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ABSTRACT: Environmental monitoring studies provide key
information to assess ecosystem health. Results of chemical
monitoring campaigns can be used to identify the exposure
scenarios of regulatory concern. In environmental risk assessment
(ERA), measured concentrations of chemicals can be used to
model predicted environmental concentrations (PECs). As the
PEC is, by definition, a predicted variable, it is highly dependent
on the underlying modeling approach from which it is derived. We
demonstrate the use of Bayesian distributional regression models
to derive PECs by incorporating spatiotemporal conditional
variances, and limits of quantification (LOQ) and detection
(LOD) as de facto data censoring. Model accuracies increase when
incorporating spatiotemporal conditional variances, and the
inclusion of LOQ and LOD results in potentially more robust PEC distributions. The methodology is flexible, credibly quantifies
uncertainty, and can be adjusted to different scientific and regulatory needs. Posterior sampling allows to express PECs as
distributions, which makes this modeling procedure directly compatible with other Bayesian ERA approaches. We recommend the
use of Bayesian modeling approaches with chemical monitoring data to make realistic and robust PEC estimations and encourage
the scientific debate about the benefits and challenges of Bayesian methodologies in the context of ERA.
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1. INTRODUCTION

Environmental monitoring is a key component in the
assessment of ecosystem health.1 The possibilities of Bayesian
distributional regression models are explored to model the
predicted environmental concentrations of a selection of
Norwegian monitoring campaigns. It is used to characterize
the status of different aspects of the natural environment, such
as species abundance or abiotic physical and chemical
properties. Environmental monitoring also considers the
anthropogenic influence on natural ecosystems, for example,
chemical pollution or climate change.2 This is acknowledged
by international legislatives, such as the European Union’s
Water Framework Directive (WFD) and Marine Strategy
Framework Directive, the United States’ Clean Water Act, or
Japan’s Water Pollution Control Law.3−6 Water bodies like
rivers, lakes, streams, and ponds, and also coastal areas and
fjord systems, are crucial habitats for ecosystem functioning
and hold additional economic and recreational value.7 An
important part of environmental monitoring campaigns, such
as those performed to support the WFD, is therefore the
chemical monitoring of water bodies and subsequent assess-
ment of ecosystem health.8

Data collected in chemical monitoring campaigns can be
used to model the predicted environmental concentration
(PEC) of chemicals; when such information is not available,
PECs are often derived from environmental fate modeling.
PECs can be used in environmental risk assessment (ERA),
where they are compared to predicted no-effect concentrations
(PNECs). This is usually done by dividing the PEC by the
PNEC, which results in a hazard quotient; after the application
of assessment and safety factors, this becomes a risk quotient
(RQ).9 RQ values above 1 can be considered environmental
risks, as the PEC surpasses the PNEC. Based on this,
mitigation measures can be put in place, for example,
remediation plans or quiescing of local pollutant sources.
A good estimation of both PEC and PNEC is therefore

crucial for high-quality ERAs. For the PEC, the European
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Chemicals Agency (ECHA) explicitly encourages modeling
approaches, also when measured environmental concentrations
are available.10 The European Food Safety Authority (EFSA)
echoes the same sentiments.11 This is partially motivated by
the fact that environmental monitoring campaigns in the same
area can span across various dates and multiple sites. The
spatiotemporal variability of measured concentrations, for
example, fluctuations and peaks of these measured concen-
trations, needs to be addressed in any modeling approach;
otherwise, ambiguous derivations of PECs could lead to wrong
decision-making.11 Depending on the study or monitoring
campaign, measurements can take place at several sites and
depths within the same area and across time. Up to hundreds
of substances can be measured simultaneously. In common
practice, measured environmental concentrations are often
summarized by taking a deterministic summary statistic, for
example, the median concentration and 95% quantile of a
substance across all samples. This collapses the information
available per substance into a single data point, the measured
environmental concentration (MEC) value, which can be
heavily influenced by site- and date-specific variations.
Additionally, the measured chemical concentrations of most

aquatic monitoring studies come in three categories:
concentrations above the limit of quantification (LOQ),
concentrations below the LOQ, but above the limit of
detection (LOD), and concentrations below the LOD. Data
<LOQ and <LOD can be interpreted as the so-called censored
data: although the true concentration value is unknown, an
upper boundary for the concentration is known (the LOQ and
LOD, respectively). Various recommendations and traditions
exist for how to handle, especially, data <LOD and also <LOQ.
In practice, simplifications are often made when dealing with
data below the detection limits.12−14 For example, data <LOD
are often removed, and half the LOQ value assumed for all
data <LOQ, thus resulting in artificially fabricated concen-
tration values.15−17 Although statistical methods exist to
handle detection limits in modeling procedures, their use is
not widespread, and they do not provide the flexibility to
incorporate additional spatiotemporal information. This is the
benefit of the statistical programming language Stan, which
provides specialized probability density functions that can be
used for handling censored data.18

One approach to modeling PECs of monitoring campaigns
is by using the measured concentrations in distributional
regression models, that is, regression models resulting in a
distribution of a response variable and not a point estimate.
These regression models, especially as hierarchical generalized
linear models (HGLMs, also referred to as mixed-effect
models), have several desirable properties that help to address
the spatiotemporal sources of variation. It is possible to define
a distributional family, from which the measured concen-
trations are assumed to stem from. For example, environmental
concentrations of chemicals are usually thought to have
originated from processes that can be described by a lognormal
distribution.19 Additionally, the spatiotemporal variations of
the measured environmental concentrations can be interpreted
as conditional variances of these measured concentrations: for
every value of a temporal and spatial variable (i.e., dates and
sites), a different variance on the overall concentration is
assumed. This allows to distinguish between the “static”
background concentrations in the water body and the influence
of spatiotemporal variations, thus making predictions more
robust. Information on the LOQ and LOD can be

incorporated as de facto censoring of the measured
concentrations, leading to a potentially more realistic
uncertainty assessment in PEC modeling.20

Recently, Bayesian methods have gained interest in the field
of ERA, not only from the scientific community but also from
industrial and legislative stakeholders.21−23 These methods are
intuitively appealing, as all outcomes can be interpreted in the
context of probability, for example, how likely is an
environmental risk given a PEC and a PNEC? Bayesian
methods often use sampling algorithms, for example, Markov
chain Monte Carlo simulations, to draw equally likely samples
from a posterior distribution; this also means that uncertainty
can be directly quantified.24 The posterior distribution is
proportional to the product of the prior distribution, based on
a priori assumptions or knowledge of the system, and the
likelihood of the data. The benefits of such procedures are
explicit, relatively common sense statistical assumptions, in
contrast to the inexplicit and often-ignored assumptions of
frequentist methods.25 Because of the posterior sampling,
Bayesian methods allow to derive proxies of values, such as
average, standard error, or 95% intervals, directly from the
sampled posterior values; they do not need to be specifically
constructed. HGLMs can be expressed as Bayesian models and
can incorporate conditional variances for spatiotemporal
information, as well as information on the censoring of data,
that is, LOQs and LODs. Additionally, modern algorithms
allow to model spatiotemporal correlation patterns of different
substances across sites and dates.26

In the present work, we explore the possibilities of Bayesian
distributional regression models to model the PEC distribu-
tions of a selection of Norwegian monitoring campaigns. Based
on three aquatic chemical monitoring campaigns covering 8−
145 chemicals, we demonstrate an example workflow for PEC
derivation. By introducing model complexity to incorporate as
much available information as possible, the principal model
output is kept simple, understandable, and interpretable. We
further reflect on the benefits and challenges of the proposed
methodology and encourage the discussion about scientific and
regulatory suitability.

2. MATERIALS AND METHODS
2.1. Description of the Monitoring Campaigns.

Environmental exposure data were taken from three fjord-
associated Norwegian monitoring campaigns, representing
different pollution scenarios: the southwestern Sørfjord, the
southern Kaldvellfjord, and the southeastern Oslofjord. The
three monitoring campaigns represent the diverse complexity
associated with the chemical monitoring campaigns (Table 1).
The Sørfjord campaign contains routine monitoring data for

Table 1. Overview of the Number of Measured Chemicals,
Sites, Dates, and Data Points for the Three Monitoring
Campaignsa

campaign chemicals sites dates values
<LOQ
(%)

<LOD
(%)

Sørfjord 8 4 14 220 36 30
Kaldvellfjord 29 4b 4 486 17 27
Oslofjord 145 4 1 589 2 74

aAdditionally, the frequency of concentrations <LOQ and <LOD is
given. bThe four sites are spread across two areas (inner and outer
fjord). Additionally, the two sites in the inner fjord contain
measurements at two depths.
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eight metals, the Kaldvellfjord campaign contains monitoring
data for 29 metals, and the Oslofjord campaign contains data
for 145 chemicals, divided between 11 metals and 134 organic
compounds. For all the three campaigns, water samples were
taken, and chemical concentrations were determined using
established extraction and analytical methods, as detailed in
their respective reports.27−29 A complete list of all chemicals
for each campaign is given in Supporting Information 1. A
summary of the number of chemicals, sampling dates, sampling
sites, and frequencies <LOQ and <LOD is given in Table 1. All
chemical concentrations are expressed in mol L−1 (M) to
provide accurate measures of the biologically active elements.
2.2. Predicted Environmental Concentration Distri-

bution Models. Bayesian distributional regression models
were fit to the measured chemical concentration data of the
three campaigns, resulting in PEC distributions for all
chemicals. The reported chemical concentrations were treated
as response variables with lognormal distribution, as reasoned
for in previous works.19,30,31 We thus specified four regression
models as de facto HGLMs.32,33 In short, models 1 and 2 are
based on a subset of data without LOD data and assuming half
the LOQ for all LOQ data, and models 3 and 4 are based on
the full data sets including LOD and LOQ data. Models 1 and
3 demonstrate the modeling procedure without spatiotemporal
conditional variances, whereas models 2 and 4 include all
possible spatiotemporal conditional variances. A visual over-
view of the modeling relations is given in Supporting
Information Figure S1. All conditional variables were treated
as categorical.
2.2.1. Chemical-Specific PEC (Models 1−4). All models

assumed that the measured concentrations differ between
chemicals. This was described as

μ σ

μ β

∼

∼

y lognormal( , )i i

i i (1)

where ∈ +yi is the measured concentration of every chemical
i, μ ∈i is the average of a lognormal distribution for each

chemical i, σ ∈ + is the shared standard deviation of the
lognormal distribution for all chemicals, and β ∈i is the
concentration parameter for each chemical i, which is
expressed as a normal distribution on a natural logarithmic
scale. Note that an intercept (α) is excluded from this and all
other models.
2.2.2. Spatiotemporal Conditional Variances of the PEC

(Models 2 and 4). All campaigns contain additional
information about the monitoring program that can be
incorporated in the modeling procedure as conditional
variances. Variables for conditional variances were date and
site for the Sørfjord campaign; area, site, depth, and date for
the Kaldvellfjord campaign; and site for the Oslofjord
campaign. The assumption was that chemical concentrations
differ between these variables, such that every chemical can
have different concentrations according to these conditional
variables. Equation 1 was therefore extended as follows

μ β β β∼ + + +...i i i j i j, , n1 (2a)

where β ∈i j, is the conditional variance for each

spatiotemporal conditional variable j on chemical i, expressed
as normal distribution with average 0. For the Kaldvellfjord

campaign, the different sites were divided between two areas.
This was expressed by the following equation

μ β β β∼ + +|i i i j j i j, ,a b b (2b)

where β ∈|i j j, a b
is the conditional variance of each site ja

given a common area jb on each chemical i, and β ∈i j, b
is the

conditional variance of each area jb on each chemical i; both
are expressed as normal distributions with an average of 0.

2.2.3. Spatiotemporal Chemical Correlations (Models 2
and 4). The use of conditional variances allowed to model the
correlations of measured concentrations across these condi-
tional variances.26 The correlations were quantified as
Cholesky correlation factors during the modeling procedure.34

For every possible binary combination of chemicals of every
spatiotemporal conditional variance (for example, cadmium−
copper for date-specific conditional variance in model 4 of the
Sørfjord campaign), this resulted in a distribution of Cholesky
correlation factors.

2.2.4. LOQ and LOD as Censoring (Models 3 and 4).
Environmental monitoring data routinely come in three
different quality categories. Most chemical concentrations
can be reliably measured because they are above the machine-
and procedure-dependent LOQ. There is also the possibility
that chemicals may not be measurable because they either are
absent or below the LOD. Finally, some chemicals can be
measured above the LOD but below the LOQ. These three
categories can be treated as censored data.35,36

For models 1 and 2, data <LOD were excluded, and data
flagged as <LOQ were assigned to be half the LOQ value.15−17

These data were modeled using a standard log probability
density function (LPDF). For models 3 and 4, no data were
removed or altered, and censoring was applied. Concentrations
>LOQ were considered uncensored; concentrations <LOQ
but >LOD were considered interval-censored; and concen-
trations <LOD were considered left-censored. Uncensored
data were modeled using an LPDF; left-censored data were
modeled using a log cumulative distribution function (LCDF);
and interval-censored data were modeled as the logarithm of
the difference of the exponentiation of the LCDFs for the
LOQ and LOD, respectively.37

In other words, for uncensored data, the LPDF tries to
maximize the probability for observing a (new) value identical
to the measured value; for left-censored data, the LCDF tries
to maximize the probability for observing a (new) value
smaller than the LOD; and for interval-censored data, the
LCDF tries to maximize the probability for observing a (new)
value in the interval between the LOQ and the LOD.

2.3. Prior Specifications. For all the three campaigns,
prior distributions were expressed on a natural logarithmic
scale. Per default, normally distributed priors were used.
Informative prior values were calculated from the respective
data sets, which considerably reduced the sampling time and
improved the model convergence. This is sometimes referred
to as empirical Bayes.38 For the Cholesky correlation factors, a
Lewandoski−Kurowicka−Joe distribution prior was used.26

Detailed descriptions of the empirical Bayes prior determi-
nation are given in the Supporting Information.

2.4. Model Validation and Comparison. For all models,
prior distributions were sampled along the posterior
distributions and compared to both the measured concen-
trations and the posterior distributions in prior predictive
checks to verify the suitability of the empirical prior
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distribution choices. Posterior predictions were compared to
the measured concentrations in the posterior predictive
checks.39

To compare the models, expected log-pointwise predicted
densities (ELPDs) were calculated. ELPDs are a measure of
predictive accuracy, where higher values indicate a higher
accuracy and better model fit.40 ELPD values were calculated
for each model based on leave-one-out (LOO) cross-validation
(CV).41,42 In case of problematic observations (e.g., Pareto

shape parameter ≥0.5), other options for ELPD calculations

were disregarded because of the steep increase in computa-

tional expenses, compared to the expected small change in

ELPD values.43

Another more traditional approach to assess the goodness of

fit of the different regression models is the use of R2 values.44

Bayesian R2 values were calculated for each of the 10,000

posterior draws for every model of each campaign, following a

Figure 1. Overview of the PEC distributions of models 1−4 for four random chemicals from each monitoring campaign. The densities are based on
10,000 posterior samples for each model, without considering the conditional variances for models 2 and 4. The color gradients of the densities
indicate the mode of the PEC, from lighter hues (lower concentrations) to darker hues (higher concentrations). The reported concentrations are
given as jitter points, with the color indicating the measurement (un)certainty. The boxplots are based on the reported data excluding
concentrations <LOD and assuming half the LOQ concentration for concentrations <LOQ; the boxplots are directly comparable to the data used
for models 1 and 2. Note that the PEC distributions for two chemicals of the Oslofjord campaign were only possible for models 3 and 4 because all
reported concentrations were <LOD.
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proposed Bayesian methodology.45 This resulted in a
distribution of Bayesian R2 values for every model.
Because both ELPD and R2 values are dependent on each

model’s input data, models 1 and 2 are not directly comparable
to models 3 and 4.
2.5. Model Results. For all models, 10,000 posterior

samples of the linear predictors without spatiotemporal
conditional variances (i.e., βi and σ only) were used to
describe the PEC. The posterior samples were characterized in
terms of probability densities. As proxy for centrality, the
highest maximum probability density estimate of the posterior,
that is, the mode,46 was used in favor of more common proxies,
for example, the average or the median. The mode can be
visualized as the “peak” of the density distribution of the
posterior samples, that is, the concentration with the highest
probability. Uncertainty was characterized in credible intervals
using the highest density interval (HDI) of the posterior
samples. Posterior samples inside an HDI have a higher
probability than the posterior samples outside the interval.
Because of the relatively high posterior sample size of 10,000, a
95% HDI was chosen, which can be interpreted as 95%
credible interval.47

2.6. Comparison to Data Quantiles. As a comparison of
the Bayesian distributional regression approach and a quantile
representation of the measured concentrations, the posterior
density distributions of models 1−4 (i.e., PEC distributions
from βi and σ) were visually compared against the boxplot

summaries of the data for models 1 and 2 (i.e., without LOD
and half the LOQ), as well as the raw data itself. This allowed
to visualize the differences in the ways data can be described,
especially when chemical concentrations <LOD are abundant.

2.7. Data Analysis. All data were analyzed using open-
source statistical software R (version 4.0.3) and its add-on
package brms (version 2.14.0).48,49 The brms package is a
high-level interface for the probabilistic statistical inference
language Stan (version 2.25.0),18 accessed through the
CmdStanR (version 0.1.3) interface.50 All Bayesian models
were fit using Stan’s integrated modified Hamiltonian Monte
Carlo sampler with Markov chains. Five independent chains
were run for every model with 4000 draws each, whereof half
were used for warm-up, resulting in 10,000 posterior samples
in total. To simplify Figures 1−3, only four random chemicals
were visualized for each monitoring campaign.

2.8. Open Science. The data used in this publication and
all scripts for the data analyses are publicly available on the
corresponding author’s GitHub repository (https://github.
com/RaoulWolf/Bayesian-PEC-Modeling).

3. RESULTS AND DISCUSSION
3.1. Technical Aspects and Prior Choices. Bayesian

distributional regression models were successfully fit to the
data in each of the three chemical monitoring campaigns, with
no warnings about divergent transitions. Bulk and tail effective
sample sizes of all models were satisfactory, that is, larger than

Figure 2. Overview of the spatial and temporal conditional variances (expressed in orders of magnitude of the logarithmic scale) of model 4 for four
random chemicals of each campaign. The densities are based on 10,000 posterior samples for each model. The color gradients indicate the mode of
the conditional variances, from lighter hues (lower values) to darker hues (higher values). A conditional variance value of 1 would indicate that the
conditional variance has the same order of magnitude (on logarithmic scale) as the predicted concentration itself.
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100 times the number of chains,51 and the MCMCs converged
well, with all R̂ values <1.01 (see Supporting Information 3).52

Detailed model summaries are given in Supporting Informa-
tion 4, and trace plots of the individual Markov chains for up to
12 random model parameters are given in Supporting
Information 5.
Prior predictive distributions, that is, predictive distributions

of all parameters sampling only from the prior and not
including the likelihood of the data, showed excellent overlap
with the posterior model parameter distributions for all models
(see Supporting Information 5). Additionally, the posterior
distributions of both models covered >90% of the measured
concentration data range (Supporting Information Table S1).
We conclude that the use of informative priors was

appropriate for our modeling approach, but uninformative or
flat priors may be used in situations where the empirical Bayes
method is either impossible or undesirable.
3.2. PEC Distributions. A realistic derivation of PECs is of

crucial importance in ERA. Bad estimations of the PEC can
lead to wrong downstream decision-making.11 This is
especially true if the PEC is derived as a single number, for
example, as MEC, without accounting for uncertainty. By
expressing PECs as samples from a lognormal distribution, we
acknowledge and incorporate the inherent uncertainty to make
the derivation of PECs more realistic.

All four models resulted in lognormal PEC distributions
(Figure 1). Most of the PEC distributions were symmetrical on
the logarithmic scale (models 1 and 3). The influence of
spatiotemporal conditional variances was largely dependent on
the chemicals, with some chemicals showing relatively little
variation and others showing clear differences (Figure 1,
Supporting Information Figure S2). PEC distributions
including conditional variances were also symmetrical on the
logarithmic scale (models 2 and 4). The censored PEC
distributions (models 3 and 4) of chemicals occurring <LOD
showed a left skew (see, for example, PEC distributions for the
Oslofjord campaign in Figure 1 and Supporting Information
Figure S2).

3.3. Spatiotemporal Conditional Variances. Most
spatiotemporal conditional variances had values in orders of
magnitude below the measured concentrations (that is, values
<1; Figure 2). This can be interpreted as the weak influence of
the spatiotemporal variables on the PEC. However, for some
chemicals, the conditional variances have higher values, for
example, for the chemicals in the Oslofjord campaign. In such
situations, the interpretation would be that the variable (in this
case, only spatial) has a noticeable influence on the PEC. This
enables to critically evaluate the monitoring campaign itself, for
example, in cases where the conditional variances display
higher orders of magnitude than the measured concentrations;
then, the prediction of the PEC is more correlated with the

Figure 3. Example of the temporal and spatial correlation patterns for four random chemicals of the Sørfjord monitoring campaign. The densities
are based on 10,000 posterior draws of the Cholesky correlation factors. The color gradients indicate the mode of the correlation distribution, from
blue (−1; complete negative correlation) through gray (0; no correlation) to red (1; complete positive correlation).
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information on dates and sites than on the identity of the
chemical itself. Also, the quantification of conditional variances
makes it possible to distinguish whether the concentration of a
chemical is mainly influenced across dates or sites. For
example, the date-specific conditional variance for zinc
concentrations in the Kaldvellfjord campaign is considerably
higher than the corresponding area-specific conditional
variance (Figure 2). This can be interpreted such that zinc
concentrations vary more across time than across locations.
Considering conditional variances enables more specialized

assessments and potentially more detailed further analyses; for
example, spatiotemporal conditional variances allow to inspect
special exposure scenarios directly. For example, it is possible
to determine how each chemical concentration varies across

each site and date. This way, it is possible to quantify, for
example, which sites have a higher pollution load. This
information could become useful for prioritization of actions,
both in terms of chemicals and locations.

3.4. Spatiotemporal Correlations. The use of Cholesky
correlation factor distributions can provide further insights into
the spatiotemporal correlations of the PECs. An example with
four random chemicals from model 4 of the Sørfjord campaign
can be seen in Figure 3. Although most chemical−chemical
pairs show weak temporal correlations, that is, the modes of
the Cholesky correlation distributions are close to zero, there
appears to be a positive temporal correlation between
cadmium and copper and a negative temporal correlation
between mercury and zinc. This could indicate that cadmium

Table 2. Exemplary Overview of the Derived PEC Estimates (in mol L−1) for Four Random Chemicals of Each Campaigna

aFor every chemical, a lower and an upper limit, as well as a centrality proxy, are given. For the data itself, these are 2.5, 50, and 97.5% quantiles,
that is, the median and 95% confidence interval. For models 1−4, these are the lower and upper bounds of the 95% highest density interval (HDI),
that is, the 95% credible interval, and the mode, that is, the “peak” of the density distribution. For the data quantiles, the reported concentrations
<LOD were removed, and the reported concentrations <LOQ were assumed to be half the LOQ; they are equivalent to the boxplots in Figure 1.
Note that for 1,2,3,4,5,6-hexachlorobenzene of the Oslofjord monitoring campaign, only reported concentrations <LOD were available; thus,
quantiles for the data and models 1 and 2 were not possible. For each descriptor of every chemical in models 1−4, the lowest value is highlighted in
blue and the highest value is highlighted in red.
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and copper concentrations are influenced by the same
temporal process, with no distinct spatial patterns. Information
on the spatial or temporal correlation of chemical concen-
trations can be a powerful addition to the PEC distributions
and could eventually help to prioritize regulatory decisions, for
example, mitigation measures.
3.5. Measurement Uncertainties. Models including

LOQ and LOD information generally resulted in PEC
distributions with lower concentrations (Figure 1 and
Supporting Information Figure S2). This is not surprising, as
these models explicitly take the LOQ and LOD into account as
censoring. This likely gives a more credible description of the
uncertainties associated with environmental concentrations,
overcoming technology-associated hurdles, that is, quantifica-
tion and detection limits. The practice of fabricating artificial
concentrations, for example, based on half the LOQ, is in
contrast a relatively arbitrary approach to addressing limits of
quantification and detection. Still, censoring of data introduces
ambiguity, and therefore the “gold standard” should be to have
all measured concentrations >LOQ. However, such an ideal
scenario would likely come with substantial analytical efforts;
so, the implementation of the LOQ and LOD values into PEC
derivations could be a pragmatic alternative solution. The
methodology shown in this article can be easily adjusted to
include or exclude censoring of data and is flexible to cater for
scientific and regulatory demands and needs.
It is important to remember that in case of censoring, the

predictions are directly driven by the LOQ and LOD values.
The reason for this lies in the empirical Bayes estimation of the
prior distributions. As the only reliable information available
for censored data are the LOQ and LOD values, they are used
for the estimation of the prior distribution. This resembles a
“worst-case” assumption, that is, the actual concentrations
could be the LOQ or LOD, respectively.
If chemical concentrations are repeatedly <LOD, this can be

interpreted in two ways: either the chemical is absent from the
monitoring system or the chemical is only present in low
concentrations <LOD. The latter could be assumed for
ubiquitous legacy pollutants, such as POPs or PAHs, and
also metals.53,54 If technical limits are considerably low and
chemicals still occur <LOD, there will still be an increased
uncertainty, but in subsequent ERA procedures, PEC
distributions with higher uncertainty, but still very low
concentration ranges, are not likely to drive an overall risk
assessment.
Even though the PEC distributions cover a wider

concentration range than the 95% quantile summaries, they
provide a more realistic and robust estimation of the actual
concentration of the chemicals in the environment, irrespective
of the site- and date-related variances. This is especially visible

when considering the PEC distributions of chemicals occurring
strictly <LOD, as shown in the Oslofjord campaign in
Supporting Information Figure S2.

3.6. Bayesian PEC Derivation. The approach of modeling
PECs as Bayesian distributional regression models allowed us
to separate site- and date-specific variances from the latent
background concentrations and incorporate the information of
the LOQ and LOD. The 10,000 posterior draws of each model
are for the βi and σ parameters and do not include the
conditional variances of sites or dates (Figure 1). This makes
the PEC derivation robust to spatial and temporal variations,
which is explicitly encouraged within the WFD and by
EFSA.3,11,55,56 Still, it is possible to include this information in
other investigations, for example, to model potential worst-case
scenarios, to identify pollution hotspots, or to analyze the
seasonal cycles of pollution (see Supporting Information
Figure S2). The success of such inferences depends largely
on the available data for model fitting: the more data available,
the higher the accuracies of the model predictions will be.
A comparison of the data’s 95% confidence intervals and the

models’ 95% credible intervals is given in Table 2 for four
random chemicals of each monitoring campaign. The PEC
distributions of models 1−4 showed a good overlap with the
underlying data, with the 95% CI of all models covering >90%
of the measured concentrations (Supporting Information
Table S1). More visually, the censored PEC distributions of
model 4 cover the measured concentrations, while showing a
left skew relative to the boxplot summaries, with the modes of
the censored PEC distributions being in equal range or lower
than the median of the raw data (Figure 1). The PEC
distributions also include concentration ranges not covered in
the raw data, and the PEC distributions of models 3 and 4
were in the same range or lower than the PEC distributions of
models 1 and 2 (Figure 1 and Supporting Information Figure
S2). Differences in terms of 95% credible intervals were largely
minor, and estimations were usually on the same order of
magnitude, except when the percentage of data <LOD was
high, for example, for 1,2,3,4,5,6-hexachlorobenzene in the
Oslofjord campaign.

3.7. Model Comparisons. Based on the ELPD results
(Table 3), the inclusion of spatiotemporal conditional
variances generally increased model accuracies. It is therefore
beneficial to include spatiotemporal information in PEC
modeling to increase robustness to seasonal and local sources
of variability. However, higher accuracies do not necessarily
mean that the ranges of the PEC distributions become
narrower, but they more accurately reflect natural conditions
without spatiotemporal variations. As the censoring of models
3 and 4 means they are not based on the same data basis (see

Table 3. ELPDs (Standard Error in Parentheses) for all Models of Each Campaign, Based on LOO-CVa

Campaign

Sørfjord Kaldvellfjord Oslofjord

ELPD abs dif f abs dif f abs dif f

model 1 2763 ± 28 −59.6 ± 13.6 6136 ± 85 −141.2 ± 42.2 3216 ± 57 −12.2 ± 8.0
model 2 2823±31 0.0±0.0 6278±71 0.0±0.0 3228±56 0.0±0.0
model 3 1165 ± 130 −25.1 ± 12.3 4240 ± 209 −66.4 ± 33.5 2751 ± 223 −30.3 ± 16.9
model 4 1191±130 0.0±0.0 4306±211 0.0±0.0 2781±224 0.0±0.0

aThe left column contains the absolute ELPD values (abs), the right column gives the difference in relation to the most accurate model (dif f). Note
that models 1 and 2 were not comparable to models 3 and 4 because of the different data basis. See Materials and Methods for details. The models
with the highest ELPD, that is, the highest accuracy, are denoted in bold.
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Materials and Methods), the ELPD estimates of models 3 and
4 cannot be directly compared to models 1 and 2.
The Bayesian R2 values also increased with the increasing

model complexity, that is, models with conditional variances
had higher R2 values (Supporting Information Figure S3). Like
the ELPD, the Bayesian R2 is evaluated in the context of the
response variable, and thus the R2 distributions of models 3
and 4 cannot be directly compared to those of models 1 and 2.
3.8. Reflections. The Bayesian methodology presented in

this article has resulted in PEC distributions and credible
uncertainty estimations. The methodology is highly flexible
and can be adjusted to individual requirements of monitoring
studies, for example, regarding spatiotemporal structures. This
approach also provides a direct way to quantify uncertainty and
to express the PEC as a distribution. This distributional PEC
can be utilized in downstream probabilistic analyses, such es
probabilistic ERA.
In our proposed methodology, all model predictions cover

more than 90% of the original measured concentrations. Such
high posterior coverages have been raised as critically
important quality assurance parameters by EFSA in other
modeling contexts, but are in principle also applicable here.22

Also, the probability-based uncertainty of the estimated PECs
is explicitly desirable in regulatory modeling procedures.57

As shown above, the inclusion of spatiotemporal conditional
variances generally improved model accuracies. Even in cases
where the inclusion of conditional variances made only a minor
difference in the predicted PEC distributions, these differences
could potentiate when being used further in ERA procedures.
We therefore recommend including spatiotemporal conditional
variances.
Furthermore, we encourage testing the use of data <LOQ

and <LOD in censored models. Although deterministic
summary approaches for the PEC can provide similar results
when chemicals are reliably measured (that is, >LOQ), the
LOQ and LOD can influence the PEC estimations when
chemicals mainly occur <LOQ or <LOD. We have provided
models based on “classical” data (>LOQ and <LOQ; models 1
and 2) and all available data (>LOQ, <LOQ, and <LOD;
models 3 and 4) but acknowledge the need for extensive trials
and frameworks before the widespread consideration of
censoring in PEC modeling, especially for regulatory
purposes.58 The presented modeling approach is flexible
enough to work both with and without data censoring.
Our proposed methodology comes with an increased

computational cost and a potential statistical hurdle; although
the developments in environmental modeling in recent years
certainly point toward more acceptance of Bayesian methods,
not the least in regulatory contexts.
Even though we applied our methodology to chemical

concentration data from aqueous monitoring studies, the
methodology is equally applicable for chemical concentration
data from other environmental matrices, for example, sediment
or air. In the context of ERA, this methodology is fully
compatible with other Bayesian ERA approaches, if the PNEC
can also be expressed as distribution of posterior draws.
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