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Abstract

Gastrointestinal neuroendocrine tumours (NETs) are slow-growing tumours. In
this type of cancer, survival rate is an important factor. The current study consid-
ers the number of survival days as the target variable and tries to spot important
features impacting this variable.

Applying preprocessing steps, the dataset was prepared to be used in the ma-
chine learning algorithms. Moreover to that, using Repeated Elastic Net Technique
(RENT), some of the relatively important features were selected and our relatively
wide dataset with high number of features and low number of samples changed
into a more stable dataset. However since we wanted to select the features based
on a model which was relatively reliable in terms of error (RMSEP) and R2, we
examined three different complementary approaches. In the first approach, we
considered our full dataset without any missing items. However RENT models
selected features based on average R2 of -47% and -40% for the first and second
block, respectively. In the second approach, we include two more features which
caused our dataset to lose 9 samples, since these features include 9 missing items.
However this change helped our RENT models’ R2’s to experience improvements
until 20% and -36%. In the last approach, we excluded some samples causing
too much noise. Moreover to that, consulting with experts, we decided to remove
some features which we already knew are not important and lastly having a Box-
Cox transformation of the target we started working with a normalised response
vector which had symmetric distribution. This approach helped us achieving aver-
age R2’s of 34% and 21% for the first and second block respectively.

In the last step, multi block method of ROSA (Response Oriented Sequential Alter-
nation) was applied to analyse our dataset obtained from the last steps. Modelling
our problem with ROSA, this method gave us an acceptable R2 of 74% on the
cross validated data. ROSA also helped us ordering the features based on their
importances.

KEYWORDS: Box-Cox, Cross validated data, Repeated Elastic Net Technique
(RENT), Response Oriented Sequential Alternation (ROSA)
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Chapter 1

Introduction

1.1 Background

Gastrointestinal neuroendocrine tumours (NETs) are slow-growing tumours with
distinct histological, biological, and clinical characteristics that have increased in
incidence during the last decades. 1 This is mostly due to improvements of diag-
nosis (specially diagnosis of neuroendocrine), including better endoscopy and CT
scans and of course better awareness about the tumours. 2 Based on the statistics,
around 8000 people in the United States are diagnosed with this type of cancer
each year. The most common organs of body that these types of tumours can be
produced are small intestine and rectum. It has been studied that around 94% of
diagnosed people live at least 5 years after the tumour is found. If we consider
our study group as people who do not experience any metastasis and the tumour
does not spread in their body, the 5-year survival rate would increase up-to 97% .
If the tumour spread to nearby nodes, the percentage decreases to 95% and if the
metastasis occurs around distant areas in the body, the survival rate decreases to
67%. This issue proves the importance of survival rate in this type of cancer. The
current study also considers the number of survival days as the target. The aim is
to find the important features which cause this number to be relatively high.

1.2 Structure of thesis

This study is mainly divided into 4 sections: theory, materials, methods and results.
In the theory section (section 2) we describe the theory behind the main multi block
modelling method (so-called response oriented sequential alternation- ROSA) and

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443843/
2https://www.cancer.net/cancer-types/neuroendocrine-tumor-gastrointestinal-tract/

statistics

1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443843/
https://www.cancer.net/cancer-types/neuroendocrine-tumor-gastrointestinal-tract/statistics
https://www.cancer.net/cancer-types/neuroendocrine-tumor-gastrointestinal-tract/statistics


all the concepts needed to know in advance to understand this technique. After-
wards, we have a quick review on the dataset and how we are going to make the
most use of our samples by implementing some validation techniques followed by
an explanation about tasks to have a response variable with more symmetric dis-
tribution is also mentioned in this section. In the materials chapter, (section 3) we
make a very detailed explanation about the data and features we have. For every
single variable in the dataset we have an interpretation, so in the next chapters
whenever a feature has been mentioned, its explanation is referred to this chap-
ter. Next chapter (chapter 4) is methods section. In this section we explain all
the preprocessing methods used in this thesis along with the repeated elastic net
feature selection technique. Preprocessing steps include feature filtering, feature
transformation, handling missing values and identifying outliers. The last but not
least chapter is the results part. (section 5). In this section we implement all the
theories and methods explained in the previous chapters on our dataset and present
the results of our findings in this section. It should be noted that the order of pre-
processing in this section is the same as order we had in methods section. However,
the last step of the multi block analysis of ROSA on our data is presented in the
last part of this section.

The last two chapters of this study is about conclusions and future potentials of this
research.
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Chapter 2

Theory

Machine learning is based on finding a model which fits to the new data based
on the information we already had from historical data.[1] In other words, ma-
chine learning includes some automatic computation procedures which try to learn
form previous examples. [2] Generally, supervised machine learning problems are
either classification or regression problems. In supervised machine learning prob-
lems, we try to make a model of features in terms of labeled target. [3] In other
words, we already know which variable is the target and which are the features.
[3] The type of the supervised case is specified based on the target type. If we deal
with categorical target variable, our problem is supervised classification and if we
have continuous target variable the problem is addressed by supervised regression
machine learning techniques. [1] In the beginning of chapter 5 we will explain
how changing the problem from classification to regression helped us having more
accurate results in our problem.

As been mentioned, this study uses Response Oriented Sequential Alternation
(ROSA) to analyse the multi block dataset we have. Therefore in this chapter
through the subsequent sections, we will firstly introduce Partial Least Square Re-
gression (PLSR) technique which is a prerequisite for understanding the concept of
multi block methods. After that we will have a quick review on some of available
multi block methods followed by a detailed explanation about ROSA. In the last
section of this chapter, we will discuss about making the most use of the samples
when our sample size is low, accompanied by an explanation about uneven target
distribution and the solution to tackle this issue.

3



2.1 Partial Least Square Regression (PLSR)

PLSR is a multivariate statistical technique which is used in situations where we
aim to model one or multiple response variables response variables to multiple
regressors. [4] PLSR is an improved version of PCR (principal component regres-
sion). We first explain the PCR technique and then will show how PLSR improved
the PCR.

One of the main problems with multiple liner regression (MLR) was that it could
not be used in the cases when number of samples were lower than number of fea-
tures, so-called wide datasets. [5] Therefore the very first solution which comes
to mind is to make the problem in a way that it has lower number of features
with the same amount of information in them. Dimension reduction is the main
purpose of finding principal components. In other words, instead of using ordi-
nary features, we will use principal components obtained by the orthogonal scores.
These components have lower dimension and since they are orthogonal as well,
the multicollinearity problem which is also very common in MLR cases would be
tackled. As a reminder, scores are a low-dimensional representation of the obser-
vations, while loadings are the coordinates of the features when projected onto the
scores.[5] Figure 2.1 shows what has been discussed so far. (Assuming X as the
vector of features with N samples and K variables. Y as the target and T as the
orthogonal scores)

Figure 2.1: PCR performance visualisation adapted from [5]

In other words, instead of using the XN×K matrix of features, we use lower di-
mensional TN×A matrix of orthogonalised scores to model it on the target. [5]
Mathematical expression of the PCR steps is as follows where T and P are vectors
of scores and loadings respectively. [5]

1. T = XP

2. Ŷ = Tb and can be solved as b = (T′T)−1T′Y

Explaining PLSR method, this technique uses the same logic to tackle multicollinear-
ity issue in wide datasets. However PLSR extracts components that maximise
the covariance between X and Y looking for stable explanations of Y from X.
[5]
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2.2 Multi block problems

Common machine learning cases often consist of vectors of features and responses.
Using machine learning tools, we aim to train a model in which the features explain
the highest possible proportion of variance in target.[1] This model not only helps
us spotting the most significant features impacting the variation of response but
also contributes in the prediction of new responses based on the measurements we
have about the features.

However, the current problem which this research studies, is a bit different from
common machine learning cases. In other words, the features in this research are
not defined as single variables and instead, we have blocks of multiple relevant
features. Figure 2.2 demonstrates the problem.

Figure 2.2: Multi block problem demonstration.

There are several methods which address these types of problems. During last 30
years, more than 50 different multi block techniques have been proposed. [6] How-
ever three most important methods are called Multi Block Partial Least Squares
(MB-PLS) [6], Sequential and Orthogonalised Partial Least Squares (SO-PLS) [7]
and Response Oriented Sequential Alternation (ROSA) [8]. In the following para-
graphs we will explain two methods of MB-PLS and SO-PLS. ROSA which is
the technique used in this research, would be discussed in detail in the subsection
2.3.

2.2.1 Multi Block Partial Least Squares (MB-PLS)

The MB-PLS mainly uses Partial Least Square Regression (PLSR) to directly
merge the input blocks to the predictor matrix.[8] It has been shown that both
MB-PLS and ROSA need variables within a block to be on the same scale. [8]
MB-PLS will struggle if the dimensions of the blocks are very different or if the
number of underlying components in each block is very different as it extracts the
same number of components from all blocks. [8] MB-PLS scales each block by
1√
J

, where J is the number of variables of the blocks before computing PLS on the
concatenated (scaled) X against the response. [8]

5



2.2.2 Sequential and Orthogonalised Partial Least Squares (SO-PLS)

Sequential and Orthogonalised Partial Least Squares is based on sequential multi
block modelling of response variable.[7] In other words, this method tries to sep-
arately construct partial least square models using blocks of the features we have
in our data in stepwise manner. [7] After making the models, SO-PLS ensures that
matrices being used in the stepwise PLS regression models are orthogonalised with
respect to each other. [7] In other words, every time a block has been modelled,
the information extracted is removed from the following blocks. [7] This helps
for problems which have different dimensions within the blocks. [7] SO-PLS is a
suitable method when we have wide dataset in which the number of features are
more than samples. [7] Experience has shown that this method has interpretational
advantages when comparing to the MB-PLS. [8] However, we should bear in mind
that SO-PLS is not suitable when we have more than two blocks of features since
it will be harder and harder to interpret when more blocks are included. In other
words since the later blocks will contribute little to the model in addition to being
orthogonalised quite heavily, interpreting the loadings would be difficult.[8]

2.3 Response Oriented Sequential Alternation (ROSA)

As has been already mentioned, the Response Oriented Sequential Alternation
(ROSA) is the method being used in this research. This method is specifically
very suitable at the times when we have many blocks. [6] In other words, it has
been said that the advantage of ROSA over SO-PLS is that ROSA can even be used
with large number of blocks. [6]

ROSA mainly uses Partial Least Square Regression [4] to choose components.
Therefore, it can be said that ROSA is an extension of PLSR. [8] ROSA has the
”winner takes all” approach in which winner components are being chosen from
the blocks that could reduce the error.[8] In other words, firstly the PLS score is
being computed for all of the blocks. Then the block which has the smallest error
for the PLS model is selected. [6] The important aspect of this method is that
consequence manner of block selection in every iteration helps the blocks getting
a new chance in each block selection, so they always have this chance to surpass
the blocks which had been chosen already in the earlier iterations. [6]

Understanding how this method works precisely, two main steps of ROSA is dis-
cussed below.

1) In the first step, a separate PLS regression model is fitted to each of feature
blocks. [8] Thus for every block of X, we have a local model created by PLSR.
Then the winner component is chosen based on the competition between the residual-
minimising candidate components computed from each data block.[8]

It should be also mentioned that the block competition rule of ROSA is a forward

6



selection approach where blocks can be used several times (but not excluded after
selection). [8]

2) Throughout the second step, after orthogonalising the winner score to the target,
the competition between current scores based on residual-minimising approach in
the second iteration is formed.[8] ROSA ensures that every block gets a new chance
to outperform in every iteration [6] so each winner component in every step, might
be either form different blocks or from the same as previous iterations.

We can summarise what had been said in the algorithm in the following table. In
this table, m is the block counter and M represents the maximum amount that m
can take. Moreover, r is the component counter having R as maximum number.

Algorithm 1: ROSA algorithm extracted from [6]
Loop over components, r = 1, ..., R -main loop, similar to PLS
Loop over blocks, m = 1, ...,M -competition for current component
PLS2(Xm,Y) -one candidate component per block
→ tm,wm -scores and weights, both are scaled to unit norm
End block loop

t = argminm{||Y− tmttmY||} -select block that minimises residuals
t = t− TTtt - orthogonolise on previous scores
t = t/||t|| - normalise scores
w = [0,wt

r, 0]t - global weights (0 except winner)
Ynew = Y− tttY - orthogonolise on winning blocks
End block loop
P = [X1, ...,XM ]t]T - global loadings for concatenated X
Q = YtT - global Y loadings

wr are the weights corresponding to the winning block of component r.

Figure 2.3 also demonstrates how ROSA selects the components for an arbitrary
order of blocks and number of components as well. [6] As it has mentioned before
the process starts with selecting the winner score based on minimising the distance
to residual response of Y. [6] After making the Ynew by subtracting the winning
score from it (Ynew = Y−trq′r = Y−trttrY), we repeat the process until reaching
the desirable number of components. [6] As an example, in this figure the order
of block selections is 2,1,3,1. Obviously this order is completely based on the
data. It should also be noted that P and W are representatives of loadings and
weights respectively and they can span all of the subspace spanned by the blocks.
[6] We should also consider this issue that block-wise feature selection only allows
non-zero weights for blocks per component. [6] These zero weights are shown in
white boxes in the following figure.As an explanation of the shaded areas in P,
these areas are basically footprints of the winning blocks not the real part of P we
interpret.

Experience has shown that ROSA is relatively fast when comparing to other multi-

7



Figure 2.3: ROSA component selection adapted from [6]

block analysis methods. The reason is because ROSA mainly considers all the
blocks together at the time and computes the orthogonal scores and loading weights.[8]
With SO-PLS one either has to optimise component selection one block at the time
(greedy approach) or using all possible component combinations (up to a limit)
across blocks (global approach).[8] The former can be sub-optimal, the latter can
be very time consuming.[8] Specially, computing candidate scores is a quick pro-
cess, and the rest of ROSA is almost identical to PLSR, i.e. very quick and sim-
ple. In contrast to the global SO-PLS approach, ROSA considers just a single set
of components (the selected ones). [8] Another advantage of ROSA is that, this
method is stable when you have not scaled your blocks. [8] The reason of this
case is that ROSA just uses residuals or prediction errors to select the blocks. Thus
block selection does not depend on different scales of the blocks. [6]

ROSA and SO-PLS are both scale invariant. [8] However, ROSA has another ad-
vantage when comparing to SO-PLS. This method does not rely on the ordering
of the blocks. [8] In other words, SO-PLS choses the components based on the
covariance-maximising of components with target in every block so you should
take one more step to order the blocks as well, however ROSA considers all the
blocks as one block and choses the components from one block. [8] Therefore this
method is invariant to block ordering. [8] It is also possible to say that ROSA
works like a variable selection technique in which variables are blocks in this
method.[8]

We already argued that ROSA is computational effective. [8] The reasons of this
declaration is that firstly, without any need for convergence of the optimised solu-
tions, subspaces are directly computed and secondly (which has been already men-
tioned), ROSA does not need any block ordering implementation in advance.[8]
Winners are just components being in one single block at the time. [8]These are all
reasons which contribute to lowering the computational time. [8]

Regarding stability, we already know that outliers can influence selection of the
components and ROSA is not an exception.[8] Hence it can be wise to apply some
outlier detection methods in advance so that you can prevent the final model to be
somehow unstable.[8]
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2.3.1 Model performance

In order to evaluate the performance of the model we use two criteria:

• R2 (coefficient of determination)

• RMSEP (Root Mean Square Error of Prediction)

The first measurement takes values between 0 and 1 and basically determines how
much of target variance could be explained by the components in the model. The
closer this value is to 1, the better model performance is. 1 Formula 2.1 shows the
mathematical explanation of this criteria.

R2 = 1− Unexplained variation

Total variation
(2.1)

AlthoughR2 can be so useful in evaluating the model performance, it is not enough
and moreover to that we also use another criterion which basically measures the
error of the model. This criterion is called root mean square error of prediction
and we want the lowest possible amount of it. Formula 2.2 demonstrates that how
it can be computed. In this formula yi is the i’th sample observation and ŷi is
the corresponding prediction using the model. n also is the number of samples. 2

RMSEP =

√∑n
i=1(yi − ŷi)2

n
(2.2)

2.4 Dataset

Implementing validation techniques especially when the number of samples is not
high is necessary. The reason and the method been used for this purpose is dis-
cussed in detail in the coming sections.

Moreover to this, the values that our target variable can take is also a vital issue.
The distribution of target and how it might affect the model performance is a case
which is discussed in detail in subsection 2.4.2.

2.4.1 Cross-validation

Basically using the same data for training and testing the model is a false move. [9]
In other words, a model can perfectly work on the prediction of the observations we
trained the model with, but has a poor performance on unseen data. [9] Tackling
this problem, we can make test and training splits out of the data and train the
model based on the training split and test it on the other cut of the test split. [9]

1https://www.investopedia.com/terms/r/r-squared.asp
2https://en.wikipedia.org/wiki/Mean_squared_prediction_error
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However, having one split of test and train is not enough. Cross-validation helps
us having several splits of the data, so that every sample in the dataset will have the
chance to be at least once in the test dataset. The below flowchart shows how cross
validation works. [10] [11] [12] [13]

Figure 2.4: Cross-validation workflow. Figure adapted from [9].

Cross-validation in ROSA

ROSA is based on greedy algorithm. [6] As a reminder greedy algorithms intro-
duce the solution step-wise, always selecting the best solution locally. 3. Therefore
it is very likely that at each step a different block wins. [6] Due to this fact, having
a validation when using ROSA is necessary. Specifically, considering figure 2.4,
having several validation and training sets can be considered as the main solution.
[6] However since the block selection is part of the problem, we should think of
nested cross validation (specifically double cross validation) to help improving the
model performance as much as possible.

Double cross-validation

Double cross validation works the same as nested cross validation. In fact, nested
cross validation is often used in situations where moreover to training models’
errors, the hyper-parameter(s) of the model is also needed to be optimised. [9] In
other words, if parameters and complexity (number of components) are optimised
in the same loop, overfitting may occur. [9] [6]

3https://en.wikipedia.org/wiki/Greedy_algorithm
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When implementing the ROSA algorithm, the block selection can be considered
as the hyper-parameter needed to be estimated in nested cross-validation. [6] That
is to say, since in every iteration different subsets of samples can be chosen, there
would be variations in selections of the blocks. [6] As a reminder, ROSA is a
greedy algorithm and the block selection is done locally, therefore in every iteration
the chosen blocks can be different. [6] Thus double cross-validation is necessary
for this problem. Figure 2.5 visualise the workflow of this technique.

Figure 2.5: Nested cross-validation workflow. Figure adapted from [14]

2.4.2 Study on the target variable

A target with non-symmetric distribution can lead to a model with high error. As
an instance, if the target has uneven distribution with many small values and fewer
high values, where the high values will dominate the modelling as a contrast to
the small ones (like the distribution shown in figure 2.6) , some scaling methods
should be applied to the data in order to prepare it for modelling.

Figure 2.6: An example of uneven target distribution
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Box-Cox transformation

This transformation is one of the methods which helps scaling the target to have
more symmetric distribution. However this method also helps normalising the tar-
get in such a way that the distribution of the response becomes so close to normal
distribution. [15]

This transformation is part of a family transformation called power transformation.
[15] As it is obvious from the name these types of transformations raise the val-
ues to a power. [15] To transform variable y using Box-Cox, we should use the
following formula: [15]

y(λ) =

{
yλ−1
λ if λ 6= 0

log y if λ = 0
(2.3)

Choice of λ is based on the best symmetric distribution Box-Cox can yield. [15]
For the data demonstrated in figure 2.6 Sickit-learn package in Python [9] automat-
ically finds the optimal value of λ. The transformed Y has a distribution shown in
figure 2.7.

Figure 2.7 shows that the distribution of transformed Y is much closer to a sym-
metric distribution. In the latest chapter we will see for our case, how transformed
vector of target variable could help us having a better model.

Figure 2.7: Distribution of transformed Y using Box-Cox
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Chapter 3

Materials

The scope of this study was to model the number of the days between the diagnosis
date and the last observation of patient using features in two different blocks. The
data has been provided from Functional and Molecular Imaging Group of Oslo
University Hospital.

Explaining the blocks, the first one includes features about patient clinical proper-
ties and the second one has variables about blood values. It should also be noted
that in the first block mostly the results of Nordic chemotherapy in poorly differen-
tiated cancer (PDEC) study are included. These results obtained by a survey about
patines’ habits and sickness history.

In the following section we will discuss every single feature in our research fol-
lowed by an explanation about the target and how it has been used in the model.

3.1 Features of the first block

As has been mentioned the first block consists of features about patients’ clini-
cal properties.This block has 26 variables including different types of numerical,
nominal or date features.

This number will increase in number when nominal features in the block are trans-
formed to numerical values to be used in machine learning tasks. The reason of
this is that transformation methods make different levels of the nominal variables
as separate features. (More explanation about the transformation is given in chapter
4.2.2).

1. Age: varies from 38 to 94 years old.

2. DATEMET - DATEDIAG : this variable is the number of days between the
first metastasis and diagnosis of cancer.
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3. Sex: male or female

4. PRIMTUM: this is a prognostic factor and basically identifies the primary
tumour specially if the patient has several metastases. In the current study
this feature has 7 levels of gastric, colon, pancreas, rectum, oesophagus,
unknown and other.

5. PRTUMRES: primary tumour resected, that is to say some of the few pa-
tients that had surgery might have a better overall survival. This feature has
two possible answers of yes or no.

6. OPT: indicates if the patient had any other prior therapy. The levels this
variable takes are none, radiotherapy, streptozotocin, sandostatin, interferon
or other.

7. SURGMET: if the patient had any surgery metastasis.

8. SMOKHAB: smoking habits of patients. It can take several nominal values
of non-smoker, smoker, ex-smoker or unknown.

9. PROTHRCA: indicates if the patient has prior other cancer. The response is
either yes or no.

10. MORPH: indicates the morphology (or structure) of tumour. The values are
small or large cell carcinoma or other shapes.

11. KI67: this is an indicator of rate of cell growth. KI67 is a protein in cells
which increases as the cells prepare to divide. 1.

12. CGA1: cancer associated gene takes 4 values of strongly positive, partly
positive, negative and not done.

13. SYNAPTOF: it is a prognostic factor for immunohistochemical marker. Lev-
els of this feature are same as CAG1.

14. OCTREO: indicator of octreo scan. This feature is a type of imaging modal-
ity. Different levels include not done, negative, pos<liver and pos>liver

15. SOM-LIVER: if there had been any metastasis at liver in start of chemother-
apy. The values it can take is either yes or no.

16. SOM-LYMPHNDS: if there had been any metastasis in lymph nodes at start
of chemotherapy. The values it can take is either yes or no.

17. SOM-LUNG: if there had been any metastasis in lung at start of chemother-
apy. The values it can take is either yes or no.

18. SOM-BONE: if there had been any metastasis in bone at start of chemother-
apy. The values it can take is either yes or no.

1https://www.breastcancer.org/symptoms/diagnosis/rate_grade

14

https://www.breastcancer.org/symptoms/diagnosis/rate_grade


19. SOM-BRAIN: if there had been any metastasis in brain at start of chemother-
apy. The values it can take is either yes or no.

20. SOM-OTHRORGM: if there had been any metastasis in any other organ at
start of chemotherapy. The values it can take is either yes or no.

21. PERFSTAT: WHO performance status, for more information see table 5.2.

22. BMI: body mass index which ranges from 18 to 42 in our dataset.

23. HORMSYMP: hormonal symptoms which the patient either has it or not.

24. CARSYNDR: carcinoid syndrome which the patient either has it or not.

25. TIMETOTRM1: the number of days between the first treatment and the di-
agnosis of cancer.

26. RESPONS1: This is the variable that shows how the patients responded to
the treatment. This feature is measured based on CT scans and has several
levels of complete response, partial response, progressive disease and stable
disease.

3.2 Features of the second block

The second block has variables which define the blood values. This block has
8 nominal variables which will increase in number when transforming them to
numerical ones. (More explanation about the transformation is given in chapter
4.2.2). The features of the second block are explained as follows:

1. HIAA: this is a test to help diagnosis of carcinoid tumours. 2 This feature
has 4 different levels of HIAA > 2×upper normal limit, normal< HIAA <
2× upper normal limit , normal and not done.

2. CGA2: chromogranin A, it is a feature helping for diagnose and carcinoid
tumours and other neuroendocrine tumours. 3 The levels of this variable are
the same as values of HIAA.

3. HMGLBN: measure of haemoglobin in blood. It has 3 levels of normal, not
done and HMGLBN < 11.0 g/dL.

4. LACTDHDR: prognostic factor of lactale dehydrogenase. This feature has
4 different levels same as HIAA and CGA2.

5. PLATELTS: prognostic factor of platelets. This variable has 3 levels of nor-
mal, not done and PLATELTS > 400x10 9/L.

2https://labtestsonline.org/
3https://labtestsonline.org/tests/chromogranin
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6. WHITEBLD: prognostic factor of white cell blood count. It has 3 levels of
normal, not done and WHITEBLD > 10x10 9/L.

7. CRETININ: creatinine of blood. It is measured either as normal or> normal.

8. ALKPHSPH: alkaline phosphatase amount in blood. This variable has 4
levels of normal, not done, 3× upper normal limit < ALKPHSPH < normal
and ALKPHSPH > 3× upper normal limit

3.3 The response variable

The target in this study is a one dimensional continuous variable which shows the
number of days between diagnosis of cancer and the last observation of the patients.
Obviously the higher this number is the more days patients could live. Although at
first using a binary response had been suggested, the model yielded better results
when working with continuous variable.
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Chapter 4

Methods

The methodology used in this study can be categorised into three phases: data
preprocessing, feature selection and final model implementation. Preprocessing
the data includes two main steps: 1) working with features (columns of data set)
including either filter or transform them and 2) handling missing data as a part of
working with samples (row data). Throughout the first step (sections 4.2.1 and
4.2.2) we mainly work on the variables in our dataset in order to prepare them to
be used in the model. The second step works on the row data in order to handle
the missing data, either ignore the feature including missing values or impute those
items which are being missed. (section 4.2.3) The next phase is about feature
selection.(section 4.3.1) Using Repeated Elastic Net Technique to select important
features (RENT) [16] we come up with the features which would be used for the
final model in the next phase. The last but not least step is implementation of our
final multi block model using Response Oriented Sequential Alternation (ROSA)
method. (In detail explanation was given in chapter 2.3)

The code used for this study can be found on GitHub at https://github.
com/gazelleazadi/Masters_Thesis/tree/main.

4.1 Software

This study used Python Version 3.8.3 on an Miniconda platform with Numpy Ver-
sion 1.18.1 and Scikit-learn [9] Version 0.22.1 for data preprocessing and feature
selection. For the multi block part, RStudio Version 1.3.1093 has helped achieving
the results.
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4.2 Data preprocessing

Data preprocessing in this study encompasses below steps:

• Feature filtering

• Feature transformation

• Handling missing data

• Identifying outliers

Throughout the subsequent sections, we will explain the aforementioned steps in-
detail.

4.2.1 Feature filtering

As [17] has defined, features are numeric representation of the raw data. Relevant
features are those which can help having a better model in terms of its performance.
In this regard, the number of features is important. [17] If there are few available
features, the model can not capture the whole explained variance defined by them
and on the other hand if there are many features which mostly are irrelevant, the
model will be too complex and consequently too expensive to train. [17] Therefore
feature selection plays an important role in preprocessing of data.

Generally speaking, there are three feature selection techniques. Filtering, wrap-
ping methods and embedded methods.[17] Filtering techniques process the fea-
tures to remove those which are not helpful is explaining the variance of the target.
[17]

Experts’ knowledge for filtering

As the first step of filtering, we decided to use dominant knowledge of experts to
see which features are unlikely to be useful.

Our dataset includes 80 samples. We also have 2 blocks summing into 99 features.
After several discussions about the features which obviously can not be helpful,
many of the variables in the blocks have been disregarded. This step yields to
having only 35 features which might or might not be the ones being used in the
final step of modelling our problem.

Features with many missing values

In the next step, there had been some features which contain many missing val-
ues which neither could be imputed nor disregarded. As an instance in the third
block we have a feature named DATEPRG1 which is the date of progression of the
patients after the first chemotherapy treatment. This feature includes 24 missing
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values which are not possible to impute since it is about the date of the progres-
sion. The missing samples can not be removed as well since we only have 80
samples and disregarding even one sample can lead to underperforming of the final
model. Therefore variables of such containing more than 3 missing values were
removed.

4.2.2 Feature transformation

In order to prepare the data to be used in machine learning algorithms, all the data
samples must have numerical type. However in the real world data it is not always
the case and most often the data needs to be transformed in a way that has the
numerical type for all of the features. In the next subsections we will introduce
two different types of non-numerical data in our data set followed by the solutions
we implement to transform them into numerical values.

Features of nominal type

In our dataset there are some variables which describe a ’quality’ or ’characteris-
tic’ of the data. These features which are called nominal or categorical variables
require some specific techniques in order to become ready to use since machine
learning techniques accept only numerical values. [18]

For those which only accept two values (for instance sex which is either male or
female in our dataset) we simply define 0 as one level of the feature and 1 as the
other one. However there are also several variables which take values more than
two. For these features we used OneHotEncoding [9] to turn them into numerical
values. This encoding transformer uses a dummy encoding scheme to make a
binary column for each level of the variable.

Features of date type

In our dataset there are some features which are of the date type. These features
require some arithmetic calculations in order to be prepared to be used in the ma-
chine learning algorithms, as the Date type itself is not acceptable to be used in the
algorithms. As an instance for a variable like date of birth, we can simply change
it to age which takes numerical values.

4.2.3 Handling missing data

Although disregarding features does not seem a good solution when they contain
missing values, we decided to use the dominant knowledge of experts to see if the
feature with many missing values are important or not. In this respect, features
including more than 3 missing values had been removed for the next steps of the
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research and the rest of the variables with missing data are kept in order to impute
the missing values.

Missing data imputation

Sickit-learn [9] imputation package offers several solutions to handle missing val-
ues. Generally Sickit-learn version 0.24.1 introduces three imputation methods:

• Univariate feature imputation

• Multivariate feature imputation

• K-nearest neighbours imputation

In the following subsections we will explain the methods in detail.

Univariate feature imputation

Univariate feature imputation is a technique of missing values estimation using
information of the feature containing the missing value(s). [9] [19] Using this
method, we can either replace the missing item by a constant arbitrary value or
using statistics (such as mean, median or mode) of the column in which we want
to impute the missing values. [9] [19]

Multivariate feature imputation

By contrast, multivariate imputation uses the information of all of the available
features in order to estimate the missing value of one variable. [9] [20] For ex-
ample, if item number i of feature m is a missing sample, multivariate imputation
method estimates this value by considering samples which have similar situation
in terms of all of the features in the dataset. Let us say, if the missing item is age of
a sample which we already know is female, married and data scientist, multivariate
uses information of the ages of all the married data scientist females in the dataset
to estimate this value.

K-nearest neighbours imputation

This method uses the information of k-nearest neighbours of the missing item using
the Euclidean distance. [21] [9] Using values of the k-nearest neighbours around
the missing item, we can estimate the sample which is missed. This estimation can
be based on the linear or weighted average of the aforementioned information of
the k-nearest items. [9]
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f1 f2 ... fM
M1 β11 β12 ... β1M
M2 β21 β22 ... β2M
... ... ... ... ...
Mk βK1 βK2 ... βKM

Table 4.1: Weights matrix using in RENT feature selection technique

4.3 Feature selection

Feature selection is a technique used to help reducing the dimension of the dataset,
specially when the number of features exceeds the number of samples which is the
case in our problem. Thus, having simpler data we may be able to make a more
comprehensible model out of selected features. [22] There are several methods
proposed to select meaningful features, however in this study we use Repeated
Elastic Net Technique (RENT) [16] in order to extract the variables which are more
significant than others. This technique is described in detail in section 4.3.1.

4.3.1 Feature selection using RENT

Repeated Elastic Net Technique for feature selection (RENT) [16] is a method
which can be used to see which features should be included during the next step
of final model. Considering the data matrix with N samples and M features we
make some different train and test split.[9] In this way we make sure every sample
in the dataset would have the chance to be at least once in the test split. [16] Now,
for every splits, we fit K different generalised linear models-(so-called ensemble
models)

After fitting the K models we will obtain a matrix of weights for every feature be-
ing fitted for every model. Below process shows what we achieve so far: [16]

Input data matrixx11 x12 · · · x1M
...

...
. . .

...
xN1 xN2 · · · xNM

 =⇒

Models
M1

M2
...

MK

 =⇒

Weightsβ11 β12 · · · β1M
...

...
. . .

...
βK1 βK2 · · · βKM



For a better clarification, we can also rewrite the weights matrix as in table 4.1, in
which f1,f2, ... , fM are representing theM features we had in the dataset andM1,
M2, ... , MK are the K generalised linear models [23], we fit to our data.

In the table 4.1, β’s are the weights for different features obtained in different
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models. For instance, βkM is the weight for the M ’th feature when fitting the data
in the k’th model.

The next step of RENT needs explanation about a concept called regularisation,
in advance. Therefore we will have a detailed overview on this concept and then
continue to next steps of RENT feature selection.

Elastic net regularisation

One of the common problems in machine learning is overfitting. [14] This problem
happens when the model is perfectly fitted to training set, however it does not
generalise on the test set. [14] On the other hand, underfitting occurs when the
model is not complex enough to capture the pattern in the training set. [14] Figure
4.1 illustrates this issue.

Figure 4.1: Illustration of underfitting, a good compromise and overfitting.
Figure adapted from [14]

Tackling the problem of overfitting, we can adjust the model complexity by regu-
larisation. [14] Regularisation mainly excludes noise from the data and also helps
handling collinearity. [14]

The most common form of regularisation is called `2 regularisation. [14] This form
is written as follows: [14]

`2 :
λ

2
||w||2 =

λ

2

m∑
j=1

w2
j (4.1)

In equation 4.2, λ is the so-called regularisation parameter, wj’s are estimated fea-
tures’ weights and m is the number of features in the model. [14] In fact by the
regularisation parameter of λwe can have control over the model in such a way that
how good enough we want it to be. [14] In other words we try to have a tradeoff
point which satisfies us as a good compromise: neither too simple nor too complex.
It should be mentioned that the higher amount of λ the stronger regularisation we
have. [14]
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Another approach for tackling the overfitting problem and shrink the complexity
of the model is `1 regularisation. [14]

`1 :
m∑
j=1

|wj | (4.2)

This approach yields to a model in which so many of the features’ weights shrink
to zero. [14] In the problems when we have so many collinear features, this form of
regularisation can help us not only tackle the overfitting issue but also have some
sort of feature selection. [14]

`1 regularisation has this limitation that our dataset should be wide. In other words
if we have a dataset with m features and n samples, we can use `1 if m > n.
[14]

Now that we learn about concepts of `1 and `2 regularisation forms, we can define
elastic net. Elastic net is a compromise between `1 and `2 regularisation. [14] In
fact, elastic net includes `1 to have sparsity on the features and at the same time
having `2 regularisation helps having control over limitations of `1. [14]

Now that we know what elastic net is, we can continue with next steps of RENT:

Using the information given in table 4.1, we can have a statistical summary of the
weights for every feature in the model. In fact, these summary statistics will help us
identifying the most important features in the dataset. [16] Defining three criteria
as well as thresholds, we will come up with the selection of the important features.
In other words for every criterion we defined we should check for the threshold to
see if the feature would be selected or not.

Let us clarify this by representing the following matrix of criteria: [16]

Summary statisticsτ1(f1) · · · τ1(fM )

τ2(f1)
. . . τ2(fM )

τ3(f1) · · · τ3(fM )


Using this matrix and pre-defined thresholds of t1, t2, t3 we select the feature i that
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satisfies the following equation: [16]

τ1(fi) ≥ t1,
τ2(fi) ≥ t2,
τ3(fi) ≥ t3.

(4.3)

Now the question is what are those criteria based on statistics summary of the
weights? Answering this question, we say generally for each of the τ ’s, refer to the
definitions in equation 4.4, a feature of fi is selected in RENT:

1. this feature is selected by elastic net frequently.[16] In other words, when
fittingK models, the feature is selected after imposing `1-norm and `2-norm
penalties which are solutions to detect the irrelevant variables and identify
highly correlated ones which have relatively similar regression coefficients,
respectively. [24]

2. the weights of the feature are stable.[16] That is to say, if the feature fi gets
weights ranging from negative to positive values across the K models, and
the values hops around quite often, it is been concluded that this feature is
not stable and can be eliminated.[16]

3. across the K models, the feature’s estimations have been calculated as non-
zero values with relatively low variance. [16] So, even if the weights of the
feature differ from zero with stable behaviour, but the estimation of the itself
(the mentioned features) in the models are mostly close to zero, we still do
not select the feature since it does not fulfil the third criteria. [16]

Formulating the above conditions into mathematical expressions for arbitrary fea-
ture fi, we come up with the equation 4.4. Noted that c(βi) is the score as for the
first criterion which specifies the frequency of selection of the specific feature of
βi. [16]

τ1(βi) = c(βi),

τ2(βi) =
1

K
|
K∑
k=1

sign(βi,k) |,

τ3(fi) = PK−1(
µ(βi)√
σ2(βi)
K

)

(4.4)

Where PK−1 is the cumulative density function of Student’s t-distribution with
K − 1 degrees of freedom, µ(βi) and σ2(βi) are the feature mean and variance
respectively, i.e for feature βi. [16]

Considering the second criterion τ2(βi), the best case is when all the estimated
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weights of the feature fi have the same sign. (either positive or negative) However
in the real world problems, it is usually not the case and this criterion allows us to
define a minimum proportion for the weights which have the same sign. [16]

For the the third criterion τ3(βi), considering estimations of the parameter feature
fi across all the K fitted models, we test the average of all the estimations are
equal to zero or not. The hypothesis is tested under the Student’s t-distribution
with K − 1 degrees of freedom. [16]

H0 = µ(βi) = 0

Having the thresholds defined in equation 4.3, RENT would tell us if the feature fi
would be selected or not. We should remember that selecting a feature is dependant
on the fulfilment of all of the criteria τ1(βi), τ2(βi), τ3(βi) as expressed in equation
4.4. [16]

4.3.2 Validation study regarding the models made by RENT

One of the interesting analysis which RENT makes it possible is to have a feasi-
bility study. Feasibility study helps us assessing practicality of RENT. This study
consists of two cases:

The first validation study (so called VS1) tells us if the RENT feature selection
is actually better than random selection of features. [16] Let us say we make M
models just by randomly taking some features. Then we check if the performance
of the model in which the features had been selected by RENT is better than the
average performance of M models.[16] If this is the case, we can say the selected
features by RENT are meaningful on the test dataset.

The second validation study (so called VS2) is basically done by permutation of
test labels. Better to say, we randomly permute the test labels for many times (let
us say 1000 times) to see if the performance changes or not. In other words, in
the test data we keep the order of the rows in X (features’ matrix), but permute
(change order) of the target values. This means that we break the mapping of X
to Y . Then, we compute the performances. If RENT feature selection is doing a
good job, the performances’ distribution of permutations, should be worse than the
RENT prediction score. [16]

Take the figure 4.2 into consideration. We have run RENT on a block of features
trying to see if this algorithm is doing a proper job of selecting the important fea-
tures.

In this figure, the red line shows the prediction score of RENT. In other words we
take the training data and use RENT to select features. Then using these features
we predict classes of test data. Now we compute the test performance which is
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the red line in the figure. In addition to that, the blue curve is the distribution of
performances of the models made by random feature selection. As we can see, the
RENT prediction score is almost higher than this distribution. The green curve is
the distribution of the second validation study. As we can observe, the prediction
score of RENT is better than distribution of permuting the test labels in the green
curve, as well. Therefore we can rely on the results of RENT and announce the
selected features yielded by RENT as important ones to be used in the next steps
of the research.

Figure 4.2: An example of validation study of RENT

It should also be noted that the performance metric using in the validation study of
RENT is MCC (Matthews Correlation Coefficient). [16] This metric is a contin-
gency matrix method between actual and predicted values. [25]

If we consider our case a binary problem, wishing to measure the performance of
the machine learning model fitted on the corresponding dataset, we can have below
terms, followed by the formula of MCC metric: [25]

• Actual positives that are correctly predicted positives are called true positives
(TP);

• Actual positives that are wrongly predicted negatives are called false nega-
tives (FN);

• Actual negatives that are correctly predicted negatives are called true nega-
tives (TN);

• Actual negatives that are wrongly predicted positives are called false posi-
tives (FP).

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(4.5)
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4.4 Identifying outliers

One of the most important aspects of preprocessing is detecting samples which
appear to deviate significantly from other members of the sample. [26] Therefore
it is crucial to detect outliers to obtain a better model for analysis.

In this study we used two techniques in order to identify outliers. The first method
is mainly based on the principal components of the features and the second method
is found on RENT by which we will identify observations that caused the error of
predictions to be relatively high. Both of the methods are discussed in detail in the
following sections.

4.4.1 Principal Component Analysis method

Principal Component Analysis (known as PCA) is a method by which the com-
ponents which define the most proportion of the variance of the p features are
determined (principal components). If these components would be lower in num-
ber comparing to the number of original features, PCA can be used as a dimension
reduction technique. [27] However this research aims to use PCA to detect the
outliers in the dataset. We should also bear in mind to standardise our data be-
fore implementing PCA on it. The reason would be discussed in the following
section.

Standardising the data before PCA

Visualising the principal components using PCA, having the same or at least simi-
lar measurement scales of features is pre-assumed. [28] In other words, since every
variable in our dataset has its own specific scale of measurement (for instance age
as year and BMI as unit) we should think of unifying their scales. Standardised
features are easier to interpret regardless of their identity as an age, BMI or any
other medical measurement scale. The following formula shows how the data is
standardised. [28]

Xi,j(std) =
Xi,j − X̄j

σXj

Which literally means subtract the mean value from each feature and then dividing
the result by the standard deviation. This will yield a dataset in which all the
columns have mean value of zero and standard deviation of 1.

Using PCA to detect the outliers

The principal component analysis for every standardised blocks of the dataset gives
us scores and loadings plots. As a reminder, scores plot contains the original data
in a rotated coordinate system and loadings can be understood as the weights for
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each original variable when calculating the principal component. [29] The outliers
are those observations which have relatively large deviation from the centre of the
subspace spanned by the principal components. [29]

4.4.2 Hotelling’s T 2 statistic for more than two PC’s

As has been discussed, when we have two principal components (PC’s), 2D scores
plot is sufficient to detect the outliers. [30] However this is not always the case. In
other words, when working with real world data, it is very possible that the variance
is explained with more than two scores. In such situations, some outliers may
not be identified in a 2D plot since there can multiple combinations of two PC’s
among all the components. [30] Therefore it is suggested [30] to use Hotelling’s
T 2 statistic. This statistic is the multivariate version of Student’s t-test and can
be calculated as the sum of squared scores for each sample and the corresponding
largest values are the outliers. [30] Note that this statistic is just a guide and can
not be considered as a hard rule to find the outliers. [30]

4.4.3 Using RENT in order to identify the outliers

As already discussed in section 4.3.1, Repeated Elastic Net Technique is basically
a method for feature selection. However this method can also help us identifying
observations which cause the error to be high. [16] In other words, for every object
in the dataset firstly we can see how often this observation had been part of the test
set and secondly what is the average absolute error of predictions when this object
had been part of this test set. [16]

As a note, in our research not only high number of models in RENT (K different
generalised liner models in section 4.3.1) but also using repeated k-fold cross vali-
dation (explained in section 4.5) ensure us that every sample would get at least one
chance to be in the test set. It should also be reminded that the absolute error is
defined as the absolute value of difference between prediction and the true value of
the sample. 1

4.5 Repeated stratified k-fold cross-validation

Cross-validation is a process which ensures every sample in the dataset has at lest
one chance to be part of the test set which mainly tests the performance of the
model trained by the rest of observations as training set. [9] (More in detail dis-
cussion in chapter 2.4.1). In chapter 2.4.1 we introduced one of several approaches
can be extracted from cross-validation as double validation. In this section we
are about to present another approach, so-called repeated stratified k-fold cross-
validation. We use this technique when using RENT in order to ensure that features

1https://mathworld.wolfram.com/AbsoluteError.html
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have been selected are validated enough. This method specially makes a significant
contribution in situations where there are not so many samples to work with.

This method works based on the following steps: [9]

• Train the model based on k − 1 of folds of the data (as training splits)

• Test the model based on the one split left in the dataset (as the test split)

• Repeat the above steps for several selection of random indices of samples as
test or train splits

It should be noted that stratified means that this method tries to preserve the distri-
bution of the target in different splits of the dataset. Better to say, if the distribution
of the target is imbalanced, stratified k-fold cross-validation ensures relative class
frequencies have been kept across the different splits. [9]

Figure 4.3 demonstrates one repeat of cross-validation splitting flow (for 5 folds):

Figure 4.3: One repeat of cross-validation splitting flow. Figure adapted
from [9]
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Chapter 5

Results

In the early phase of the research we decide to define the target as follows:

yi =

{
0 if the patient died at some time during or after treatment
1 Otherwise

However we observed that considering a classification problem in which the target
is a binary variable being defined as dead or alive does not help us modelling our
problem properly. The main reason of this issue was the extremely imbalanced data
with respect to the binary target. In simple words, if we consider our response to be
dead or alive as a binary variable, almost 90% of the patients in the dataset would
be categorised as dead people whereas the rest of 10% are alive. This issue causes
so many problems specially when it comes to splitting the data. When splitting
data to train models, we would not be able to maintain the target distribution in
all the splits being made. In other words, having very low number of alive people
does not help assigning them equally in the splits so that in all of them we would
have 10% alive people. This obstacle forced us thinking about some solutions
to change the target from binary to continuous variable as the number of days of
last observation and the diagnosis. This simple transformation of target made a
significant contribution to our problem.

Throughout the next step, we preprocess our data by implementing all the methods
and techniques being discussed in chapters 2 and 4 on our dataset. The results of
these implementations are discussed in detail in the following section. It should
be noted that the structure of this chapter is written based on the order of the tasks
being done on our dataset: firstly beginning with the preprocessing of the data, in
the next step doing the feature selection and finally the main model would be fitted
on the processed data.
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# of features before filtering # of features after filtering
Block 1 34 29
Block 2 18 9
Block 3 34 2
Block 4 5 1

Table 5.1: Number of features in our dataset

5.1 Preprocessing the data

As has been mentioned in 4.2, data preprocessing includes five steps as follows:

• Feature filtering

• Feature transformation

• Handling missing data

In the coming parts, we will discuss about the results we obtain by performing the
above steps on our dataset across the preprocessing step.

5.1.1 Feature filtering

Having several meetings with experts, we finally decided to use 41 features out of
87 variables. Among the excluded ones, there were also those which encompassed
many missing values and it was not possible to impute them due to their large
size. Table 5.1 summarises the number of the features in every block that had been
decided to use.

It should be noted that we decided to use two of the features in the third block.
However since the first variable is defined as if the patients respond to the treatment,
we could place it in the first block. The second feature is the date of the first
treatment after diagnosis. Considering this feature and subtract this date from the
date of diagnosis in the first block, we come up with a new variable as days between
diagnosis and the treatment. This feature is also decided to be considered in the
first block. The rest of the features in this block had been disregarded due to their
high number of missing values. Moreover to this, the only variable being used in
the fourth block is DATELOBS which helps defining our target as the number of
days from the diagnosis until the patient dies. The diagnosis date is accessible in
the first block as DATEDIAG.

5.1.2 Feature transformation

As has been already discussed in section 4.2.2, two types of nominal and date type
features needed to be transformed to numerical values in order to become prepared
to be used in our machine learning algorithms. [18]
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Degree Performance Status

0 Able to carry out all normal activity without restriction.

1 Restricted in strenuous activity but ambulatory and able to carry out light
work.

2 Ambulatory and capable of all self-care but unable to carry out any work
activities; up and about more than 50% of waking hours.

3 Symptomatic and in a chair or in bed for greater than 50% of the day but not
bedridden.

4 Completely disabled; cannot carry out any self-care; totally confined to bed or
chair..

Table 5.2: WHO performance status

Sample number Performance status value Encoded performance status
WHO0 WHO1 WHO2 WHO3

1 WHO 0 1 0 0 0
2 WHO 0 1 0 0 0
3 WHO 1 0 1 0 0

Table 5.3: An example of WHO performance status encoding

Clarifying the OneHotEncoding technique to transform nominal types of features,
we take the WHO Performance Status feature in the first block as an example. This
variable takes values based on the information given in table 5.2. 1

In our dataset this variable takes values ranging from 0 to 3. In order to transform
this nominal variable into a numerical one, after using OneHotEncoding [9], we
end up having 4 features according to 4 levels of the variable takes. For instance 3
samples of 1,2 and 3 have values of WHO1, WHO1, WHO0. After encoding the
feature, we will have the results shown in table 5.3 for the mentioned samples as 1
represents accepting the level in which the column is defined.

Hence based on the level numbers of features needed to be encoded, we will create
new features and in the final analysis of our model we can decide either a certain
level of one feature has significant impact on our response block or not.

As an example of date type feature in our dataset is a variable called Date of Birth.
This feature can simply be transformed into the Age variable which makes it be-
come feasible to work with in making machine learning models. Other example

1https://www.nice.org.uk/guidance/ta121/chapter/
appendix-c-who-performance-status-classification.
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is making a new feature by subtracting two features of DATEMET (the date when
the patient had metastatic disease at time of diagnosis) and DATEDIAG (the date
of diagnosis) which yields either zero or a positive value. This feature is an overall
survival days and tells us how long after diagnosis patients got metastasis. This
feature now is as a discrete type and is perfectly feasible to work with in making
machine learning models.

Tables 5.4 and 5.5 demonstrate the features being used in the block 1 and block 2
respectively.

Feature name Feature type Transformation needed Transformed feature levels
DATEBRTH date yes 1

DATEMET-DATEDIAG numerical no -
SEX nominal yes 1

PRIMTUM nominal yes 7
PRTUMRES nominal yes 1
OPT-NONE nominal yes 1

OPT-RADTHRPY nominal yes 1
OPT-STRPTCYT nominal yes 1
OPT-SANDOSTN nominal yes 1
OPT-INTRFERN nominal yes 1
OPT-OTHRPRTH nominal yes 1

SURGMET nominal yes 1
SMOKHAB nominal yes 5
PROTHRCA nominal yes 3

MORPH nominal yes 4
KI67 numerical no -

CGA1 numerical yes 4
SYNAPTOF nominal yes 4

OCTREO nominal yes 5
SOM-LIVER nominal yes 1

SOM-LYMPHNDS nominal yes 1
SOM-LUNG nominal yes 1
SOM-BONE nominal yes 1

SOM-OTHRORGM nominal yes 1
SOM-BRAIN nominal yes 1
PERFSTAT nominal yes 4

BMI numerical no -
HORMSYMP nominal yes 1
CARSYNDR nominal yes 1
RESPONSE1 nominal yes 4

DATETRM1-DATEDIAG numerical no -

Table 5.4: Features in block 1
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Feature name Feature type Transformation needed Transformed feature levels
HIAA nominal yes 4
CGA2 nominal yes 4

HMGLBN nominal yes 3
LACTDHDR nominal yes 3
PLATELTS nominal yes 3

WHITEBLD nominal yes 3
CRETININ nominal yes 1

ALKPHSPH nominal yes 4
TUMMARK1 nominal yes 1

Table 5.5: Features in block 2

5.1.3 Handling missing data

Three features of KI67 , BMI and CGA2 included one missing item each. In order
to impute these missing values, we use three techniques of univariate (4.2.3), mul-
tivariate (4.2.3) and k-nearest neighbours (4.2.3) to estimate their values. Table 5.6
shows the imputation of missing items for these features.

Feature name / level Univariate method Multivariate method K-nearest neighbours method
KI67 65 63 58
BMI 24 25 24.75

CGA2-> 2UNL 0 0 0
CGA2->Normal 0 0 0
CGA2-Normal 0 0 0

CGA2-Not Done 0 1 1

Table 5.6: Imputation of missing values

Eventually for two features of KI67 and BMI taking average among estimations,
we come up with the values of 62 and 24.58 as the imputations of the missing
values. For the feature CAG2, taking the mode of levels which had been estimated
as 1, we choose to consider the missing item as CGA2-Not Done.

5.1.4 Identifying outliers using PCA and the Hotelling’s T 2 statistic

As has been discussed in chapter 4.4.1, by the help of principal components we
can see which observations corresponding to which features in the dataset might
be outliers, due to being relatively far from the centre of the subspace spanned by
the principal components.[29] However for our problem, this method could not
help us featuring these samples. As an instance take the figure 5.1 into considera-
tion.

As it is been demonstrated, 60% of variance of the features in the first block is
explained by around 20 components. Therefore finding the possible outliers by 2D
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Figure 5.1: Explained variance in block 1

scores plots requires checking all the possible permutations of the 20 components.
Although this approach is feasible, the final results are not trustworthy since every
permutation of two components might have different weight based on the variance
that their combination is explaining.

Moreover to this, considering figure 5.2 the first two components in the first block
are explaining around 17% of the variance of the features. However spotting the
outliers based on the plot is not an easy task. Since none of the observations seems
to be extremely far from the centre, we can not confidently announce any sample
to be an outlier.

Figure 5.2: Score plot for the two first components in block 1

That is why we ought to use Hotelling’s T 2 statistic for each sample to find the out-
liers. (More detailed explanation is given in chapter 4.4.2). Using this method, we
came to the conclusion that the scores are sensitive to the number of components.
As an instance if we choose 20 components in our PCA for the first block, the
largest sum of squared of scores is corresponded to the sample number 1. However
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if we choose 25 components, the corresponding sample number is 30. Moreover to
that, different blocks of features yields different outliers. Thus, although PCA or
Hotelling’s T 2 statistic can sometimes help finding outliers, in our problem these
two methods could not help us. However in the upcoming sections we will see how
other methods actually found some samples which were outliers in our dataset and
PCA or Hotelling’s T 2 statistic did not spot them.
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5.2 Feature selection

Using Repeated Elastic Net Technique (RENT) [16] we come up with three dif-
ferent approaches in order to choose the features in the final multi block method.
These approaches have been attained by having RENT feature selection on differ-
ent test sets in terms of features or samples being included in the dataset. In other
words we compare the performances of the models obtained by the different test
sets to see which dataset would yield better results. In the subsequent sections we
will explain all the approaches in detail, however before that we will discuss how
we used the repeated stratified k-fold cross validation 4.5 to ensure all the samples
get the chance to be in the test split at least once.

5.2.1 RENT and repeated stratified K-Fold cross-validation

Referring to section 4.5, we had RENT [16] for feature selection [16] on different
splits of training data to see which features have are most frequent of being selected
across different splits of the dataset.

For our problem, we consider k = 4 splits with 2 repeats. Figure 5.3 shows these
two repeats of stratified 4-fold cross validation on RENT model. As it is been
shown, in every repeat, we train our model using RENT [16] on 3 folds of data and
then test it on the remaining fold. Since we have 2 repeats and 4 folds, we eventu-
ally obtain 8 different models which can be compared in terms of their performance
on the test set.

Figure 5.3: RENT on two repeat of stratified 4-fold cross validation.

It should also be noted that the number of generalised linear models (K different
models in chapter 4.3.1) in RENT have been considered as 700 and the model
which evaluates the performance of selected features on unseen test data set is
logistic regression. [16]
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In the next couple of subsections, we will talk about three approaches we already
talked about for implementing the RENT to select features.

5.2.2 Selected features based on the first approach

The first approach we consider is using the dataset with no missing values. In
other words the features we use either do not encompass any missing items or
have so few number of missing values which are also imputable. This full dataset
has two blocks with 80 samples and each block consists of 57 and 27 features
respectively.

Considering continuous target as the number of days that patients live after their
cancer diagnosis, we obtain the following results on 8 different splits of data. It
should be also mentioned that based on 80 samples, every training split consists of
60 and test splits have 20 samples.

The parameters used in RENT training are τ1 = 0.9 , τ2 = 0.9, τ3 = 0.975. (Re-
ferring to section 4.3.1 for more explanation about the parameters). These numbers
are the default values of RENT, however we also have the possibility of changing
the parameters in order to improve our training leading to a better feature selec-
tion.

Reviewing tables 5.7 and 5.8, their second columns show which features have been
selected for the corresponding split and the next columns demonstrate the perfor-
mance of logistic regression model on the test fold based on the features being
selected.

Splits Selected feature(s) R2 RMSEP (error)
Split 1 AGE, OCTREO-Negative -0.32 1157.8
Split 2 CGA1-Negative, SOM-LUNG 0.04 901.36
Split 3 CGA1-Negative, OCTREO-Negative -0.27 1113.4
Split 4 SURGMET 0.27 387.8

Split 5 AGE, SEX, PRIMTUM-Colon, -2.9 866.6SURGMET, KI67, SYNAPTOF-Negative
Split 6 Age, SEX, OCTREO-Negative -0.12 1302.1
Split 7 PROTHRCA-No 0.05 684.4
Split 8 PRTUMRES, SURGMET, MORPH-Other, CGA1-Negative -0.5 1174.8

Table 5.7: Selected features and model performance based on the first
approach for the first block

Consequently on average, Repeated Elastic Net Technique selects features which
lead to a model with performance of−0.47 and−0.4 for the first and second block
respectively. Also, based on the metric defined in section 2.3.1, on average the
RMSEP (Root Mean Squared Error of Prediction) of the models corresponding
to the first and second blocks are 948.5 and 946.4. Negative performance and
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Splits Selected feature(s) R2 RMSEP (error)
Split 1 CGA2-Normal, PLATELTS≥ 400x109/L -0.08 1045.9

Split 2 HIAA-Normal, CGA2-Normal, -0.07 951.8LACTDHDR ≥ 2UNL, LACTDHDR-Not Done

Split 3

HIAA≥Normal ≤ 2UNL,

-0.39 1162.7
HIAA-Not Done, CGA2≥ 2UNL,

CGA2-Normal, CGA2-Not Done, WHITEBLD-Normal,
ALKPHSPH≥3 UNL, ALKPHSPH≥Normal ≤ 3 UNL,

ALKPHSPH-Normal, ALKPHSPH-Not Done, TUMMARK1
Split 4 CGA2-Normal -0.97 638.5
Split 5 CGA2-Normal -0.24 484.7
Split 6 CGA2-Normal, LACTDHDR-Not Done -0.001 1229.4

Split 7
CGA2≥2UNL, CGA2-Normal, CGA2-Not Done,

-1.4 1094.1LACTDHDR-Not Done, ALKPHSPH-Not Done
ALKPHSPH≥Normal ≤ 3 UNL, ALKPHSPH-Normal

Split 8 CGA2-Normal, LACTDHDR≥ 2UNL, LACTDHDR-Not Done -0.04 964.5

Table 5.8: Selected features and model performance based on the first
approach for the second block

relatively high error demonstrates that this dataset and the models fail to explain
the variance of the target which leads us to think about the next approaches.

5.2.3 Selected features based on the second approach

As has been already discussed, poor performance of the models using main dataset
without missing values made us thinking about other feasible approaches to model
the problem. In other words, we firstly prioritise having a dataset with full samples
even this might lead to disregarding some features. However, after obtaining the
first results we consulted with the experts and they suggested to include two more
features which encompass 9 missing items in the first block. So, although this
approach causes having a dataset with lower number of samples, we tried it and
surprisingly obtained better results, explained as follows.

The first feature which had been included in the dataset, namely RESPONSE1, is
the variable based on CT-scans and shows how the patients responded to a spe-
cific treatment. The other feature is made by subtracting two date variables of
DATETRM1 and DATEDIAG namely TIMETOTRM1. DATETRM1 is the date of
first treatment after diagnosis and DATEDIAG is the date of diagnosis which makes
the new feature as the number of days between the first treatment and diagno-
sis.

The new dataset consists of two blocks with 71 samples, 62 and 27 features in ev-
ery block respectively. It should also be noted that, although we apparently added
two features to the first block, due to nominal type of RESPONSE1 with 4 levels
(referring to table 5.4), we practically include 5 more features considering TIME-
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TOTRM1, as well.

Training RENT on this dataset, we came up with the results being summarised
in tables 5.9 and 5.10 for the first and second block. It should also be noted that
having a fixed seed value [9] helps us having the same test and training splits so we
can compare the results with the previous ones. In other words, having the same
splits with lower number of samples, we are able to compare the performance
of the model and see if the new dataset with two new features can actually help
explaining the target variance better or not. As a reminder, random.seed is a
function which is used to reproduce the output for several times. [9]

Same as before the parameters used in RENT training are τ1 = 0.9 , τ2 = 0.9,
τ3 = 0.975, which are the default values of this package. Also, the number of
ensemble models k = 700 does not change.

Splits Selected feature(s) R2 RMSEP (error)

Split 1 PRIMTUM-Colon, SURGMET, 0.26 712.6RESPONS1-Complete Response (CR)
Split 2 PRTUMRES -0.31 979.1
Split 3 SURGMET, CGA1-Negative, RESPONS1-Complete Response (CR) -0.22 807.5

Split 4 SURGMET, SMOKHAB-Unknown, CGA1-Negative, 0.44 872.8SOM-LIVER,RESPONS1-Complete Response (CR), TIMETOTRM1
Split 5 RESPONS1-Complete Response (CR) 0.46 405.3

Split 6 PRIMTUM-Colon, SURGMET, CGA1-Negative, 0.56 728.3CGA1-Strongly Positive,SOM-LUNG, TIMETOTRM1

Split 7 PRIMTUM-Colon, SURGMET, 0.38 422.4RESPONS1-Complete Response (CR)

Split 8 RESPONS1-Complete Response (CR), 0.07 1095.9RESPONS1-Progressive Disease (PD)

Table 5.9: Selected features and model performance based on the second
approach for the first block

Considering the average performance among different splits based on the data with
71 samples with respect to information in tables 5.9 and 5.10, we haveR2’s of 0.20
and −0.36 for the first and second block respectively. Although the performance
of the model for the second block did not dramatically increase, we see a very
significant improvement on the performance of the models in the first block. Thus
considering two new features with the cost of removing 9 samples actually helped
having a better model with respect to its performance.

One of the practical features of RENT is its ability to give us information about
every sample in terms of their contribution in the model to explain the variance
of the target.[16] In other words, using get-summary-objects() function
returns the average absolute error for each object. This attribute helped us moving
to the third approach which leads to even better model performance.
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Splits Selected feature(s) R2 RMSEP (error)
Split 1 CGA2-Normal, LACTDHDR-Not Done -0.33 954.1
Split 2 HIAA-Normal, CGA2-Normal -0.15 918.9
Split 3 CGA2-Normal, LACTDHDR-Not Done -0.23 811.8

Split 4 CGA2-Normal, LACTDHDR≥Normal ≤2UNL, -0.03 1191.6ALKPHSPH≥Normal ≤ 3 UNL
Split 5 CGA2-Normal -0.94 768.8
Split 6 CGA2-Normal, LACTDHDR-Not Done -0.01 1101.2

Split 7 CGA2-Normal, HMGLBN≤11 g/dL, -0.9 741.8LACTDHDR-≥Normal ≤ 2UNL

Split 8 CGA2-Normal, LACTDHDR≥ 2UNL, LACTDHDR-Not Done, -0.3 1297.6WHITEBLD≥ 10x109/L

Table 5.10: Selected features and model performance based on the second
approach for the second block

5.2.4 Selected features based on the third approach

This approach has three main steps:

• Removing the samples that cause too much noise and error in the model

• Transformation of the target vector since the transformed response yields
better results

• Removing some levels of the some of features, suggested by the experts

Determining the samples causing too much error

Using get-summary-objects() function [16], we can see which observa-
tions caused the highest average absolute error. Take table 5.11 into consideration.
The first column is the sample number. The second column is the average number
of times when the sample has been selected to be in the test split. For example,
among K = 700 generalised liner models in the RENT, observation number 21
had been selected 184 times on average among 8 splits. The last column tells us
the average absolute error of the corresponding sample. Note that the table is sorted
based on the last column, and contains the first 40 samples. Information for the rest
of the samples can be found in section 7.

After obtaining the results summarised in table 5.11, the very first thing which
comes to mind is which of the objects might be candidate to be disregarded in the
data. Considering the average and standard deviation of absolute error in the last
column for all of the observations, the first three samples of 21, 42, 43 are those
with highest absolute errors. In other words, using 3σ rule [31], standard deviation
of the mentioned samples are greater than X̄+3×σ (X is the absolute error here),
so they are samples with highest absolute error in our dataset.
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Obs # # test ABS error
21 184 5145.9
42 184 3987.0
43 195 3619.1
40 189 2733.1
47 202 2341.9
29 180 2221.7
62 188 1783.3
44 180 1637.0
41 184 1510.1
15 184 1490.0
1 184 1450.0
56 178 1420.7
64 193 1420.3
3 186 1376.7
20 184 1339.4
46 190 1298.1
53 177 1254.9
36 188 1191.1
8 187 1106.1
35 195 1098.8

Obs # # test ABS error
21 184 5145.9
65 187 1086.9
4 198 1066.9
7 181 1038.2
26 178 1026.2
57 178 952.0
28 178 919.8
48 181 914.2
18 189 913.2
50 188 879.1
12 181 871.2
33 182 870.0
49 182 868.3
69 169 866.4
17 176 804.9
37 185 790.0
39 193 786.7
38 183 784.9
58 186 783.7
59 181 782.7

Table 5.11: Summary object of 40 samples

Referring to chapter 4.4.3, RENT helped us identifying observations which deviate
from the other samples. The case which PCA and Hotelling’s T 2 statistic failed to
identify. Therefore, a solution for improving the previous model is to disregard
these three samples and have a new dataset with 68 samples. As a reminder, the
third approach is a complement approach of the second one therefore we run RENT
on the dataset including not only previous variables but also two features of RE-
SPONSE1, TIMETOTRM1 with sample size of 68 observations, three items of 21,
42, 43 are being removed from it.

In the next step we will consider transformation on the target to obtain the best
possible result with respect to performance of the models.

Transformation of the target vector

As has been already mentioned in chapter 2.4.2, sometimes uneven distribution of
target can lead to a model with too much error. In our study, the target vector,
defined as the number of days between the diagnosis and last observation of the
patient, has a distribution demonstrated in figure 5.4. As it can be seen in the plot,
the distribution is right skewed. As a reminder, skewness is defined as deviation
from symmetrical distribution of a random variable. 2 On average the model per-
formance on the first block is around 0.39 and the second block is −0.11 when
using untransformed target with the dataset which the noisy samples have been

2https://www.investopedia.com/terms/s/skewness.asp
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removed from it. Although the performance has experienced boosting when com-
paring to the second approach, working with transformed target even yields better
results which is explained in the coming subsections.

Figure 5.4: The target distribution

Having Box-Cox transformation (referring to chapter 2.4.2 for detailed explana-
tion) we come up with a new vector of transformed target. The distribution of this
vector is demonstrated in the figure 5.5 which is closer to a symmetric distribution.
Now the new transformed target is ready to be used in the next steps of feature
selection and main multi block modelling implementation.

Figure 5.5: Distribution of transformed target

Removing some features according to experts’ suggestions

After obtaining the results, experts believed that some of the levels of some features
can be excluded from the data. Therefore by ignoring those we eventually come
up with the results, summarised in table 5.12 and 5.13 for the first and second
blocks respectively. On average the model performance on the first block is around
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0.34 and the second block is 0.21. For two of the splits of the first block, the model
performance based onR2 (detailed explanation about this metric is given in chapter
2.3.1) even reaches to 0.68 which is a very good improvement.

Splits Selected feature(s) R2 RMSEP (error)

Split 1 SURGMET, CGA1-Negative, RESPONS1-Complete Response (CR), 0.34 0.55RESPONS1-Progressive Disease (PD), TIMETOTRM1

Split 2
PERFSTAT-WHO 0, RESPONS1-Complete Response (CR),

0.30 0.67RESPONS1-Progressive Disease (PD), TIMETOTRM1,
CGA1-Negative

Split 3 RESPONS1-Complete Response (CR), 0.22 0.58RESPONS1-Progressive Disease (PD), TIMETOTRM1

Split 4 SMOKHAB-Smoker, RESPONS1-Complete Response (CR), 0.41 0.68SURGMET, RESPONS1-Complete Response (CR)

Split 5 CGA1-Negative, RESPONS1-Complete Response (CR), 0.67 0.42RESPONS1-Progressive Disease (PD), TIMETOTRM1

Split 6
SURGMET, PERFSTAT-WHO 0,

0.03 0.86RESPONS1-Complete Response (CR),
RESPONS1-Progressive Disease (PD)

Split 7 RESPONS1-Complete Response (CR), 0.48 0.53RESPONS1-Progressive Disease (PD), TIMETOTRM1

Split 8
SMOKHAB-Smoker, PERFSTAT-WHO 0,

0.27 0.62RESPONS1-Complete Response (CR),
RESPONS1-Progressive Disease (PD), TIMETOTRM1

Table 5.12: Selected features and model performance based on the third
approach for the first block

Validation study of the models yielded from RENT in the third approach

Referring to section 4.3.2, figures 5.14 and 5.15 demonstrate the validation study
of the models yielded by RENT for the first and second block, respectively. Noted
that for every 8 splits we can have a model and the model can be validated.

As the figures show, for most of the cases, RENT feature selection (red line is the
prediction score of RENT models) is doing a better job than models of random
selection of features (blue curves) and permuted test labels (green curves). (so-
called VS1 and VS2 respectively). Thus, we rely on the results of the RENT feature
selection and will use all the features selected at least one time. Table 5.16 shows
which features eventually would be used in our final multi block model.
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Splits Selected feature(s) R2 RMSEP (error)

Split 1 CGA2-Normal, HMGLBN≤11 g/dL -0.04 0.69LACTDHDR≥ 2UNL

Split 2 CGA2-Normal, LACTDHDR≥ 2UNL, 0.39 0.63ALKPHSPH-Normal

Split 3 CGA2-Normal, HMGLBN≤11 g/dL 0.37 0.52LACTDHDR≥ 2UNL

Split 4 CGA2-Normal, LACTDHDR≥ 2UNL, 0.37 0.71ALKPHSPH-Normal

Split 5 CGA2-Normal, LACTDHDR≥ 2UNL, 0.18 0.66ALKPHSPH-Normal

Split 6 CGA2≤Normal ≤ 2UNL, CGA2-Normal, 0.02 0.86LACTDHDR≥ 2UNL

Split 7 CGA2-Normal, LACTDHDR≥ 2UNL, 0.20 0.66PLATELTS≥400x10x9/L

Split 8 CGA2-Normal, HMGLBN≤11 g/dL, ALKPHSPH-Normal 0.18 0.66LACTDHDR≥ 2UNL, ALKPHSPH≥3 UNL

Table 5.13: Selected features and model performance based on the third
approach for the second block

Table 5.14: Validation study of RENT models for the first block
Validation study of RENT models for the first block

Table 5.15: Validation study of RENT models for the second block
Validation study of RENT models for the second block
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Selected features in the first block
SURGMET
SMOKHAB-Smoker
CGA1-Negative
PERFSTAT-WHO 0
RESPONS1-Complete Response (CR)
RESPONS1-Progressive Disease (PD)
TIMETOTRM1

Selected features in the second block
Normal≤CGA2 ≤ 2UNL
CGA2-Normal
HMGLBN≤11 g/dL
LACTDHDR≥ 2UNL
PLATELTS≥400x10x9/L
ALKPHSPH≥3 UNL
ALKPHSPH-Normal

Table 5.16: Final selected features

5.3 Multi block analysis

After preprocessing the data, having features ready to be modelled on the target,
it is the time to use response oriented sequential to finally model the target to the
selected features in every block. It should be reminded that the transformed Y is
also used in this section. In case of needing any prediction from the model we can
reversely do the computations on the predicted values in order to change them to
the original values.

5.3.1 Features and the target

The model we are willing to obtain is visualised in figure 5.6. As it is showing,
we have 1 target vector modelling on 2 blocks of features, including 7 variables in
each.

Figure 5.6: Our multi block problem demonstration

Using Response Oriented Sequential Alternation (ROSA) multi block method, we
finally come up with the results explained in the subsequent sections.

Using 2 components, around 74% of target variance is being explained in cross-
validation sets. Therefore the model has dimension of 68 × 1 × 2 representing
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number of samples, responses and components respectively. The first component
explains 67% and the second one explains around 7% of the target variance. It
should also be noted that, most of the variance in the first and second component is
from the first and second block, respectively. (Figure 5.7 shows this case). Based
on the figure 5.7 we can also conclude that most of the information of the target
being explained by the blocks is hidden in the first one. Regarding model error,
RMSEP is around 0.45 and basically the first component summarised all the in-
formation from the first block and likewise for the second component. As a note,
this RMSEP is with respect to the Box-Cox transformed target, so it cannot be
interpreted in the same scale of untransformed target as number of days.

Figure 5.7: Block-wise explained variance

Figure 5.8 shows the direction of the features impacting the target. Interesting fact
about these results is that two features of CAG2 and ALKPHSPH with their normal
level have positive relationship with the target. This means that if the patients
have normal amount of chromogranin and alkaline phosphatase (more detailed
explanation about the features in chapter 3), they can live longer. Moreover to
this, considering the RESPONSE1 variable as the indicator of treatment response,
those who still had the progressive disease after treatment live shorter (negative
relationship with the target) and those who responded completely after treatment
(RESPONSE1-Complete-Response) have a strong positive relationship with target
and means could live longer. Feature SURGMET also has a strong positive re-
lationship and it shows if the patient could have a surgery this can help them to
live longer. PERFSTAT was the variable indicating the performance status of the
patients. Apparently based on our results not only this variable is among signif-
icant ones but also based on the information given in tables 5.2 and 5.8, patients
who could carry out all normal activities without restriction could live longer and
WHO-0 level of the PERFSTAT feature has strong positive relationship with our
target. Abnormal levels of CAG2, HMGLBN, PLATELTS and LACTDHDR lead to
shorter living days (due to negative relationship with the target).

Two features of SMOKHAB-Smoker and TIMETOTRM1 have positive significant
relationship with the target. The first one obviously says that patients who smoke
regularly have the chance of living longer. The second one declares the patients

48



Figure 5.8: Coefficients’ direction in ROSA model

who received the first treatment long after the diagnosis also can live more days.
These two results seem a bit weird at first but considering statistical paradoxes in
data science we can explain the cause. 3 Existence of a mediation variable (the
third variable which interferes in the middle 4) might be the cause. More specif-
ically, the guess is that for example smoking patients have a higher chance to be
hospitalised sooner. Those who are hospitalised and are receiving treatment ear-
lier may live longer days . Figure 5.9 shows it better. (It should be note that this
assumption is just a guess and has the potential to be studied). The second fea-
ture which has an unexpected relationship in terms of its direction with the target
is TIMETOTRM1. The first thought is that the patients who received earlier treat-
ments after the diagnosis should live longer. In other words the lower number of
days between diagnosis and first treatment, the higher days they live. However
our model says something different and shows their relationship as a positive one.
(Higher number of days between first treatment and diagnosis leads to higher num-
ber of living days). In explanation of this phenomenon, the assumption is that the
patients who got the first treatment earlier might have a severe condition after their
first diagnosis. So basically earlier receiving of the first treatment might be due to
the severity of their conditions and these patients mainly do not have high chance
to live longer. The solution which comes to mind is that, having a classification
initially between the patients based on the severity of their diagnosis and then try-
ing to model each class separately can help having better results. However as it
had been already discussed these are assumptions and have so much potential to be
studied and scrutinised.

Features’ importances

Based on what we had so far, we can order the features based on their strength
of impact on the target. In other words using regression coefficients which are

3https://www.kdnuggets.com/2021/04/top-3-statistical-paradoxes-data-science.
html

4https://en.wikipedia.org/wiki/Mediation_(statistics)
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Figure 5.9: Mediation variable

found at the end (sorting them by their absolute value) relating matrix of features
X to Y (vector of target) using our 2 components, we will not only find the most
important features but also can report the direction of relationship features have
with the target. ROSA summarised the mentioned information in a table like table
5.17. Not surprisingly, most of the very significant features based on the regression
coefficients come from the first block. The first 6 features in the table are from
the first block. We actually expect that, since most of the target variance has been
explained by the components extracted from the first block (figure 5.7). Moreover
to this, it seems the variable RESPONSE1 is a real important feature, by which
two levels of it had been selected by RENT and ROSA also identified these two
levels as the first two significant features. As a reminder this feature shows how
the patients respond to the treatment. If the treatment leads to ongoing disease,
patients will live shorter life however if the treatment has a complete response on
the patients, it will significantly help them living longer.

Features Regression coefficients Direction
RESPONS1-Progressive.Disease 0, 27 Negative
RESPONS1-Complete.Response 0, 23 Positive
PERFSTAT-WHO.0 0.20 Positive
TIMETOTRM1 0.19 Positive
CGA1-Negative 0.14 Positive
LACTDHDR>2UNL 0.11 Negative
SMOKHAB-Smoker 0.09 Positive
CGA2-Normal 0.09 Positive
HMGLBN<11 g/dL 0.07 Negative
ALKPHSPH-Normal 0.05 Positive
Normal<CAG2<2UNL 0.05 Negative
PLATELTS>400x10x9/L 0.02 Negative

Table 5.17: Regression coefficients
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5.3.2 Loadings and scores in multi block analysis

One of the interesting aspects of multi block analysis and specially ROSA is that
using loadings and scores plot we can study the patients and the features deeper
down. Take the figure 5.10 into consideration. Loadings (more detailed explana-
tion in section 2.1) could help us having a categorisation among our significant
features. Based on figure 5.10 around 16% of the variance of the dataset is being
explained by two components. These two components also tell us that we can put
five features of ALKPHSPH>3 UNL, HMGLBN<11 g/dL, LACTDHDR>2UNL,
PLATELTS> 400x10x9/L and RESPONS1- Progressive Disease in the one cate-
gory. Two features of RESPONS1-Complete.Response and TIMETOTRM1 in an-
other category and the rest in the third category. In simple words, this plot is
doing a clustering of features based on positive and negative correlation with the
response.

The above result is actually in good harmony with what we have already obtained
in figure 5.8. All the features with either red or orange colour (having negative
relationship with the target) have been categorised in the first class. Two features
of RESPONS1-Complete.Response and TIMETOTRM1 have strong positive rela-
tionship with the target and here they are also in the same category. The rest of the
features are also in positive relationship with our response and are being classified
together. Another interesting fact about this plot is that two features of ALKPHSPH
and CGA2 with their normal levels have loadings overlapping each other.

Figure 5.10: Loadings plot
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Another useful plot is the loadings and scores plot. Figure 5.11 shows it. Based
on this plot we can see samples with number of 66, 46, 33 have normal level of
ALKPHSPH and CGA2. Sample number 45 represents the patient with perfor-
mance status of 0. (Referring to table 5.2 for information about the status).

Figure 5.11: Loadings plot
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Chapter 6

Discussion

In this chapter we will suggest some more potentials of this research in order to
obtain better and more accurate results.

6.1 Dataset

6.1.1 Features and samples

The dataset used in this study included around 90 features. However due to high
number of missing items, we had to exclude many variables. What can be sug-
gested at the first place is to complete the dataset, filling the missing values; so that
it is feasible to include more features. The new features might either be identified
as important ones or change the situation for other features, in a way to be selected
as significant ones or the other way around.

In addition to the missings’ problem, we can also see if the first block can be
categorised into two blocks. In the last meeting with the experts, they suggest that
the first block has this potential to be break into more blocks. However due to time
shortage, we did not make this change. Even-though it can lead to an improvement
in terms of block creation and eventually model performance.

6.1.2 The target

What we experienced in this study was that changing the target from binary to con-
tinuous made a significant contribution in model performance. Therefore having
several targets summarised in a block of response instead of one dimensional target
vector , might also help having better model. Besides, nonetheless Box-Cox trans-
formation improved our model, there are plenty of other transformation techniques
which might help yielding even better results.
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6.2 Methods

6.2.1 Detection of outliers

This study used three methods of PCA, Hotelling’s T 2 statistic and RENT fea-
ture selection, to find the outliers. Although RENT helped identifying them, we
can make use of other available methods such as fuzzy logic-based outlier detec-
tion [32] or cluster analysis-based outlier detection [33] for a better detection of
them.

6.2.2 Feature selection

In this research we mainly used Repeated Elastic Net Technique (RENT) to select
important features. As been discussed in section 4.3.1, this method has three pa-
rameters of τ1, τ2 and τ3. Due to time shortage we used default values of τ1 = 0.9,
τ2 = 0.9, τ3 = 0.975. However these parameters can be tuned and the best com-
bination of them can be applied to obtain a better model. Noted that Sickit-learn
[9] in Python has a pre-defined function of GridSearchCV() to search over
specified parameter values for any estimator.

In addition to tuning the parameters of RENT, there are also other techniques of
feature selection that can be applied. Having results of other methods we can
also evaluate performance of RENT feature selection to see if this is the optimal
technique for our problem to select the most important features.

6.2.3 Multi block analysis

ROSA [8] was the multi block method used in this study. However as is mentioned
in chapter 2.2, there are many other multi block techniques such as SO-PLS [7] or
MB-PLS [6]. It can also examine if other multi block techniques yield the same
result as ROSA did or not. Different methods can also be compared with each other
to see which one leads to a better model in terms of its performance.
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Chapter 7

Conclusions

This research proved the importance of data preprocessing. Using the real world
data, we conclude that more than 70% of work load is about preprocessing. Hav-
ing regular contact with the experts of the field was also a very important part of
preprocessing step since they always had some ideas about the way our dataset was
built.

Moreover to that, we observed that in a wide dataset where the number of features
exceeds the number of samples, feature selection is a vital step that must be taken.
If the feature selection part was excluded, we would not be able to obtain a model
with a relatively acceptable performance.

The real world data most likely do not include many samples. The importance
of cross-validation was also observed in this research. Cross-validation helped us
making the most use of the available samples.

Target is a very important variable, therefore it is necessary to define a variable
which not only measures our target but also does not have imbalanced classes.
Symmetric distribution of response is also vital. Therefore we should always be
aware of having some proper transformations to have a relatively even distribution
of the target. This issue was also something that the current research proved.

Last but not least is the multi block importance. Expressly, this research proved
that problems including blocks, should be treated as multi block ones. If we did
not use multi block method to analyse the data in this study, we could not achieve
desirable results. As is been mentioned in chapter 2.2, in multi block datasets the
features are not defined as single variables and instead, the data includes blocks
of multiple relevant features. Multi block methods such as ROSA, takes this issue
into consideration and make the model. Therefore the importance of using multi
block methods has been proved by this research, as well.

55



56



Bibliography

[1] O. Celik, “A research on machine learning methods and its applications,” 09
2018.

[2] T. Ayodele, Machine Learning Overview, 02 2010.

[3] M. Iqbal and Z. Yan, “Supervised machine learning approaches: A survey,”
International Journal of Soft Computing, vol. 5, pp. 946–952, 04 2015.

[4] D. Pirouz, “An overview of partial least squares,” SSRN Electronic Journal,
10 2006.

[5] K. Dunn, Process Improvement Using Data, 2021.

[6] K. H. L. Age K. Smilde, Tormod Næs, Multi block Data Fusion in Statis-
tics and Machine Learning - Applications in the Natural and Life Sciences.
Wiley, 2021.

[7] O. Tomic, J. Niimi, T. Naes, D. W. Jeffery, S. E. Bastian, and P. K. Boss,
“Application of sequential and orthogonalised-partial least squares (so-pls)
regression to predict sensory properties of cabernet sauvignon wines from
grape chemical composition,” ELSEVIER, Food Chemistry, vol. 8, pp. 195–
202, 2018.

[8] K. H. Liland, T. Naes, and U. G. Indahl, “Rosa - a fast extension of par-
tial least squares regression for multiblock data analysis,” WILEY, Journal of
Chemometrics, vol. 12, pp. 1–12, 2016.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[10] P. S. L. Breiman, “Submodel selection and evaluation in regression: The x-
random case,” 1992.

i



[11] R. R. R. Bharat Rao, G. Fung, “On the dangers of cross-validation. an exper-
imental evaluation,” 2008.

[12] J. F. T. Hastie, R. Tibshirani, The Elements of Statistical Learning. Springer,
2009.

[13] T. H. R. T. G. James, D. Witten, An Introduction to Statistical Learning.
Springer, 2013.

[14] V. M. Sebastian Raschka, Python Machine Learning, 2017.

[15] J. Osborne, “Improving your data transformations: Applying box-cox trans-
formations as a best practice,” Pract Assess Res Eval, vol. 15, pp. 1–9, 01
2010.

[16] K. H. L. U. G. I. C. M. F. O. T. Anna Jenul, Stefan Schrunner, “Rent - repeated
elastic net technique for feature selection,” vol. 16, 2020.

[17] A. C. Alice Zheng, Feature Engineering for Machine Learning. O’REILLY,
2018.

[18] C. P. Kedar Potdar, Taher Pardawala, “A comparative study of categorical
variable encoding techniques for neural network classifiers,” nternational
Journal of Computer Applications, vol. 175, no. 4, pp. 7–10, 2017.

[19] D. B. R. Roderick J A Little, Statistical Analysis with Missing Data. John
Wiley, 1986.

[20] K. G.-O. Stef van Buuren, “Multivariate imputation by chained equations in
r,” Journal of Statistical Software, vol. 45, pp. 1–67, 2011.

[21] M. C. M. Gustavo E. A. P. A. Batista, “A study of k-nearest neighbour as an
imputation method,” 2002.

[22] J. Li, K. Cheng, S. Wang, F. Morstatter, R. Trevino, J. Tang, and H. Liu,
“Feature selection: A data perspective,” ACM Computing Surveys, vol. 50, 01
2016.

[23] M. Müller, “Generalized linear models,” 02 2004.

[24] B. N. Shima Kashef, Hossein Nezamabadi-pour, “Multilabel feature selec-
tion: A comprehensive review and guiding experiments,” 2018.

[25] D. Chicco and G. Jurman, “The advantages of the matthews correlation coef-
ficient (mcc) over f1 score and accuracy in binary classification evaluation,”
BMC Genomics, vol. 21, 01 2020.

[26] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley, 1994.

[27] C. Pascoal, M. R. Oliveira, A. Pacheco, and R. Valadas, Detection of Outliers
Using Robust Principal Component Analysis: A Simulation Study, 12 2010,
vol. 77, pp. 499–507.

ii



[28] K. Jajuga and M. Walesiak, Standardisation of Data Set under Different Mea-
surement Scales, 01 2000, pp. 105–112.

[29] K. Alaluusua, “Outlier detection using robust pca methods,” Ph.D. disserta-
tion, 08 2018.

[30] P. F. Kurt Varmuza, Introduction to Multivariate Statistical Analysis in
Chemometrics, 2009.

[31] R. Lehmann, “3sigma-rule for outlier detection from the viewpoint of geode-
tic adjustment,” Journal of Surveying Engineering, vol. 139, pp. 157–165, 11
2013.

[32] S. Cateni, V. Colla, and M. Vannucci, “A fuzzy logic-based method for out-
liers detection,” 01 2007, pp. 605–610.

[33] Sheng-yizJiang and Q.-b. An, “Clustering-based outlier detection method,”
vol. 2, 11 2008, pp. 429 – 433.

iii



iv



Appendix

Appendix A: Summary object of the rest of the samples
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Obs # # test ABS error
23 183 781.8
27 186 780.7
25 182 777.0
5 187 773.8
16 177 769.4
22 188 765.6
60 183 764.0
34 188 762.7
55 178 754.5
66 190 747.4
31 176 745.9
54 179 743.9
13 174 715.4
70 199 714.4
68 186 712.9
11 180 708.6

Obs # # test ABS error
14 175 701.8
9 189 675.9
52 184 665.1
45 178 645.7
0 177 639.8
30 190 631.9
67 179 588.5
51 194 582.2
19 176 578.4
61 182 564.7
63 180 522.1
2 186 476.5
24 182 452.9
32 183 434.7
10 180 427.6
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