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Abstract. Modelling the evolution of the Earth system on
long timescales requires the knowledge and understand-
ing of driving mechanisms, such as the hydrological cycle.
This is dominant in all components of the Earth’s system,
such as atmosphere, ocean, land surfaces/vegetation and the
cryosphere. Observations and measurements of stable wa-
ter isotopes in climate archives can help to decipher and re-
construct climate change and its regional variations. For the
cryosphere, theδ18O cycle in the current generation of Earth
system models is missing and an efficient and accurate tracer
transport scheme is required. We describe ISOPOLIS 1.0, a
modular semi-Lagrangian transport scheme of second-order
accuracy, which is coupled to the polythermal and thermome-
chanical ice sheet model SICOPOLIS (version 2.9). Model
skill is demonstrated by experiments with a simplified ice
sheet geometry and by comparisons of simulated ice cores
with data from Greenland (GRIP) and Antarctica (Vostok).
The presented method is a valuable tool to investigate the
transport of any kind of passive tracer inside the cold ice part
of a polythermal ice sheet and is an important step to model
the wholeδ18O cycle.

1 Introduction

Oxygen isotopes are an important proxy for the reconstruc-
tion of temperatures of the past. Air temperature is related to
stable isotopic composition of precipitation as indicated by
observations (e.g.Dansgaard, 1964; Gat, 1996; Jouzel et al.,
1997; Gornitz, 2009). When assuming this relationship re-
mains the same in the past, it is possible to reconstruct past

temperatures from ice or sediment cores. To model the whole
isotopic cycle in an Earth system model (ESM), components
for the atmosphere, ocean and cryosphere are required. The
biggest components of today’s cryosphere are the two huge
ice sheets of Greenland and Antarctica which together con-
tain about 99 % of the Earth’s ice volume and about 80 %
of global fresh water. Therein and in smaller glaciers ice ap-
pears in two different states; as “cold” ice with temperatures
below the pressure-melting point and “temperate” or “warm”
ice where temperatures are at the pressure melting point. Ice
masses neither pure “cold” or “temperate” are called poly-
thermal ice. Temperate ice may have liquid water in it and,
therefore, may be considered as at least a two-component
fluid. In ice sheets this temperate ice may exit as a thin layer
near the base. Although it is much less in volume than cold
ice, temperate ice has significant consequences on the ice dy-
namics (Lliboutry and Duval, 1985) and therefore on isotope
and tracer transport in general.

Models for oxygen isotopes in the atmosphere, ocean and
land-biosphere have existed for some time (e.g.Jouzel et al.,
1987; Hoffmann et al., 1998; Sturm et al., 2010) but the
cryospheric part was first successfully modelled byClarke
and Marshall(2002) for Greenland. Until then, thermome-
chanical ice sheet models were mainly unsuccessful or had
large limitations in their dimension, spatial extent, temporal
coverage or steady-state assumptions. Problems were mainly
associated with the Eulerian scheme which is commonly
used to solve for advection processes in numerical ice sheet
models. The main problems are discontinuities of the ad-
vected property which is usually tackled by an artificial diffu-
sion term. This leads to an inaccurate solution near the base,
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and reliable solutions for tracer dispersion are only optioned
for the upper half of the ice sheet (Rybak and Huybrechts,
2003).

Clarke and Marshall(2002) and the follow-up papers
(Clarke et al., 2005; Lhomme et al., 2005a, b), therefore, use
a semi-Lagrangian scheme to track passive tracers.Tarasov
and Peltier(2003) also uses a semi-Lagrangian scheme to
model the transport ofδ18O directly whileClarke and Mar-
shall derived theδ18O value indirectly via ice age and ice
provenance. In a semi-Lagrangian scheme a regular grid is
used and particles are usually tracked back to its origin from
one time step before. This backtracking is of importance for
the overall performance and accuracy. A review byStaniforth
and Côté(1991) recommends at least second-order accuracy
for the backtracking scheme.Clarke and Marshall(2002),
Clarke et al.(2005) andLhomme et al.(2005a, b) use a first-
order backtracking scheme in their ice sheet model, consid-
ering cold ice only.

In this study we are using the second-order backtracking
scheme ofde Almeida et al.(2009) together with a poly-
thermal ice sheet model to simulate theδ18O distribution in
ice sheets. The whole model consists of three components:
a polythermal ice sheet model, a semi-Lagrangian transport
module and a post-processing tool which are described in
detail in Sect. 2. As polythermal ice sheet model we use
SICOPOLIS (Version 2.9.) which is based onGreve(1997a,
b). SICOTRACE and SICOSTRAT are two new components
designed for semi-Lagrangian transport and the reconstruc-
tion of the stratigraphy. While SICOTRACE calculates the
transport variables, SICOSTRAT can be used to generate
cross sections along grid points and ice cores at arbitrary lo-
cations with information such asδ18O concentration, place
of origin and age of the ice. The performance of the model
is demonstrated with a simplified geometry of the EISMINT
(Payne et al., 2000) inter-comparison project and later ap-
plied to Greenland and Antarctica (Sect. 3). A summary of
the paper and general conclusions are given in Sect. 4.

2 Model description

The diffusion ofδ18O over multi-annual periods is consid-
ered to be negligible in cold ice (e.g.Jean-Baptiste et al.,
1998). Therefore, it can be considered as a passive tracer in
cold ice which is not altered chemically or physically on its
way through the ice sheet and does not influence the flow.

When ice crosses the cold–temperate surface (CTS) and
enters the temperate regime the passive trace assumption is
no longer true since diffusion is possible in the liquid water
which my be present there. Therefore it would be possible to
introduce a marker which indicates whether the ice crossed
the CTS at some time in its flow history. This would possibly
aid ice core interpretation but will not be implemented at this
stage in the model.

The advection of such a passive tracer in Eulerian descrip-
tion is

∂9

∂t
+ v · ∇9 = 0, (1)

where the transported property9 itself and its gradient
must be given. This is not the case when discontinuities
are present, e.g. when two ice-flow branches are merging
or when the surface mass balance or conditions near the
bedrock are changing (Clarke et al., 2005).

In contrast, a Lagrangian description is not influenced by
such discontinuities as individual particles are tracked, al-
though the Lagrangian description encounters other prob-
lems such as error accumulation along the trajectory be-
cause of the required velocity interpolation (Rybak and Huy-
brechts, 2003). Due to the divergence of ice flow there are
areas with very low particle density which lead to very low
information density at the same time. This necessitates hav-
ing a large number of modelled particles whereby new ones
are constantly introduced at the ice surface and old ones are
removed at the ice sheet’s base (Lhomme, 2004). These and
other practicalities linked to the irregular grid render La-
grangian schemes unsuitable in ice sheet modelling.

To overcome the drawbacks of the Eulerian and La-
grangian scheme, the semi-Lagrangian scheme tries to com-
bine the best of both, namely the regular grid of the Eulerian
and the better stability of the Lagrangian scheme.

2.1 Temperature reconstruction with water isotopes

Today’sδ18O ratio in snow at any given location is controlled
by the local temperature, the amount of precipitation, the dis-
tance from the coast and the altitude (e.g.Gornitz, 2009).
Analyses indicate a strong correlation betweenδ18O and sur-
face temperature, especially for temperatures below 20◦C in
mid-to-high latitudes and with the amount of precipitation at
low latitudes.

The measured correlation betweenδ18O and temperature
in polar regions is strongest for annual means (e.g.Gornitz,
2009). Observational data indicate that the relationship of
temperature andδ18O are not spatially uniform and that it
can be described as a linear function of the surface tempera-
tureTs (Eq.2) or a function of the presentδ18O value, local
surface elevation1S and of temperature change1T over the
ice sheet (Cuffey, 2000) (Eq.3):

δ18O(x,y, t) = f (Ts(t,x,y)) (2)

δ18O(x,y, t) = f (δ18O(x,y),1T ,1S). (3)

2.2 General framework

Clarke and Marshall(2002) formulate an indirect approach
by transporting so-called “depositional provenance labels”
t,x,y and by maintaining a “depositional archive” with in-
formation about surface temperatures, ice topography and
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Figure 1. Flow chart of the three programs included in ISOPOLIS: SICOPOLIS – the polythermal ice sheet model. SICOTRACE the tracing
program which uses the output from SICOPOLIS and calculates the semi-Lagrangian tracer transport method. SICOSTRAT is the plotting
routine for the construct of the stratigraphy.

mass balance (see Fig.1). Hence, it is possible to reconstruct
theδ18O value with a transfer function in the form of Eqs. (2)
or (3) and get the additional benefits of information of age
and transport.

If the history of the surface temperature is stored and the
time and place of origin is known, theδ18O can be calculated
by inverting Eqs. (2) or (3). The history of the surface tem-
perature is a climate variable which can either be an external
input from an atmospheric model or prescribed as is the case
here.

The other information of the origin (x,y) and time (t) of
deposition is transported with the ice flow and is not altered
on its way, i.e. it is a passive tracer. In order to calculate a pas-
sive tracer, the velocity field needs to be known, which is
calculated by the ice sheet model SICOPOLIS in our study.

Tarasov and Peltier(2003) modelledδ18O directly and use
a very high vertical resolution of up to 4096 layers on a sub-
grid near ice core locations. Their approach is not feasible

for our purpose because we need to know theδ18O value in
the whole ice sheet in order to close the hydrological cycle
in the ESM framework.

The new transport model consists of three separate mod-
ules: SICOPOLIS which is the polythermal ice sheet model,
SICOTRACE which is the tracer transport model and
SICOSTRAT which reconstructs the stratigraphy. Figure1
illustrates the framework with in- and outputs of each com-
ponent.

2.3 Polythermal ice sheet model SICOPOLIS

SICOPOLIS (Greve, 1997a) is a three-dimensional polyther-
mal ice sheet model and is based on the shallow ice approx-
imation. The model has been applied previously for Green-
land, Antarctica, the polar ice caps of Mars and the entire
Northern Hemisphere. As input it uses the surface mass bal-
ance, mean air temperature, eustatic sea level and geothermal
heat flux (e.g.Greve, 1997b). As output, temperature, water
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Figure 2. Terrain-following sigma transformation in the polythermal ice sheet. If temperate ice is present it is always below the cold ice.
Hence, there are two separate sigma-transformed regular grids above each other, and they share their horizontal coordinatex → ξ andy → η

(not shown here). The grid spacing1ζc and1ζt for cold and temperate are usually different and also the sigma-transformation is different
for both domains (seeGreve, 1997a). CTS denotes the cold–temperate surface.

content in temperate regions, ice extent and thickness, ice
velocities, isostatic displacement and the temperature of the
lithosphere are calculated. In this study, the velocities in the
cold icevc and temperate icevt, and the respective thickness
Hc andHt are of major importance. The two domains are
separated by the CTS atz = zm (see Fig.2). As an input for
the transport component SICOTRACE the three-dimensional
velocity field in the cold and temperate region as well as the
ice extent and thickness is stored for every time step (Fig.1)
in a netCDF file (Rew and Davis, 1990).

2.3.1 The numerical grid

SICOPOLIS uses three grids with different sigma-
transformations on top of each other (see Fig.2). A grid
for the lithosphere is overlaid by a grid for temperate ice
below cold ice. In general, values in the cold ice domain are
denoted with subscript c and in the temperate region with
subscript t.

For cold ice theσ -transformation is

x = ξc (4a)

y = ηc (4b)

z =
Hc(e

aζc − 1) + zm(ea
− 1)

(ea − 1)
:= σc (4c)

t = τc, (4d)

wherea is a stretching parameter which is 5 herein (Greve,
1997a).

The transformation in temperate ice with bedrock eleva-
tion b (see Fig.2) is

x = ξt (5a)

y = ηt (5b)

z = ζt + bHt := σt (5c)

t = τt. (5d)

With this sigma transformation the depositional prove-
nance labels areξd,ηd,τd.

The two domains for cold and temperate ice use an
Arakawa C-Grid (Arakawa, 1997) with the velocity compo-
nents at intersections between grid point centres. In this grid
the velocity components in cold and temperate ice, beside
gradients, are placed in between grid points. All the other
values, like temperature or water content for example are de-
fined on the grid centre, itself.

The two different grids in the polythermal ice sheet model
and the fact that the ice extent and the thicknesses of cold and
temperate ice changes with time makes the semi-Lagrangian
transport more difficult for glacier models than for atmo-
spheric or ocean models. This will be discussed in more de-
tail in the next section.

2.4 Semi-Lagrangian transport module SICOTRACE

SICOTRACE stands for SImulation COde of TRACErs and
is a separate program which reads SICOPOLIS outputs and
calculates the transport of the three provenance variables.
In this section the semi-Lagrangian transport with backward
trajectories is described as well as the problems and remedies
associated with the specifics of ice sheet models, especially
for polythermal ice.

2.4.1 Semi-Lagrangian scheme

The basic idea of a semi-Lagrangian scheme is illustrated in
Fig. 3. A transported property9 is constant over time and is
not changing along its trajectory:

d9

dt
= 0. (6)

If the place of origin at timet − 1t is known, then the
value of9(t) at the current time step is also known. A stan-
dard semi-Lagrangian scheme uses a regular spaced grid, and
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Figure 3. Basic principle of the semi-Lagrangian method explained
in the cold ice grid. If the value of9(t − 1t) at the departure point
(open circle) is known, the value9(t) at the desired grid point
(i,j,kc) can be calculated, wherei andj are the indices of the hori-
zontal grid andkc the one for the vertical sigma coordinates in cold
ice.

for each grid point the back trajectory is calculated to get the
position of the particle at one time step before. This position
is usually not on the grid. Therefore, an interpolation is re-
quired to get the value9(t−1t) for which we used a trilinear
interpolation (Press et al., 1996).

In order to reach high accuracy, a review of semi-
Lagrangian schemes for atmospheric models byStaniforth
and Côté(1991) recommends the use of a backtracking
method with at least second-order accuracy. However, in the
original work byClarke and Marshall(2002) and subsequent
papers (Clarke et al., 2005; Lhomme et al., 2005a) a first-
order approximation was used. Much research has been done
in developing accurate, cheap and robust backtracking meth-
ods, (e.g.McGregor, 1993; Nair et al., 2003; Purser and
Leslie, 1994; Staniforth et al., 2003; Hortal, 2002). For our
application we opt for the scheme ofde Almeida et al.(2009)
because it is of second-order accuracy and its robustness for
small and large Courant number in the presence of weak and
strong flow curvature makes it well suited for a transient and
three-dimensional ice sheet model.

2.4.2 Numerical grid for the semi-Lagrangian transport

In general it is possible to perform semi-Lagrangian trans-
port on the same grid as used by the Eulerian ice sheet
model. In a polythermal model, however, two layers with
σ -transformed coordinates are stacked on each other. There-
fore, a new grid consisting of the same horizontal grid as in
SICOPOLIS but with aσ -transformation including both cold
and temperate ice (see Fig.4) has been formulated:

x = ξs, y = ηs, z = ζs(Ht +Hc)+b := σs, t = τs. (7)

The time step for the semi-Lagrangian transport remains
the same as in SICOPOLIS. In general, it could be longer
than for the Eulerian ice sheet model but for now it is set to
be the same as in SICOPOLIS.

2.4.3 Trajectory calculation

The backtracking method is important for the over-
all performance of a standard semi-Lagrangian transport
scheme. Here, we use the second-order accuracy scheme of
de Almeida et al.(2009) which allows the velocity and ac-
celeration vectors of particles to vary betweent andt − 1t .
Figure5 shows the scheme in one dimension. The scheme
is based upon the general idea of multistage methods, where
each integration step requires the estimate of the dependent
variable at several intermediate times, similar to Runge–
Kutta (de Almeida et al., 2009).

Compared to first-order approximations the second-order
scheme is known to be more accurate and exhibits better con-
servation properties (e.g.McGregor, 1993; Staniforth and
Pudykiewicz, 1985). A discussion of the differences in our
application is given below (Sect.3.1.2).

PointA is the desired ending point on the grid pointξ(i).
The red lineEA is theexacttrajectory and the dashed black
line E′′A is theapproximateone. We know the property9 at
all grid pointsξi at one (t −1t) and two time steps (t −21t)
beforehand and we wish to obtain values at the same grid
points at timet .

In this method the trajectory is split into two steps. In the
first step, starting from grid pointξ(i) at time t the particle
is displaced backwards for a time interval1t with the veloc-
ity calculated at an intermediate position at pointB for time
t −1t . In the second step, starting from the particle position
C at timet − 1t calculated in the previous step, the particle
is displaced backwards for another1t , with the velocity cal-
culated for the intermediate positionD, also at timet − 1t .
The intermediate pointsB andD are obtained by considering
displacements of the particle for a time interval1t/2.

The velocities at pointB andD need to be interpolated.
For the interpolation of the velocity field we use a trilinear
scheme which is sufficiently accurate (Behrens, 1996). The
positions of the points themselves rely on the velocities and,
hence, the whole process needs to be repeated until a conver-
gence criterion ofε = 0.001 m is met.

In three dimensions Eq. (6) is approximated by Eq. (8) by
applying the described backtracking for all three co-ordinates
(ξ , η, ζs):

d9

dt
∼=

9(ξ,η,ζs, t) − 9(ξ ′′,η′′,ζ ′′
s , t − 21t)

21t
, (8)

where9(ξ ′′,η′′,ζ ′′
s , t −21t) is usually not on the grid and is

interpolated.
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Figure 4.Semi-Lagrangian sigma-transformed grid. The original cold and temperate grid on the left are both covered by the semi-Lagrangian
grid.

Figure 5. Schematic for the two-step three time level scheme for
one dimension (ξ ). The red solid curve is the actual trajectory of
a particle and the dashed line is the approximation.a∗ is the dis-
placement to the intermediate position where the velocity is evalu-
ated anda∗∗ is the displacement of the second step.

In three dimensions the first step is

a∗(m+1)
=

1t

2
· vx(ξi − a∗(m),ηj − b∗(m),ζ ∗, t − 1t) (9a)

b∗(m+1)
=

1t

2
· vy(ξi − a∗(m),ηj − b∗(m),ζ ∗, t − 1t) (9b)

c∗(m+1)
=

1t

2
· vz(ξi − a∗(m),ηj − b∗(m),ζ ∗, t − 1t) (9c)

ξ ′
= ξi − 2a∗ (9d)

η′
= ηi − 2b∗ (9e)

ζ ′
= σ−1(z′

= z − 2c∗,Hc,Ht,zm,b, t − 1t) (9f)

and the second step is

a∗∗(m+1)
=

1t

2
· vx(ξ

′
− a∗∗(m),η′

− b∗∗(m),ζ ∗∗, t − 1t) (10a)

b∗∗(m+1)
=

1t

2
· vy(ξ

′
− a∗∗(m),η′

− b∗∗(m),ζ ∗∗, t − 1t) (10b)

c∗∗(m+1)
=

1t

2
· vz(ξ

′
− a∗∗(m),η′

− b∗∗(m),ζ ∗∗, t − 1t) (10c)

ξ ′′
= ξ ′

− 2a∗∗ (10d)

η′′
= η′

− 2b∗∗ (10e)

ζ ′′
= σ−1(z′′

= z′
− 2c∗∗,Hc,Ht,zm,b, t − 1t). (10f)

Equations (9) and (10) are valid for cold and temperate
ice with different velocitiesvc, vt and sigma transforma-
tionsσc, σt. There are some difficulties associated with semi-
Lagrangian transport and sigma coordinates in polythermal
ice sheet models which are not encountered in models of
other compartments of the climate system. These are dis-
cussed in the next section.

2.4.4 Polythermal ice sheet and sigma transformations

The sigma transformationsσc, σt are dependent on the ice
thickness of cold and temperate ice, the position of the cold–
temperate surface and the bedrock elevation (see Eqs.4c and
5c). These quantities are all dynamic which makes it neces-
sary to calculate them at timest −

1t
2 andt −

31t
2 in order to

computeζ ∗ andζ ∗∗ (see Eqs. 9a–c and 10a–c):

ζ ∗
= σ−1

s (z = zk − c∗(m),Hc,Ht,zm,b, t −
1t

2
) (11a)

ζ ∗∗
= σ−1

s (z = z′
− c∗∗(m),Hc,Ht,zm,b, t −

31t

2
). (11b)
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Therefore the fields ofHc,Ht,zm,b are calculated at times
t − 1t

2 andt − 31t
2 and then bilinearly interpolated at location

ξi −a∗(m),ηj −b∗(m). This is an additional complication en-
countered in ice sheet models whereas in for example ocean
modelsζ ∗ would simply beσ−1(z = zk − c∗(m), t −

1t
2 ). In

addition it is possible that the tracked particle is crossing the
CTS and therefore it is necessary to check at each iteration
in which domain the particle is. This is done by checking
whether thez coordinate is below or above thezm at the cur-
rent positionξ andη.

2.4.5 Boundary conditions at the ice–bedrock interface
and the ice surface

Basal melting and isostatic adjustment are included in the
velocity fields. Hence, no special treatment is required here.
On the other hand, the boundary condition at the ice surface
is expressed by the surface mass balance. A positive mass
balance means that new ice is forming on top of the ice sheet
while a negative mass balance means loss of ice. In the case
of a positive mass balance the three provenance variables are
the current values at that grid point, whereastd is the current
time andxd,yd are the coordinates at the grid point. Since
the applied backtracking scheme uses two time levels, it can
arise that pointC is at a position which was ice free at the
last time step. In such a case the backtracking stops and the
current value of provenance variable is interpolated from the
field 9(t − 1t).

2.5 Deriving the stratigraphy with SICOSTRAT

SICOSTRAT (Simulation COde for STRATigraphy) gener-
ates the stratigraphy ofδ18O everywhere within the ice sheet
by inversion of Eqs. (2) or (3) and with the provenance labels
as well as the values stored in the depositional archive.

To calculate theδ18O value with the simple relationship in
the form of Eq. (2), whereδ18O only depends on the surface
temperature, the routine is as follows:

1. Convertz to ζs, then use trilinear interpolation to getξd,
ηd andtd.

2. Ts(x,y, t) can be interpolated bilinear in space and lin-
ear in time to calculate the surface temperature the par-
ticle had when it was deposited on the ice sheet surface.

3. Calculateδ18O with the transfer function.

This procedure can be used to generate the isotopic stratig-
raphy of the whole ice sheet which can be written as
a netCDF and later be used by an Earth system model.
SICOSTRAT uses generic mapping tools (GMTs) to gener-
ate plots of ice cores at arbitrary locations and cross sections
along grid lines. This makes it possible to validate the model
against ice core data and to get a general overview of the
isotopic composition.

Figure 6. Steady-state surface elevation of the EISMINT experi-
ment K at simulation time 300 kyr. The two crosses mark the core
locations C1 and C2, and the dashed red line indicates the cross sec-
tion. This cross section cuts through the ice centre dome where core
C1 is located.

3 Results

In a first study, the model is applied to the EISMINT inter-
comparison project and later to the ice sheets of Greenland
and Antarctica.

3.1 EISMINT

The EISMINT experiment phase two (Payne et al., 2000)
is a simplified geometry experiment with regular boundary
conditions to compare thermomechanical ice-sheet models.
All boundary conditions are symmetrical and time indepen-
dent. Twelve experiments were defined and the experiment
K is used here to test the transport model SICOTRACE and
the post-processing tool SICOSTRAT. In experiment K the
bedrock consists of a regular array of 500 m high mounds
and with zero ice initial condition.

This EISMINT setup uses a 25 km×25 km horizontal grid
in the model domain of the size 1500 km× 1500 km and for
the semi-Lagrangian grid we use 100 vertical layers forζs.
The time step in the SICOPOLIS simulation was 200 yr. The
accumulation/ablation rate is a function of geographical po-
sition, which changes its sign in a given distance from the
summit (for details seePayne et al., 2000). Figure6 shows
the steady-state ice surface at time 300 kyr. In addition, two
ice-core locations C1 and C2 as well as one cross section are
marked. The core C1 is located at the ice divide (x = 750 km,
y = 750 km) and the results are shown in Fig.11. Core C2 is
located at the border of the region with positive mass balance
atx = y = 1000 km, and the results of the isotope modelling
are given in Fig.12.

www.geosci-model-dev.net/7/1395/2014/ Geosci. Model Dev., 7, 1395–1408, 2014



1402 T. Goelles et al.: Transport in polythermal ice sheets

Figure 7. Cross section of the depositional provenance ofx at time
300 kyr with the mound topography and the dashed contour of the
temperate ice thicknessHt. The colour bar indicates the origin of
the ice where blue for example means that the ice is coming from
thex coordinate of 0 km.

Figure 8. Cross section of the depositional provenance ofy at time
300 kyr. The same colour coding as in Fig.7 is applied here but for
they coordinate.

For the cross section the two depositional coordinates,
the depositional age and the resultingδ18O distributions are
shown in Figs.7–10.

3.1.1 Discussion for EISMINT

The simulated mass transport in thex direction at the cross
section is small compared to the one in they direction, which
is expected due to the general ice flow from the centre to the
outer regions for the given geometry. This can also be seen
in Fig.8 for the depositional provenance ofy, changing from
central deposition to radial origin.

In Fig. 8 the whole ice body is yellow which means that
there is little transport perpendicular to the cross section.
Inside the ice body the contour lines indicate the deposi-
tional coordinatex = 750 km, which is a combination of to-
pographical effect due to the mounts and numerical varia-
tions in the order of less than 10 km.

At the area with positive mass balance the oldest ice can be
found close to the ice sheet base (Fig.9). This is the ice de-
posited during the initial phase of the build-up process which
remains located there for the whole time. It can also be seen
in Fig. 8 where the ice has nearly the same depositional co-
ordinate as the actual coordinate.

Figure 9.Age of the ice derived by calculatingtfinal−td wheretfinal
is the final time of the simulation. The older ice is located near the
base and the majority of the ice is younger than 30 kyr.
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Fig. 10. The cross section of the resulting δ18O distribution as calculated in SICOSTRAT. Since the

boundary conditions are time independent, the δ18O value is also independent of the ice age and is

similar to Fig. 8 because the transport perpendicular to the cross-section is small.

34

Figure 10. The cross section of the resultingδ18O distribution as
calculated in SICOSTRAT. Since the boundary conditions are time
independent, theδ18O value is also independent of the ice age and
is similar to Fig.8 because the transport perpendicular to the cross
section is small.

Since the surface temperature is constant over time, the
δ18O ratio is only influenced by the depositional coordinates
and not by the age. This can be seen in the cross section
Fig. 10 and the ice cores Figs.11d and12d. Especially in
the ice cores, theδ18O value is a mere combination of the
depositional coordinates. This is due to the symmetry of the
surface temperature with its lowest value at the centre of the
ice sheet. The stepped behaviour of the profile at the upper
levels are due to the step size of the verticalζs coordinate
used for semi-Lagrangian transport and are also influenced
by the used time step. This behaviour disappears with shorter
time step but for our experiments we chose a longer one in
order to save computational time.

3.1.2 Comparison of backtracking schemes

Figure 13 illustrates the difference between the first-order
backtracking method as used in the papers based onClarke
and Marshall(2002) and the backtracking scheme from
de Almeida et al.(2009). The figure is based on the EIS-
MINT experiment with flat topography (experiment A in
Payne et al., 2000). We chose the flat topography because
the effects of the different backtracking schemes are more
obvious with flat ground than with the mound topography.
The apparent feature in the figure is that the differences
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Figure 11. Simulated ice core C1 atx = 750 km,y = 750 km, with(a) depositionalx (km), (b) depositionaly (km), (c) depositional age
(kyr), and(d) δ18O value.

Figure 12.Simulated ice core C2 atx = 1000 km,y = 1000 km, same arrangement as in Fig.11.

are close to zero in the accumulation zone, which is within
a radial distance of 450 km from the summit (x = y =

750 km). However in the ablation zone the deviations be-
tween the backtracking schemes are substantial. In general
the first order scheme calculates older ice in the ablation
zone, as can be seen in additional plots in the supplement.
While in the previous studies theδ18O value in the ablation
zone was of no particular interest, the values close to the mar-
gin are crucial in order to close the hydrological cycle.

The backtracking scheme fromde Almeida et al.(2009)
is numerically more expensive than the first-order backtrack-
ing, mainly because of the required iterations and interpola-
tions of thede Almeida et al.scheme.

These deviations between the backtracking methods in the
ablation zone are likely associated with the greater velocity
gradients near the margin. In addition, during ice sheet build-
up the velocities vary more in the ablation zone, which is bet-
ter handled by the two-level time scheme with second-order

accuracy. Studies of atmospheric models byStaniforth and
Pudykiewicz(1985) andMcGregor(1993) found that first-
order schemes are inaccurate for large Courant numbers and
exhibit poor conservation properties and that a first-order
scheme with straight lines and velocities taken at the end
point produces an error of 4 % each time step for trajecto-
ries in a solid-body rotation problem.

3.2 Greenland and Antarctica

In order to apply the isotope transport model to real geome-
tries we present some simulation results of the Greenland and
Antarctic ice sheets. Both simulations start at 422 kyr before
the present (pre-industrial at 1950) with no initial ice and
relaxed bedrock (in respect to glacio-isostatic adjustment).
The horizontal grid is 20 km× 20 km for Greenland and
40 km× 40 km for Antarctica. This leads to 83× 141× 101
grid points in the semi-Lagrangian grid for Greenland and

www.geosci-model-dev.net/7/1395/2014/ Geosci. Model Dev., 7, 1395–1408, 2014



1404 T. Goelles et al.: Transport in polythermal ice sheets

Figure 13. Difference of calculated age between first-order
and de Almeida et al. (2009) backtracking with the EIS-
MINT experiment A with flat topography. The colours indi-
cate the vertical sum over all layers in the semi-Lagrangian
grid of the absolute value of the differences at each grid cell:∑ksmax

ks=1

∣∣∣ first order(ks)−de Almeida et al.(ks)
first order(ks)

∣∣∣.
141× 121× 101 points for Antarctica, respectively. We use
11 levels in the bedrock and temperate ice domain and 81 in
the cold ice domain.

A glacial indexgi(t) is used to vary the air temperature
and precipitation distribution by interpolating between the
present and the last glacial maximum (LGM) conditions.
This index is definedgi = 1 for conditions at the LGM and
gi = 0 for present conditions (Forsstrom et al., 2003) and is
based on data derived from theδ18O GRIP ice core record
from Greenland and from theδD Vostok ice core record from
Antarctica (Dansgaard et al., 1993; Johnsen et al., 1995; Pe-
tit et al., 1999). For the first 100 kyr BP the GRIP record is
used and prior to that the Vostok ice core. This is necessary
since the GRIP record is believed to be corrupted due to ice-
flow irregularities (Greve, 2005). In total, the glacial index
reaches 422 kyr back in time.

With these settings the total computational time including
the semi-Lagrangian transport and writing of the depositional
archive on one core of a 2.8 GHz dual-core AMD Opteron
was 141.3 h for Antarctica and 214.7 h for Greenland.

As boundary condition and forcing function, a linear iso-
tope transfer function is used:

δ18O = a · Ts+ b (12)

with a = 0.80 ‰ (◦C)−1 and b = −8.11 ‰ for Antarc-
tica (Masson-Delmotte et al., 2008) and with a =

0.327 ‰ (◦C)−1 and b = −24.8 ‰ for Greenland (Cuffey
and Clow, 1997), respectively.

As an example of a simulated Greenland ice core the GRIP
core is shown in Fig.15a which is located in the central re-
gion of the Greenland Ice Sheet (see Fig.14a for its location).
For Antarctica the Vostok Station has been chosen, which is
located in central East Antarctic Ice Sheet (see Fig.14b). The
modelledδ18O depth profiles are compared to observational
data byJohnsen et al.(1997) for the GRIP ice core and by
Petit et al.(1999) for the Vostok ice core. Since there is a dif-
ference between the modelled and the observed ice thickness
we defined level 0 to be the modelled height of the real ice
surface.

Figure 16a shows two cross sections through the (a)
Greenland and (b) Antarctic ice sheets and the vertical
δ18O distribution close to the chosen ice-core locations. The
Antarctic cross section reveals a broader range ofδ18O varia-
tion with more depleted values than the Greenland cross sec-
tion. Hence, the colour bars are chosen differently.

3.2.1 Discussion for Greenland and Antarctica

The comparison between the simulated cores and observa-
tional data shows in general a good agreement of the iso-
tope records. Taking into consideration that the core data
stems from a single ice core with high vertical and hori-
zontal resolution (on the cm scale) and the simulated core
is based on 20 km× 20 km and 40 km× 40 km model simu-
lations for Greenland and Antarctica, respectively, the overall
coincidence is satisfying. Looking into more detail, however,
the observational data shows more high-frequency variabil-
ity and a shift in the main signals for the Antarctic record
(Fig. 15). There are several reasons which need to be dis-
cussed when comparing the records.

Firstly, the ice dynamic model SICOPOLIS was taken as
a given tool and no effort was made to tune the model for the
present day. This was beyond the scope of the study and we
used the standard setting here. As a second argument, the iso-
tope boundary condition comes into play which is taken from
transfer functions and is, therefore, not a correct local func-
tion. While this works properly for Greenland, a mismatch
for the Vostok location of about 8 per mille can be found be-
tween observations and model results. Third, the time step for
the Greenland simulation is five years and for Antarctica is
ten years while the measurements resolve the seasonal scale.
In addition, the glacial index of the surface temperature forc-
ing is also smoothed to 100 yr so the small-scale variations
cannot be resolved.

On the other hand, the overall variability ofδ18O is com-
parable with the measurements, while the absolute position
of the spikes is also influenced by the difference of the ice
thickness. In the cross section for the Greenland Ice Sheet the
sequences of values between−40 per mille (green) and−35
per mille (yellow) indicates the different glacial–interglacial
cycles of the past, also seen in the lower section of the GRIP
ice core. The profile is just a cross section near the GRIP
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Figure 14.Simulated present-day surface topography with 200 m contours of elevation in km a.s.l. Major ice core locations are marked with
crosses and the location of the cross sections are marked with a red dashed line.(a) Greenland and(b) Antarctica, without the ice shelves
because SICOPOLIS 2.9 does not include ice shelf dynamics.

Figure 15. Comparison of modelledδ18O values in black and ob-
served values in blue. The modelled data in the GRIP core(a) have
an offset of 10 per mille to the right in order to make the comparison
more easy to read. The vertical axis is the ice core depth and level
0 is defined as the ice surface in both, measured and modelled ice
core. For the GRIP core(a) the modelled depth is 2945 compared to
observed 3029 m with reliableδ18O data until 2983.2 m, and for the
Vostok core(b) the modelled depth is 3549 m compared to 3623 m
in reality and data are available until 3310 m.

location but SICOSTRAT generates a complete netCDF out-
put of the whole three-dimensional isotope field.

For the Vostok ice core (Fig.15b) the modelled values
show the same variations as the measurements but the values

are generally higher and the features are up to 500 m deeper
than in the measurements. Here, the ice dynamics need to
be adjusted and more care has to be given to the ice dy-
namic model performance. The very low accumulation rates
in central East Antarctica are challenging to the ice dynamics
and lead to too low signals in the simulation (e.g. at 2000 m
depth). In addition, the 40 km grid does not resolve details in
the bedrock topography, which has a strong influence on the
stratigraphy of the Vostok ice core (Parrenin et al., 2004).

4 Conclusions

In this paper, an oxygen isotope transport model for polyther-
mal ice sheets has been presented, which makes it possible to
study the oxygen isotope ratio inside polythermal ice sheets
where the shallow ice approximation is valid. The model was
applied to the EISMINT inter-comparison phase 2 project
and applied to the Greenland and Antarctic ice sheets. As an
example, one simulated ice core of each ice sheet has been
compared to measured ice core data. The model has been
developed to tackle two goals – firstly, to use local compar-
ison of vertical profiles at drill core sites to validate and im-
prove the ice sheet model, and secondly, to close the oxy-
gen isotopic budget in the hydrological cycle of a fully cou-
pled Earth system model approach, when coupling the ice
model to an atmosphere–ocean–land surface general circula-
tion model (e.g.Werner et al., 2011; Xu et al., 2012).

In our study the backtracking scheme fromde Almeida
et al. (2009) with second-order accuracy is used which re-
quires the three-dimensional velocity fields to be interpo-
lated on intermediate steps. The sigma coordinate formula-
tion of the ice sheet model make it necessary to evaluate and
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Figure 16.Two cross sections of the(a) Greenland and(b) Antarc-
tic ice sheets showing theδ18O distribution close to the GRIP and
Vostok ice cores.

interpolate ice topography variables in space and time. This
adds to the computational costs and overall complexity of the
approach.

If the focus of a study with semi-Lagrangian transport is
on ice core locations in the ice sheet interior a first-order
backtracking may be sufficiently accurate, with the addi-
tional benefit of lower computational lost. Otherwise, if the
values of the transported property near the margin are of
interest, a second-order backtracking scheme such as the
one of de Almeida et al. (2009) may be better suited for
the task. We will address the comparison between different
semi-Lagrangian schemes as well as Lagrangian and Eule-
rian methods focusing on values near the margin in a subse-
quent paper.

The indirect semi-Lagrangian approach with provenance
transport and three different programs has some advantages
and disadvantages.

The advantages are that transfer function between sur-
face temperature andδ18O can be changed without the need
of re-running the whole simulation again. This is impor-
tant for long-term simulation since SICOPOLIS and SICO-
TRACE are computationally expensive and, therefore, it al-
lows to experiment with different transfer functions. The
transfer function forδ18O could also include local changes
of surface elevation and changes in mean surface tempera-
ture (Cuffey, 2000; Langebroek et al., 2010). A downside
of the three different programs is that SICOTRACE needs
the three-dimensional velocity field in the cold and temper-
ate ice domain and information about the ice topography
for each time step. For high resolution and simulations on
palaeo-timescales this leads to a high amount of data which

could be of the order of terabytes. Since the information of
the velocity field and the whole history of the ice sheet evo-
lution is in general of no interest, the data can be deleted af-
ter SICOTRACE has performed the transport calculation. For
paleo-runs, a shell script subsequently runs SICOPOLIS and
SICOTRACE to generate a depositional archive and prove-
nance archive for the whole time period for SICOSTRAT.
This leads to a further complication of file handling and an
additional layer of complexity in the whole workflow.

The semi-Lagrangian transport can be used for other
species, such as deuterium, but if the species involve some
feedback with the ice dynamics, then the approach of three
different programs is not feasible because of all the overhead
with file transfer and initialisation of programs only to run
for one time step.

This chosen approach is in any case an important step in
the direction of fully coupled Earth System Models for inves-
tigating the climate system and comparing model output and
in situ measurements. It is also the basis for studies involving
the transport of passive tracers.

Code availability

ISOPOLIS is based on SICOPOLIS Version 2.9
(http://www.sicopolis.net) with the new modules SICO-
TRACE and SICOSTRAT. All components are written
in Fortran 90 and ISOPOLIS consists of 35 700 lines of
documented code (21 750 of pure code). The code runs
on Unix-based platforms and is automatically handled by
Makefile options and parameter files. To distribute, maintain,
develop and share ISOPOLIS among different users we use
the distributed revision control systemhttp://aforge.awi.de,
providing project hosting, version control, bug-tracking,
and messaging. The established netCDF-output (Rew and
Davis, 1990) format of ISOPOLIS ensures that the com-
puted results can subsequently be post-processed with the
desired software packages (e.g. GMT scripts byWessel
and Smith, 1998). In addition the netCDF operators NCO
(http://nco.sourceforge.net/) are required to run ISOPOLIS.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-1395-2014-supplement.
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