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ABSTRACT
The present study proposes the hybrid machine learning algorithm of artificial neural network-
genetic algorithm-response surfacemethodology (ANN-GA-RSM) tomodelthe performance and the
emissionsof a single cylinder diesel engine fueled by diesel and propylene glycol additive. The eval-
uations areperformed using the correlation coefficient (CC), and the root mean square error (RMSE)
values. The best model for prediction of the dependent variables is reported ANN-GAwith the RMSE
values of 0.0398, 0.0368, 0.0529, 0.0354, 0.0509 and 0.0409 and CC 0.988, 0.987, 0.977, 0.994, 0.984,
0.990, respectively for brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), CO,
CO2,NOx andSO2. Theproposedhybridmodel reduces BSFC,NOx, andCOby−30.82%, 21.32%, and
11.32%, respectively. The model also increases the engine efficiency and CO2 emission by 17.29%
and 31.05%, respectively, compared to a single RSM in the optimized level of independent variables
(69% of biodiesel’s oxygen content and 32% of the oxygen content of propylene glycol).
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1. Introduction

In recent years, pollutants from internal combustion
engines have led to a major concern about environmen-
tal issues. Diesel engines have been proven to endan-
ger human health by emitting greenhouse gases (GHG)
(Krzyżanowski et al., 2005). To reduce diesel engine emis-
sions, modifications have been made to the fuel system,
combustion chamber or engine control system (Papa-
giannakis et al., 2007). The use of catalysts in mod-
ern diesel vehicles is common. Much attention has been
paid to the improvement of diesel fuel recently. Biodiesel
from vegetable oils is a suitable alternative fuel to diesel
fuel. Biodiesel is produced as an oxygenated fuel from
renewable and sustainable primary sources (Najafi et al.,
2018). Using biodiesel to refine diesel fuel is an effective
way to reduce emissions (Barrett, 2011). Because engine
emissions occur due to incomplete combustion of fuels,

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2021.1880970&domain=pdf&date_stamp=2021-02-10
http://orcid.org/0000-0002-7744-7906
http://orcid.org/0000-0003-4842-0613
mailto:najafib@uma.ac.ir
mailto:shamshirbandshahaboddin@duytan.edu.vn
mailto:shamshirbands@yuntech.edu.tw
mailto:amirhosein.mosavi@nmbu.no
mailto:amir.mosavi@mailbox.tu-dresden.de
http://creativecommons.org/licenses/by/4.0/


414 H. KARIMMASLAK ET AL.

which is mainly due to insufficient oxygen supply (Dec,
1997).

Overall, research shows that by adding oxygen-
containing chemicals to diesel fuel, emissions are reduced
(Tsolakis et al., 2007; Yilmaz et al., 2014). So far, many
oxygen-containing hydrocarbons have been introduced
in diesel engines. Bertola and Boulouchos (2000) consid-
ered oxygenated additives for a heavy-duty diesel engine.
According to results, Butylal provided the advantages
over other oxygenated additives. Also, oxygenated com-
pounds provided low lubricity. Cheung et al. (2009)
employed methanol as an oxygenated additive by 5, 10
and 15 Vol. % in diesel blended with biodiesel fuel in
a diesel engine. According to the results, NOx and PM
emissions had been reduced significantly. Ilkılıç et al.
(2011) employed biodiesel as an oxygenated additive for
diesel fuel by 5, 20 and 50 Vol. %. According to the
results, the presence of biodiesel reduced engine per-
formance and increased the specific fuel consumption.
In addition, several types of oxygenated additives have
been considered, such as ethanol (Shi et al., 2006), n-
butanol (Doğan, 2011), glycerine triacetate (Casas et al.,
2010), butanol (Rakopoulos et al., 2010), ethyl tert-butyl
ether (Górski et al., 2010), methyl butanoate(Górski
et al., 2010), dimethyl carbonate (Abdalla & Liu, 2018),
dimethyl ether (Abdalla & Liu, 2018; Mehta et al., 2011;
Patil & Taji, 2013), diethylene glycol dimethyl ether (Nabi
& Chowdhury, 2006), diethylene glycol diethyl ether
(Herreros et al., 2015), triacetin (Rao & Rao, 2011), ace-
tone (Chang et al., 2013), di-n-pentyl ether (Happonen
et al., 2013) and di methoxyethane (Balasubramaniyan
et al., 2013). Although a large number of oxygenated
additives have been introduced which they were not all
suitable to be employed in diesel engines.

Research results show that in oxygenated fuels, the
amount of heat value decreases with increasing oxygen
content (Farkade& Pathre, 2012). Therefore, with the use
of oxygenated fuels, the brake-specific fuel consumption
(BSFC) increases (Chang et al., 2013). The challenge is
exacerbated when oxygenated additives’ contribution to
diesel fuel increases (Botros, 1997; Murcak et al., 2013).
Contrary to previous research, a number of studies have
shown that BSFC decreases with the use of oxygen addi-
tives (Yilmaz et al., 2014).

In addition, the use of oxygenated additives can
reduce combustion temperature. Because the presence
of oxygen causes the fuel cetane number to increase
and consequently reduce the ignition delay (Fang et al.,
2013). In the study by Coniglio et al. (2013), it has
been explained that the oxygenated additives reduce
the ignition delay. Thus, it reduces the reactivity and
accordingly reduces the temperature of the combus-
tion. Also, Imdadul et al. (2016) show that thermal

braking efficiency (BTE) increases with the use of oxy-
genated additives. But Labeckas et al. (2014) reported
that increasing the amount of oxygen in the fuel reduces
thermal braking efficiency.

Yesilyurt et al. (2020) employed blends of biodiesel and
pentanol as oxygenated additives with diesel fuel sam-
ples in a diesel engine for consideration of performance
and emission characteristics. According to the results,
the presence of pentanol as an oxygenated additive could
successfully reduce the engine emissions and lead the
combustion process to reach a complete combustion con-
dition.

Choi et al. (2015) and Labeckas et al. (2014) reported
that CO emission increases with increasing levels of oxy-
genated additives in diesel fuel due to the low cetane
number of oxygenated fuels, increased delay in com-
bustion and incomplete combustion of fuel. In con-
trast, Ilkılıç et al. (2011) and Balamurugan and Nalini
(2014) indicated that oxygenated fuels reduce CO, which
they have argued due to enhanced oxidation of fuels by
internal oxygen fuel. However, Balamurugan and Nalini
(2014) and S. Kumar et al. (2013) attributed this to the
low carbon to hydrogen (C/H) ratio of oxygenated fuels.
Also, Abdalla and Liu (2018) and Atmanli et al. (2015)
claimed that NOx emissions in diesel engines using oxy-
genated additives had been increased slightly. This can
be due to the low cetane number of oxygenated fuels and
consequently, the increase in temperature inside the com-
bustion chamber. NOx formation occurs at high tem-
peratures. Some researchers have also claimed that the
enthalpy of evaporation of oxygenated fuels is higher,
resulting in lower adiabatic flame temperatures and con-
clude that using oxygenated fuels reduces the peak tem-
perature inside the cylinder and reduces NOx emission
(Armas et al., 2014; How et al., 2014; C. Kumar et al.,
2019). Armas et al. (2012), Ferreira et al. (2013) and
claimed that the emission of HC using oxygenated fuels
is higher than that of diesel due to the high heat of evap-
oration in oxygenated fuels. The high heat of evaporation
slows down the evaporation and makes the fuel–air mix-
ture poorer, resulting in lower combustion temperatures
inside the cylinder, resulting in incomplete combustion
and not burning any part of the fuel. Also, (Armas et al.,
2014) and (Hebbar & Bhat, 2013) indicated that low-
oxygenated fuels lead to a decrease in HC emissions
and reduce in PM emissions due to the internal oxygen
content of these fuels which lead to accrue a complete
combustion and to reduce the amount of PM and soot.
Sources have shown that oxygenated additives have great
potential to reduce emissions of diesel engines.

In recent years, various types of these materials have
been introduced. However, the case for the use of oxy-
genated additives is still open and research is continuing
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intensively. Recently, Artificial neural network (ANN)-
based methods have become more practical for exper-
imental applications (Amid & Mesri Gundoshmian,
2017). Prediction of engine performance and emission
characteristics is one of the talented fields for the use of
ANN-based techniques. The main reason for the use of
ANN for predicting engine behavior, is the complexity
of the combustion process for investigating the relations
among performance factors, emission factors and engine
input factors that depend on the design of the exper-
iment factors. Sometimes, there is a need for ignoring
what happens within a process. ANN-based techniques
like a black-box are able to do such missions without the
need to know the nature of the process happens in real
(Agatonovic-Kustrin & Beresford, 2000; Faizollahzadeh
Ardabili et al., 2018). In the present study, it was aimed
to employ a hybrid common ANN-based method called
ANN-GA to develop amodel for the prediction of engine
emission and performance variables (as dependent vari-
ables) based on the oxygen content of the fuel samples (as
independent variables). This was performed for prepar-
ing a platform to be employed by RSM for optimizing
the process in the second step. Considering the fuel sam-
ples’ oxygen content as a variable in modeling process
and the optimization based on oxygen content help us
reach a proper blend of fuel and additive. This can be the
main novelty of the study. This is important from several
aspects. One is making a cost-effective fuel blends and
the second ismake a sustainable combustion processwith
a lowest emission and highest performance. This study’s
main purpose is to consider the effect of the oxygen con-
tent of the propylene glycol additive and biodiesel on
the performance and emission characteristics of a diesel
engine for making a prediction platform and optimiza-
tion using the hybrid ANN-GA-RSMmethod.

2. Material andmethods

2.1. Experimental tests and data sets

Biodiesel used in this research from west Cooking oil
(WCO) in accordance with the optimized sourcemethod
(Faizollahzadeh Ardabili et al., 2018), with the chemical
formula C18H34O2 (Jannatkhah et al., 2019) was pro-
duced. Propylene glycol with a purity of 99.8% was pur-
chased from Merck Company (CAS # 57-55-6) with the
chemical formula C3H8O2 (http://www.merckmillipore.
com/INTL/en/product/12-Propanediol; Najafi et al.,
2019). Also, pure diesel fuel # 2, C14H24 (Akbarian &
Najafi, 2019) was used as a reference fuel. Some proper-
ties of propylene glycol, biodiesel, and diesel were mea-
sured according to ASTM standard, which is given in
Table 1.

Table 1. The characteristics of thepropyleneglycol, biodiesel and
diesel fuels.

Characteristics Propylene Glycol Biodiesel Diesel ASTM

Density @15°C (g/cm3) 1.036 0.885 0.839 D4059
Kinematic Vis-

cosity@40°C
(mm2/s)

3.7 4.17 3.09 D-445

Higher Heating Value
(MJ/kg)

19.22 37.25 42.57 D240

Flash Point (°C) 99 148 88 D-93
Cloud Point(°C) −60 10 −5 D-2500

Table 2. The specifications of diesel engine test bed used in the
present study.

Engine type Single cylinder, DI, vertical, 4 stroke, WC
Rated output 7.4 kW @ 1500 rpm
Bore and stroke 102×116 mm
Displacement 948 cc
Compression ratio 17.5:1

The oxygen content of propylene glycol (OxPG)
and biodiesel (OxB) were 42.1% and 11.35%, respec-
tively, whereas diesel fuel had no oxygen. Therefore,
the percentages of oxygen in propylene glycol (OxPG)
and biodiesel (OxB) were introduced as inputs to the
optimization system. Responses or dependent variables
examined in this study included performance variables
(BSFC and BTE) and engine emissions (CO, CO2, SO2,
and NOx). Propylene glycol was blended with diesel fuel
at 6 levels of 0, 0.2, 0.4, 0.6, 0.8 and 1% and biodiesel at 4
levels of 5, 10, 15 and 20%. And pure diesel fuel was used
as a control sample. Propylene glycol oxygen (OxPG) in
the fuel blends ranged from 0 to 0.842%, while that for
biodiesel (OxB) ranged from 0.556–0.27%. Experimen-
tal tests were performed using a Kirloskar single-cylinder
diesel engine. The engine specifications are presented in
Table 2.

Fuel consumption was measured in accordance with
reference (Najafi & Ardabili, 2018). Engine emissions
of CO2, CO, SO2, NOx, and O2 were measured with a
KIGAZ 210 gas analyzer. The temperature of the exhaust
gases wasmeasured using the PT100 sensor. Inlet air flow
was measured with an AVM-305 anemometer. Engine
tests were performed at full load at a constant speed of
1500 rpm. Figure 1 shows the schematic diagram of the
engine tested.

Table 3 presents the specifications and accuracies of
the measuring instruments.

2.2. Modeling and soft computing

2.2.1. ANN_GAmethod
ANN is used as one of the most efficient and practi-
cal intelligent approaches for modeling, clustering, pre-
dicting and signal processing purposes (Faizollahzadeh

http://www.merckmillipore.com/INTL/en/product/12-Propanediol
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Figure 1. The schematic of the experimental setup used for the combustion experiments.

Table 3. The specifications and accuracies of the measuring
instruments.

Parameter Accuracy Resolution

Engine load ±1 0.1 N
Engine speed ±1 1 rpm
SO2 ±1 1 ppm
CO2 ±1 0.1%
NOx ±1 1 ppm
CO ±1 1 ppm
Parameter Uncertainty Percentage uncertainty (%)
BSEC 0.179 (g/kWh) 1.015

Figure 2. The schematic diagram of the developed ANN.

Ardabili et al., 2018). According to a biological nervous
system, the ANN’s main logic is for its applications in
undefined systems without the need for specific system-
atic relationships. ANN was first introduced by McCul-
loch and Pitts (McCulloch & Pitts, 1943). This technique
has been employed in different research works in agri-
cultural, engineering, and industrial fields. ANNcontains
input, hidden and output layers. Neurons are considered
as connectors of layers. The hidden layer includes sets
of neurons. Figure 2 indicates the architecture of ANN
developed in this study.

Based on Figure 4, the developedANN technique con-
tains two inputs as oxygen contents of biodiesel and PG.
In the present study, the best architecture for the hid-
den layer was obtained by trial and error for generating

six outputs (BSFC, efficiency, CO, CO2, NOx, and SOx).
The optimal architecture was obtained to be 2-6-3-6.
The ANNmethod’s main approach is to generate output
values by each neuron using Equation (1) for each input
(xj for j=1, 2, . . . , n) by weights (for i=1, 2, . . . , n).

y = ϕ

⎛
⎝ n∑

j=1
wixj

⎞
⎠ (1)

y = 1

1 + exp
(
−∑n

j=1 wixj
)

But, ANN contains disadvantages such as long time
consuming and lack of using an optimal global solu-
tion. These issues made researchers to use algorithms for
improving the leakages of ANN method. The GA, as the
frequently used optimizer, was employed in the present
study to improve the performance of the ANN method
in developing a predictive modeling system for the per-
formance and emission characteristics of a diesel engine
fueled by biodiesel and different levels of PG additive in
line with comparing their performance.

ANN-GAmethodwas first developed byWhitley et al.
(1990) in 1990. This technique applies genetics, muta-
tion, natural selection, and crossover. The main perfor-
mance of this technique is in this way that, first, the
algorithm generates populations owned by n individuals.
Then estimates the correlation among each individual.
After finishing this, select two parents from the old pop-
ulation by considering their correlations and generates
probability values to be considered a crossover between
two parents for creating a new individual. After form-
ing individuals, there are two selections. One is finishing
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Table 4. The characteristics of the GA.

Pop. type Double vector

Pop. size 25, 50, 75 and 100
Crossover function Scattered
Crossover fraction 0.8
Selection function Uniform
Migration interval 20
Migration fraction 0.2

the algorithm for the best solution in the current pop-
ulation. The second way is to repeat the algorithm for
finding the best solution. GA employs natural selection,
mutation, and crossover. Choosing was carried out by the
use of a uniform selection technique, which excludes bias
and minimal spread. Table 4 presents the characteristics
of GA developed in this study.

In the present study, four best models were selected as
the developed ANN-GA among other runs (Table 6). GA
can be a proper solution for disadvantages of ANN but it
is not deterministic alone. Therefore, many researchers
employed different optimizers that GA is at the top of
them.

2.2.2. Response surfacemethodology (RSM)
Response Surface Methodology (RSM) is a collection
of statistical and mathematical techniques useful for
developing, improving, and optimizing processes. The
most important application of RSM is in certain situa-
tions where variables affect the variables or character-
istics of a process. These variables are called response
process variables. Influential variables are called inde-
pendent variables or factors and are determined by the
researcher (Tamilvanan et al., 2020). In response sur-
face method, statistical models are developed to investi-
gate the range of factors change. These models provide
an approximation for the relationship between factors
and variables. In other words, statistical models such as
Equation (3) are created to predict the factor y based on
variables.

y = f (x1, x2, . . . , xk) + ε (3)

The shape of the function f is unclear and may be
very complex (Khuri & Mukhopadhyay, 2010). In this
study, the effect of two different oxygenated fuel types
on a diesel engine was modeled. The independent input
variables were the percentage of oxygen in the propylene
glycol additive (OxPG), and the percentage of oxygen in
the biodiesel (OxB) and the responses or dependent vari-
ables included: SO2 (ppm), CO2 (Vol.%), CO (%), NOx
(ppm), BTE (%) and BSFC (g/kWh) were respectively. So

Table 5. Levels of factors and variables used for optimization.

Variables Parameter Levels

−1 0 +1
OxPG Propylene Glycol(%) 0 0.3368 0.6736
OxB Biodiesel percent(%) 0.5675 1.4687 2.27

the general shape of the model is as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

CO2(Vol. %)

CO(ppm)

NOx(ppm)

SO2(ppm)

BSFC(g/kWh)
BTE(%)

⎤
⎥⎥⎥⎥⎥⎥⎦

= f (OxPG(%),OxB(%)) + ε (4)

The model was developed using Design-Expert 8.0
software (Stat Ease Inc. Minneapolis, USA). The Box–
Behnken scheme was used in optimization. Each variable
in the Box–Behnken scheme was encoded at three differ-
ent levels, namely −1, 0, and 1 factors, respectively. The
range of oxygen percentages in propylene glycol additive
(OxPG) and the percentage of oxygen in biodiesel (OxB)
were as shown in Table 5.

2.2.3. Normalization
In statistics and related applications, normalization of
data can be employed for different purposes. As a sim-
ple definition, normalization of different valuesmeasured
on different scales of data is a way to adjust data in
a standard scale. In other words, normalization can be
defined as a shift and scaling versions of data with dif-
ferent scales and ranges to eliminate the effects of scale
and levels influences in data set [98]. In the present study,
the range of input and output variables were different.
Therefore, this made us normalize all the parameters in
a specific range to increase the accuracy of the predic-
tion. There are different normalization methods such as
standard score normalization, Min–Max Feature scaling,
students’ t-statistic normalization, coefficient of variation
and standardized moment normalization. In the present
study, Min–Max Feature scaling as the most effective
and frequently used normalization method in rescaling
purposes (Equation 3).

z = (x − x_min)/(x_max − x_min) (5)

where x is the data in the measured data set scale and z
is the normalized value of x in the scale of its minimum
and maximum values.

2.2.4. Evaluation criteria
In order to compare the performance of the devel-
oped ANN-GA techniques, two frequently used metrics,
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Table 6. Results for the training process of ANN-GA techniques.

Normalized target variables

Model No. Method name Description Run time Performance factor BSFC Efficiency CO CO2 NOx SO2

1 ANN-GA Pop. Size= 25
Generation= 58

126 s RMSE 0.1077 0.1072 0.0739 0.1797 0.1570 0.1071

r 0.914 0.897 0.958 0.842 0.839 0.939
2 ANN-GA Pop. Size= 50

Generation= 62
206 s RMSE 0.0884 0.0789 0.0666 0.0765 0.0718 0.064

r 0.942 0.944 0.965 0.972 0.970 0.977
3 ANN-GA Pop. Size= 75

Generation= 106
299 s RMSE 0.0398 0.0368 0.0529 0.0354 0.0509 0.0409

r 0.988 0.987 0.977 0.994 0.984 0.990
4 ANN-GA Pop. Size= 100

Generation= 158
401 s RMSE 0.088 0.0778 0.0615 0.0746 0.0716 0.0607

r 0.943 0.945 0.970 0.974 0.970 0.979

Table 7. Results for the testing process of ANN-GA technique.

Normalized target variables

Model No. Method name Description Performance factor BSFC Efficiency CO CO2 NOx SO2

1 ANN-GA Pop. Size= 25
Generation= 58

RMSE 0.1377 0.1391 0.0829 0.1104 0.1485 0.0740

r 0.883 0.885 0.972 0.948 0.928 0.993
2 ANN-GA Pop. Size= 50

Generation= 62
RMSE 0.1162 0.1022 0.0342 0.0399 0.0677 0.0412

r 0.913 0.932 0.996 0.992 0.991 0.993
3 ANN-GA Pop. Size= 75

Generation= 106
RMSE 0.0575 0.0533 0.0150 0.0508 0.0670 0.0387

r 0.976 0.980 0.999 0.987 0.978 0.994
4 ANN-GA Pop. Size= 100

Generation= 158
RMSE 0.1008 0.085 0.0345 0.0421 0.0681 0.0467

r 0.942 0.955 0.995 0.992 0.990 0.991

including root mean square error (RMSE) and corre-
lation coefficient, were considered (Equations 4 and 5)
to find and calculate the differences between target and
predicted data (Faizollahzadeh Ardabili et al., 2019).

RMSE =
√√√√1

n

n∑
i=1

(A − P)2 (6)

R =
(
1 −

(∑n
i=1 (A − P)2∑n

i=1 A

))1/2

(7)

where, A is the target values and P is the predicted values
for n data.

3. Results and discussions

In this section first results of the modeling process using
ANN-GA is discussed. Training of ANN using GA tech-
nology was started in the presence of 25 populations to
100 populations with 25 intervals using 70% of total data.
In each section, trainingwas a repeatable process to reach
the best network with high accuracy. The evaluation cri-
teria factor for judgments about the accuracy of networks
was the RMSE factor. As presented in Table 6, the best-
optimized network was ANN-GA, with a population size

75 in generation 106th with the highest correlation coef-
ficient and the lowest RMSE values.

The next step was to evaluate the testing capability of
the developed networks in the presence of 30% remaining
data. In this step, also networks have been evaluated by
importing 30% of data and generating the related results
to be compared using RMSE and correlation coefficient
values. Table 7 presents results for the testing process of
ANN-GA techniques. As is clear form results, in test-
ing stage, the main competition is related to model No.
3 with 75 populations and model No. 4 with 100 popu-
lations. But by an exact consideration, model No. 3 owns
the competition in generation 106th by considering the
lowest training time (from Table 6) compared with that
of the model No. 4.

Figure 3 also presents the plot diagramof the predicted
variables in the presence of target and predicted values
to indicate the linearity and deviation of the above men-
tioned variables using determination coefficient related
to testing step model No. 3.

Therefore, model No. 3 was selected as the best
method for the prediction phase. This network was
employed in the optimization phase to develop the
proposed innovative ANN-GA-RSM technique in com-
parison with single RSM (without predicting with
ANN-GA).
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Figure 3. The plot diagram of the predicted variables in the presence of target and predicted values.
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Figure 4. Schematic diagram of the developed hybrid method.

3.1. Optimization

Optimization process was performed by importing the
normalized data into a novel hybrid method by merging
ANN-GA and RSM technique. In statistics, RSM, intro-
duced by George E. P. Box and K. B. Wilson in 1951
(Box & Wilson, 1951), is a tool to provide the functions
among several explanatory and response variables. This
technique benefits a sequence of designed experiments
to obtain an optimal output (or responses).

In the present study, RSMwas developed usingDesign
Expert software version 7.0 software. Through a trial and

Figure 5. The optimized responses of experimental data using single RSM.
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Figure 6. The optimized responses of experimental data using hybrid ANN-GA-RSM.

error method the quadratic process order and manual
selection were selected to model BSFC, efficiency, CO,
CO2, NOx and SO2 by oxygen content of biodiesel and
PG. Optimization was performed to find a condition
of fuel blends for reaching a maximum BTE and CO2
and minimum BSFC, NOx, SO2 and CO. Because, these
limitations can be resulted from a complete combustion
condition.

Figure 5 presents the optimized levels of experimen-
tal data using single RSM. But as was previously men-
tioned, the main aim of the present study was to develop
a novel hybrid ANN-GA-RSM. Therefore, the following
platform was developed and the outputs of the hybrid

responses were generated and reported in Figure 6 to be
compared with those of the single RSM. In fact, Figures 5
and 6 presents the relation between oxygen content of
PG and Biodiesel and their effects on performance and
emission factors for RSM and the hybrid ANN-GA-RSM.

Figure 4 indicates the schematic diagram of the devel-
oped hybrid models.

As is clear, the effect of the oxygen content of biodiesel
on the variations of parameters is higher than that for the
oxygen content of PG. this can be due to the lower por-
tion of PG in fuel samples compared with biodiesel. Also,
the optimum condition for parameters is in the middle
range of biodiesel oxygen content. This can be confirmed
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Table 8. The optimized value of the normalized parameters.

BSFC Efficiency CO CO2 NOx SO2

RSM 0.1842 0.7743 0.223 0.5241 0.6897 0.1790
ANN-GA-RSM 0.1274 0.9082 0.1754 0.6869 0.6116 0.1043
The effect of proposed method −30.82% +17.29% −21.32% +31.05% −11.32% −41.7%

Ali et al. (2015) about optimization of the performance
and emission characteristics of a diesel engine fueled
with biodiesel. According to the claims, the middle range
of biodiesel contents can improve viscosity in the pres-
ence of oxygenated additive and accordingly improve the
diesel engine’s performance and emission characteris-
tics. The similar finding is also claimed by Ramakrishnan
et al. (2018) in the presence of pentanol and biodiesel as
oxygenated additives for diesel fuel. Results indicated a
significant improvement in brake power andBSFC aswell
as engine emissions.

This can be due to improving the combustion process
by the presence of oxygen. But, increasing the oxygen
content higher than the specific value can reduce ther-
mal efficiency and reduce the engine’s performance. This
phenomenon was also claimed by Najafi et al. (2018) in a
study that claimed the maximum available energy can be
reached at middle range for biodiesel portions in diesel
fuel as oxygenated additive. In order to do an exact com-
parison between single RSM and hybrid ANN-GA-RSM
responses, Table 8 was generated and prepared from Fig-
ures 5 and 6 to indicate the optimized responses and
optimization capability of the proposed method in com-
parison with single RSM. As is clear from Figure 5 the
optimized condition was provided at 69% of biodiesel’s
oxygen content and 32% of PG’s oxygen content.

In order to have an exact comparison between meth-
ods at the same point, theANN-GA-RSMmethodwas set
at a single RSM condition and Figure 6 was prepared at
69%of oxygen content of biodiesel and 32%of the oxygen
content of PG, similar to that of the single RSM.

As is clear from the results, the prepared models
could successfully cope with modeling and optimizing
tasks in a way that models provided very good results.
Using a hybrid method improved and increased the sys-
tem optimization efficiency compared to the single RSM
(Table 8). The optimization cost function was to reduce
BSFC, increase efficiency, reduce CO emissions, increase
CO2 emission (to reach a complete combustion), reduce
NOx emission, and reduce SO2 emission. As is clear
from Table 6, the proposed ANN-GA-RSM successfully
improved the condition by reducing 30.82% of BSFC,
21.32% CO emission, 11.32% NOx emission and 41.7%
of SO2 emission and increasing 17.29% of efficiency
and 31.05% of CO2 emission in comparison with single
RSM.

4. Conclusion

The present study’s strategies were to consider biodiesel
and propylene glycol’s oxygen content tomanage the sin-
gle cylinder CI engine performance and emission charac-
teristics using an innovative ANN-GA-RSM technique in
a proper way. Results of the present study can effectively
help researchers and policymakers in the field of using
and managing propylene glycol additive for improving
the performance and emission of diesel engines and also
can give a proper perspective for other relevant stud-
ies for employing other optimizers and machine learning
techniques as well as other additive types. The predict-
ing process was developed using the oxygen content of
biodiesel and propylene glycol (as two independent vari-
ables) to estimate the BSFC, engine efficiency and CO,
CO2, SO2, and NOx emissions (as dependent variables).
According to the results, ANN-GA with a population
size 75 could provide the highest prediction performance.
Therefore, this model was employed in the optimization
process and could successfully reduce BSFC, NOx, and
CO by −30.82, 21.32, and 11.32%, respectively. It could
successfully increase the engine efficiency andCO2 emis-
sion by 17.29 and 31.05%, respectively, compared with a
single RSM in the optimized level of independent vari-
ables (69% of biodiesel’s oxygen content and 32% of the
oxygen content of propylene glycol). Our future perspec-
tive is to develop a managing hardware device for the
engine setup using hybrid machine learning techniques.
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