
ORIGINAL RESEARCH ARTICLE
published: 10 October 2014

doi: 10.3389/fninf.2014.00078

Spiking network simulation code for petascale computers
Susanne Kunkel1,2*, Maximilian Schmidt 3, Jochen M. Eppler 3, Hans E. Plesser 3,4, Gen Masumoto5,

Jun Igarashi 6,7, Shin Ishii 8, Tomoki Fukai7, Abigail Morrison1,3,9, Markus Diesmann3,7,10 and

Moritz Helias 2,3

1 Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research
Alliance, Jülich Research Centre, Jülich, Germany

2 Programming Environment Research Team, RIKEN Advanced Institute for Computational Science, Kobe, Japan
3 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
4 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Aas, Norway
5 Advanced Center for Computing and Communication, RIKEN, Wako, Japan
6 Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
7 Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Japan
8 Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
9 Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
10 Medical Faculty, RWTH University, Aachen, Germany

Edited by:

Anders Lansner, Royal Institute of
Technology (KTH), Sweden

Reviewed by:

Thomas Natschläger, Software
Competence Center Hagenberg
GmbH, Austria
James Kozloski, IBM Thomas J.
Watson Research Center, Yorktown
Heights, USA
Frederick C. Harris, University of
Nevada, Reno, USA

*Correspondence:

Susanne Kunkel,
Forschungszentrum Jülich GmbH,
JSC, 52425 Jülich, Germany
e-mail: kunkel@fz-juelich.de

Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties
and parameters of their constituents. At cellular resolution, the entities of theory are
neurons and synapses and over the past decade researchers have learned to manage
the heterogeneity of neurons and synapses with efficient data structures. Already early
parallel simulation codes stored synapses in a distributed fashion such that a synapse
solely consumes memory on the compute node harboring the target neuron. As petaflop
computers with some 100,000 nodes become increasingly available for neuroscience,
new challenges arise for neuronal network simulation software: Each neuron contacts
on the order of 10,000 other neurons and thus has targets only on a fraction of all
compute nodes; furthermore, for any given source neuron, at most a single synapse
is typically created on any compute node. From the viewpoint of an individual compute
node, the heterogeneity in the synaptic target lists thus collapses along two dimensions:
the dimension of the types of synapses and the dimension of the number of synapses
of a given type. Here we present a data structure taking advantage of this double
collapse using metaprogramming techniques. After introducing the relevant scaling
scenario for brain-scale simulations, we quantitatively discuss the performance on two
supercomputers. We show that the novel architecture scales to the largest petascale
supercomputers available today.

Keywords: supercomputer, large-scale simulation, parallel computing, computational neuroscience, memory

footprint, memory management, metaprogramming

1. INTRODUCTION
In the past decade, major advances have been made that allow the
routine simulation of spiking neuronal networks on the scale of
the local cortical volume, i.e., containing up to 105 neurons and
109 synapses, including the exploitation of distributed and con-
current computing, the incorporation of experimentally observed
phenomena such as plasticity, and the provision of appropriate
high-level user interfaces (Davison et al., 2008; Bednar, 2009;
Eppler et al., 2009; Hines et al., 2009; Goodman and Brette,
2013; Zaytsev and Morrison, 2014). However, such models are
intrinsically limited. Firstly, a cortical neuron receives only about
50% of its synaptic inputs from neurons in the same cortical
volume; in such models, the other half is generally abstracted
as a random or constant input. Consequently, larger models
are required to arrive at self-consistent descriptions. Secondly,
many cognitive tasks involve the co-ordinated activity of mul-
tiple brain areas. Thus, in order to understand such processes,

it is necessary to develop and investigate models on the brain
scale.

In a previous study (Kunkel et al., 2012b), we presented
data structures that allow the neuronal network simulator NEST
(Gewaltig and Diesmann, 2007) to exploit the increasingly avail-
able supercomputers such as JUQUEEN and the K computer
(Helias et al., 2012). Although we could carry out benchmarks
utilizing over 100,000 cores, analysis of the memory consump-
tion (Section 3.1) reveals that at such large sizes, the infrastructure
required on each machine to store synapses with local targets
becomes the dominant component.

The reason can be understood with a simple calculation.
Assuming each neuron contacts 10,000 other neurons, and that
these neurons are randomly distributed over the entire supercom-
puter, then on a system with 100,000 cores, the probability of a
core containing more than one target neuron is rather small, and
the majority of cores will contain no target neurons of the given

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00078/abstract
http://community.frontiersin.org/people/u/8419
http://community.frontiersin.org/people/u/174360
http://community.frontiersin.org/people/u/2466
http://community.frontiersin.org/people/u/2833
http://community.frontiersin.org/people/u/60300
http://community.frontiersin.org/people/u/61259
http://community.frontiersin.org/people/u/70366
http://community.frontiersin.org/people/u/22174
http://community.frontiersin.org/people/u/13504
http://community.frontiersin.org/people/u/630
http://community.frontiersin.org/people/u/2031
mailto:kunkel@fz-juelich.de
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

FIGURE 1 | Number of local target lists approaches the number of local

synapses. The gray curve shows the expected number of target lists per
core N>0

c , given by Equation (6), that contain at least one synapse as a
function of the total network size N. The pink curve

(
1 − exp (− KVP/N)

)
N

is an approximation (7) for large networks. Here, each core represents
NVP = 2000 neurons with K = 10,000 synapses per neuron, which is a
realistic example. In the limit of large N the number of target lists
approaches the number of local synapses KVP = KNVP (black dashed
horizontal line). The gray vertical line marks the network size Nζ , given by
Equation (9), at which the number of target lists has reached ζ = 99% of
the limit KVP. The pink dashed vertical line at KVP/2/ (1 − ζ) is an
approximation (10) of the full expression (9).

neuron. This is illustrated in Figure 1; as the total network size
increases (whilst maintaining a constant number of neurons on
a core), the number of target lists of non-zero length approaches
the number of synapses on the local core and, consequently, each
target list has an expected length of 1. As each new target list
comes with a certain memory overhead, the average total costs
per synapse increase with increasing network size. This accelera-
tion in memory consumption only stops when each target list is
either of length 0 or length 1 and from then on each synapse car-
ries the full overhead of one target list. With realistic parameters,
the largest networks that can be represented on supercomputers
using the technology employed in Helias et al. (2012) reach this
limit.

The memory model introduced in Kunkel et al. (2012b) trig-
gered the major advance of using sparse tables to store incoming
connections, thus reducing the memory overhead for target lists
of length 0. However, the memory overhead for neurons with
local targets is still substantial, as the data structure is designed
to enable variable amounts of heterogeneous connection types,
e.g., static synapses and various types of plasticity including short-
term plasticity (Tsodyks et al., 1998, 2000) and spike-timing
dependent plasticity (see e.g., Morrison et al., 2008, for a review).
Nevertheless, as the network size increases, it becomes increas-
ingly common that a neuron has only one local target, thus the
majority of this structure is redundant: both the number (just 1)
and the type of the connection are known.

Thus, the challenge is to develop a data structure that is
streamlined for the most common case (on large systems) that
a neuron has one local target, and yet allows the full flexibility
with respect to connection type and number when needed. A con-
straint on the granularity of the parallelization is the assumption

that the neuron objects themselves are not distributed but viewed
as atomistic and simulated on a single compute node as an entity.
Consequently the connection infrastructure only needs to rep-
resent synaptic connections, not connections between different
compartments of a neuron. In Section 3.2, we present a data
structure that fulfills these criteria by self-collapsing along two
dimensions: the heterogeneity collapses to a single well-defined
connection type and the dynamic length of the connections vector
collapses to a single element. Moreover, a redesign of the synapse
data structure and the handshaking algorithm at connection time
(see Section 3.3) allow the polymorphism of the synapse types
to be exploited without requiring a pointer to a virtual function
table, thus saving 8 B for every synapse in the network. Making
use of the limited number of neurons local to a core further allows
us to replace the full 8 B target pointer by a 2 B index and com-
bining the delay and the synapse type into a joint data structure
saves another 8 B. The creation of many small synapse objects
presents a challenge to the memory allocation which we meet by
implementing a dedicated pool allocator in Section 3.4. Finally,
in Section 3.5 a new data structure to store local neurons is intro-
duced. The sparse node array exploits the regularity in assigning
neurons to machines and thereby eliminates memory overhead
for non-local neurons at the expense of an increased number of
search steps to locate a node. The major result of this study is
that we are now capable of employing the full size of currently
available petascale computers such as JUQUEEN and K.

In Section 2.1 we describe the basic characteristics of the
software environment under study and Section 2.2 specifies the
neuronal network model used to obtain quantitative data. Section
2.3 extends the mathematical memory model previously intro-
duced in Kunkel et al. (2012b) which we use to analyze the scaling
properties of alternative data structures.

In Section 3.1 we first investigate the memory consumption
of NEST on petascale computers in detail. In the following sec-
tions we describe the data structures, corresponding algorithms,
and the allocator outlined above. Finally in Section 3.6 we quanti-
tatively compare the resulting new (4g) simulation code with the
previous (3g) version on the two supercomputers JUQUEEN and
K. The capability of the fourth generation code is demonstrated
by orchestrating all the available main memory of the K computer
in a single simulation. In the concluding section we assess our
achievements in terms of flexibility and network size in the light
of previous work and discuss limitations.

This article concludes a co-development project for the K
computer in Kobe, which started in 2008 (Diesmann, 2013).
Preliminary results have been published in abstract form
(Diesmann, 2012; Kunkel et al., 2013) and as a joint press release
of the Jülich Research Centre and RIKEN (RIKEN BSI, 2013). The
conceptual and algorithmic work described here is a module in
our long-term collaborative project to provide the technology for
neural systems simulations (Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS
2.1. NEST SIMULATOR
NEST is a simulation software for spiking neuronal networks
of single- and few-compartment neuron models (Gewaltig and
Diesmann, 2007). It incorporates a number of technologies

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

for the accurate and efficient simulation of neuronal systems
such as the exact integration of models with linear subthresh-
old dynamics (Rotter and Diesmann, 1999), algorithms for
synaptic plasticity (Morrison et al., 2007, 2008; Potjans et al.,
2010), the framework for off-grid spiking including synaptic
delays (Morrison et al., 2005a; Hanuschkin et al., 2010) and
the Python-based user interface PyNEST/CyNEST (Eppler et al.,
2009; Zaytsev and Morrison, 2014). NEST is developed by the
NEST Initiative and available under the GNU General Public
License. It can be downloaded from the website of the NEST
Simulator (http://www.nest-simulator.org).

NEST uses a hybrid parallelization strategy during the setup
and simulation phase with one MPI process per compute node
and multi-threading based on OpenMP within each process. The
use of threads instead of MPI processes on the cores is the basis
of light-weight parallelization, because process-based distribution
employed in MPI enforces the replication of the entire application
on each MPI process and process management entails additional
overhead (Eppler et al., 2007; Plesser et al., 2007). Thread-parallel
components do not require the duplication of data structures
per se. However, the current implementation of NEST duplicates
parts of the connection infrastructure for each thread to achieve
good cache performance during the thread-parallel delivery of
spike events to the target neurons.

Furthermore, on a given supercomputer the number of MPI
processes may have limits; on K, for example, there can be only
one MPI job per node and the total number of MPI jobs is limited
to 88,128. The neurons of the network are evenly distributed over
the compute nodes in a round-robin fashion and communica-
tion between machines is performed by collective MPI functions
(Eppler et al., 2007). The delivery of a spike event from a given
neuron to its targets requires that each receiving machine has the
information available to determine whether the sending neuron
has any targets local to that machine. In NEST, this is realized
by storing the outgoing synapses to local targets in a data struc-
ture logically forming a target list. For the 3rd generation kernel,
this data structure is described in detail in Kunkel et al. (2012b)
and for the 4th generation kernel in Section 3.2. For comparison,
the two data structures are illustrated in Figure 3. In addition,
the memory consumption caused by the currently employed col-
lective data exchange scheme (MPI_Allgather) increases with
the number of MPI processes.

2.2. NETWORK MODEL
All measurements of memory usage and run time are carried
out for a balanced random network model (Brunel, 2000) of
80% excitatory and 20% inhibitory integrate-and-fire neurons
with alpha-shaped post-synaptic currents. Both types of neu-
rons are represented by the NEST model iaf_neuron with
a homogeneous set of parameters. All excitatory-excitatory
connections exhibit spike-timing dependent plasticity (STDP)
and all other connections are static. Simulations performed with
the 3rd generation simulation kernel (Helias et al., 2012; Kunkel
et al., 2012b) employ the models stdp_pl_synapse_hom
and static_synapse whereas simulations run with the
4th generation simulation kernel presented in this manuscript
use the novel high-performance computing (HPC) versions

of these models (stdp_pl_synapse_hom_hpc and
static_synapse_hpc, described in Section 3.3). We use
two sets of parameters for the benchmarks. Within each set, the
only parameter varied is the network size in terms of number of
neurons N.

Set 1 The total number of incoming connections per neuron
is fixed at K = 11,250 (9000 excitatory, 2250 inhibitory).
The initial membrane potentials are drawn from a normal
distribution with μ = 9.5 mV and σ = 5.0 mV. The ini-
tial synaptic weights are set to JE = 45.61 pA for excitatory
and to JI = −gJE, g = 5 for inhibitory synapses. All neu-
rons receive excitatory external Poissonian input causing a
mean membrane potential of η Vth = τsynJE

τm
Cm

νext.. With
η = 1.685, Vth = 20 mV, τm = 10 ms, Cm = 250 pF, and
τsyn = 0.3258 ms, this corresponds to the input spike rate

of νext. = η
Vth

τsynJE
τm
Cm

� 20,856 spikes per second summed

over all external inputs to a neuron. Within the simula-
tion period of 1 s, each neuron fires on average 7.6 times.
Spikes are communicated every 1.5 ms, corresponding to
the synaptic delay, but neuronal state variables are advanced
in steps of 0.1 ms. For further details of the network model
such as neuronal and synaptic parameters please see the
example script hpc_benchmark.sli, which is available
in the next major release of NEST.

Set 2 For the second set of benchmarks, the number of incoming
connections per neurons is reduced to K = 6000. The other
parameters are adapted to obtain an irregular activity state
with an average rate of 4.5 spikes per second. The adapted
parameters are JE = 50 pA, g = 7, and η = 1.2. All other
parameters are the same as in set 1.

2.3. MEMORY-USAGE MODEL
Our efforts to redesign the objects and fundamental data struc-
tures of NEST toward ever more scalable memory usage are
guided by the method introduced in Kunkel et al. (2012b). The
method is based on a model which describes the memory usage
of a neuronal network simulator as a function of the network
parameters, i.e., the number of neurons N and the number K
of synapses per neuron as well as the parameters characterizing
the distribution of the simulation code over the machine, i.e.,
the number of compute nodes M and the number of threads T
running on each compute node. Threads are also termed “virtual
processes” due to NEST’s internal treatment of threads as if they
were MPI processes by completely separating their memory areas.
This replication of data structures for each thread is reflected
in expressions of the memory consumption of the synaptic data
structures that depend only on the product MT, as shown in
Section 2.4. In the following, we therefore use the terms “the total
number of virtual processes” synonymously with “the total num-
ber of threads,” both referring to MT. We apply the model to
NEST to determine the data structures that dominate the total
memory usage at a particular target regime of number of virtual
processes. Once the critical parts of NEST have been identified,
the model enables us to predict the effect of potential design
changes for the entire range of the total number of threads from

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 3

http://www.nest-simulator.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

laptops to supercomputers. Furthermore, the model assists the
benchmarking process as it facilitates the estimation of the max-
imum network size that just fits on a given number of compute
nodes using a given number of threads each. We briefly restate
the model here and describe the required alterations to the model
for the petascale regime, which allow a more precise assessment
of the contributions of different parts of infrastructure. For fur-
ther details on the model and its practical application, please refer
to our previous publications (Helias et al., 2012; Kunkel et al.,
2012a,b).

Three main components contribute to the total memory con-
sumption of a neuronal network simulator: the base memory
usage of the simulator including external libraries such as MPI,
M0 (M), the additional memory usage that accrues when neu-
rons are created, Mn (M, N), and the additional memory usage
that accrues when neurons are connected, Mc (M, T, N, K). The
memory consumption per MPI process is given by

M (M, T, N, K) = M0 (M) + Mn (M, N) (1)

+ Mc (M, T, N, K) .

As suggested in Kunkel et al. (2012b), we determined M0 (M)

by measuring the memory usage of NEST right after start-up,
which was at most 268 MB on the K computer and 26 MB on
JUQUEEN. However, in this study M0 (M) also accounts for the
communication buffer that each MPI process requires in order
to receive spike information from other processes. As NEST uses
MPI_Allgather to communicate spike data, the buffer grows
proportionally with the number of MPI processes M. Hence, in
the petascale regime the contribution of this buffer to the total
memory usage is no longer negligible. Here, we assume that
each MPI process maintains an outgoing buffer of size 1000,
where each entry consumes 4 B, such that the memory that is
taken up by the incoming buffer amounts to M × 4 kB. In NEST
the communication buffers increase dynamically whenever the
instantaneous rate of the simulated network requires more spikes
to be communicated. In simulations of the benchmark network
model described in Section 2.2 we measured send-buffer sizes of
568 entries (in a full K computer simulation), such that for this
model the assumed buffer size of 1000 is a worst-case scenario.

Neuron objects in NEST are distributed across virtual pro-
cesses in a round-robin fashion and connections are represented
on the process of their post-synaptic neuron. We use the term
“VP-local” to indicate that a neuron is local to a certain virtual
process. As neurons with similar properties are typically created
en bloc, the round-robin distribution scheme constitutes a sim-
ple form of static load-balancing for heterogeneous networks with
varying numbers of incoming connections per neuron. If each
virtual process owns sufficiently many neurons, the number of
local connection objects is similar across processes. Therefore, in
our model we let NM = N/M and KM = NMK denote the aver-
age number of neuron and connection objects per MPI process,
and we let NVP = NM/T and KVP = NVPK denote the average
number of VP-local neuron and connection objects.

In the regime of ∼ 10,000 virtual processes, for a randomly
connected network the targets of a neuron become more and

more spread out. This results in the limiting case where K pro-
cesses each own one of the targets and the remaining MT − K
processes do not own any of the targets. As a consequence, the
connection infrastructure becomes increasingly sparse, where the
extent of sparseness can be quantified in a probabilistic way. Here
we use the symbol ∼ reading “on the order of” (Hardy and
Wright, 1975, p. 7) in the physics sense (Jeffreys and Jeffreys, 1956,
p. 23). This relation stating that two quantities are not differing by
more than a factor of 10 needs to be distinguished from the big-O
notation below (Section 2.4), which is used to describe the limit
of a function.

To quantify the sparseness we define p∅ and p1 as the prob-
abilities that a particular neuron has 0 or 1 local target on a
given virtual process, respectively. Each neuron draws on average
K source neurons from the set of N possible source neurons. If
the incoming connections per neuron are drawn independently,
on average KVP source neurons are drawn on each virtual pro-
cess. Due to the large numbers, the distribution around this mean
value is narrow. The probability that a particular neuron is drawn
as a source is 1/N and the probability that the neuron is not drawn
as a source is 1 − 1/N. We can therefore adopt the simplifying
assumption that p∅ = (1 − 1/N)KVP expresses the average prob-
ability that a neuron does not connect to any VP-local target,
such that N∅

c = p∅N denotes the expected number of neurons
without any VP-local target. In this study we adapt the model
to separately account for the neurons with exactly one VP-local
target and for those with more than one VP-local target. We
introduce p1 = (1 − 1/N)KVP−1 KVP/N as the average probabil-
ity that a neuron has exactly one local target, such that N1

c = p1N
denotes the expected number of neurons with only one local tar-
get. The remaining N − N∅

c − N1
c neurons connect to more than

one VP-local target.
Throughout this study, we keep the average number of incom-

ing connections per neuron fixed at either K = 11,250 or K =
6000 in accordance with the two employed benchmark network
models (see Section 2.2), and we assume T = 8 threads per MPI
process, which corresponds to the maximum number of threads
per node supported on the K computer (see Section 2.5). We
explicitly differentiate between connections with spike-timing
dependent plasticity and connections with static weights. This
is a trivial but useful extension to the model, which enables a
more precise prediction of memory usage. For the case that all
excitatory-excitatory connections exhibit STDP, the number of

STDP connections per MPI process amounts to K
stdp
M = KMβ2,

where β = 0.8 is the fraction of excitatory neurons, and the

remaining Kstat
M = KM − K

stdp
M synapses are static. In Helias et al.

(2012), this differentiation between two connection types was
not required as in NEST 2.2 (3g kernel) the employed models
stdp_pl_synapse_hom and static_synapse have an

identical memory usage of m
stdp
c = mstat

c = 48 B.
With the above definitions, the memory consumption of the

latter two terms of Equation (1) can be further decomposed
into

Mn (M, N) = Nm0
n + (N − NM) m∅

n (2)

+ NM
(
m+

n + mn
)

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

Mc (M, T, N, K) = TNm0
c + TN∅

c m∅
c (3)

+ TN1
c m1

c + T(N − N∅
c − N1

c)m>1
c

+ Kstat
M mstat

c + K
stdp
M m

stdp
c

in order to capture the contributions of neuron and synapse
objects and different parts of infrastructure. Table 1 summa-
rizes the model parameters required to specify Mn (M, N) and
Mc (M, T, N, K) and contrasts their values for the 3g (Helias
et al., 2012) and 4g simulation technology. For convenience, we
provide the values already at this point even though they are
explained only in Section 3.

Note that we assume the same overhead m>1
c for all neu-

rons with more than one local target, which means that we
do not introduce any further distinction of possible synapse
containers for the cases where more than one synapse needs
to be stored (see Section 3.2 for the details). Here, we set
m>1

c such that it corresponds to the most complex synapse
container that can occur in simulations of the benchmark
network model described in Section 2.2, which is a con-
tainer that stores two different types of synapses in corre-
sponding vectors. As a result of this worst-case assump-
tion the model produces a slight overestimation of memory
consumption.

Overall, however, the model underestimates the effectively
required memory resources as the theoretically determined
parameter values that we employ here reflect only the mem-
ory usage of the involved data types on a 64 bit architecture,
but they cannot account for the memory allocation strate-
gies of the involved dynamical data structures (Kunkel et al.,
2012b).

2.4. NUMBER AND LENGTH OF LOCAL TARGET LISTS
Using the notation of Section 2.3 the probability of a neuron to
be the source of a particular synapse is 1/N and consequently the

probability of not being the source of any of the KVP = KN/(MT)
VP-local synapses is

p∅ =
(

1 − 1

N

) KN
MT

. (4)

Empty target lists are not instantiated and therefore do not
cause overhead by themselves. We recognize in Equation (4) the
structure (1 + x/N)N exposed by

p∅ =
[(

1 − 1

N

)N
] K

MT

.

Thus, in the limit of large N we can use the definition of the
exponential function limN→∞ (1 + x/N)N = exp (x) to replace
the term [·]. Conceptually this corresponds to the approximation

of the binomial probabilities

(
N
k

)
pk(1 − p)N−k by the corre-

sponding Poisson probabilities λk

k! exp (− λ), where λ = Np =
const. as N → ∞. In this limit we have

p̃∅ = e− K
MT (5)

� 1 − K

MT
+ 1

2

(
K

MT

)2

+ O

[(
K

MT

)3
]

,

where in the second line we expanded the expression up to second
order in the ratio K

MT � 1. We here use the big-O notation in the

sense of infinitesimal asymptotics, which means that O
[(K

MT

)3
]

collects all terms of the form f
(K

MT

)
such that for any small

K
MT there exists a constant C fulfilling the relation |f (K

MT

) | <

C
(K

MT

)3
as K

MT → 0. In complexity theory big-O often implicitly

Table 1 | Parameter definitions and values of memory-usage model for 3g and 4g technology.

Parameter Description Value in B

3g 4g

Mn
(
M, N

)
mn memory usage of one neuron object of type iaf_psc_alpha 1100

m0
n memory overhead per neuron 0.33 0

m+
n memory overhead per local neuron 16 24

m∅
n memory overhead per non-local neuron 0

Mc
(
M, T , N, K

)
mstat

c memory usage of one connection object of type static_synapse (3g) or static_synapse_hpc (4g) 48 16

mstdp
c memory usage of one connection object of type stdp_pl_synapse (3g) or stdp_pl_synapse_hpc (4g) 48 24

m0
c memory overhead per neuron 0.33

m1
c memory overhead per neuron with one local target 96 24

m>1
c memory overhead per neuron with more than one local target 160 128

m∅
c memory overhead per neuron without local targets 0

The top part of the table summarizes the parameters relevant for the memory consumption due to the neuronal infrastructure Mn, the bottom part shows the

parameters determining the memory consumption Mc of the synaptic infrastructure. Lower case symbols m refer to the memory per object, where objects are

neurons or connections, respectively. The columns “3g” and “4g” distinguish between the parameter values for the two kernel versions.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

denotes the infinite asymptotics when it refers to an integer vari-
able n. Both use cases of the notation are intended and comply
with its definition (Knuth, 1997, section 1.2.11.1).

The expected number of target lists with at least one synapse is

N>0
c = (1 − p∅) N (6)

=
(

1 −
(

1 − 1

N

) KN
MT

)
N.

For the weak scaling shown in Figure 1 we express N = NVPMT
in terms of the number of local neurons per virtual process NVP.
Using the definition of KVP, Equation (6) becomes

Ñ>0
c =

(
1 − e− KVP

N

)
N. (7)

In weak scaling the total number of local synapses KVP remains
constant and we find the limit of N>0

c by approximating the
exponential to linear order

lim
N→∞ N>0

c =
(

1 −
(

1 − KVP

N

))
N = KVP.

Using Equation (7) the number of neurons Nζ at which a fraction
ζ of the maximal number of target lists KVP contains at least one
synapse is given by the relation

ζKVP =
(

1 − e
− KVP

Nζ

)
Nζ . (8)

With the substitution s = −KVP/Nζ the relation is of the form
es = 1 + ζ s and can be inverted using the Lambert-W function
(Corless et al., 1996) yielding

Nα = KVPζ

[
1 + ζW

(
− e− 1

ζ

ζ

)]−1

. (9)

Starting again from Equation (8) with a second order approxima-
tion for the exponential

ζKVP �
(

1 −
(

1 − KVP

Nζ

+ K2
VP

2N2
ζ

))
Nζ

the relation depends linearly on Nζ , so

Nζ � KVP

2 (1 − ζ)
. (10)

Following Equation (4) the probability of a particular neuron to
establish exactly one synapse with a local neuron is

p1 =
(

1 − 1

N

)KN/MT−1 (1

N

)
KN

MT
(11)

� e− K
MT

K

MT

�
(

1 − K

MT

)
K

MT
+ O

[(
K

MT

)3
]

.

Therefore the expected number of target lists with exactly one
synapse is

N1
c = p1N =

(
1 − 1

N

)KVP−1

KVP (12)

=
(

1 − 1

MT NVP

) K
MT −1 K

MT
.

Naturally N1
c has the same limit KVP as N>0

c . The probability
to establish more than one synapse with a local neuron is the
remainder

p >1 = 1 − p∅ − p1 (13)

=
(

1 −
(

1 − 1

N

)KVP

−
(

1 − 1

N

)KVP−1 (1

N

)
KVP

)

� 1 − e− K
MT − e− K

MT
K

MT

� K

MT
− 1

2

(
K

MT

)2

−
(

1 − K

MT

)
K

MT
+ O

[(
K

MT

)3
]

= 1

2

(
K

MT

)2

+ O

((
K

MT

)3
)

,

where from the second to the third line we ignored the −1 in the
exponent, identified the exponential function in the limit, and
from the third to the fourth line approximated the expression
consistently up to second order in K

MT . The expected number of
such target lists is

N >1 =
(

1 −
(

1 − 1

N

)KVP

−
(

1 − 1

N

)KVP−1 (1

N

)
KVP

)
N

� 1

2
K2

VP
1

N
,

which can be expressed in terms of MT and NVP by noting that
N = NVPMT and KVP = KN

MT = NVPK. The limit exposes that
the number of target lists with more than one synapse declines
hyperbolically with N.

2.5. SUPERCOMPUTERS
The compute nodes in contemporary supercomputers contain
multi-core processors; the trend toward ever greater numbers of
cores is further manifested in the BlueGene/Q architecture with
16 cores per node, each capable of running 4 hardware threads.
These architectures feature a multi-level parallel programming
model, each level potentially operating at different granularity.
The coarsest level is provided by the process based distribution,
using MPI for inter-process communication message passing
interface (Message Passing Interface Forum, 1994). Within each

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

process, the next finer level is covered by threads, which can be
forked and joined in a flexible manner with OpenMP enabled
compilers (Board, 2008). The finest level is provided by stream-
ing instructions that make use of concurrently operating floating
point units within each core.

To evaluate the scalability of NEST in terms of run time
and memory usage we performed benchmarks on two differ-
ent distributed-memory supercomputing systems: the JUQUEEN
BlueGene/Q at the Jülich Research Centre in Germany and the K
computer at the Advanced Institute for Computational Science
in Kobe, Japan. The K computer consists of 88,128 compute
nodes, each with an 8-core SPARC64 VIIIfx processor, which
operates at a clock frequency of 2 GHz (Yonezawa et al., 2011),
whereas the JUQUEEN supercomputer comprises 28,672 nodes,
each with a 16-core IBM PowerPC A2 processor, which runs
at 1.6 GHz. Both systems support a hybrid simulation scheme:
distributed-memory parallel computing with MPI and multi-
threading on the processor level. In addition, the individual cores
of a JUQUEEN processor support simultaneous multithreading
with up to 4 threads. Both supercomputers have 16 GB of ran-
dom access memory (RAM) available per compute node such
that in terms of total memory resources the K computer is more
than three times larger than JUQUEEN. The compute nodes of
the K computer are connected with the “Tofu” (torus connected
full connection) interconnect network, which is a six-dimensional
mesh/torus network (Ajima et al., 2009). The bandwidth per link
is 5 GB/s. JUQUEEN uses a five-dimensional torus interconnect
network with a bandwidth of 2 GB/s per link.

In this study all benchmarks were run with T = 8 OpenMP
threads per compute node, which on both systems results in
2 GB of memory per thread, and hence facilitates the direct
comparison of benchmarking results between the two systems.
With this setup we exploited all cores per node on the K computer
but only half of the cores per node on JUQUEEN. In particular
we did not make use of the hardware support for multithreading
the individual processor cores of JUQUEEN already provide. In
total on JUQUEEN only 8 of the 64 hardware supported threads
were used.

2.6. MAXIMUM-FILLING SCALING
To obtain the maximum-filling scalings shown in Figures 7–11
we followed a two step procedure. First, based on the memory-
usage model, we obtain a prediction of the maximum number
of neurons fitting on a given portion of the machine. We then
run a series of “dry runs,” where the number of neurons is varied
around the predicted value. The dry run is a feature of NEST that
we originally developed to validate our model of the simulator’s
memory usage (Kunkel et al., 2012b). A dry run executes the same
script as the actual simulation, but only uses one compute node.
This feature can be enabled in NEST at run time by the simu-
lation script. Due to the absence of the M − 1 other instances,
the script can only be executed up to the point where the first
communication takes place, namely until after the connectivity
has been set up. At this point, however, the bulk of the memory
has been allocated so that a good estimate of the resources can
be obtained and the majority of the simulation script has been
executed. In order to establish the same data structures as in the

full run, the kernel needs to be given the information about the
total number of processes in the actual simulation. This procedure
also takes into account that of the nominal amount of working
memory (e.g., 16 GB per processor on K) typically only a fraction
(13.81 GB per processor on K) is actually available for the user
program.

3. RESULTS
3.1. MEMORY USAGE IN THE PETASCALE REGIME
The kernel of NEST 2.2 (3g kernel) is discussed in detail in Kunkel
et al. (2012b) and Helias et al. (2012). In Figure 2 we compare the
memory consumptions of the 3g kernel and the 4g kernel depend-
ing on the number of employed cores MT. We choose the number
of neurons such that at each machine size the 4g kernel consumes
the entire available memory. For the same network size, we esti-
mate the memory consumption that the 3g kernel would require.
The upper panel of Figure 2 shows the different contributions to
memory consumption for this earlier kernel. In the following we
identify the dominant contributions in the limit of large machines
used to guide the development of the 4g kernel. The resulting
implementation of the 4g kernel is described in Sections 3.2 to 3.5.

In simulations running MT ∼ 100 (we use ∼ to read “on the
order of”) virtual processes, synapse objects take up most of the
available memory. Hence, on small clusters a good approximation
of the maximum possible network size is given by Nmax ≈

FIGURE 2 | Predicted cumulative memory usage as a function of

number of virtual processes for a maximum-filling scaling.

Contributions of different data structure components to total memory
usage M (

M, T , N, K
)

of NEST for a network that just fits on MT cores of
the K computer when using the 4g kernel with T = 8. Contributions of
synapse objects and relevant components of connection infrastructure are
shown in pink and shades of orange, respectively. Contributions of base
memory usage, neuron objects, and neuron infrastructure are significantly
smaller and hence not visible at this scale. K = 11,250 synapses per neuron
are assumed. Dark orange: sparse table, orange: intermediate
infrastructure containing exactly 1 synapse, light orange: intermediate
infrastructure containing more than 1 synapse. Predicted memory usage is
shown for 3g (upper panel) and 4g technology (lower panel) with identical
scaling of the vertical axes. Vertical dashed black lines indicate full size of
the K computer; horizontal dashed black lines indicate maximum memory
usage measured on K.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

Mmax/(Kmc) where Mmax denotes the amount of memory
available per MPI process. In the range of MT ∼ 1000 virtual pro-
cesses we observe a transition where due to an insufficient paral-
lelization of data structures the connection infrastructure (shades
of orange) starts to dominate the total memory consumption. For
sufficiently small machine sizes MT <∼ 1000 the intermediate
synaptic infrastructure (shown in orange in Figure 3A) typically
stores on each virtual process more than one outgoing synapse for
each source neuron. The entailed memory overhead is therefore
negligible compared with the memory consumed by the actual
synapse objects. As MT increases, the target lists become progres-
sively shorter; the proportion of source neurons for which the
target lists only store a single connection increases. We obtain a
quantitative measure by help of the memory model presented in
Section 3.1, considering the limit of very large machines where
K/(MT) � 1. In this limit we can consistently expand all quan-
tities up to second order in the ratio K

MT � 1. The probability
(5) for a source neuron on a given machine to have an empty
target list approaches unity p0 → 1. Correspondingly, the proba-
bility for a target list with exactly one entry (11) approaches p1 →

K
MT . Target lists with more than one entry become quadratically

unlikely in the small parameter K
MT (13),

p >1 � 1

2

(
K

MT

)2

.

Two observations can be made from these expressions. In the
sparse limit, the probabilities become independent of the num-
ber of neurons. For small K

MT , target lists are short and, if not
empty, typically contain only a single connection. To illustrate
these estimates on a concrete example we assume the simulation
of a network with K = 104 synapses per neuron distributed across
the processors of a supercomputer, such as the K computer, with
M � 80,000 CPUs and T = 8 threads each. The above estimates
then yield p∅ � 0.984, p1 � 0.015, and p>1 � 0.00012. Hence,
given there is at least one connection, the conditional probabil-
ity to have one synapse is p1

p1 + p>1
� 1 − 1

2
K

MT � 0.992 and the

conditional probability to have more than one synapse is only
p>1

p1 + p>1
� 1

2
K

MT � 0.008.

Figure 1 shows the number of non-empty target lists under
weak scaling as a function of the network size N. In the limit
of large networks this number approaches NK

MT , and is thus equal
to the number of local synapses terminating on the respective
machine. The size of the network Nζ at which the number of
target lists has reached a fraction ζ � 1 of the maximum num-
ber of lists is given by Nζ (10) with Nζ � KVP

2(1−ζ) . The term
depends linearly on the number of synapses per virtual process.
A fraction of ζ = 0.95 is thus already reached when the network
size Nζ � KVP/(2 · 0.05) = 10 KVP exceeds the number of local
synapses by one order of magnitude independent of the other
parameters. This result is independent of the detailed parameters
of the memory model, as it results from the generic combinatorics
of the problem.

The effects on the memory requirements can be observed in
Figure 2 (top), where the amount of memory consumed by lists
of length one and larger one are shown separately: at MT ∼ 104

the memory consumed by the former starts exceeding the con-
sumption of the latter. At MT ∼ 105 the memory consumed by
lists with more than one synapse is negligible. As we have seen
in Section 2.5, the scenario at MT ∼ 105 is the relevant one for
currently available supercomputers. In the following we use the
analysis above to guide our development of memory-efficient
data structures on such machines. Figure 2 (top) highlights that
the intermediate synaptic infrastructure when storing only a sin-
gle synapse must be lean. In the 3g kernel the memory consumed
by a single synapse object is 48 B, while the overhead of the inter-
mediate infrastructure is 136 B. Hence in the limit of sparseness,
a synapse effectively costs 48 B + 136 B. Reducing the contribu-
tion of the intermediate infrastructure is therefore the first target
of our optimizations described in Section 3.2. We identify the size
of the synapse objects as the contribution of secondary impor-
tance and describe in Section 3.3 the corresponding optimization.
The resulting small object sizes can only be exploited with a dedi-
cated pool allocator (see Section 3.4). The least contribution to
the memory footprint stems from the neuronal infrastructure,
the improved design of which is documented in Section 3.5. The
sparse table has an even larger contribution than the neuronal
infrastructure. However, the employed collective communication
scheme that transmits the occurrence of an action potential to all
other machines requires the information whether or not the send-
ing neuron has a target on a particular machine. This information
is represented close to optimal by the sparse table. In the cur-
rent work we therefore refrained from changing this fundamental
design decision.

3.2. AUTO-ADJUSTING CONNECTION INFRASTRUCTURE
Figure 3A illustrates the connection infrastructure of NEST in
the 3rd generation kernel (3g). As shown in Section 3.1 this data
structure produces an overhead in the limit of virtual processes
MT exceeding the number of outgoing synapses K per neuron;
a presynaptic neuron then in most cases establishes zero or one
synapse on a given core. The overhead can be avoided, because
the intermediate data structure is merely required to distinguish
different types of synapses originating from the same source neu-
ron. For only a single outgoing synapse per source neuron it is not
required to provide room to simultaneously store different types.

The main idea is hence to use data structures that automati-
cally adapt to the stored information, as illustrated in Figure 3B.
The algorithm wiring the network then chooses from a set of
pre-defined containers depending on the actual need. The cor-
responding data types are arranged in a class hierarchy shown in
Figure 4, with the abstract base class ConnectorBase defin-
ing a common interface. The wiring algorithm distinguishes
four cases, depending on the number and types of the outgoing
synapses of the given source neuron:

Case 0 The source neuron has no target on this machine. In
this case, the unset bit in the sparse table (see Figure 3)
indicates the absence of synapses and no further data
structures are created.

Case 1 The source neuron has outgoing synapses that are of the
same type. In this case we use a type-homogeneous con-
tainer HomConnector. Depending on the number of
synapses, we use two different strategies to implement the

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

A

B

FIGURE 3 | VP-local connection infrastructure of NEST. A sparse table
(dark orange structure and attached light orange boxes with arrows) holds the
thread-local connection objects (pink squares) sorted according to the global
index of the associated presynaptic node. The sparse table consists of ngr

equally-sized groups, where each group maintains a bit field (tiny squares)
with one bit for each global node index in the group indicating the presence
or absence of local targets. If a particular node has local targets, the sparse
table stores a pointer to an additional inner data structure (light orange),
which has undergone a major redesign during the software development
process that led from the 3g to the 4g kernel. (A) Connection infrastructure
of the 3g kernel; listed Byte counts contribute to m+

c [see Equation (3)]. The
inner data structure consists of a vector, which holds a struct for each

connection type that the node has locally in use. Each struct links the id of
a particular connection type with a pointer to the Connector that stores the
connection objects of this type in a vector. (B) Auto-adjusting connection
infrastructure of the 4g kernel. Case 1: A particular node has less than Kcutoff

local connections and all are of the same type. A lightweight inner structure
(HomConnector) stores the connection objects in a fixed-size array. Listed
Byte counts contribute to m1

c . Case 2: A particular node has at least Kcutoff

local connections and all are of the same type. A HomConnector stores the
connection objects in a dynamically-sized vector. Case 3: The local
connections of a particular node are of different types. A HetConnector,
which is derived from C++ vector, holds a HomConnector (either Case 1
or 2) for each connection type that the node has locally in use.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

FIGURE 4 | Simplified class diagram of the connection infrastructure.

The base class ConnectorModel serves as a factory for connections. The
member function add_connection is called when a new synapse is
created and implements the algorithm to select the appropriate storage
container (see also Algorithm 2). The derived template
GenericConnectorModel contains all code independent of synapse type
and is instantiated once for each synapse type. It also holds the set of
default values for synapse parameters (data member
default_connection) and those parameters that are the same for all
synapses of the respective type (data member cp). The class
ConnectorBase defines the interface for all synapse containers, providing

abstract members to deliver spike events (send), to determine the
synapse type of type-homogeneous containers (get_syn_id), and to test
if a container is type-homogeneous, i.e., whether it stores a single or
several different synapse types (homogeneous_model). Two derived
classes implement type-homogeneous containers (HomConnector) and
type-heterogeneous containers (HetConnector). The latter, in turn, may
contain several containers of class HomConnector, stored in a C++
standard library vector (by double inheritance from std::vector).
HomConnector inherits the function push_back from the interface
vector_like, required to implement the recursive sequence of container
types, described in Algorithm 1.

homogeneous container. If less than Kcutoff synapses are
stored, we employ a recursive C++ template definition
of a structure that holds exactly 1, 2, . . . , Kcutoff synapses.
Here Kcutoff is a compile-time constant that throughout
this work was chosen to be Kcutoff = 3. The recursive
template definition is shown in Algorithm 1 and fol-
lows the known pattern defining the recursion step with
an integer-dependent template and the recursion termi-
nation by a specialization for one specific integer value
(Vandervoorde and Josuttis, 2003, Ch. 17). The classes are
instantiated at compile time due to the recursive defini-
tion of the method push_back. The set of containers
implements the functionality of a vector, requiring just
the memory for the actual payload plus an overhead of
8 B for the virtual function table pointer due to the use
of an abstract base class providing the interface of virtual
functions. Our implementation uses a custom-made pool
allocator ensuring that each thread allocates from its own
contiguous block of memory to improve the cache per-
formance and to reduce the overhead of allocating many
small objects (see Section 3.4).

Case 2 If more than Kcutoff synapses of the same type are stored
we resort to the conventional implementation employ-
ing a std::vector from the C++ standard template
library. The implementation of a vector entails an addi-
tional overhead of 3 times 8 B. This case provides the
recursion termination for the set of homogeneous con-
tainers, as shown in Algorithm 1.

Case 3 If a source neuron has synapses of different types
targeting neurons on the same machine, we employ
the container HetConnector. This intermediate
container stores several homogeneous connectors (of
either Case 1 or 2 above) and is inherited from a
std::vector<ConnectorBase∗>.

The algorithm for creating new connections employing these
adaptive data containers is documented as pseudo-code in
Algorithm 2.

3.3. CONDENSED SYNAPSE OBJECTS
In a typical cortical neuronal network model, the number of
synapses exceeds the number of neurons by a factor ∼ 104. To
reduce the memory consumption of a simulation, it is thus most
efficient to optimize the size of synapse objects, outlined in our
agenda at the end of Section 2.3 as step two of our optimizations.
We therefore reviewed the Connection class (representing the
synapses) and identified data members that could be represented
more compactly or which could even be removed. In refactor-
ing the synapse objects our objective is to neither compromise
on functionality nor on the precision of synaptic state variables,
such as the synaptic weight or the spike trace variables needed for
spike-timing dependent plasticity (Morrison et al., 2007); these
state variables are still of type double in the new simulation
kernel (4g). Our analysis of the Connection data structure
identified three steps to further reduce the memory consumption
of single synapse objects. The steps are explained in the following

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

three subsections and concluded by a subsection summarizing the
resulting reduced memory footprint.

3.3.1. Avoidance of polymorphic synapse objects
As shown in Figure 4 and in Algorithm 1, the container-classes
are templates with the synapse type connectionT as a tem-
plate parameter. Consequently, the container itself does not need
a polymorphic interface, because by specialization for a partic-
ular synapse type this type is known and fixed at compile time.
The only exception to this rule is synapse creation: we here need
to check that the synapse model and the involved neuron mod-
els are compatible. More precisely, we need to ensure that (i)
the new connection and (ii) the target node are able to handle
the type of events sent by the source node. In NEST 2.2 (3g)
the first of the two checks (i) requires a common interface to all
synapse objects (i.e., an abstract base class Connection) that
provides a set of virtual functions, one for each possible event type
(spike events, voltage measurement requests, etc.). The synapse
object then implements only those virtual member functions for
event types it can handle. A similar pattern is used for the check
(ii), determining whether the target node is able to handle the
incoming event type. On a 64 bit architecture the virtual base
class causes a per-object overhead of 8 B for the virtual func-
tion table pointer. Having such a pointer in each node hardly
affects the memory consumption, but spending these additional
8 B per synapse object seems rather costly given the fact that the
connection handshake is the only instance when NEST exploits

the polymorphism of Connection. Therefore, in the 4g ker-
nel we redesigned the handshaking algorithm such that it still
makes use of the polymorphism of Node but no longer requires
virtual functions in Connection. This reduces the per-synapse
memory usage mc by 8 B.

The design pattern that circumvents polymorphic synapse
objects is derived from the visitor pattern (Gamma et al., 1994;
Alexandrescu, 2001). A sequence diagram of the connection setup
is shown in Figure 5. The crucial step is to shift the set of vir-
tual functions that check the validity of received events from the
synapse objects to a nested class, called check_helper. Each
connection class owns its specific version of check_helper,
which is derived from the Node base class. This inner class rede-
fines the virtual function handles_test_event for those
event types the connection model can handle. The default imple-
mentations inherited from the base class throw an exception
and thus by default signal the inability of the synapse to han-
dle the particular event. Since the connection class only con-
tains the nested class definition, rather than a member of type
check_helper, the nested class does not contribute to the
memory footprint of the connection.

This new design has the additional advantage that checks (i)
and (ii) have the same structure following the visitor pattern,
shown in Figure 5: For check (i), the synapse creates an object
of its corresponding type check_helper, passes it as a visitor
to the source neuron’s member function send_test_event,
which in turn calls the overloaded version of the virtual function

FIGURE 5 | Connection handshaking mechanism of the 4g kernel. By
executing connect, NEST calls add_connection of the corresponding
connector in the connection infrastructure. This function creates a new
instance for the connection, sets its parameters and starts the connection
handshaking by calling check_connection. This function creates an

instance of the check_helper class and calls send_test_event of the
source node twice to send test events to the synapse represented by
check_helper and to the target node, respectively. Both instances execute
handles_test_event which, if the event cannot be handled, ends in the
base-class implementation throwing an exception.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

handles_test_event that has the matching event type. The
test passes if handles_test_event is implemented for the
type of event e, shown for the example of a SpikeEvent in
Figure 5. The second check (ii) proceeds along analogous lines.
Here the target neuron is passed as a visitor to the source neuron’s
member function send_test_event, which in turn sends the
event via a call to the target neuron’s handles_test_event
method.

3.3.2. Indexed target addressing
A connection has to store the information about its target node.
In NEST 2.2 (3g) this was solved by storing a pointer to the
target node, consuming 8 B on a 64 bit architecture. The new
simulation kernel (4g) implements the target addressing flex-
ibly via a template argument targetidentifierT to the
connection base class. This template parameter enables the for-
mulation of synapse objects independent of how the target is
stored, as long as the targetidentifierT provides meth-
ods to obtain the actual target neuron’s physical address via a
member get_target_ptr(). Besides the original implemen-
tation that stores the target as a full pointer, the 4g kernel supports
indexed addressing of the target neuron. The two addressing
schemes correspond to different implementations of the target
identifier. Each synapse type may be instantiated with either of
them.

Indexed addressing makes use of the limited number of neu-
rons that are local to a given virtual process. These nodes are
stored in a vector of pointers required to update the neuronal
dynamics. In a parallel simulation, the number of local neurons
rarely exceeds ∼ 104 nodes. The index space of local nodes is thus
sufficiently covered by indices of 2 B length corresponding to a
maximal index of 216 − 1 = 65,535. The target identifier then
stores the index of the target neuron corresponding to its position
in the vector of VP-local nodes. We call this index “thread-local
id” in the following. Determining the target requires one more
indirection to compute the actual address from the stored index,
but saves 6 B of memory per target pointer. The implementa-
tion requires an extension of the user interface, because in the
3g kernel the thread-local vectors of nodes are only generated
dynamically at the start of the simulation. The translation from
the global id (GID) of a target neuron to the thread-local id
is hence unavailable during wiring of the network. To employ
the indexed addressing scheme the user therefore needs to execute
the function CreateThreadLocalIds after all nodes have
been created and prior to the creation of any synapse using the
indexed addressing scheme. This function fills the vectors holding
the thread-local neurons and moreover stores the thread-local id
for each neuron in its base class. The latter information is needed
during connection setup to obtain the thread-local id from a given
global neuron id.

3.3.3. Combined storage of delay and synapse type
In a third step, the storage of the synapse type (syn_id) and
the delay (d) of a connection are optimized. The 3rd generation
connections stored these properties separately, the delay as a long
integer variable with 8 B and the synapse type as an unsigned inte-
ger with 4 B length. The delay is represented as an integer multiple

of the chosen simulation resolution h, typically h = 0.1 ms
(Morrison et al., 2005b). A reduction of the storage size from 8 B
to 3 B hence corresponds to a restriction of the maximum delay
(assuming h = 0.1 ms) from 264 h � 5.8 · 107 years to 224 h �
1670 s, which is more than sufficient for all practical demands.
The limitation of the synapse type identifier to an unsigned int
of 1 B limits the number of different synapse types to 28 = 256,
a reasonable upper limit for different synapse models. To ensure
that delay and synapse identifier are stored as compactly as pos-
sible independent of memory alignment choices of the compiler,
both variables are stored as 8 bit and 24 bit fields (Stroustrup,
1997, Ch. C.8.1) in a common structure requiring 4 B; the struc-
ture provides methods for convenient access to synapse id and
delay. Overall, the new storage scheme thus requires just 4 B per
synapse instead of 8 B + 4 B required by the 3rd generation kernel
for the same information, saving 8 B of memory.

3.3.4. Memory footprint of synapse objects
The simplest type of synapse, the static synapse, is described
completely by information identifying its target, type, delay and
weight. In the 3g simulation kernel, the type required 4 B, while
the three other items each required 8 B as described above, for a
total of 28 B. On computers with 64 bit architecture, data types
requiring 8 B, such as pointers, doubles and long integers, are
by default aligned with 64 bit-word boundaries, so that a static
synapse object in effect required 32 B: the 4 B unsigned integer
representing the synapse type was padded to 8 B to ensure proper
alignment of the following 8 B variable.

Combining all three 4g kernel optimizations described above,
the size of a static synapse object shrinks to 2 B for the tar-
get index, 4 B for the combined synapse type id and delay,
and 8 B for the synaptic weight (double precision). Provided
that the data members in the synapse object are ordered
as is {target index, synapse type id + delay,
synaptic weight}, the object requires 16 B in total, includ-
ing 2 B of padding inserted after the target index.

In addition to the member variables of a static synapse, an object
representing an STDP synapse stores the synaptic trace variable
(double) (Morrison et al., 2008), consuming another 8 B. The total
memory footprint for STDP synapse objects is thus 24 B, of which
22 B or 92% hold data, while the remaining 8% are padding. On
some systems, the 2 B of padding might in principle be avoided
by forcing the compiler to generate code for unaligned memory
access, e.g., using the __attribute__(packed) provided by
the GNU C++ compiler (Free Software Foundation, 2013, Ch.
6.36). Unfortunately, such packing is not defined in the C++-
standard and thus compiler-dependent; on some architectures,
unaligned memory access may also incur significant runtime
overhead (Rentzsch, 2005). Given that synapse objects contribute
less than 50% to the total memory requirement of the simulator
for large networks, as shown in Figure 2, the memory overhead
incurred by padding is thus less than 4%. To ensure maximum
portability, NEST does not use unaligned memory access.

3.4. POOL ALLOCATOR
The standard allocator on most systems has two severe problems
with regard to memory locality when using multiple threads and

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

memory overhead when allocating many small objects. The first
problem stems from the allocator not taking into account the
actual physical layout of the memory architecture of the machine.
In particular, the memory for objects of different threads is
often not separated, but objects are rather allocated in the order
in which they are created. This makes caching on multi-core
machines with different caches for different cores or with differ-
ent memory banks for different cores (cf. ccNUMA) inefficient
and leads to frequent (and slow) cache reloads from the main
memory, a problem generally referred to as cache thrashing. The
second problem is caused by the fact that the allocator needs to
keep administrative information about each single allocation for
freeing the memory and returning it to the operation system after
its use. Usually, this information consists at least of a pointer
to the data (8 B) and the size of the allocated memory (8 B). If
the size of administrative data is in the range of the size of the
allocation, this means a significant memory overhead.

To ameliorate these problems, we implemented a stateless cus-
tom allocator, which does not keep any administrative informa-
tion about allocations and provides thread-local memory pools
for the storage of connection containers (see Stroustrup, 1997,
Ch. 19.4.2 for the basic concept). The absence of allocation infor-
mation is not a problem, as the data structures for the storage
of synapses only grow, and never are freed during the run of the
program. Moreover, as shown in Section 3.1, in the sparse limit
reallocation of target lists is rare, as most target lists contain only a
single synapse. In this limit the simple pool allocator is hence close
to optimal. The use of the pool allocator needs to be selected by
the user with a compile-time switch. On small clusters or desktop
machines, where frequent reallocation takes place, the standard
allocator is recommended.

3.5. SPARSE NODE ARRAY
Kunkel et al. (2012b) showed that the memory overhead required
to represent neurons on each MPI process could be reduced
considerably by using a sparse table. In such a table, each non-
local neuron is represented by a single bit, while the overhead
for local neurons is only a few Bytes. Kunkel et al. (2012b) give
the following expression for the memory required to represent
neurons:

Mn (M, N) = Nm0
n +

(
N − N

M

)
m∅

n + N

M

(
m+

n + mn
)
. (14)

Using the sparse table, one has the following parameters: m0
n =

1
3 B, m∅

n = 0 B, m+
n = 24 B, and mn ≈ 1000 B, where the first

three parameters describe overhead, while the last parameter rep-
resents actual neuron objects. With N/M ∼ 103 neurons per MPI
process, neuron objects consume ∼ 1 MB, while the overhead
from Equation (14) is

Moverhead
n (M, N) = N × 1

3
B + N

M
× 24 B. (15)

For N/M ∼ 103, the second term is about 24 kB and thus neg-
ligible, while the first term becomes appreciable for large net-
works. Indeed, for N = 108 neurons, it amounts to approximately

32 MB, for N = 109 to 318 MB, almost all of which are con-
sumed for zero-bits in the bit array of the sparse table. This not
only requires appreciable amounts of memory to represent van-
ishing amounts of information, it also means that sparse table
lookups, which in most cases return negative results, become
cache inefficient, as the size of the bit array by far exceeds the
cache size.

In the following we show how this overhead can be eliminated
entirely. The basic idea is to exploit the round-robin distribution
of neurons to virtual processes and thus MPI processes (Eppler,
2006; Plesser et al., 2007). As NEST builds a network, neurons are
created with strictly increasing global neuron ids (GIDs) g, and
each neuron is assigned to and stored on MPI rank

mg = g mod M . (16)

Thus, if we place the neurons assigned to a single MPI process in
an array in order of creation, GIDs of neighboring neurons will
differ by M. For any given g, we thus can use linear interpolation
between the GIDs of the first and last local neuron to determine
the index pertaining to that GID in the array of local neurons. We
then only need to check whether the neuron found at that index
has the correct GID (i.e., is local to the MPI process) or not, in the
latter case we conclude that the neuron is managed by a different
MPI process.

Unfortunately, reality is slightly more complicated. Certain
network elements are replicated on all virtual processes in NEST,
either of logical necessity (subnet nodes used to structure large
networks) or for performance reasons (stimulating and recording
devices); we refer to such network elements as replicated nodes.
This means that (i) any node g is guaranteed to be local to MPI
rank mg according to Equation (16), (ii) if node g is a replicating
node, it is also local to all other MPI ranks, and thus (iii) neigh-
bors in the array of nodes are not necessarily spaced in intervals of
M. This will skew the linear interpolation used to look up nodes
by their GIDs.

Fortunately, the number of replicating nodes must be small
in any practical simulation, because the memory requirement of
the simulation would not scale otherwise. Thus, the skew will be
small. This suggests the following approach: Let nloc be the num-
ber of local nodes for a given MPI rank and gloc,min and gloc,max

the smallest and largest local GID, respectively, (we ignore that
the root network with GID 0 is local to all ranks), and define the
scaling factor

α = nloc − 2

gloc, max − gloc, min
. (17)

Then

lg∗ = ⌊
1 + α(g − gloc, min)

⌋
(18)

provides a linear estimate of the index of the node with GID g in
the local array of nodes. This estimate is exact if we have a single
MPI process or there are no replicating nodes except the root net-
work. We can thus look up nodes by starting our search at index
l∗g in the array of local nodes and then proceed to smaller or larger

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

nodes until we either have found the node with GID g or reached
a node with GID smaller (larger) than g, in which case we con-
clude that node g is not local. The complete algorithm is given as
Algorithm 3.

The underlying data structure is the SparseNodeArray: Its
main component is a C++ vector that stores in each element
the pointer to a node and the GID of that node. This ensures that
the linear search from l∗g is cache efficient, compared to a vector
keeping node pointers only, which would require looking up the
GID via the node pointer in each search step. Additionally, the
SparseNodeArray keeps track of the largest GID in the entire
network (to detect invalid GIDs), the smallest and largest local
GID and the scaling factor α. The memory overhead for this data
structure is thus one pointer and one long per local node, i.e.,

Moverhead
n (M, N) = N

M
× 16 B. (19)

The overhead now only depends on the number of neurons per
process, N/M, but no longer directly on the total number of
neurons in the network, N.

To evaluate the quality of the linear estimate provided by
Equation (18), we counted the number of search steps required
to find the correct node using a specially instrumented version of
the NEST code. We collected data for M = 2048 to M = 65,536
MPI processes with four threads each and between 550 and 230
nodes per thread. The average number of search steps is 0.7 in
this data and lookup never requires more than two steps for over
3 billion analyzed lookups. Therefore, we consider the linear esti-
mate to be close to optimal. In addition to the lookup by GID,
the SparseNodeArray also provides an interface for direct
iteration solely over the local nodes to allow for, e.g., efficient
initialization of all nodes.

3.6. PERFORMANCE OF 4g TECHNOLOGY
Figure 6 shows a strong scaling for the 4g kernel. At the left-most
point the workload per core is maximal; the number of neurons

FIGURE 6 | Strong scaling on K computer and JUQUEEN. Solid curves
show the scaling of simulation time, dashed curves show setup time for
networks of N = 5,242,880 neurons on JUQUEEN (blue) and N =
5,210,112 on the K computer (red). Black dotted lines are the linear
expectations for simulation and setup. All simulations were carried out
using the parameters of set 1 (cf. Section 2.2).

is chosen such that the memory is completely filled. Near the
point of maximum workload the scaling on JUQUEEN is close
to optimal, but degrades for lower workload. This is expected as
ultimately the serial overhead dominates the simulation time. The
relevance of a strong scaling graph is therefore naturally limited.
To minimize the queuing time and the energy consumption it is
desirable to choose the smallest possible machine size that enables
the simulation of a given problem size. In the following we will
hence study maximum-filling scalings, where for a given machine
size MT we simulate the largest possible network that completely
fills the memory of the machine. The procedure to arrive at the
maximum possible network size is described in Section 2.6.

The reduction of the memory consumption of the 4g ker-
nel compared to the 3g kernel is shown in Figure 7. At a given
machine size MT the same network is simulated with both ker-
nels. For each MT the size of the network is chosen such that the
3g simulation consumes all available memory on the K computer
(maximum-filling scaling). At high numbers of cores around
MT ∼ 100,000 the 4g kernel reduces the required memory by a
factor of more than 3, for smaller machine sizes the reduction of
memory consumption is less, but still substantial.

Figure 8 shows the time to setup the network (top panel) and
the simulation time (bottom panel) for the 3g and the 4g kernel in
the same maximum-filling scaling as in Figure 7. Although both
kernels simulated the same network at a given MT and hence the
same computation takes place in both simulations (same update
steps of neurons and synapses, same activity, etc.), the run time
of the new kernel is typically reduced especially at large machine
sizes. On JUQUEEN this reduction monotonically increases with
machine size, on the K computer the simulation time exhibits
fluctuations that presumably originate from different load lev-
els caused by other users of the machine, potentially occluding
a clear monotonic dependence. The faster simulation time of the

FIGURE 7 | Comparison of memory usage of 3g and 4g technology.

Black triangles show the maximum possible network size, using
parameters of set 1 (cf. Section 2.2), that can be simulated on the K
computer and on JUQUEEN when using the 3g technology with T = 8
threads per compute node (left vertical axis). The dotted black line indicates
the ideal case where the network size increases with the same factor as
the number of virtual processes. Circles show the memory consumption
(right vertical axis) of simulations with the 3g (open) and 4g (filled)
technology on the K computer (red) and JUQUEEN (blue), respectively.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

FIGURE 8 | Comparison of performance of 3g and 4g technology. Setup
time (upper panel) and simulation time (lower panel) as a function of
number of virtual processes for the maximum network size that can be
simulated when using the 3g technology (see Figure 7) and parameter set
1 (cf. Section 2.2). Circles refer to simulations with 3g (open) and 4g (filled)
technology, respectively. Results are shown for the K computer (red) and
JUQUEEN (blue) using T = 8 threads per compute node.

new kernel points at the random memory access as an important
contribution to the computation time. The smaller objects of the
connection infrastructure enable more efficient use of the cache
and reduce the overall required memory bandwidth.

The 4g implementation exhibits a reduction in setup time by
a factor of 2–8 depending on network size (Figure 8, top panel).
In parts this higher performance is due to ongoing conventional
optimization of the wiring routines; for example, by representing
consecutive neuron ids within the wiring process by the begin-
ning and end of the range (4g) instead of by explicitly naming
all elements (3g). In parts the difference is due to faster memory
allocation through the dedicated pool allocator and the smaller
objects representing synapses and connection infrastructure.

The comparison of the 3g and 4g kernels in Figures 7, 8 is
based on the maximum network size the 3g kernel can represent
on a given number of cores. The reduced memory consumption
of the 4g kernel allows us to simulate larger networks with the
same computational resources. In Figure 9 we therefore show a
maximum-filling scaling determined for the 4g kernel, showing
the maximum network size that can be simulated with a given
number of cores MT and hence for a given amount of working
memory. The growth of network size N with MT stays close to
the ideal line.

Using parameter set 2 with K = 6000 synapses per neuron and
employing all 82,944 nodes of the K computer simultaneously

FIGURE 9 | Maximum network size and corresponding run time as a

function of number of virtual processes. Triangles show the maximum
network size that can be simulated with parameter set 1 (cf. Section 2.2) on
the K computer (red) and on JUQUEEN (blue) when using the 4g
technology with T = 8 threads per compute node. The dotted black line
indicates the ideal case where the network size increases with the same
factor as the number of virtual processes. Dark blue (JUQUEEN) and
orange (K) triangles represent the maximum network size using all
compute nodes and parameter set 2 (JUQUEEN: 1.08 · 109 neurons, K:
1.86 · 109 neurons). Filled circles show the corresponding wall-clock time
required to simulate the network for 1 s of biological time.

in a single simulation with 8 cores each, we reached a maxi-
mum network size of 1.86 · 109 neurons and a total of 11.1 · 1012

synapses. This is the largest simulation of a spiking neuronal
network reported so far (RIKEN BSI, 2013). This world-record
simulation was performed on K, because only this machine pro-
vides the necessary memory to represent all synapses of the
simulation with generic connectivity. Access to JUQUEEN and
its predecessor JUGENE was, however, crucial for the design and
implementation of the simulation kernel during the development
phase of the K computer and for performing smaller simula-
tions testing the implementation (Diesmann, 2012). In terms
of memory, the K computer is at the time of writing the sec-
ond largest computer (1.4 PB RAM, on the nodes available here
1.3 PB), exceeded only by the IBM sequoia computer (1.5 PB)
at the Lawrence Livermore National Laboratory. JUQUEEN pro-
vides about one-third (0.46 PB) of the memory of the former two
systems. Previous to the current report, the largest spiking net-
work simulation comprised 1.62 · 109 neurons with on average
about 5700 synapses per neuron (Ananthanarayanan et al., 2009).
The simulation required less than 0.144 PB of memory by making
use of a specific modular connectivity structure of the network.
Thus, in contrast to the case of an arbitrary network discussed in
the present study, the choice of a specific structure enabled the
authors to condense the memory components of the connectiv-
ity infrastructure, corresponding in our implementation to the
sparse table, the intermediate infrastructure, and the synapses (see
Figure 2), into effectively only 16 B per synapse.

Comparing the theoretical prediction of the memory model to
the empirically found maximum network size reveals that the the-
ory underestimates the actual memory consumption. As shown
in our previous work (Kunkel et al., 2012b) these deviations are

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

most likely due to underestimation of the object sizes. A direct
comparison of the memory consumption of n objects of size m
to the predicted value nm typically uncovers non-optimal object
alignment. Obtaining instead the effective object sizes by linear
regression, as in our earlier work (Kunkel et al., 2012b), would
decrease the deviation of the model from the empirical result.

Comparing the memory resources required by the 3g and 4g
kernels as a function of the just fitting network size (Figure 10)
shows the new kernel to be closer to the optimal linear scaling:
doubling the machine size nearly doubles the network size that
can be simulated. At MT = 196,608 virtual processes, the maxi-

mum network size possible with the 4g kernel is N
4g
max = 5.1 · 108

compared to N
3g
max = 1.0 · 108 for the 3g kernel. The absolute sim-

ulation time increases in the maximum-filling scheme for the 4g
kernel compared to the 3g kernel, because the higher number of
neurons per core constitutes a proportionally larger workload per
core.

For a fair comparison we therefore show in Figure 11 the prod-
uct of the runtime and the number of cores. The 4g technology
shows a smaller slope of the dependence of the required resources
on network size. This quantity is also of interest for the estima-
tion of resources when planning research projects and applying
for the required computation time as core hours are a commonly
used unit in such documents. The duration of the simulation used
for these benchmarks is 1 s of biological time. For longer times
the core hours can be multiplied by the corresponding factor to
obtain an estimate of the required resources. For example, given
the resources of 10,000 core hours on the K computer we can
perform a simulation of 1 s of biological time with about 7 · 107

neurons using the 3g kernel but with more than twice as many
neurons (1.5 · 108) using the 4g kernel.

4. DISCUSSION
The purpose of this study is not to gain neuroscientific insight,
but to provide the technology to carry out full-scale neuronal

FIGURE 10 | Comparison of maximum-filling scaling for 3g and 4g.

Required number of cores MT (black, left vertical axis; numbers
quadrupling between ticks) and time (colors, right vertical axis) as a function
of network size for a maximum filling with parameter set 1 (cf. Section 2.2)
for the 3g kernel (open symbols) and the 4g kernel (filled symbols).
Benchmarks on the K computer shown in red, on JUQUEEN in blue. The
dashed black line indicates the ideal case where the required number of
cores increases only with the same factor as the network size.

network simulations at the resolution of neurons and synapses
on presently available supercomputers. The work addresses the
problem of efficiently representing a neuronal network on a
supercomputer in a distributed manner, so that high performance
is achieved while maintaining flexibility and generality. Starting
from the existing simulation technology and our previous work
on a mathematical model of the memory consumption (Kunkel
et al., 2012b) of neural simulation codes, we employ and extend
the analysis of memory consumption to expose a generic prob-
lem of a combinatorial nature. The problem can be summarized
as follows: The number of interaction partners (synapses) of each
element (neuron) is fixed by nature (about 104), but the num-
ber of employed compute nodes may vary over many orders of
magnitude, from a laptop (order 1) to a petascale supercomputer
(order 105). On supercomputers and for general connectivity of
the network we inevitably face the problem of sparsity, where a
neuron has a target on a given compute node only with small
probability. Conversely, in a single core simulation, each neuron
has all its targets on the very same core. Hence each end of this
range requires different data structures for an effective representa-
tion of the synapses. On supercomputers this data structure must
be distributed to cater for the memory demands of full-scale net-
work simulations at cellular resolution. In the limit where each
neuron only has none or a single synapse on a given machine
the present data structure (Helias et al., 2012) exhibits a two-
fold redundancy: the amount is fixed (just 1) and the type of
the synapse is unique. We here describe a novel data structure
that allows full flexibility if a neuron has multiple targets on a
local machine, but that collapses to a static data structure in
the limit of a single target. We also redesigned the underlying
synapse data structure and the connection algorithm to reduce
the memory footprint of a synapse, and finally developed a new
data structure to contain local nodes along with a corresponding
look-up algorithm exploiting the regularity in assigning neurons
to machines.

FIGURE 11 | Required resources to simulate a network of size N . Core
hours are defined as MT × Tsim and do not account for idle cores of a node.
Filled circles correspond to the 4g technology (see Figure 9) and open
circles to the 3g technology (see Figure 7 for maximum network size and
lower panel of Figure 8 for core hours). Results for K computer (red) and
JUQUEEN (blue) using parameter set 1 (cf. Section 2.2). The dashed black
line indicates the ideal case where the required resources increase with the
same factor as the network size.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

The network model and the corresponding model of mem-
ory consumption presented here constitute a worst case scenario
for memory consumption and communication in the sense that
there is no structure which can be exploited to efficiently map
the topology of the network to the topology of the computer.
Moreover, in NEST neurons are distributed across virtual pro-
cesses in a round-robin fashion, which allows for efficient static
load balancing but prevents taking into account network struc-
ture. Kunkel et al. (2012a) investigate the case where a fraction of
the incoming synapses has a local origin such as, for example, in
a cortical network. The analysis shows that representing locally
connected substructures on a subset of the available compute
nodes reduces memory consumption. However, the advantage of
such a topology-driven distribution scheme over a round-robin
scheme diminishes with the adaptive connection infrastructure
of the 4g simulation kernel as the novel data structures enable
efficient storage of short target lists.

Simulation software on supercomputers often employs highly
specialized and optimized code written in languages with a low
degree of abstraction to maximally profit from machine-specific
optimizations and optimizing compilers. We here meet the need
for flexibility and generality with a different approach, employing
features of a high-level object oriented language, such as metapro-
gramming and polymorphism as well as object-oriented design
patterns to reduce the memory consumption, while maintaining
flexibility, generality, and performance. Concretely, we use recur-
sive C++ templates to formulate a container class with similar
functionality as a vector but only one third of the overhead in
the limit of only a few entries. An abstract base class provides
a common interface to the data structure that allows nesting of
containers whenever needed, e.g., to distinguish different synapse
types. We swap out the polymorphism from synapse objects to a
nested helper class to avoid memory overhead due to the virtual
function pointer, but yet have polymorphic behavior at hand to
implement a handshaking mechanism at connection setup. We
formulate the connection framework in general terms as tem-
plates with the synapse type and the target identifier as template
parameters. This separates the infrastructure from the neurosci-
entifically interesting part of the code, that represents the synaptic
dynamics. This separation eases the extension of the simulator
by new synapse types. Different implementations of the target
pointer (full pointer, indirect indexed addressing) can be com-
bined flexibly with the same code for a synapse by changing one
additional template parameter. The templates hence enable code
generation for synapses in different combinations with types fixed
at compile time, so that the interesting, and user extensible code
of synaptic dynamics exists only once.

The resulting data structures reduce the memory consumption
on a supercomputer by up to a factor of four. Not only is the mem-
ory footprint smaller, but the new memory layout also decreases
both the time to connect and the time to simulate a network of a
given size. The latter increase in performance is likely due to more
efficient use of the cache. The same network can hence be sim-
ulated with fewer resources (core hours), or reversely, the same
amount of resources enable the simulation of around twice as
large networks with the 4g kernel compared to NEST 2.2 (3g).
Thus, computing time awarded on supercomputers is used more

efficiently. Also, a typical simulation run on a laptop benefits
from the presented optimizations: simulating the model used
for all benchmarks in this paper with 11,250 neurons and 6000
incoming synapses per neuron (parameter set 2) on a single core
for a biological time of 1 s takes 35.5 s with both NEST 2.2
(3g) and the 4g kernel while the memory consumptions signifi-
cantly decrease from 5.24 GB for NEST 2.2 to 3.11 GB for the 4g
kernel. As a result of these theory-guided improvements to mem-
ory structures, the observed dominance of overhead has been
eliminated.

For a given size of the computer, the new data structures enable
the simulation of networks of larger size. Employing the entire K
computer with all 8 cores of each processor, the network filling
the effectively available memory of 1.07 PB of RAM has 1.86 · 109

neurons and 11.1 · 1012 synapses, each represented with a double
precision synaptic weight and STDP dynamics. This is the largest
simulation to date in terms of connectivity. It took 793.42 s to
build the network and 2481.66 s to simulate 1 s of biological time.
The new technology can exploit the full size of JUQUEEN to sim-
ulate a network of 1.08 · 109 neurons with 6.5 · 1012 synapses, a
network in the range of a cat’s brain.

The technology described in these pages is general in the
sense that it can be used in any neuronal simulator satisfying
the following three constraints: (1) neurons are atomic and sim-
ulated as a whole on a single node of a parallel machine, (2)
synapses are stored on the nodes on which the postsynaptic neu-
rons reside, and (3) spikes are communicated globally using,
for example, collective MPI communication. In an application
where the communication scheme ensures that each machine
only receives spikes from neurons with local targets, the sparse
table is not required, however, additional infrastructure is needed
on the presynaptic side. The C2 simulator (Ananthanarayanan
and Modha, 2007), for example, employs such a directed commu-
nication; for a comparison of different spike exchange methods
see Hines et al. (2011). In order to represent the connections
between different compartments of a neuron distributed over sev-
eral compute nodes, such as in the NEURON simulator (Hines
et al., 2008) or the Neural Tissue Simulator (Kozloski and Wagner,
2011), the data structures presented here require major adapta-
tion. In addition to the spike events also events mediating the
instantaneous electrical interaction between compartments need
to be communicated. If the number of coupled compartments is
small compared to the number of compute nodes, we believe the
metaprogramming technique to realize low-overhead vectors is
still applicable. Related data structures may even be useful in other
domains beyond neuroscience that face the problem of mapping a
fixed number of heterogeneous interaction points on a number of
CPU cores varying over many orders of magnitude. With exascale
computers on the agenda, the ratio between interaction points
and CPU cores is likely to drop further, increasing the sparsity of
the problem.

Memory allocation can be improved beyond the solution pre-
sented here. In the limit of large numbers of compute nodes,
we use a simple pool allocator for synapse objects that does not
support reallocation of memory. In the limit where each neu-
ron with high probability only has either zero or one target on
a given machine this is not of practical concern, because target

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

lists almost never grow beyond length one, so no reallocation
is needed. In the intermediate regime, where target lists con-
tain a few entries, an improved allocation scheme is beneficial.
A drawback of the presented solution is that it requires the user
to be aware of the simulation operating in the sparse regime.
On a laptop, the allocator should be switched off, which is the
default. In the regime of small and mid-size machines, an alter-
native to a pool allocator would be to determine the number
of synapses ultimately generated in a preceding phase, such that
the correct amount of memory can immediately be allocated.
This approach, however, rules out the flexibility to implement
structural plasticity and mechanisms of degeneration.

The benchmark information presented is required to apply
for computation time grants, which typically request a proof of
efficient use of the resources and a justification of the resources
applied for. Strong scaling is one commonly requested measure.
Our work shows that this measure is not relevant for all appli-
cations, in particular not for network simulations. The reason is
that the typical neuroscientific use case of a supercomputer is
close to the point of maximum filling, where the entire mem-
ory is used to represent the largest possible network on a given
number of compute cores (see van Albada et al., 2014 for a dis-
cussion of further difficulties in assessing the performance of
simulation codes for neuronal networks). The number of neu-
rons per core is limited by the need to represent all synapses,
rather than by the computation required to carry out the simu-
lation. Reducing this number therefore further decreases the load
of the CPUs. In strong scaling where the filling is systematically
reduced, our benchmark simulations do not exhibit supra-linear
scaling. Another measure occasionally required in applications
for computation time is the number of executed floating point
operations per second. For network models described here the
absolute number of floating point operations in the code is small.
The update of the neuronal state variables requires on the order
of 10 floating point operations per time step and neuron. The
majority of operations in network simulations as described here
are related to random memory access caused by the delivery of
the spiking events. Thus, without normalization for the fraction
of floating point operations actually in the code, the relevance
of the measure for neuronal network simulations is limited. In
the extreme case of a code not using floating point numbers at
all, say by the use of fixed point arithmetic or in case of a data
base application, the floating point performance is exactly zero.
Assessing the scalability of an application by weak scaling requires
the problem size per machine node to be constant and in addi-
tion the problem to be representable in the memory available per
node. Applications with computational overhead growing with
machine size show the best weak scaling, if the problem size per
node is maximized. In distributed neural simulations this over-
head is dominated by communication. If memory overhead grows
with machine or problem size (here: the employed sparse table),
weak scaling requires the problem size to be chosen such that
the problem still fits into memory at the largest machine size;
at smaller machine sizes, there will hence be unused memory. In
this study we employ maximum-filling scaling, using the max-
imal problem size per node at each machine size. For the 4g
kernel this measure is very close to a weak scaling, as shown

in Figure 9 as the memory overhead is low. For the 3g kernel,
however, the problem size depends sub-linearly on the machine
size (Figure 7). Therefore, in the weak scaling scenario the scal-
ability of the 3g kernel is worse than the one of the 4g kernel
just because the smaller problem size reduces the workload per
core such that the contribution of communication overhead to
the total run time is more severe. We use maximum-filling scal-
ing here for two reasons: (1) we aim at a harder comparison of
the 4g kernel vs. the 3g kernel and (2) we are interested in a
measure of the minimal resources (core hours) required to simu-
late a given neuroscientific problem. For our benchmark network
this minimum is achieved at the point of maximum filling (data
not shown). Deeper insight into the effectiveness the algorithm
achieves in operating on the entities of the simulation, in our
case the neurons, may be gained by normalizing the simulation
times obtained for maximum filling by the workload, in our case
neurons per core.

Computing time is typically accounted in units of the prod-
uct of wall-clock time and either compute nodes or CPU cores.
The benchmarks presented in this manuscript employ 8 cores per
compute node, even though more cores are available per node
on JUQUEEN. An accounting system measuring resources by
the product of nodes and hours will therefore punish a memory
intense application that, due to the small workload per core, does
not employ all cores of a node. Nevertheless, assignment of the
entire node to a single application is of course required due to the
lack of memory for other applications.

When a supercomputer and not the personal workstation is the
target of a new neuronal network model some further difficulties
arise. Below is a brief account of our experience and the strategies
we developed so far to cope with them. On novel supercomput-
ing platforms, such as the K computer, provenance tracking of the
simulation environment is particularly challenging, because of
the co-development of the hardware, the operating system com-
ponents, and the application software. Additional robustness of
the workflow is required because the researcher maintaining the
simulation script may not be the person submitting the jobs and
collecting the results. Performing simulations on supercomputers
is time consuming due to the long queuing time and errors in a
simulation script can often only be detected by actually running
the simulation. Moreover, finding the maximum network size
that consumes all memory on a machine in an iterative trial-and-
error fashion can consume considerable amounts of resources.
We here followed a two step procedure, first obtaining from the
memory-usage model a prediction of the maximum number of
neurons fitting on a given portion of the machine, and then
running a series of “dry runs,” executed only on a single node
and mimicking the existence of the remainder of the network
(see Section 2.6). An extension of the dry-run feature includ-
ing the simulation phase is desirable, because it would allow the
scientist to uncover errors in the simulation script during and
after the simulation phase prior to the execution of the actual
simulation and also because the memory consumption during
simulation may depend on the actual dynamics due to the allo-
cation of communication buffers. Moreover, the dynamics may
depend on the network size, so that test runs of a reduced problem
on a smaller machine do not result in an accurate estimate of the

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

resources. Capturing such effects by a dry run, however, requires
a problem-specific mathematical model of network activity, the
absence of which may have motivated the simulation project in
the first place.

Current simulation technology is still hampered by the bot-
tleneck of writing the simulated data generated in parallel on
many processors to disk. The employed standard file I/O is eas-
ily overburdened by on the order of 100,000 processors in parallel
opening files. More research is needed on how to include general
solutions developed for parallel I/O into the neuronal simulation
technology or to develop alternative solutions collecting the data
on a small number of processors before writing to disk.

The simulation times achieved by the current technology are
sufficiently short to study dynamical features of neuronal net-
works on the time scale of seconds of biological time. Synaptic
plasticity, however, requires biological times of minutes to hours,
leading to wall-clock times in the range of 100–10,000 h, which
are typically beyond the resources available to a neuroscientist and
impractical for exploratory research.

We present a viable solution to efficiently use the largest super-
computers available today for neuronal simulations. The exascale
generation of supercomputers with even larger numbers of cores,
however, is likely to require a new architecture. The mathemat-
ical analysis of memory consumption presented in the current
work exposes the sparse table of neurons with local targets which
has been the backbone of the communication algorithm since
the first distributed neuronal simulations as the limiting compo-
nent; it grows proportional to the total number of neurons in the
network. As for each neuron one bit must be stored, indicating
whether or not the corresponding neuron has a target on the given
machine, the growth of the sparse table will ultimately limit the
scalability of the software. This tendency can already be observed
in Figure 9. The need for the sparse table arises from the collec-
tive communication scheme employed so far. The emission of an
action potential by a neuron is communicated to all other com-
pute nodes. These, in turn, decide with the help of the sparse table
whether or not the sending neuron has a local target. Collective
communication is a good implementation on the current petas-
cale machines: Since there are around 2000 neurons simulated per
core with 10,000 incoming synapses each, the probability that,
assuming a random network, at least one spike must be commu-
nicated from one core to another is close to one. However, as each
neuron sends its spike to all other MT cores, but only has targets
on at most K of them, per neuron at least MT − K spikes must be
discarded on the other receiving cores.

Omitting the sparse table altogether requires directed com-
munication to only those machines that harbor a target of
the sending neuron. Two consequences arise for the required
data structures. First, there needs to be a representation of the
outgoing connections on the machine of the sending neuron,
namely for each neuron one must know the nodes on which
the neuron has targets, as already described in Morrison et al.
(2005b). Second, the receiving machine needs a map from the
id of the sending neuron to a list of its targets. Future work
is required to find memory efficient implementations for these
two data structures, algorithms to instantiate them during net-
work setup, and appropriate communication methods. Such

a framework will still benefit from the adaptive data struc-
tures presented in the current work for representing the actual
synapses.

The simulation technology presented in this manuscript
enables the scientific community to make full use of petascale
supercomputers for neuroscientific research.

ACKNOWLEDGMENTS
We gratefully acknowledge Ryutaro Himeno for advising us from
the start on the research programs developing and using the K
computer, Mitsuhisa Sato for hosting our activities at RIKEN
AICS in the later phase of the project, and Jakob Jordan for help
in collecting the simulation data. Computing time on the K com-
puter was provided through early access in the framework of the
co-development program, project hp130120 of the General Use
Category (2013), the Strategic Program (Neural Computation
Unit, OIST), and MEXT SPIRE Supercomputational Life Science.
Use of the JUGENE and JUQUEEN supercomputers in Jülich was
made possible by VSR computation time grant JINB33. Partly
supported by the Helmholtz Alliance on Systems Biology, the
Initiative and Networking Fund of the Helmholtz Association,
the Helmholtz young investigator group VH-NG-1028, the Next-
Generation Supercomputer Project of MEXT, EU Grant 269921
(BrainScaleS), EU Grant 604102 (Human Brain Project, HBP),
Research Council of Norway Grant 178892/V30 (eNeuro) and
access to NOTUR supercomputing facilities. All network simu-
lations carried out with NEST (http://www.nest-simulator.org).

REFERENCES
Ajima, Y., Sumimoto, S., and Shimizu, T. (2009). Tofu: a 6d mesh/torus intercon-

nect for exascale computers. Computer 42, 36–40. doi: 10.1109/MC.2009.370
Alexandrescu, A. (2001). Modern C++ Design: Generic Programming and

Design Patterns Applied. C++ In-Depth Series. Boston, MA: Addison-Wesley
Professional.

Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S. (2009). “The
cat is out of the bag: cortical simulations with 109 neurons and 1013 synapses,”
in Supercomputing 09: Proceedings of the ACM/IEEE SC2009 Conference on High
Performance Networking and Computing (Portland, OR).

Ananthanarayanan, R., and Modha, D. S. (2007). “Anatomy of a cortical simulator,”
in Supercomputing 2007: Proceedings of the ACM/IEEE SC2007 Conference on
High Performance Networking and Computing (New York, NY: Association for
Computing Machinery).

Bednar, J. A. (2009). Topographica: building and analyzing map-level simula-
tions from Python, C/C++, MATLAB, NEST, or NEURON components. Front.
Neuroinform. 3, 8. doi: 10.3389/neuro.11.008.2009

Board, O. A. R. (2008). OpenMP Application Program Interface. Specification.
Available online at: http://www.openmp.org/mp-documents/spec30.pdf

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. doi: 10.1023/A:100
8925309027

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E. (1996).
On the Lambert W function. Adv. Comput. Math. 5, 329–359. doi: 10.1007/BF
02124750

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Diesmann, M. (2012). “Brain-scale neuronal network simulations on K,”
in Proceedings of the 4th Biosupercomputing Sympoisum (Tokyo: Tokyo
International Forum (Hall D7): Next-Generation Integrated Simulation of
Living Matter (ISLiM) program of MEXT), 83–85. Available online at: http://
www.csrp.riken.jp/4thbscs/4th-BSCS-proceedings.pdf

Diesmann, M. (2013). The road to brain-scale simulations on K. Biosupercomput.
Newslett. 8, 8. Available online at: http://www.csrp.riken.jp

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 19

http://www.nest-simulator.org
http://www.openmp.org/mp-documents/spec30.pdf
http://www.csrp.riken.jp/4thbscs/4th-BSCS-proceedings.pdf
http://www.csrp.riken.jp/4thbscs/4th-BSCS-proceedings.pdf
http://www.csrp.riken.jp
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

Eppler, J., Plesser, H., Morrison, A., Diesmann, M., and Gewaltig, M.-O.
(2007). “Multithreaded and distributed simulation of large biological neu-
ronal networks,” in Proceedings of European PVM/MPI, Paris, Vol. 4757 (Paris:
Springer LNCS), 391–392.

Eppler, J. M. (2006). A Multithreaded and Distributed System for The Simulation
of Large Biological Neural Networks. Master’s thesis, Albert Ludwig University
Freiburg.

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.
2:12. doi: 10.3389/neuro.11.012.2008

Free Software Foundation (2013). GCC 4.8.2 Manual. Boston, MA: Free Software
Foundation.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Professional Computing Series.
Boston, MA: Addison-Wesely.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2013). Brian simulator. Scholarpedia 8, 10883. doi:
10.4249/scholarpedia.10883

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M. (2010). A
general and efficient method for incorporating precise spike times in globally
time-driven simulations. Front. Neuroinform. 4:113. doi: 10.3389/fninf.2010.
00113

Hardy, G., and Wright, E. (1975). An Introduction to the Theory of Numbers.
London: Oxford at the Clarendon Press.

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.
(2012). Supercomputers ready for use as discovery machines for neuroscience.
Front. Neuroinform. 6:26. doi: 10.3389/fninf.2012.00026

Hines, M., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.
Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hines, M., Kumar, S., and Schürmann, F. (2011). Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.
5:49. doi: 10.3389/fncom.2011.00049

Hines, M. L., Markram, H., and Schürmann, F. (2008). Fully implicit parallel simu-
lation of single neurons. J. Comput. Neurosci. 25, 439–448. doi: 10.1007/s10827-
008-0087-5

Jeffreys, H., and Jeffreys, B. (1956). Methods of Mathematical Physics. Cambridge:
Cambridge University Press.

Knuth, D. E. (1997). The Art of Computer Programming: Fundamental Algorithms
(3rd Edn.), Vol. 1. Boston, MA: Addison Wesley.

Kozloski, J., and Wagner, J. (2011). An ultrascalable solution to large-scale neural
tissue simulation. Front. Neuroinform. 5:15. doi: 10.3389/fninf.2011.00015

Kunkel, S., Helias, M., Potjans, T. C., Eppler, J. M., Plesser, H. E., Diesmann, M.,
et al. (2012a). “Memory consumption of neuronal network simulators at the
brain scale,” in NIC Symposium 2012 Proceedings, Volume 45 of NIC Series,
eds K. Binder, G. Münster, and M. Kremer (Jülich: Forschungszentrum Jülich
GmbH), 81–88.

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E., Morrison, A., and Diesmann,
M. (2012b). Meeting the memory challenges of brain-scale simulation. Front.
Neuroinform. 5:35. doi: 10.3389/fninf.2011.00035

Kunkel, S., Schmidt, M., Eppler, J., Plesser, H., Igarashi, J., Masumoto, G., et al.
(2013). From laptops to supercomputers: a single highly scalable code base for
spiking neuronal network simulations. BMC Neurosci. 14(Suppl. 1):P163. doi:
10.1186/1471-2202-14-S1-P163

Message Passing Interface Forum. (1994). MPI: A Message-Passing Interface
Standard. Technical Report UT-CS-94-230. Knoxville, TN: University of
Tennessee. http://www.mpi-forum.org/docs/mpi-10.ps

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467. doi:
10.1162/neco.2007.19.6.1437

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike-timing. Biol. Cybernet. 98, 459–478. doi:
10.1007/s00422-008-0233-1

Morrison, A., Hake, J., Straube, S., Plesser, H. E., and Diesmann, M. (2005a).
“Precise spike timing with exact subthreshold integration in discrete time net-
work simulations,” in Proceedings of the 30th Göttingen Neurobiology Conference,
205B (Göttingen).

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005b).
Advancing the boundaries of high connectivity network simulation with dis-
tributed computing. Neural Comput. 17, 1776–1801. doi: 10.1162/089976605
4026648

Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., and Gewaltig, M.-O.
(2007). “Efficient parallel simulation of large-scale neuronal networks on clus-
ters of multiprocessor computers,” in Euro-Par 2007: Parallel Processing, Volume
4641 of Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé, and
T. Priol (Berlin: Springer-Verlag), 672–681.

Potjans, W., Morrison, A., and Diesmann, M. (2010). Enabling functional neural
circuit simulations with distributed computing of neuromodulated plasticity.
Front. Comput. Neurosci. 4:141. doi: 10.3389/fncom.2010.00141

Rentzsch, J. (2005). Data Alignment: Straighten up And Fly Right. IBM developer-
Works.

RIKEN BSI. (2013). Largest Neuronal Network Simulation Achieved Using K
Computer. Wako: Press Release.

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant lin-
ear systems with applications to neuronal modeling. Biol. Cybernet. 81, 381–402.
doi: 10.1007/s004220050570

Stroustrup, B. (1997). The C++ Programming Language, 3 Edn. New York, NY:
Addison-Wesely.

Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with
dynamic synapses. Neural Comput. 10, 821–835. doi: 10.1162/0899766983000
17502

Tsodyks, M., Uziel, A., and Markram, H. (2000). Synchrony generation in recurrent
networks with frequency-dependent synapses. J. Neurosci. 20, RC50. Available
online at: http://www.jneurosci.org/content/20/1/RC50.short

van Albada, S. J., Kunkel, S., Morrison, A., and Diesmann, M. (2014). “Integrating
brain structure and dynamics on supercomputers,” in Proceedings of Braincomp
July 8-11 2013: workshop on Brain-Inspired Computing, eds L. Grandinetti,
T. Lippert, and N. Petkov (Cetraro: Springer).

Vandervoorde, D., and Josuttis, N. (2003). Templates: The Complete Guide, 1st Edn.
Boston, MA: Addison Wesley.

Yonezawa, A., Watanabe, T., Yokokawa, M., Sato, M., and Hirao, K. (2011).
“Advanced institute for computational science (aics): Japanese national high-
performance computing research institute and its 10-petaflops supercom-
puter “K”,” in State of the Practice Reports, SC ′11 (New York, NY: ACM),
13:1–13:8.

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-based
interface for the NEST simulator. Front. Neuroinform. 8:23. doi: 10.3389/fninf.
2014.00023

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 18 June 2014; paper pending published: 18 July 2014; accepted: 27 August
2014; published online: 10 October 2014.
Citation: Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S,
Fukai T, Morrison A, Diesmann M and Helias M (2014) Spiking network simulation
code for petascale computers. Front. Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Kunkel, Schmidt, Eppler, Plesser, Masumoto, Igarashi, Ishii, Fukai,
Morrison, Diesmann and Helias. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 20

http://www.mpi-forum.org/docs/mpi-10.ps
http://www.jneurosci.org/content/20/1/RC50.short
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.3389/fninf.2014.00078
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

APPENDIX

Algorithm 1 Recursive definition of homogeneous containers implementing low-overhead vector for small numbers of elements.
The K data elements (synapse objects) of template type connectionT are stored in a C-style array (line 10) and hence consume
K · sizeof(connectionT) Bytes. 8 B of additional overhead are due to the virtual function table (vtable) pointer inherited from the
abstract base class ConnectorBase (see also Figure 4). The first template definition (line 6) serves as the recursion continuation
step with the number K of stored elements as the recurrence parameter. The method push_back is inherited from the abstract base
class vector_like. For template arguments K < Kcutoff push_back recursively instantiates a container of size K + 1 (line 27) at
compile time, joins the previously stored contents with the new element and destroys itself (line 31). The new container is returned
to the caller and is stored in the adaptive data structure (see also Algorithm 2). Recursion termination is achieved by providing a
template specialization for Kcutoff (line 39), which uses a std::vector<connectionT> to store the data elements. Kcutoff = 3
is a preprocessor define fixed at compile time.

1 / / i n h e r i t a n c e f rom a b s t r a c t b a s e c l a s s
2 / / 1 . v e c t o r _ l i k e : t o p r o v i d e p u s h _ b a c k a s common i n t e r f a c e
3 / / 2 . C o n n e c t o r B a s e : t o h a v e common b a s e c l a s s t y p e f o r a l l c o n t a i n e r s
4
5 / / r e c u r s i o n s t e p
6 t e m p l a t e < i n t K , typename connec t ionT >
7 s t r u c t HomConnector
8 : p u b l i c v e c t o r _ l i k e <connec t ionT >
9 {

10 c o n n e c t i o n T C_ [K] ;
11
12 HomConnector (c o n s t HomConnector<K−1 , connec t ionT > & Cm1,
13 c o n s t c o n n e c t i o n T & c)
14 : s y n _ i d _ (Cm1 . s y n _ i d _)
15 {
16 f o r (i n t i = 0 ; i <K−1; i ++)
17 C_ [i] = Cm1 . C_ [i] ;
18 C_ [K−1] = c ;
19 }
20
21 / / p u s h b a c k : r e c u r s i o n s t e p t o n e x t c o n t a i n e r
22 HomConnector<K+1 , connec t ionT > & push_back (c o n s t c o n n e c t i o n T & c)
23 {
24 / / p a s s on c o n t e n t s and
25 / / r e c u r s i v e l y i n s t a n t i a t e c o n t a i n e r f o r K+1 e l e m e n t s
26 / / u s e p o o l a l l o c a t o r , p a s s (* t h i s , c) a s a r g s t o c o n s t r u c t o r
27 HomConnector<K+1 , connec t ionT > * newconn =
28 a l l o c a t e <HomConnector<K+1 , ConnectionT > >(* t h i s , c) ;
29
30 / / d e l e t e t h i s i n s t a n c e
31 d e l e t e t h i s ;
32
33 / / r e t u r n c o n t a i n e r o f n e x t s i z e
34 r e t u r n * newconn ;
35 }
36 } ;
37
38 / / r e c u r s i o n t e r m i n a t i o n by t e m p l a t e s p e c i a l i z a t i o n
39 t e m p l a t e <typename connec t ionT >
40 s t r u c t HomConnector< K _ c u t o f f , connec t ionT >
41 : p u b l i c v e c t o r _ l i k e <connec t ionT >
42 {
43 s t d : : v e c t o r <connec t ionT > C_ ;
44 . . .
45 HomConnector< K _ c u t o f f , connec t ionT > & push_back (c o n s t c o n n e c t i o n T & c)
46 {
47 C_ . push_back (c) ;
48 r e t u r n * t h i s ;
49 }
50 } ;

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

Algorithm 2 Algorithm to create new connections using adaptive data containers. The algorithm is implemented in the method
add_connection() of ConnectorModel (see also Figure 4). The template function allocate<T> invokes the custom pool
allocator, providing for each thread memory from a separate pool. The different branches of the algorithm marked by Case 0-3 refer
to the description in the main text.

1 C o n n e c t o r B a s e * a d d _ c o n n e c t i o n (Node& t g t , Node& s r c ,
esaBrotcennoC2 * conn , Connect ionT& c) :

3
4 / / s o u r c e n e u r o n d o e s n o t y e t h a v e any l o c a l t a r g e t s (C a s e 0)
5 i f conn == 0 :
6 c . c h e c k _ c o n n e c t i o n (t _ l a s t s p i k e)
7 conn ← a l l o c a t e <HomConnector <1 , ConnectionT > >(c)
8
9 / / s o u r c e n e u r o n h a s a t l e a s t one l o c a l t a r g e t

10 e l s e :
11 c . c h e c k _ c o n n e c t i o n (t _ l a s t s p i k e (* conn) . g e t _ t _ l a s t s p i k e ())
12
13 / / a l l e x i s t i n g l o c a l s y n a p s e s a r e o f t h e same t y p e (Case 1 , 2)
14 i f (* conn) . homogeneous_model () :
15
16 / / new s y n a p s e i s o f same t y p e a s e x i s t i n g o n e s (s t a y i n Case 1 , 2)
17 i f (* conn) . g e t _ s y n _ i d () == c . g e t _ s y n _ i d () :
18 hom_vec ← s t a t i c _ c a s t < v e c t o r _ l i k e <ConnectionT > * >(conn)
19 conn ← &(* hom_vec) . push_back (c)
20
21 / / new s y n a p s e i s o f d i f f e r e n t t y p e t h a n e x i s t i n g o n e s (s w i t c h t o C a s e 3)
22 e l s e :
23 het_conn ← a l l o c a t e <HetConnector >()
24 (* het_conn) . push_back (conn)
25 hom_conn ← a l l o c a t e <HomConnector <1 , ConnectionT > >(c)
26 (* het_conn) . push_back (hom_conn)
27 conn ← het_conn
28
29 / / d i f f e r e n t t y p e s o f l o c a l s y n a p s e s e x i s t (Cas e 3)
30 e l s e :
31 het_conn ← s t a t i c _ c a s t <HetConnector >(conn)
32 f o r e a c h h_conn i n het_conn :
33
34 / / a t l e a s t one l o c a l s y n a p s e o f t h i s t y p e a l r e a d y e x i s t s
35 i f (* h_conn) . g e t _ s y n _ i d () == c . g e t _ s y n _ i d () :
36 hom_conn ← s t a t i c _ c a s t <HomConnector<ConnectionT > * >(h_conn)
37 hom_conn ← &(* hom_conn) . push_back (c)
38 found ← t r u e
39 b r e a k
40
41 / / l o c a l s y n a p s e s o f t h i s t y p e do n o t y e t e x i s t
42 i f not found :
43 hom_conn ← a l l o c a t e <HomConnector <1 , ConnectionT > >(c)
44 (* het_conn) . push_back (hom_conn)
45
46 r e t u r n conn

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 22

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Simulation code for the petascale

Algorithm 3 get_node_by_gid() in SparseNodeArray returns 0 for non-local nodes and the pointer to the requested node
for local nodes.

1 Node * g e t _ n o d e _ b y _ g i d (i n d e x g i d) :
2
3 i f g i d > max_gid :
4 throw UnknownNode () / / node d o e s n o t e x i s t
5
6 i f g i d == 0 :
7 r e t u r n l o c a l _ n o d e s [0] . node / / r o o t node
8
9 i f not (l o c a l _ m i n _ g i d ≤ g i d ≤ l o c a l _ m a x _ g i d) :

10 r e t u r n 0 / / node n o t l o c a l
11
12 / / e s t i m a t e l o c a t i o n i n s p a r s e node a r r a y
13 i d x ← f l o o r (1 + a l p h a * (g i d − l o c a l _ m i n _ g i d))
14
15 / / s e a r c h t o t h e l e f t
16 w h i l e 0 < i d x and g i d < l o c a l _ n o d e s [i d x] . g i d :
17 i d x ← idx −1
18
19 / / s e a r c h t o t h e r i g h t
20 w h i l e i d x < l o c a l _ n o d e s . s i z e and l o c a l _ n o d e s [i d x] . g i d < g i d :
21 i d x ← i d x +1
22
23 i f i d x < l o c a l _ n o d e s . s i z e and l o c a l _ n o d e s [i d x] . g i d == g i d :
24 r e t u r n l o c a l _ n o d e s [i d x] . node / / l o c a l node f o u n d
25 e l s e :
26 r e t u r n 0 / / node n o t l o c a l

Frontiers in Neuroinformatics www.frontiersin.org October 2014 | Volume 8 | Article 78 | 23

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Spiking network simulation code for petascale computers
	Introduction
	Materials and Methods
	NEST Simulator
	Network Model
	Memory-Usage Model
	Number and Length of Local Target Lists
	Supercomputers
	Maximum-Filling Scaling

	Results
	Memory Usage in the Petascale Regime
	Auto-Adjusting Connection Infrastructure
	Condensed Synapse Objects
	Avoidance of polymorphic synapse objects
	Indexed target addressing
	Combined storage of delay and synapse type
	Memory footprint of synapse objects

	Pool Allocator
	Sparse Node Array
	Performance of 4g Technology

	Discussion
	Acknowledgments
	References
	Appendix

