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Simple Summary: Pancreatic cancer has a poor prognosis, which is largely due to resistance to
treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the
molecular level. Morphological heterogeneity is common but has not been investigated, despite the
fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether
morphological heterogeneity reflects structural and functional diversity in key cancer biological
processes. Using archival tissues from resected pancreatic cancer, we selected four common and
distinct morphological phenotypes and demonstrated that these differed significantly for a panel
of 26 structural and functional features of the cancer-cell and stromal compartments. The strong
link between these features and morphological phenotypes allowed prediction of the latter based
on the results for the panel of features. The findings of this study indicate that morphological
heterogeneity reflects biological diversity and that its assessment may potentially provide clinically
relevant information.

Abstract: Inter- and intratumor heterogeneity is an important cause of treatment failure. In human
pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic
and transcriptional level. Morphological heterogeneity, though prominent and potentially easily
assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating
that morphological heterogeneity reflects structural and functional divergence. From the wide
morphological spectrum of conventional PC, four common and distinctive patterns were investigated
in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC
were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and
migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount,
composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen,
collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-
stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at
least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and
allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the
cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As
such, histopathology has the potential to inform on the operationality of key biological processes in
individual tumors.
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1. Introduction

Ductal adenocarcinoma of the pancreas, often referred to as pancreatic cancer (PC),
has a dismal prognosis with an overall five-year survival of less than 7% [1,2]. In addition
to late diagnosis, limited efficacy of current treatment is the main reason for the poor
prognosis. Precision medicine holds the promise of improved outcome through treatment
that is tailored to intrinsic properties of the individual tumor. This approach requires a
classification system with well-defined tumor subtypes of a cancer entity, as it is established,
for example, for breast cancer. Several classification systems have been proposed for PC,
which are based on gene expression profiling [3–6]. However, the latter is not without
its practical obstacles, including the need for RNA of sufficient quantity and quality. In
addition, there is the unresolved problem of intratumor heterogeneity.

In contrast to active research regarding a molecular taxonomy for PC, morphological
variation in PC has received little if any attention, except for a few rare subtypes of PC with
unusual morphological features—for example, medullary and colloid carcinomas which
are associated with microsatellite instability [7,8]. While these subtypes account for less
than 10% of PC, the vast majority of tumors constitute one large group that is denoted as
PC not otherwise specified (NOS). In this group, morphological variation is common but
considered irrelevant and largely left without further characterization [9]. Only recently, a
few attempts have been made to correlate genotype or transcriptional profile with a small
number of broad histological categories that encompass a wide range of morphologies
of PC [10]. Despite these initial investigations, the relationship between morphological
heterogeneity and biological diversity in PC is far from understood. In this study, we
aimed at providing proof of concept that differences in morphology are associated with
structural and functional divergence in biological processes deemed to be relevant in
terms of PC biology and/or clinical outcome. Four common but not previously described
morphological patterns of PC were selected from the wide spectrum of morphologies
observed in PC NOS [11]. Human PC tissues containing such patterns were investigated
with (immuno-)histochemistry and morphometry in order to characterize them for a panel
of 26 features that are known to play a role in key aspects of PC biology, including cancer
cell proliferation (Ki67) and migration (collagen fiber alignment, matrix metalloproteinase
14), cancer stem cells (CD44, CD133, aldehyde dehydrogenase 1), amount, composition
and spatial arrangement of the extracellular matrix (epithelial proximity, total collagen,
collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, α-smooth
muscle actin), and cancer-stroma interactions (integrins α2, α5, β1, caveolin-1). All of the
non-structural features analyzed in this study are part of recently compiled comprehensive
repertoires of compartment-specific genes in PC [3,12]. The biological roles and clinical
relevance of the selected features are summarized in Table 1.
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Table 1. Experimental observations and clinical relevance of the listed features in pancreatic cancer.

Feature Experimental Observations Clinical Relevance

ALDH1

• Mediates resistance against
chemo(radio-)therapy [13–15]

• Enrichment of ALDH1+ PCCs following
gemcitabine treatment [16]

• Correlates with poor survival [15,17]
• Low expression correlates with poor survival [18]

αSMA • Correlation with aligned collagen [19] • Correlates with survival [20,21]

CAV1

• Modulates response to substrate stiffness and
stromal remodeling [22,23]

• Promotes PCC proliferation, invasion,
treatment resistance [24,25]

• High expression in PCCs correlates with larger
tumor size, higher differentiation grade, worse
outcome [25,26]

• Loss of stromal expression correlates with stage [27]

CD44

• Confers CSC phenotype
• Interaction with HA promotes PCC migration,

MMP14-upregulation [28], resistance to
gemcitabine [29,30], metastatic potential [31,32]

• Correlates with early recurrence, poor survival,
advanced stage, lower grade [30,33–38]; no
correlation with survival, advanced stage,
differentiation grade [39,40]

• Increase of CD44 + PCCs after gemcitabine
treatment [41,42]

CD133
• Induces stemness [43], EMT [44–46], altered

metabolic profile and chemoresistance [44,47]

• Correlates with metastasis and survival [40,48,49]
• No correlation with survival, stage, differentiation

grade [39,40,50]
• Numerous CD133+ PCCs after gemcitabine

treatment correlates with poor outcome [42,51]

Col I

• Promotes proliferation, migration and
metastasis [52–59]

• Reduces sensitivity to gemcitabine and
5-FU [54,58]

• Alignment enhances migration, invasive
velocity and directionality [60–62]

• High content correlates with poor survival [63],
with longer survival [64]

• High alignment correlates with poorer survival
independent of traditional prognostic
determinants [65]

Col III • Promotes proliferation and migration [66] • Pretreatment serum levels correlate with
survival [67,68]

FN • Affects resistance to chemotherapy [69] • Correlates with higher stage, poorer survival [70,71]
• No correlation with survival [72,73]

HA

• Increases interstitial pressure and influences
drug delivery [60,74–77]

• Promotes PCC proliferation, motility and
metastasis via binding to CD44 [78–81]

• Correlates with rapid tumor progression [82] and
survival [63,83]; no correlation with survival [33,82]

• Treatment with recombinant hyaluronidase and
gemcitabine prolongs survival in patients with
HA-rich tumors [84]

ITGα2β1

• Mediates collagen I-induced proliferation
and migration of PCCs [59,85]

• ITGβ1-blocking inhibits invasiveness of
PCCs [62]

• Overexpression correlates with poorer overall and
disease-free survival, higher grade and stage [86]
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Table 1. Cont.

Feature Experimental Observations Clinical Relevance

ITGα5β1
• Mediates PCC migration along fibronectin and

increased PCC survival [87,88]
• Overexpression of ITGα5 correlates with poorer

overall survival [21]

MMP14

• Enables PCC migration and release of growth
factors, incl. TGFβ [89,90]

• Sheds cell-surface biomolecules, incl. CD44 [91]
• Upregulation sensitizes to gemcitabine [92,93]

• Enhanced expression in metastasis compared to
primary PC [94,95]

ALDH1, aldehyde dehydrogenase 1; αSMA, α-smooth muscle actin; CAV1, caveolin-1; Col, collagen; CSC, cancer stem cell; EMT, epithelial-
mesenchymal transition; FN, fibronectin; HA, hyaluronan; ITG, integrin; MMP14, matrix metalloproteinase 14; PCC, pancreatic cancer cell;
TGFβ, transforming growth factor β; 5FU, fluorouracil.

2. Results
2.1. Tumor Patterns

From the wide range of morphologies that can be encountered in PC NOS, four
commonly seen patterns were selected and defined by distinctive features that are readily
assessable on hematoxylin and eosin (H&E) staining in both the cancer-cell and stromal
compartments, as shown in Figure 1 and illustrated in detail in Figure S1. Reflecting the
morphology of their stroma, the patterns were coined periglandular (PP), tendon-like (TP),
fascicular (FP), and chickenwire (CP). These patterns are not described previously, but the
cancer cell-component of TP is reminiscent of the cystic papillary variant mentioned in the
World Health Organisation (WHO) classification [7]. The four patterns are characterized
by glandular tumor growth and are therefore well differentiated [96].

2.2. Study Series

Of the 70 consecutive, treatment-naïve cases that were reviewed, 47 (67%) contained
a pattern of interest, either exclusively or in combination with other morphologies that
are not investigated in this study. Following exclusion of eight cases because of necrosis
or marked inflammation which alter tumor morphology, 39 cases were included in the
study series, of which 33 contained one of the four patterns that were analyzed in this
study and six cases contained two or three different patterns (Figure 2). In each case of the
series, at least five and at most eight regions of interest (ROIs) representative of a particular
pattern were analyzed for the panel of features, except in two cases with PP, in which only
three ROIs were available for analysis, and in one case of FP with only four ROIs. Overall,
investigation of the panel of 26 features in a total number of 233 ROIs (PP: 68; TP: 60; FP:
50; CP: 55) engendered 816 sections with the various stains. Clinicopathological features of
the study series are shown in Table S1.

2.3. Cancer-Cell and Stromal Features

Significant differences between at least two of the four patterns were observed for
all features. The main findings are described below and illustrated in Figure 3. Network
visualization is shown in Figure 4. The results of the statistical analysis and all individual
data are detailed in Table 2 and Table S2, respectively.
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Figure 1. Four patterns of pancreatic cancer with distinctive morphological features of the cancer-cell and stromal com-
partments. (a) The periglandular pattern (PP) is characterized by medium-sized simple glands surrounded by a moderate
amount of stroma that encircles the tumor glands. (b) In the tendon-like pattern (TP), the large cystic-papillary tumor
glands are embedded in a vast and dense fibrous stroma. (c) The fascicular pattern (FP) typically contains medium-sized
tumor glands that are often angulated and lie in a highly cellular, whorled stroma. (d) In the chickenwire pattern (CP),
tumor glands are small and lie densely packed with little intervening stroma.
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Figure 3. Divergence of stromal and cancer cell-related features in the four pancreatic cancer pat-
terns. Representative microphotographs of hematoxylin and eosin (H&E) staining and (immuno-
)histochemistry for selected features (200x; scale bar = 100 µm) are shown. ALDH1, aldehyde
dehydrogenase 1; CAV1, caveolin-1; Col I, collagen I; HA, hyaluronan; H&E, hematoxylin and eosin;
FN, fibronectin; ITGα5, integrinα5; MMP14, matrix metalloproteinase 14.
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Figure 4. Complex network visualization of cancer-cell-related and stromal features in the four tumor
patterns. For a particular feature, paired Gephi-generated networks visualize the four morphological
patterns (left) and the results for that feature (right). Every dot in the network represents a single
ROI, and the length of the connecting lines represents the similarity between the connected nodes
(n = 233). Absence of connecting lines between dots (e.g., in Gephi for epithelial proximity) indicates
the lack of similarity. For each feature, the p-value reflecting the difference between the patterns is
stated in Table 2.
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Table 2. Statistical results for the panel of features compared between the tumor patterns. Low p-values (<0.05) indicate
significant differences between the feature data corresponding to the different morphological patterns.

Feature Compart-
ment

Kruskal-Wallis
Test

Mann–Whitney U Test
PP vs. TP PP vs. FP PP vs. CP TP vs. FP TP vs. CP FP vs. CP

ALDH1 C <0.001 <0.001 NS NS <0.001 <0.001 NS
αSMA S <0.001 <0.001 0.01 <0.001 <0.001 0.02 <0.001
CAV1 C <0.001 NS NS <0.001 NS <0.001 <0.001
CAV1 S <0.001 <0.001 0.006 <0.001 NS <0.001 <0.001
CD133 C <0.001 <0.001 NS <0.001 <0.001 NS <0.001
CD44 C 0.004 0.003 0.007 0.001 NS NS NS

Col align S 0.001 0.001 0.011 0.001 <0.001 <0.001 NS
Col I S <0.001 0.033 <0.001 <0.001 <0.001 <0.001 <0.001

Col I pattern S <0.001 <0.001 <0.001 <0.001 NS <0.001 <0.001
Col III S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Col III pattern S <0.001 <0.001 <0.001 <0.001 NS <0.001 <0.001
Ep prox prox S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FN S <0.001 <0.001 0.02 <0.001 <0.001 <0.001 <0.001
FN pattern S <0.001 <0.001 <0.001 0.009 <0.001 <0.001 <0.001

HA S <0.001 <0.001 0.002 <0.001 <0.001 NS <0.001
ITGα2 C <0.001 <0.001 0.001 <0.001 NS NS NS
ITGα2 S <0.001 0.002 NS <0.001 0.022 NS 0.002
ITGα5 S <0.001 <0.001 NS <0.001 <0.001 <0.001 <0.001

ITGα5 pattern S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ITGβ1 C <0.001 <0.001 <0.001 <0.001 NS <0.001 <0.001
ITGβ1 S <0.001 <0.001 NS <0.001 <0.001 NS <0.001
Ki67 C <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

MMP14 C <0.001 0.001 <0.001 0.037 <0.001 <0.001 <0.001
MMP14 S <0.001 <0.001 <0.001 NS <0.001 <0.001 <0.001

Stromal cell density S <0.001 <0.001 0.008 <0.001 <0.001 <0.001 <0.001
Total collagen S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 NS

ALDH1, aldehyde dehydrogenase 1; αSMA, α-smooth muscle actin; C, Cancer; CAV1, caveolin-1; Col, collagen; Col align, collagen
alignment; CP, chicken-wire pattern; Ep prox, epithelial proximity; FN, fibronectin; FP, fascicular pattern; HA, hyaluronan; ITG, integrin;
MMP14, matrix metalloproteinase 14; NS, not significant (p ≥ 0.05); PP, periglandular pattern; S, stroma; TP, tendon-like pattern.

2.3.1. Cancer-Cell Features

Proliferative activity, assessed with the Ki67 index, in the entire series was close to
identical with that observed by others (mean: 27%) [97,98]. However, it differed signif-
icantly between all four patterns and was found to be highest in CP (42%), followed in
descending order by FP (31%), PP (23%), and TP (13%) (p < 0.001).

Three cancer stem cell (CSC) markers were studied. As reported by others, cytoplasmic
immunostaining for CD44 was found in the majority of cases (83%) [30,34,35,39,40,51], but
expression was significantly less frequent and at a lower level in PP than in the other patterns
(p ≤ 0.007). Similarly, expression of CD133, typically limited to the apical cell membrane,
was in line with previous reports for the overall series [39,40,48,50,51] but differed between
the patterns. It was significantly higher in PP and FP (36% and 46% high, respectively)
than in TP and CP (93% and 100% low or negative, respectively) (p < 0.001) Cytoplasmic
ALDH1-expression was significantly higher in TP (87% high) than in the three other patterns
(0–2% high) (p < 0.001) [13,17,18,51,99] (Figures 3 and 4). There was no co-variation between
CD44, CD133 and ALDH1, either overall or for each of the patterns individually.

Expression of integrin (ITG) α2 and β1, which together form the cellular receptor
for collagen I, was significantly lower in PP than in the other patterns (p < 0.001). Matrix
metalloproteinase 14 (MMP14), which through its ECM-degrading effect promotes cancer
cell migration [58], was expressed at significantly different levels by cancer cells in the four
patterns: highest in FP (58%), followed by CP (20%) and PP (13%), and TP (2%) (p ≤ 0.037),
respectively (Figures 3 and 4). Caveolin-1 (CAV1) can be expressed by both cancer cells and
cancer-associated fibroblasts (CAFs) and has multifarious effects, including the promotion
of proliferation, invasion and chemoresistance [24,25]. CAV1-expression was significantly
higher in cancer cells of CP (82%) than in the other patterns (0%; p < 0.001) (Figures 3 and 4).

2.3.2. Stromal Features

For the purpose of this study, the stroma that lies immediately adjacent to the cancer
cells (that is, within a 200x high-power field) was investigated rather than the bulk stroma,
as it is the former that plays a pivotal role in the cancer cell biology [19,100,101]. Among
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stromal features, epithelial proximity, a proxy for the dispersedness of the cancer glands and
the amount of intervening stroma, differed significantly between all patterns (p < 0.001),
being highest in TP, followed in descending order by FP, PP and CP. The total amount
of collagen was highest in TP and moderate in PP (p < 0.001), but similarly low in FP
and CP. Collagen I deposition in PP and CP was peritumoral—that is, the fibers formed a
sheath that encircled the tumor glands, while it was diffuse in TP and FP (Figures 3 and 4).
Results for collagen III were similar, though immunostaining levels were overall lower
than for collagen I. Collagen fiber alignment was highest in TP (p ≤ 0.001) and moderate in
PP (p ≤ 0.011) but low in FP and CP. Fibronectin content was highest in FP, moderate in
PP, low in CP and absent in almost all TP (p < 0.001). Fibronectin deposition was mainly
peritumoral in PP (75%) and diffuse in FP (100%), where it was organized in the sweeping
bundles that characterize the whorled stromal appearance in this pattern (Figures 3 and 4).

Results for the entire study series regarding hyaluronan were highly similar with
those reported by others (high-level expression in 55% [33,63,82,102]). However, levels
differed significantly between patterns: they were highest in TP and CP (p < 0.001), and
lowest in PP (p ≤ 0.002) (Figures 3 and 4). In all patterns, the vast majority of stromal
cells with fibroblast morphology were αSMA-positive, confirming their nature as activated
CAFs [103]. Stromal cell density was highest in FP, lowest in TP and CP (p ≤ 0.008).

The ratio between the number of αSMA + CAFs and amount of collagen, the so-
called activated stroma ratio has been used to characterize and categorize the stroma in
PC [64,104]. Based on the results for both features, each of the four patterns can be assigned
to a different stromal subtype. In FP, the stroma is consistent with the fibrolytic subtype
(high αSMA/low collagen), while in TP, PP and CP it is of fibrogenic (low αSMA/high
collagen), inert (high αSMA/high collagen), and dormant (low αSMA/low collagen)
subtype, respectively (Table 3).

Table 3. Activated stroma index in the four tumor patterns. The index is the ratio between αSMA
expression (immunohistochemically assessed) and the total amount of collagen (morphometric
evaluation), averaged for each pattern. Assignment to the stromal subtypes is according to [104].
Kruskal-Wallis testing showed significant difference in activated stroma index between the four
patterns (p < 0.01). αSMA, α-smooth muscle actin.

Tumor
Pattern

αSMA
(Staining Score)

Total Collagen
(Area Fraction %)

Activated
Stroma Index

Stromal
Subtype

Periglandular High (2.60) High (16.95) 0.27 Inert
Tendon-like Low (1.50) High (33.21) 0.05 Fibrogenic
Fascicular High (2.90) Low (7.35) 1.35 Fibrolytic

Chickenwire Low (1.20) Low (3.60) 0.56 Dormant

Stromal MMP14 levels were highest in FP and lowest in TP (p < 0.01) (Figures 3 and 4).
CAV1 was absent in nearly all cases of CP but was expressed at similar levels in the other
patterns (p < 0.01) (Figures 3 and 4). ITGα5 expression was low or absent in TP and CP
but was expressed at high level in PP and FP (p < 0.001). Strong expression limited to the
immediate peritumoral stroma was observed in PP, whereas expression was diffuse in the
stroma of FP (Figures 3 and 4). ITGα2 and ITGβ1 showed a similar differential expression
albeit at lower levels compared to ITGα5.

2.4. Multiple Patterns within a Single Tumor

Five tumors contained two different patterns—that is, a combination of PP and FP
(n = 3), PP and TP (n = 1), or FP and CP (n = 1). One tumor contained three patterns (PP, TP,
and CP). The different patterns occurred in separate regions within the tumor mass, each
pattern showing the features that define the particular morphology of the cancer cells and
stroma. Features for the respective patterns did not differ from those found in tumors that
contained only a single pattern.
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2.5. Prediction of Morphological Pattern

To investigate the robustness of the association between the morphological patterns
and the structural and functional features, we tested whether the results for the full set
of features would allow prediction of the tumor pattern. Using the k-Nearest Neighbors
(k-NN) algorithm, 97% of the ROIs was assigned to the correct morphological pattern when
using a separate holdout dataset containing 30% of the samples for testing. When using
cancer-cell features only, classification was correct for 84% of the ROIs, and misclassification
occurred for ROIs with any of the four patterns. Prediction of the morphological pattern
based exclusively on stromal features resulted in correct classification for 96% of the ROIs,
with only 10 of 60 ROIs with a PP morphology being misclassified as either TP or FP.
Interestingly, when using only the panel of nine features that are related to the ECM,
prediction of the morphological pattern was equally good (97%) as when using the full
stromal panel (18 features) or the full panel (26 features) (Table S3).

Feature importance computed by the extremely randomized tree (ERT) algorithm
showed that features related to collagen I and collagen III as well as fibronectin were the
most important ones for the prediction of the morphological pattern (Figure S2). This is
in accordance with the finding that the ECM-related features alone were able to predict
the morphological pattern with the same accuracy as the full panel of features. Using ERT
gave the same classification accuracy for the holdout dataset as obtained with k-NN (97%).

3. Discussion

From the wide spectrum of morphological appearances that exist in PC NOS, four pat-
terns were selected that are common—found in 67% of PC NOS in the current series—and
exhibit distinct morphological features of both the cancer-cell and stromal compartments,
allowing unequivocal identification on H&E staining. Immuno-/histochemical staining as
well as morphometric analysis revealed significant differences between at least two of the
four patterns for a panel of 26 features. The latter were investigated in this study given
their involvement in structural and functional properties that are deemed important in
PC. Furthermore, the features are part of transcriptional signatures that characterize PC
subtypes [3,12], with the obvious exception of fiber alignment, epithelial proximity and
stromal cell density, as these are topologically defined features.

To the best of our knowledge, this study is the first to report that morphological
heterogeneity correlates with structural and functional divergence in tissues of human PC
NOS. The findings of this study further demonstrate that the various biological processes,
in which the analyzed features are involved, are not uniformly operational in PC and
co-vary with the morphological phenotype of the tumor. Indeed, while overall results
for the entire study series are in line with observations that are reported in the literature
(irrespective of tumor morphology), this study reveals significant divergence between the
patterns for each of the analyzed features.

This study is also the first to investigate morphological heterogeneity in the stromal
compartment of PC, a phenomenon that has received little attention [9] despite the pivotal
role of the stroma in PC [105]. Analysis was limited to the immediate peritumoral stroma
rather than the bulk stroma because the former plays a key role in the biology of PC.
Moreover, the high prevalence of morphological intratumor heterogeneity also demands
that stromal analysis be limited to the juxta-tumoral compartment.

A prominent stroma accounting for up to 80% of the tumor mass is considered a
hallmark of PC. However, our study revealed significant differences in stromal content
between the four patterns, despite the fact that the study series consisted exclusively of
well-differentiated PC with a glandular growth pattern [96,106].

The ECM has a multifarious role by providing structural support as well as biochem-
ical and biophysical cues [107]. While the ECM composition for the overall series was
very similar to observations published in the literature [33,63,72,73,82,102,108], our study
revealed significant differences between the patterns. In TP, which contained the high-
est amount of tumor stroma, the ECM was rich in collagens and hyaluronan but lacked
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fibronectin in nearly all cases. FP and PP, patterns with a moderate amount of stroma,
contained comparatively less collagens and hyaluronan but were rich in fibronectin. The
very small amount of ECM in CP contained mainly hyaluronan but little collagen and
fibronectin. These findings imply that the interstitial pressure, which is mainly determined
by the amount of hyaluronan and fibrillary collagen [109–111], likely differs between the
four patterns. Because hyaluronan is a target of stroma-directed therapy [112,113], the im-
pact of the latter on interstitial pressure and drug delivery may vary considerably between
patterns. Recently, fibronectin has been linked to acquired chemoresistance in PC [69];
hence, its high content in FP and PP and absence in TP may be of clinical interest. The
stark variation in the amount of collagen between the patterns may explain—at least in
part—the conflicting results that have been reported regarding the association between a
prominent collagenous stroma and survival [63,64].

Not only the composition but also the spatial organization of the ECM is relevant for
its biological function. In particular, alignment of collagen and fibronectin fibers promotes
directional cancer cell migration in various cancers, including PC [62,114,115]. While
marked fiber alignment has been reported in only 12% of PC [65], we found significant
variation between the patterns. In the majority of tumors with TP, the stroma showed
marked parallel alignment of collagen fibers, resulting in a taut, tendon-like stromal
appearance. In contrast, in FP, the whorled fiber arrangement reflected alignment of
fibronectin rather than collagen. Interestingly, ITGα5β1, the receptor for fibronectin which
is instrumental in the production, assembly and alignment of fibronectin by the CAFs [115],
was highly and diffusely expressed in FP. In PP, fibronectin deposition and ITGα5β1
expression were mainly limited to a thin stromal sheath encircling the cancer glands. In
contrast, fibronectin and ITGα5β1 were absent or low in TP and CP. These observations
are in accordance with in vitro studies revealing the ITGα5β1-dependence of fibronectin
deposition and alignment by CAFs [115,116], but at the same time, our findings indicate
that this type of ECM organization is not common to all PC. ITGα2, which together with
ITGβ1 forms the main receptor for collagen I [117], was present in all patterns, albeit
at different levels. Given the multitude of different integrin heterodimer combinations
and their biological roles, further studies are needed to understand the relevance of the
observed heterogeneity between patterns. Finally, the density of stromal cells, the vast
majority of which were αSMA-positive CAFs, differed significantly, being highest in FP
and lowest in CP.

Emerging from these findings is a picture of distinct structural and functional diversity
of the stroma that co-varies with and is to some extent reflected in the morphology of that
compartment (Figure 5).

Interestingly, when applying the recently proposed stromal subclassification of PC that
is based on the activated stroma ratio, i.e., the ratio between the number of αSMA + CAFs
and amount of collagen, each of the four patterns can be assigned to a different stromal
subtype [64,104]. Interestingly, the fibrolytic and fibrogenic subtypes observed in FP and TP,
respectively, were reported to associate with shorter and longer progression-free survival,
respectively, than the inert (PP) and dormant (CP) subtypes [104]. Further results from
this study extend the nature of the stromal subtypes: high MMP14-expression by both
CAFs and cancer cells in FP fits with a dynamic stroma, undergoing active remodeling. In
contrast, low MMP14-levels in TP support the notion of a stable collagen-rich stroma with
little remodeling.
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Figure 5. Four patterns of pancreatic cancer with distinctive morphological, structural and functional
features of the cancer-cell and stromal compartments. (a) In the periglandular pattern, the stromal
sheath that encircles the tumor glands contains a moderate amount of CAFs and is rich in fibronectin
and MMP14, produced by both CAFs and PCCs. The latter show moderate expression of ALDH1
and Ki67. (b) The tendon-like pattern has a collagen- and hyaluronan-rich stroma that is devoid of
fibronectin and shows marked fiber alignment. The majority of cancer cells express ALDH1. Note
the low levels of MMP14 and Ki67. (c) The whorled stroma of the fascicular pattern contains a high
number of CAFs with high expression of ITGα5 and marked deposition of aligned fibronectin. Note
the high-level expression of MMP14 in stroma and PCCs. (d) The small stromal compartment in the
chickenwire pattern is relatively rich in hyaluronan but contains little collagen and fibronectin and
lacks fiber alignment. CAFs are low in number. Note the high Ki67-expression in the PCCs. ALDH1,
aldehyde dehydrogenase 1; CAF, cancer-associated fibroblast; ITGα5, integrin α5; MMP14 matrix
metalloproteinase 14; PCC, pancreatic cancer cell.

The proliferative activity of cancer cells is clinically relevant, as it relates to the growth
capacity of the cancer and its possible response to cytotoxic treatment. While the median
value of the Ki67-index in the overall series was near-identical with that reported by
others [97,98], the four patterns differed significantly between themselves. It was highest in
CP, which would indicate a more aggressive nature of tumors with CP morphology, despite
the preserved glandular growth pattern that defines CP as well differentiated [96]. The lack
of co-variance between grade of differentiation and proliferative activity in PC was recently
highlighted [106]. The high expression level of CAV1 in the cancer cells of CP compared to
the other patterns, points also at a more aggressive behavior, as CAV1-expression has been
associated with cancer cell proliferation and migration, chemoresistance and worse patient
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outcome [25–27]. The mutually exclusive CAV1-expression in cancer cells and stroma
observed in this study has been described previously but remains as yet unexplained [24].

As in other cancers, cancer stem cells in PC drive metastasis and recurrence, the latter by
endowing resistance to chemo(radio-)therapy. While expression of the three CSC markers in
the overall series was similar to observations by others [13,17,18,30,34,35,39,40,50,51,99], re-
sults differed significantly between patterns. The most prominent difference was observed
for ALDH1, which was strongly expressed in nearly all TP, but absent or expressed at low
level in the other patterns. Furthermore, expression significantly lower than that reported
in the literature was observed for CD44 (in PP) and CD133 (in TP and CP). Interestingly,
previous reports commented on heterogeneity of CSC marker expression in association
with morphological tumor heterogeneity [34,50].

Taken together, the presence of features that are linked to key tumor biological pro-
cesses varies between the cancer cell compartments of the four patterns. In CP, high
proliferative activity and high-level expression of CD44 and CAV1 suggest a more ag-
gressive tumor behavior. While FP shows a lower proliferation than CP, its cancer cells
express high levels of two CSC markers (CD44, CD133) as well as MMP14. The latter may
have pro-oncogenic effects outside its well-documented role in cell motility and invasion,
namely increased metabolism and proliferation [118]. TP is characterized by high-level
expression of ALDH1, which is associated with worse patient outcome and resistance
to chemo(radio-)therapy. PP shows low proliferation and low-level expression of CSC
markers, CAV1 and MMP14.

The analysis shows that the four morphological patterns differ significantly and con-
sistently in most of the features that were analyzed. Conversely, our findings demonstrate
that the features form a robust signature that allows correct prediction of the morphological
pattern in 97% of ROIs.

In six of the 39 (15%) cases included in the study, two or three of the four patterns
were present within the same tumor. The signature of stromal and cancer-cell features
of a pattern that co-occurred with other patterns did not differ from that observed in
tumors containing only one pattern. Moreover, most cases in this series contained to a
varying extent one or several morphological phenotypes other than the four that were
investigated. These observations illustrate that morphological intratumor heterogeneity is
common, as reported by others [9,10,119]. Collectively, observations in this study concur
with the widespread intratumor heterogeneity that has been described recently at the
transcriptional and proteomics level [120–122]. Moreover, intratumor heterogeneity has
also been reported for several of the individual features analyzed in this study: amount of
hyaluronan [77,102] and collagen [19], degree of collagen alignment [19,65], expression of
CD44 [34], CD133 [50], ALDH1 [99] and MMP14 [123], and proliferative activity [97,106].
While in these studies intratumor heterogeneity for individual features was reported
without further characterization of the morphological phenotype of PC, the results of our
study indicate that features do not vary randomly between and within tumors but rather
co-vary with the tumor morphology.

Phenotypic heterogeneity in cancer is a complex multifactorial phenomenon that
results from the integration of genetic, epigenetic and environmental inputs [124,125].
As such, the histomorphology of cancer, including PC, contains rich, highly integrated
information that, in contrast to multiomics data, also visualizes the topology of the various
tumor features. Deciphering the complex information contained in histomorphology in
terms of discrete biological processes at the molecular level has only just started, to some
extent prompted by the application of artificial intelligence [126]. Obviously, the association
between morphology, tumor behavior and patient outcome is complex and multifactorial,
with a possible divergent impact from the cancerous and stromal compartments.

The results of this study have potentially important implications. First, the study
reveals significant and possibly clinically relevant differences between morphological
phenotypes that currently remain undistinguished as they are lumped together in the
large group of PC NOS. While the four patterns analyzed in this study were selected to
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test the hypothesis that morphology and functional aspects are linked, the development
of a morphological classification for PC would require the characterization of a larger
number of morphological phenotypes in PC over and above those currently considered by
the WHO classification. The prevalence and complexity of morphological heterogeneity
in PC is supported by recent studies that reveal marked intratumor heterogeneity at the
transcriptional level, implying that current classification systems may offer a too simplistic
taxonomy of PC [120,121,127]. By the same token, intratumor heterogeneity hampers the
study of the prognostic significance of the various morphological phenotypes.

Second, the findings of this study question the widespread use of a single “representa-
tive” tumor block for bulk molecular analysis. The need for higher cancer cell density in
order to avoid contamination with nonneoplastic cells may lead to the selection of tumor
areas with low stromal volume, such as CP, and result in overrepresentation of biological
mechanisms that are active in such phenotypes.

Third, while molecular assessment of intratumor heterogeneity remains challenging,
pathology examination allows expedient and low-cost assessment of the extent and nature
of morphological heterogeneity within a tumor. Especially the evaluation of heterogeneity
in morphological features that are relevant regarding the effect of targeted treatment (e.g.,
hyaluronan content for hyaluronidase therapy [112,113]) may be of clinical interest.

Fourth, this study reveals that the tumor stroma, which hitherto is ignored in pathol-
ogy diagnostics for PC, exhibits distinctive morphological features that may inform on
relevant underlying processes. Given that accumulating evidence supports a link between
the biological properties of the peritumoral stroma and clinical aspects of PC [6,101,105],
patient stratification based also on stromal morphology could be clinically more relevant.

Recent studies have demonstrated a mutual shaping of the cancer cell and stromal
compartments. While the cancer cell genotype tunes the composition and biophysical
properties of the tumor stroma [100], the ECM and CAFs exert epigenetic effects on the
cancer cells and shape the tumor architecture [101,107]. Recent transcriptomics-based
studies present evidence for a close link between the phenotype of the stroma and the
cancer cells [12,128] rather than an independent combination of both [3]. The results of this
study show that the morphological phenotype of PC in the four patterns is determined
by a particular combination of both stromal and cancer cell-related features rather than
either in isolation and independently of each other. Indeed, using exclusively the set of
stromal features resulted in a similarly good prediction of the tumor pattern, that is, the
morphological phenotype including both cancer cells and stroma.

Our study has a number of limitations. From the wide range of morphological
phenotypes, only four were analyzed. As the four selected patterns represent low-grade
PC, our observations may not be pertinent to high-grade, that is, poorly differentiated
tumors. The analysis was based on a limited set of features that did not represent important
processes such as epithelial-mesenchymal transition or immune response. The number of
biochemical and biophysical properties that are highlighted by in vitro and in vivo studies
as potentially clinically relevant is large and requires extensive analysis beyond this initial
proof-of-concept study. Last but not least, investigations at genomic and/or transcriptional
level were not included in this study, but 14 of the non-topological features are part of
transcription-based signatures that are used for molecular classification of PC [3,12]. Future
studies correlating genomics and transcriptomics data with a variety of morphological
patterns are needed to understand the molecular basis of morphological heterogeneity.

4. Materials and Methods
4.1. Tissues

Archival H&E-stained histology slides from consecutive cases of treatment-naïve PC
resected between December 2017 and April 2019 at Oslo University Hospital, 0424 Oslo,
Norway, were reviewed. For each case, tissue blocks containing one of the four patterns
were selected. Areas with necrosis or inflammatory cell infiltration were excluded, as this
affects the composition of the stromal component [12,104].
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4.2. Cancer Cell and Stromal Features

The cancer cells were analyzed for proliferative activity (Ki67) and expression of the
CSC markers CD44, CD133, and ALDH1. The stromal compartment was investigated for
the total amount of collagen, collagen fiber alignment, amount and deposition pattern
of collagen I and III, fibronectin and hyaluronan; density of CAFs, expression of αSMA,
and epithelial proximity, the latter as a measure for stromal volume [129]. Cancer-stroma
interactions were investigated for expression of ITGα2, α5, and β1. MMP14 and CAV1
were assessed in both compartments.

4.3. Histochemistry and Immunohistochemistry

Histochemical and immunohistochemical staining of formalin-fixed paraffin-embedded,
3.5 µm thick, serially cut, whole-tissue sections was done manually using standard pro-
tocols as previously described [130]. Briefly, tissue sections were incubated with primary
antibodies at 4 ◦C overnight, followed by incubation with secondary antibodies as outlined
in Table 4. Endogenous peroxidase activity and unspecific antibody binding were blocked
with EnVision Flex peroxidase blocking agent (Dako, Glostrup, Denmark, catalogue nr.
DM841) and 1% BSA, respectively.

Table 4. Antibodies and procedures for immunohistochemical and histochemical staining.

Immunohistochemical Staining
Primary Antibodies

Antigen Company Cat # Antigen Retrieval Dilution Incubation Species Control Tissue

αSMA Abcam ab5694 CB, 100 ◦C 1:100 ON, 4 ◦C Rabbit Blood vessel
ALDH1A1 Abcam ab52492 CB, 100 ◦C 1:800 ON, 4 ◦C Rabbit Kidney, lung
Caveolin-1 Abcam ab32577 CB, 100 ◦C 1:750 ON, 4 ◦C Rabbit Liver, lung
CD133/1 Miltenyi Biotec 130–108-062 CB, 100 ◦C 1:100 ON, 4 ◦C Mouse Gallbladder

CD44 Dako M7082 CB, 100 ◦C 1:200 ON, 4 ◦C Mouse Gallbladder
Col Iα1 LifeSpan

BioSciences LS-B5932 CB, 100 ◦C 1:200 ON, 4 ◦C Mouse Prostate

Col III Abcam ab7778 CB, 100 ◦C 1:300 ON, 4 ◦C Rabbit Testis

Fibronectin Abcam ab6328 TEB, 100 ◦C 1:300 ON, 4 ◦C Mouse Granulation
tissue

ITGα2 Abcam ab133557 CB, 100 ◦C 1:1000 ON, 4 ◦C Rabbit Testis
ITGα5 Abcam ab150361 CB, 100 ◦C 1:200 ON, 4 ◦C Rabbit Placenta
ITGβ1 ThermoFisher MA5-17103 CB, 100 ◦C 1:200 ON, 4 ◦C Mouse Small intestine
Ki67 Dako M7240 CB, 100 ◦C 1:1000 ON, 4 ◦C Mouse Small intestine

MMP14 Abcam ab51074 TEB, 100 ◦C 1:1600 ON, 4 ◦C Rabbit Placenta

Secondary Antibodies

Company Cat # Antigen Retrieval Dilution Incubation Detection Control Tissue
Immpress HRP
Anti-Rabbit IgG Vector Labs MP-7401 - Ready to use 1 h, RT

DAB Peroxidase
substrate kit

(SK-4100)
-

Immpress HRP
Anti-Mouse IgG Vector Labs MP-7402 - Ready to use 1 h, RT

DAB Peroxidase
substrate kit

(SK-4100)
-

Histochemical Staining

Hyaluronan Merck
Millipore 385911 CB, 60 ◦C 1:100 1 h, RT

ABC-AP-Kit
(Vector Labs,
AK-500) and

Liquid
Permanent Red
(Dako, K0640)

Cartilage

Picrosirius red Histolab HL27150.0500 - Ready to use 10 min, RT Tendon

CB, Citrate buffer (pH 6); TEB, Tris/EDTA buffer (pH 9). Abcam, Cambridge, UK; Histolab, Askim, Sweden; LifeSpan Biosciences, Seattle,
WA, USA; Merck Millipore, Burlington, MA, USA; Miltenyi Biotec, Bergisch Gladbach, Germany; Thermo Fisher Scientific, Waltham, MA,
USA; Vector Labs, Burlingame, CA, USA; Dako: Agilent Technologies, Glostrup, Denmark; ThermoFisher: Waltham, MA USA.

Histochemistry using hyaluronic acid binding protein was employed for the histo-
chemical detection of hyaluronan, as previously described (see Table 4) [82]. Fibrillar
collagen was detected with ready-to-use picrosirius red staining. Hematoxylin was used
for counterstaining.

Appropriate positive and negative controls were used to verify specificity of all tested
markers. Negative control samples were incubated with PBS instead of the primary antibody.
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4.4. Semiquantitative Scoring

Sections were viewed with a light microscope (Nikon eclipse Ni, Amsterdam, Nether-
lands) using polarized light for visualization of collagen fibers with picrosirius red stain-
ing [103,131]. In each tumor, at least five randomly selected ROIs representative of a
particular pattern were photographed at 200x magnification (camera: Infinity2–5C Lumen-
era, Ottawa, ON, Canada). Picture acquisition was done with strict compliance regarding
exposure time, light intensity, contrast, aperture, and sensor sensitivity.

From the wealth of different systems and threshold values that have been used
previously to score histochemical (hyaluronan) and immunohistochemical staining for
any of the markers included in the panel of this study, the following uniform, simple and
robust staining score was selected: 0 = no staining, 1 = staining in <25% of the relevant
compartment, 2 = staining in 26–50% of the relevant compartment, 3 = staining in >50%
of the relevant compartment. Staining scores 0 and 1 were regarded as “low,” score 2 as
“medium,” and score 3 as “high,” as previously described [24,82,132–134]. Because of major
variation in both staining intensity and number of positive cells, immunostaining for CSC
markers was scored by multiplying intensity (0 = negative, 1 = low, 2 = moderate, 3 = high)
and extent of staining (0 = 0%, 1 = 1–10%, 2 = 11–50%, 3 = 51–80%, 4 ≥ 81%), resulting in an
immunoreactive score (IRS) between 0 and 12 [34,36,39,135]. The IRS was categorized as
negative (0), low (1–5), and high (6–12). The pattern of deposition of ECM-components was
classified as diffuse or peritumoral, the latter denoting deposition immediately surrounding
the tumor glands.

4.5. Quantitative Assessment

The total amount of fibrillar collagen and the alignment of collagen fibers were quanti-
fied with ImageJ (NIH, Bethesda, MD, USA) and the OrientationJ plugin [136], respectively,
using the polarization photographs of picrosirius red-stained sections that were converted
to grey-scale 8-bit images. Identical analysis settings and thresholds were used for all
cases. Higher values corresponded with higher fibrillar collagen content (reflecting the area
fraction of polarized light) and better fiber alignment, respectively. Stromal cells showing
features characteristic of fibroblasts, that is, a spindle cell shape and an elongated nucleus
without atypical features, were counted on H&E-sections. The average was calculated
from cell counts in five random 0.01 mm2 rectangular areas per ROI, excluding foci with
inflammatory cell infiltration. Epithelial proximity is a feature that denotes the extent of
contiguous areas of stroma that separate cancer cell clusters and has been used previously
for the morphological analysis of the stroma in cancer [129]. It was assessed with ImageJ
based on the average of shortest distances between any two cancer glands present in an
ROI. Immunostaining for Ki67 was counted in the cancer cell population and expressed as
the percentage of positive cells.

4.6. Network Visualization

Network visualization of the results for all features was generated with Gephi (v0.9.2)
using the Fruchterman–Reingold algorithm [137] and an adjacency matrix (RStudio v 1.453).
The former is a force-based approach using small to medium-sized networks (unweighted,
undirected graphs) [138,139]. The vertex layout is determined by attractive and repulsive
“forces” between the vertices.

4.7. Statistical Analysis

The Kruskal–Wallis multiple comparison test and the Mann–Whitney U test for pair-
wise comparison were used to test whether the feature data differed significantly between
the four morphological patterns. These are nonparametric methods for analyzing whether
two or more datasets come from the same statistical distribution or from different distribu-
tions. In this study, p-values < 0.05 were considered significant for detection of a difference.
The tests were carried out using the SPSS® software for Windows (v22) (IBM SPSS Statistics,
Armonk, NY, USA).
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4.8. Prediction of Morphological Pattern

In order to test the strength of the association between morphology and the panel of
features, we investigated whether the morphological pattern in each ROI could be predicted
based on the features used in this study. The samples were classified with respect to the
four different morphological patterns using the k-nearest neighbors algorithm (k-NN) [140],
with k equal to 3. According to this algorithm, a sample is classified by a majority vote of its
k neighbors, with the object being assigned to the class most common among its k nearest
neighbors, and each neighbor is attributed a weight of 1/d, where d is the distance to the
neighbor. The classification was done with four different sets of features: (i) all features,
(ii) only cancer-cell features, (iii) only stromal features and iv) only ECM-related features.
Each classification model was trained using 70% of the samples, while a separate holdout
set of 30% of the samples (randomly selected) was used to test the prediction accuracy.

In order to further investigate the importance of the various features for predicting
the morphological pattern, the extremely randomized tree (ERT) algorithm for estimation
of the feature importance was applied [141]. The ERT algorithm is a tree-based ensemble
classification method by which the outcomes from many decision trees are averaged to
obtain a final output. Decision trees generate decision rules to divide observations into
segments that have the largest difference with respect to the target variable. Each rule
selects both the variable and the best breakpoint to separate the resulting subgroups
maximally, and one seeks to find the smallest set of rules that is consistent with the training
data. The ExtraTreesClassifier implementation in the SCiKit-learn module “ensemble”,
where Python v. 3.7.4. was used [142,143].

5. Conclusions

This proof-of-concept study is the first to show that heterogeneity in morphological
features reflects structural and functional heterogeneity and that tumors exhibiting the same
histological pattern also share functional and structural properties. Furthermore, this study
demonstrates that biological processes deemed to be crucial in PC may not be relevant
in all PC tumors nor in all parts of a tumor, considering that morphological inter- and
intratumor heterogeneity is common. Further systematic investigation of morphological
heterogeneity and its link with biological diversity, treatment effect and patient outcome
may ultimately allow pathologists to provide new and clinically meaningful information
on tumor-intrinsic properties as part of the routine diagnostic work-up.
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694/13/4/895/s1, Figure S1: Histological features of the four morphological patterns, Figure S2:
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of the study series of resected, treatment-naïve human pancreatic cancer (n = 39), Table S2: Results
for the panel of features for the series overall and for each tumor pattern individually, Table S3:
Correct and incorrect prediction of morphological pattern based on the full set or on subsets of the
analyzed features.
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