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Background: The Atlantic salmon gut constitutes an intriguing system for studying host-microbiota inter-
actions due to the dramatic environmental change salmon experiences during its life cycle. Yet, little is
known about the role of interactions in this system and there is a general deficit in computational meth-
ods for integrative analysis of omics data from host-microbiota systems.
Methods: We developed a pipeline to integrate host RNAseq data and microbial 16S rRNA amplicon
sequencing data using weighted correlation network analysis. Networks are first inferred from each data-
set separately, followed by module detections and finally robust identification of interactions via compar-
isons of representative module profiles. Through the use of module profiles, this network-based
dimensionality reduction approach provides a holistic view into the discovery of potential host-
microbiota symbionts.
Results: We analyzed host gene expression from the gut epithelial tissue and microbial abundances from
the salmon gut in a long-term feeding trial spanning the fresh-/salt-water transition and including two
feeds resembling the fatty acid compositions available in salt- and fresh-water environments, respec-
tively. We identified several host modules with significant correlations to both microbiota modules
and variables such as feed, growth and sex. Although the strongest associations largely coincided with
the fresh-/salt-water transition, there was a second layer of correlations associating smaller host modules
to both variables and microbiota modules. Hence, we identify extensive reprogramming of the gut
epithelial transcriptome and large scale coordinated changes in gut microbiota composition associated
with water type as well as evidence of host-microbiota interactions linked to feed.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Plants and animals are hosts to a myriad of bacteria, archaea,
fungi, protozoa and viruses that make these multicellular organ-
isms their home. One prominent example is the diverse microbial
community (the microbiota) residing in the gut of most animals.
The formation and preservation of a healthy gut microbiome con-
tributes not only to the extraction of nutrients, but also to normal
physiological development of the host including the gastrointesti-
nal tract and the immune system. Indeed, imbalances in the gut
microbiota have been associated with obesity, irritable bowel syn-
drome, asthma, arthritis and even anxiety [39].

The collection of species comprising the host and the microbes
living on or inside the host is sometimes referred to as the holo-
biont, with some evolutionary biologists suggesting that holo-
bionts should be considered single units of selection [43,7].
Interactions between host and microbiota has been studied in
model animals and humans [36,10,9], but less is know about such
interactions in aquatic environments [11]. To this end, the Atlantic
salmon represents an compeling study system due to its intriguing
life history. The salmon starts its life in rivers, then migrates to the
ocean to mature, and finally returns to the same river to breed. The
migration from fresh- to salt-water would kill most fish species,
and requires the salmon to undergo substantial changes in the reg-
ulation of body chemistry to successfully adapt (smoltification).
This transition also represents a barrier to the gut microbiota,
which in addition has to adapt to the differences in food between
rivers and the ocean. Juvenile fish (parr) in rivers mostly eat inver-
tebrates, which are low in long-chain polyunsaturated fatty acids
(LC-PUFAs) such as omega-3, while post-smolt fish in the sea have
ample supplies of LC-PUFAs in the form of other fish and krill. Data
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sets now exist measuring changes in host gene regulation [15] and
gut microbial composition [20,35] as a response to the fresh-/salt-
water transition and to different feed types. However, these data-
sets have so far only been analyzed individually with traditional
methods. In this article, we aim to study interactions between
the salmon and its gut microbiota by data integration.

Previous studies that have attempted to investigate holobiont
interactions by generating large-scale omics data from both the
host and the associated microbiota have been limited by a deficit
of computational tools and methods [30]. Networks naturally
describe interactions, and network-based computational methods
have therefore dominated efforts to tease apart such interactions.
[19] used networks to identify host gene modules and correlated
these with bacterial community variables and individual opera-
tional taxonomic units (OTUs) of the microbiome. TransNet (Tran-
skingdom Network, [34] infers unweighted networks of bacterial
OTUs and host genes separately. The method relies on differential
expression analysis to reduce the number of nodes in the network,
followed by network inference, module identification and finally
identifies causal host and microbial nodes using high bipartite
betweenness centrality in transkingdom networks. Attempts have
also been done to infer structural host-microbiota interaction net-
works by predicting complexes formed between host proteins and
microbial components [16,4]. Here, we develop and apply a
network-based dimensionality reduction method for analysing
holobiont omics data. The pipeline infers networks for both the
host and the microbiota and provides robust predictions of puta-
tive Interactions between them. The framework is largely auto-
matic requiring little manual tinkering and is based on weighted
networks that do not depend on arbitrary thresholds on correlation
[18]. The developed pipeline is then applied to the previously
described salmon gut omics datasets.
2. Results

To gain insight into host-microbiota interactions in the Atlantic
salmon (Salmo salar) gut, we performed an integrative analysis of
RNA-seq data from the gut epithelial tissue [15] and 16S rRNA
amplicon sequencing data from the gut content [20,35] collected
from a long-term feeding trial (Supplementary Fig. 1). The trial
spanned fresh- and salt-water life stages and included feeds low
(VO – Vegetable Oil) and high (FO – Fish Oil) in long-chain polyun-
saturated fatty acids (LC-PUFAs), resembling food availability in
rivers and the ocean, respectively. After preprocessing (see Meth-
ods), the dataset contained matching measurements of 37,408 host
genes and 296 microbiotic OTUs in 147 samples.
2.1. A novel method for holobiont interaction analysis

We developed a computational pipeline for integrating host and
microbiota omics datasets based on weighted network analysis
(Supplemental Fig. 2). We infer networks for each omics dataset
separately using the Weighted Gene Co-expression Network Anal-
ysis (WGCNA) method [24]. Briefly, networks are soft-thresholded
to reach an approximate scale free topology, network modules are
detected using the robust weighted Topological Overlap Measure
(wTOM) [42] and hierarchical clustering, and the first principle
component is used as a representative profile for each module
(generally referred to as host/microbiota Module Eigennodes –
hME/mME, or, specifically as eigengenes/eigenOTUs). We then
assign functional roles at the network module level via function
enrichment analysis, while high resolution analysis of the individ-
ual modules is enabled through ranking of genes and OTUs (i.e.
nodes) by network centrality. Finally, we devised an integrated
heatmap analysis to visualize and predict putative transkingdom
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interactions by correlating module eigennodes between the two
networks, and by associating these predicted interactions to host
traits and other external variables such as feed and water type.

2.2. Fresh-/salt-water transition dominates omics associations

Our analysis of the host gene co-expression network revealed
171 distinct gene modules with low correlation between modules
(between host Module Eigengenes – hMEs) and high correlation
between genes within the same module (Supplementary Fig. 3).
These modules contained 13,525 genes (Supplementary table 1).
The microbiota network contained five modules harboring 95
OTUs (Supplementary table 2). Although these modules were dis-
tinct, they were clearly clustered into two negatively correlated
groups (Supplementary Fig. 4). The relatively large fraction of
genes (64%) and OTUs (68%) not included in modules indicates that
many genes and bacterial species have largely unique variation in
abundance profiles across the individual fish sampled in this study.
In an unsupervised framework, such genes/OTUs are assumed to
largely make up genes that do not vary (e.g. housekeeping genes)
or that display variation not relevant for the processes studied in
these data sets.

We developed a visualization scheme where gene module
expression, transkingdom putative interactions and omics correla-
tions to host traits and external variables are assembled into an
integrated Heatmap Analysis of Holobiont Interactions (iHAHI,
Fig. 1). This analysis clearly shows that the fresh-/salt-water tran-
sition explains much of the structure in both the host and micro-
bial network. The 50 host modules with a significant association
to both external variables and microbiota modules (p < 0.05) are
broadly divided into two groups: group 1 contained modules of
genes that to some degrees have higher expression in saltwater
(i.e. positively correlated to WaterSW – Salt Water, and to Day,
which is inherently linked to water type), whereas group 2 primar-
ily have higher expression in freshwater (i.e. negatively correlated
to WaterSW). Notably, the two largest host modules (represented
by host Module Eigengene 1 – hME1 – and 2 – hME2) have the
strongest negative/positive association to saltwater, respectively.
Some of the strongest associations between host and microbial
modules are also observed for these two modules. This is explained
by the fact that microbial modules also are heavily influenced by
the fresh-/salt-water transition: microbial modules 1 and 2 (micro-
bial Module EigenOTU 1 – mME1 – and 2 – mME2) contain OTUs
abundant in saltwater, while modules 3, 4 and 5 contains genes
abundant in fresh water (Supplementary Fig. 4).

Since many host and microbiota modules correlate with the
fresh-/salt-water transition, it is difficult to distinguish actual
host-microbial interactions in these modules from scenarios where
both host and microbial modules are independently explained by
water-type. In order to gain further insight into this, we investi-
gated gene function enrichment and OTU content in host-
microbiota module-pairs abundant in saltwater (hME2 and hME3
and their correlation with mME1 and mME2) and in freshwater
(hME1, hME56, hME76 and hME79 and their correlation with
mME 3 and mME4).

2.2.1. Host-microbiota modules abundant in saltwater
Host module 2 was highly enriched for processes such as intra-

cellular protein transport (p = 1e-30), lipid synthesis processes
such as phosphatidylethanolamine biosynthetic process
(p = 2.2e-12), cholesterol biosynthetic process (p = 3.2e-10), tria-
cylglycerol biosynthesis process (p = 3.2e-10), long-chain fatty-
acyl-CoA biosynthetic process (p = 5.9e-8) and regulation of lipid
storage (2e-7) while host module 3 was also enriched for lipid
related processes such as triglyceride homeostasis (p = 3.2e-4),
lipid oxidation (5.3e-4) and lipid catabolic process (1.1e-3)



Fig. 1. Integrated heatmap. The figure shows correlations between the host gene expression module eigengenes (hME) and the microbiome abundance module eigenOTUs
(mME), as well as between hME and host traits and external variables. The central heatmap shows the ‘expression’ of the hMEs, where rows are hMEs and columns are sample
groups (i.e. mean of replicates). Sample groups are ordered by feed type, then water type and finally by day. The right heatmap shows correlation strengths between hMEs
and mME, while the left heatmap shows correlation strengths between hMEs and host traits/external variables. Correlations are computed across sample groups. A strong
positive correlation is represented by deep red, and a strong negative correlation by deep blue. A correlation of 0 is white. Statistical significance of the correlations as
indicated with stars: * p <= 0.05, ** p <= 0.01, *** p <= 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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(Supplementary table 3). These processes are in line with the func-
tion of gut epithelial cells givenhigh availability of LC-PUFAs.Micro-
bial module 1 contains a majority of Firmicutes (37 of 45), which
generally dominates the gut in salt water, but also contains Pro-
teobacteria (4), Actinobacteria (3) and Cyanobacteria (1) (Supple-
mentary Fig. 5). Many OTUs in this module persist across the
freshwater-saltwater transition, although more highly abundant in
salt- than in fresh-water, and includesashighlycentralnodesall four
OTUs constituting the ‘‘stable core gut microbiota” previously dis-
cussed by [35] (Supplementary Fig. 5). Microbialmodule 2 has a dif-
ferentOTUprofile, containingBacteroidetes (6 of 22), Proteobacteria
(6) Fusobacteria (4), Cyanobacteria (3) and Firmicutes (3). Deeper
taxonomicassignments at thegenus level identifiedmany taxa asso-
ciated with fresh andmarine water environments (i.e. Planktothrix,
Aeromonas etc), but also indicated a prevalence of Bacteroides-like
populations,whicharewidely recognized ingastrointestinal ecosys-
tems for their fermentative capabilities of host and plant-derived
glycans [28] (Supplementary Table 2).
2.2.2. Host-microbiota modules abundant in freshwater
Host module 1 is highly enriched in extracellular matrix disas-

sembly (p < 5.6e-27) including collagen catabolic process (p < 6.4e-
19). Microbial module 3 contains Proteobacteria (7), which gener-
ally dominates the gut in fresh water, but also Actinobacteria (3),
Firmicutes (2), Cyanobacteria (1) and the only Synergistetes in
the data set. Microbial module 4 is also dominated by Proteobacte-
ria (7 of 8) and contains one Bacteroidetes. Both microbial modules
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were dominated by taxa frequently observed in water-bourne
habitats with only limited examples of host-associated microbiota
(i.e. Enterococcus).

Taken together, these results indicate that the environment is
the primary driver of selection on gut microbiota with large num-
bers of genes and OTUs differentially abundant between fresh- and
salt-water. Still, significant host-microbial associations related to
feed, sex and growth does exist, suggesting that diet or host meta-
bolism may play some role in shaping the co-occurrence of associ-
ated host-microbiota modules.
2.3. Host-microbial associations related to feed, sex and growth exists

Beyond the large effect that the fresh/salt water-transition had
on both host gene expression and gut microbiota, we also identi-
fied significant associations between host gene expression and
microbial communities that are linked to feed types (Feed), sex
(Female_ratio) and fish weight and length (Condition_factor, see
Methods) (Fig. 1). Compared to the large effects of the fresh/salt
water transition, these correlations were much weaker, involved
small host modules, and generally did not co-vary with water type.
Nevertheless, many biological meaningful connections are evident.
For example, host module hM47 is associated with the sex of the
fish and contains a sprouty-related 2C gene known to have sex-
biased gene expression in other fish [38].

All four feed categories (FO, VO, FO ? VO, and VO ? FO) had at
least one significant correlation to a host-module and to a
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microbial module (Fig. 1). These host modules consisted of genes
linked to functions such as ion transport (hM10, hM104), fatty acid
binding (hM10), apoptosis (hM120), and muscle function (hM10),
but also various genes associated with anti-inflammatory path-
ways (Supplementary table 1). For example, the switch of diet from
FO to VO was particularly strongly associated with expression of
hM104, which contains the ankyrin-3 gene (ank3) that alters Na-
K-ATPase activity during chronic intestinal inflammation [37]. In
line with this, increased levels of n-3 LC-PUFA (DHA and EPA) in
the feed have been shown to activate anti-inflammatory processes
in the gut in both mammals and fish [29,8].

The switch of diet from VO to FO was associated with hME16
which contains interferons regulatory factor genes (irf-3 and irf-
7), signal transducer and activator of transcription 1 gene (stat-1)
and interferon-induced very large GTPase 1 gene (gvinp-1)
involved in innate and adaptive immune responses. The interferon
signalling involves irf-3 and irf-7 which regulates the transcription
of type 1 interferons (T1ifn) and leads to phosphorylation of Stat-1
and Stat-2 [14,26]. The Stat-1 and -2 dimerze and form a complex,
which enters the nuclears and affects transcription of interferon-
stimulated genes (ISGs). The genes of hME16 were negatively cor-
related to VOFO, supporting a previous study that dietary inclusion
of LC-PUFA decreases stimulated-interferon production [17]. An
alternation of T1IFN signalling in host could change the composi-
tion of commensal microorganisms in the host intestine, and con-
versely the intestinal microbial community also plays an important
role for maintaining a stable T1IFN production at mucosal surfaces
[14]. Furthermore, a study in mice also showed that the colonisa-
tion of microbiota is important for the development of T1IFN sig-
nalling systems at early stages [13].

Host module 16, associated with VOFO and two microbial mod-
ules (mME1 and mME2), contains a butyrate response factor 1
gene (NCBI locus identifier 100195422). This gene is known to be
regulated by changes in butyrate levels in colorectal cells in mam-
mals [27]. Interestingly, within microbial module 1 we identified
an OTU affiliated to Faecalibacterium (OTU_45), a renowned
butyrate-producing beneficial bacterium in the mammalian gut
that is commonly associated with gastrointestinal health [12]. Clo-
ser inspection of OTU45 and butyrate response factor 1 demon-
strated a stronger correlation between these than between the
modules themselves (p = 0.001). The predicted hM16-mME1 inter-
action hence represents an interesting candidate for a functional
link between microbial metabolism and host-gene regulation.

2.4. Host-microbial associations after removing large effects

Because the fresh-to-salt water transition in the dataset has an
overwhelmingly large effect on gene expression and microbial
composition, it is plausible that other associations have remained
undiscovered in the initial analysis described above. To gain fur-
ther insight into host-microbiota associations, we therefore reran
our pipeline on omics data subjected to a method designed to
remove large effects (see Methods). Interestingly, this revealed a
large number of small modules for both the host (123 host mod-
ules, Supplementary figures 6) and microbiota networks (89
microbiota modules, Supplementary figure 7). These modules
included a large proportion of genes (586 of 1492 genes, Supple-
mentary table 4) and OTUs (156 of 228 OTUs, Supplementary table
5) not assigned to modules in the initial analysis, and thus repre-
sented a potential for new discoveries.

Fig. 2 clearly shows that removing large effects deemphasized
association related to water type and sampling day, and instead
revealed several strong associations (p < 0.01) involving nine host
modules, 17 microbiota modules and host variables linked to feed
and sex. Here we focus on modules with associations to both VO
and FO feeds: Host module 2 is enriched for genes with a role in
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the cholesterol biosynthetic process (p = 1E-30, Supplementary
table 6), which is the same enrichment as for genes highly
expressed in salt water in the initial analysis (host module 2 in
Fig. 1). However, unlike in the initial analysis, host module 2 after
removing large effects (Fig. 2) has a strong association to feed, with
a positive correlation to VO feed and a negative correlation to FO
feed. The same feed association can be found for host module 58.
A higher requirement for endogenous cholesterol has previously
been suggested to be an effect of dietary VO which is naturally
devoid of cholesterol [21,15]. Further supporting this, host module
58 includes a scavenger receptor class B type I gene (sr-bi) that
suggest a higher requirement of cholesterol absorption in the
intestine in VO [6,3]. Furthermore, host module 39, displaying
the reverse association to feed (negative correlation to VO feed
and positive to FO feed), is enriched for positive regulation of
epithelial to mesenchymal transition (p = 0.00016). Host module
39 includes two genes, beta,beta-carotene 90,100-oxygenase-like
(bco2) involved in cleavage of carotenoids and lecithin retinol
acyltransferase-like (lrat) involved in esterification of carotenoids.
The higher expression of genes involved in carotenoid metabolism
could be linked to LC-PUFA levels in FO. A previous study has
shown that sterol esters containing LC-PUFA have higher bioavail-
ability than vegetable oil fatty acid esters [23]. Multiple microbial
taxa were also observed to associate with host modules 2, 58 and
39, including several lineages affiliated to gastrointestinal com-
mensals such as Paraeggerthella (OTU_230, mME5) [25] and those
linked to fermentation and/or fatty acid utilization (e.g. Tepidimi-
crobium: OTU_311, mME5 and OTU_257, mME58) [40]. However,
it must be noted that little phenotypic and genomic information
exists for these genera in any environment notwithstanding the
salmon gut for which there exists no data. This current lack of data
for microbial function makes it problematic to infer definitive pre-
dictions of metabolic functions based on our 16S rRNA data and to
connect their putative associations to host modules. It is hoped
that these knowledge gaps will quickly be filled as improvements
to microbiome genome inventories are occuring at a rapid pace.

Taken together, we successfully removed the dominating effect
of water type and sampling day from the host and microbiota
omics data, and then showed that our network-based framework
could reveal hitherto undiscovered host-microbiota-feed associa-
tions in this data.
3. Discussion

Previous studies have shown that both changes in feed compo-
sition and migration between fresh- and sea-water environments
remodel salmon gut tissue function as well as gut microbial com-
position [15,21,22,41] Yet, during these significant events there is
little to no knowledge about potential interconnections between
the microbial community functions and salmon gene regulation
and gut physiology. To close this knowledge gap there is a pressing
need to co-analyze host and microbiome responses in a unified
manner.

Here we used matching host gene expression and microbial
level measurements to search for host-microbiota interactions
using a novel computational method combining network-based
dimensionality reduction for analysing holobiont omics data and
an integrated Heatmap Analysis of Holobiont Interactions (iHAHI)
for visualizing putative interactions. Although this method was
applied herein to a salmon dataset, it can be applied to any holo-
omic dataset in animals or plants. In fact, the R code is available
as modules (R Markdown files) each performing one step in the
computational analysis pipeline (Supplementary Fig. 2) including
generating all figures presented as part of this article. Using this
pipeline, we find that it is difficult to separate salmon host-



Fig. 2. Integrated heatmap with large effects removed. The figure shows correlations between the host gene expression module eigengenes (hME) and the microbiome
abundance module eigenOTUs (mME), as well as between hME and host traits and external variables. The central heatmap shows the ‘expression’ of the hMEs, where rows are
hMEs and columns are sample groups (i.e. mean of replicates). Sample groups are ordered by feed type, then water type and finally by day. The right heatmap shows
correlation strengths between hMEs and mME, while the left heatmap shows correlation strengths between hMEs and host traits/external variables. Correlations are
computed across sample groups. A strong positive correlation is represented by deep red, and a strong negative correlation by deep blue. A correlation of 0 is white. Statistical
significance of the correlations as indicated with stars: * p <= 0.05, ** p <= 0.01, *** p <= 0.001. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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microbiota interactions from independent effects in the host and
the microbiota both caused by the fresh-/salt-water transition.
Although in seawater, we observed OTUs affiliated to the Bac-
teroides, which are well recognized for their commensal activity
within gastrointestinal ecosystems. In the context of dietary
changes, previous traditional single-omics analysis showed that
while host gene regulation plays a role in adopting salmon to dif-
ferent LC-PUFA availability, the gut microbiota composition seems
not to play a major role. In this study we similarly observed corre-
lations between host gene expression and feed, however by intro-
ducing an additional layer of data encapsulating gut microbiome
composition, we revealed putative interactions that arise from pos-
sible microbiome butyrate-producing activity. Collectively, our
data therefore suggests that perhaps overlooked dietary-linked
commensal populations that are critical to mammalian nutrition
and wellbeing (such as Bacteroides and Faecalibacterium) are also
important within salmon. Finally, we show that when large effects
are removed from our analysis we increase the resolution of net-
work associations, revealing previously hidden and possibly
important biological interactions.

Our method for detecting robust interactions between host and
microbiota was here used to find correlated modules of host genes
and microbiota OTUs. While individual host genes and microbiota
OTUs might still exhibit signals of interactions, the use of microbial
taxa as a marker as opposed to microbial gene function may well
mask many critical functional interactions that exist between
metabolic pathways that have not yet been attributed to
taxonomically-described salmon gut microbiota. In addition, the
presence of an OTU or gene/pathway does not automatically infer
activity. The current lack of data for microbial function makes it
problematic to infer definitive predictions of metabolic functions
based on 16S rRNA data and to connect their putative associations
to host modules. It is hoped that these knowledge gaps will quickly
be filled as improvements to microbiome genome inventories are
occuring at a rapid pace. Irrespective, we argue that our method
easily can encompass host and microbial gene expression data
once representative datasets become available for salmon.
4. Materials & methods

4.1. Materials

The omics data were generated using 367 samples from a long
term feeding trial of farmed Atlantic salmon (Salmo Salar) (for
experimental design see Supplementary Fig. 1). The salmon were
1032
raised on two contrasting diets: one vegetable oil diet (VO) with
low amounts of long chain polyunsaturated fatty acids (LC-
PUFA), containing a 1.8:1 ratio of linseed oil and palm oil, and
one fish oil diet (FO) high in LC-PUFA, based on fish oil from the
North Atlantic [15,35]. The fish were switched to the contrasting
diet (VO to FO and vice versa) at ~ 50 g in freshwater, and tissue
samples were taken 1, 2, 5, 9, 16 and 20 days after the diet switch
(Supplementary Fig. 1b). The control fish on the original diets was
put through the smoltification process and then transferred to sea-
water. Another diet switch trial was performed in seawater when
the fish reached ~ 200 g, and tissue samples were again taken at
1, 2, 6, 9, 16 and 20 days after the diet switch. Samples of the con-
trol tanks were taken at 0, 5, 9 and 20 days after diet switch in
freshwater and at 0, 9 and 20 days in seawater.

Atlantic salmon RNA-seq reads from the gut epithelial tissue
samples were taken from [15] and are available in the European
Nucleotide Archive (ENA) as project PRJEB24480. Transcript
expression values were quantified using Salmon [32]. Correspond-
ing gut microbiota 16S rRNA amplicon sequencing reads were
taken from [35] and are available in the Sequence Read Archive
(SRA) under accession number SRP119730. OTUs were identified
from 16S sequences using the USEARCH pipeline with 97%
sequence identity. Classifications were done with the R-package
microclass.
4.2. Methods

The developed computational analysis pipeline is visualized in
detail in Supplementary Fig. 2.
4.2.1. Data preprocessing
Transcript expression counts were summed for each gene.

Expression values were normalized across samples using the
Trimmed mean of M values (TMM)-method [33], and log2-
transformed. Genes with expression levels below 1.0 in all samples
and/or with a standard deviation less than 0.15 were removed
before network inference. This reduced the number of genes from
48,057 to 37,408.

We retained OTUs that contribute at least 0.005% of the total
microbial abundance. This reduced the number of OTUs from
1152 to 296 and the number of zeros in the abundance table by
50%. OTU abundances was normalized using the Cumulative Sum
Scaling (CSS) method from the Bioconductor package metagenome-
Seq, which by default log2-transforms the data.
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Samples were first normalized with a min-max normalization
(Cao, Stojkovic, and Obradovic 2016) and then clustered with aver-
age distance to identify outliers. Two samples were removed: RNA-
seq sample G_FW_D20_FOVO_2 and 16S sample G_FW_D9_
FOVO_2.

4.2.2. Network inference
For network inference, we used the Weighted Gene Co-

expression Network Analysis (WGCNA) R package [24] and the
function blockwiseModules with the bicor correlation measure
and parameters maxBlockSize = 10000, networkType = ‘‘signed”,
TOMType = ‘‘signed”, corType = ‘‘bicor”, maxPOutliers = 0.05,
replaceMissingAdjacencies = TRUE, pamStage = F, deepSplit = 4,
minModuleSize = 2, minKMEtoStay = 0.5, minCoreKME = 0.5, min-
CoreKMESize = 2, reassignThreshold = 0 and mergeCutHeight = 0.
4/0.5 (for microbiota/host respectively).

Our analysis relies heavily on network modules, and hence the
parameters related to module detection and trimming influence
the results. Briefly, deepSplit controls the sensitivity of the module
detection approach by hierarchical clustering, with a value of 1
being the least sensitive and 4 being the most sensitive. minMod-
uleSize controls the minimum size of modules in the clustering
step. Nodes with a correlation to the module eigennode (KME)
lower than minKMEtoStay are trimmed from the module, and
the module is deleted if it does not have a core of at least minCor-
eKMESize nodes (with core nodes being defined as having a KME
greater than minCoreKME). Finally, different modules with eigenn-
odes that correlate above the 1 – mergeCutHeight threshold are
merged. Note that the final modules can be smaller than minMod-
uleSize due to trimming (but not smaller than minCoreKMESize),
and that they can include nodes with a KME lower than
minKMEtoStay due to module merging. Our parameters were set
to detect highly correlated and potentially small modules initially,
thus not missing interesting profiles displayed by few genes/OTUs,
and then to apply an aggressive merging threshold to avoid dealing
with highly redundant modules in downstream analysis.

Network centrality of genes and OTUs were calculated using the
function intramodularConnectivity.fromExpr.

The removal of large-effect variables using the PC-correction
method available in the R-package sva [31], which is a method
developed for co-expression networks, is implemented in the code.
The number of latent variables to be removed is estimated using
the permutation-based approach implemented in the num.sv func-
tion and the variables can then be regressed out using the function
sva_network.

4.2.3. Host variables
We correlated a set of host variables/traits with the omics data

including day, feed, water type, sex, weight and length. The cate-
gorical feed-variable has four values: vegetable oil (VO), fish feed
(FO) and the two transitions from VO to FO (VOFO) and from FO
to VO (FOVO). To allow correlation analysis we expanded this vari-
able into four new binary variables using ‘‘one hot encoding” with
each new variable taking values 1 (e.g. VO) and 0 (e.g. not VO).
Instead of using host weight and length directly, we calculated
the condition factor (CF) of the fish, which is considered an indirect
measure of fish fatness [5,2]. The new variable CF is a continuous
variable:

CF ¼ 10N �W
L3

where W is the weight of the fish in grams, L is the length of the fish
in millimeters and N is a constant used to bring the range of output
values close to 1. The value of N differs from N = 2 [2] to N = 5 [5].
Here we used a value of N = 4 which gives the expected range.
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4.2.4. Integrated heatmap analysis of holobiont interactions
We devised and implemented a heatmap analysis to visualize

and predict putative holobiont interactions by integrating host
and microbiota module eigennodes with host variables (see Figs. 1
and 2). To obtain reliable estimates of the significance of associa-
tions between host eigengenes and both host variables and eigen-
OTUs, correlations were computed after averaging the expression/
abundance values of replicates. Correlations and p-values were
computed using the R function cor.test using the Spearman correla-
tion for the ordinal day-variable and the default Pearson correla-
tion for all other variables.

4.2.5. Gene ontology enrichment
The R package TopGO [1] was used to test for gene function

enrichment.

4.2.6. Code availability
The R-markdown files and R-scripts are available at: https://gi

tlab.com/M.strand/wgcna_host_microbiome.
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