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Abstract: Rapid technological advances in airborne hyperspectral and lidar systems paved the way 

for using machine learning algorithms to map urban environments. Both hyperspectral and lidar 

systems can discriminate among many significant urban structures and materials properties, which 

are not recognizable by applying conventional RGB cameras. In most recent years, the fusion of 

hyperspectral and lidar sensors has overcome challenges related to the limits of active and passive 

remote sensing systems, providing promising results in urban land cover classification. This paper 

presents principles and key features for airborne hyperspectral imaging, lidar, and the fusion of 

those, as well as applications of these for urban land cover classification. In addition, machine learn-

ing and deep learning classification algorithms suitable for classifying individual urban classes such 

as buildings, vegetation, and roads have been reviewed, focusing on extracted features critical for 

classification of urban surfaces, transferability, dimensionality, and computational expense. 

Keywords: machine learning; deep learning; lidar; hyperspectral; remote sensing; urban  

environment; data fusion; sensor fusion; urban mapping; land cover classification 

 

1. Introduction 

Over the last few decades, global urbanization has grown rapidly. By 2050, around 

68% of the world`s population will be living in urban areas [1]. This can cause environ-

mental challenges, including ecological problems, poor air quality, deterioration of public 

health, microclimate changes leading to severe weather, higher temperatures, limited ac-

cess to water, persistent vulnerability to natural hazards, and the release of toxic particles 

from fast industrialization into the atmosphere [2,3]. These challenges lead to difficulties 

in advanced urban analyses due to urban surfaces' spectral and structural diversity and 

complexity over a small area [4,5]. Therefore, constant monitoring of urban areas is often 

highly required. Systematic monitoring and updating of maps are critical in urban areas, 

where many objects are mobile (vehicles and temporary buildings), and the infrastruc-

ture, vegetation, and construction are constantly changing. 

Spatiotemporal investigations of the urban regions are today provided by remote 

sensing technology advances [6]. Especially, airborne remote sensing is a powerful devel-

oping tool for urban analysis that offers time-efficient mapping of a city essential for di-

verse planning [7], management activities [8], and monitoring urban and suburban land 

uses [9]. It has been proven as a common technique for mapping urban land cover changes 

to investigate, e.g., social preferences, the regional ecosystem, urbanization change, and 

biodiversity [10]. Urban remote sensing, in particular, is widely used for the investigation 

Citation: Kuras, A.; Brell, M.; Rizzi, 

J.; Burud, I. Hyperspectral and Lidar 

Data Applied to the Urban Land 

Cover Machine Learning and  

Neural-Network-Based  

Classification: A Review. Remote 

Sens. 2021, 13, 3393. 

https://doi.org/10.3390/rs13173393 

Academic Editor: Mauro Dalla Mura 

Received: 16 July 2021 

Accepted: 20 August 2021 

Published: 26 August 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 3393 2 of 38 
 

 

of three-dimensional urban geometry that is crucial for modeling urban morphology [11], 

identifying various objects, heterogeneous material, and mixtures. However, the growing 

challenges require a state-of-the-art technological solution in terms of sensors and analysis 

methods. Continuous development and improvement of remote sensing sensors increase 

interest in identifying urban land cover types based on spectral, spatial, and structural 

properties [12,13]. In urban mapping, lidar analyses (light detection and ranging), hyper-

spectral data (HS), and synthetic aperture radar (SAR) have become significant. Different 

portions of the electromagnetic spectrum are useful in analyzing urban environments 

from the reflective spectral range to the microwave radar [14]. The latter provide high-

resolution images independent of the time of day and weather; however, due to the re-

quirement of oblique illumination of the scene, occlusion and layover appear, making the 

analysis of dynamic urban areas difficult [15]. 

Urban land cover classification accuracy and interpretability based only on a single 

sensor in complex, dense urban areas are often insufficient [16]. The heterogeneity in the 

urban areas leads to high spectral variation within one land cover type, resulting in very 

complex analyses. The impervious surfaces (roofs, parking lots, roads, and pavements) 

notably vary in the spectral and spatial-structural manner. In addition, scale and spatial 

resolution are relevant for estimating urban heterogeneity. Scale defines heterogeneity, in 

which materials are taken into account analytically or absent or grouped into one class, 

e.g., individual trees, type versus forest, or vegetation in general [17]. Spatial resolution, 

on the other hand, determines the level of pixel mixing. However, high spatial resolution 

increases the physical material heterogeneity, increasing the complexity of analyses. 

HS data provide spectral information about materials, differentiating them without 

elevation context. The challenge in the pure spectral analysis is the negligence of object 

identification, mostly built from various materials maintaining very high intra-object het-

erogeneity. By contrast, lidar data can distinguish between different land cover classes 

from the same material at a different height, such as asphaltic open parking lots and roads 

[18,19]. Furthermore, passive remote sensors, such as HS, are sensitive to atmospheric 

conditions and illumination, whereas lidar as an active sensor is less sensitive to these 

factors. This property of lidar enables, e.g., a physical correction of shadow and illumina-

tion purposes when combined with HS data [20–25] and intensity measurement for urban 

land cover mapping in shaded areas [26]. Regardless of the spatial and spectral resolution 

of airborne-based HS sensors, urban environments are characterized by spectral ambigu-

ity and reduced spectral value under the shadow caused by topography changes, build-

ings, and trees, which can be overcome by adding lidar data as presented by [27]. In order 

to overcome the limitations of individual sensor capabilities, the recent technologies are 

based on multisensory fusion in the classification of urban surfaces, combining active and 

passive remote sensing, such as airborne-based lidar and hyperspectral data (HL-Fusion). 

Such an HL-Fusion can provide complementary information regarding the three-dimen-

sional topography, spatial structure, and spectral information in the landcover classifica-

tion purposes [19,28–31]. 

Moreover, a fusion of spectral, spatial, and elevation features provides robust and 

unique information relevant to the urban environment [30]. The airborne HL-Fusion has 

already been investigated for urban land cover classification purposes [30,32,33]. How-

ever, diverse combination methods are implemented on different data and product levels 

based on either physical or empirical approaches [34]. Furthermore, since all fusion pro-

cesses are very complex, there is no defined framework for fusing these sensors. There-

fore, a comprehensive summary of previous research on data fusion may enhance the un-

derstanding of fusion possibilities, challenges, and common issues that limit the classifi-

cation results in the urban environment. 

Machine learning (ML) techniques have been applied as classifiers for HS data [23–

28]. Depending on the classification aim, different mapping methods are applied to 

achieve the goal. ML algorithms are in constant improvement, providing algorithms that 

can hierarchically extract more complex features. This ability is assigned to a subfield of 
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machine learning as deep learning (DL). DL has been proven as an effective technique for 

feature extraction of HS data on the spatio-spectral level [35–40]. Although ML and DL 

methods are considered relevant classification tools in remote sensing, different algo-

rithms perform best, extracting different pixel- or object-based features. Choosing a clas-

sification algorithm for HS data requires knowledge about the features that can be ex-

tracted. Especially, DL has gained popularity, thanks to finding unique deep parameters 

in a pixelwise manner [41]. However, in the urban context, a per pixel classification can 

lead to noisy results considering high spatial distribution. 

Moreover, classification results mainly depend on the number of training samples, 

limiting the performance and accuracy when the training dataset is insufficient for learn-

ing the network algorithm [42]. In order to improve the classification results and reduce 

the heterogeneity issue, the inclusion of contextual information around pixels and object-

oriented classification [43,44] were considered, which allowed retrieving spatial infor-

mation of HS data and extracting critical spatial patterns of urban land cover classes 

[45,46]. ML- and DL-based land cover classification in the urban environment from lidar 

is primarily directed to detect buildings or high vegetation [47]. This is due to the lidar`s 

ability to extract geometric features from objects, deriving their shape, elevation, and other 

properties that are useful for a classification purpose. Especially, lidar, in combination 

with HS, is a powerful tool for classifying urban materials. However, since the objects in 

the urban scene are complex, analyses with conventional classifiers achieve a low accuracy 

[48]. Commonly, the application of ML and DL algorithms for classification purposes in 

the urban environment outperforms traditional classifiers developing very quickly [49]. 

This review study presents the latest ML and DL urban mapping methods focusing 

on airborne HS and lidar data. The datasets cover the reflective spectral range of the elec-

tromagnetic spectrum (VNIR, SWIR). The paper focuses on ML and DL classification al-

gorithms applied in the urban environment for land cover classes, such as buildings, 

roads, vegetation, and water analysis. We point out algorithms applicable for HS, lidar, 

and HL-Fusion and the challenges of applying each algorithm to hyperspectral and lidar 

data. 

The structure of this review paper is arranged as follows (Figure 1): in Section 2, typ-

ical urban land cover classes are described in terms of their complexity in HS and lidar 

data analysis. Section 3 synthesizes the general characteristics of HS and lidar data, high-

lighting the automated and handcrafted features extracted from both sensors. In Section 

4, classification algorithms for urban mapping purposes are described. Section 5 shows 

the results and discussion of the presented algorithms in urban environment classifica-

tion. Finally, we point out conclusive remarks on the mapping methods, HL-Fusion po-

tential, perspectives for further research, and recommendations for new research fields. 

 

Figure 1. The structure of the review paper. 

2. Classified Urban Land Cover Classes 

The urban land cover consists of very complex physical materials and surfaces that 

are constantly having anthropological impacts. The urban surface types are a mosaic of 

seminatural surfaces such as grass, trees, bare soil, water bodies, and human-made mate-
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rials of diverse age and composition, such as asphalt, concrete, roof tiles for energy con-

servation and fire danger [50], and generally impervious surfaces for urban flooding stud-

ies and pollution [51]. The complexity of urban analysis also depends on the scale chosen 

and its purpose. Many classifications refer to urban materials with fine spatial resolution 

deepening the heterogeneity, allowing a more detailed mapping result. The classification 

of urban objects, which consist of many different materials and variance within a class, 

although significant (e.g., in city map updates), becomes a challenge due to the highly 

nonlinear and heterogeneous composition of different objects surfaces and materials, and 

thus, there is the need to use more training data for classification purposes, which is time-

consuming and computationally expensive. 

2.1. Buildings 

Buildings in an urban context can be recognized as shapes with planar surfaces and 

straight lines [52]. Building detection based on remote sensing methods plays a crucial 

role in many applications in the urban environment, such as in 3D monitoring of urban 

development in time [53], urban planning, telecommunication network planning, vehicle 

navigation [33], urban energy planning [53], city management, and damage assessment 

[54]. Many mapping techniques are based on shape identification, outlines, and prelimi-

nary model data [54]. Besides detecting buildings as objects, building roof extraction has 

recently been a hot topic within the remote sensing community. Building roofs are defined 

by planarity properties and height derivatives based on elevation. A 3D visualization of 

buildings is of great importance for infrastructure management and modeling, 3D city 

mapping, simulations, change detection, and more [55]. Both airborne-based optical and 

lidar data have been used recently to map buildings. A common way to detect buildings 

is to use a digital surface model (DSM) [56,57], a normalized DSM (nDSM) [58,59], or a 

point cloud extracted from lidar data [60–63]. Lidar is capable of extracting building 

heights and planar roof faces [33]. It is beneficial for spatiotemporal assessment and in-

vestigation of building density for sustainability study and residential development in 

cities [53]. 

By contrast, airborne-based HS data can better distinguish between materials at the 

roof surfaces due to their spectral differences [33]. However, not including the elevation 

information from the lidar scanner, the classification of buildings and their roofs can be 

too complex without human expertise. One example is a building surrounded by an arid 

lawn with open soil, a grass rooftop, a building with an asphaltic parking lot, or bitumen 

roofing surrounded by asphaltic parking at the building's ground-level high vegetation 

(trees) overhanging buildings [64]. Therefore, an HL-Fusion can improve the building 

classification results offering high accuracy on a spectral and spatial basis. 

2.2. Vegetation 

Vegetation is recognized by its geometrical complexity, defined by parameters such 

as the roughness, point density ratio measure [65], and chlorophyll spectral feature. In the 

last decade, active (Sentinel-1, LiDAR, and radar) and passive (Quickbird, Worldview, 

Sentinel-2, Landsat, and MODIS) remote sensing has been widely applied to vegetation 

detection. Lidar data are used to generate virtual 3D tree models [66], map low and high 

vegetation [67], and, using multispectral lidar, assess vegetation variety regarding its 

health and density [68], as well as extract vegetation indices, e.g., NDVI [69] for monitor-

ing changes caused by urbanization, anthropogenetic activities, and harvesting applying 

wavelet transform [70,71]. However, vegetation detection is not a straightforward ap-

proach. The analysis is often complex and detailed due to the increasingly finer spatial 

resolution of remote sensing devices, such as distinguishing photosynthetic and nonpho-

tosynthetic vegetation [72]. Vegetation is often not defined as a whole but as groups, for 

example, as low vegetation (grass), middle vegetation (shrubs), and high vegetation 

(trees). One of the more complex challenges is the similar morphology of low/young trees 

and shrubs, causing misclassification of shrubs as high trees [73]. HS data are also used to 
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detect vegetation on a spectral basis (chlorophyll reflectance), differentiating between 

vegetation types and healthiness. More biophysical parameters can be defined due to 

more spectral bands than multispectral lidar (usually 2–3 wavelengths), such as the leaf 

area index, fractional cover, and foliage biochemistry [74]. Both sensors have been fused 

in many studies, e.g., for canopy characterization for biomass assessment and estimation 

of risk of natural hazards [75] and urban tree species mapping [76]. 

2.3. Roads 

Road detection from airborne-based HS and lidar data is essential in remote sensing 

applications, e.g., a road navigation system, urban planning and management, and geo-

graphic information actualization [77,78]. The elevation feature derived from lidar data 

has been proven as a significant parameter to extract time-efficient road methods com-

pared to optical methods [79]. DSM distinguishes more precise boundaries of surfaces, 

even in occluded regions [80]. However, only lidar-data-based classification is limited 

when roads are at the same elevation but made of different materials, such as asphalt, 

concrete, or other impervious materials [18]. Therefore, HS imaging can differentiate be-

tween different materials and their conditions to complement road classification pur-

poses. It has already been proven by Herold et al. [81] for the following uses: map altera-

tion, degradation, and structural damages of road surfaces based on spectral analysis. 

Usually, to detect roads, texture information is implemented [82]. In addition, lane marks 

can be used as an indicator for new roads; however, this approach is illumination sensitive 

[83]. HS data classification without topographic information is challenging when differ-

entiating between two objects made from the same material: differentiation between a 

parking lot, parking at the ground level, cycleway, and a road [30]. 

2.4. Miscellaneous 

Apart from the above-described land cover classes, the urban environment consists 

of more complex thematic classes. They commonly cannot be chemically or physically 

described by a single hyperspectral absorption feature or other single features, such as 

height or shape, which are, however, extracted from contextual information. Thus, spatial 

context is critical and necessary for identifying industrial areas, commercial or residential 

buildings, playgrounds, and harbors in coastal cities. The combination of spectral and 

spatial features from HS and lidar data shows potential, allowing identifying thematic 

class and assessing its condition in terms of quality and materials. 

3. Key Characteristics of Hyperspectral and Lidar Data 

In urban land cover classification, handcrafted feature engineering plays an im-

portant role in standard shallow ML algorithms, such as support vector machines (SVM) 

and random forest (RF). Features are manually derived from remotely sensed data and 

defined to describe an object of interest, starting from spectral bands through, for example, 

spectral indices and contextual information, which are generally very useful in defining 

important biophysical parameters, e.g., for vegetation [84]. However, manually derived 

features may not sufficiently represent the highly complex and unique urban environment 

[85]. Depending on the classification objective and classified objects, different features are 

required. However, in DL, the feature engineering process is simplified as features are 

extracted during the training step [86]. These automatic high-level features can represent 

complex spatial correlations and nonlinear relationships. Examples of handcrafted fea-

tures for both HS and lidar data are described below in this section. 

3.1. Hyperspectral (HS) Images 

HS data retrieved from an imaging spectrometer are a three-dimensional cube that 

includes two-dimensional spatial information (x, y) with spectral information at each pixel 
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position xiyj [87]. Each pixel in the obtained digital data contains a nearly continuous spec-

trum covering the reflective spectral range of the visible, near-infrared (VNIR: 400–1000 

nm) and short-wave infrared (SWIR: 1000–2500 nm) [88,89]. HS as a passive system is 

dependent on the given lighting conditions resulting in high intraclass (within a class) 

spectral variability. In these wavelength ranges of the electromagnetic spectrum, particu-

lar absorption features and shapes make it possible to identify the material`s chemical and 

physical properties [90]. For example, in urban land cover classification, the reflective 

spectral range is often used to map diverse soils [91], vegetation [92], rooftop materials 

[93,94], and other complex physical materials [12,95–97]. 

A high spectral resolution characterizes airborne-based HS applications at the ex-

pense of spatial resolution since the HS sensor’s spatial resolution linearly depends on the 

flight altitude and the instantaneous field of view (IFOW) [98]. However, due to technol-

ogy development, the spatial resolution of HS is enhanced. Spectrometers with high spec-

tral and spatial resolution have been used to identify detailed urban materials 

[12,13,94,99]. With a higher spatial resolution of the hyperspectral camera, it is more likely 

that the spectral signals are less mixed, producing pure pixels and thus detecting materials 

in the urban environment with high geometric detail and material accuracy. However, a 

high resolution can lead to difficulties, detecting more diverse materials within a single 

object, thus increasing heterogeneity and making object-based classification on a coarser 

scale more challenging. Especially in urban remote sensing, the spatial complexity of the 

objects and their heterogeneity have been an issue for limited spatial resolution in many 

studies [94,100]. When within a single pixel, the spectral mixture is very complex, the dif-

ferent spectral properties of individual urban materials are lost, making classification at 

the level of relevant urban materials challenging [101]. Therefore, a high spatial resolution 

of hyperspectral sensors has become a crucial parameter in urban mapping. 

Land cover classification based on HS data is affected by spatial and spectral resolu-

tion, classification purposes (scale and defined land cover classes), mapping methods, and 

data acquisition and preprocessing. The latter can be the optical geometry, integration 

time, and other parameters during the acquisition [102]. Especially in airborne-based HS 

imaging, the sensor experiences altitude variation, which results in geometric distortions 

in the HS scene [103]. It is always a compromise between off-nadir distortion, spatial res-

olution, mixed pixels, and SNR (signal-to-noise ratio). Therefore, the strategy and flight 

scheme must be adapted to the level of the classification target in an advanced way. The 

flight line's swath width is reduced at a lower altitude, which requires more flight lines to 

be flown to cover the target area with changing light conditions due to long integration 

time [104] and leads to higher off-nadir distortions [105]. However, there are challenges 

for flying at higher altitudes, such as a high degree of mixed pixels due to a low spatial 

resolution [106]. In addition, the short integration time at lower altitudes results in lower 

SNR and decreased sensor sensitivity, producing a more elevated noise floor. 

3.1.1. Spectral features 

Within one material, spectral features can vary due to color, coating, degradation, 

alteration, roughness, the illumination of material, data acquisition, location of the mate-

rial, and preprocessing data (Figure 2) [97,107,108]. These variations within a material are 

more and more investigated, generating spectral libraries of complex urban materials 

[12,109,110] and normalization based on advanced preprocessing. HS images result in 

high-dimensional data leading to computationally expensive analyses. For this reason, the 

first common step of the classification process of the HS data is very often a spectral di-

mensionality reduction to the relevant components applying linear spectral transfor-

mations without losing important spectral information [111]. Standard techniques for di-

mensionality reduction are often statistically based, such as principal component analysis 

(PCA) [112], linear discriminant analysis (LDA) [113], multivariate curve resolution 

(MCR) [114], and other unsupervised classification methods. Such data compression saves 

computing time, reduces noise, and retains needed information [115]. They are often 
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based on the individual image statistic, and thus they are not directly transferable to other 

flight lines or flight campaigns. In addition, quantification procedures based on the spec-

tral signature are no longer possible. Statistical calculations have been applied to the spec-

tral features of the urban materials, such as continuum removal [116,117]. The continuum-

removal algorithm is applied to identify spectral absorption features by their wavelength 

positions and shapes, removing the overall albedo of the reflectance curve and reducing 

the searched material's superimposition [118]. However, the general shape of an absorp-

tion feature is relevant for material identification and quantification. Continuum removal 

may prove effective only for limited studies, excluding the original shape of the spectra. 

Some handcrafted target-specific features can be calculated from optical remote sensing 

data, such as normalized difference vegetation index (NDVI) for vegetation detection 

[8,18,119,120], new impervious index, road detection index, new roof extraction index for 

the detection of built-up, roads, and roofs [121], normalized difference built-up index 

[122], visible red and green near-infrared built-up indices [123], road extraction index 

[124], and hyperspectral difference water index for the detection of urban water bodies 

[125]. 

 

Figure 2. At surface reflectance of some urban surfaces (HySpex sensors VNIR-1800 and SWIR-384). The hyperspectral 

dataset was acquired by the Terratec AS Company in August 2019 over Baerum municipality, Oslo, Norway. 

3.1.2. Spatial Information 

Spatial-context information is widely used to achieve robust and accurate classifica-

tion maps considering the neighborhood in the target pixel. While spectral features are 

the most relevant features in material-based classification, adding spatial features to object 

classification makes it easier to group pixels with some spectral variance into one class 

representing an object or land cover type [126] (see Section 3.3). In addition, the spatial 

noise of the classification results can be reduced [127,128]. In [129], the authors proposed 

a context-sensitive semisupervised SVM classification technique using contextual infor-

mation without assumptions about the labeling of contextual pixels. In [130,131], the au-

thors also added the contextual features into hyperspectral image classification, including 

the information in the classification map generation step. Spatial information is often in-

corporated in hyperspectral classification problems applying Markov random field where 

a predefined neighborhood of a pixel assumes that the central pixel belongs to the same 

class [36,132,133]. Contextual features can also be extracted considering texture (see Sec-

tion 3.3.1), morphological features (see Section 3.3.2), and image segmentation. 
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3.2. Lidar Data 

Lidar data is a three-dimensional point cloud (x, y, z) which delivers by default in-

formation about elevation, multiple-return, the reflected intensity, texture, and wave-

form-derived feature spaces from the object hit by laser pulse [31,134]. As an active sensor, 

a lidar system emits radiation from one bandwidth (more in the case of multiwavelength 

lidar scanners) to the object surface at high repetition rates. Lidar scanners are whisk-

broom-type instruments and typically use the monochromatic laser in visible—532 (bath-

ymetric/coastal mapping)—and near-infrared—1064 and 1550 nm—for example, for veg-

etation detection and differentiation between asphaltic and nonasphaltic roads [135] 

which can be used as an additional intensity feature in land cover mapping in the reflec-

tive spectral range [31]. The advantage of using airborne lidar is insensitivity to relief dis-

placement and illumination conditions [31], retaining full 3D geometry of data. 

3.2.1. Height Features and Their Derivatives (HD) 

The height feature is used to calculate the three-dimensional coordinates (x,y,z) that 

generate a gridded 2.5-dimensional topographical profile of the area of interest [31]. Es-

pecially in the urban environment, the z value height is crucial for precise contour gener-

ation of elevated objects [31]. In addition, the height difference between the lidar return 

and the lowest point in cylindrical volume has been investigated and proven as an im-

portant feature in discriminating ground and nonground points [136,137]. Moreover, a 

digital surface model (DSM) (Figure 3A) is extracted from the height information applying 

interpolation of 3D points onto a 2D grid. From a DSM, a surface roughness layer [138] 

and a normalized DSM (nDSM) (Figure 3C) are calculated, subtracting the digital terrain 

model (DTM) (Figure 3B) from the DSM [31]. The overlapping of the building height in-

formation and the terrain height information is thus excluded. The object representation 

heterogeneity is therefore reduced, which helps the classification procedure. 

 

Figure 3. Examples of DSM (A), DTM (B), and nDSM (C) from Riegl VG-1560i LiDAR scanner ac-

quired by the Terratec AS Company in August 2019 over Baerum municipality, Oslo, Norway. 

The nDSM represents the above-ground points that correspond to the actual heights 

of the object, omitting information about the objects which could complicate the classifi-

cation, for example, the differentiation of buildings in lowland or hilly regions. The height 

information from lidar data helps differentiate between high and low vegetation [139], 

tree-level characterization applying the canopy height model (CHM) [140], and roads and 

buildings in the urban environment [8]. In addition, slope calculation (first derivative of 

any elevation product) and surface curvature (second derivative of the elevation surface) 

have been applied for detecting surface roughness [141,142] and changes in the normal 

vectors of the surface [143]. Moreover, calculated skewness and kurtosis models from the 

lidar elevation data were applied by Antonarakis et al. [144] to determine planted and 

natural riparian forests and their ages [32]. In the classification approaches, Charaniya et 

al. [145] included height variation, Bartels and Wei [146] calculated mean variance and 

standard derivation of the height in the first echo from lidar to measure the roughness, 

and Im et al. [147] added homogeneity, contrast, and entropy of height as feature spaces 

after image segmentation (Figure 4). 
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3.2.2. Intensity Data 

Intensity values extracted from lidar data correspond to the peak amplitudes from 

the illuminated object [31]. Applying intensity as a feature space, Song et al. [148] pre-

sented an approach to determine asphalt roads, grass, house roofs, and trees. However, 

trees’ diverse intensity values undermine the classification due to the canopies` complex 

geometry [149]. Moreover, lidar-based intensity can differentiate between low vegetation 

and impervious surfaces, such as built-up areas. MacFacen et al. [150] applied the esti-

mated mean intensity values from a lidar dataset in an object-based image classification 

approach. Intensity data are unstable and contain artifacts in the overlapping regions of 

single strips and eccentricity caused by the gain response, sensor scanning, and environ-

mental factors [151–153]. To remove the noise from the intensity data, interpolation, fil-

tering methods, and radiometric calibration are commonly used [148,154]. Additionally, 

the influence of flying altitude variations, topography, and atmospheric conditions can be 

corrected, adjusting intensity values, which is called range compensation [155]. 

 

Figure 4. Features derived from the height information from lidar data. 

3.2.3. Multiple-Return 

A lidar-based laser pulse can split into multiple laser returns if it hits a permeable 

object such as a tree canopy and obtains a response from, e.g., branches, leaves, stems, and 

the ground [31]. Multiple-return data has been recently used as an additional feature 

space in the urban mapping in the commercial building, small house, and tree determina-

tion [146]. Charaniya et al. [145] and Samadzadegan et al. [48] extracted the first, the last, 

and the normalized difference (NDI) between these returns to investigate roads and build-

ings. However, multiple returns occur as well if the laser pulse reaches building edges 

[156]. 

3.2.4. Waveform-Derived Features 

Full-waveform lidar scanners can retrieve the entire signal of the backscattered laser 

pulse as a 1D signal profile in the chronological sequence [134,156,157]. A full-waveform 
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lidar system can better correct the intensity values than the discrete systems, such as ac-

curate estimation of the surface slope [158], eliminating the assumption of Lambertian 

reflectors [159]. However, before using any classification approach, proper radiometric 

calibration is needed to adjust waveform data from different flight campaigns. Such a ra-

diometric calibration should include preflight, onboard, and vicarious calibration, as pre-

sented by Wagner [155]. The waveform-derived features extracted from the gaussian de-

composition function have been tested for urban mapping purposes [47,136,160,161]. 

They include the waveform amplitude, (normalized) number of echoes, their width 

(Gaussian standard deviation), the difference between the first and the last return, echo 

shape, and echo cross-section. The latter provides high values for buildings, medium val-

ues for vegetation, and low values for roads [137]. For building facades and vegetation 

that meet multiple echoes, the normalized number of echoes feature is, therefore, relevant 

[137]. Jutzi and Stilla [162] extracted linear features on roofs based on full-waveform data. 

Chehata et al. [136] provided that by adding echo width as a feature, the classification 

results improved for low vegetation. Echo shape was investigated by [137,163], providing 

low values to roofs and high values to vegetation. It has been proven that the waveform 

geometry helps to differentiate between trees and built-up areas [136,156,164], determine 

tree species [165,166], and segment lidar point clouds in an urban area [167]. The wave-

form amplitude depends on the target. High amplitudes were observed by Chehata et al. 

[136] for rooftops, gravel, cars, bare soil, and grass, and low amplitudes for asphalt, tar 

street, and water. Mallet and Bretar [156] observed high amplitudes for grass and bare 

earth and found that the spread in the pulse and low amplitudes can be assigned to flat 

surfaces by increasing the incident angle. The echo waveform classification has been ap-

plied by Lin and Mills [168] and Doneus et al. [169]. The terrain echoes were separated 

from echoes from bushes and low vegetation. The echo pulse is wider on the canopy sur-

face and plowed field than on the meadow and street [156]. High point density in full-

waveform lidar data helps to detect vegetation types and states [170]. 

3.2.5. Eigenvalue-Based Features 

The eigenvalues are calculated based on the covariance matrix of x, y, and z dimen-

sions of the 3D point cloud as λ1, λ2, and λ3. Eigenvalues as features help detect geomet-

rical parameters, such as plane, edge, and corner [171]. The following structure features 

have been applied to lidar data: omnivariance, anisotropy, planarity, sphericity, linearity, 

and eigenentropy for features for context-driven target detection [172] building detection 

[171]. Some of them are shown in Figure 5. The planarity feature is proven relevant for 

road classification or other flat surfaces and sphericity for building and natural ground 

(low vegetation) detection [136]. 

 

Figure 5. Structure features derived from lidar data: omnivariance (A) and linearity (B) from [171]. 
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3.3. Common Features—HS and Lidar 

 

3.3.1. Textural Features 

Besides spectral information of hyperspectral sensors, pixel-wise spatial features are 

relevant for image content, such as textural features. The textural attributes in a hyper-

spectral scene can be extracted by the local binary patterns (LBP) operator proposed by 

[173], providing information about the surface granularity [174]. To include spatial infor-

mation in the classification purposes, the textural operators are window based. Peng et al. 

[175] extracted them as rotation-invariant features for urban classification purposes except 

for spectral features and Gabor features [176]. The latter are frequential filters interpreting 

the texture of the hyperspectral bands used by [177,178]. The texture can be analyzed by 

applying the gray-level co-occurrence matrix (GLCM) measures [53,179]. GLCM 

measures, first proposed by Haralick et al. [180], consist of energy, contrast, correlation, 

entropy, and homogeneity. GLCM dissimilarity, entropy, homogeneity, and second-mo-

ment help to detect building edges and height differences. However, contrast, correlation, 

and variance do not improve building classification and temporal change [53]. Texture 

features have been used to classify urban materials for pattern recognition in lidar, satel-

lite, and airborne data [48,181–184]. Samadzadegan et al. [48] calculated four measures: 

mean, entropy, standard deviation, and homogeneity to classify trees, buildings, and 

grounds. Huang et al. [181] applied, except for homogeneity and entropy, the angular 

second moment and dissimilarity from the DSM in the classification approach. 

 

3.3.2. Morphological Features 

Mathematical morphology contains operators such as erosion, dilation, opening, 

closing, rank filters, top hat, and other derived transforms. Mainly, these operators are 

applied on panchromatic images from hyperspectral sensors, binary or greyscale images 

with isotropic and geodesic metrics with a structural element [185]. For example, the 

opening operator focuses on the bright spots, removing objects smaller than the structural 

element, whereas the closing operator acts on the dark objects (Figure 6). Morphological 

features with a structural element contain information about the minimum size of the tar-

get being investigated [18]. They help reduce shape noise, enhance edges, interpret the 

texture and extract structures on images regarding their shapes, orientation, and sizes 

[185–188]. In image processing, morphological features are based on both spectral and 

spatial information involving pixels in the neighborhood. They are widely used in hyper-

spectral image classification [178,187–191], noise reduction in lidar [192], building detec-

tion [193], and HL-Fusion-based classification [18]. It has been proven that the inclusion 

of morphological features improves the accuracy in differentiation between roads and 

buildings [8]. 

 

Figure 6. Opening and closing operations on lidar dataset with different kernel sizes (3 and 5) of the structural element. 
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3.4. Hyperspectral-Lidar Data Fusion 

HL-Fusion combines spectral-contextual information obtained by an HS sensor and 

a lidar scanner’s spectral-spatial-geometrical information. Even if the active and passive 

sensors characterize different physics, their features can be combined from both sensors. 

Both sensors cover the reflective spectral range intersecting either in the VIS (532 nm) or 

the SWIR (1064, 1550 nm) wavelength regions. More rarely, multi-spectral lidar systems 

are used, which overlap in several of the three common wavelengths, allowing the iden-

tification of materials or objects using spectral properties [194]. Under laboratory condi-

tions, prototypical hyperspectral lidar systems are being developed [69,195,196]. The com-

bination of HS and lidar sensors significantly impacts remote sensing, opening up possi-

bilities for fully three-dimensional target analysis [196]. Examples include civil engineer-

ing, historical preservation, geomorphological studies, and material processing. How-

ever, it is not only the classification concerning 3D geometry determined by sensor fusion. 

Most rely on geometric simplification of high-dimensional data, reducing both lidar data 

and HS data to 2.5 grids, where geometrically aligned lidar and HS data are classified 

based on raster data. 

HL-Fusion is usually conducted by adjusting the spatial resolution of one sensor to 

another (HL to lidar), empirically correcting for geometric errors. Such fusion does not 

consider the different sensor characteristics (e.g., scan, view, or incidence angles). This 

kind of fusion also fails when the scene has low-contrast areas, as it is very sensitive to 

illumination, losing information about details important in complex and heterogeneous 

urban environments. Despite the dimensional degradation, HL-Fusion has great potential 

for achieving enhanced results in land cover classification rather than using single sensors, 

especially when combining spectral and spatial features. In the last decade, fusion has 

been attempted in this way, for example, by adding to the spectral features extracted from 

HS data, elevation information, intensity, and other lidar-derived features, which allowed 

one to upgrade the level of the classification from pixel- to object-based analyses. 

Spectral-spatial-based classification on fused data often improves the certainty of a 

pixel’s belonging to a class. On the other hand, an increasing number of features extracted 

for classification purposes from different sensors can lead to a curse of dimensionality, 

especially when the training data are limited [197]. HL-Fusion can also be performed 

physically, taking into account sensor parameters, measuring principles, quantities, illu-

mination sources, the position of the sensors, and attitude in the preprocessing phase 

[198,199]. Intensity values can describe the physical link between the spectral and spatial 

responses of both sensors' overlapping wavelengths [199]. However, single studies pro-

vided HL-Fusion based on fitting spectral data to the first return from lidar data, thus 

preserving full 3D geometry and structure, improving the scale of analysis and its perfor-

mance and robustness [200]. 

4. Classification of Urban Land Cover Classes 

Urban land cover classification based on remote sensing data has been carried out on 

a pixel or object-based classification. Pixel-by-pixel analysis assigns only one of the de-

fined classes to each pixel without considering neighboring pixel decisions [201]. In re-

mote sensing, pixel-based classification relies on the spectral properties of each pixel from 

the scene. However, pixel-based approaches for high-dimensional remotely sensed HS 

and lidar data were assumed to be inaccurate for reliable classification purposes [202,203]. 

Therefore, object-based classification has become relevant, reconstructing reality more 

truthfully, managing fine spatial resolution data, and suppressing noise. Object-based 

methods include spatial, textural, contextual, topological, and spectral information 

[204,205], where objects are defined as classification units [43]. Moreover, the object-based 

analysis consists of image segmentation, grouping spectrally homogeneous regions, and 

classification, assigning the segments to the corresponding classes with various properties 

[206]. Both pixel and object-based classification can be driven in the unsupervised, for 
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example, deep belief networks (DBN) [207–209], and stacked autoencoder (SA) [41,210–

212]) or supervised (RF, SVM) matter. 

Analyses on the unsupervised basis separate classification units relying on their com-

mon features without providing reference data. This kind of classification is helpful if the 

knowledge about the study area is limited. In addition, unique classes can be recognized 

that may have been overlooked applying supervised classification. However, the control 

over the generated classes is limited, or the final results do not present the analytics inten-

tions, for example, if the desired class is not directly correlated. Supervised classification 

identifies unknown pixels/objects, validating the accuracy by reference classes assigned 

to known pixels/objects [213]. One of the advantages of using supervised classification is 

controlling the number and name of the class labels, which are then assigned to the clas-

sification units in the final step [214]. However, supervised classification requires human 

expertise and the preparation of such reference or ground-truth data adequate for selected 

area and classification purposes. Such ground-truth sampling includes the removal of out-

liers and remains representative samples for overall input [215]. This can be accomplished 

by applying active learning [208,216], random sampling, or stratified random sampling 

[217]. 

The ground-truth labeling often requires an equal number of instances assigned to a 

class. Therefore, a class imbalance issue leads in (multiclass) HS classification to decreased 

accuracy of many standard algorithms such as decision trees, k-nears neighbor, neural 

networks, and SVM [218]. Especially for high-dimensional data (HS) and ML/DL-based 

multiclass problems, the minority classes are neglected or misclassified [219]. Various 

strategies can be applied to overcome imbalance class issues partially: simplification of 

the network architecture [38], data augmentation for minority classes, and random sam-

pling for equal class distribution [220]. 

Complex urban land cover mapping is mainly based on spectral and spatial features 

of remote sensing data, implemented in classification algorithms. Such an analysis is 

mainly limited to comparing classification approaches, a general classification scheme, or 

a small data set, which provides high-accuracy results on local space, excluding generali-

zation and transferability aspects [221]. Often, the evaluation of the classification ap-

proach is complicated since the training data may not be representative enough for inde-

pendent testing data set. In addition, urban land cover analysis usually depends on hu-

man expertise at a local scale [84]. 

Various ML and DL algorithms have been recently explored in feature extraction, 

pattern recognition, and image classification to deal with high-dimensional space [49,88]. 

Feature extraction in remote sensing analysis contains mainly shallow supervised and un-

supervised and deep feature extraction [222]. In HS data, spectral feature extraction is 

applied to reduce the high dimensionality and to avoid redundant bands preserving only 

relevant spectral information. This strategy can also help in increasing separability be-

tween different classes. However, spatial feature extraction (texture and morphology) 

finds the contextual relationship of adjacent pixels improving the only spectral-based clas-

sification [132,133,179,209]. In DL, automated extraction of features is common and out-

performs shallow ML if the training data fed to the algorithm are not limited. 

Aiming to analyze the complexity and improve the DL algorithm learning process 

quality, a thorough understanding is required of the filter function in the DL architecture 

[223]. One way to do this is to visualize the parameters of the entire algorithm architecture. 

However, studies on urban land cover classification based on HS and lidar rarely focus 

on explaining how the DL algorithms work. As the limited amount of high-dimensional 

remotely sensed data is fed as input to DL classifiers, there is a probability that the hy-

perparameter tuning causes overfitting. To avoid this issue, e.g., data augmentation, add-

ing noise, model regularization methods (max-pooling and dropout [224]), and simplify-

ing the model are used. Data augmentation helps diversify training data without new la-

beling costs, thus leading to more robust classification and adequate classification. In re-

motely sensed-based classification, training data have been flipped and rotated [225,226], 
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mirrored across horizontal, vertical, and diagonal axes on HS [226,227] and lidar data 

[228], mixup strategy [229], and generation of virtual training samples through Generative 

Adversarial Networks (GANs) [230] on HS data. In addition, noise is proven to be suited 

as a data augmentation type. Haut et al. [231] added random occlusion data augmentation 

(rectangular figures of different sizes) in various HS image patches. Many studies applied 

Gaussian white noise during simulation to improve the robustness of the classification 

and reduce the model's dependence on local attributes in HL-Fusion [80] and HS data 

[232]. 

Apart from overfitting issues, the time-expensive DL algorithms deal with vanishing 

gradient problems where the learning is unstable and saturates the activations [233]. This 

problem can be solved by implementing data normalization between each network layer 

(e.g., local response normalization [234], batch normalization [235], and layer normaliza-

tion [236]), choosing proper optimizers and nonlinear activation functions [45]. 

The following section describes the most common ML and DL algorithms for the 

classification in the urban environment, such as SVM, RF, CNN (convolutional neural net-

work), and RNN (recurrent neural network) (Table 1). Nevertheless, there are many more 

ML and DL classification algorithms that are not included in this review. Starting with 

ML algorithms, over time and with technology development, they have become more ad-

vanced. Urban analysis with conventional learning-based classifiers was based on inter-

preting handcrafted low-level features, linear classifiers and nonlinear classifiers, and bi-

nary and multiclass classification [88]. Examples are statistical learning on HS data [237], 

logistic regression on HS data [133], and maximum likelihood classification on lidar data 

[146]. However, the DL algorithms evolve in classifying urban objects on a larger scale, 

automatically extracting high-level features. In addition, DL can handle the issue of the 

complex spatial distribution of spectral information. Automatically derived features in DL 

rely on a mathematical basis, tuning the model by changing the parameters and neglecting 

its standard implementations the physical aspect of remote sensing data. In addition to 

CNNs and RNNs, which have been included in this article, many different DL network 

frameworks show promising potential for further analysis and a deeper understanding of 

DL, primarily for HS data. Some of these algorithms are DBN [207–209] with SA [41,210–

212] and GAN [35]. However, these algorithms are in the initial phase of implementation 

and were not applied until 2019 to HL-Fusion data. 

Table 1. Overview of classification methods on different urban land cover classes. 

Classifier Input  Domain Class Features Advantages Limitations Study 

SVM HS spectral 

building, 

vegetation, 

road 

spectral 

High accuracy 

among classes with 

low material 

variations 

 

Low accuracy among 

classes with high material 

variations (synthetic grass, 

tennis court) or similar 

material classes (road, 

highway) 

[40] 

Insensitive to noisy 

data, high accuracy 

(vegetation, water) 

Spectral similarities of 

materials (misclassification 

of roofs and other 

impervious surfaces, 

impervious and non-

vegetated pervious 

surfaces) 

[238] 
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vegetation, 

road 

High accuracy 

among classes with 

low material 

variations (metal 

sheets, vegetation) 

Misclassified bricks as 

gravel and asphalt as bricks 
[239] 

Accurate classifi-

cation with limited 

training data set 

 [240] 

spectral-

spatial 

vegetation, 

road 

spectral, 

spatial 

Adding spatial 

information im-

proves overall accu-

racy and genera-

lization 

Misclassification of bricks 

requires knowledge about 

spatial features (maybe not 

available in the spectral 

library) 

[241] 

Integration of spatial 

and spectral features 

(contextual SVM) 

 [242] 

SVM Lidar 

 

building, 

vegetation, 

road 

HD, 

intensity 

Robust and accurate 

classification 

Misclassified small isolated 

buildings, rounded 

building edges 

[64] 

 

building, 

vegetation 

full-

waveform 

Can handle 

geometric features of 

3D point cloud 

Not balanced classes lead 

to misclassification (grass 

and sand) 

[243] 

 

multiple-

return, 

intensity, 

morphology, 

texture 

Fusion of single SVM 

classifiers and textu-

ral features improve 

the final results 

Misclassification (building 

classified as tree class) due 

to limited training data 

[48] 

 

building, 

vegetation, 

road 

HD, 

intensity, 

spectral 

Spectral features 

performed better 

than geometrical 

features in classifi-

cation based on 

multispectral lidar 

Geometrical features 

cannot discriminate among 

low height classes: grass, 

road 

[120] 

 building 

HD, 

intensity, 

texture, 

spatial 

GLCM features 

(mean and entropy) 

improve building 

classification 

The magnitude of temporal 

change of buildings cannot 

be achieved using SVM, 

misclassification between 

trees and buildings 

[53] 

 

building, 

vegetation, 

road 

HD, 

intensity, 

morphology, 

spectral 

Morphological 

features with nDSM 

improve road and 

building classifi-

nDSM provided 

misclassification between 

grass and trees 

[53] 
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cation based on 

multispectral lidar 

 

building, 

vegetation, 

road 

HD, full-

waveform 

Dual-wavelength 

lidar improves land 

cover classification, 

especially low and 

high vegetation, and 

soil and low 

vegetation 

Very low accuracy of low 

and high vegetation 

applying SVM on single 

wavelength lidar 

[67] 

SVM 
HL-

Fusion 

spectral-

spatial   

vs. 

object-

based 

roof, 

vegetation, 

road 

HS: spectral 

Lidar: HD, 

intensity 

The hyperspectral 

point cloud is robust 

and provides better 

results for vegetation 

and tin roof than 

grid-based fusion 

 

Accuracy of hyperspectral 

point cloud classification 

depends on the proportion 

between point density of 

lidar and spatial resolution 

of HS, very complex in 

processing (in comparison 

to grid data) 

[200] 

spectral-

spatial 
vegetation 

HS: spectral 

Lidar: HD 

Overall accuracy 

increased, adding 

spatial to spectral 

features 

Spatial features introduced 

misclassification errors in 

individual tree species 

[76] 

RF HS spectral 
vegetation, 

road 
spectral 

High classification 

accuracy of 

vegetation, good 

robustness, 

insensitive to noise 

Cascaded RF provides 

more generalization per-

formance than standard RF 

[244] 

RF Lidar 

 
building, 

vegetation 

full-

waveform, 

HD, 

eigenvalue-

based, 

multi-return 

The ability of RF to 

select important 

features 

Misclassification of grass 

(natural ground) and roads 

(artificial ground) 

[136] 

 

building, 

vegetation, 

road 

HD, 

intensity, 

texture 

Overall high 

accuracy, 

multispectral lidar 

especially promising 

for ground-level 

classes (roads, low 

vegetation) 

Misclassification of gravel 

and asphalt 
[245] 

RF 
HL-

Fusion 
 

building, 

vegetation, 

road 

HS: spectral 

Lidar: HD 

The ability of RF to 

select essential 

features 

 [18] 
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CNN 

HS 
spectral-

spatial 

building, 

road 

raw 

High overall 

accuracy with 

original raw data 

Single-class low accuracy 

(highway, railway), limited 

training data 

[40] 

vegetation, 

road 

Very high overall 

accuracy, insensitive 

to noise [42,239], 

CNN in combination 

with Markov 

Random Fields im-

proves overall accu-

racy taking into 

account complete 

spectral and spatial 

information [36], 

spectral and spatial 

features extracted 

simultaneously (full 

advantage of structu-

ral properties) [248] 

The model achieved worse 

overall accuracy on other 

datasets (Indian pines), 

computationally expensive, 

misclassification of bricks 

and gravel, requires larger 

data set than standard ML 

[42,239], time-consuming, 

limited training data [36] 

[36,39, 

42,219, 

225,229, 

230,239, 

246–258] 

CNN Lidar 

object-

based 

building HD 

Applicable to large-

scale point cloud 

data sets due to a 

low number of input 

features [54] overall 

high accuracy with 

applying multiview 

rasters of roofs [55] 

Misclassified buildings as 

vegetation (especially 

buildings with complex 

roof configuration) due to 

limited and too homo-

geneous training data, 

sparse point density [54], 

height derived features are 

not sufficient to extract 

various roof types, require 

a large training data set [55]  

[54,55] 

building, 

vegetation, 

road 

multi-

wavelength 

intensity, 

HD  

Time-effective due to 

the simplicity of the 

model 

Trajectory data, strip 

registration and 

radiometric correction not 

included 

[259] 

pixel-

based 
HD 

Automatic design of 

CNN for robust 

features extraction 

and high accuracy 

Time-expensive search and 

training 
[260] 

CNN 
HL-

Fusion 

spectral-

spatial 
 

HS: spectral 

Lidar: HD, 

spatial 

Generalization 

capability, improved 

accuracy when 

Not efficient in handling 

high-dimensional data 
[16] 



Remote Sens. 2021, 13, 3393 18 of 38 
 

 

4.1. Support Vector Machines (SVM) 

SVM is a supervised ML algorithm that performs the classification of locating a hy-

perplane between two classes [241]. Such a hyperplane separates two groups in the train-

ing dataset, finding the largest margin between the support vectors from different groups 

[271]. The SVM approach is widely used in pattern recognition, regression, and solving 

linear equations [271]. It has been proven to be a classifier that can handle the high-dimen-

sional HS data being insensitive to noisy samples [272–276]. Moreover, SVM can deal with 

smaller training datasets more efficiently than artificial neural networks and maximum 

likelihood classification algorithms [53]. The decision function of the SVM can be specified 

by different kernels such as radial basis function (RBF), spectral-based [277], and Gaussian 

building, 

vegetation, 

road 

fusing HS and 

LiDAR 

compared to standard ML 

classifiers 

 

HS: spectral, 

spatial 

Lidar: HD 

Oversmoothing problems 

in classification results 

[29,261, 

262] 

 
HS: spectral, 

spatial 

Lidar: HD, 

spatial 

Effective extraction 

of essential features, 

reduced noise 

 [30,263] 

spectral-

spatial 

vegetation, 

road 
Improved accuracy 

of fused data, deep 

neural network used 

for feature fusion 

improved the classi-

fication results [265] 

 [80,264] 

pixel-

based 

building, 

vegetation, 

road 

HS: spectral 

Lidar: HD 

Remarkable 

misclassification of objects 

made from similar 

materials (parking lots, 

roads, highway) 

[265] 

CRNN HS 
spectral-

spatial 

building, 

vegetation, 

road 
spectral, 

spatial 

Does not require 

fixed input length, 

effectively extracted 

contextual 

information 

Big training data set 

required 

[266] 

vegetation, 

road 
[39] 

RNN HS 

spectral 

building, 

vegetation, 

road spectral 

Performs better than 

standard ML algo-

rithms and CNNs 

Issues with differentiation 

of asphalt/concrete made 

objects (roads, parking lot, 

highway) requires a longer 

calculation time 

[37] 

vegetation, 

road 
[267,268] 

spectral-

spatial 

vegetation, 

road 

texture, 

morphology, 

spatial 

Adding spatial 

features to the 

classification 

improves the overall 

and class accuracy, 

high level features 

can represent 

complex geometry 

Computational time and 

memory-expensive   

[256,269, 

270] 
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function [19], which classify only in the spectral domain, and composite kernels that in-

clude contextual information to the classification [241,278]. The kernel-based methods de-

fine the segments by applying the nonlinear geometrical separators [272]. The spectral-

based kernel uses the spectral angle of the support vectors to define the hyperplane be-

tween them, while for each pixel, spatial information is derived and combined with spec-

tral features in kernel composition. Deep SVM has been implemented with exponential 

radial basis function, gaussian radial basis function, and neural and polynomial kernel 

functions, achieving better robustness than conventional classifiers [279]. 

4.1.1. Buildings 

In recent years, a multiwavelength lidar scanner has become an interesting mapping 

device that can differentiate objects with the same height, such as buildings and trees, 

based on pseudonormalized difference vegetation index (pseudoNDVI) [68] and geomet-

rical features, e.g., roughness (curvature) [120]. Teo and Wu [15] provided a case study 

where curvature, intensity, and nDSM were used on multispectral lidar. They applied 

these lidar features as input for image clustering and found that especially geometric fea-

tures are suitable for building detection. Huo et al. [8] applied the SVM algorithm with 

RBF kernel on multispectral lidar data. In the paper, the authors focused, among other 

things, on building extraction using the combination of nDSM, morphological profiles, 

novel hierarchical morphological profiles (HMP) [186], pseudoNDVI, and intensity val-

ues. Intensity values only extracted from lidar can lead to misclassification of building 

asphalt roof (parking lot) and a road with similar spectral properties. Shirowzhan and 

Trinder [53] provided the SVM classification method for building extraction, including 

DSM, nDSM, and intensity map. However, the results provided a misclassification be-

tween roads and buildings in the hilly or vegetation-rich area. A pixel-based classification 

method is often not able to separate buildings and vegetation boundaries. Samadzadegan 

et al. [48] proposed a multiclass SVM on building extraction. The authors used first- and 

last-pulse intensities, first- and last-pulse ranges, entropy, standard deviation, homogene-

ity, and other geometrical features and showed that texture features improve the final 

results for building detection. In building analysis based on HS data, the spectral classi-

fie’s domain has limitations in the classification of building roofs (roofing tiles, bitumen, 

concrete, fiber cement, metals, and slates) [97,238]. To overcome the limitations of single 

sensor applications, HL-Fusion can complete robust building analysis using spatio-spec-

tral-elevation information. Spectral features from HS data can exclude vegetation growing 

around and on buildings and differentiate between roof materials. By contrast, lidar data 

provide shape information that can help determine roof types and building types. 

4.1.2. Vegetation 

SVM classifier is a standard algorithm in vegetation detection in the urban environ-

ment. The authors of [48] suggested a multiclass framework for lidar data, analyzing the 

normalized difference between the first and the last laser pulse. High vegetation class 

(trees) was falsely classified as buildings due to limited training data. Teo et al. [120] stated 

that lidar penetration improves the overall accuracy of vegetation analysis. However, by 

splitting vegetation into high and low vegetation, lidar data cannot distinguish low height 

classes such as roads and grass. Huo et al. [8] applied SVM on multispectral lidar data 

calculating the NDVI and pseudoNDVI [178] and improving the overall classification ac-

curacy, however, having challenges in distinguishing between low and high vegetation. 

Wang et al. [67] addressed a similar problem in the study and compared single- and dual-

wavelength lidar by applying, among others, full-waveform data that were not included 

in previous studies. The authors showed that dual-wavelength improves the accuracy of 

low and high vegetation and bare soil and low vegetation compared to single-wavelength 

lidar. In HS analysis, spectral features are still more accurate in chlorophyll detection than 

lidar, mainly when a class is characterized by low material variations [40,239]. In addition, 
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HS has been proven to characterize fraction coverage of photosynthetic vegetation, non-

photosynthetic vegetation, and soil [72]. Furthermore, by adding spatial features to the 

hyperspectral analysis, vegetation detection becomes facilitated [241,242]. Spatial infor-

mation is also used in HL-Fusion in object-based classification, being able to classify dif-

ferent types of vegetation (tree species) [32,76] and also, in the case of generating hyper-

spectral point clouds, maintain higher reality factors such as full 3D geometry, generic 

and robust characteristics [200]. 

4.1.3. Roads 

Huo et al. [8] and Teo et al. [120] applied SVM on multispectral lidar data to detect 

roads. Achieving high accuracy classification, Huo et al. [8] referred to the misclassifica-

tion of roads as lawn and bare soil, which can be easily solved by adding HS to the lidar 

data due to access to more detailed spectral information than lidar only. One of the causes 

can be similar spectral signatures and insufficient distinctive spectral-spatial features to 

differentiate between objects. Teo et al. [120] mentioned classification issues applying ge-

ometrical features among grass, road, and soil due to similar height. However, spectral 

features from multiwavelength lidar can overcome the challenge. 

In contrast, spectral features in HS analysis applying SVM are often insufficient for 

achieving robust and accurate results of road classification [40,239]. This is due to consid-

ering only spectral information without contextual information and remarkable spectral 

similarity between physical material belonging to different classes. SVM has also been 

widely used in road classification on fused HS and lidar data. Brell et al. [200] generated 

an HS point cloud, where they classified different road materials such as concrete and 

asphalt. The challenge in distinguishing concrete and asphalt is the influence of shadow 

deteriorating discrimination between different road materials. The spectral properties of 

those materials can vary locally based on aging, deterioration, contamination, roughness 

properties, and other conditions [200]. 

4.2. Random Forest (RF) 

RF is a nonparametric ensemble learning algorithm based on a combination of binary 

decision tree classifiers [280]. A decision tree in the ensemble is independent of other trees 

and is trained with random variables by bootstrap sampling [77]. For classification pur-

poses, each tree gives a class prediction as an output. The class that most trees have chosen 

is considered to be the final result [281]. RF has become a widely used classification algo-

rithm in HS imaging due to its high accuracy and high processing speed [282]. Moreover, 

RF can handle high-dimensional data selecting redundant spectral bands without overfit-

ting [18,77]. RF has also been applied to airborne-based lidar data as a classifier solving 

multiclass problems and selecting the essential features for urban mapping [136]. 

4.2.1. Buildings 

Niemeyer et al. [283] proposed a new building classification method based on the 3D 

point cloud from lidar data. The classification technique transforms the RF classifier into 

a conditional random field (CRF) framework [218] and provides high-accuracy results for 

large buildings over 50 m2. However, misclassification occurs at building facades and dor-

mers. In addition, various features derived by lidar have been tested by Chehata et al. 

[136]. In the paper, multiecho, full-waveform, different height-based, local plane-based, 

and eigenvalue-based features have been applied to classify buildings. However, confu-

sion errors occurred for transition points between buildings and the ground class. 

Further, echo-based features did not have any influence on classification results. De-

bes et al. [18] presented a fusion framework consisting of unsupervised classification that 

supports the supervised classification on ensemble learning. They showed that lidar ele-

vation information is required to differentiate between buildings and vegetation or differ-

ent building types in addition to HS spectral data. 
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4.2.2. Vegetation 

Niemeyer et al. [283] applied an RF classification framework with conditional ran-

dom fields on lidar data to discriminate vegetation and buildings from each other. 

Chehata et al. [136] applied RF on lidar data experiencing issues in the classification be-

tween vegetation and artificial (roads) and natural ground (grass), respectively. However, 

applying intensity, height, and texture features of multispectral lidar is very promising 

for ground-level classes, for example, low vegetation [245]. In HS analysis, spectral fea-

tures fed to RF classifier provide high vegetation accuracy, good robustness, and insensi-

tivity to noise [244]. Debes et al. [18] chose an RF algorithm on HL-Fusion with elevation 

features from lidar and NDVI from HS data that outperformed urban area classification 

[18]. 

4.2.3. Roads 

Niemeyer et al. [283] proposed an RF classification framework for lidar data de-

scribed in Section 3.1, where one of the classes was asphalt considered a road. However, 

other objects apart from roads are also made of asphalt, such as roof parking lots, making 

the analysis difficult, e.g., using only HS data. Jackson et al. [284] mentioned this issue 

clarifying that the road class pixels are contaminated by other materials and objects such 

as gravel, puddles, and cars. In addition, vehicles appearing in the image usually have 

highly reflective properties, making road classification difficult for RF classifiers [8]. Re-

cently, lidar point cloud intensity data have been proposed for road landmark inventory 

with active learning [285]. 

4.3. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) 

CNN is a DL algorithm that has become an important HS, lidar, and HL-Fusion clas-

sification method. The network’s deep convolutional architecture can effectively deal with 

complex remote sensing data solving nonlinear issues [286] with an example architecture 

in Figure 7. 

 

Figure 7. Convolutional neural network architecture. 

CNN has two characteristics different from other DL algorithms, such as local con-

nections and share weights. Local connections help find the data’s spatial relationship, 

and share weights reduce the number of parameters needed for training purposes and 

generate a filter [16,286]. CNN architectures can be trained in an unsupervised or super-

vised way. The unsupervised method is the greedy layer-wise pretraining of hyperspec-

tral data [287–290]. The supervised method is the standard backpropagation 

[234,286,291,292]. However, CNNs require a high number of model parameters. The high 

dimensionality and limited training samples of the remotely sensed data can lead to over-

fitting and longer processing time than other classification techniques [37,39,293]. An ad-

vantage of applying CNN is that the input data must not be preprocessed. CNN is capable 

of automatically learning abstract features and detecting high-level objects [54]. CNN is 
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used for land cover mapping based on HS data [35,37–39] and HL-Fusion [16,30,265,293]. 

Moreover, CNN has been recently used in combination with other algorithms such as 

MRF [37] to extract HS pixel vectors on a spatial and spectral basis and extinction profiles 

[30], capable of effectively reducing noise and improving classification accuracy. 

RNN is a DL algorithm widely used to work on sequential data [37]. RNN is a com-

pound of successive recurrent layers capable of extracting contextual parameters at con-

secutive time steps (Figure 8) [266]. An advantage of RNN is that the input sequences may 

have different lengths [266]. However, RNN requires a longer processing time than stand-

ard ML algorithms, such as SVM or RF [37]. RNN has already been used to extract con-

textual information of HS data [37,266] and recognize temporal changes of objects meas-

ured by the lidar scanner [294]. 

 

Figure 8. Recurrent neural network architecture. 

4.3.1. Buildings 

Zhou and Gong [54] focused on building detection in different conditions in damage 

assessment. Their approach relies on roof object extraction, challenging for lidar data due 

to sparse points in the boundaries between rooftops and the vertical facades of buildings 

damaged. In addition, very complex roof configurations cannot be distinguished using 

lidar data when the training data are too homogeneous. However, DL algorithms such as 

CNN provided accurate classification results of pre- and post-disaster data with minimal 

required preprocessing of lidar data and time consumption. Shahajan et al. [55] provided 

a DL approach that extracts the lidar points from different views assigned to roofs apply-

ing height-derived features. However, like the previous study, height-derived features are 

insufficient in roof type differentiation, and the CNN algorithm requires a large training 

data set. CNN classifier has also been used in HS data analysis due to its relevant spectral-

spatial domain [40]. However, CNN on HS data is time-consuming even if the prepro-

cessing of the fed input is minimized, requires a more extensive data set than shallow ML 

classifiers, and is not transferable with the same model parameters to other independent 

test data. Li et al. [30] proposed a DL framework based on spatial and elevation features 

extracted from extinction profiles, spectral, spatial, and elevation features extracted from 

the CNN model to classify buildings, among others, on HL-Fusion. Extinction profiles 

were also used to derive spectral, spatial, and elevation features from HS and lidar data. 

These features were applied as input for CNN classification on buildings [16]. Morchhale 

et al. [265] have proven that CNN-based classification on HL-Fusion can distinguish be-

tween commercial buildings and highways and between residential buildings and park-

ing lots, improving generalization capability. 

Wu et al. [266] introduced deep RNN for HS data classification combining with CNN 

and creating a convolutional recurrent neural network (CRNN). This framework enabled 

the extraction of hidden feature representations and provided highly accurate results for 

building detection. For HS image classification, Mou et al. [37] provided an RNN frame-

work with a GRU activation function that maintains a constant error, helping the network 

learn more effectively in a high-dimensional space. As a result, his classifier achieved very 

high accuracy in recognizing commercial and residential areas in the urban environment. 



Remote Sens. 2021, 13, 3393 23 of 38 
 

 

Even though only spectral features without contextual information were considered, 

RNN outperformed standard ML algorithms and CNNs. 

4.3.2. Vegetation 

CNN is used in HS analysis for vegetation detection [36,39,42,225,239,246–248]. Li et 

al. [248] simultaneously extracted spectro-spatial features of HS data benefitting structural 

properties needed for detailed vegetation interpretation. However, more and more algo-

rithms for vegetation classification are based on HL-Fusion data. Ghamisi et al., Mor-

chhale et al., and Li et al. [16,30,265] proposed different frameworks based on CNNs. Chen 

et al. [264] created a CNN framework used to extract the spectral-spatial features of HS 

data and the elevation features of lidar data. He applied a fully connected DNN to fuse 

the derived features from both sensors, ending the classification approach with the logistic 

regression to generate the final classification map [264]. Deep RNN introduced by Mou et 

al. [37] has been used for vegetation classification. Although RNN resulted in high overall 

accuracy, the most significant challenges occurred in classifying different grass class 

types, such as healthy grass, stressed grass, and synthetic grass [37]. 

4.3.3. Roads 

CNN algorithms have already been widely applied as an initial framework for road 

classification as objects or materials, e.g., gravel, concrete, and asphalt. Santara et al. [38] 

compared different ML and DL algorithms, including the CNN framework. CNN classi-

fied roads as asphalt and gravel with high accuracy only on HS data. Recently, much more 

often, CNN is used as a classifier for HL-Fusion. Morchhale et al. [265] compared CNN 

on HS data and HL-Fusion. The classification and differentiation accuracy between road, 

parking lot, and highway increased in the HL-Fusion. Li et al. [28] proposed that he fo-

cuses on classification challenges between similar spectral characteristics of road materi-

als, e.g., asphalt and concrete, and the similar height of different objects, such as grass and 

asphalt road. Ghamisi et al. [25] applied the CNN classifier with logistic regression and 

mentioned the challenge of similar spectral signatures of roofs and roads for HS data clas-

sification. Wu et al. [266] and Yang et al. [39] proposed CRNNs for HS image classification. 

Mou et al. [37] presented a different framework—the deep RNN. In both network frame-

works, the road was grouped into road and highway. The deep RNN outperformed other 

conventional classifiers in differentiating similar objects, such as road, highway, and rail-

way [37]. 

5. Discussion 

Airborne HS and lidar data-based classification in the urban environment over the 

last 20 years has increased significantly since 2016, as shown in the annual number of 

articles reviewed in this paper found up to 2021 (Figure 9). Therefore, it can be assumed 

that the interest in HS and lidar remote sensing, advances in sensor technology, compu-

ting power, and easy access to remote sensing-based datasets are relevant factors paving 

the way for large-scale urban environment analysis. However, it has to be noted that the 

HS-based land cover classification far exceeds lidar and HL-Fusion analyses. Since 2016, 

the scientific production of urban classification methods based on ML and DL has signif-

icantly increased for HS, lidar, and HL-Fusion. This is due to the availability of more ad-

vanced computer infrastructures, less expensive sensors with higher resolution, and more 

accessible data for HS and lidar. 

Nevertheless, the HS continued to be widely used. Firstly, this may have been due to 

the lack of data of the same study area from the two sensors acquired simultaneously. 

Secondly, most land cover classification approaches are based on physical material classi-

fication, which relies significantly on spectral analysis. Sometimes, therefore, it is not nec-

essary to fuse two sensors for some purposes to improve classification by a small fraction 

with much more effort and time spent fusing the sensors. However, assuming that urban 
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analysis is a highly complex task, one of the fusion application arguments may be that HS 

and lidar complement each other in spectral and spatial analysis with the addition of ele-

vation information and active and passive sensor characteristics. 

 

Figure 9. Each color is assigned to a different sensor, such as HS, lidar, and HL-Fusion. 

5.1. HS-Based Classification 

SVM and RF have been proven to be insensitive to noise in HS-based analysis, 

providing very high accuracy for material classification with limited training data. The 

only spectral-based SVM classifier can quickly identify object-based classification classes 

with low material variations. However, for complex urban land cover classification, the 

spectral domain of the SVM is not sufficient to capture the heterogeneity of the objects or 

land cover classes built from various materials, for example, identification of impervious 

and nonvegetated pervious surfaces [238]. For such an analysis, contextual information is 

necessary. The spatial features can be added to the SVM classifier by applying the com-

posite kernel, improving the accuracy and generalization capabilities. 

RF also applies spectral-domain only for HS data. As for SVM, the land cover classes 

having high material variations within a class are often misclassified, such as road mate-

rials (concrete, asphalt, and gravel). The difference and advantage over the SVM classifier 

is the capability to select important features. This aspect is also advantageous for the DL-

based classifiers since shallow ML-based algorithms use handcrafted features controlled 

and transferred to other independent and unknown test areas. 

On the other hand, when the classification objective is focused on a smaller study 

area, automated features of the DL algorithm may prove to be a better solution for high-

dimensional HS data. One factor is that the relationships between objects or land cover 

classes are not linear in a complex urban environment. By extracting the handcrafted fea-

tures, we have control and knowledge about them. In contrast, the automated features can 

obtain high-level features that may allow a much better classification result by recogniz-

ing complex relationships that cannot be analyzed by applying shallow ML at the expense 

of generalizability and transferability. The advantage of the CNN is in its spectral-spatial 

domain, which searches for high-level features, e.g., by simultaneously extracting spectral 

and spatial features. As features in CNN are retrieved during the algorithm and the the 
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original, however, normalized, HS data are fed into the model. This saves time for pre-

processing, which is necessary for SVM or RF classifiers. 

On the other hand, normalization of the extraction of high-level features is notably 

more time-consuming than classification with shallow ML algorithms. In totally, the in-

crease in dimensions is an enormous challenge in DL classification. The hidden complex 

relationships are not universally and globally representative. The easiest way to influence 

this in DL is to ensure the global representativeness of the training and test data which 

may be hardly possible in remote sensing. Another way is the support of handcrafted 

features that underrepresent the local properties. In addition, assuming that the algorithm 

extracts the most important features for correct classification, these features may vary de-

pending on the complexity and diversity of the training data. Therefore, the transferability 

and generalizability of a model, which is critical, e.g., automatic map updating, is limited. 

In addition, DL algorithms require a larger training data set, which may not be feasible 

due to a lack of data and computationally expensive DL algorithms, such as CNN and 

RNN. The RNN has been proven to outperform even in the spectral domain only com-

pared to standard ML algorithms and CNNs [37]. However, for single classes such as as-

phalt or concrete-made objects (roads, parking lots, highway), RNN may not solve mis-

classification only in the spectral domain. The RNN requires more computative time than 

the CNN, and an extensive training data set is needed. Since RNN considers the temporal 

domain, this classifier shows greater robustness, transferability, and generalization. 

5.2. Lidar-Based Classification 

Lidar-based urban land cover classification is not a straightforward approach due to 

the complexity of the urban environment, where different classifiers with different de-

rived features can identify different land cover classes. Nevertheless, the SVM is a com-

mon approach for lidar-based classification. In particular, those land cover classes are dis-

tinguished by their unique geometry and where the material composition is not essential. 

For example, building detection requires the capture of complex geometry, including 

roofs (planar surfaces) and facades (vertical surfaces). For this purpose, full-waveform 

data and geometric features are commonly used [243]. However, depending on the spe-

cific purpose of the building classification, different features may play an important role. 

For example, in the analysis of various roof types, the focus was on height-derived fea-

tures that were insufficient when the roof had a very complex geometry [55]. However, 

the problem may lie in too low resolution, too sparse point density of the lidar system, or 

the CNN classifier, which needs a much larger training data set considering heterogeneity 

and complexity of the objects of interest. In addition, the transition from 3D point cloud 

to 2.5D representation is challenging to preserve inherent point cloud information. 

Raster (2.5D) processing is more efficient in data handling as soon as it comes to spec-

tral-spatial neighborhood analyses and is therefore preferred by most classifiers. The SVM 

is mainly used for building detection, differentiate between low and high vegetation, and 

distinguish trees and buildings. The differentiation between low and high vegetation is 

still a problem. It appears that using height-derived features and full-waveform data from 

single-wavelength lidar is not sufficient. However, using the same features with a dual-

wavelength lidar scanner significantly improved low and high vegetation classification 

results. Therefore, it can be concluded that spectral features play a significant role in the 

detailed classification of land cover classes [67]. This assumption of the importance of 

spectral features in lidar-based classification applying the SVM was also mentioned in a 

study where spectral features were more critical than geometrical features in classification 

on a multispectral lidar scanner [120]. In this study, it was found that geometrical features 

are not able to detect ground-level classes such as roads and grass, which on the other 

hand, is possible using the spectral features of the multispectral lidar. 

Ground-level classes cause many problems also when using full-waveform data. For 

example, in one study, incorrect classification of grass and sand was caused because the 

training data contained no balanced classes in the SVM classification [243]. On the other 



Remote Sens. 2021, 13, 3393 26 of 38 
 

 

hand, a similar problem of incorrect RF-based classification (this time of low vegetation 

and roads) also appeared when applying full-waveform data [136]. Therefore, it can be 

concluded that the last return from lidar is not sufficient for differentiating between 

ground-level classes. However, this problem has been solved by applying the RF classifier 

using multispectral lidar data but adding texture features to the elevation and spectral 

information [245]. However, neither SVM nor RF on single or multispectral lidar can dif-

ferentiate very heterogeneous classes, such as asphaltic, concrete, or gravel road. This is-

sue can only be solved by adding hyperspectral information on the material using the 

little available hyperspectral lidar, including reflected intensity information, or integrat-

ing lidar with hyperspectral imaging. 

5.3. HL-Fusion Classification 

HL-Fusion aims to combine the two different sensors with improving the classifica-

tion result. In urban land cover classification based on HL-Fusion, DL turns out to be the 

most commonly used method (Table 1). One reason for the DL selection could be the in-

tentional neglect of the more complex preprocessing. Thereby, however, there is a risk of 

losing transferability and generalizability. This is especially critical for optical data, e.g., if 

the atmosphere is not corrected according to physical models or the shadow has not been 

corrected, training data must cover all atmospheric conditions and represent the existing 

urban heterogeneities. However, both the enormous, rapid development of DL, combined 

with the progress of sensor technology and multisensory fusion, are becoming an inter-

esting field for further scientific research in the near future. Especially in the analysis of 

complex urban environments, only a single sensor is usually insufficient for classifying 

urban land cover classes correctly. Besides material characteristics, spatial correlation is 

essential and full 3D geometry and topography information. Using context in a more spa-

cious neighborhood for classification purposes, training time increases significantly, es-

pecially for DL algorithms (CNN). For shallow ML and DL algorithms, spectral-spatial 

classification with handcrafted features has been proven to always be more accurate, with 

the capability of transferability and generalization [16,18,29,265]. HL-Fusion with SVM 

classifier improved the classification result, but the limited studies did not include the 

variation between different features derived from HS and lidar. In this case, the applica-

tion of spectral features from HS and height and derivatives and intensity data proved 

accurate. Unfortunately, fusing two different sensors also come with some challenges. 

Adding to the already high-dimensional HS data more dimensions, one can meet the curse 

of dimensionality problems. By limited training data, high-dimensional feature spaces are 

often insufficient to recognize desired patterns due to the low ratio of training data to the 

high dimensional features [295]. More dimensions in source data mean more necessary 

training and test data due to increased heterogeneity and the number of features, and the 

need for more computational power and storage. 

Although object-based classification is much more comprehensive than pixel-based 

classification, objects or land cover have become important in classification because they 

reflect reality much more closely. Spectral features from HS data are reliable for material 

classification, even in complex urban environments. However, the lack of topographic and 

geometric information makes accurate results based on only one sensor impossible. Lidar 

for providing these needed features is very promising in complex urban land cover clas-

sification. Lidar complements HS data to add height information to vegetation detection 

enabling identification of individual trees (full 3D geometry), bushes, low vegetation. In 

addition, in the detection of the road (edges), lidar provides refined features providing 

precise boundaries [296]. Thanks to HL-Fusion, there is no need to limit oneself to classify 

land cover classes, monitor the urbanization processes, and study the urban environment. 

The potential capabilities of the two sensors enable urban analysis in a holistic, multi-

aspect and multidisciplinary way. 
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6. Conclusions and Future Perspectives 

ML and DL revolutionize digital processing of remotely sensed data such as HS, li-

dar, and HL-Fusion. A significant factor influencing such a great advance in technology 

is the variety of information obtained time-efficiently by remote sensing systems. Both HS 

and lidar-based data are used for urban analysis by applying ML and DL algorithms. This 

review provides the latest information on advances in mapping techniques based on HS 

and lidar data in urban environments based on the reflective spectral range (400–2500 

nm). This multidisciplinary research described in this article was intended to summarize 

urban land cover classification for ML and DL experts and remote sensing specialists. Par-

ticular attention should be paid to DL implementations in HL-Fusion, which may be the 

key to classifying land cover classes in a complex urban environment. DL is a promising 

tool for extracting spectral-spatial features and more complex features than classical ML 

algorithms, which usually improves the accuracy of the classification results. One of the 

main challenges related to DL's use is the need for a globally representative dataset for 

the model training purposes and the availability of annotated lidar data to make it gener-

alizable and transferable: this might require extensive manual work that can be costly but 

may be overcome applying data augmentation strategy. The HL-Fusion-based classifica-

tion opens up a new dimension of urban analysis, approximating ML and DL classifica-

tion results to the reality and going beyond human expertise to discover and care for the 

urban environment. 

The growing trend of using DL in classification will probably remain unchanged over 

the next few years, discovering new network algorithms, which are already implemented 

in single case studies. However, as the technology continues to improve, HL-Fusion, de-

spite its high dimensionality, should be considered in analyzing complex urban environ-

ments. Crucial is the transferability and generalization aspect, one of the biggest concerns 

since DLs are usually valid only locally. Inferring from this, it does not allow, for example, 

the significant updates of city maps. 
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Abbreviations 

Abbreviation Explanation 

CHM Canopy Height Model 

CRF Conditional Random Field 

CNN Convolutional Neural Network 

CRNN Convolutional Recurrent Neural Network 

DBN Deep Belief Networks 

DL Deep Learning 

DSM Digital Surface Model 

DTM Digital Terrain Model 

GAN Generative Adversarial Network 

GLCM Gray-Level Co-Occurrence Matrix 

HD Height features and their Derivatives 
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HS Hyperspectral 

HL-Fusion Hyperspectral-Lidar fusion 

IFOW Instantaneous Field of View 

Lidar Light Detection and Ranging 

LDA Linear Discriminant Analysis 

LBP Local Binary Patterns 

ML Machine Learning 

MCR Multivariate Curve Resolution 

NDI Normalized Difference Index 

NDVI Normalized Difference Vegetation Index 

nDSM normalized Digital Surface Model 

PCA Principal Component Analysis 

psuedoNDVI Pseudo Normalized Difference Vegetation Index 

RBF Radial Basis Function 

RF Random Forest 

RNN Recurrent Neural Network 

SAR Synthetic Aperture Radar 

SWIR Shortwave-Infrared 

SNR Signal to Noise Ratio 

SA Stacked Autoencoder 

SVM Support Vector Machines 

VNIR Visible and Near-Infrared 

VIS Visible light 
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