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Abstract: Predicting the electrical power (PE) output is a significant step toward the sustainable
development of combined cycle power plants. Due to the effect of several parameters on the
simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent
metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue.
First, a nonlinear neural network framework is formed to link the PE with influential parameters.
Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed
the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population
size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in
the training phase showed that the proposed WCA can find an optimal solution for capturing the
relationship between the PE and influential factors with less than 1% error. Likewise, examining the
test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison
with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird
optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the
intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are
extracted and presented.

Keywords: power plant; electrical power modeling; metaheuristic optimization; water cycle algo-
rithm; machine learning; deep learning; big data; energy; deep learning

1. Introduction

The accurate forecast of power generation capacity is a significant task for power
plants [1]. This task concerns the efficiency of plants toward an economically beneficial
performance [2]. Due to the nonlinear effect of several factors on thermodynamic sys-
tems [3,4] and related parameters like electrical power (PE), many scholars have updated
earlier solutions by using machine learning. As a matter of fact, there are diverse types
of machine learning methods (e.g., regression [5], neural systems [6,7], fuzzy-based ap-
proaches [8],) that have presented reliable solutions to various problems. Liao [9] could
successfully predict the output power of a plant using a regression model. The model
attained 99% accuracy and was introduced as a promising approach for this purpose.
Wood [10] employed a transparent open box algorithm for the PE output approximation
of a combined cycle power plant (CCPP). The evaluations revealed the suitability of this
algorithm as it provided an efficient and optimal prediction. Besides, as discussed by
many scholars, intelligence techniques have a high capability to undertake nonlinear and
complicated calculations [11–16]. A large number artificial intelligence-based practices
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are studied, for example, in the subjects of environmental concerns [17–21], pan evapora-
tion and soil precipitation prediction [22,23], sustainability [24], water and groundwater
supply chains [25–32], natural gas consumption [33], optimizing energy systems [34–45],
air quality [46], image classification and processing [47–49], face or particular pattern
recognition [50–52], structural health monitoring [53], target tracking and computer vi-
sion [54–56], building and structural design analysis [57–59], soil-pile analysis and landslide
assessment [60–64], quantifying climatic contributions [65], structural material (e.g., steel
and concrete) behaviors [66–71], or even some complex concerns such as signal process-
ing [72,73] as well as feature selection and extraction problems [74–78]. Similar to deep
learning-based applications [79–84], many decision-making applications are related to
complicated engineering problems as well [85–91]. In another sense, the technique of the
artificial neural network (ANN) is a sophisticated nonlinear processor that has attracted
massive attention for sensitive engineering modeling [92]. In this sense, the multi-layer
perceptron (MLP) [93,94] is composed of a minimum of three layers, each of which contains
some neurons for handling the computations—noting that a more complicated ANN-based
solution is known as deep learning [95]. For instance, Chen, et al. [96], Hu, et al. [97], Wang,
et al. [98], and Xia, et al. [99] employed the use of extreme machine learning techniques in
the field of medical sciences. As new advanced prediction techniques, hybrid searching
algorithms have been widely developed to have more accurate prediction outputs; namely,
harris hawks optimization [100–102], fruit fly optimization [103], multi-swarm whale opti-
mizer [104,105], ant colony optimization [57,106], grasshopper optimizer [107], bacterial
foraging optimization [108], many-objective optimization [109,110], and chaos enhanced
grey wolf optimization [111,112].

In machine learning, ANNs have been widely used for analyzing diverse energy-
related parameters in power plants [113–115]. Akdemir [116], for example, suggested the
use of ANNs for predicting the hourly power of combined gas and steam turbine power
plants. Regarding the coefficient of determination (R2) of nearly 0.97, the products of
the ANN were found to be in great agreement with real data. The successful use of two
machine learning models, namely, recurrent ANN and a neuro-fuzzy system, was reported
by Bandić et al. [117], who applied three popular machine learning approaches, namely,
random forest, random tree, and an adaptive neuro-fuzzy inference system (ANFIS), to
the same problem. Their findings indicated that the random forest outperforms other
models. They also took a feature selection measure. It was shown that the original and
changed data led to root mean square errors (RMSEs) of 3.0271 and 3.0527 MW, respectively.
Mohammed et al. [118] used an ANFIS to find the thermal efficiency and optimal power
output of combined cycle gas turbines which were 61% and 1540 MW, respectively.

Metaheuristic techniques have effectively assisted engineers and scholars in opti-
mizing diverse problems [23,119–128], especially energy-related parameters such as solar
energy [129], building thermal load [130], wind turbine interconnections [131], and green
computing awareness [132]. Seyedmahmoudian et al. [133] used a differential evolu-
tion and particle swarm optimization (DEPSO) method to analyze the output power for
a building-integrated photovoltaic system. These algorithms have also gained a lot of
attention for optimally supervising conventional predictors like ANNs. Hu et al. [134]
proposed a sophisticated hybrid composed of an ANN with a genetic algorithm (GA)
and the PSO for predicting short-term electric load. With a relative error of 0.77%, this
model performed better than the GA-ANN and PSO-ANN. Another application of the
GA was studied by Lorencin et al. [135]. They tuned an ANN to estimate the PE output
of a CCPP. Since the proposed model achieved a noticeably smaller error than a typical
ANN, it was concluded that the GA is a nice optimizer for this system. Ghosh et al. [136]
used a metaheuristic algorithm called beetle antennae search (BAS) to exploit a cascade
feed-forward neural network applied to simulate the PE output of a CCPP. Due to the
suitable performance of the developed model, they introduced it as an effective method
for PE analysis. Chatterjee et al. [137] combined the ANN with cuckoo search (CS) and the
PSO for electrical energy modeling at a combined cycle gas turbine. Their findings showed
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the superiority of the CS-trained ANN (with an average RMSE of approximately 2.6%)
over the conventional ANN and PSO-trained version.

Due to the crucial role of power generation forecast in the sustainability of systems
like gas turbines [138], selecting an appropriate predictive model is of great importance. On
the other hand, the above literature reflects the high potential of metaheuristic algorithms
for supervising the ANN. However, a significant gap in the knowledge emerges when
the literature of PE analysis relies mostly on the first generation of these techniques (e.g.,
PSO and GA). Hence, this study is concerned with the application of a novel metaheuristic
technique, namely, the water cycle algorithm (WCA) for the accurate prediction of the PE of
a base load operated CCPP. Moreover, the performance of this algorithm is comparatively
validated by ant lion optimization (ALO) and satin bowerbird optimizer (SBO) as bench-
marks. These techniques are applied to this problem through a neural network framework.
Some previous studies have shown the competency of the WCA [139], ALO [140], and
SBO [141] in optimizing intelligent models like ANNs and ANFIS. The main contribution
of these algorithms to the PE estimation lies in finding the optimal relationship between
this parameter and influential factors.

2. Materials and Methods
2.1. Data Provision

When it comes to intelligent learning, the models acquire knowledge by mining the
data. In ANN-based models, this knowledge draws on a group of tunable weights, as well
as biases. The data should represent records of one (or a number of) input parameter(s)
and their corresponding target(s).

In this work, the data are downloaded from a publicly available repository at:
http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant, based on studies
by Tüfekci [138] and Kaya et al. [142]. The 6 years of records (2006–2011) of a CCPP
working with full load (nominal generating capacity of 480 MW, made up of 2 × 160 MW
ABB 13E2 gas turbines, 2× dual pressure heat recovery steam generators, and 1 × 160 MW
ABB steam turbine) form this dataset [138]. It gives full load electrical power output as the
target parameter, along with four input parameters, namely, ambient temperature (AT),
exhaust steam pressure (vacuum, V), atmospheric pressure (AP), and relative humidity
(RH). Figure 1 shows the relationship between the PE and input parameters. According
to the drawn trendlines, a meaningful correlation can be seen in the figures of PE-AT and
PE-V (R2 of 0.8989 and 0.7565, respectively), while the values of AP and RH do not indicate
an explicit correlation. Both AT and V are adversely proportional to the PE.

Table 1 describes the dataset statistically. The values of AT, V, AP, and RH range in
[1.8, 37.1] ◦C, [25.4, 81.6] cm Hg, [992.9, 1033.3] mbar, and [25.6, 100.2] % with average
values of 19.7 ◦C, 54.3 cm Hg, 1013.3 mbar, and 73.3%, respectively. Additionally, the
minimum and maximum recorded PEs are 420.3 and 495.8 MW. The dataset comprises
a total of 9568 samples, out of which 7654 samples are selected as training data and the
remaining 1914 samples form the testing data. To do this, a random selection with an
80:20 ratio is applied.

http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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Figure 1. The graphical situation of PE versus (a) AT, (b) V, (c) AP, and (d) RH.

Table 1. Descriptive statistics of the PE and input parameters.

Factor Unit
Descriptive Indicator

Mean Std. Error Std. Deviation Sample Variance Minimum Maximum

AT ◦C 19.7 0.1 7.5 55.5 1.8 37.1
V cm Hg 54.3 0.1 12.7 161.5 25.4 81.6

AP mbar 1013.3 0.1 5.9 35.3 992.9 1033.3
RH % 73.3 0.1 14.6 213.2 25.6 100.2
PE MW 454.4 0.2 17.1 291.3 420.3 495.8

2.2. Methodology

The overall methodology used in this study is shown in Figure 2.

2.2.1. The WCA

Simulating the water cycle process was the main idea of the WCA algorithm, which
was designed by Eskandar et al. [143]. In studies like [144], scholars have used this
algorithm for sustainable energy issues. When the algorithm gets started, a population
with the size Npop is generated from raindrops. Among the individuals, the best one is
designated as the sea whose solution is shown by Xsea. Additionally, individuals with
promising solutions (Xrs) are considered as rivers. The number of rivers is determined
based on the parameter Nsr that gives the number of rivers plus the unique sea. The
residual individuals form the stream group (Xss). The number of streams is the difference
between Npop and Nsr.
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The description of the used algorithms is presented below.
The population can be expressed as follows:
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Xsea
X1
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X2
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X1
s

...
X

Npop−Nsr
s


, (1)

Concerning the function value of Xr and Xsea in the beginning, a number of Xs are
designated to each Xr and Xsea based on the following relationship:

Cn = f (n)− f
(

X1
s

)
, (2)

NS(n) = round

{∣∣∣∣∣Cn/
Nsr

∑
j=1

Cj

∣∣∣∣∣× (Npop − Nsr
)}

, (3)

in which f stands for the function value and n = Xsea, X1
r , ..., XNsr−1

r .
Despite the typical procedure in nature (stream→ river→ sea), some streams may

flow straight to the sea. The new values of Xr and Xs are obtained from the below equations:

Xt+1
r = Xt

r + rand× cons×
(
Xt

sea − Xt
r
)
, (4)

Xt+1
s = Xt

s + rand× cons×
(
Xt

r − Xt
s
)
, (5)

Xt+1
s = Xt

s + rand× cons×
(
Xt

sea − Xt
s
)
, (6)



Sustainability 2021, 13, 2336 6 of 18

where rand is a random number (in [0, 1]), cons gives a positive constant value (in [1, 2]), t
signifies the iteration number. Xr and Xs are evaluated and compared. If the quality of Xs
is better than that of Xr, they exchange their positions. A similar process happens between
Xr and Xsea [145,146]. By performing the evaporation part of the water cycle, the algorithm
is again implemented to improve the solution iteratively.

2.2.2. The Benchmarks

The first benchmark algorithm is the ALO. Mirjalili [147] designed this algorithm as a
robust nature-inspired strategy. Additionally, it has attracted the attention of experts for
tasks like load shifting in analyzing sustainable renewable resources [148]. The pivotal idea
of this algorithm is simulating the idealized hunting actions of the antlion. They build a
cone-shaped fosse and wait for prey (often ants) to fall into the trap. The prey makes some
movements to escape from antlions. The fitness of the solution is evaluated by a roulette
wheel selection function. In this sense, the more powerful the hunter is, the better the prey
is [149]. The details of the ALO and its application for optimizing intelligent models like
ANNs can be found in earlier literature [150].

The SBO is considered as the second benchmark for the WCA. Inspired by the
lifestyle of satin bowerbirds, Moosavi and Bardsiri [141] developed the SBO. Scholars
like Zhang et al. [151] and Chintam and Daniel [152] have confirmed the successful per-
formance of this algorithm in dealing with structural and energy-related optimization
issues. In this strategy, there is a bower-making competition between male birds to attract
a mate. The population is randomly created and the fitness of each bower is calculated.
By making an elitism decision, the most promising individual is considered as the best
solution. After determining the changes in the positions, a mutation operation is applied,
followed by a step to combine the solutions of the old and new (updated) population [153].
A mathematical description of the SBO can be found in studies like [154].

3. Results and Discussion
3.1. Accuracy Assessment Measures

Two essential error criteria, namely, the RMSE and mean absolute error (MAE), are
defined to return different forms of the prediction error. Another error indicator called
mean absolute percentage error (MAPE) is also defined to report the relative (percentage)
error. Given PE iexpected and PE ipredicted as the expected and predicted electrical power outputs,
Equations (7) to (9) denote the calculation of these indicators.

RMSE =

√√√√ 1
N

N

∑
i=1

[(
PEiexpected − PEipredicted

)]2
, (7)

MAE =
1
N

N

∑
i=1

∣∣∣PEiexpected − PEipredicted

∣∣∣, (8)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣PEiexpected − PEipredicted

PEiexpected

∣∣∣∣∣× 100, (9)

where the number of samples (i.e., 7654 and 1914 in the training and testing groups,
respectively) is signified by N.

Moreover, a correlation indicator called the Pearson correlation coefficient (R) is used.
According to Equation (10), it reports the consistency between PE expected and PE predicted.
Note that the ideal value for this indicator is 1.

R =
∑N

i=1

(
PEipredicted − PE predicted

)(
PEiexpected − PEexpected

)
√

∑N
i=1 (PEipredicted − PE predicted)

2
√

∑N
i=1 (PEiexpected − PEexpected)

2
, (10)
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3.2. Hybridizing and Training

It was earlier stated that this study pursues a novel forecasting method for the problem
of PE modeling. To this end, the water cycle algorithm explores the relationship between
this parameter and four inputs through an MLP neural network. This skeleton is used
to establish nonlinear equations between the mentioned parameters. A three-layer MLP
is considered wherein the number of neurons lying in the first, second, and third layer
(also known as input, hidden, and output layers) equals four (the number of inputs), nine
(obtained by trial and error practice), and one (the number of outputs only), respectively.
Figure 3 shows this structure:
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There are two kinds of tunable computational parameters in an MLP: (a) weights
(W) that are designated to each input factor and (b) bias terms. Equation (11) shows the
calculation of a neuron with a given input (I).

Response = Tansig(W × I + b) , (11)

where Tansig signifies an activation function which is defined as follows:

Tansig (x) =
2

1 + e−2x − 1, (12)

Each neuron of the ANN applies an activation functions to a linear combination of
inputs and network parameters (i.e., W and b) to give its specific response. There are a
number of functions (e.g., Logsig, Purelin, etc.) that can be used for this purpose. However,
many studies have stated the superiority of Tansig for hidden neurons [155–157].

The WCA finds the optimal values of the parameters in Equation (11) in an iterative
procedure. In this way, the suitability of each response (in each iteration) is reported by an
objective function (OF). This study uses the RMSE of training data for this purpose. So, the
lower the OF is, the better the optimization is. Figure 4a shows the optimization curves
of the WCA for the given problem. The reduction of the OF in this figure shows that the
RMSE error is being reduced consecutively.
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Figure 4. (a) Convergence curves belonging to the tested PS of WCA-ANN and (b) comparison
between the convergence behaviors of the chosen networks.

Famously, the size of the population can greatly impact the quality of optimization.
The convergence curves are plotted for seven different WCA-NN networks distinguished
by different population sizes (PS of 10, 50, 100, 200, 300, 400, 500). As is seen, the curve
of PS = 400 is finally below the others. Therefore, this network is the representative of the
WCA-NN for further evaluations. Note that a total of 1000 iterations were considered for
all tested PSs.

The same strategy (i.e., the same PSs and number of iterations) was executed for
the benchmark models. It was shown that ALO-NN and SBO-NN with PSs of 400 and
300 are superior. Figure 4b depicts and compares the convergence behavior of the selected
networks. According to this figure, all three algorithms have a similar performance in
dealing with error minimization. The OF is chiefly reduced over the initial iterations.

Figure 4b also says that the OF of the WCA-NN is below both benchmarks. In this
sense, the RMSEs of 4.1468, 4.2656, and 4.2484 are calculated for the WCA-NN, ALO-NN,
and SBO-NN, respectively. Additionally, the corresponding MAEs (3.2112, 3.3389, and
3.3075) can support this claim.

Subtracting PE predicted from PE expected returns an error value for each sample. Figure 5
shows these errors. It can be seen that close-to-zero values are obtained for the majority of
training samples. Concerning peak values, the errors lie in the ranges [−18.4548, 42.4231],
[−18.9855, 43.2264], and [−19.1242, 42.8160]. With respect to the range of PE (Table 1), these
values indicate a very good prediction for all models. Moreover, the calculated MAPEs
report less than 1% relative errors (0.7076%, 0.7359%, and 0.7289%).
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Figure 5. The magnitude of error over the training dataset obtained by (a) WCA-NN, (b) ALO-NN,
and (c) SBO-NN.

Moreover, the R values of 0.96985, 0.96807, and 0.96834 profess an excellent correlation
between the products of the used models and the observed PE. This favorable performance
means that the WCA, ALO, and SBO have nicely understood the dependence of the PE
on AT, V, AP, and RH and, accordingly, they have optimally tuned the parameters of the
MLP system.

3.3. Testing Performance

The testing ability of a forecasting model illustrates the generalizability of the captured
knowledge for unfamiliar conditions. The weights and bias terms tuned by the WCA, ALO,
and SBO created three separate methods that predicted the PE for testing samples. The
quality of the results is assessed in this section.

Figure 6 presents two charts for each model. First, the correlation between the
PE expected and PE predicted is graphically shown. Along with it, the frequency of errors
(PE expected − PE predicted) is shown in the form of histogram charts. At a glance, the re-
sults of all three models demonstrate promising generalizability, due to the aggregation
of points around the ideal line (i.e., x = y) in Figure 6a,c,e. Additionally, as a general
trend in Figure 6b,d,f, small errors (zero and close-to-zero ranges) have a higher frequency
compared to large values. Remarkably, testing errors range within [−16.6585, 44.7929],
[−15.8225, 45.7482], and [−16.3683, 45.8428].
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Figure 6. The testing results in terms of (a,c,e) correlation and (b,d,f) histogram of errors for the
WCA-NN, ALO-NN, and SBO-NN, respectively.

The RMSE and MAE of the WCA-NN, ALO-NN, and SBO-NN were 4.0852 and 3.1996,
4.1719 and 3.3028, and 4.1614 and 3.2802, respectively. These values are close to those of the
training phase. Hence, all three models enjoy a high accuracy in dealing with out-of-data
situations. Furthermore, a desirable level of relative error can be represented by the MAPEs
of 0.7045%, 0.7272%, and 0.7221%.

According to the obtained R values (0.97164, 0.97040, and 0.97061), all three hybrids
are able to predict the PE of a CCPP with highly reliable accuracy. In all regression charts,
there is an outlying value, PE = 435.58 (obtained for AT = 7.14 ◦C, V = 41.22 cm Hg,
AP = 1016.6 mbar, and RH = 97.09%) that is predicted to be 480.3728513, 481.3282482,
and 481.4228308.

3.4. WCA vs. ALO and SBO

The quality of the results showed that the WCA, ALO, and SBO metaheuristic algo-
rithms benefit from potential search strategies for exploring and mapping the PE pattern.
However, comparative evaluation using the RMSE, MAE, MAPE, and R pointed out
noticeable distinctions in the performance of these algorithms.
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Figure 7 depicts and compares the accuracies in the form of radar charts. The shape
of the produced triangles indicates the superiority of the WCA-based model over the
benchmark algorithms in both training and testing phases. In terms of all four indicators,
this model could predict the PE with the best quality. It means that the ANN supervised by
the WCA is constructed of more promising parameters. Following the proposed algorithm,
the SBO won the competition with ALO. It is noteworthy that the accuracy of these two
algorithms in the testing phase was closer compared to the training results.
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From the time-efficiency point of view, computations of the ALO were shorter than
the two other methods. The elapsed times for tuning the ANN parameters were nearly
14,261.1, 12,928.1, and 14,871.3 s by the WCA, ALO, and SBO, respectively. It should be
also noted that the WCA and ALO used PS = 400, while this value was 300 for the SBO.

According to the above results, the WCA provides both an accurate and efficient
solution to the problem of PE approximation, and thus, sustainable development of the
CCPPs. It is true that the ALO could optimize the neural network in a shorter time, but
smaller PSs of the WCA (i.e., 300, 200, ...) were far faster. On the other hand, back to
Figure 4, the PS of 300 produced a solution almost as good as that of 400. It is interesting to
know that the prediction of PS = 300 was slightly better than PS = 400 (testing RMSEs 4.0760
vs. 4.0852). The computation time of this configuration was around 3186.9 seconds which
is considerably smaller than the two other algorithms. Thus, for time-sensitive projects,
less complex configurations of the WCA are efficiently applicable.

3.5. Predictive Formulas

Due to the comparisons in the previous section, the solutions found by WCAs with
the PSs of 300 and 400 are presented here in the form of two separate (different) formu-
las for forecasting the electrical power. Equations (13) and (14) give the PE through a
linear relationship.

PEPS = 300= 0.814 × Y1 − 0.543 × Y2 + 0.825 × Y3 − 0.584 × Y4 − 0.509 × Y5 − 0.220 × Y6 +
0.296 × Y7 + 0.039 × Y8 + 0.542 × Y9. − 0.076,

(13)
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PEPS = 400 = −0.782 × Z1 + 0.627 × Z2 − 0.569 × Z3− 0.594 × Z4 − 0.891 × Z5 − 0.548 × Z6
+ 0.661 × Z7 + 0.416 × Z8 + 0.383 × Z9 − 0.696,

(14)

where Yi and Zi (i = 1, 2, ..., 9) symbolize the output of the hidden neurons. These
parameters are calculated using a generic equation as follows:

Yi and Zi = Tansig (Wi1×AT + Wi2×V + Wi3×AP + Wi4×RH + bi), (15)

and with the help of Table 2.

Table 2. The optimized parameters of the WCA configurations.

i
For Zi (PS = 400) For Yi(PS = 300)

Wi1 Wi2 Wi3 Wi4 bi Wi1 Wi2 Wi3 Wi4 bi

1 −1.238 0.344 1.240 −1.640 2.425 0.887 −1.670 1.517 0.068 −2.425
2 1.482 −1.851 0.311 0.399 −1.819 −0.042 2.181 −0.983 −0.395 1.819
3 −0.870 1.152 −1.755 −0.847 1.212 1.035 1.770 0.848 0.979 −1.212
4 −0.830 0.172 1.716 1.489 0.606 0.639 1.690 1.572 −0.378 −0.606
5 0.864 −1.691 −1.343 0.685 0.000 −1.587 −1.512 −1.016 −0.213 0.000
6 −1.394 −1.677 −1.052 −0.136 −0.606 1.256 1.282 −1.204 1.100 0.606
7 −2.004 −1.261 0.276 −0.446 −1.212 −0.313 0.385 −1.739 −1.615 −1.212
8 1.609 0.883 1.532 0.402 1.819 1.277 0.190 −1.739 −1.090 1.819
9 −1.876 −0.740 0.819 −1.069 −2.425 −0.514 −1.679 1.003 −1.339 −2.425

According to the above formulas, calculating the PE consists of two steps: First,
recalling the MLP structure (Figure 3) and also Equation (11) from Section 3.2, Equation (15)
is applied to produce the response of nine hidden neurons (e.g., Y1, Y2, . . . , Y9 for the
formula corresponding to PS = 300). For instance, W32 represents the weight of the 3rd
neuron applied to the 2nd input (i.e., V). Thus, it equals 1.152 in Table 2 used for calculating
Y3. Next, these parameters are used by the output neuron (in Equation (13)) to yield
the PE. The same goes for the formula corresponding to PS = 400 (Z1, Z2, . . . , Z9 and
Equation (14)).

4. Conclusions

This paper investigated the efficiency of three capable metaheuristic approaches for
the accurate analysis of electrical power output. The water cycle algorithm was used to
supervise the learning process of an ANN. This algorithm was compared with two other
techniques, namely antlion optimization and a satin bowerbird optimizer. The results
showed the superiority of the WCA in all cases and terms of all accuracy indicators. For
example, the RMSEs of 4.1468 vs. 4.2656 and 4.2484 in the training phase and 4.0852 vs.
4.1719 and 4.1614 in the prediction phase. However, all three hybrids could understand
and reproduce the PE pattern with less than 1% error. All in all, a significant sustainability
issue was efficiently managed and solved by metaheuristic science. Thus, the presented
hybrid models can be practically employed to forecast the electrical power output of
combined cycle power plants by having the records of AT, V, AP, and RH. They can also be
appropriate substitutes for time-consuming and costly methods. However, further efforts
are recommended for future projects to compare the applicability of different metaheuristic
techniques and also to present innovative measures that may improve the efficiency of the
existing models in terms of both time and accuracy.

Author Contributions: H.M. and A.M., methodology; software validation, writing—original draft
preparation. H.M. and A.M., writing—review and editing, visualization, supervision, project admin-
istration. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.



Sustainability 2021, 13, 2336 13 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, J.H.; Kim, T.S.; Kim, E.-H. Prediction of power generation capacity of a gas turbine combined cycle cogeneration plant.

Energy 2017, 124, 187–197. [CrossRef]
2. Sun, W.; Zhang, J.; Wang, R. Predicting electrical power output by using Granular Computing based Neuro-Fuzzy modeling

method. In Proceedings of the The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May
2015; pp. 2865–2870.

3. Han, X.; Chen, N.; Yan, J.; Liu, J.; Liu, M.; Karellas, S. Thermodynamic analysis and life cycle assessment of supercritical
pulverized coal-fired power plant integrated with No. 0 feedwater pre-heater under partial loads. J. Clean. Prod. 2019, 233,
1106–1122. [CrossRef]

4. Han, X.; Zhang, D.; Yan, J.; Zhao, S.; Liu, J. Process development of flue gas desulphurization wastewater treatment in coal-fired
power plants towards Zero Liquid Discharge: Energetic, economic and environmental analyses. J. Clean. Prod. 2020, 261, 121144.
[CrossRef]

5. Xu, X.; Chen, L. Projection of long-term care costs in China, 2020–2050: Based on the Bayesian quantile regression method.
Sustainability 2019, 11, 3530. [CrossRef]

6. Shi, K.; Wang, J.; Tang, Y.; Zhong, S. Reliable asynchronous sampled-data filtering of T–S fuzzy uncertain delayed neural networks
with stochastic switched topologies. Fuzzy Sets Syst. 2020, 381, 1–25. [CrossRef]

7. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C.J.N. Toward an optimal kernel extreme learning
machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267,
69–84. [CrossRef]

8. Chen, H.; Qiao, H.; Xu, L.; Feng, Q.; Cai, K. A Fuzzy Optimization Strategy for the Implementation of RBF LSSVR Model in
Vis–NIR Analysis of Pomelo Maturity. IEEE Trans. Ind. Inform. 2019, 15, 5971–5979. [CrossRef]

9. Liao, Y. Linear Regression and Gradient Descent Method for Electricity Output Power Prediction. J. Comput. Commun. 2019, 7,
31–36. [CrossRef]

10. Wood, D.A. Combined cycle gas turbine power output prediction and data mining with optimized data matching algorithm. Sn
Appl. Sci. 2020, 2, 1–21. [CrossRef]

11. Liu, Z.; Shao, J.; Xu, W.; Chen, H.; Zhang, Y. An extreme learning machine approach for slope stability evaluation and prediction.
Nat. Hazards 2014, 73, 787–804. [CrossRef]

12. Chen, Y.; He, L.; Li, J.; Zhang, S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal
life cycle economics and greenhouse gas emissions under uncertainty. Comput. Chem. Eng. 2018, 109, 216–235. [CrossRef]

13. Zhu, J.; Shi, Q.; Wu, P.; Sheng, Z.; Wang, X. Complexity analysis of prefabrication contractors’ dynamic price competition in mega
projects with different competition strategies. Complexity 2018, 2018, 5928235. [CrossRef]

14. Hu, X.; Chong, H.-Y.; Wang, X. Sustainability perceptions of off-site manufacturing stakeholders in Australia. J. Clean. Prod. 2019,
227, 346–354. [CrossRef]

15. He, L.; Shao, F.; Ren, L. Sustainability appraisal of desired contaminated groundwater remediation strategies: An information-
entropy-based stochastic multi-criteria preference model. Environ. Dev. Sustain. 2020, 1–21. [CrossRef]

16. Li, C.; Hou, L.; Sharma, B.Y.; Li, H.; Chen, C.; Li, Y.; Zhao, X.; Huang, H.; Cai, Z.; Chen, H. Developing a new intelligent system
for the diagnosis of tuberculous pleural effusion. Comput. Methods Programs Biomed. 2018, 153, 211–225. [CrossRef] [PubMed]

17. Liu, J.; Liu, Y.; Wang, X. An environmental assessment model of construction and demolition waste based on system dynamics: A
case study in Guangzhou. Environ. Sci. Pollut. Res. 2020, 27, 37237–37259. [CrossRef]

18. Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of arbuscular mycorrhizal inoculation and biochar amendment
on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 2018, 194, 495–503.
[CrossRef]

19. Yang, Y.; Liu, J.; Yao, J.; Kou, J.; Li, Z.; Wu, T.; Zhang, K.; Zhang, L.; Sun, H. Adsorption behaviors of shale oil in kerogen slit by
molecular simulation. Chem. Eng. J. 2020, 387, 124054. [CrossRef]

20. Feng, S.; Lu, H.; Tian, P.; Xue, Y.; Lu, J.; Tang, M.; Feng, W. Analysis of microplastics in a remote region of the Tibetan Plateau:
Implications for natural environmental response to human activities. Sci. Total Environ. 2020, 739, 140087. [CrossRef]

21. Liu, J.; Yi, Y.; Wang, X. Exploring factors influencing construction waste reduction: A structural equation modeling approach. J.
Clean. Prod. 2020, 276, 123185. [CrossRef]

22. Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, J.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological
factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [CrossRef]

23. Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and
gauge precipitation. J. Hydrol. 2018, 558, 275–289. [CrossRef]

24. Keshtegar, B.; Heddam, S.; Sebbar, A.; Zhu, S.-P.; Trung, N.-T. SVR-RSM: A hybrid heuristic method for modeling monthly pan
evaporation. Environ. Sci. Pollut. Res. 2019, 26, 35807–35826. [CrossRef] [PubMed]

http://doi.org/10.1016/j.energy.2017.02.032
http://doi.org/10.1016/j.jclepro.2019.06.159
http://doi.org/10.1016/j.jclepro.2020.121144
http://doi.org/10.3390/su11133530
http://doi.org/10.1016/j.fss.2018.11.017
http://doi.org/10.1016/j.neucom.2017.04.060
http://doi.org/10.1109/TII.2019.2933582
http://doi.org/10.4236/jcc.2019.712004
http://doi.org/10.1007/s42452-020-2249-7
http://doi.org/10.1007/s11069-014-1106-7
http://doi.org/10.1016/j.compchemeng.2017.11.014
http://doi.org/10.1155/2018/5928235
http://doi.org/10.1016/j.jclepro.2019.03.258
http://doi.org/10.1007/s10668-020-00650-z
http://doi.org/10.1016/j.cmpb.2017.10.022
http://www.ncbi.nlm.nih.gov/pubmed/29157454
http://doi.org/10.1007/s11356-019-07107-5
http://doi.org/10.1016/j.chemosphere.2017.12.025
http://doi.org/10.1016/j.cej.2020.124054
http://doi.org/10.1016/j.scitotenv.2020.140087
http://doi.org/10.1016/j.jclepro.2020.123185
http://doi.org/10.1016/j.agrformet.2015.09.015
http://doi.org/10.1016/j.jhydrol.2018.01.042
http://doi.org/10.1007/s11356-019-06596-8
http://www.ncbi.nlm.nih.gov/pubmed/31705408


Sustainability 2021, 13, 2336 14 of 18

25. He, L.; Chen, Y.; Zhao, H.; Tian, P.; Xue, Y.; Chen, L. Game-based analysis of energy-water nexus for identifying environmental
impacts during Shale gas operations under stochastic input. Sci. Total Environ. 2018, 627, 1585–1601. [CrossRef] [PubMed]

26. Chen, Y.; Li, J.; Lu, H.; Yan, P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed
noise-driven shale gas-water supply chains. J. Clean. Prod. 2021, 278, 123209. [CrossRef]

27. Cheng, X.; He, L.; Lu, H.; Chen, Y.; Ren, L. Optimal water resources management and system benefit for the Marcellus shale-gas
reservoir in Pennsylvania and West Virginia. J. Hydrol. 2016, 540, 412–422. [CrossRef]

28. Li, X.; Zhang, R.; Zhang, X.; Zhu, P.; Yao, T. Silver-Catalyzed Decarboxylative Allylation of Difluoroarylacetic Acids with Allyl
Sulfones in Water. Chem. Asian J. 2020, 15, 1175–1179. [CrossRef] [PubMed]

29. Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071.
[CrossRef]

30. Qian, J.; Feng, S.; Li, Y.; Tao, T.; Han, J.; Chen, Q.; Zuo, C. Single-shot absolute 3D shape measurement with deep-learning-based
color fringe projection profilometry. Opt. Lett. 2020, 45, 1842–1845. [CrossRef]

31. Lyu, Z.; Chai, J.; Xu, Z.; Qin, Y.; Cao, J. A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History.
Adv. Civ. Eng. 2019, 2019, 4159306. [CrossRef]

32. Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last
half-century. Sci. Rep. 2020, 10, 14323. [CrossRef] [PubMed]

33. Su, Z.; Liu, E.; Xu, Y.; Xie, P.; Shang, C.; Zhu, Q. Flow field and noise characteristics of manifold in natural gas transportation
station. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2019, 74, 70. [CrossRef]

34. Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for
shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville
shales. Energy Convers. Manag. 2017, 134, 382–398. [CrossRef]

35. He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J.
Environ. Manag. 2018, 206, 1115–1125. [CrossRef] [PubMed]

36. Lu, H.; Tian, P.; He, L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide
hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sustain. Energy Rev. 2019, 112, 788–796.
[CrossRef]

37. Wang, Y.; Yao, M.; Ma, R.; Yuan, Q.; Yang, D.; Cui, B.; Ma, C.; Liu, M.; Hu, D. Design strategy of barium titanate/polyvinylidene
fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 2020, 8, 884–917. [CrossRef]

38. Zhao, X.; Ye, Y.; Ma, J.; Shi, P.; Chen, H. Construction of electric vehicle driving cycle for studying electric vehicle energy
consumption and equivalent emissions. Environ. Sci. Pollut. Res. 2020, 27, 37395–37409. [CrossRef]

39. Zhu, L.; Kong, L.; Zhang, C. Numerical Study on Hysteretic Behaviour of Horizontal-Connection and Energy-Dissipation
Structures Developed for Prefabricated Shear Walls. Appl. Sci. 2020, 10, 1240. [CrossRef]

40. Deng, Y.; Zhang, T.; Sharma, B.K.; Nie, H. Optimization and mechanism studies on cell disruption and phosphorus recovery
from microalgae with magnesium modified hydrochar in assisted hydrothermal system. Sci. Total Environ. 2019, 646, 1140–1154.
[CrossRef]

41. Zhang, T.; Wu, X.; Fan, X.; Tsang, D.C.W.; Li, G.; Shen, Y. Corn waste valorization to generate activated hydrochar to recover
ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment. J. Environ. Manag. 2019, 236, 108–117.
[CrossRef]

42. Peng, S.; Zhang, Z.; Liu, E.; Liu, W.; Qiao, W. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase
pipeline. J. Nat. Gas Sci. Eng. 2021, 85, 103716. [CrossRef]

43. Peng, S.; Chen, Q.; Zheng, C.; Liu, E. Analysis of particle deposition in a new-type rectifying plate system during shale gas
extraction. Energy Sci. Eng. 2020, 8, 702–717. [CrossRef]

44. Liu, E.; Wang, X.; Zhao, W.; Su, Z.; Chen, Q. Analysis and Research on Pipeline Vibration of a Natural Gas Compressor Station
and Vibration Reduction Measures. Energy Fuels 2020. [CrossRef]

45. Liu, E.; Guo, B.; Lv, L.; Qiao, W.; Azimi, M. Numerical simulation and simplified calculation method for heat exchange
performance of dry air cooler in natural gas pipeline compressor station. Energy Sci. Eng. 2020, 8, 2256–2270. [CrossRef]

46. Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China:
Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [CrossRef]

47. Xu, M.; Li, C.; Zhang, S.; Callet, P.L. State-of-the-Art in 360◦ Video/Image Processing: Perception, Assessment and Compression.
IEEE J. Sel. Top. Signal Process. 2020, 14, 5–26. [CrossRef]

48. Zhang, X.; Wang, T.; Luo, W.; Huang, P. Multi-level Fusion and Attention-guided CNN for Image Dehazing. IEEE Trans. Circuits
Syst. Video Technol. 2020. [CrossRef]

49. Zhang, X.; Wang, T.; Wang, J.; Tang, G.; Zhao, L. Pyramid Channel-based Feature Attention Network for image dehazing. Comput.
Vision Image Underst. 2020, 197, 103003. [CrossRef]

50. Shi, K.; Wang, J.; Zhong, S.; Tang, Y.; Cheng, J. Non-fragile memory filtering of T-S fuzzy delayed neural networks based on
switched fuzzy sampled-data control. Fuzzy Sets Syst. 2020, 394, 40–64. [CrossRef]

51. Mi, C.; Cao, L.; Zhang, Z.; Feng, Y.; Yao, L.; Wu, Y. A port container code recognition algorithm under natural conditions. J. Coast.
Res. 2020, 103, 822–829. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30857119
http://doi.org/10.1016/j.jclepro.2020.123209
http://doi.org/10.1016/j.jhydrol.2016.06.041
http://doi.org/10.1002/asia.202000059
http://www.ncbi.nlm.nih.gov/pubmed/32056375
http://doi.org/10.1109/TIP.2015.2491020
http://doi.org/10.1364/OL.388994
http://doi.org/10.1155/2019/4159306
http://doi.org/10.1038/s41598-020-71295-1
http://www.ncbi.nlm.nih.gov/pubmed/32868800
http://doi.org/10.2516/ogst/2019038
http://doi.org/10.1016/j.enconman.2016.12.019
http://doi.org/10.1016/j.jenvman.2017.11.059
http://www.ncbi.nlm.nih.gov/pubmed/30029345
http://doi.org/10.1016/j.rser.2019.06.013
http://doi.org/10.1039/C9TA11527G
http://doi.org/10.1007/s11356-020-09094-4
http://doi.org/10.3390/app10041240
http://doi.org/10.1016/j.scitotenv.2018.07.369
http://doi.org/10.1016/j.jenvman.2019.01.018
http://doi.org/10.1016/j.jngse.2020.103716
http://doi.org/10.1002/ese3.543
http://doi.org/10.1021/acs.energyfuels.0c03663
http://doi.org/10.1002/ese3.661
http://doi.org/10.1016/j.scitotenv.2020.139133
http://doi.org/10.1109/JSTSP.2020.2966864
http://doi.org/10.1109/TCSVT.2020.3046625
http://doi.org/10.1016/j.cviu.2020.103003
http://doi.org/10.1016/j.fss.2019.09.001
http://doi.org/10.2112/SI103-170.1


Sustainability 2021, 13, 2336 15 of 18

52. Salari, N.; Shohaimi, S.; Najafi, F.; Nallappan, M.; Karishnarajah, I. Application of pattern recognition tools for classifying acute
coronary syndrome: An integrated medical modeling. Theor. Biol. Med. Model. 2013, 10, 57. [CrossRef]

53. Zhang, C.-W.; Ou, J.-P.; Zhang, J.-Q. Parameter optimization and analysis of a vehicle suspension system controlled by magne-
torheological fluid dampers. Struct. Control Health Monit. 2006, 13, 885–896. [CrossRef]

54. Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.-M.; Wang, X. Computer Vision Techniques in Construction: A Critical Review. Arch.
Comput. Methods Eng. 2020. [CrossRef]

55. Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Bao, Z. Collaborative detection and power allocation framework for target tracking in multiple
radar system. Inf. Fusion 2020, 55, 173–183. [CrossRef]

56. Liu, D.; Wang, S.; Huang, D.; Deng, G.; Zeng, F.; Chen, H. Medical image classification using spatial adjacent histogram based on
adaptive local binary patterns. Comput. Biol. Med. 2016, 72, 185–200. [CrossRef] [PubMed]

57. Wang, B.; Zhang, B.F.; Liu, X.W.; Zou, F.C. Novel infrared image enhancement optimization algorithm combined with DFOCS.
Optik 2020, 224, 165476. [CrossRef]

58. Abedini, M.; Mutalib, A.A.; Zhang, C.; Mehrmashhadi, J.; Raman, S.N.; Alipour, R.; Momeni, T.; Mussa, M.H. Large deflection
behavior effect in reinforced concrete columns exposed to extreme dynamic loads. Front. Struct. Civ. Eng. 2020, 14, 532–553.
[CrossRef]

59. Mou, B.; Li, X.; Bai, Y.; Wang, L. Shear behavior of panel zones in steel beam-to-column connections with unequal depth of outer
annular stiffener. J. Struct. Eng. 2019, 145, 04018247. [CrossRef]

60. Wang, S.; Zhang, K.; van Beek, L.P.H.; Tian, X.; Bogaard, T.A. Physically-based landslide prediction over a large region: Scaling
low-resolution hydrological model results for high-resolution slope stability assessment. Environ. Model. Softw. 2020, 124, 104607.
[CrossRef]

61. Zhang, K.; Wang, Q.; Chao, L.; Ye, J.; Li, Z.; Yu, Z.; Yang, T.; Ju, Q. Ground observation-based analysis of soil moisture
spatiotemporal variability across a humid to semi-humid transitional zone in China. J. Hydrol. 2019, 574, 903–914. [CrossRef]

62. Zhang, S.; Zhang, J.; Ma, Y.; Pak, R.Y.S. Vertical dynamic interactions of poroelastic soils and embedded piles considering the
effects of pile-soil radial deformations. Soils Found. 2020, 61, 16–34. [CrossRef]

63. Pourya, K.; Abdolreza, O.; Brent, V.; Arash, H.; Hamid, R. Feasibility Study of Collapse Remediation of Illinois Loess Using
Electrokinetics Technique by Nanosilica and Salt. In Geo-Congress 2020; American Society of Civil Engineers: Reston, VA, USA,
2020; pp. 667–675.

64. Baziar, M.H.; Rostami, H. Earthquake Demand Energy Attenuation Model for Liquefaction Potential Assessment. Earthq. Spectra
2017, 33, 757–780. [CrossRef]

65. Chao, M.; Kai, C.; Zhiwei, Z. Research on tobacco foreign body detection device based on machine vision. Trans. Inst. Meas.
Control 2020, 42, 2857–2871. [CrossRef]

66. Abedini, M.; Zhang, C. Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical
Simulation, A State of the Art Review. Arch. Comput. Methods Eng. 2020. [CrossRef]

67. Gholipour, G.; Zhang, C.; Mousavi, A.A. Numerical analysis of axially loaded RC columns subjected to the combination of impact
and blast loads. Eng. Struct. 2020, 219, 110924. [CrossRef]

68. Mou, B.; Zhao, F.; Qiao, Q.; Wang, L.; Li, H.; He, B.; Hao, Z. Flexural behavior of beam to column joints with or without an
overlying concrete slab. Eng. Struct. 2019, 199, 109616. [CrossRef]

69. Zhang, C.; Abedini, M.; Mehrmashhadi, J. Development of pressure-impulse models and residual capacity assessment of RC
columns using high fidelity Arbitrary Lagrangian-Eulerian simulation. Eng. Struct. 2020, 224, 111219. [CrossRef]

70. Sun, Y.; Wang, J.; Wu, J.; Shi, W.; Ji, D.; Wang, X.; Zhao, X. Constraints hindering the development of high-rise modular buildings.
Appl. Sci. 2020, 10, 7159. [CrossRef]

71. Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Liu, J.; Zheng, Z.; Hui, D. Review on the research progress of cement-based and
geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 2020, 9, 155–169. [CrossRef]

72. Xiong, Z.; Xiao, N.; Xu, F.; Zhang, X.; Xu, Q.; Zhang, K.; Ye, C. An Equivalent Exchange Based Data Forwarding Incentive Scheme
for Socially Aware Networks. J. Signal Process. Syst. 2020. [CrossRef]

73. Zenggang, X.; Zhiwen, T.; Xiaowen, C.; Xue-min, Z.; Kaibin, Z.; Conghuan, Y. Research on Image Retrieval Algorithm Based on
Combination of Color and Shape Features. J. Signal Process. Syst. 2019, 1–8. [CrossRef]

74. Yue, H.; Wang, H.; Chen, H.; Cai, K.; Jin, Y. Automatic detection of feather defects using Lie group and fuzzy Fisher criterion for
shuttlecock production. Mech. Syst. Signal Process. 2020, 141, 106690. [CrossRef]

75. Zhu, G.; Wang, S.; Sun, L.; Ge, W.; Zhang, X. Output Feedback Adaptive Dynamic Surface Sliding-Mode Control for Quadrotor
UAVs with Tracking Error Constraints. Complexity 2020, 2020, 8537198. [CrossRef]

76. Xiong, Q.; Zhang, X.; Wang, W.-F.; Gu, Y. A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI. Comput.
Math. Methods Med. 2020, 2020, 9812019. [CrossRef] [PubMed]

77. Zhang, J.; Liu, B. A review on the recent developments of sequence-based protein feature extraction methods. Curr. Bioinform.
2019, 14, 190–199. [CrossRef]

78. Zhao, X.; Li, D.; Yang, B.; Chen, H.; Yang, X.; Yu, C.; Liu, S. A two-stage feature selection method with its application. Comput.
Electr. Eng. 2015, 47, 114–125. [CrossRef]

79. Chen, H.; Chen, A.; Xu, L.; Xie, H.; Qiao, H.; Lin, Q.; Cai, K. A deep learning CNN architecture applied in smart near-infrared
analysis of water pollution for agricultural irrigation resources. Agric. Water Manag. 2020, 240, 106303. [CrossRef]

http://doi.org/10.1186/1742-4682-10-57
http://doi.org/10.1002/stc.63
http://doi.org/10.1007/s11831-020-09504-3
http://doi.org/10.1016/j.inffus.2019.08.010
http://doi.org/10.1016/j.compbiomed.2016.03.010
http://www.ncbi.nlm.nih.gov/pubmed/27058283
http://doi.org/10.1016/j.ijleo.2020.165476
http://doi.org/10.1007/s11709-020-0604-9
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002256
http://doi.org/10.1016/j.envsoft.2019.104607
http://doi.org/10.1016/j.jhydrol.2019.04.087
http://doi.org/10.1016/j.sandf.2020.10.003
http://doi.org/10.1193/030816EQS037M
http://doi.org/10.1177/0142331220929816
http://doi.org/10.1007/s11831-020-09483-5
http://doi.org/10.1016/j.engstruct.2020.110924
http://doi.org/10.1016/j.engstruct.2019.109616
http://doi.org/10.1016/j.engstruct.2020.111219
http://doi.org/10.3390/app10207159
http://doi.org/10.1515/ntrev-2020-0014
http://doi.org/10.1007/s11265-020-01610-6
http://doi.org/10.1007/s11265-019-01508-y
http://doi.org/10.1016/j.ymssp.2020.106690
http://doi.org/10.1155/2020/8537198
http://doi.org/10.1155/2020/9812019
http://www.ncbi.nlm.nih.gov/pubmed/32774445
http://doi.org/10.2174/1574893614666181212102749
http://doi.org/10.1016/j.compeleceng.2015.08.011
http://doi.org/10.1016/j.agwat.2020.106303


Sustainability 2021, 13, 2336 16 of 18

80. Li, T.; Xu, M.; Zhu, C.; Yang, R.; Wang, Z.; Guan, Z. A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC. IEEE
Trans. Image Process. 2019, 28, 5663–5678. [CrossRef]

81. Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Li, Y.; Chen, Q.; Zuo, C. Deep-learning-enabled geometric constraints and phase unwrapping for
single-shot absolute 3D shape measurement. APL Photonics 2020, 5, 046105. [CrossRef]

82. Qiu, T.; Shi, X.; Wang, J.; Li, Y.; Qu, S.; Cheng, Q.; Cui, T.; Sui, S. Deep Learning: A Rapid and Efficient Route to Automatic
Metasurface Design. Adv. Sci. 2019, 6, 1900128. [CrossRef]

83. Xu, M.; Li, T.; Wang, Z.; Deng, X.; Yang, R.; Guan, Z. Reducing Complexity of HEVC: A Deep Learning Approach. IEEE Trans.
Image Process. 2018, 27, 5044–5059. [CrossRef] [PubMed]

84. Zhu, Q. Research on Road Traffic Situation Awareness System Based on Image Big Data. IEEE Intell. Syst. 2020, 35, 18–26.
[CrossRef]

85. Liu, S.; Chan, F.T.S.; Ran, W. Decision making for the selection of cloud vendor: An improved approach under group decision-
making with integrated weights and objective/subjective attributes. Expert Syst. Appl. 2016, 55, 37–47. [CrossRef]

86. Tian, P.; Lu, H.; Feng, W.; Guan, Y.; Xue, Y. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by
future climate change: A case study in Lhasa River Basin. CATENA 2020, 187, 104340. [CrossRef]

87. Yang, W.; Pudasainee, D.; Gupta, R.; Li, W.; Wang, B.; Sun, L. An overview of inorganic particulate matter emission from
coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing
factors. Fuel Process. Technol. 2020, 106657. [CrossRef]

88. Cao, B.; Dong, W.; Lv, Z.; Gu, Y.; Singh, S.; Kumar, P. Hybrid Microgrid Many-Objective Sizing Optimization with Fuzzy Decision.
IEEE Trans. Fuzzy Syst. 2020, 28, 2702–2710. [CrossRef]

89. Cao, B.; Zhao, J.; Gu, Y.; Ling, Y.; Ma, X. Applying graph-based differential grouping for multiobjective large-scale optimization.
Swarm Evol. Comput. 2020, 53, 100626. [CrossRef]

90. Qu, S.; Han, Y.; Wu, Z.; Raza, H. Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization. Group
Decis. Negot. 2020, 1–38. [CrossRef]

91. Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical review of data-driven decision-making in bridge operation and
maintenance. Struct. Infrastruct. Eng. 2020, 1–24. [CrossRef]

92. Adeli, H. Neural networks in civil engineering: 1989–2000. Comput. Aided Civ. Infrastruct. Eng. 2001, 16, 126–142. [CrossRef]
93. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,

359–366. [CrossRef]
94. Lv, Z.; Qiao, L. Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl. Soft Comput.

2020, 92, 106300. [CrossRef]
95. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive

Survey and Current Challenges. Materials 2020, 13, 5755. [CrossRef] [PubMed]
96. Chen, H.-L.; Wang, G.; Ma, C.; Cai, Z.-N.; Liu, W.-B.; Wang, S.-J. An efficient hybrid kernel extreme learning machine approach

for early diagnosis of Parkinson’s disease. Neurocomputing 2016, 184, 131–144. [CrossRef]
97. Hu, L.; Hong, G.; Ma, J.; Wang, X.; Chen, H. An efficient machine learning approach for diagnosis of paraquat-poisoned patients.

Comput. Biol. Med. 2015, 59, 116–124. [CrossRef]
98. Wang, S.-J.; Chen, H.-L.; Yan, W.-J.; Chen, Y.-H.; Fu, X. Face recognition and micro-expression recognition based on discriminant

tensor subspace analysis plus extreme learning machine. Neural Process. Lett. 2014, 39, 25–43. [CrossRef]
99. Xia, J.; Chen, H.; Li, Q.; Zhou, M.; Chen, L.; Cai, Z.; Fang, Y.; Zhou, H. Ultrasound-based differentiation of malignant and benign

thyroid Nodules: An extreme learning machine approach. Comput. Methods Programs Biomed. 2017, 147, 37–49. [CrossRef]
100. Chen, H.; Heidari, A.A.; Chen, H.; Wang, M.; Pan, Z.; Gandomi, A.H. Multi-population differential evolution-assisted Harris

hawks optimization: Framework and case studies. Future Gener. Comput. Syst. 2020, 111, 175–198. [CrossRef]
101. Zhang, Y.; Liu, R.; Wang, X.; Chen, H.; Li, C. Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 2020,

25, 26. [CrossRef]
102. Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving support vector machines using fruit fly

optimization for medical data classification. Knowl. Based Syst. 2016, 96, 61–75. [CrossRef]
103. Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft

Comput. J. 2020, 88, 105946. [CrossRef]
104. Tu, J.; Chen, H.; Liu, J.; Heidari, A.A.; Zhang, X.; Wang, M.; Ruby, R.; Pham, Q.-V.J.K.-B.S. Evolutionary biogeography-based

whale optimization methods with communication structure: Towards measuring the balance. Knowl. Based Syst. 2021, 212, 106642.
[CrossRef]

105. Zhao, X.; Li, D.; Yang, B.; Ma, C.; Zhu, Y.; Chen, H. Feature selection based on improved ant colony optimization for online
detection of foreign fiber in cotton. Appl. Soft Comput. 2014, 24, 585–596. [CrossRef]

106. Zhao, D.; Liu, L.; Yu, F.; Heidari, A.A.; Wang, M.; Liang, G.; Muhammad, K.; Chen, H.J.K.-B.S. Chaotic random spare ant colony
optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl. Based Syst. 2020, 106510. [CrossRef]

107. Yu, C.; Chen, M.; Cheng, K.; Zhao, X.; Ma, C.; Kuang, F.; Chen, H. SGOA: Annealing-behaved grasshopper optimizer for global
tasks. Eng. Comput. 2021, 1–28. [CrossRef]

108. Xu, X.; Chen, H.-L. Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput. 2014, 18,
797–807. [CrossRef]

http://doi.org/10.1109/TIP.2019.2921877
http://doi.org/10.1063/5.0003217
http://doi.org/10.1002/advs.201900128
http://doi.org/10.1109/TIP.2018.2847035
http://www.ncbi.nlm.nih.gov/pubmed/29994256
http://doi.org/10.1109/MIS.2019.2942836
http://doi.org/10.1016/j.eswa.2016.01.059
http://doi.org/10.1016/j.catena.2019.104340
http://doi.org/10.1016/j.fuproc.2020.106657
http://doi.org/10.1109/TFUZZ.2020.3026140
http://doi.org/10.1016/j.swevo.2019.100626
http://doi.org/10.1007/s10726-020-09707-w
http://doi.org/10.1080/15732479.2020.1833946
http://doi.org/10.1111/0885-9507.00219
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1016/j.asoc.2020.106300
http://doi.org/10.3390/ma13245755
http://www.ncbi.nlm.nih.gov/pubmed/33339413
http://doi.org/10.1016/j.neucom.2015.07.138
http://doi.org/10.1016/j.compbiomed.2015.02.003
http://doi.org/10.1007/s11063-013-9288-7
http://doi.org/10.1016/j.cmpb.2017.06.005
http://doi.org/10.1016/j.future.2020.04.008
http://doi.org/10.1007/s00366-020-01028-5
http://doi.org/10.1016/j.knosys.2016.01.002
http://doi.org/10.1016/j.asoc.2019.105946
http://doi.org/10.1016/j.knosys.2020.106642
http://doi.org/10.1016/j.asoc.2014.07.024
http://doi.org/10.1016/j.knosys.2020.106510
http://doi.org/10.1007/s00366-020-01234-1
http://doi.org/10.1007/s00500-013-1089-4


Sustainability 2021, 13, 2336 17 of 18

109. Cao, B.; Wang, X.; Zhang, W.; Song, H.; Lv, Z. A Many-Objective Optimization Model of Industrial Internet of Things Based on
Private Blockchain. IEEE Netw. 2020, 34, 78–83. [CrossRef]

110. Cao, B.; Fan, S.; Zhao, J.; Yang, P.; Muhammad, K.; Tanveer, M. Quantum-enhanced multiobjective large-scale optimization via
parallelism. Swarm Evol. Comput. 2020, 57, 100697. [CrossRef]

111. Hu, J.; Chen, H.; Heidari, A.A.; Wang, M.; Zhang, X.; Chen, Y.; Pan, Z.J.K.-B.S. Orthogonal learning covariance matrix for defects
of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl. Based Syst. 2020, 213, 106684. [CrossRef]

112. Zhao, X.; Zhang, X.; Cai, Z.; Tian, X.; Wang, X.; Huang, Y.; Chen, H.; Hu, L. Chaos enhanced grey wolf optimization wrapped
ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 2019, 78, 481–490. [CrossRef] [PubMed]

113. Zhang, X.; Wang, D.; Zhou, Z.; Ma, Y. Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal.
Mach. Intell. 2019. [CrossRef] [PubMed]

114. Zhang, X.; Jiang, R.; Wang, T.; Wang, J. Recursive neural network for video deblurring. IEEE Trans. Circuits Syst. Video Technol. 2020.
[CrossRef]

115. Zhang, Y.; Liu, R.; Heidari, A.A.; Wang, X.; Chen, Y.; Wang, M.; Chen, H.J.N. Towards augmented kernel extreme learning models
for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing 2020. [CrossRef]

116. Akdemir, B. Prediction of Hourly Generated Electric Power Using Artificial Neural Network for Combined Cycle Power Plant.
Int. J. Electr. Energy 2016, 4, 91–95. [CrossRef]
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