𝑥11 − 𝑥13)቏     

 

(57) 

∆𝑓2   =   ቎ 0.5 sin(𝑥21 − 𝑥22)0.2𝑥24 cos(𝑥21 − 3𝑥22)0.5 cos(𝑥21 + 2𝑥23) ቏ (58) 

∆𝑓3  =  ൥0.3𝑥32𝑐𝑜𝑠 (𝑥31 + 𝑥32)0.5𝑠𝑖𝑛 (𝑥31 − 𝑥32)0.4𝑥32𝑠𝑖𝑛 (𝑥31 + 𝑥33)൩ (59) 
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ห∆𝑓௜ ௝ห ≤  𝑚𝑎𝑥௝ ห∆𝑓௜ ௝ห ≤ |∆𝑓௜(𝑥௜)| ≤ 𝛾௜|𝑥௜| (60) 

𝐷ଵ  =  ⎣⎢⎢⎢
⎢⎡ 0.2𝑠𝑖𝑛 (𝜋3 𝑡)0.1𝑠𝑖𝑛 ( 𝜋10 𝑡)0.25𝑠𝑖𝑛 (𝜋4 𝑡)⎦⎥⎥⎥

⎥⎤ . 𝐷ଶ  =  ⎣⎢⎢⎢
⎢⎡ 0.25𝑠𝑖𝑛 (𝜋2 𝑡)0.15𝑠𝑖𝑛 ( 𝜋20 𝑡)0.20𝑠𝑖𝑛 ( 𝜋10 𝑡)⎦⎥⎥⎥

⎥⎤ . 𝐷ଷ  =  ⎣⎢⎢
⎢⎢⎡ 0.3𝑠𝑖𝑛 ( 𝜋30 𝑡)0.2𝑠𝑖𝑛 ( 𝜋20 𝑡)0.15𝑠𝑖𝑛 ( 𝜋10 𝑡)⎦⎥⎥

⎥⎥⎤ (61) 

The controller’s parameters are chosen as 𝛼௜  =  1, 𝛽௜  =  20, 𝑖 =  1,2,3 𝐾ଵ  =  𝐾ଶ  =  𝑑𝑖𝑎𝑔(−20, −20, −20) (62) 

In Figure 3, the synchronization errors and control efforts are illustrated. As can be 
seen, despite the parameter uncertainties and time-variable delays, the error signals were 
reduced to zero quickly. During large parameter changes, the error increased slightly but 
turned back to zero quickly. Hence, the proposed controller was robust against parameter 
uncertainties, external disturbance, and variable delays. Moreover, the control function 
was continuous and smooth, which was helpful in the implementation of the proposed 
method. 

It can be noted from Figure 4 that the estimated parameters of Chua and Rössler sys-
tems have converged to their real values. It is evident from this figure that, despite being 
variable with time, the delays have also converged to their real values quickly. During the 
instances when delays exhibited step changes, the system parameters deviated from their 
real values, but they were corrected in short duration. Since Lipschitz conditions 
are 𝐹௜(𝑥௜(𝑡 − 𝜏௜)) functions, the parameter changes do not affect the delays significantly. 
On the other hand, Chua is a non-smooth system, which causes more complication in the 
control as well as synchronization problems. 

 
Figure 3. Plots of synchronization errors and control efforts. 
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Figure 4. Plots of parameters and delays estimations versus time. 

In Figure 5, the plots of estimation error of unknown uncertainties bounds γ෤୧, 𝑖 =1,2,3 and unknown disturbances bounds d෨୧, 𝑖 = 1,2,3 are shown. 

  
Figure 5. Estimation error of disturbance bounds (left). Estimation error of uncertainties bounds versus time (right). 

It can be seen in Figure 5 that the estimation error of unknown parameter bounds 
and uncertainties bounds have approached zero quickly. In the tenth second, little error 
is observed, which is compensated in a short amount of time. Figures 6–8 shows the phase 
curves of the slave system and indicates the chaotic behavior of the system. In spite of 
various changes, the behavior of the system is still chaotic. 
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Figure 6. Sample phase curves of the Master system. 

Phase curves of the master system: Chua time-delayed chaotic system (𝑥ଵଵ −𝑥ଵଷ, 𝑥ଵଵ − 𝑥ଵଶ, 𝑥ଵଶ − 𝑥ଵଷ)  indicating the chaotic behavior for the provided parameters. 

   

Figure 7. Sample phase curves of the first slave system. 

The phase curve of the first slave system: Rössler time-delayed chaotic systems 
(𝑥ଶଵ − 𝑥𝑥ଶଶ − 𝑥ଶଷ, 𝑥ଶଵ − 𝑥ଶଷଶଶ) which shows the chaotic behavior for the given parameters. 

   

Figure 8. Sample phase curves of the second slave system. 

The phase curve of the second slave system: Rössler time-delayed chaotic systems   
 (𝑥ଷଵ − 𝑥ଷଷ, 𝑥ଷଶ − 𝑥ଷଷ, 𝑥ଷଵ − 𝑥ଷଶ) representing the chaotic behavior for the given parame-
ters. 

5. Discussion 
The presented results reveal good performance of the proposed method in estimating 

parameters, delays, as well as disturbance bounds and uncertainties. This in turn leads to 
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an acceptable performance of the overall system in synchronization and convergence of 
errors to zero. 

In the rest of the paper, the proposed method was evaluated in secure communica-
tion using chaotic masking. To evaluate this, five sinusoid signals were added as messages 
to the master system’s signal, independently. The decryption and recovering of each mes-
sage was done by synchronization of the master system with two slave systems. The mes-
sage signals added to the master system are given below: 

 𝑆ଵ(𝑡)  =  sin(0.7𝑡) + 2 cos(5𝑡) + 4 sin(𝜋𝑡) 𝑆ଶ(𝑡)  =  sin(0.8𝑡) + 2 cos(8𝑡) + 5 sin(𝜋𝑡) 𝑆ଷ(𝑡)  =  2 sin(0.85𝑡) + 5 cos(5.1𝑡) + 6 sin(𝜋𝑡) 𝑆ସ(𝑡)  =  2.5 sin(0.85𝑡) + 3.2 cos(5.16𝑡) + 5.5 sin(𝜋𝑡) 𝑆ହ(𝑡)  =  2.5 sin(0.85𝑡) + 3.2 cos(5.16𝑡) + 4.5 sin(𝜋𝑡) 
 

(63) 

After the synchronization, the recovered signals were obtained. In Figures 9–13, the 
original and recovered message signals obtained using multi-state synchronization and 
chaotic masking are shown. 

 
Figure 9. Plot of original signal (Sଵ) and recovered signal (Rଵ) obtained using multi-state syn-
chronization and chaotic masking. 

Figure 9 shows the recovered signal (R1) followed the original signal (S1) very well. 
Due to sudden changes in delays and parameters, there was a pick at 10 s, which was dealt 
with, and after that the recovered signal faithfully followed the original signal again. 

 
Figure 10. Plot of original signal (Sଶ) and recovered signal (Rଶ) obtained using multi-state syn-
chronization and chaotic masking. 
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Figure 11. Plot of original signal (Sଷ) and recovered signal (Rଷ) obtained using multi-state syn-
chronization and chaotic masking. 

 
Figure 12. Plot of original signal (Sସ) and recovered signal (Rସ) obtained using multi-state syn-
chronization and chaotic masking. 

 
Figure 13. Plot of original signal (Sହ) and recovered signal (Rହ) obtained using multi-state syn-
chronization and chaotic masking. 

Figures 10–13 show that the original signal given to the master and received by the 
slave has been recovered faithfully using our proposed multi-state synchronization 
method. The advantages of the proposed method are as follows: 
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Guaranteed closed loop stability in the presence of disturbance, uncertainty, parameter 
changes, and delays. 
1. Accurate estimation of variable time delays and parameters. 
2. Specifying the control laws as continuous time functions. 
3. Capable of dealing with disturbance and uncertainties with unknown boundaries. 
4. Faithful recovery of message signal in secure communication. 

The disadvantages of our method are given below: 
1. Involves relatively large magnitude of control signal in a few cases (control functions 𝒖𝟏𝟑, 𝒖𝟐𝟑). 
2. Changes occur solely in a step-like manner; hence, there is a large distance between 

parameter changes. 
In the future, we intend to extend this work by multi-state synchronization with min-

imization of sum of control efforts and synchronization of chaotic systems with variable 
parameters. Secure communication can be employed in medical applications as well [41]. 
Medical data stored in hospitals contain significant information about the patients. In fu-
ture work, the proposed method for secure communication can be used for medical ap-
plications [42–47]. Synchronization of chaotic systems is also used in some other applica-
tions such as electromagnetism [48] and mechanics [49,50]. As a future work, the chaotic 
synchronization method of this paper can be developed and implemented for electromag-
netic and mechanical applications. 

In this paper, we have proposed that, using our multi-state synchronization and cha-
otic masking method, secure communication can be achieved. In secure communication, 
encoding (masking) and accurately recovering the message signal is very important. The 
most important feature in secure communication is the security of the method and com-
plexity of the algorithm, which makes decoding practically impossible or very difficult. In 
this regard, important points of the proposed method are given below: 
(1) Presence of delay and variable parameters in master and slave systems. 
(2) Ability to switch to different slave systems. 
(3) Presence of undesirable and unwanted factors such as disturbances and uncertainty. 

Therefore, our proposed method helps to ensure secure communication. Accurate 
retrieval of message signal was another prominent feature of this method. It can be noted 
from our examples that our proposed method is able to recover the message signal faith-
fully at the receiver. Hence, our proposed approach has two important properties: the 
ability to mask the data and to recover the message accurately, which can be used in secure 
communications. 

6. Conclusions 
In this paper, multi-state synchronization of two time-delayed chaotic systems with 

unknown parameters and delays in the presence of unknown parameters and external 
disturbance was investigated. The disturbance and uncertainties have unknown bounds, 
and the master system was non-smooth. To estimate the parameters and time delays, the 
Lyapunov method was used.  This way, convergence of various types of defined errors 
were guaranteed, and the adaptive rules for estimation of parameters and time delays 
were determined. Moreover, the update of rules for the bounds of unknown parameters 
and external disturbance were established. To evaluate the proposed method, the simula-
tions were carried out in a multi-state synchronization setting with time variable delays 
and parameters. Our results revealed that the proposed controller was good at reducing 
the synchronization errors to zero with little oscillations. In addition, despite changes such 
as step and sinusoid, the time delays have been identified and estimated well. Moreover, 
the errors related to the bounds of unknown parameters and external disturbance con-
verged to zero quickly. The experimental results revealed the capability and flexibility of 
the proposed method in synchronization of chaotic systems, parameters, and time delay 
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identification in the presence of uncertainty and disturbance. Finally, the capability of the 
proposed method to recover the message signals in secure communication applications 
was presented. Due to time variability of the system, the chaotic behavior was more com-
plex, which leads to better protection in secure communication. 
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