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Abstract

The electroencephalogram (EEG) is a major tool for non-invasively studying brain function

and dysfunction. Comparing experimentally recorded EEGs with neural network models is

important to better interpret EEGs in terms of neural mechanisms. Most current neural net-

work models use networks of simple point neurons. They capture important properties of

cortical dynamics, and are numerically or analytically tractable. However, point neurons can-

not generate an EEG, as EEG generation requires spatially separated transmembrane cur-

rents. Here, we explored how to compute an accurate approximation of a rodent’s EEG with

quantities defined in point-neuron network models. We constructed different approximations

(or proxies) of the EEG signal that can be computed from networks of leaky integrate-and-

fire (LIF) point neurons, such as firing rates, membrane potentials, and combinations of syn-

aptic currents. We then evaluated how well each proxy reconstructed a ground-truth EEG

obtained when the synaptic currents of the LIF model network were fed into a three-dimen-

sional network model of multicompartmental neurons with realistic morphologies. Proxies

based on linear combinations of AMPA and GABA currents performed better than proxies

based on firing rates or membrane potentials. A new class of proxies, based on an optimized

linear combination of time-shifted AMPA and GABA currents, provided the most accurate

estimate of the EEG over a wide range of network states. The new linear proxies explained

85–95% of the variance of the ground-truth EEG for a wide range of network configurations

including different cell morphologies, distributions of presynaptic inputs, positions of the

recording electrode, and spatial extensions of the network. Non-linear EEG proxies using a

convolutional neural network (CNN) on synaptic currents increased proxy performance by a

further 2–8%. Our proxies can be used to easily calculate a biologically realistic EEG signal

directly from point-neuron simulations thus facilitating a quantitative comparison between

computational models and experimental EEG recordings.
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Author summary

Networks of point neurons are widely used to model neural dynamics. Their output, how-

ever, cannot be directly compared to the electroencephalogram (EEG), which is one of the

most used tools to non-invasively measure brain activity. To allow a direct integration

between neural network theory and empirical EEG data, here we derived a new mathe-

matical expression, termed EEG proxy, which estimates with high accuracy the EEG

based simply on the variables available from simulations of point-neuron network models.

To compare and validate these EEG proxies, we computed a realistic ground-truth EEG

produced by a network of simulated neurons with realistic 3D morphologies that receive

the same synaptic input of the simpler network of point neurons. The new obtained EEG

proxies outperformed previous approaches and worked well under a wide range of net-

work configurations with different cell morphologies, distribution of presynaptic inputs,

position of the recording electrode and spatial extension of the network. The new proxies

approximated well both EEG spectra and EEG evoked potentials. Our work provides

important mathematical tools that allow a better interpretation of experimentally mea-

sured EEGs in terms of neural models of brain function.

Introduction

Electroencephalography is a powerful and widely used technique for non-invasively measuring

neural activity, with important applications both in scientific research and in the clinic [1].

Electroencephalography has played a key role in the study of how both neural oscillations and

stimulus-evoked activity relate to sensation, perception, cognitive and motor functions [2–4].

The electroencephalogram (EEG), like its intracranial counterpart, the local field potential

(LFP), originates from the aggregation of all the electric fields generated by transmembrane

currents across the surfaces of all neurons sufficiently close to the electrode [5–8]. The physics

of how electromagnetic fields are generated from transmembrane currents is well understood,

and mathematically described by forward models [6]. Yet, how to interpret changes in EEG

across experimental conditions or diagnostic categories in terms of underlying neural pro-

cesses remains challenging [1].

One way to better understand the EEG in terms of neural circuit mechanisms and to link

theoretical models of brain functions to empirical EEG recordings is to compare EEG data

with quantitative predictions obtained from network models. Network models of recurrently

connected leaky-integrate-and-fire (LIF) point neurons are a current major tool in modelling

brain function [9–11]. These models reduce the morphology of neurons to a single point in

space and describe the neuron dynamics by a tractable set of coupled differential equations.

These models are sufficiently simple to be understood thoroughly, either with simulations that

are relatively light to implement, or by analytical approaches [12,13]. Despite their simplicity,

they generate a wide range of network states and dynamics that resemble those observed in

cortical recordings. They have been employed to satisfactorily explain a broad spectrum of dif-

ferent cortical mechanisms and cortical functions, such as sensory information coding [14,15],

working memory [16,17], attention [18], propagating waves [19,20], non-rhythmic waking

states [21,22], or the emergence of up and down states [23]. It remains an open question how

to compute realistically EEGs from such widely used network models of simple point neurons.

A major problem in achieving the above goal is that in such LIF point neurons all trans-

membrane currents collapse into a single point in space and the resulting extracellular poten-

tial is, therefore, zero [6]. Previous studies comparing the simulation output of networks of
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simple model neurons without a spatial structure with measures of graded extracellular poten-

tials such as EEGs or LFPs have used ad-hoc approaches to estimate the EEG from variables

available from simulation of the network, including the average membrane potential [23–28],

the average firing rate [29–31], the sum of all synaptic currents [13,32,33], or the sum of abso-

lute values of synaptic currents [14,34]. However, the limitations and caveats of using such ad-

hoc simplifications to compute the EEG have been rarely considered and tested. As a result, it

is still unclear how best to compute EEGs directly from the output of point-like neuron net-

work models [35,36].

In order to generate extracellular potentials, spatially extended neuron models, i.e., multi-

compartment neuron models, are required [37,38]. Previous studies have numerically com-

puted the compound extracellular potential as the linear superposition of all single-cell

distance-weighted transmembrane currents within a network of multicompartment neurons

[39–41]. This approach is however computationally cumbersome, and it does not allow an eas-

ily tractable and exhaustive analysis of the dynamics of such networks. One alternative could

be using a hybrid scheme [30,35,42,43] that projects the spike times generated by the point-

neuron network onto morphologically detailed three-dimensional (3D) neuron models, and

then computing the electric field generated by the currents flowing through these 3D neuron

models. This scheme provides a simplification by separating the study of the network dynam-

ics (described by the point-neuron network model) from that of field generation (described by

the multicompartment neuron model), but still requires running cumbersome multicompart-

ment model simulations for each simulation of the LIF network.

In this article, we implemented a much simpler and lighter method to predict the EEG

based simply on the variables available directly from simulation of a point-neuron network

model (e.g., membrane potentials, spike times or synaptic currents of the neuron models). We

constructed several different candidate approximations (termed proxies) of the EEG that can

be computed from networks of LIF point neurons. We then evaluated how well each proxy

reconstructed a ground-truth EEG obtained when the synaptic input currents of the LIF

model network were injected into an analogous 3D network model of multicompartmental

neurons with realistic cell morphologies. This approach was shown to perform remarkably

well in predicting the LFP [42], based on a specific weighted sum of synaptic currents from the

point-neuron network model, for a specific network state (i.e., asynchronous irregular) of the

LIF model network. However, the previously obtained LFP proxy did not include a head

model that approximated the different geometries and electrical conductivities of the head nec-

essary for computing a realistic EEG signal recorded by scalp electrodes. In this study, to com-

pute the EEG, we chose a simple head model suitable for rodents. These animal species are the

ones most commonly used in laboratories to invasively record neural activity. Studying

rodent’s EEG is thus directly relevant to interpret many available neuroscientific data, and it

facilitates comparison of simulation results with empirical data. Additionally, we performed a

proof-of-concept simulation of the ground-truth EEG and proxies on a complex human head

model.

We derived a new proxy for the EEG that was validated against detailed simulations of the

multicompartment model network, investigating different cell morphologies, variations of dis-

tribution of presynaptic inputs and changes in position of the recording electrode and in the

spatial extension of the network model. Unlike previous studies which focused on approxima-

tions valid in specific network states [42], we also validated our proxies across the repertoire of

network states displayed by recurrent network models, namely the asynchronous irregular

(AI), synchronous irregular (SI), and synchronous regular (SR) [12] states, with different pat-

terns of oscillations and individual cell activity. We found that a new class of simple EEG prox-

ies, based on a weighted sum of synaptic currents, outperformed previous approaches,
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including those optimized for predicting LFPs [14,42]. The new EEG proxies closely captured

both the temporal and spectral features of the EEG. We also provided a non-linear refinement

using a convolutional neural network to estimate the EEG from synaptic currents, which

yielded moderate improvements over the linear proxy at the expense of increasing complexity

of the EEG estimation model.

Results

Computing the ground-truth EEG and EEG proxies

We investigated how to compute a simple but accurate approximation of the EEG (“EEG

proxy” hereafter) that would be generated by the activity of a LIF point-neuron network if its

neurons had a realistic spatial structure. We therefore first simulated a well-established model

of a recurrent network of LIF point neurons. We then fed the spiking activity generated by the

LIF point-neuron network into a realistic 3D multicompartmental model network of a cortical

layer and computed the EEG generated by this activity. We finally studied how to approximate

this EEG simply by using the variables directly available from the simulation of the point-neu-

ron network model.

The LIF point-neuron network was constructed using a well-established two-populations

(one excitatory and one inhibitory) model of a recurrent cortical circuit [12], illustrated in Fig

1A. The network was composed of 5000 neurons: 4000 were excitatory (i.e., their projections

onto other neurons formed AMPA-like excitatory synapses) and 1000 inhibitory (i.e., their

projections formed GABA-like synapses). The neurons were randomly connected with a con-

nection probability between each pair of neurons of 0.2. This means that, on average, the num-

ber of incoming excitatory and inhibitory connections onto each neuron was 800 and 200,

respectively. The network receives thalamic synaptic input that carries sensory information

and stimulus-unrelated inputs representing slow ongoing fluctuations of cortical activity. This

type of network can generate a repertoire of different network states that map well into empiri-

cal observations of cortical dynamics [12,44]. Fig 1B shows, as an example, the asynchronous

irregular spiking activity generated by a subset of the excitatory and inhibitory populations in

response to a low firing rate of the thalamic input. We have shown in previous work that this

model captured well (even more than 90% of the variance of empirical data) the dynamics of

primary visual cortex under naturalistic stimulation [14,34,45].

We then computed a “ground-truth” EEG (referred to simply as “EEG” in the paper), fol-

lowing the hybrid modelling scheme [30,35,42,43], and used this ground-truth EEG to com-

pare the performance of the different proxies. To do so, we created a network of unconnected

multicompartment neuron models with realistic morphologies and homogeneous spatial dis-

tribution within the circular section of a cylinder of radius r = 0.5 mm (Fig 1C), which roughly

approximates the spatial extension of a layer in a cortical column. We focused on computing

the EEG generated by neurons with somas positioned in a single cortical layer, layer 2/3 (L2/

3), so that somas of multicompartment neurons are aligned along the same Z-axis coordinate

(150 μm below the reference point Z = 8.5 mm). We chose to position somas in L2/3 based on

previous computational work suggesting that this layer gives a large contribution to extracellu-

lar potentials [30,35]. The reference point Z = 8.5 mm was chosen to approximate the radial

distance between the center of a spherical rodent head model and the brain tissue [46]. In this

specific set of simulations performed for optimizing the proxies, we used the reconstructed

morphology of a broad-tuft layer-2/3 pyramidal cell from rat somatosensory cortex available

in the Neocortical Microcircuitry (NMC) portal [47,48], referenced as dend-C250500A-
P3_axon-C260897C-P2-Clone_9 (see “Methods”). We chose this pyramidal-cell morphology

because its open-field geometry is expected to generate large extracellular potentials. Inhibitory
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cells of the model were implemented using the morphology of L2/3 large basket cell interneu-

rons (the most numerous class in L2/3 [47]).

AMPA synapses were homogenously positioned along the Z-axis in both cell types, repre-

senting uniformly distributed excitatory input. In our default setting, we assumed that all

inhibitory synapses are made by large basket cell interneurons of the model, which based on

their morphology would be principally located below the reference point Z = 8.5 mm. Thus, all

Fig 1. Overview of the network models and computation of proxies and EEG. (A) Sketch of the point-neuron network with recurrent connections between two types

of populations: excitatory cells (pyramidal cells, PY) and inhibitory cells (interneurons, IN). Each population receives two kinds of external inputs: global ongoing

cortico-cortical activity and thalamic stimulation. (B) Raster plot of spiking activity from a subset of cells in each population. (C) Sketch of the multicompartment

neuron models used for generation of the EEG. Two representative model neurons are depicted, a pyramidal cell on the left and an interneuron on the right, positioned

within a cylinder of r = 0.5 mm. While AMPA synapses are homogenously distributed over all compartments of both types of cells, GABA synapses on pyramidal cells

are located only below Z = 8.5 mm. The EEG recording electrode is situated on the surface of the scalp layer. (D) Comparison between example proxies calculated from

the point-neuron network and the ground-truth EEG computed from the multicompartment neuron model network. (E) EEG generated in the multicompartment

neuron network by all neurons (dotted black), only pyramidal neurons (dashed red) or only interneurons (solid blue). (F) Corresponding power spectra for the three

sets depicted in (E).

https://doi.org/10.1371/journal.pcbi.1008893.g001
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dendrites of inhibitory cells receive GABA synapses while only those dendrites of excitatory

cells below Z = 8.5 mm receive GABA synapses, representing perisomatic inhibition.

EEGs were then generated from transmembrane currents of multicompartment neurons in

combination with a forward-modelling scheme based on volume conduction theory [6]. To

approximate the different geometries and electrical conductivities of the head, we computed

the EEG using the four-layered spherical head model described in [35,49]. In this model, the

different layers represent the brain tissue, cerebrospinal fluid (CSF), skull, and scalp, with radii

9, 9.5, 10 and 10.5 mm respectively, which approximate the dimensions of a rodent head

model [46]. The values of the chosen conductivities are the default values of 0.3, 1.5, 0.015 and

0.3 S/m. The simulated EEG electrode was placed on the scalp surface, at the top of the head

model (Fig 1C).

The time series of spikes of individual point neurons were finally mapped to synapse activa-

tion times on corresponding postsynaptic multicompartment neurons. Each multicompart-

ment neuron was randomly assigned to a unique neuron in the point-neuron network and

receives the same input spikes of the equivalent point neuron. Since the multicompartment

neurons were not connected to each other, they were not involved in the network dynamics

and their only role was to transform the spiking activity of the point-neuron network into a

realistic estimate of the EEG. The EEG computed from the multicompartment neuron model

network was then used as benchmark ground-truth data against which we compared different

candidate proxies (Fig 1D).

Dynamic states of network activity of the point-neuron network model

The LIF point-neuron network model we chose is known to generate a number of qualitatively

different activity states [12,44] with patterns of variability of spike activity and network oscilla-

tions observed in cortical data. Here we recapitulate the different network states we generated

for the LIF point-neuron network and that were used to evaluate the different proxies. The

states generated by the LIF neuron network can be mapped by systematically varying across

simulations the thalamic input (ν0) and the relative strength of inhibitory synapses (g). We

then used three different measures to describe the network dynamics: synchrony, irregularity,

and mean firing rate [12,44].

In Fig 2A, we plot these three descriptors as a function of g and ν0. We individuated 3 differ-

ent regions of the parameter space, each corresponding to a qualitatively different network

state, according to the criteria employed by Kumar and collaborators [44]. The asynchronous

irregular (AI) state is characterized by a low value of network synchrony (< 0.01), an irregular-

ity level close to the value of a Poisson generator (> 0.8) and a very low firing rate, below 2

spikes/s. The synchronous irregular (SI) state has a level of network synchrony higher than

that of the AI state (between 0.01 and 0.1), but with highly irregular firing of individual neu-

rons (irregularity above 0.8). In the SI, neurons spike at low rate (< 5 spikes/s). For the syn-

chronous regular (SR) state, the network exhibits high synchronous activity (> 0.1), a more

regular single-cell spiking (irregularity below 0.8) and high spiking rate (> 60 spikes/s). Spike

raster plots of excitatory and inhibitory cell populations of representative samples selected for

each network state are shown in Fig 2B.

Optimization and validation of proxies across different network states

We investigated how best to compute the proxy that combines the variables available directly

from the simulation of a LIF point-neuron network model for accurately predicting the EEG

over a wide range of network activity states. We explored different proxies that have been com-

monly used in previous literature for estimating the extracellular signal from point-neuron
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Fig 2. Optimization and validation of proxies for different sets of network parameters (ν0, g). (A) Dynamic states of network activity defined by the

control parameters g and ν0. The labels AI (asynchronous irregular), SI (synchronous irregular) and SR (synchronous regular) indicate the combinations of

parameters that have been selected as representative samples of each network state. The synchrony and irregularity are unitless, the mean firing rate (FR) is

measured in spikes/s. (B) Spiking activity from a subset of cells of the excitatory and inhibitory populations for the same samples shown in (A). (C)

Optimized parameters of ERWS1 and ERWS2 (Eqs 7–9) as a function of the thalamic firing rate ν0. We considered two alternative scenarios. In the causal

version of the proxy, the output depends only on present and past inputs so that the time delay parameters (τAMPA and τGABA) are constrained to be positive.

In contrast, non-causal proxies can be assigned positive or negative time delays. (D) Outputs of non-causal ERWS1 (bottom row) and non-causal ERWS2
(top row) proxies for different network states compared to ground-truth EEGs. (E) Spiking activity for the same simulation cases of panel D. (F) Average

performance, evaluated by using the coefficient of determination R2, of ∑|I|, LRWS, ERWS1 (non-causal) and ERWS2 (non-causal) calculated on the

validation dataset as a function of ν0 (same colors as shown in (G)). The dotted line R2 = 0.9 was chosen arbitrarily as a reference value of good performance

and was used only for visual inspection of results. (G) Average R2 of every proxy across all network instantiations i of the validation dataset (c is causal, n is

non-causal). The same colors shown in this legend are used throughout the article to identify the different proxies. Tests for statistical significance are

computed only for the pair ERWS1 (non-causal) and ERWS2 (non-causal) and for the pair ERWS1 (causal) and ERWS2 (causal). (H) R2 across network

states. (I) Power spectral density (PSD) of the proxies and the EEG (in black). (J) Average R2 computed across the 5–200 Hz frequency range of the

log10(PSDs) of all network instantiations i of the validation dataset.

https://doi.org/10.1371/journal.pcbi.1008893.g002
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networks: (i) the average firing rate (FR), (ii) the average membrane potential (Vm), (iii) the

average sum of AMPA currents (AMPA), (iv) the average sum of GABA currents (GABA),

(v) the average sum of synaptic currents (∑I) and (vi) the average sum of their absolute values

(∑|I|). Furthermore, we propose here a new class of current-based proxies, (vii) the EEG refer-

ence weighted sum 1 (ERWS1) and (viii) the EEG reference weighted sum 2 (ERWS2), which

are optimized linear combinations of time-delayed measures of AMPA and GABA currents.

Indeed, an optimized weighted sum of synaptic currents (defined here as LRWS) was previ-

ously shown to be a robust proxy for the LFP [42]. The difference between ERWS1 and

ERSW2 is that parameters of ERWS2 adapt theirs values as a function of the strength of the

external thalamic input υ0, whereas the parameters of ERWS1 are not dependent on υ0 (see

“Methods”).

We only considered the transmembrane currents of pyramidal cells to generate the EEG (in

the multicompartment neuron network) because the contribution of transmembrane currents

of interneurons to the EEG was shown to be negligible (Fig 1E and 1F), in line with findings of

Refs. [35] for the EEG and [42] for the LFP. Accordingly, we computed proxies of the LIF neu-

ron network only using excitatory neurons. It is important to bear in mind, though, that inter-

neurons, play an indirect role in generating the EEG in our models, because GABAergic

currents in pyramidal cells depend on synaptic input from interneurons.

The firing rate of inhibitory neurons might be expected to contribute as well to the FR
proxy and, as a consequence, to the EEG, as observed in Ref. [30]. To keep consistency with

definition of the other proxies, we decided to compute the FR proxy based only on firing rates

of excitatory cells. We checked that using a proxy computed on firing rates of both excitatory

and inhibitory cells gave an EEG reconstruction accuracy considerably poorer than accuracy

of the proxies based on synaptic currents (from proxy iii to proxy viii above).

The first 6 proxies taken from previous literature are parameter-free. The two new ones,

ERWS1 and ERWS2 have 3 and 9 free parameters, respectively, which need to be optimized

(Eqs 7–9). Following previous work [42], these parameters are the factor α describing the rela-

tive ratio between the two currents and a specific delay for each type of current (τAMPA,

τGABA). We computed the values of these parameters by a cross-validated optimization of the

predicted EEG across the different network states seen for the LIF model network.

For optimization (i.e., parameter training) of the proxies, we generated a large set of numer-

ical simulations (522 simulations) by systematically varying the values of g and ν0 over a wide

state range. In each simulation instantiation, we set a given value g and ν0 and used different

random initial conditions (e.g., recurrent connections of the point-neuron network or soma

positions of multicompartment neurons). The best-fit values of ERWS1 and ERWS2 were cal-

culated by minimizing the sum of square errors between the ground-truth EEG and the proxy

for all network instantiations of the optimization dataset (see “Methods”, Eq 11).

We then cross-validated performance of the proxies by first computing how well they

approximated EEGs generated by networks with the same properties that were used during

proxy training, and then evaluating the proxies in networks in which we changed some of

their features (e.g., cell morphologies or network size). Our reasoning was that if a proxy

trained on some specific network features approximated well the EEG simulated across differ-

ent network configurations, then we could hypothesize that our EEG proxies captured impor-

tant and general properties of the relationship between the EEG and neural activity and thus

could be used under a wide range of conditions.

Fig 2C shows the best-fit parameters (α, τAMPA and τGABA) found by the optimization algo-

rithm for the two alternative scenarios considered here: causal and non-causal proxies (see

also Table 1). For causal proxies, the predicted EEG depended only on present and past values

of AMPA and GABA currents. Thus, the time delay parameters τAMPA and τGABA (quantifying
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the delay by which the synaptic current contributes to the EEG) were constrained during opti-

mization to be non-negative. For non-causal proxies, time delay parameters can take positive

and negative values. Non-causal relationships between measured extracellular potentials and

neural activity at multiple sites may emerge because of closed-loop recurrent interactions

within the network [6]. The mathematical expressions of the optimized causal proxies

(FERWS1(t) and FERWS2(t, υ0)) are:

FERWS1ðtÞ ¼
P

exc:IAMPAðtÞ � 0:1ð
P

exc:IGABAðt � 3:1 msÞÞ; ð1Þ

FERWS2ðt; u0Þ ¼
P

exc:IAMPAðtÞ � ð0:5u
� 0:5

0
Þð
P

exc:IGABAðt þ 1:5u� 0:2

0
ms � 4 msÞÞ: ð2Þ

Expressions of the optimized non-causal proxies (where ν0 is unitless) are:

FERWS1ðtÞ ¼
P

exc:IAMPAðt þ 0:9 msÞ � 0:3ð
P

exc:IGABAðt � 2:3 msÞÞ; ð3Þ

FERWS2ðt; u0Þ ¼
P

exc:IAMPAðt þ 0:6u� 0:1

0
msþ 0:4 msÞ � ð1:4u� 1:7

0
þ 0:2Þð

P
exc:IGABAðt

þ 1:9u� 0:6

0
ms � 3 msÞÞ: ð4Þ

For both ERWS1 and ERWS2, in the non-causal versions, the time delay parameters were

small (few milliseconds) but had opposite signs, τGABA was positive while τAMPA was negative

(Fig 2C). In the causal version of both proxies, we observed a similar trend but τAMPA was con-

strained to 0 by the optimization. Thus, the best EEG proxies depend on past values of GABA

synaptic currents and on current and future values of AMPA synaptic currents. These values

are different from the optimal time delays (τGABA = 0 ms and τAMPA = 6 ms) found for the LFP

in Ref. [42]. One reason for the observed difference between the previous LFP proxy and our

new EEG proxies may relate to differences in spatial integration properties of the EEG signal

and the LFP signal. Another probable cause of this difference is that in Ref. [42] the LFP proxy

was optimized over a much smaller range of network states and external input rates (ν0< 6

spikes/s). Indeed, our results for ERWS2 show that optimal values of τGABA exhibit strong

adaptation towards τGABA = 0 ms within the low regime of the external rate ν0. The parameter

α, which expresses the ratio of the contribution to the EEG of GABA relative to AMPA synap-

tic currents, also exhibits a strong adaptation. The dependence of α on the value of input rate

ν0 in Fig 2C is particularly relevant because it reflects a larger weight of GABA currents for low

values of ν0 and the opposite effect, stronger weight of AMPA currents, as the external rate

increases.

We next explored the performance of proxies on networks with the same properties of

those used for training (i.e., same network size and cell morphologies). To quantitatively evalu-

ate the performance of all proxies, we computed for each proxy the coefficient of determina-

tion R2, which represents the fraction of the EEG variance explained. The average R2

calculated on the validation dataset (Fig 2G) shows a clear superiority of the new class of prox-

ies. Both the causal and non-causal versions of ERWS1 and ERWS2 outperform all the other

proxies, and the non-causal versions reach the best overall performance (ERWS1: R2 = 0.94

Table 1. Parameters of ERWS1 and ERWS2.

Proxy Optimized values

ERWS1 (causal) τAMPA = 0 ms, τGABA = 3.1 ms, α = 0.1

ERWS2 (causal) a1 = 0, b1 = 0, c1 = 0, a2 = -1.5, b2 = 0.2, c2 = 4, a3 = 0.5, b3 = 0.5, c3 = 0

ERWS1 (non-causal) τAMPA = -0.9 ms, τGABA = 2.3 ms, α = 0.3

ERWS2 (non-causal) a1 = -0.6, b1 = 0.1, c1 = -0.4, a2 = -1.9, b2 = 0.6, c2 = 3, a3 = 1.4, b3 = 1.7, c3 = 0.2

https://doi.org/10.1371/journal.pcbi.1008893.t001
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and ERWS2: R2 = 0.95). In agreement with previous results for the LFP [42], the three proxies

that give the worst fits were FR, ∑I and Vm.

To understand if the performance of proxies depended on the specific state of network

activity, we first examined the performance of the most interesting proxies (∑|I|, LRWS,

ERWS1 (non-causal) and ERWS2 (non-causal)) separately for different values of the input rate

ν0. We found that while LRWS performed well for low input rates (the range of external rates

for which it was optimized [42]), its performance rapidly dropped with ν0 (Fig 2F). The other

three proxies maintained a high R2 for the whole spectrum of firing rates studied here, with

ERWS1 and ERWS2 performing notably better than ∑|I|. Note also that ERWS2 is the only

proxy that yields a value of R2 above 0.9 for all firing rates. We then computed the performance

of these proxies separately for different types of network states. We found that the new proxies

developed here, ERWS1 and ERWS2, produced accurate fits of the EEG for all network states

(Fig 2H), while accuracy of EEG approximations made by the other proxies was less uniform

across network states.

The above analyses quantified how well the proxies approximated the actual values of the

EEG in the time domain. We next examined how well the proxies approximated the overall

power spectrum of the EEG rather than all variations of the EEG time series. In Fig 2I we show

power spectral density (PSD) functions of all the proxies for the AI and SI states, compared to

spectral responses of the EEG. In the whole frequency range considered (5–200 Hz), all proxies

provided a qualitatively good fit of the EEG power spectrum, except ∑I, which attenuated low

frequencies and amplified high frequencies. In Fig 2J we report the average R2 computed for

the log10(PSD) across all data points of the validation dataset. We logarithmically weighted the

spectra to prevent R2 to be dominated by low frequencies, neglecting the importance of errors

at high frequencies. The performance obtained for power spectra confirmed the superiority of

ERWS1 and ERWS2 also in the spectral domain. Interestingly, the average membrane potential

(Vm), whose performance in the time domain was poor, performed instead better in the spec-

tral domain. In contrast, the firing rate remained a poorly performing proxy also in the spec-

tral domain.

Time-shifted variants of proxies

The ERSW proxies were optimized for EEG prediction choosing optimal values for the time

shifts between neural activity and the EEG. It is thus possible that the superior performance of

the ERWS proxies over all others may have been due to the fact that the other proxies were not

optimally time shifted. To investigate this hypothesis, we generated optimized time-shifted

versions of all the other proxies by computing cross-correlation between the ground-truth

EEG and all other proxies and choosing the optimum time shift of each proxy as the lag of the

cross-correlation peak. We then compared the performance of the time-shifted versions of

proxies in predicting the EEG with the performance of the ERWS proxies.

In this analysis, we recomputed the optimum time shift of every proxy separately for each

network state, whereas the parameters of the ERWS proxies were jointly optimized (see previ-

ous section) over the entire simulated EEG dataset spanning all possible network states. Thus,

this comparison was clearly favorable to the other proxies. Nevertheless, we still found that the

ERWS proxies outperformed all previous proxies for the majority of network states. Only in

the AI state, we observed that the LRWS proxy slightly outperformed ERWS1 and ERWS2. The

ERWS2 proxy was the only one providing remarkably good performance across all states (R2

> 0.9 over all states).

Further results came out of this analysis. Two proxies clearly improved the quality of their

fits after time shifting, FR and Vm, but presented opposed time shifts: while FR was delayed,
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Vm was moved forward in time. A spike is a much faster event than the dipoles generated by

synaptic activity and, as a result, a firing-rate proxy is expected to exhibit faster temporal

changes than the EEG signal. By contrast, somatic integration of the postsynaptic membrane

potentials following presynaptic spiking is a slower process that might lead to a signal more

low-pass filtered than the EEG.

When comparing AMPA and GABA proxies, we observed that, in the AI state (Fig 3A), the

temporal dynamics of the EEG signal was better approximated by the GABA proxy, whereas

AMPA currents showed a faster response. Indeed, the performance of the AMPA proxy was

improved after applying the corresponding time shift. As the firing rate of the external input

increased and switched the network state from AI to SI (Fig 3B), the temporal evolution of the

Fig 3. Optimum time shift of proxies that maximizes cross-correlation with the EEG. Comparison of the outputs of proxies and the ground-truth EEG

before (left) and after (right) applying the optimum time shift, with the optimum time shift for each proxy and network state indicated on the right. Note

that some proxies have positive time shifts for all network states (e.g., FR), while others (e.g., GABA) change the sign of the time shift when passing from

the AI to the SR state. The network states shown are the following: AI in panel A, SI in panel B and SR in panel C. On the right: R2 before (color bars) and

after (black bars) applying the optimum time shift. ERWS1 and ERWS2 are not time shifted.

https://doi.org/10.1371/journal.pcbi.1008893.g003
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EEG began to diverge from GABA currents and, instead, AMPA currents were seen to better

approximate the EEG.

The performance of EEG proxies depends on the neuron morphology and

distribution of synapses

Modelling studies have demonstrated that extracellular potentials generated by synaptic input

currents vary with the neurons’ dendritic morphology and the positions of individual synaptic

inputs [6,50]. For example, morphological types that display a so-called open-field structure,

such as pyramidal cells, have spatially separated current sources and current sinks that gener-

ate a sizable current dipole. Synaptic inputs onto neurons that have a closed-field configuration,

such as interneurons, largely cancel out when they are superimposed so that the net contribu-

tion to the current dipole is weak [35]. The hybrid modelling scheme [30,35,42,43] gives us the

opportunity to study, independently from the spiking dynamics of the point-neuron network,

how different parameters of the multicompartment neuron network (e.g., distribution of syn-

apses or dendritic morphology) affect the EEG signal and, as a consequence, modify the pre-

diction capabilities of the proxies.

Above results (Figs 2 and 3) were computed using a specific multicompartmental model

type of L2/3 pyramidal cell from rat somatosensory cortex (taken from the NMC database

[47,48]) and referred as “NMC L2/3 PY, clone 9” (Fig 4A). Here, we studied whether the prox-

ies derived for this morphology provided good approximations to the EEG generated by differ-

ent cell morphologies. We thus quantified how well our proxies approximate the EEG

generated by a different pyramidal-cell morphology taken also from rat somatosensory cortex

(“NMC L2/3 PY, clone 0”) and by a third morphology (“ABA L2/3 PY”), which is a L2/3 pyra-

midal cell from the mouse primary visual area [51]. It is important to note that the parameter

values of proxies optimized for the morphology “NMC L2/3 PY, clone 9” were applied

unchanged to the other morphologies across network states.

We found that ERWS2 was the proxy with the highest prediction accuracy (Fig 4). It

approximated extremely well the EEG across all three types of morphology and across all net-

work states. The performance of both ERWS proxies in predicting the EEG generated by the

mouse pyramidal neuron morphology (“ABA L2/3 PY”, Fig 4, right column) was as good as

the performance for the “NMC L2/3 PY, clone 9” morphology (probably because they have

similar broad-tuft dendritic morphology, although different size). This suggests that the model

generalizes reasonably well across species (at least for EEG generated by broad-tuft dendritic

morphologies). ERWS proxies also performed well, though less compared to the morphology

they were optimized for, on the EEGs generated by the other rat somatosensory cortex mor-

phology (“NMC L2/3 PY, clone 0”, Fig 4, middle column). The small decrease in performance

was probably due to the fact that, unlike the broad dendritic tuft morphology used to opti-

mized the proxy, this morphology incorporates long apical dendrites that separates AMPA

synapses located in the tuft from GABA synapses more than 200 μm away. Analogously, the

fact that the performance of LRWS did not decrease for the “NMC L2/3 PY, clone 0” morphol-

ogy can be understood in terms of similarity between the pyramidal-cell morphology used to

develop the LRWS proxy [42] and this morphology. The LRWS proxy [42] performed well

across all morphologies in the AI state but its performance decreased across other states and

morphologies. Other proxies performed poorly across different morphologies and/or states.

We also evaluated performance of proxies on the EEG generated by a heterogeneous popu-

lation of pyramidal cells that had different morphologies (S1 Fig). In the same simulation, we

randomly assigned the “NMC L2/3 PY, clone 9” morphology to half of the pyramidal-cell pop-

ulation and the “NMC L2/3 PY, clone 0” morphology to the other half. We found that
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performance scores of proxies were between the values obtained independently for each mor-

phology. This finding suggests that a mixed population of pyramidal cells, which includes a

larger set of pyramidal-cell morphologies, could be well approximated by our proxies with an

accuracy limited by the worst- and best-performing morphologies.

We next investigated how different spatial distributions of synapses on excitatory cells affect

the performance of proxies (Fig 5). More specifically, GABA synapses were distributed on

excitatory cells following two alternative approaches: located only on the lower part of the cell,

primarily on the soma and basal dendrites (“Asymmetric”) or homogeneously distributed

across all dendrites (“Homogeneous”). Note that the “Asymmetric” case (Fig 5, left column)

corresponds to default configuration shown in Fig 4A, left column (“NMC L2/3 PY, clone 9”

morphology). The most significant change observed when distributing GABA synapses homo-

geneously on excitatory cells was an overall decrease of the performance of all proxies (but see

Fig 4. Performance of proxies for different morphologies. (A) Neuron reconstructions of L2/3 pyramidal cells acquired from the Neocortical

Microcircuitry (NMC) portal [47,48] and the Allen Brain Atlas (ABA) [51]. For visualization purposes, in the synaptic distribution of each

morphology, only a subset of AMPA and GABA synapses are shown, drawn randomly from all presynaptic connections. (B) R2 computed for each

morphology (columns) and network state (rows). The label “All” indicates the average R2 across the three network states.

https://doi.org/10.1371/journal.pcbi.1008893.g004
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∑I), most prominently for the AI. These findings are in agreement with previous results

obtained for the LFP proxy [42] in which a homogenous distribution of AMPA and GABA

synapses on pyramidal cells resulted in the worst approximation of LFPs. In all scenarios,

except for the AI state, ERWS1 and ERWS2 provided the best performance and their average

R2 values across network states reflect their superiority in both the asymmetric and homoge-

nous distributions.

Effects of the position of the electrode over the head model on the EEG and

proxies

To investigate how the position of the electrode affects the EEG and performance of proxies,

we simulated the EEG at four different locations over the head (Fig 6A). Simulation results,

shown in Fig 6, are reported as a function of the angle between the electrode location and the

Z-axis (angle Theta). We studied the effect of electrode position for the three different network

states: AI, SI and SR. We first explored how properties of the EEG signal changed with the

location of the electrode. As expected, the EEG amplitude, defined as the standard deviation of

the EEG signal over time, decreased steeply when the electrode was moved away from the top

Fig 5. Influence of synaptic distributions on performance of proxies. Outline of the two different distributions of GABA synapses on

excitatory cells: distributed only below the reference point Z = 8.5 mm (“Asymmetric”) or distributed homogenously across all dendrites

(“Homogeneous”). Each row below the diagram of model cells shows the corresponding R2 for a different network state. The label “All” in

the last row displays the average R2 across the three network states.

https://doi.org/10.1371/journal.pcbi.1008893.g005
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of the head (Fig 6B). This decrease in EEG amplitude is consistent with previous simulation

results of the 4-sphere head-model [35,39], in which a moderate attenuation of the EEG scalp

potentials was observed when increasing the lateral distance from the center position along the

head surface. Although the EEG amplitude is larger in the SR state, the relative variations of

amplitude as a function of angle Theta were similar across network states. In contrast, we

found (Fig 6C) sizeable differences in the normalized time courses of the EEG at different net-

work states: an increase of angle Theta led to a delay of the EEG signal that was larger for the

AI and SI states, but much weaker for the SR state. These results indicate that as the measure-

ment point moves toward the zero-region of the current dipole, where the EEG power is much

smaller, the signal-to-noise ratio is reduced and the influence of the high-frequency noise is

more important. Since the signal power is significantly larger for the SR state, the effects of the

high-frequency noise are less evident for the SR state.

Variations of properties of the EEG signal when the electrode was shifted from the top of

the head affected the performance of proxies. As depicted in Fig 6D, in the AI and SI states the

performance of ∑|I|, LRWS, ERWS1 and ERWS2 decreased when the angle Theta increased.

Fig 6. EEG and proxies as a function of the position of the electrode over the head model. (A) Illustration of the scalp layer in the four-sphere head model

and locations where the EEG is computed. Location of the center of soma positions of the multicompartment neurons is marked as “Neuron population”. (B)

EEG amplitude, (C) normalized EEG and (D) performance of ∑|I|, LRWS, ERWS1 and ERWS2 as a function of the angle between the electrode location and the

Z-axis (angle Theta), computed for the three different network states: AI, SI and SR.

https://doi.org/10.1371/journal.pcbi.1008893.g006
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However, in the SR state the performance of proxies was largely independent of the position of

the electrode, or it even increased with angle Theta in the case of the LRWS proxy. In any case,

ERWS1 and ERWS2 gave the best performance in most scenarios, particularly ERWS2 whose

R2 value was above 0.9, provided that Theta was smaller than 36 degrees.

EEG estimation with a Convolutional Neural Network (CNN) proxy

The proxies considered above are all simple linear functions of the neural parameters of the

LIF point-neuron network model. Linear proxies have the advantage of simplicity and

interpretability. However, an alternative strategy for constructing an EEG proxy is training a

convolutional neural network (CNN) to learn complex and possibly non-linear relationships

between variables of the LIF point-neuron network model, such as AMPA and GABA cur-

rents, and the EEG. This could potentially improve the estimation of linear proxies, at the

expense of increasing computational complexity and obscuring interpretation. Instead of

using a deep neural network with many hidden layers that could largely increase complexity

and prevent us from making any type of analogy with results of linear proxies, we opted for a

simpler, shallow CNN architecture, with just one convolutional layer (Fig 7A). This CNN

architecture was found to be sufficiently robust achieving a R2 value of 0.99 on the test dataset

(see Table 2). The network consists of one 1D convolutional layer (‘Conv1D’) with 50 filters

and a kernel of size 20, followed by a max pooling layer (‘MaxPooling1D’) of pool size 2, a flat-

ten layer and two fully connected layers of 200 units each one (marked as ‘Dense’ and ‘Output’

respectively). The input of the CNN is constructed by stacking data chunks of 100 ms (0.5 ms

time resolution) extracted from the time series of AMPA and GABA currents, giving a 2 x 200

input layer.

The network was trained and tested on the same datasets (one for the training of the prox-

ies, the other for the validation/testing of their accuracy) generated for optimization of param-

eters of the ERWS1 and ERWS2 proxies, using a first-order gradient descent method (Adam

optimizer [52]) over 100 epochs (see “Methods”). In Fig 7B, we observe a quick convergence of

the three metrics used to monitor training (R2, MAE and MSE) towards optimal values (R2�
1, MAE < 0.1 and MSE < 0.01). Accuracy of predictions of the trained network, calculated on

the test dataset, are shown in Fig 7. We computed the prediction error as the difference

between amplitude values of the CNN-predicted and the true EEG signals. The probability dis-

tribution of the prediction error (Fig 7C) and the scatter plot of true versus predicted values

(Fig 7D) both show a very accurate estimation of the EEG values. In Fig 7E, we illustrate some

examples of predictions of the EEG signal compared to the ground-truth EEG for different

network states. The best match between predicted and true EEG traces is seen for the SI state,

although estimation performance remains high across all states.

The performance of the CNN was evaluated, like for the other proxies, as the average value

of R2 computed over all samples of the test dataset. As shown in Table 2 line A, the CNN

clearly outperformed all other proxies on the test dataset and reached a very high performance

score (R2 = 0.99). We next assessed the performance of the CNN for the different configura-

tions of the multicompartment neuron network, i.e., cell morphologies, distribution of presyn-

aptic inputs and position of the recording electrode (Table 2 lines B, C and D). Compared to

the best performing linear proxy, ERWS2, the CNN provided an increase of performance

between 2 and 8% in most scenarios.

To gain insight into how AMPA and GABA inputs interact with layers of the network, we

inspected the weights learned by different filters of the convolutional layer, as illustrated in S2

Fig for some examples of representative filters, depicted both in the time domain (panel A)

and frequency domain (panel B). We observed that the majority of filters perform a band-pass
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and high-pass filtering of AMPA and GABA inputs and their peak frequencies are within the

range [102, 103] Hz. This indicates that the CNN primarily uses the fast dynamics of the cur-

rent inputs to construct an estimate of the EEG signal. We then asked whether we could disen-

tangle the different transformation functions applied by the CNN to each type of input

current. In signal processing, the impulse response of a linear system is typically used to under-

stand the type of transfer function implemented by the system. The CNN included layers that

were non-linear after the first convolutional layer. However, we could use a similar methodol-

ogy to characterize the transformation function of the CNN by collecting the network

Fig 7. Overview of the convolutional neural network, train errors and accuracy of EEG predictions. (A) Illustration of the different types of layers

included in the processing pipeline of the CNN architecture as well as the output shapes of each layer. Note that the 1D convolutional layer (‘Conv1D’) uses

50 filters and a 1D convolutional window (kernel) of size = 20. The total number of parameters of the entire CNN is 942450. (B) Training metrics collected

during training: R2, Mean Absolute Error (MAE) and Mean Squared Error (MSE). (C) Probability density function of the prediction error calculated on the

test dataset. The error is expressed in Standard Deviation Units (SDU) (D) Predictions vs true values. Each dot of the scatter plot corresponds to amplitude

values of the predicted and real EEG signals at a specific time step of the simulation. The continuous line represents a perfect EEG estimator. (E) Examples of

predictions of the CNN compared to the ground-truth EEGs for different network states.

https://doi.org/10.1371/journal.pcbi.1008893.g007
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responses to all possible combinations of unit impulses applied either to the AMPA or GABA

inputs (S2C Fig). To extract a measure of the time shift applied by the network to AMPA and

GABA inputs, we computed, for each unit impulse, the difference between the time when the

impulse is applied and the time in which the absolute response of the network reaches its maxi-

mum. The histogram of time shifts applied to AMPA and GABA inputs (S2D Fig) shows that

the CNN generally estimated the EEG signal by time shifting AMPA and GABA currents

within the range [–2, 2] ms and the time shift could be either positive or negative.

The new EEG proxies are robust to the addition of oscillatory power in

canonical low-frequency bands

Magnetoencephalography (MEG), EEG and LFP studies consistently report that brain activity

contains oscillations in canonical frequency bands that are superimposed upon an aperiodic

broadband power-law spectrum [53–57]. An important question is how our proxies would

perform in the presence of both oscillatory activity across different canonical EEG bands and

of a broadband power-law spectrum.

Our spatially-unstructured local model of reciprocally connected excitatory and inhibitory

populations could, when selecting appropriate parameters, intrinsically generate gamma

rhythms (30–100 Hz) by the alternation of fast excitation and the delayed feedback inhibition

[31,58]. As an example, Fig 2I reports EEG power spectra computed from the activity of our

network model exhibiting gamma oscillations. Generation of gamma oscillations is an impor-

tant model property because these oscillations are thought to underline important cognitive

functions [59–61] and their disruption is associated to several cognitive disorders [62]. Addi-

tionally, we previously showed that our recurrent network model could also generate broad-

band power-law spectra that resembled cortical spectra [14, 42]. However, it could not

intrinsically generate narrow-band oscillations in the canonical low-frequency bands, includ-

ing delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta (15–30 Hz), all frequencies

Table 2. Performance (computed as R2) of the CNN in comparison with ∑|I|, LRWS, ERWS1 and ERWS2 proxies. The performance values shown for the test dataset

(A) are averaged over all samples of the test dataset, while performance values in panels B, C and D are averaged over the samples of the different network states, i.e., AI, SI

and SR.

A: Performance on the test dataset

∑|I| LRWS ERWS1 ERWS2 CNN

0.86 0.74 0.94 0.95 0.99

B: Morphologies

Cell model ∑|I| LRWS ERWS1 ERWS2 CNN

NMC L2/3 PY, c. 9 0.87 0.74 0.92 0.94 0.97

NMC L2/3 PY, c. 0 0.70 0.76 0.77 0.77 0.87

ABA L2/3 PY 0.85 0.67 0.90 0.92 0.94

C: Distribution of synapses

Distribution type ∑|I| LRWS ERWS1 ERWS2 CNN

Asymmetric 0.87 0.74 0.92 0.94 0.97

Homogeneous 0.77 0.65 0.83 0.87 0.89

D: Position of the EEG electrode

Theta (rad) ∑|I| LRWS ERWS1 ERWS2 CNN

0 0.87 0.74 0.92 0.94 0.97

0.31 0.86 0.74 0.91 0.93 0.97

0.63 0.82 0.72 0.90 0.91 0.96

0.94 0.69 0.68 0.80 0.81 0.87

https://doi.org/10.1371/journal.pcbi.1008893.t002
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which are thought to arise from more complex loops (e.g. cortico-cortical and thalamocortical

loops [63,64]).

In previous models, this type of oscillations in lower-frequency bands was generated by

entrainment of an external lower-frequency input [14]. Therefore, to study effects of low-fre-

quency oscillations on performance of EEG proxies, here we added band-limited components

to the thalamic input, in either the delta, theta, alpha, or beta bands. As expected by our previ-

ous studies [14], the use of band-limited signals increased the oscillatory power of network

activity in each of these canonical low-frequency bands (Fig 8A).

The amount of power to be added to the input in each canonical band was a free parameter

in these simulations. To obtain reasonably realistic scenarios, we decided to set the added

power such that the relative increase of oscillatory power in each frequency band with respect

to the power of the aperiodic signal was similar to that observed in real data. To separate the

narrow band oscillations from the aperiodic power-law spectral component, we applied the

FOOOF algorithm [53] to our simulated EEG spectra. Using this algorithm, we computed the

aperiodic-adjusted power (or flattened spectrum)—i.e., the magnitude of the oscillatory peak

above the aperiodic component [53,54]. The aperiodic-adjusted power was computed by sub-

tracting the aperiodic fit from the power spectrum (see “Methods”). We set parameters of the

added power such that in all simulations the aperiodic-adjusted power values of the simulated

EEG across the different frequency bands were in the range 0.05 to 0.2 (we manually explored

Fig 8. Effect of adding oscillatory inputs in the canonical low-frequency bands. (A) Power spectral density (PSD) functions of the ground-truth EEG

for each one of the band-limited signals (delta, theta, alpha, and beta) added to the thalamic input of the model. The mean rate of the thalamic input was υ0

= 1.5 spikes/s. The fit to the simulated PSD of the aperiodic power-law component and of periodic components of the simulated EEG was performed using

the FOOOF algorithm [53]. In the “aperiodic fit”, the periodic band-limited component (obtained using a multi-Gaussian fit of the band-limited spectral

peaks) was removed leaving only the aperiodic component. The blue dashed line indicates the position of the maximum value of the PSD used to compute

the magnitude of the oscillatory peak. (B) Performance of ∑|I|, LRWS, ERWS1, ERWS2 and CNN for the different band-limited inputs and network states

(AI, SI and SR).

https://doi.org/10.1371/journal.pcbi.1008893.g008
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different amplitude values of power to be added, until the peak was at the desired amplitude in

the EEG power spectrum). These values were in agreement with ranges of aperiodic-adjusted

power values observed in recent studies in older adults that separate aperiodic and periodic

features of power spectra in resting-state EEG [53] and MEG [54].

We computed the performance of the best EEG proxies (∑|I|, LRWS, ERWS1, ERWS2, and

the CNN) across the different network states when adding power to the thalamic input in the

canonical low-frequency bands (Fig 8B). Interestingly, the prediction performance of the EEG

proxies remained very similar to those we reported above when simulating the case in which

the thalamic input was not modulated by a low-frequency oscillatory input (Fig 2 and Table 2).

Overall, we found that ERWS1, ERWS2 and the CNN produced accurate fits of the EEG for all

network states, while accuracy of EEG approximations made by the other proxies was good for

only one or two network states, but not for all. This suggests that our new proxies can work

well to describe EEGs that show narrow-band peaks from the delta to the gamma range.

Upscaling of the network model and integration of EEG by proxies

calculated on local subnetworks of cells separated across space

The new EEG proxies were trained on EEGs simulated by a small localized population (5000

neurons within a radius of 0.5 mm). We then investigated whether our proxies could approxi-

mate well the EEG of a larger network model, and how the proxies could integrate neural activ-

ity across spatial locations to generate an accurate EEG.

We simulated an upscaled version of the network model that contained 20000 neurons

(four times more neurons than the model used for proxy training). To preserve the density of

neurons, we increased the circular area where cells were placed to cover a circular section of

radius r = 1 mm. We also opted for preserving the number of synapses that each neuron

receives by decreasing fourfold the probability of connection. In this way, we could expect that

network dynamics of the upscaled model would remain largely unchanged. We divided this

larger network into four spatially distinct subnetworks, each made of 5000 neurons. We then

studied the performance of the EEG proxies in approximating the EEG generated by the

extended network for different cases of connectivity between the subnetworks.

We first considered the simplest scenario of recurrent connectivity, where cells were all-to-

all connected both within and across subnetworks (Fig 9A). The ground-truth EEG was com-

puted by integrating the EEG signal from all 20000 cells in the multicompartment model net-

work, whereas proxies were computed in two different ways: either by using only the activity

of a local subnetworks of cells (S1, S2, S3 or S4), or by summing proxies of all subnetworks (S1

+S2+S3+S4). In either case, we observed that proxies locally calculated on subnetworks of cells

(e.g., ERWS1 and ERWS2 in Fig 9B) could approximate very well the ground-truth EEG, as

intuitively expected in an all-to-all connectivity scenario. Indeed, performance scores of global

proxies (Fig 9C) were essentially identical to those of the proxies computed in individual sub-

networks (Fig 9D). Another key observation was that prediction performance of both global

and local proxies repeated the same trend of the 5000-neuron network used for training the

proxies, with ERWS1, ERWS2 and the CNN giving accurate EEG approximations in all net-

work states. These results indicated that upscaling the network model preserved prediction

performance, and that in an all-to-all connectivity configuration, computation of proxies from

local subnetworks of cells separated across space could be used to produce reliable estimations

of the EEG.

We then simulated a second network configuration in which recurrent connections of cells

were constrained to target only cells of the same subnetwork (Fig 9E). To produce fully uncor-

related cortical dynamics between subnetworks, the external inputs to each subnetwork were
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Fig 9. Spatially extended network model. (A) The network model was upscaled to cover a circular section of radius r = 1 mm. The number of cells of the

original model was increased fourfold, although the upscaling preserved the densities of neurons and local synapses. The population of cells was divided in

four subnetworks (S1, S2, S3 and S4) according to their position in each quadrant of the circular section. As an example, postsynaptic connections (red

lines) of a randomly selected cell in S2 (blue spot) are depicted to illustrate the all-to-all connectivity pattern. Local proxies were computed for each

subnetwork and the global proxy was calculated as the sum of proxies of all subnetworks (S1+S2+S3+S4). The ground-truth EEG was generated by

summing contributions from all cells in the multicompartment model network. (B) Outputs of ERWS1 (bottom row) and ERWS2 (top row) proxies for the

subnetwork S1 and of the global proxy compared with the ground-truth EEG. (C) Performance of global proxies. (D) Performance of proxies calculated
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also independently generated. Unlike the model with all-to-all connectivity, we found that

local proxies (S1, S2, S3 and S4) in the unconnected network could only partially approximate

the EEG (Fig 9F and 9H), showing a significant decrease in performance in particular for faster

network dynamics (i.e., SI and SR states). However, the linear sum of proxies computed on all

subnetworks (S1+S2+S3+S4) approximated very well the EEG (Fig 9G), with a pattern of per-

formance for all proxies similar to the one reported above for the smaller network (Fig 2) and

to that observed in the upscaled model with all-to-all connectivity (Fig 9C).

Together, these results suggest that our new proxies can be successfully used to integrate

neural signals across spatial locations to generate an accurate EEG in more spatially extended

and larger network models.

Prediction of the stimulus-evoked EEG

Evoked potentials are a useful technique that measures the transient response of the brain fol-

lowing presentation of a stimulus. Although the proxies we obtained have been optimized on

long stretches of steady-state network activity, we investigated how well the proxies approxi-

mate an EEG evoked potential produced by a transient input. Fig 10 shows the spiking activity

of the point-neuron network (panel A) and the ground-truth EEG (panel B) in response to a

transient spike volley with a Gaussian rate profile applied to the thalamic input. This transient

input simulates the thalamic input that reaches cortex when an external sensory stimulus is

presented. A comparison of the performance obtained for all proxies is shown in panel C,

while the outputs of ERWS1, ERWS2 and the CNN are depicted in panel D, as an example,

overlapped with the ground-truth EEG. We found that most of the current-based proxies

for the different subnetworks of cells. (E) In the second scenario, connectivity of each subnetwork is local as exemplified by postsynaptic connections of the

selected cell in S2. (F) Outputs of ERWS1 (bottom row) and ERWS2 (top row) proxies for the subnetwork S1 and of the global proxy compared with the

ground-truth EEG. Performance of global proxies (G) and proxies calculated for the different subnetworks of cells (H).

https://doi.org/10.1371/journal.pcbi.1008893.g009

Fig 10. Effect of transient activation of thalamic input with a Gaussian pulse packet. (A) Raster plot of spiking activity from a subset of cells in each

population in response to a transient spike volley with a Gaussian rate profile (σ = 30 ms) centered at 1000 ms. (B) Ground-truth EEG at the top of the

head model. (C) Performance of proxies calculated between 850 and 1150 ms. (D) Outputs of ERWS1, ERWS2 and the CNN compared to the ground-

truth EEG.

https://doi.org/10.1371/journal.pcbi.1008893.g010
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approximated well the EEG when applying a transient burst of spikes of thalamic input, in par-

ticular ∑|I|, ERWS1 and ERWS2 which reached a performance of R2 = 0.9. These results suggest

that these types of proxies could also be employed to predict the type of transient response

seen in evoked potentials.

Evaluation of proxies in a human head model

Throughout this study, we have so far used a simple and analytically tractable head model (the

four-sphere head model) to calculate EEGs. An important question is whether our proxies can

work well when combined with more complex head models and, in particular, whether they

can also be applied to the case of the human head. There are many high-resolution, anatomi-

cally detailed, and potentially personalized head models available, which for example take into

account the folded cortical surface of the human brain [65–67]. As an initial exploration to eval-

uate applicability of our proxies to more realistic head models, in this Section we report a study

of how our proxies approximate EEGs when computed using the New York head model [66], a

very detailed model of the human head that incorporates 231 electrode locations (S4 Fig).

Head models for calculating EEG signals typically take current dipoles as input. When cal-

culating the EEG signal with the four-sphere head model, we first calculated the current dipole

moment of each individual cell, and then calculated all single-cell EEG contributions resulting

from these current dipoles at their respective locations. However, it has been previously dem-

onstrated [35] that for populations that are small compared to the distance to the EEG elec-

trodes (~ 10–20 mm for human EEG recordings), the individual cell locations are relatively

unimportant, and a negligible error is introduced by first summing all single-cell current

dipoles into a population current dipole, and then calculating the EEG signal from this. We

computed the population current dipole moments of two different subnetworks (S4D Fig)

from the unconnected network model shown in Fig 9E. We then placed these current dipole

moments in two different locations spatially separated and orthogonally oriented on the folded

cortical surface of the New York head (S4B Fig). Topographic maps generated from EEG elec-

trodes for the two dipoles are shown in S4C Fig, left column. The total EEG map was calculated

as the sum of individual EEG maps generated by each current dipole.

We then investigated if our EEG proxies could be used to predict current dipole moments.

We found that the EEG signal calculated at top of the head in the four-sphere head model,

resulting from a current dipole directly below the electrode, was, in fact, just a scaling of the

dominant component (the component aligned with the depth axis of the cortex) of the original

current dipole (S3 Fig). This means that the proxies developed for the EEG signal at the top of

the four-sphere head model, are in fact equally valid as proxies for the (normalized) dominant

component of the population current dipole moment. Based on this observation, we generated

EEG maps from our proxies (in our example, we used ERWS2) by plugging their outputs into

the dominant component of the current dipole moment and recalculating EEGs on the New

York head model. The EEG topographic maps resulting from the ERWS2 proxy are depicted

in S4C Fig, right column, which are shown to approximate qualitatively well the topographic

maps of the ground-truth EEG data (S4C Fig, left column). The ERWS2 proxy also predicted

well time traces of the EEG signal at different electrode positions (S4 Fig, panels E and F).

Together, these results suggest that the EEG proxies developed here can be effectively and

easily used in combination with complex models of the human head.

Discussion

Interpreting experimental EEGs in terms of neural processes ultimately requires being able to

compute realistic EEGs from simple and tractable neural network models, and then comparing
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the predictions of such models with data. Here we contributed to the first goal by developing

simple yet robust and accurate proxies to compute EEGs from recurrent networks of LIF point

neurons, a model widely used to study cortical dynamics. The new proxies give very accurate

reconstructions of both steady-state and transient EEGs over an extensive range of network

states, different morphologies and synaptic distributions, varying positions of the EEG elec-

trode and different spatial extensions of the network. These proxies thus provide a well vali-

dated and computationally efficient way for calculating a realistic EEG by using simple

simulations of point-neuron networks.

Simulations of EEGs using average membrane potentials or average firing

rates are less accurate than those using synaptic currents

In many neural models, such as neural mass models [26,68], spiking network models

[23,29,30] or dynamic causal models [25], EEGs or LFPs are simply modeled as the average fir-

ing rate or average membrane potential of excitatory neurons. While these assumptions are

often reasonable, their effectiveness in describing the EEG has not been systematically vali-

dated. Here we found that these two established ways of computing the EEG worked reason-

ably well only under specific conditions. However, in agreement with previous results

obtained for the LFP [14,42], we found that, for the EEG, proxies based on combinations of

synaptic currents work much better and in more general conditions than proxies based on fir-

ing rates or membrane potentials. We found that, in several situations, membrane potential or

firing rate proxies performed poorly. This was due to several factors. First, our work shows

that the contribution of different proxies to the EEG is often time shifted and also state depen-

dent (see below). Second, firing rates and membrane potentials have time scales different from

those of transmembrane currents. Third, a proxy based only on the firing rates of excitatory

neurons does not capture the contribution of inhibitory neurons, which is indirectly reflected

in the EEG through the synaptic inputs of inhibitory neurons onto pyramidal cells.

Our results suggest that approximations of EEGs based on firing rates or membrane poten-

tials of excitatory neurons should be discouraged, and replaced with the use of synaptic cur-

rents, whenever possible.

State-dependent relationships between predicted EEG and neural activity

One important finding of our work was that the parameters of the best EEG proxy (ERWS2)

were dependent on the cortical state of the network. This, in turn, implies that the relationship

between the predicted EEG and the neural elements that originate it is state dependent. The

state-dependent relationship of parameters of ERWS2may be due to properties of synaptic

currents. We used realistic synaptic models, which were based on synaptic conductances and

not on currents (as often implemented in simpler and less realistic models [12,31]). Unlike the

current-based synapse model, AMPA and GABA currents of the conductance-based model

depend on the membrane potential, which was shown in previous work to change with the

external rate [69]. Consequently, the change of the membrane potential modifies the relative

strength of AMPA and GABA currents and can modify, in turn, their contribution to the EEG.

The optimization of parameters of ERWS2 found a larger weight of GABA currents for low

values of the external input and, conversely, a stronger weight of AMPA currents for higher

values of the external input rate. This is in agreement with the increase of amplitude in AMPA

postsynaptic potentials in comparison with GABA currents observed in previous studies [69].

Our results suggest that the contribution of neural activity to the EEG is a highly dynamic

process, and highlight the importance of developing EEG proxies, such as those developed

here to capture these variations.
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Robustness and generality of the EEG proxies across network states, cell

morphologies, synaptic distributions and electrode locations

We found that, unlike all previously published proxies, our new optimized EEG proxies work

remarkably well for a whole range of network states which capture many patterns of oscilla-

tions, synchronization, and firing regimes observed in neocortex [12]. Predicting well the EEG

over a wide range of states is important because, in many cases, EEGs are experimentally used

to monitor changes in brain states, and thus models used to interpret EEGs must be able to

work well over multiple states. Our proxies were optimized using a specific pyramidal broad-

dendritic-tuft morphology that generates large electric dipoles. We, however, showed that our

proxies still had high accuracy when changing cell morphologies and distributions of presyn-

aptic inputs. This suggests that our work, even though it could be improved using larger data-

sets of morphologies and synaptic distribution configurations, is already sufficiently general to

capture the contribution to the EEG of some major types of pyramidal neurons. We also vali-

dated the performance of EEG proxies against changes in position of the recording electrode,

with respect to the position chosen to train the proxies. The performance of proxies experi-

enced only a moderate decrease as the position of the EEG electrode was shifted from the top

of the head because of the progressive reduction in EEG amplitude. We finally demonstrated

that our proxies, although trained on steady-state activity, can approximate well EEG evoked

potentials, suggesting that our work could be relevant to model transient brain computations

such as coding of individual stimuli or attentional modulations.

Previous work [42] used a similar approach based on optimizing a linear proxy to predict

the LFP. We extended this work by computing the EEG, rather than the LFP. We used a head

model that approximates the different geometries and electrical conductivities of the head,

which was not necessary for the LFP proxy. Unlike this previous work, which considered only

a reduced regime of network dynamics within the asynchronous or weakly synchronous states,

we generated proxies trained and validated on a wider range of network states. Our EEG prox-

ies were also validated on different pyramidal-cell morphologies reconstructed from experi-

mental recordings, whereas the LFP proxy was validated on synthetically generated

morphologies. As a result, our new optimized EEG proxies predict well the EEG over a wide

range of states and different morphologies, unlike the LFP proxy, which was found in our

study to work well only for a low-input-rate state and a specific morphology of pyramidal cells.

In sum, our new optimized EEG proxies provide a simple way to compute EEGs from

point-neuron networks that is highly accurate across network states, variations of biophysical

assumptions, and electrode position.

Possible applications and impact of the new EEG proxies

Our work provides a key computational tool that enables applying tractable network models

to EEG data with significant implications in two main directions.

First, when studying computational models of brain function, our work allows quantitative

rather than qualitative comparison of how different models match EEG data, thereby leading

to more objective validations of hypotheses about neural computations.

Second, our work represents a crucial step in enabling a reliable inference, from real EEG

data, of how different neural circuit parameters affect brain functions and brain pathologies.

Since the EEG conflates many circuit-level aggregate neural phenomena organized over a wide

range of frequencies, it is difficult to infer from its measure the value of key neural parameters,

such as for example the ratio between excitation and inhibition [1,70]. Our proxies could be

used to develop tractable LIF neural networks that generate realistic EEG predictions from

each set of neural network parameters. By fitting, in future work, such models to real EEG
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data, estimates of neural network parameters (such as the ratio between excitation and inhibi-

tion or properties of network connectivity) could then be obtained from EEG spectra or

evoked potentials. This approach could be used, for example, to test the role of excitation-inhi-

bition balance in certain disorders [70–72], or to individuate neural correlates of diseases that

show alterations of EEG activity [73–77]. Thus, our EEG proxies have clear promise for con-

necting EEG in human experiments to cellular and network data in health and disease. These

future developments could complement other EEG modelling frameworks [68,78].

Although more work is needed to be able to interpret empirical EEGs in terms of network

models, there are several facts that indicate that our proxies can be useful. Recent attempts to

infer neural parameters from EEGs or other non-invasive signals, based on network models

that use less accurate proxies than the ones developed here, are nevertheless beginning to pro-

vide credible estimates of key parameters of underlying neural circuit such as excitation-inhi-

bition ratios [70,79], as well as accurate descriptions of cortical dynamics. For example,

previous theoretical studies have modeled the LFP/EEG as the sum of absolute values of synap-

tic currents [14,15 34,45]. This type of proxy, though less accurate than those developed here,

was sufficient to explain quantitatively several important properties of cortical field potentials,

including the relationship between sensory stimuli and the spectral coding of LFPs [14], cross-

frequency and spike-field relationships [34], and LFP phase of firing information content [15].

We thus expect that the new EEG proxies can build on these encouraging results and further

improve the biological plausibility and robustness of neural parameter estimation from EEGs.

Linear vs non-linear proxies

We developed both linear and non-linear EEG proxies based on synaptic currents. The linear

proxies (ERWS1 and ERWS2) were based on an optimized linear combination of time-shifted

AMPA and GABA currents. Alternatively, we investigated the application of a shallow CNN

that could capture more complex interactions between synaptic currents to estimate the EEG.

Compared to the best performing linear proxy, ERWS2, the non-linear EEG proxy based on a

convolutional network provided a sizeable increase of performance and it provided a very high

performance in all conditions. The convolutional weights that we provide (Section “Data and

Code Availability”) can be used to easily compute these non-linear EEGs proxies using similar

computational power as that employed for linear proxies. However, the drawback of CNNs is

that it is harder to infer direct relationships between synaptic currents and the EEG, whereas

these relationships are apparent and immediate to interpret with linear proxies. However, we

showed that this problem could be in part attenuated when using tools to visualize the trans-

formation function implemented by the CNN, which allow an understanding of how synaptic

currents are transformed by the non-linear proxy.

Limitations and future work

In our work, we made several simplifying assumptions regarding (i) the architecture and con-

nectivity of the local recurrent network and of the thalamocortical and cortico-cortical loops,

(ii) how to combine point-neuron and multicompartment networks, and (iii) the types of syn-

aptic currents considered.

Our proxies have been extensively validated for a model with one class of pyramidal cells

and are expected to be applied to models of any brain area in which the EEG is likely to be gen-

erated by one dominant population. We chose to model a single cortical layer, L2/3, based on

previous computational work suggesting that this layer gives a large contribution to extracellu-

lar potentials [30,35]. Although we have shown that our proxies generalize well for different

L2/3 pyramidal-cell morphologies, it will be important to extend our work to quantify
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contributions from other cortical laminae and cell morphologies to the EEGs. Electrical poten-

tials in the brain tissue add linearly and the superposition of individual contributions to the

EEG is in principle straightforward to compute if the amplitude of each laminar contribution

is known. Thus, it should be possible to approximate the total EEG by a suitable linear combi-

nation of individual proxies computed for each population. We envisage future studies that

couple multi-layer spiking models of cortical circuits [30,80,81] with multi-layer multicom-

partment neuron models within the hybrid modelling scheme.

Our model of reciprocally connected excitatory and inhibitory populations can produce

internally generated gamma oscillations. However, our simple recurrent network model cannot

produce internally generated oscillations in the canonical lower-frequency bands (delta, theta,

alpha, and beta) commonly observed in EEG and MEG. These slower oscillations likely arise from

complex cortico-cortical and thalamocortical loops [63,64] which were not modeled in this study.

We investigated the effect of such lower frequencies by superimposing low-frequency band-lim-

ited components to the synaptic input to the network. This simplified approach, however, cannot

capture important aspects of cortico-cortical and thalamocortical loops, such as temporal syn-

chronization and coupling between different brain areas, which could influence temporal proper-

ties of the EEG. Further studies are needed to test the validity of our proxies to approximate the

EEG dynamics in realistic models of cortico-cortical and thalamocortical loops.

The hybrid modelling approach [30] offers the advantage that we can vary parameters of

the EEG-generating model, e.g., cell morphologies or synaptic distribution, without affecting

the spiking dynamics. The disadvantage of this approach is, however, that the multicompart-

ment network does not match the point-neuron network in every respect. For instance, even

though the synaptic input conductances were identical in the two models, the resulting soma

potentials of multicompartmental neurons were not identical to those of the point neurons

because of passive dendritic filtering or the lack of a membrane-voltage reset mechanism fol-

lowing spike, among other effects. This inconsistency could, at least partially, be resolved by

extracting the effective synaptic weight distributions from multicompartment neurons and use

them in the point-neuron network in order to make the two simulation environments even

more similar [82].

Another limitation of our work is that it modelled only AMPA and GABA synapses and did

not include NMDA synapses. An interesting topic for a future study would then be to extend

the network models to include NMDA synapses and to analyze their impact on the current

descriptions of the current-based proxies.

The connectivity of the recurrent network model used to train the proxies was random and

distance-independent. The majority of local cortical connections are found within 500 μm

[83]. The spatial scale of the decay of connection probabilities with distance is typically larger

than a cortical column [80,81,84–86], which justified our simplified choice of distance-inde-

pendent local network connectivity. When testing the proxies on spatially extended network

models, we found our proxies to be accurate in two cases of distance-dependent connectivity

(all-to-all connected or unconnected subnetworks). Further studies that use models with real-

istic distance-dependent connectivity are needed to provide accurate measures of the relative

contribution of local proxies to the EEG as a function of cortical distance.

Methods

Overview of the approach for computing the proxies and the ground-truth

EEG

Our focus is on computing an accurate prediction of the EEG (denoted as “proxy” in the fol-

lowing) based simply on the variables available directly from the simulation of a point-neuron
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network model. The point-neuron network was constructed following a well-established con-

figuration based on two populations of LIF point neurons, one excitatory and other inhibitory,

with recurrent connections between populations [12], as illustrated in Fig 1A. The network

receives two types of external inputs: a thalamic synaptic input that carries the sensory infor-

mation and a stimulus-unrelated input representing slow ongoing fluctuations of cortical

activity.

The ground-truth EEG (referred to simply as “EEG” in the paper) with which to compare

the performance of the different proxies is here computed using the hybrid modelling scheme

[30,35,42,43]. We created a network of unconnected multicompartment neuron models with

realistic morphologies and distribute them within a cylinder of radius r = 0.5 mm (Fig 1C). We

focused on computing the EEG generated by neurons with somas positioned in one cortical

layer so that the soma compartments of each cell are aligned in the Z-axis, 150 μm below the

reference point Z = 8.5 mm, and homogenously distributed within the circular section of the

cylinder. In our default setting, all dendrites of inhibitory cells receive GABA synapses while

only those dendrites of excitatory cells below Z = 8.5 mm receive GABA synapses. AMPA syn-

apses are homogenously positioned along the Z-axis in both cell types.

EEGs were generated from multicompartment neurons in combination with a forward-

modelling scheme based on volume conduction theory [6]. From each multicompartment

neuron simulation the current dipole moment of the cell was extracted with LFPy [39]. Next,

these current dipole moments and the locations of the cells were used as input to the four-

sphere head model to calculate all single-cell EEG contribution. The ground-truth EEG signal

is the sum of all such single-cell EEG contributions. To approximate the different geometries

and electrical conductivities of the head, we computed the EEG using the four-layered spheri-

cal head model described in [49]. In this model, the different layers represent the brain tissue,

cerebrospinal fluid (CSF), skull, and scalp, with radii 9, 9.5, 10 and 10.5 mm respectively,

which approximate the dimensions of a rodent head model [46]. The values of the conductivi-

ties chosen are the default values of 0.3, 1.5, 0.015 and 0.3 S/m. The EEG electrode is located

on the scalp surface, at the top of the head model (Fig 1C).

The time series of spikes of individual point neurons were mapped to synapse activation

times on corresponding postsynaptic multicompartment neurons. Each multicompartment

neuron was randomly assigned to a unique neuron in the point-neuron network and received

the same input spikes of the equivalent point neuron. Since the multicompartment neurons

were not interconnected, they were not involved in the LIF network dynamics and their only

role was to transform the spiking activity of the point-neuron network into a realistic estimate

of the EEG. The EEG computed from the multicompartment neuron model network was then

used as benchmark ground-truth data against which we compare different candidate proxies

(Fig 1D).

Definition and computation of the proxies that approximate the ground-

truth EEG

A proxy (F) is defined as an estimation of the EEG based on the variables available from the

point neuron model over all excitatory neurons. Unless otherwise stated, we only considered

the contributions of pyramidal cells to generate the EEG (in both the point-neuron and multi-

compartment neuron networks). The first six proxies that we tested were those used in previ-

ous literature for predicting the EEG or the LFP from point-neuron networks. These were: the

average firing rate (FR), the average membrane potential (Vm), the average sum of AMPA cur-

rents (AMPA), the average sum of GABA currents (GABA), the average sum of synaptic cur-

rents (∑I) and average sum of their absolute values (∑|I|). Note that ∑I and ∑|I| are defined as
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the sum of both AMPA and GABA currents. Because of the opposite signs assigned to the

AMPA and GABA currents, ∑|I| is equivalent to the difference between these currents. Com-

putation of the average FR was calculated with a temporal bin width of 1 ms, and then filtered

with a 5-ms rectangular window to produce a smoother output of the FR.

For several reasons (e.g., different rise and decay time constants or different peak conduc-

tances), we expect that AMPA and GABA currents contribute differently to the EEG and that

the optimal combination of both types of currents could involve different time delays between

them. Following Mazzoni and colleagues [42], the new class of current-based proxies, the

weighted sum of currents (WS), was based on a linear combination of AMPA and GABA cur-

rents, with a factor α describing the relative ratio between the two currents and a specific delay

for each type of current (τAMPA, τGABA):

FWSðtÞ ¼
P

exc:IAMPAðt � tAMPAÞ � að
P

exc:IGABAðt � tGABAÞÞ: ð5Þ

The optimal values of α, τAMPA and τGABA were found to be 1.65, 6 ms and 0 ms for the

LFP, respectively [42]. As a result, the LFP reference weighted sum (LRWS) proxy was defined

as

FLRWSðtÞ ¼
P

exc:IAMPAðt � 6msÞ � 1:65ð
P

exc:IGABAðtÞÞ: ð6Þ

Here we also introduced two new proxies derived from theWS formulation: the EEG refer-

ence weighted sum 1 (ERWS1) and the EEG reference weighted sum 2 (ERWS2), whose

parameters were optimized to fit the EEG under different network states of the point-neuron

network. While the concept of ERWS1 is similar to that of LRWS, with fixed optimal values of

α, τAMPA and τGABA, the parameters of the ERWS2 were defined as a power function of the fir-

ing rate of the thalamic input (ν0, unitless) to account for possible dependencies of the EEG

with the external rate:

FERWS1ðtÞ ¼
P

exc:IAMPAðt � tAMPAðERWS1ÞÞ � aERWS1ð
P

exc:IGABAðt � tGABAðERWS1ÞÞÞ; ð7Þ

FERWS2ðt; u0Þ ¼
P

exc:IAMPAðt � tAMPAðERWS2Þðu0ÞÞ � aERWS2ðu0Þð
P

exc:IGABAðt

� tGABAðERWS2Þðu0ÞÞÞ; ð8Þ

tAMPAðERWS2Þðu0Þ ¼ a1u
� b1
0 þ c1;

tGABAðERWS2Þðu0Þ ¼ a2u
� b2
0 þ c2;

aERWS2ðu0Þ ¼ a3u
� b3

0 þ c3:

ð9Þ

The total number of parameters to optimize was 3 for ERWS1 (αERWS1, τAMPA(ERWS1) and

τGABA(ERWS1)) and 9 for ERWS2 (a1, b1, c1, a2, b2, c2, a3, b3 and c3). We experimented with

other classes of functions (e.g., exponential and polynomial functions) to describe the depen-

dency of parameters of ERWS2 with ν0 but the best performance results were found with a

power function.

Leaky integrate-and-fire point-neuron network

We implemented a recurrent network model of LIF point-neurons that was based on the

Brunel model [31] and the modified versions developed in subsequent publications [14,15,34,

42,45,69]. These models have demonstrated to explain well and capture a large fraction of the

variance of the dynamics of neural activity in primary visual cortex during naturalistic stimula-

tion, including a wide range of cortical oscillations such as low-frequency (1–12 Hz) and
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gamma (30–100 Hz) oscillations. In particular, the network structure and model parameters

are the same ones used in [69] with conductance-based synapses (we refer the reader to this

publication for an in-depth technical description of the implementation). Briefly, the network

was composed of 5000 neurons, 4000 are excitatory (i.e., their projections onto other neurons

form AMPA-like excitatory synapses) and 1000 inhibitory (i.e., their projections form GABA-

like synapses). The neurons were randomly connected with a connection probability between

each pair of neurons of 0.2. This means that, on average, the number of incoming excitatory

and inhibitory connections onto each neuron was 800 and 200, respectively. Both populations

received two different types of excitatory external input: a thalamic input intended to carry the

information about the external stimuli and a stimulus-unrelated input representing slow ongo-

ing fluctuations of activity. Spike trains of the external inputs are generated by independent

Poisson processes. While the firing rate of every individual Poisson process for the thalamic

input was kept constant in each simulation (within the range [1.5, 30] spikes/s), the firing rate

of the cortico-cortical input was varied over time with slow dynamics, according to an Orn-

stein-Uhlenbeck (OU) process with zero mean:

tn
dnðtÞ
dt
¼ � n tð Þ þ sn

ffiffiffiffiffiffiffi
2tn

p� �
Z tð Þ ð10Þ

Here s2
n (0.16 spikes/s) is the variance of the noise, η(t) is a Gaussian white noise and τn (16

ms), the time constant. The full network description is given in Tables 3 and 4, following the

guidelines indicated in [87].

Multicompartment-neuron network

The EEG was computed by projecting the spiking activity of the point-neuron network onto

a network of multicompartment neuron models in which every multicompartment neuron

is assigned a unique corresponding point neuron. A key factor for a successful representa-

tion of the EEG is selection of proper morphologies of multicompartment neurons with

detailed and realistic dendritic compartments. Our focus was on computing the EEG for cor-

tical layer 2/3 so that we acquired representative morphological reconstructions of L2/3

pyramidal cells and interneurons from publicly available repositories: the Neocortical

Microcircuitry (NMC) portal [47,48] based predominantly on the data released by Markram

and collaborators [47], and the Allen Brain Atlas (ABA) [51]. We also imposed our target

animal model to be the rodent model. In our simulations, we evaluated three different types

of morphologies of L2/3 pyramidal cells and one morphology of a specific type of L2/3 inter-

neuron, the large basket cell interneuron (the most numerous class in L2/3 [47], represented

as PY and LBC respectively in Table 5. Unless otherwise stated, the default morphology file

used for pyramidal cells in our simulations is dend-C250500A-P3_axon-C260897C-P2-
Clone_9.

Soma compartments of pyramidal cells and interneurons were randomly placed in a cylin-

drical section of radius 0.5 mm, at Z = 8.35 mm. We assumed that GABA presynaptic inputs

could only be located on dendritic compartments below the reference point Z = 8.5 mm.

AMPA synapses were homogenously distributed along the Z-axis in both cell types with ran-

dom probability normalized to the membrane area of each segment. This configuration

resulted in an asymmetric distribution of AMPA and GABA synapses onto pyramidal cells cre-

ating a stronger current dipole moment from these types of cells. Each multicompartment

neuron was modeled as a non-spiking neuron with a passive membrane [38]. Tables 6 and 7

summarize properties of the multicompartment neuron network.
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Optimization and validation of EEG proxies

We created two different simulated datasets, one for optimization of the ERWS1’s and

ERWS2’s parameters (Eqs 7–9), and the other dataset for validation of performance of all prox-

ies. The datasets were generated by varying the two parameters of the point-neuron network

Table 3. Description of the point-neuron network.

A: Model summary

Structure Excitatory-inhibitory (E-I) network

Populations Two: excitatory and inhibitory

Input 2 independent Poisson spike trains, one with a fixed rate and the other with a time-varying rate generated by an OU process

Measurement Spikes, membrane potential, AMPA and GABA currents

Neuron model Cortex: leaky integrate-and-fire (LIF) with fixed threshold and fixed absolute refractory time; external inputs: point process

Synapse model Difference of exponential functions; conductance-based synapses

Topology None

Connectivity Random and sparse

B: Populations

Type Elements Size

Pyramidal cells LIF neurons 4000

Interneurons LIF neurons 1000

Thalamic input Poisson generator 1

Cortico-cortical input Poisson generator 1

C: Connectivity

Name Source Target Pattern

AMPAPyr_Pyr Pyramidal Pyramidal Random convergent (p = 0.2), weight gPyr_Pyr
AMPAPyr_Int Pyramidal Interneuron Random convergent (p = 0.2), weight gPyr_Int
GABAInt_Pyr Interneuron Pyramidal Random convergent (p = 0.2), weight gInt_Pyr
GABAInt_Int Interneuron Interneuron Random convergent (p = 0.2), weight gInt_Int
AMPAtha_Pyr Thalamic Pyramidal Fixed in-degree (800), weight gtha_Pyr
AMPAtha_Int Thalamic Interneuron Fixed in-degree (800), weight gtha_Int
AMPAcort_Pyr Cortical Pyramidal Fixed in-degree (800), weight gcort_Pyr
AMPAcort_Int Cortical Interneuron Fixed in-degree (800), weight gcort_Int
D: Neuron model

Type Leaky integrate-and-fire

Description tm
dVðtÞ
dt ¼ � V tð Þ þ Vleak �

Itot ðtÞ
gleak

,

ItotðtÞ ¼
P

NAMPArec
IAMPArec ðtÞ þ

P
NGABArec

IGABArec ðtÞ þ IAMPAext ðtÞ,

E: Synapse model

Type Conductance-based synapse, difference of exponentials [31]

Description Isyn(t) = gsynssyn(t)(V(t)−Esyn),
if a presynaptic spike occurs:

ssyn tð Þ ¼
tm

td � tr
exp � t� tl

td

� �
� exp � t� tl

tr

� �h i

F: Input

Type Description

Poisson generator Thalamic input, time-constant input with rate ν0; each neuron receives 800 independent thalamic inputs

Poisson generator Cortico-cortical input, OU process with zero mean; each neuron receives 800 independent cortico-cortical inputs

G: Global simulation parameters

Simulation duration 3000 or 10000 (only for Fig 8) ms

Temporal resolution 0.05 or 0.1 (Figs 8 and 9) ms

Startup transient 500 ms

https://doi.org/10.1371/journal.pcbi.1008893.t003
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commonly used for exploration of different network states [31,44]: the rate of the external

input, ν0, and the relative strength of inhibitory synapses, defined here as g = gInt_Pyr/gPyr_Pyr.
We selected 58 values of ν0 within the range [1.5, 30] spikes/s and 3 values of g (5.65, 8.5 and

11.3), which encompass the different network states: asynchronous irregular, synchronous

irregular and synchronous regular [12]. For every pair (ν0, g), we generated three simulations

of the point-neuron and multicompartment-neuron networks with different random initial

conditions (e.g., recurrent connections of the point-neuron network or soma positions of mul-

ticompartment neurons). The simulated outputs from two of these network instantiations

were used for the optimization dataset and the other one for the validation dataset.

Prior to comparing the EEG traces with the point-neuron model predictions, we z-scored

the proxies and the EEG signal by subtracting their mean value and dividing by the standard

deviation. The best parameters of ERWS1 and ERWS2 were calculated by minimization of the

sum of the square errors SSE between the ground-truth EEG and the proxy for all network

instantiations i of the optimization dataset:

SSE ¼
P

i

P
tðEEGiðtÞ � FiðtÞÞ

2
ð11Þ

Table 4. Parameters of the neuron models used in the point-neuron network.

A: Neuron model

Parameter Pyramidal cells Interneurons

Vleak (mV) -70 -70

Vthreshold (mV) -52 -52

Vreset (mV) -59 -59

τrefractory (ms) 2 1

gleak (nS) 25 20

Cm (pF) 500 200

τm (ms) 20 10

B: Connection parameters

Parameter Pyramidal cells Interneurons

EAMPA (mV) 0 0

EGABA (mV) -80 -80

τr(AMPA) (ms) 0.4 0.2

τd(AMPA) (ms) 2 1

τr(GABA) (ms) 0.25 0.25

τd(GABA) (ms) 5 5

τl (ms) 1 1

gAMPA(rec.) (nS) 0.178 0.233

gAMPA(tha.) (nS) 0.234 0.317

gAMPA(cort.) (nS) 0.187 0.254

gGABA (nS) 2.01 2.7

https://doi.org/10.1371/journal.pcbi.1008893.t004

Table 5. Morphologies types and file identifiers used in the multicompartment neuron network model.

Cell type Animal species File identifier Source

L2/3 PY Rat dend-C250500A-P3_axon-C260897C-P2-Clone_9 NMC

L2/3 PY Rat dend-C260897C-P3_axon-C220797A-P3-Clone_0 NMC

L2/3 PY Mouse Cux2-CreERT2, ID:486262299 ABA

L2/3 LBC Rat C250500A-I4_Clone_0 NMC

https://doi.org/10.1371/journal.pcbi.1008893.t005
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Time constants of proxies (Eqs 7–9) were restricted to be discrete variables as the simula-

tion time is a discrete variable. This turns the optimization problem into a discrete optimiza-

tion problem, which is harder to solve than a continuous optimization problem. However, the

limited number of parameters that need to be optimized allowed us to run a simple brute-

force parameter search.

The performance of each proxy was evaluated by using the coefficient of determination R2,
which is the fraction of the EEG variance explained by the proxy. R2 is computed as the

Table 6. Description of the multicompartment neuron network.

A: Model summary

Structure Unconnected populations of multicompartment neurons

Populations Two: pyramidal cells and interneurons

Input Presynaptic spiking activity as modeled by the point-neuron network

Measurement EEG, current dipole moment

Neuron model Multicompartment neuron model based on the passive cable formalism

Synapse model Difference of exponential functions; conductance-based synapses

Topology Cylindrical volume with radius r = 0.5 mm

Connectivity None

B: Populations

Type Populations of 4000 pyramidal cells and 1000 interneurons

Cell positions Soma compartments located at Z = 8.35 mm and randomly distributed within the circular

section of the cylinder

Cell orientations Fixed orientation with apical dendrites oriented along the Z-axis

Morphologies Reconstructed morphologies from the NMC and ABA (Table 5); axons removed if present

C: Connectivity

No network connectivity, synaptic inputs are generated by the point-neuron network with the same synaptic

parameters (Table 4)

D: Neuron model

Type Multicompartment reconstructed morphologies

Description Non-spiking neurons based on the passive cable formalism (except in subsection “The

performance of EEG proxies depends on the neuron morphology, distribution of synapses and

the type of dendritic conductances”), with membrane capacity cm, membrane resistivity rm,

axial resistivity ra and leak reversal potential EL.
E: Synapse model

Type Conductance-based synapse, difference of exponentials

Description Isyn(t) = gsynssyn(t)(V(t)−Esyn),
ssyn tð Þ ¼ A exp � t� tl

td

� �
� exp � t� tl

tr

� �h i
,

where A is a normalization factor to give a peak conductance gsyn
F: Input

Type Spike times of spiking neuron network (including thalamic and cortico-cortical input spikes),

no recurrent input

Description All dendrites of interneurons receive GABA synapses while only those dendrites of pyramidal

cells below Z = 8.5 mm receive GABA synapses; AMPA synapses are homogenously

positioned along the Z-axis in both cell types; synapse locations are randomly assigned onto

cell compartments assuming a probability proportional to the compartment’s surface area

divided by the total surface area of the cell

G: Global simulation parameters

Simulation

duration

3000 or 10000 (only for Fig 8) ms

Temporal

resolution

0.05 or 0.1 (Figs 8 and 9) ms

Startup transient 500 ms

https://doi.org/10.1371/journal.pcbi.1008893.t006
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squared value of the correlation coefficient. The validation results were calculated based on the

average R2 of every proxy across all network instantiations i of the validation dataset.

Implementation of the convolutional neural network

The processing pipeline of the CNN architecture, illustrated in Fig 7A, was based on the

machine-learning library Keras running on top of TensorFlow [88]. The CNN consists of a

one-dimensional (1D) convolutional layer with 50 filters and a kernel of size 20, followed by a

max pooling layer of pool size 2, a flatten layer and two fully connected layers of 200 units each

(one of them is the output layer). The rectified linear unit (ReLU) function was used as the

activation function for all layers, except for the output layer. To reduce overfitting, we applied

L2 activity regularization (λ = 0.001) to the convolutional layer. The amount by which filters

shift, the strides, is set to 1 for the convolutional layer and 2 for the max pooling layer. The

input layer was formed by two channels of 1D data that correspond to the AMPA and GABA

time series simulated by the point-neuron network. Instead of using data of the whole simula-

tion (3000 ms), we split time series into multiple chunks (i.e., samples) of 100 ms, a window

size that we found convenient to improve estimation accuracy of the CNN. Nodes of the out-

put layer predict segments of the EEG signal at each 100-ms window.

The CNN was trained by first-order gradient descent (Adam optimizer [52]) with default

parameters as those provided in the original paper. We defined the loss function for training

as the mean squared error (MSE) between the predicted and the true values of the EEG. To

monitor training, we employed the MSE and also the mean absolute error (MAE) and the coef-

ficient of determination, R2. The CNN is trained for a sufficiently large number of epochs, 100

epochs, to ensure convergence of the error metrics. To train and test the CNN, we use the

same datasets generated for optimizing parameters of the current-based proxies, as described

above.

Band-limited inputs across lower frequency bands

In Fig 8, we simulated an increase of low-frequency power in the thalamic input by superim-

posing a band-limited signal s(t) to the constant baseline term υ0. The spike train activating

the thalamocortical synapses was thus given by the positive part of a Poisson process with a

time-varying rate vext(t) = [υ0+s(t)]+. To generate the band-limited signal s(t), we created a

white Gaussian noise with zero mean and we adjusted the variance of the noise to produce a

relative increase of low-frequency power that was within the empirical range observed in real

EEG/MEG data. Frequencies in selected low-frequency bands were then extracted by a 2nd

order Butterworth bandpass filter. To separate the narrow band oscillations from the aperiodic

power-law spectral component, we applied the FOOOF algorithm [53] to the EEG spectra.

The aperiodic-adjusted power was computed by subtracting the aperiodic fit from the power

spectrum [53,54] as log10 PSDosc−log10 PSD1/f, where PSDosc and PSD1/f were the PSD values of

the oscillatory peak and the aperiodic power law component respectively calculated at the cen-

ter frequency of each frequency band.

Table 7. Parameters of multicompartment neurons.

Parameter Pyramidal cells Interneurons

cm (μF/cm2) 1 1

rm (kOcm2) 30 20

ra (Ocm) 100 100

EL (mV) -70 -70

https://doi.org/10.1371/journal.pcbi.1008893.t007
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Computation of ground-truth EEGs and proxies on the New York head

model

To compute the ground-truth EEG with the New York head model [66], we used the current

dipole moments generated by multicompartment neurons of two different subnetworks (S4D

Fig) from the unconnected network model shown in Fig 9E (for a more detailed description of

this approach, see [35]). First, all single-cell current dipole moments from the given subnet-

work where summed into a single population current dipole moment. We placed these popu-

lation current dipole moments in two different locations spatially separated and orthogonally

oriented on the folded cortical surface of the New York head (S4B Fig). Topographic maps

generated from EEG electrodes were computed for each current dipole moment individually

and then summed up together to produce the total EEG map.

We then checked if our EEG proxies could be used to predict current dipole moments. We

found that the EEG signal calculated at top of the head in the four-sphere head model, result-

ing from a current dipole directly below the electrode, was in fact just a scaling of the dominant

component (the component aligned with the depth axis of the cortex) of the original current

dipole (S3 Fig). This meant that the proxies developed for the EEG signal at the top of the

four-sphere head model, were in fact equally valid as proxies for the (normalized) dominant

component of the population current dipole moment. Based on this observation, we generated

EEG maps from our proxies (in our example, we used ERWS2) by plugging their outputs into

the dominant component of the current dipole moment and recalculating EEGs on the New

York head model.

Analysis of network states

To characterize the different network states of activity in the point-neuron network at the level

of both single neurons and populations, we employed the descriptors developed by Kumar

and collaborators for conductance-based point-neuron networks [44].

Synchrony. We quantified the synchrony of the population activity in the network as the

average pairwise spike-train correlation from a randomly selected subpopulation of 1000 excit-

atory neurons. The spike trains were binned in non-overlapping time windows of 2 ms.

Irregularity. Irregularity of individual spike trains was measured by the coefficient of var-

iation (the ratio of the biased standard deviation to the mean) of the corresponding interspike

interval (ISI) distribution. Low values indicate regular spiking; a value of 1 reflects Poisson-

type behavior. The irregularity index was computed for all excitatory neurons.

Mean firing rate. The mean firing rate was estimated by averaging the firing of all excit-

atory cells, and was calculated with a bin width of 1 ms.

Post-processing and spectral analysis

The z-scored EEG signals and proxies were resampled by applying a fourth-order Chebyshev

type I low-pass filter with critical frequency fc = 800 Hz and 0.05 dB ripple in the passband

using a forward-backward linear filter operation and then selecting every 10th time sample.

The estimate of the normalized power spectral density (normalized PSD) was computed using

the Fast Fourier Transform with the Welch’s method, dividing the EEG z-scored data into

eight overlapping segments with 50% overlap.

Numerical implementation

Here we summarize the details of the software and hardware used to generate the results pre-

sented in this study. Point-neuron network simulations were implemented using NEST
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v2.16.0 [89]. EEG signals were computed using LFPy v2.0 [39] for the four-sphere head model

and the LFPykit module [90] for the New York head model. Simulations of multicompartment

model neurons using NEURON v7.6.5 [91]. The CNN is constructed based on the machine-

learning library Keras v2.3. The source-code structure relies on the freely available, object-ori-

ented programming language Python (v3.6.9). Every simulation was parallelized using the fol-

lowing high-performance computing infrastructures: a 60-CPU 256-GB and a 48-CPU

128-GB dedicated servers, as well as the Franklin HPC cluster, all three at the Istituto Italiano

di Tecnologia (IIT). We also used the Stallo high-performance computing facilities (NOTUR,

No. NN4661K, the Norwegian Metacenter for Computational Science). Simulations of the

point-neuron network were performed based on thread parallelism implemented with the

OpenMP library. Network simulations with NEURON used distributed computing built on

the MPI interface. Computation time for completing simulations of both network models and

the post-processing of results was 2 hours on average for each experimental condition.

Supporting information

S1 Fig. Performance of proxies for a heterogeneous population of pyramidal cells. In the

same simulation, the “NMC L2/3 PY, clone 9” morphology was randomly assigned to half of

the pyramidal-cell population and the “NMC L2/3 PY, clone 0” morphology to the other half.

Colors used for proxies are the same used in Fig 4.

(TIF)

S2 Fig. Learned filters of the convolutional layer and illustration of time shifts applied by

the CNN to AMPA and GABA input currents. Examples of weights learned by four filters of

the convolutional layer, depicted both in the time (A) and frequency domains (B) for the

AMPA and GABA inputs. (C) Examples of the CNN outputs in response to unit impulses

applied either to the AMPA or GABA inputs. (D) Histograms of time shifts applied to the

AMPA and GABA inputs for all combinations of impulses. Each time shift is computed as the

difference between the time when the impulse is applied and the time in which the absolute

response of the CNN reaches its maximum.

(TIF)

S3 Fig. Comparison between EEG and the dominant component of the current dipole

moment at the top of the head. Example of time sequences of EEG (black line) and the domi-

nant component of the current dipole moment, Pz (red dashed line), at the top of the four-

sphere head model, computed both on the multicompartment model network.

(TIF)

S4 Fig. Computation of EEGs on the New York head model. (A) Distribution of EEG elec-

trodes and brain surface of the New York head model [66]. The black line represents the corti-

cal cross-section where current dipoles were placed. (B) Current dipoles of the two

subnetworks, S0 and S1, (represented by arrows of different colors) positioned in the cortical

cross-section. (C) Topographic maps generated from EEG electrodes projected onto two-

dimensional simplified plots of the head model. The ground-truth EEG maps are plotted on

the left column and EEG estimations of the ERWS2 proxy on the right column. The closest

EEG electrode of each current dipole is plotted as a spot in the same color of the corresponding

current dipole. The EEG electrode selected to show time traces of the EEG signal is depicted as

a gray spot. (D) Dominant component of the current dipole moment (Pz) for the two subnet-

works. (E) Time sequences of the ground-truth EEG and the ERWS2 proxy registered at the

electrode shown in panel C. (F) Time traces of ground-truth EEG and the ERWS2 proxy
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registered at different electrodes located in positions indicated by the gray spots.

(TIF)
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