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The innate immune and host-protective responses to viruses, such as the airway
pathogen human metapneumovirus (HMPV), depend on interferons (IFNs) that is
induced through TANK-binding kinase 1 (TBK1) and IFN regulatory factors (IRFs). The
transcription factor IRF1 is important for host resistance against several viruses and has a
key role in induction of IFN-l at mucosal surfaces. In most cell types IRF1 is expressed at
very low levels, but its mRNA is rapidly induced when the demand for IRF1 activity arises.
Despite general recognition of the importance of IRF1 to antiviral responses, the molecular
mechanisms by which IRF1 is regulated during viral infections are not well understood.
Here we identify the serine/threonine kinase TBK1 and IFN-b as critical regulators of IRF1
mRNA and protein levels in human monocyte-derived macrophages. We find that
inhibition of TBK1 activity either by the semi-selective TBK1/IKKe inhibitor BX795 or by
siRNA-mediated knockdown abrogates HMPV-induced expression of IRF1. Moreover,
we show that canonical NF-kB signaling is involved in IRF1 induction and that the TBK1/
IKKe inhibitor BX795, but not siTBK1 treatment, impairs HMPV-induced phosphorylation
of the NF-kB subunit p65. At later time-points of the infection, IRF1 expression depended
heavily on IFN-b-mediated signaling via the IFNAR-STAT1 pathway. Hence, our results
suggest that TBK1 activation and TBK1/IKKe-mediated phosphorylation of the NF-kB
subunit p65 control transcription of IRF1. Our study identifies a novel mechanism for IRF1
induction in response to viral infection of human macrophages that could be relevant not
only to defense against HMPV, but also to other viral, bacterial and fungal pathogens.

Keywords: human macrophages, innate immune response, antiviral response, interferon, human
metapneumovirus, interferon regulatory factor 1, nuclear factor-kB, TANK-binding kinase 1
INTRODUCTION

Members of the interferon (IFN) regulatory factors (IRFs), a family of transcription factors, are
activated downstream of pattern recognition receptors (PRRs) and are crucial for
immunoregulation and stimulation of innate and adaptive immune responses (1). IRF1 was the
first IRF identified to drive transcription of type I IFN genes and to be essential for host defense
org June 2021 | Volume 12 | Article 5633361
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against a wide range of viruses, including influenza virus, human
rhinovirus (HRV), varicella-zoster virus (VZV), respiratory
syncytial virus (RSV), flaviviruses and West Nile virus (1–5).
Subsequently, in addition to its role in control of antiviral
defense, IRF1 has been found to have diverse functions, i.e. in
regulation of apoptosis, DNA damage responses, tumor
suppression and in shaping adaptive CD8(+) T cell immune
responses (5, 6). The viral defense mechanisms triggered by IRF1
rely on induction of a large panel of genes that are important for
mounting effective innate and adaptive immunity, including type
III IFNs (IFN-ls) (7, 8). Type III IFNs are critical for antiviral
defense at epithelial barrier sites that are important for airway
viruses (9–11). In resting cells, IRF1 is expressed at very low
levels in most cell types and the protein is highly unstable with a
half-life of around 30 minutes (12, 13). Hence, stimulus-induced
transcription of IRF1 is required to increase cellular levels of
IRF1 to enable IRF1-dependent gene expression. Despite the
critical importance of IRF1 for antiviral defense mechanisms the
molecular mechanisms by which induction of IRF1 is regulated
by viruses are largely unknown. IRF1 is highly upregulated upon
viral infections, e.g. in response to influenza virus, RSV and VZV
(3, 4, 14) as well as by IFN treatment (15, 16). Upon treatment
with IFN-g- or IFN-a/b the molecular regulation at the IRF1
promoter has been well defined and entails the DNA elements
GAS (g-activated sequence), which binds STAT1-STAT1 homo-
or STAT1-STAT2 heterodimers, and nuclear factor-kB (NF-kB)
binding sites (17–20). In addition, upon infection with the airway
viruses HRV and RSV and after treatment with TNF, NF-kB
activation (and the NF-kB element in the IRF1 promoter) was
suggested to control induction of IRF1 (21–23).

TANK-binding kinase 1 (TBK1) is a non-canonical IkB
kinase that in addition to its critical role in induction of type I
IFNs regulates inflammation-related processes such as
neuroinflammation and autophagy (24–26). In the process of
type I IFN induction, TBK1 has been found to directly
phosphorylate and activate the two IRF family-members IRF3
and IRF7, thereby inducing IRF dimerization and nuclear
translocation to stimulate gene transcription (24, 25). While
the activation mechanism of IRF3 and IRF7 by TBK1 has been
intensively studied, the mechanism by which TBK1 affects IRF1
function has to the best of our knowledge not been reported.

Human metapneumovirus (HMPV, genus Metapneumovirus),
belonging to the newly formed Pneumoviridae family, is related to
RSV, is a significant cause of airway infections and may cause
serious illness in infants and immunocompromised individuals
(27). Several PRRs have been reported to be involved in innate
immune sensing of HMPV, e.g. the RIG-I-like receptors (RLR)
RIG-I and MDA5 and the Toll-like receptors TLR3 and TLR7
(27). The relative contribution of these PRRs depends on the cell
type infected (27, 28). Also, TLR4 have been reported to
contribute to cytokine induction by HMPV (29). While one
study found that HMPV enhances IRF1 levels and IRF1 nuclear
accumulation in airway epithelial cells (30), the molecular
mechanisms underlying HMPV-stimulated IRF1 transcription
have not been identified. Since IRF1 is required for induction of
type III IFNs, that are critical for antiviral defense against several
Frontiers in Immunology | www.frontiersin.org 2
viruses including HMPV (11, 31), we chose to characterize
HMPV-mediated induction of IRF1 expression. Macrophages
are important immune cells that contribute to airway virus
defense mechanisms and pathogenesis related to influenza virus,
RSV and HMPV (32–34) and HMPV-mediated immune
mechanisms in human macrophages are largely unexplored. In
this study, we aimed to determine if the innate immune kinase
TBK1 controls IRF1 transcription in human monocyte-derived
macrophages (MDMs). Our results show that that TBK1 mediates
HMPV-stimulated induction of IRF1, in a mechanism involving
NF-kB activation and type I IFN-mediated STAT1 activation that
lead to induction of IRF1.
METHODS

Virus Propagation
The clinical HMPV isolate NL/17/00 (A2) was kindly provided by
ViroNovative and B. van den Hoogen (Erasmus MC, Rotterdam).
LLC-MK2 cells were inoculated with HMPV at a multiplicity of
infection (MOI) of 0.01 in OptiMEM containing 2% FBS, 20 µg/
mL gentamicin and 0.7 nM glutamine. After 7-8 days, the virus
was harvested by freeze-thawing at -80 ⁰C, followed by purification
on a 20% sucrose cushion and resuspension in OptiMEM (2%
FBS). The virus titer was determined using a cell-based
immunoassay. To that end, purified virus particles were serially
diluted (log10) on monolayers of LLC-MK2 cells in 96-well flat-
bottom plates. After four days, cells were washed, stained with
LIGHT DIAGNOSTICS™ HMPV direct fluorescence assay
(Merck Millipore) and foci forming units determined by manual
counting. For inactivation, virus was irradiated with UV light for
1 h at 4°C.

Cell Culture
Monocytes were obtained from fresh buffy coats of healthy donors
(blood bank of St. Olavs Hospital, Trondheim). In short,
mononuclear cells were isolated using gradient centrifugation
with Lymphoprep™ (Axis-Shield). Isolated cells were seeded in
RPMI 1640 medium supplemented with 10 % human serum, 0.34
mM L-glutamine, 10 µg/mL gentamicin. After 90 min non-
adherent cells were washed away. Monocytes were differentiated
to macrophages for 14 days in RPMI 1640 supplemented with
10 % human serum, 0.34 mM L-glutamine, 10 µg/mL gentamicin
and 10 ng/mL macrophage colony-stimulating factor.

In Vitro HMPV Infection
If not indicated otherwise, cells were infected with HMPV A2 at
MOI 1 in OptiMEM containing 2% FBS, 20 µg/mL gentamicin
and 0.7 nM glutamine. Cells were incubated with the virus for the
indicated times.

Recombinant Interferons, Neutralizing
Antibodies, and Inhibitors
Human recIFN-b and -l1 were purchased from Peprotech.
NIFNlR1 (MMHLR-1) and nIFNAR2 (MMHAR-2; interferon-
a/b receptor 2) were purchased from PBL. Cells were incubated
June 2021 | Volume 12 | Article 563336
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with nIFNlR1 (10 µg/mL) or nIFNAR (10 µg/mL) 30 min before
infection with virus. RecIFN-b (1000 U/mL) or recIFN- l1
(1 µg/mL) were added 15 h after infection with virus for a total of
3 h. Cells were incubated with the pharmacological TBK1 inhibitor
BX795 (10 µM; InvivoGen) 30min prior to infectionwithHMPV if
not indicated otherwise.Cellswere incubatedwith either 5µMor10
µM S-Ruxolitinib 2 h prior to infection with virus.

RNA Interference
siRNAs were purchased from Qiagen (AllStar Negative Control)
and Ambion (IRF1, RelA and TBK1), respectively. siRNA
duplexes were transfected into MDMs (day 9 after M-CSF
addition) using Lipofectamine RNAiMAX siRNA transfection
reagent (Thermo Fisher Scientific) and in according to the
manufacturer’s instructions, yielding a final concentration of
10 or 20 nM siRNA. The medium was replaced after 24 hours
and the transfection was repeated 3 days after the initial
transfection. mTransfected cells were allowed to grow for
48 hours prior to HMPV infection or mock treatment and
harvesting of cells for qRT-PCR or immunoblotting analysis.

QRT-PCR Analysis
RNA isolation, cDNA synthesis and qRT-PCR analysis were
performed as previously described (35). Gene expression was
calculated relative to uninfected cells according to Livak et al.
(36). The following primers were used: viperin (fwd) TGCTTT
TGCTTAAGGAAGCTG and viperin (rev) CAGGTATTCT
CCCCGGTCTT; IKKϵ (fwd) CAAGCTGACAGACTTCGGCG and
IKKϵ (rev) GTGATCCGCTACATGATCTC. All other primer
sequences have been published previously (35, 37). For analysis of
HMPV vRNA expression, the following primers were used:HMPV
N-gene (fwd) CATATAAGCATGCTATATTAAAAGAGTCTC,
HMPV N-gene (rev) CCTATTTCTGCAGCATATTT
GTAATCAG. Fold-change in HMPV vRNA expression was
calculated relative to the indicated virus sample.

Immunoblotting
Preparation of whole-cell lysates was performed as described
previously (38). SDS-PAGE and immunoblotting of whole cell
lysates were performed as previously described (38). Band
intensities were normalized against a housekeeping protein (b-
actin/GAPDH) using Image Studio (Licor). If not indicated
otherwise, protein levels are presented as fold change relative
to uninfected cells (“N.I.”). Nuclear and cytosolic fractionation of
samples was performed based on a previously published protocol
with modifications (39). Cells were detached by trypsination
followed by scraping. Cells were washed in 30 volumes of PBS
and centrifuged (5 min, 450 x g). The cell pellet was resupended
in one packed cell volume (PCV) of ice-cold Buffer A + DTT
with minimal pipetting and allowed to swell on ice for 15 min.
The cells were lysed by slowly drawing the cell suspension into a
1 ml syringe with a 25-g 5/8 gauge needle and then rapidly
expelling in a single stroke. This was repeated 5 times. The
homogenate was centrifuged for 5 min at 12,000 x g at room
temperature, yielding a crude nuclear pellet and a post nuclear
supernatant. The post nuclear supernatant was processed to
make a cytoplasmic extract by adding 0.11 PCV of Buffer B
Frontiers in Immunology | www.frontiersin.org 3
and spinning 5 min at 12,000 x g and 4°C. The crude nuclear
pellet was resuspended in 0.67 PCV of ice-cold Buffer C
containing 420 mM NaCl, then incubate on ice for 30 min.
Nuclear debris was removed by centrifugation (5 min, 12.000 x g,
4°C). The supernatant containing the nuclear extract was snap-
frozen in liquid nitrogen and stored at -80°C. SDS-PAGE and
immunoblotting of nuclear fractions were performed as for
whole cell lysates. Band intensities for nuclear fractions were
normalized against medium and loading control (Histone 3).
Changes in nuclear protein level are presented relative to the
respective cytosolic levels. The following primary antibodies
were purchased from Cell Signaling Technology if not
indicated otherwise: b-actin (Sigma Aldrich), GAPDH, histone
3 (Abcam), HMPV Nucleoprotein (Abcam), IRF1, IRF3, p-IRF3
(S396), p65, p-p65(Ser536), p-STAT1(Tyr701), STAT1, p-TBK1
(Ser172), TBK1, a-tubulin (Santa Cruz Biotechnology).

Statistical Analysis
Data are representative of 3-5 independent biological
experiments, unless otherwise stated. A two-tailed Student’s t-
test was used for statistical analysis of single comparisons.
Differences were considered significant when p ≤ 0.05 (∗), very
significant when p ≤ 0.01 (∗∗), highly significant when p ≤ 0.001
(∗∗∗), and extremely significant when p ≤ 0.001 (∗∗∗∗).
Comparisons of one or more variables between multiple
groups were analyzed by two-way ANOVA followed by post
hoc Tukey’s honest significance test. Differences were considered
significant when p ≤ 0.05 (∗), very significant when p ≤ 0.01 (∗∗),
highly significant when p ≤ 0.001 (∗∗∗), and extremely
significant when p ≤ 0.001 (∗∗∗∗).
RESULTS

IRF1 Is Induced by HMPV Infection and Is
Critical for IFN-l and IFN-b Transcription
To characterize IRF1 levels in human monocyte-derived
macrophages (MDMs) in response to HMPV we analyzed
IRF1 expression kinetics. To achieve this, IRF1 mRNA and
protein levels were measured in MDMs infected with HMPV
at different timepoints ranging from 1 to 18 h. Consistent with
previous reports (3, 4, 14), IRF1 levels in uninfected MDMs were
low and both IRF1 mRNA and protein expression were induced
by HMPV infection. Induction of IRF1 mRNA and protein were
detectable as early as 1-3 hours post infection (h.p.i.) and increased
markedly up to 18 h.p.i. (Figures 1A, E). IRF1 expression
correlated well with HMPV replication, as monitored by
increased viral RNA (vRNA) and HMPV nucleoprotein (N-
protein) (Figures 1B, D, F). Moreover, we compared IRF1
induction by HMPV to that of LPS and polyIC and found that
LPS induces IRF1 more potently than HMPV, while polyIC
induces IRF1 to the similar extents as HMPV (Figure S1).

Both IFN-b and IFN-l1 mRNA was induced by HMPV in a
time-dependent manner following increase in HMPV vRNA,
with higher fold-induction of IFN-l1 than of IFN-b (Figure 1C).
To determine the specificity of the observed IRF1 induction, we
also examined the time-dependent expression of viperin (virus
June 2021 | Volume 12 | Article 563336
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inhibitory protein, endoplasmic reticulum-associated, IFN-
inducible), another IFN-stimulated gene (ISG). Viperin is
induced by type I, II, and III IFNs and after infection with a
broad range of DNA and RNA viruses (40). Compared to IRF1,
viperin was markedly induced at later timepoints of the HMPV
infection (Figure 1G).

To determine the effect of viral dose, we compared IRF1
mRNA expression in cells infected at different MOIs. We
found that vRNA levels increased proportionally with MOI,
while IRF1 mRNA induction was maximal over the range from
0.5-3 MOI (Figures 1H, I). The reason for the relative higher
IRF1 expression at lower vRNA levels could be related to
earlier reports demonstrating higher JAK/STAT signaling
through the IFNAR in cell cultures infected with lower titers
of Sendai virus (a paramyxovirus) (41). We determined that
induction of ISG54 (IFIT2) followed the same pattern as IRF1
Frontiers in Immunology | www.frontiersin.org 4
at different MOIs (Figure S2). UV-inactivation of HMPV led
to markedly reduced induction of IRF1 (Figures 1J, K)
suggesting that viral replication is required for efficient
stimulation of IRF1 expression. We also confirmed that at 18
h treatment levels of HMPV N-protein of UV-inactivated
HMPV was low compared to HMPV (Figures 1J, L).

Next we proceeded to probe if HMPV infection stimulates
IRF1 activation and IRF1-dependent gene induction. To this end,
we measured IRF1 nuclear translocation by immunoblotting of
cytoplasmic and nuclear fractions of human MDMs that were
infected with HMPV. HMPV infection led to increased IRF1
levels in nuclear fractions compared to cytoplasmic fractions
(Figures 2A, B). Considering that IRF1 has recently been
reported to be critical for IFN-l1 induction by Dengue and
Sendai virus (8), we used siRNA-mediated knockdown to
determine if IRF1 levels affect IFN-l1 and IFN-b mRNA
A B

D E F

G IH

J K L

C

FIGURE 1 | HMPV induces IRF1 expression from early timepoints of infection. (A–G) Human MDMs were infected for the indicated timepoints with HMPV or treated
with medium (N.I.). Expression of IRF1 mRNA (A), HMPV vRNA (B), IFN-b and IFN-l1 mRNA (C) was analyzed by qRT-PCR. Error bars represent SD of three
technical replicates. (D–G) Whole cell lysates were prepared and protein levels of IRF1 (E), HMPV N-protein (F) and viperin (G) were analyzed by immunoblotting.
Protein levels were quantified by normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”). (H, I) Human
MDMs were infected for 18 h with HMPV at the indicated MOI or treated with medium (“N.I.”). Expression of IRF1 mRNA (H) and HMPV vRNA (I) was analyzed by
qRT-PCR. Error bars represent SD of three technical replicates. (J–L) Human MDMs were infected for 18 h with HMPV or UV-inactivated HMPV or treated with
medium (“N.I.”). Expression of IRF1 (K) and HMPV N-protein (L) were determined by immunoblotting. Statistical analysis: One-way ANOVA followed by Tukey’s
multiple comparison test: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001; n.s., not significant.
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induction by HMPV in MDMs. Knockdown of IRF1 reduced
IRF1 mRNA levels to 20% (Figure 2E). Based on morphology of
the cells (Figure S3) and LDH assay siRNA-transfection did not
affect cell viability. Treatment with siIRF1 markedly reduced
both IFN-l1 and IFN-b mRNA (Figures 2C, D) suggesting the
requirement for IRF1 in induction of both these IFNs at later
timepoints of HMPV infection, similarly to what was found for
Sendai virus infection (8). Collectively, these results indicate that
in human MDMs, HMPV induces IRF1 expression resulting in
increased IRF1 nuclear translocation and IFN-l1 and IFN-b
expression in an IRF1 dependent manner.

TBK1 Activity Is Required for Induction
of IRF1 by HMPV
TBK1 has been found to directly phosphorylate and activate the
two IRF family-members IRF3 and IRF7, but the contribution of
TBK1 to IRF1 activation and function has not been reported. To
test our hypothesis that TBK1 mediates IRF1 induction in
HMPV-infected cells, we initially measured if HMPV affected
TBK1 Ser172-phosphorylation levels (required for TBK1
activation (24)) in human MDMs (42).. Interestingly, HMPV
induced TBK1 Ser172-phosphorylation starting from early
timepoints of (3-6 h.p.i.; showing statistical significance from
6 h.p.i) and continued to increase up to 18 h.p.i. (Figures 3A, B).
To explore if TBK1 was necessary for HMPV-stimulated
induction of IRF1 we first tested the effect of BX795, a potent
and relatively specific inhibitor of TBK1 and its homolog IKKϵ
(IkB kinase ϵ (42);). Human MDMs were preincubated BX795
prior to infection with HMPV for 3 or 18 h. Treatment with
BX795 led to a marked decrease of HMPV-induced IRF1 protein
(Figures 3C, D) and IRF1 mRNA levels (Figure 3H) both at 3
and 18 h.p.i. In contrast, the levels of HMPV were not markedly
affected by BX795 treatment at these timepoints (Figures 3C, G).
Frontiers in Immunology | www.frontiersin.org 5
As reported by others (42, 43), we observed that BX795 failed to
reduce TBK1S172 phosphorylation (Figures 3C, E), an
observation suggested to be due to a negative feedback loop
triggered by TBK1 (42). However, we note that in agreement
with previous reports, treatment of MDMs with BX795 resulted
in decreased phosphorylation of IRF3Ser396, a canonical TBK1
target (24) (Figures 3C, F). In line with this, treatment with
BX795 abolished IFN-l1 and IFN-b mRNA expression by
HMPV (Figures 3I, J) showing that BX795 blocks the IRF3-
IFN-b/l axis. BX795 also reduces the activities of the kinases
IKKe and PDK1 (42). Therefore, to specifically address the
contribution of TBK1 to IRF1 induction we performed siRNA-
mediated knockdown of TBK1 in MDMs prior to infection with
HMPV. Knockdown of TBK1 reduced TBK1 protein levels to
approximately 50% and this led to reduction of HMPV-
stimulated IRF1 protein with about 40% (Figure 3K). Hence,
BX795 reduced IRF1 levels to higher extent than siTBK1-
treatment did. Taken together, these results demonstrate that
TBK1 is activated by HMPV and contributes to HMPV-
stimulated IRF1 expression in human MDMs.

HMPV-Mediated IRF1 Expression Is
Dependent on NF-kB Activation
IRF1 expression can be induced by the transcription factor NF-
kB (12) and phosphorylation of the NF-kB p65 subunit at Ser536
is critical for its transcriptional activity (44). As a first step
towards addressing NF-kB involvement in HMPV-induced IRF1
expression, we examined how HMPV infection affected p65
Ser536-phosphorylation. We found that HMPV induced
phosphorylation of p65-Ser536 at all timepoints examined,
with induction already at early timepoints of infection
(Figures 4A, B). Activation of NF-kB is known to induce
expression of the inhibitor of NF-kB a (IkB) (45). Hence, as an
A B

D EC

FIGURE 2 | HMPV stimulates IRF1 nuclear translocation and IRF1-dependent IFN-l induction. (A, B) Human MDMs were infected with HMPV for 18 h. Nuclear and
cytosolic cell lysates were prepared and protein levels of IRF1 and histone 3 analyzed by immunoblotting. Changes in nuclear IRF1 protein level are presented relative
to the respective cytosolic levels and to histone 3 levels (B). (C-E) Human MDMs were transfected with IRF1 siRNA or control siRNA («Allstar») for 48h prior to
infection with HMPV for 24 h and analysis of mRNA expression of IFN-l1 (C), IFN-b (D) and IRF1 (E) by qRT-PCR. Statistical analysis: Two-way ANOVA with
Bonferroni correction Two-tailed Student’s t-test: ∗∗p < 0.01. Data are representative for two independent experiments.
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indirect measure of NF-kB activation we tested if HMPV
triggered IkBa mRNA synthesis. At all timepoints examined
(from 1 to 18 h), HMPV stimulated IkBa mRNA with the
most prominent induction between 1 and 3 h.p.i. (Figure 4C).
Thus, based on our observations of changes in p65
Frontiers in Immunology | www.frontiersin.org 6
phosphorylation and IkBa mRNA expression, we conclude that
HMPV activates the NF-kB pathway in humanMDMs, already at
early timepoints of HMPV infection.

Our next goal was to determine whether NF-kB activation
contributes to HMPV-stimulated IRF1 expression. To this end,
A B

D

E

F G

IH J

K

C

FIGURE 3 | TBK1 is required for IRF1 expression in response to HMPV. (A, B) Human MDMs were infected for the indicated timepoints with HMPV or treated with
medium (“N.I.”). Whole cell lysates were prepared and protein levels of TBK1 and p-TBK1(Ser172) were analyzed by immunoblotting. Protein levels were quantified
by normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”) (B). (C–J) Human MDMs were pretreated
with or without BX795 before infection with HMPV for the indicated timepoints. (C–G) Whole cell lysates were prepared and protein levels of IRF1, p-TBK1(Ser172),
TBK1, p-IRF3(Ser396) and IRF3 were analyzed by immunoblotting. Protein levels were quantified by normalization of band intensities against GAPDH and are
presented as fold change relative to uninfected cells (“N.I.”). (H–J) MRNA expression of IRF1, IFN-l1 and IFN-b was determined by qRT-PCR. (K) MDMs were
transfected with TBK1 siRNA or control siRNA («Allstar») prior to infection with HMPV for 18 hours. Whole cell lysates were prepared and protein levels of IRF1 and
TBK1 were analyzed by immunoblotting. Protein levels were quantified by normalization against siAllstar N.I. cells and GAPDH levels. Statistical analysis: Two-way
ANOVA with Tukey’s honest significance test: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; n.s., not significant.
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we examined the effect of siRNA-mediated knockdown of RelA
(which encodes p65) on HMPV-stimulated IRF1 expression.
Knockdown of RelA markedly reduced p65 protein levels
(Figures 4D, F) and attenuated the HMPV-induced increase of
IRF1 protein levels to approximately 50% (Figures 4D, E).
Corroborating this result, we also found that siRelA-treatment
reduced IRF1 mRNA induction by HMPV (Figure 4G). Because
TBK1 was originally identified as a mediator of p65
phosphorylation (46), we next asked if TBK1 affected
p65 phosphorylation induced by HMPV. We found that
treatment with BX795 strongly impaired HMPV-induced p65
phosphorylation at both 3 and 18 h.p.i. (Figures 4H, I). To test if
TBK1 inhibition by BX795 also affected NF-kB transcriptional
activity, we determined the effect of BX795 on HMPV-mediated
IkBa mRNA expression and found that BX795 almost
completely blocked HMPV-mediated IkBa mRNA expression
at 3 h.p.i. (Figure 4J). As BX795 in addition to inhibiting TBK1
inhibits activation of its homolog IKKϵ, we examined the effect of
siTBK1 on p65 Ser536-phosphorylation. We found that siTBK1-
mediated repression of TBK1 failed to reduce p65
Frontiers in Immunology | www.frontiersin.org 7
phosphorylation. However, we observed that p65 mRNA levels
were increased (Figures 5A–C). Interestingly, it has been
reported that upregulation of IKKϵ may be a mechanism to
compensate for the loss of TBK1 activity in NF-kB activation (43,
47). To address this, we tested the effect of siTBK1 treatment on
IKKe levels. Our results show that IKKe mRNA is induced by
HMPV infection and is further increased when TBK1 is inhibited
(Figure 5D). Moreover, we found that mRNAs of the NF-kB-
regulated genes IkBa, IL-6 and TNF were increased in siTBK1-
treated cells (Figures 5E–G), showing that IKKϵ upregulation
coincided with NF-kB pathway activation. These results are
consistent with recent findings by Balka et al. (43) showing
that TBK1 and IKKϵ act redundantly in p65 phosphorylation
and NF-kB activation. Since we found that NF-kB contributes to
IRF1 expression by HMPV and as the NF-kB subunit RelA/p65
is also required for early IFN-b expression (48), we next
evaluated the effect of siRelA on HMPV-stimulated IFN-b
induction. siRelA-treatment reduced HMPV-stimulated IFN-b
at 18 hours of infection (Figure S4). While little IFN-b was
induced at 3 hours, IRF1 mRNA was stimulated to around 4-fold
A B
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C

FIGURE 4 | NF-kB is necessary for HMPV-induced IRF1 expression. (A–C) Human MDMs were infected for the indicated timepoints with HMPV or treated with medium
(N.I.). (A) Whole cell lysates were prepared and protein levels of p65 and p-p65(Ser536) were analyzed by immunoblotting. (B) Protein levels were quantified by
normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”). (C) IkBa mRNA expression was determined by
qRT-PCR. Error bars represent SD of three technical replicates. (D–G) MDMs were transfected with RelA siRNA or control siRNA («Allstar») prior to infection with HMPV.
In (D–F) whole cell lysates were prepared and protein levels of IRF1, p65 and GAPDH were analyzed by immunoblotting. For (E, F), protein levels were quantified by
normalization of band intensities against siAllstar medium and the respective values for GAPDH. (G) IRF1 mRNA in siRNA-treated MDMs was determined by qRT-PCR.
(H–J) Human MDMs were pretreated with or without BX795 before infection with HMPV for the indicated timepoints. Whole cell lysates were prepared and protein levels
of p65, p-p65(Ser536) and IkBa were analyzed by immunoblotting (H). Protein levels were quantified by normalization of band intensities against GAPDH and are
presented as fold change relative to uninfected cells (“N.I.”; I). (J) IkBa mRNA expression was determined by qRT-PCR. Error bars represent SD of three technical
replicates. Statistical analysis: Two-way ANOVA with Tukey’s honest significance test ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; n.s., not significant.
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and this induction was inhibited by siRelA-treatment
(Figure S4). Thus, our results indicate that HMPV-mediated
IRF1 expression is dependent on NF-kB activation, that TBK1
contributes to NF-kB phosphorylation and transcriptional
activation, and that NF-kB mediates IFN-b induction.

HMPV-Induced Expression of IRF1 Is
Dependent on Type I IFN Signaling
In addition to NF-kB, IRF1 expression can be induced by STAT1
that is activated downstream of IFN-receptors (12). It was recently
reported that robust STAT1 Tyr701 phosphorylation was required
and sufficient for STAT1 binding to the IRF1 promoter in response
to IFN-b (49). Because phosphorylation at Tyr701 is required for
STAT1 activation and binding to the IRF1 promoter we measured
levels of phosphoTyr701 STAT1 in HMPV-infected MDMs. From
about 6 h.p.i., HMPV infection markedly increased STAT1 Tyr701-
phosphorylation that continued to increase until 18 h.p.i.
(Figures 6A, B). To visualize differences in kinetics of p65 and
STAT1 phosphorylation we plotted the magnitude of change in
phosphoprotein levels (by immunoblotting; Figures 6A, 4A) in
Figure 6C. By doing this, we illustrate that p65 phosphorylation
occurs prior to STAT1 phosphorylation. Furthermore, to assess if
inhibition of the STAT1 pathway affects IRF1 induction by HMPV,
we measured the effect of the Janus family kinases JAK1 and JAK2
inhibitor ruxolitinib on IRF1 induction. JAK1/JAK2 are critical for
STAT1-mediated gene induction and ruxolitinib is a potent
inhibitor of STAT1-mediated gene expression (50–52). We found
Frontiers in Immunology | www.frontiersin.org 8
that in MDMs pretreated with either 5 or 10 µM ruxolitinib prior to
HMPV infection induction of IRF1 protein was abrogated
(Figures 6D, E). In addition, we confirmed that ruxolitinib
blocked HMPV-stimulated phosphorylation of STAT1 at Tyr701
(Figures 6D, F). Ruxolitinib also blocked IRF1 expression and
STAT1 Tyr701-phosphorylation induced by IFN-b (which acts
through the JAK-STAT pathway to IRF1 induction (53);),
thereby confirming the effectiveness of the JAK1/2 inhibitor in
blocking STAT1 activation (Figures 6D–F). Together our results
indicate that the JAK/STAT1 pathway contributes to IRF1
induction by HMPV.

IRF1 is strongly induced via IFN-b (49, 53). Therefore,we tested
if type I and also type III IFNs contribute to IRF1 induction in
HMPV-infection by activating IFNAR or IFNLR. Human MDMs
were incubated with IFNAR and IFNLR neutralizing antibodies or
the TBK1/IKKe inhibitor BX795 (as a control) prior to infection
with HMPV. Blocking of either IFNAR or IFNLR partially
decreased HMPV-induced IRF1 expression and STAT1
phosphorylation (Figures 7A–C). To confirm this result, we
confirmed that treatment with anti-IFNAR neutralizing
antibodies reduced IRF1 mRNA expression (Figure 7D), hence
supporting the results obtained for IRF1protein levels.These results
suggest that type I and type III IFN-signaling may contribute to
HMPV-stimulated IRF1expression. Toconfirm this hypothesis, we
tested if exogenous (recombinant) type I or III IFNs could restore
HMPV-induced IRF1 expression in MDMs that were treated with
BX795 (Figures 7E, F). MDMs were treated with BX795 prior to
A

B D

E F G

C

FIGURE 5 | TBK1 is dispensable for HMPV-mediated p65 Ser536 phosphorylation and NF-kB activation. Human MDMs were transfected with TBK1 siRNA or
control siRNA («Allstar») prior to infection with HMPV. (A) Whole cell lysates were prepared and protein levels of TBK1 and p-p65(Ser536) were analyzed by
immunoblotting. (B-G) MRNA expression of TBK1 (B), p65 (C), IKKe (D), IkBa (E), IL-6 (F) and TNF (G) was determined by qRT-PCR. Statistical analysis: Two-way
ANOVA with Tukey’s honest significance test: ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001; n.s., not significant.
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HMPV infection and subsequently with recombinant IFN-b or
IFN-l1. We found that recombinant IFN-b, but not IFN-l1, was
able to partially reverse the inhibitory effect of BX795 on IRF1
expression andSTAT1Tyr701-phosphorylation (Figure7E, lanes 4
and 5). In addition, recombinant IFN-b alone induced IRF1
expression (Figure 7E, lanes 1 and 8), while IFN-l1 barely
affected IRF1 (Figure 7E, lanes 1 and 9). The increase in IRF1
protein was proportional to levels of phosphorylated STAT1
Frontiers in Immunology | www.frontiersin.org 9
(Figures 7F, G). Moreover, IFN-b (when added alone) induced
STAT1Tyr701-phosphorylation, while IFN-l1 did not (Figure 7E,
lanes 8 and 9, Figure 7G). These results are consistent with recent
results showing that that robust STAT1Tyr701 phosphorylation is
required for IRF1 induction and that only IFN-b (not IFN-l1)
enhances IRF1 levels (49). These results indicate that at the tested
concentrations and times, IFN-b, but not IFN-l1, could restore
expression of IRF1 in cells lacking TBK1/IKKe kinase activity.
A

B

D

E F

C

FIGURE 6 | HMPV-induced expression of IRF1 is dependent on STAT1 activation. (A, B) Human MDMs were infected for the indicated timepoints with HMPV or
treated with medium (“N.I.”). Whole cell lysates were prepared and protein levels of STAT1 and p-STAT1(Tyr701) were analyzed by immunoblotting. (B) Protein levels
of p-STAT1(Tyr701) were quantified by normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”).
(C) Comparison of quantified p-STAT1(Tyr701), HMPV N-protein, p-TBK1(Ser172) and p-p65(Ser536) levels (presented in Figures 1C, 3A, 4A and 5A). (D) Human
MDMs were preincubated with the indicated concentration of S-Ruxolitinib prior to infection with HMPV (18 h) or treatment with IFN-b (3 h). Whole cell lysates were
prepared and protein levels of IRF1, STAT1 and p-STAT1(Tyr701) were analyzed by immunoblotting. Protein levels of IRF1 (E) and p-STAT1(Tyr701) (F) were
quantified by normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”). Statistical analysis: Two-way
ANOVA with Tukey’s honest significance test: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.0001. n.s., not significant.
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Furthermore, when we examined p65 Ser536-phosphorylation
(that we have shown contribute to IRF1 induction by HMPV); we
found that additionof IFN-bor IFN-l1didnot significantly change
p65 Ser536-phosphorylation (Figures 7E, H). Based on these
observations we propose that IFN-b-mediated STAT1 activation
contributes to IRF1 induction by HMPV.
DISCUSSION

In this study we define a novel IRF1 regulatory link induced by
infection with the airway pathogen HMPV. IRF1 controls the
expression of multiple genes that are of fundamental importance
to host protection against infection and restriction of not only
viral, but also bacterial and fungal replication. Examples of IRF1
controlled genes include IFN-l in viral infections, guanylate-
binding proteins (GBPs) in Francisella infection, immunity-
Frontiers in Immunology | www.frontiersin.org 10
related guanosine triphosphatases (IRGs) in Aspergillus
fumigatus infection (54, 55) and the immune-responsive gene 1
(IRG1/ACOD1) in infections with Gram-negative bacteria (56,
57). Such an important role of IRF1 in pathogen defense
mechanisms underscores the need for detailed knowledge of the
mechanisms that govern its expression. Nevertheless, for most
pathogens the regulation of IRF1 expression levels throughout the
course of microbial infections is not well documented. In this
study, we demonstrate that HMPV induces IRF1 via a mechanism
involving the innate immune kinase TBK1, activation of p65/NF-
kB, type I IFN signaling and STAT1 activation leading to efficient
IRF1 induction (schematically illustrated in Figure 8).

We found that the inhibitor BX795 which in addition to
inhibiting TBK1 inhibits its homolog IKKe, blocked HMPV-
stimulated p65 Ser536-phosphorylation. In contrast, siTBK1-
mediated repression of TBK1 did not reduce phosphorylation
of p65, but rather led to increased activation of the NF-kB
A B D

E F

G

H

C

FIGURE 7 | Type I IFN signaling contributes to HMPV-induced expression of IRF1. (A–D) Human MDMs were incubated with neutralizing antibodies against IFN-a/
bR (a/bR) or IFN-lR (lR), or BX795 (BX) prior to infection with HMPV. Protein levels of IRF1 and p-STAT1(Tyr701) were analyzed by immunoblotting (A) and
quantified by normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”) (B, C). In (D) IRF1 mRNA
expression was determined in MDMs treated with neutralizing antibodies against IFN-a/bR (a/bR) prior to HMPV infection. IRF1 mRNA levels were normalized to
HMPV-infected cells. (E–H) Human MDMs were incubated with BX795 prior to infection with HMPV or treatment with medium (N.I.). After 15 h, recombinant IFN-b,
IFN-l1 or medium were added for 3 h. IRF1 (F), p-STAT1(Tyr701) (G) and p-p65(Ser536) (H) protein levels were analyzed by immunoblotting, quantified by
normalization of band intensities against GAPDH and are presented as fold change relative to uninfected cells (“N.I.”). Data are representative of three (A–D) or two
(E–H) independent biological replicates.
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pathway (determined as increased expression of p65 and the NF-
kB regulated genes IkBa, TNF, IL-6). Moreover, levels of IKKe
mRNA was increased by HMPV infection and was further
increased upon repressing TBK1 by siTBK1-treatment. These
results corroborate findings by others showing that for VSV
infection, polyIC-treatment and STING activation TBK1 and
IKKe act redundantly to elicit NF-kB activation (43, 47). Hence,
our results suggest that also for HMPV infection, IKKe may
Frontiers in Immunology | www.frontiersin.org 11
compensate for TBK1 in NF-kB activation, perhaps by
phosphorylating Ser536 as has been found in other settings
(58). Interestingly, Balka et al. found that for LPS-treatment
neither TBK1 nor IKKe was required for p65 phosphorylation,
illustrating that the involvement of TBK1 and/or IKKe to p65
phosphorylation is stimulus-specific. Despite that TBK1 appears
to be dispensable for HMPV-triggered p65 phosphorylation,
siTBK1-treatment partially reduced IRF1 expression stimulated
FIGURE 8 | Proposed model of IRF1 transcriptional regulation by TBK1, p65/NF-kB and the IFN-b-STAT1 axis. Based on our results we propose that in HMPV-
infected cells TBK1 regulates IRF1 expression via the transcription factors p65/NF-kB (1) and STAT1 (2). HMPV may activate TBK1 downstream of RIG-I-like
receptors (RLRs) and lead to activation of p65(1) and IFN-b which may stimulate IRF1 expression via IFNAR-mediated STAT1 activation (2).BX795 targets both TBK1
and its homolog IKKe. The results suggest that IRF1 is part of an amplifier loop of IFN-b expression (3). Phosphorylation of p65 may contribute to IFN-b induction.
IFN-b is believed to be the main driver of IRF1 expression by HMPV in MDMs.
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by HMPV (Figure 3K). This may reflect that IFN-b, in addition
to NF-kB activation, is able to drive HMPV-stimulated IRF1
expression. It will be interesting in future studies to address if
TBK1 and IKKe have selective roles in activation of
inflammatory/IFN pathways and of different IRF family
members in response to HMPV infection.

We found that in contrast to e.g., STAT1 phosphorylation
(Figures 6A, B), p65 phosphorylation and IkBa induction
occurred at the early stages of HMPV infection (Figures 4A–C).
This induction is TBK1-dependent because it is impaired when
TBK1 activity is inhibited (Figures 4G–I). Our data may suggest
that p65 is involved in IRF1 induction prior to initiation of robust
IFN-b-IFNAR-STAT1-mediated signaling. This is based on our
observation that little IFN-b were induced at early timepoints while
IRF1 mRNA was clearly induced and this induction was inhibited
by RelA siRNA-treatment. Hence, we speculate that at the early
timepoint, NF-kB may be directly involved in regulation of IRF1,
while at later time-points IFN-b exerts the significant contribution
to IRF1 induction. Of note, others have identified both an NF-kB
binding site and STAT1-binding elements in the IRF1 promoter as
being critical for IRF1 induction by TNF and IFN-g (19, 59) and it is
possible these promoter elements could be implicated in HMPV-
mediated IRF1 induction.

To the best of our knowledge, although it is important in
relation to virus infections, the TBK1 (IKKe) -NF-kB-axis has not
previously been reported to control IRF1 levels. Nevertheless, it
has been reported that NF-kB/RelA is implicated in IRF1
induction following HRV- and RSV infection (21, 22). Hence,
HMPV, similarly to the airway viruses HRV and RSV, depends on
NF-kB activation for modulating IRF1 levels. As viruses may
employ species-specific mechanisms to evade innate immune
responses, it is also of interest to determine if TBK1 is also
critical for induction of IRF1 in response to HRV and RSV. In
HIV infections IRF1 appears to have a dual role: HIV initially
upregulates IRF1 in order to initiate HIV replication (60), but at
later stages of infection, HIV inhibits IRF1 functions, thereby
evading the IRF1-mediated induction of antiviral responses (61).
Interestingly, HIV can impair TBK1 activation in human dendritic
cells and macrophages (62), but it is currently unknown whether
this affects IRF1 expression. Taken together, ours and previously
published data strongly suggest that both TBK1 and NF-kB are
involved in IRF1 regulation upon infection with a wide set of viral
species. Our results implicate NF-kB in the early response to
HMPV (i.e. in IRF1 induction). Interestingly, analogous to our
results, initial NF-kB activation has been reported to be critical for
early induction of antiviral response genes in RSV-infected cells,
by triggering an IFN-b-dependent amplification loop (21).

It has been found that TBK1 is required for the regulation of
IFN-g-induced genes by IRF1 and IRF7 (25). Farlik et al. found
that TBK1 directly phosphorylated and activated IRF7 in
response to IFN-g. We have earlier shown that HMPV induces
IRF7 transcription in MDMs (37). Of interest, it is possible that
TBK1 regulates transcription of both IRF1 and IRF7 and that
TBK1 (and also IKKe) could regulate IRF7 function not only by
activating phosphorylation (as reported by Farlik et al.), but also
by stimulating increased IRF7 levels.
Frontiers in Immunology | www.frontiersin.org 12
Our results suggest that TBK1 (and possibly IKKe) is implicated
in p65 Ser536-phosphorylation and NF-kB activation in HMPV-
infected cells. Within the scope of this study we did not establish if
TBK1 (or IKKe) directly phosphorylates p65 or if this is an indirect
process. Several reports indicate that TBK1 may activate NF-kB
either directly by phosphorylating p65 at Ser468 and Ser536
(leading to increased transactivation) or indirectly by supporting
IKKa/IKKb activation (by interacting with the upstream TANK-
TRAF2-complex) upstream of NF-kB (63–68). Likewise, IKKe have
been reported to regulate p65 Ser536-phosphorylation (58).
Similarly to our results showing that TBK1 mediates
phosphorylation and activation of NF-kB, intracellular sensing of
cytosolic dsDNA and herpes simplex virus (HSV; via the innate
immune adaptor protein STING), leads to NF-kB activation
predominantly via direct activation of p65 by TBK1 (69).

In summary, our work identifies signaling mechanisms by
which IRF1 is regulated by the airway virus HMPV. IRF1
expression and function is important for protective mucosal
responses and also for CD8+ T cell responses and our findings on
IRF1 regulation may be of relevance for therapeutic purposes or
vaccination strategies for airway viruses.
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