

Norwegian University of Life Sciences Faculty of Environmental Sciences and Natural Resource Management

Philosophiae Doctor (PhD) Thesis 2020:8

Investigating sensitivity and tolerance to chronic gamma irradiation in the nematode *Caenorhabditis elegans*

En studie av sensitivitet og toleranse for kronisk gammabestråling hos nematoden *Caenorhabditis elegans*

Erica Maremonti

Investigating sensitivity and tolerance to chronic gamma irradiation in the nematode *Caenorhabditis elegans*

En studie av følsomhet og toleranse for kronisk gammabestråling hos nematoden Caenorhabditis elegans

Philosophiae Doctor (PhD) Thesis

Erica Maremonti

Norwegian University of Life Sciences

Faculty of Environmental Sciences and Natural Resource Management

Ås (2019)

Thesis: 2020:8 ISSN: 1894-6402 ISBN: 978-82-575-1674-1

"Chaos is merely order waiting to be deciphered"

- José Saramago

Supervisors

Doctor Dag Anders Brede, PhD Centre for Environmental Radioactivity (CERAD) CoE Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU) E-mail: <u>dag.anders.brede@nmbu.no</u>

Professor Brit Salbu, PhD Centre for Environmental Radioactivity (CERAD) CoE Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU) E-mail: <u>brit.salbu@nmbu.no</u>

Professor Deborah H. Oughton, PhD Centre for Environmental Radioactivity (CERAD) CoE Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU) E-mail: <u>deborah.oughton@nmbu.no</u>

Associate Professor Ole-Christian Lind, PhD Centre for Environmental Radioactivity (CERAD) CoE Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU) E-mail: <u>ole-christian.lind@nmbu.no</u>

Professor Peter Aleström, PhD Centre for Environmental Radioactivity (CERAD) CoE Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine Norwegian University of Life Sciences (NMBU) E-mail: <u>peter.alestrom@nmbu.no</u>

Evaluation committee

Doctor Christelle Adam-Guillermin Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France Phone: +33 4 42 19 94 01 E-mail: <u>christelle.adam-guillermin@irsn.fr</u>

Professor Hilde Loge Nilsen Department of Clinical Molecular Biology, University of Oslo Sykehusveien 25, Akershus University Hospital, Epigen B2, 1478 LØRENSKOG, Norway Phone: +47 67963922 E-mail: <u>h.l.nilsen@medisin.uio.no</u>

Doctor Hans-Christian Teien Centre for Environmental Radioactivity (CERAD) CoE Faculty of Environmental Sciences and Natural Resource Management, NMBU P.O. Box 5003 1432 Ås, Norway Phone: +47 6723 1893 E-mail: <u>hans-christian.teien@nmbu.no</u>

Acknowledgments

The present PhD project was financially supported by the Norwegian University of Life Sciences (NMBU) through a PhD scholarship and by the Research Council of Norway through its Centre of Excellence (CoE) "Centre for Environmental Radioactivity" funding scheme (CERAD, Project No. 223268/F50). The research work was carried out at the facilities at the Norwegian University of Life Sciences (NMBU).

First of all, I would like to acknowledge my main supervisor, Dr. Dag A. Brede, for offering me this challenge and great opportunity. I cannot express how deeply grateful I am to you, Dag, for giving me your endless support, through wise words, genius ideas and practical guidance, but most importantly for always believing in me. The door of discussion and many times listening was always open, and I really appreciated that.

I would also like to acknowledge all my co-supervisors, for giving me scientific guidance, especially during the writing process, and above all for sharing your knowledge over these years, it has been a very enriching experience for me. Thanks to Prof. Brit Salbu and Dr. Ole-Christian Lind, for giving me the possibility to learn not only from the books and the lectures, but also from the nice stories and from the field. Thanks to Prof. Deborah Oughton for the support, the interesting lectures, but also for the nice dinners and always kind words. Thank you to Prof. Peter Aleström, for giving me the chance to learn more about epigenetic by organizing nice workshops and by opening the door of his lab.

Thank you to all my co-authors and to the CERAD colleagues for their invaluable contribution, but most importantly to Dr. Einar S. Berg, for patiently teaching me all I know about PCR, and for nice discussions about Italian wine. Thanks to Dr. Lisa Rossbach, for being my everyday support as a colleague but especially as a friend. I am very grateful to Dr. Dag Markus Eide, for the statistical and sometimes moral support, and for always helping me find the solution. Thanks to Dr. Yetneberk Kassaye, for the moral and practical support during the development of the Comet assay, Dr. Ann-Karin Olsen for nice discussion and Dr. Fabian Grammes for the bioinformatic support. Thanks to Hilde Raanaas Kolstad, Lene Cecilie Hermansen and Dr. YeonKyeong Lee for nice chats, kind assistance and help during the microscopy analysis. Thanks also to Jan Vermaat, for reading and revising my thesis. A special thanks to Dr. Catherine Lecomte-

Pradines and Rémi Guédon for the warm hospitality in their lab, where I learned more about *C. elegans* and I did not only find nice colleagues, but also valuable friends.

Last but not least, a special thank you to all my lovely colleagues and friends at Isotope lab, for welcoming me since day one, making me feel home, for nice lunches, coffee breaks and amusing dinners, which made even my toughest days more bearable.

Finally, a huge thank you to my family, mamma, papa', Marcello, Visa, zia Giuliana and to my best friends Michele, Sante and Eugenia, for always being there for me, even if at several thousands of kilometres away, you were always at a phone call-distance to me, ready to make me feel better, even in the darkest Norwegian days.

And last to my Ken, thank you for being my family here in Norway, filling my days with laughter and love.

Erica, Ås, November 2019

Table of Contents

Summary	3
Sammendrag	6
Abstract	9
Abbreviations and acronyms	12
List of papers	.15
1. Introduction	17
1.1 Background	. 17
1.2 Aim and hypotheses of the study	. 18
1.3 Sources of ionizing radiation in the environment	. 19
1.4 Effects of ionizing radiation on biota	. 19
1.5 Cellular and molecular effects of ionizing radiation	. 21
1.6 Caenorhabditis elegans and radiation research	. 25
1.7 Caenorhabditis elegans as a model organism	. 26
1.8 The reproductive system in C. elegans	. 28
1.9 Germ line apoptosis and the effect of DNA damage	. 30
1.10 Spermatogenesis	. 32
1.11 Ionizing radiation-induced DNA damage and repair	. 34
1.12 Mitochondrial functions and mitochondrial DNA	. 35
1.13 The antioxidant defences in C. elegans and their potential role in tolerance to ionizing radiation	36
1.14 Specific objectives of the study	. 39
2. Methodology	40
2.1 Experimental design	40
2.2 Gamma irradiation and dosimetry	. 42
2.3 C. elegans strains and culturing	. 43
2.4 Developmental and morphological effects assessment	. 44
2.5 Effects on reproduction	
2.6 Germline apoptosis	. 45

	2.7 Spermatids quantification	. 46
	2.8 Monitoring in vivo ROS production and AODs response to ionizing radiation in C elegans	
	2.8.1 Epifluorescence microscopy	. 49
	2.9 Transcriptomic analysis through RNA sequencing	. 50
	2.10 Mitochondrial DNA copy number variation by droplet digital PCR analysis	. 51
	2.11 Effects on parentally irradiated nematodes (F1): DNA damage, development an reproduction	
	2.12 Statistical analysis	. 54
3.	Results	56
	3.1 Paper I	. 56
	3.2 Paper II	58
	3.3 Paper III	. 60
4.	Discussion	62
	4.1 Life stage-dependent radiosensitivity in C. elegans	. 63
	4.2 Vulnerable cell types and biological processes in irradiated nematodes	. 64
	4.3 Effects on the progeny of irradiated nematodes	. 67
	4.4 ROS production as a molecular initiating event of ionizing radiation effects	. 69
	4.5 Effects of chronic ionizing radiation exposure on mitochondria	. 72
5.	Conclusions	74
6.	Limitations of the study and future prospective	76
7.	References	78
8.	Scientific papers	101

Paper I

Paper II

Paper III

Summary

At the cellular level, excitation and ionization of atoms and molecules constitute the fundamental processes leading to harmful effects induced by exposure to ionizing radiation. However, radiosensitivity, defined as the relative susceptibility of organisms, tissues or cells to the harmful effects of ionizing radiation, differs considerably across species and phyla. Specifically, a lethal dose for most vertebrates (10 Gy) is orders of magnitude lower than the dose required to induce detrimental effects in the utmost radioresistant species ($\leq 1.2 \text{ kGy}$). Living organisms can be exposed to ionizing radiation in the environment due to nuclear accidents, but also due to the routine release from nuclear power plants or reprocessing plants. This can result in chronic exposure at doses above the background levels, with adverse consequences for the population dynamics and sustainability, because sensitive life-stages or vulnerable biological processes are impaired.

Importantly, while most of the research on radioresistant species has focused on acute exposure to high doses, the effects of chronic exposure to low doses remained under appreciated. A ground-breaking study by Buisset-Goussen et al. (2014) revealed that chronic gamma irradiation caused significant reprotoxic effects from relatively low total doses in the radioresistant nematode *Caenorhabditis elegans*. However, the molecular mechanisms causing this adverse effect needed a better understanding.

The current PhD study focused on the investigation of cellular and molecular mechanisms behind the phenotypical adverse effects shown in the nematode *C. elegans* after chronic exposure to ionizing radiation. In particular, the different experiments were designed in order to gain more information about the dose-response reprotoxic and developmental effects, the larval-stage sensitivity as well as the cell and tissue-specific sensitivity. For this purpose, a range of low and high dose-rates of gamma radiation from a 60 Co source was selected (0.4 to 1000 mGy·h⁻¹) and a multitude of cellular and molecular biology techniques applied, including the use of GFP reporter strains, epifluorescence microscopy and RNA sequencing. Moreover, this study involved the development and optimization of new methods, including the embryonic cells isolation in order to assess DNA damage via the Comet assay or the droplet digital PCR method, optimized to measure the mitochondrial DNA (mtDNA) copy number variation.

The results demonstrate that chronic exposure during larval development induces reprotoxic effects at doses \geq 3.9 Gy (40 mGy·h⁻¹), while acute or chronic irradiation during the post-mitotic larval stage does not induce any adverse effect at doses \leq 15 Gy (\leq 1 Gy·h⁻¹). L1-L4 larval stages were shown to be the most radiosensitive stages of development due to impaired spermatogenesis. Specifically, significant sperm reduction and dysregulation of genes related to sperm meiosis and maturation were identified as the cause of reprotoxicity. At the mechanistic level, these results provide important insight into the radiation induced cellular processes that lead to failed spermatogenesis. These mechanisms may be relevant to other species given the conserved nature of meiosis and the fact that radiation is known to damage spermatogenesis in earthworms, insects, mice, as well as humans.

Adverse effects on proliferative cells were also shown by enhanced germ cell apoptosis in F0 nematodes and significant DNA damage in embryos (F1) of irradiated nematodes, which was corroborated by the dysregulation of genes related to cell-cycle checkpoints, DNA repair, embryonic and post-embryonic development. In contrast to their parents, negative effects on somatic growth but no significant reprotoxic effects were observed in F1 parentally irradiated nematodes. Suggesting that, parental exposure to ionizing radiation induces the activation of defence mechanisms. These aid to ameliorate the severe DNA damage, under control conditions, but may require high energy cost which might explain their significantly reduced somatic growth.

The increased ROS levels together with the enhanced AODs activation was demonstrated *in vivo* and by gene expression analysis after chronic irradiation of F0 nematodes. This was not accompanied by any adverse effect on somatic cell viability or any visible phenotypical effect, indicating tolerance of somatic tissue, despite the cellular redox imbalance. However, the observed redox imbalance suggested a significant contribution of indirect effects, including oxidative damage to DNA, proteins, lipid metabolism and mitochondrial functions from chronic exposure to ionizing radiation. In particular, genes essential for the assembly and proper functioning of the mitochondrial electron transport chain were found significantly down-regulated. For this reason, mitochondria were proposed as a vulnerable target of chronic irradiation. However, by measuring the mt/nDNA-ratio (mitochondrial/nuclear DNA) as read-out for mitochondrial dysfunction, at doses of exposure ≤ 7.2 Gy, nematodes showed to

maintain a stable mtGenome content. Only doses \geq 24 Gy demonstrated a significant increase in the mtDNA copy number, suggesting a potential role of mtDNA replication and maintenance in the intrinsic radioresistance of *C. elegans* somatic cells.

Taken together the main findings of this research contributed to an improved understanding of the molecular and cellular mechanisms of toxicity and tolerance induced after chronic exposure to ionizing radiation in an important model organism, *C. elegans*. The finding that spermatogenesis in a radioresistant nematode is affected by 2.8 Gy, which is approximately three orders of magnitude lower than the reported acute LD90 (lethal dose required to kill 90% of the tested population), demonstrates the importance of characterizing effects of chronic low dose and low dose-rate of ionizing radiation. This information may also be relevant for further comparative analysis with other species, expressing different degrees of sensitivity, as well as for multi or transgenerational studies performed on the same model organism.

Sammendrag

Ioniserende stråling forårsaker skadelige effekter i alle typer celler via to fundamentale prosesser: eksitasjon eller ionisering av atomer og molekyler. Strålingssensitivitet er definert som den relative følsomheten av organismer, vev eller celler overfor skadelige effekter av ioniserende stråling, er svært forskjellig mellom ulike arter og phyla.

En dose på ti Gray (10 Gy) vil forårsake død hos de fleste vertebrater, mens de mest stråleresistente artene må ha over hundre ganger denne dosen (≤1.2 kGy) før de viser tegn til skade. Organismer kan bli eksponert for ioniserende stråling i miljøet som følge av atomulykker eller fra rutineutslipp fra atomkraftverk og nukleære reprosesseringsanlegg. Dette kan gi kronisk eksponering for betydelig høyere doserater sammenlignet med naturlig bakgrunnsstråling. Dette kan i noen tilfeller ha negativ effekt på sensitive livsstadier eller sårbare biologiske prosesser, hvilket kan medføre adverse effekter på populasjondynamikk eller levedyktighet.

Forskning på strålingsresistente arter har fokusert på akutt eksponering ved høye doser. Effekter av lavdose kronisk eksponering har til sammenligning vært lite vektlagt inntil en gjennombruddstudie (Buisset-Goussen et al., 2014) viste signifikante reproduksjonsdefekter hos den strålingsresistente nematoden *Caenorhabditis elegans*. De underliggende molekylære mekanismene som forårsaket slike adverse effektene var ikke kjent.

Denne PhD-studien har fokusert på cellulære og molekylære mekanismer knyttet til fenotypiske adverse effekter av kronisk eksponering til ioniserende stråling i nematoden *C. elegans*. Studien ble designet for å få innsikt i dose-respons sammenhenger i reprotoksisitet, utviklingsdefekter, sensitive celletyper og livsstadier. Denne studien har derfor omfattet et spenn fra lave til høye doserater (0.4 til 1000 mGy·h⁻¹), kombinert med en rekke cellulære, molekylære teknikker, inkludert GFP-reporterstammer, epifluorescens-mikroskopi og RNA-sekvensering. Det har også vært nødvendig å utvikle og optimalisere nye metoder inkludert isolering av embryoceller for å kunne måle DNA-skade via COMET, og kvantitativ måling av mitokondrie DNA (mtDNA) kopitall via 'digital dråpe basert PCR' (ddPCR). Resultatene viste at kronisk eksponering gjennom larveutviklingen induserer reprotoksiske effekter ved \geq 3.8 Gy (\geq 40 mGy·h⁻¹), mens akutt eller kronisk bestråling av post-mitotiske larver hadde ingen

detekterbare effekter ≤15 Gy (≤1000 mGy·h·1). L1-L4 stadiene ble vist å være det mest strålingssenitive delen av nematodens utvikling pga defekt spermatogenese. Signifikant redusert spermproduksjon og dysregulering av gener involvert i sperm-meiose og modning ble identifisert som årsak til reprotoksisitet. Disse resultatene er viktig og gir ny innsikt i strålingsinduserte cellulære effekter som skader spermatogenesen. Disse mekanismene kan være relevante for andre arter pga mange prosesser i sperm-meiosen er konservert, og fordi stråling er vist å skade spermatogenese i meitemark, insekter, mus og mennesker.

Adverse effekter ble påvist i prolifererende celler, både ved økt apoptose i kjønnsceller i F0 nematoder, og ved signifikant DNA skade i F1 embryo av bestrålte nematoder. Disse effektene ble underbygget av dysregulering av gener involvert i cellesyklus sjekkpunkter, DNA-reparasjon, samt embryo og post-embryo utvikling. I motsetning til den bestrålte foreldregenerasjonen (F0), viste avkom (F1) signifikant redusert vekst men ingen reprotoksisitet. Dette kan tyde på en sterk aktivering av forsvarsmekanismer, f.eks DNA-reparasjon, men at disse har en kostnad i form av høyere energiforbruk og redusert vekst.

Økt produksjon av reaktive oksygenforbindelser (ROS) og aktivering av antioksidant forsvar (AOD) i kronisk bestrålte nematoder, ble vist in vivo og ved genekspresjonsanalyser. Til tross for signifikant redoks ubalanse ble det ikke observert fenotypiske endringer eller redusert viabilitet i somatiske celler. Den observerte redoks-ubalansen viser et signifikant potensiale for indirekte effekter og oksidative skader på DNA, protein, lipidmetabolisme og mitokondriefunksjon ved kronisk eksponering til ioniserende stråling. Genekspresjonsanalyser viste at gener med essensiell funksjon i elektrontransportkjeden var signifikant nedregulerte, og indikerte at mitokondriefunksjoner kunne være sensitive for ioniserende stråling. Dette ble videre undersøkt ved å bruke mitokondriell/nukleær (mt/n) DNA-ratio som endepunkt for å vurdere mitokondriell dysfunksjon. Resultatene viste ingen effekt på mtDNA kopitall ved doser \leq 7.2 Gy. Doser \geq 24 Gy førte derimot til en dobling i mtDNA kopitall, hvilket kan tyde på at mitokondrie DNA blir replisert, og vedlikeholds mekanismer bidrar til strålingsresistensen i *C. elegans* somatiske celler.

Samlet sett har hovedfunnene av denne studien bidratt til økt kunnskap om molekylære og cellulære mekanismer knyttet til toksisitet og toleranse hos en viktig modellorganisme, *C. elegans* ved kronisk eksponering til ioniserende stråling. Funnet av inhibert spermatogenese ved 2.8 Gy i en stråleresistent organisme, noe som er ca 1000 ganger lavere enn akutt LD90 (akutt dose med 90% dødelighet), viser viktigheten av å studere effekter av kronisk lav dose og doserate ioniserende stråling. Disse funnene er relevante for komparative analyser med andre arter med ulik strålingsensitivitet, og danner et fundament for fremtidige studier av multi- eller transgenerasjonelle strålingseffekter i *C. elegans*.

Abstract

A livello cellulare, l'eccitazione e la ionizzazione di atomi e molecole rappresentano il principale meccanismo di tossicitá in risposta alle radiazioni ionizzanti. Tuttavia, il grado di sensibilitá relativa alle radiazioni ionizzanti tra diverse specie e phyla presenta enormi variazioni. In particolare, dosi letali (10 Gy) per la maggior parte dei vertebrati sono di ordini di grandezza inferiore rispetto a dosi necessarie per indurre degli effetti tossici nelle specie piu resistenti (≤1.2 kGy). Oltre che a causa di incidenti nucleari, l'esposizione degli organismi viventi alle radiazioni ionizzanti puó avvenire in conseguanza al normale rilascio da parte di centrali nucleari o di impianti per lo smaltimento delle scorie radioattive. Queste attivitá possono causare l'esposizione cronica a dosi superiori rispetto ai livelli di background, con conseguenze negative per le dinamiche e la sostenibilitá delle popolazioni. Tra le cause di tali effetti negativi ci sono lo sconvolgimento dei naturali processi biologici o l'esposizione di fasi di sviluppo sensibili, come ad esempio la capacitá riproduttiva di una specie o l'esposizione dei primi stadi di sviluppo larvale.

Molti studi si sono concentrati sugli effetti relativi a specie radioresistenti esposte in maniera acuta ad alte dosi di radiazioni, tuttavia gli effetti causati da un'esposizione cronica a dosi inferiori, in tali specie, sono ancora poco chiari. Studi preliminari hanno dimostrato un effetto reprotossico nel nematode radioresistante *Caenorhabditis elegans* (Buisset-Goussen et al., 2014), in consequenza ad un esposizione cronica, ma i meccanismi molecolari scatenanti rimangono ignoti.

Per queste ragioni, il presente studio ha lo scopo di analizzare i meccanismi cellulari e molecolari alla base degli effetti fenotipici osservati nel *C. elegans* esposto a dosi croniche di radiazioni. In particolare, diversi esperimenti sono stati pianificati con l'obiettivo di ottenere maggiori informazioni riguardo agli effetti dose-risposta reprotossici e di sviluppo, alla vulnerabilitá di determinati stadi di sviluppo, o di determinati tipi cellulari.

A tal proposito, un'ampio range di dosi di radiazioni gamma a diversa intensitá provenienti da una sorgente di 60 Co è stata selezionata (0.4 to 100 mGy·h-1 e ~1 Gy·h-1). Inoltre, diverse tecniche di biologia cellulare e molecolare sono state applicate, tra cui l'uso di mutanti, la microscopia a fluorescenza e l'espressione genica. In alcuni casi,

questo studio ha richiesto l'ottimizzazione e lo sviluppo di nuove metodologie, come ad esempio l'isolamento di cellule embrionali, al fine di valutare il danno al DNA in embrioni esposti in utero, oppure l'ottimizzazione di un metodo basato sulla PCR digitale per misurare la variazione nel numero di copie di DNA mitocondriale.

I risultati di questo studio dimostrano che l'esposizione cronica durante le diverse fasi di sviluppo larvale induce un effetto reprotossico a dosi ≥3.9 Gy, mentre l'esposizione acuta o cronica a dosi anche piú elevate (≤15 Gy) durante lo sviluppo post-mitotico in organismi adulti non causa alcun danno. In particolare il maggior grado di sensibilitá alle radiazioni e stato dimostrato negli stadi di sviluppo larvale L1-L4, a causa di effetti negativi a carico della spermatogenesi. La riduzione della conta spermatica, insieme alla negativa regolazione di geni essenziali per la meiosi e la maturazione spermatica misurate a dosi ≥2.8 Gy sono state considerate le cause scatenanti dell'effetto reprotossico. Altri effetti negativi sono stati riscontrati a carico di cellule proliferative, come dimostrato dall'aumento di cellule germinali apoptotiche o dal significativo danno genomico misurato nelle cellule embrionali. Tali effetti sono stati ulteriormente validati dalla differente espressione di geni con funzioni essenziali per il ciclo cellulare, e lo sviluppo embrionale e post-embrionale.

L'aumento dei livelli di radicali liberi, insieme all'attivazione di meccanismi antiossidanti, dimostrati *in vivo* ed attraverso il sequenziamento genico, in seguito all'esposizione cronica, hanno indicato uno sbilanciamento nello stato ossidoriduttivo cellulare. Questo sbilanciamento puo essere interpretato come la causa scatenante per l'attivazione di una moltitudine di meccanismi molecolari di difesa, inclusi quelli relativi alla riparazione del danno al DNA, alla degradazione proteica, al metabolismo lipidico e all'alterazione di alcune funzioni mitocondriali. In particolare, la ridotta espressione di geni essenziali per l'assemblamento ed il normale funzionamento della catena di trasporto degli elettroni ha indicato che il mitocondrio potesse essere un target vulnerabile delle radiazioni. Tuttavia il rapporto tra genoma mitocondriale, a dosi di radiazioni simili (≤7.2 Gy). Soltanto dosi superiori ai 24 Gy hanno dimostrato di indurre un aumento significativo nel numero di genomi mitocondriali, effetto che potrebbe suggerire un meccanismo di compensazione a causa dell'eccessivo danno genotossico.

La somma di questi risultati, ottenuti nel corso di questo dottorato di ricerca, contribuisce a far luce sui meccanismi di tossicitá e tolleranza cellulare e molecolare indotti dall'esposizione cronica alle radiazioni nell'organismo resistante *C. elegans*. Queste informazioni possono essere utilizzate per ulteriori analisi comparative con altre specie che possiedono diversi gradi di sensibilitá, oltre che per studi multigenerazionali e transgenerazionali sullo stesso organismo modello.

Abbreviations and acronyms

AODs	antioxidant defences
AOP	adverse outcome pathway
CNV	copy number variation
cpYFP	circularly permuted yellow fluorescent protein
СТ	cycle threshold
ddPCR	droplet digital Polymerase Chain Reaction
DDR	DNA damage response
DEGs	differentially expressed genes
DIC	differential interference contrast
dPCR	digital Polymerase Chain Reaction
DSB	double strand break
DTC	distal tip cell
ETC	electron transport chain
FB	fibrous body
GFP	green fluorescent protein
Grx1-roGFP2	Glutaredoxin 1-redox sensitive green fluorescent protein 2
Gy	Gray (SI unit, J/Kg absorbed)
HyPer	Hydrogen Peroxide ratiometric biosensor
HR	homologous recombination
LET	linear energy transfer
МО	membranous organelle
MSP	major sperm protein
mtDNA	mitochondrial DNA
mtGenome	mitochondrial genome
nDNA	nuclear DNA

NER	nucleotide excision repair
NGM	nematode growth media
NHEJ	non-homologous end joining
NORM	naturally occurring radioactive material
PCR	Polymerase Chain Reaction
qRT-PCR	quantitative real-time Polymerase Chain Reaction
RNAi	RNA inhibition
ROS	reactive oxygen species
SPCH	sperm chromatin enriched proteins
TZ	transition zone
UV	ultraviolet

List of papers

This thesis is based on the papers listed below, which are referred to in the text by their Roman numerals.

Paper I

MAREMONTI, E., EIDE, D. M., OUGHTON, D. H., SALBU, B., GRAMMES, F., KASSAYE, Y. A., GUÉDON, R., LECOMTE-PRADINE, C. & BREDE, D. A. 2019. Gamma radiation induces life stage-dependent reprotoxicity in *Caenorhabditis elegans* via impairment of spermatogenesis. *Science of The Total Environment*, 133835.

Paper II

MAREMONTI, E., EIDE, D. M., ROSSBACH, L.M., SALBU, B., LIND, O.C. & BREDE, D. A. 2019. *In vivo* assessment of reactive oxygen species production and oxidative stress effects induced by chronic exposure to gamma radiation in *C. elegans. Accepted for publication. Free Radical Biology and Medicine.* (November 2019)

Paper III

MAREMONTI, E., EIDE, D. M., OLSEN, A-K., BREDE, D. A. & BERG, E. S. 2019. Development of droplet digital PCR method for the assessment of mitochondrial DNA copy number variation in response to ionizing radiation in the nematode *Caenorhabditis elegans*. *Manuscript*.

1. Introduction

1.1 Background

All organisms are exposed to low level background of environmental radiation with little detriment to their existence. Nevertheless, ionizing radiation associated with naturally occurring radioactive material (NORM), mining sites, or from anthropogenic release from nuclear power plants or nuclear accidents, have the potential to pose a significant environmental risk (UNSCEAR, 2000).

The ability of organisms to tolerate radiation exposure can vary by more than 1000-fold (Andersson et al., 2009). Therefore, the environmental consequences of ionizing radiation contamination are highly dependent on species composition in a given ecosystem (Garnier-Laplace et al., 2013). Understanding of the factors influencing species radiosensitivity thus constitutes an important research area to assess the risk of adverse effects at species, population and ecosystem functions level (Pentreath et al., 2014).

An acute dose of 10 Gy would cause lethal effects in most vertebrate species, whereas, the most radioresistant organism known (the extremophile bacterium *Deinococcus radiodurans*) is hardly affected at doses of 12 kGy (Daly et al., 1994). Intermediate tolerance has been shown in invertebrates composed primarily of post-mitotic tissues, such as adult fruitflies (Parashar et al., 2008) and the nematode *Caenorhabditis elegans* (Johnson and Hartman, 1988, Daly, 2009). Moreover, differences in radiation sensitivity are also dependent on exposure scenario (acute or chronic exposure), the biology of the organism, the stage of development at which the irradiation occurs and the evolved cellular and molecular defence mechanisms (Adam-Guillermin et al., 2018). For instance, a highly efficient DNA repair mechanism via homologous recombination, or the capacity to scavenge reactive oxygen species (ROS) through a robust antioxidant defence (AOD) system, can render an organism more tolerant towards ionizing radiation (Zahradka et al., 2006, Krisko et al., 2012a).

While effects of acute exposure on radioresistant species have been extensively studied (Hartman, 1982, Cox and Battista, 2005, Horikawa et al., 2006, Gladyshev and Meselson, 2008b, Hashimoto et al., 2016), the consequences of low dose and low dose-rate chronic

exposure are less clear. However, accumulating experimental evidence indicates that under certain circumstances long-term exposure to ionizing radiation can induce adverse effects at lower doses than acute exposures, and that adversity can be transmitted over multiple generations (Merrifield and Kovalchuk, 2013, Adam-Guillermin et al., 2018, Kamstra et al., 2018, Horemans et al., 2019). Reproduction constitutes a particular sensitive target of chronic exposure to ionizing radiation, most likely because actively dividing and functionally undifferentiated cells are vulnerable to the effects of radiation (UNSCEAR, 1996). Even tolerant species have shown loss of their reproductive capacity when chronically irradiated (Hertel-Aas et al., 2007, Buisset-Goussen et al., 2014, Parisot et al., 2015, Yushkova, 2019). Thus, biological processes involving rapid cell division, such as germ cell proliferation and embryonic development, can represent susceptible targets, and their impairment can have severe consequences for the survival of populations. For these reasons, once adverse effects have been identified, understanding the underlying mechanisms for radiosensitivity of specific tissues and cell-types between different species is of high relevance.

1.2 Aim and hypotheses of the study

The aim of this study was to assess the effects of chronic exposure to low-dose ionizing gamma radiation in the radioresistant nematode *Caenorhabditis elegans*, through a systematic investigation of life stage, tissue, cellular and molecular responses, in order to connect phenotypical effects with molecular mechanisms of toxicity. For this purpose, the following hypotheses were defined to address radiosensitivity and tolerance mechanisms in *C. elegans*:

- I. Chronic irradiation during larval development is more harmful than exposure of post-mitotic adult larvae.
- II. The reproductive apparatus is a vulnerable target for chronic low-dose gamma irradiation due to high cell proliferation in the gonadal tissues.
- III. *C. elegans* Antioxidant Defences ameliorate oxidative damage and thereby provide tolerance towards chronic exposure to ionizing radiation.

18

IV. The mitochondria and mtDNA comprise a sensitive target of chronic exposure to ionizing radiation and nematodes activate defence mechanisms to counteract mitochondrial dysfunction.

1.3 Sources of ionizing radiation in the environment

In the environment, the release of radionuclides from nuclear weapons testing (Salbu, 2008, Wendel et al., 2013, Abella et al., 2019) and nuclear power plant accidents (i.e. Chernobyl, 1986 and Fukushima Daiichi, 2011) (Salbu et al., 1994, Stohl et al., 2012, UNSCEAR, 2008) can be sources of ecotoxicological risk. In addition, other anthropogenic activities generate routine discharges of radioactive material, including releases from nuclear power or reprocessing plants, mining, NORM-sites, nuclear waste from research facilities and medical diagnostic or therapeutic treatments (UNSCEAR, 1996). Combined these sources enhance the probability of an organism to be exposed to ionizing radiation at doses above the background levels of 0.01 - 0.44 μ Gy·h⁻¹ (Copplestone et al., 2001). The exposure scenario, however, will depend on the source and the way the release occurs (Salbu, 2000). In the event of a nuclear accident, the environment will usually be contaminated by a mixture of radionuclides, and different kinds of ionizing radiation, namely alpha (α), beta (β) and gamma (γ) radiation. Cobalt- 60 (60Co) and Cesium-137 (137Cs) are both examples of beta and gamma emitting radionuclides that are routinely released from nuclear power plants and nuclear reprocessing plants (Adam-Guillermin et al., 2012).

1.4 Effects of ionizing radiation on biota

The effects of exposure to ionizing radiation depend primarily on the energy transferred into the tissue, defined as the absorbed dose, or Gray (J/kg). In turn, the amount of damage is also influenced by the rate of energy transfer per unit of distance (Linear Energy Transfer, LET, measured as keV·mm⁻¹). While alpha particles and neutrons have a high rate of energy transfer (High-LET), gamma radiation, electrons (Beta particles) and X-rays are characterized by low-LET. Since high-LET particles deposit their energy

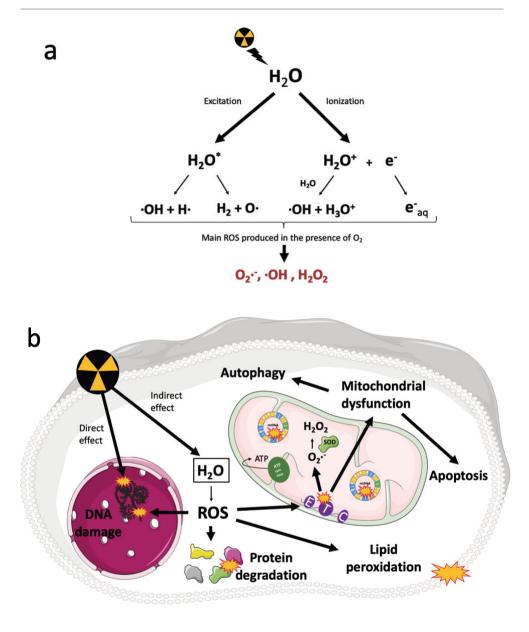
in a smaller volume than low-LET ionizing radiation type, about 90% of the energy deposited induces clustered damage sites, such as DNA Double Strand Breaks (DSBs) (Hall and Giaccia, 2006). In addition to a higher density, the complexity of the clusters, reflecting the amount of lesions caused, also increases with the LET of the radiation (Lomax et al., 2013). However, low-LET radiation, such as external exposure to gamma radiation of the whole body of an organism, can induce ionization of molecules in a more homogeneous way at the cell and tissue level. Gamma rays are high energy electromagnetic waves, which can penetrate matter over a longer distance compared to α and β particles (Choppin et al., 2002). About 70% of the energy deposited by low-LET radiation induces isolated lesions, which contributes to the overall oxidative burden of a cell. However, 30% of the energy deposited by high-energy photons will cause clustered damage sites, having different structural and chemical complexity (Nikjoo et al., 1999).

Internal exposure to alpha and beta particles can be highly harmful, but gamma and Xrays are more penetrating, meaning that environmental exposure to gamma rays induces a greater degree of biological damage than external exposure to alpha or beta particles. This study therefore adopted external gamma irradiation experiments in order to elucidate the cellular, molecular and phenotypical mechanisms induced by chronic exposure to this environmental stressor.

Ionization and excitation of atoms and molecules is the primary event leading to cellular effects caused by exposure to ionizing radiation (Reisz et al., 2014) (Fig. 1.a). However, there is a wide range of responses to radiation, which are determined by a multitude of factors, including the type and energy of the radiation source, dosage, length of exposure and the genetic and epigenetic background of the organism exposed (Adam-Guillermin et al., 2018, Horemans et al., 2019). The biological response to ionizing radiation may differ between chronic and acute exposure, both in the quality and intensity of effects (Schwartz et al., 2000). While acute irradiation means exposing an organism to high doses of radiation for a short period of time, chronic exposure to lower doses is defined as the continuous exposure of at least 10% of the duration of a species lifespan (Newman, 2009).

The effects of acute exposure have been assessed on a wide range of organisms, including human and non-human species, however, the consequences of a chronic

irradiation is less studied, especially in terms of understanding the mechanisms of toxicity of long-term effects (Garnier-Laplace et al., 2013, Hinton et al., 2013).


The Chernobyl and Fukushima accidents have raised the awareness and concerns regarding the consequences of chronic exposure to gamma radiation in the environment and the relative lack of knowledge of the potential harmful effects on non-human species (Hinton et al., 2013). In the past decade, studies on a multitude of plants and aquatic species, including crustaceans and fish, have provided more information on the toxicological mechanisms, the causes of direct phenotypical effects and the potential consequences of long-term hereditary effects (Vandenhove et al., 2010, Pereira et al., 2011, Gomes et al., 2017, Hurem et al., 2017a, Gomes et al., 2018, Xie et al., 2019). Knowledge on soil organisms, however, is largely restricted to earthworms and nematodes (Hertel-Aas et al., 2007, Lecomte-Pradines et al., 2017, Lecomte-Pradines et al., 2014). Although the nematode C. elegans is considered to be among the most radioresistant species, chronic exposure to gamma radiation has been shown to cause reprotoxic effects (Buisset-Goussen et al., 2014) accompanied by changes to the proteomic profiles (Dubois et al., 2018). Nevertheless, there still remains a considerable knowledge gap with respect to molecular responses and mechanisms of defence in radioresistant species, since knowledge is predominantly restricted to acute exposure scenarios (Krisko and Radman, 2010, Krisko et al., 2012a, Sakashita et al., 2010). Hence studies of the effects of chronic exposure at the cellular and molecular level in radioresistant organisms, not only contributes to improving our knowledge on the toxicological mechanisms but can also help us to understand similarities with more radiosensitive species and serve as an important tool to improve risk assessment.

1.5 Cellular and molecular effects of ionizing radiation

The biological response to ionizing radiation exposure can result either from the direct deposition of energy into biomolecules, including proteins, lipids and DNA, or indirectly, via the interaction between these biomolecules and free radicals produced by the dissociation of water molecules (water radiolysis) (Fig. 1.a) (Lomax et al., 2013). The major categories of DNA damage inflicted by exposure to ionizing radiation include deleterious alterations of bases and sugars, cross-link formation, single and double

strand breaks and DNA clustering (Duncan Lyngdoh and Schaefer III, 2009, Thompson, 2012).

For many years, the central dogma of radiation biology considered the direct interaction of ionizing radiation with DNA in the cell nucleus as the main mechanism responsible for the radiation-induced genotoxic insult (Hutchinson, 1966, Blok and Loman, 1973). It is now widely accepted that indirect effects of exposure to ionizing radiation can be a major contributor to genotoxic effects, especially at low dose and dose-rates (Sutherland et al., 2000) (Fig. 1.b). Most of the indirect insult to nucleic acids results from the hydroxyl radical OH, which represents the most abundant and destructive of the products of water radiolysis towards these macromolecules (Reisz et al., 2014). Specifically, the interaction of the OH radicals with nucleic acids generates a variety of products, including the 8-hydroxypurines. Among these, 8-oxodG is the most common product and considered to be the hallmark for radiation-induced oxidative DNA damage (Svoboda and Harms-Ringdahl, 2005). The persistence of oxidative DNA damage, however, does not only depend on the direct interaction of free radicals with nucleic acids. The overall amount of ROS generated from primary ionization events is further propagated via the perturbation of endogenous ROS-producing systems, such as the mitochondrial electron transport chain (Choi et al., 2007, Kam and Banati, 2013) (Fig. 1.b). In biological systems, organic radicals are also formed; these usually react rapidly with O_2 to form peroxyl radicals (RO₂), which are stronger oxidizing agents than the ones primarily formed (Spitz et al., 2004). The highly reactive peroxyl radicals can interact with other molecules to abstract the H \cdot and form hydroperoxides (ROOH), which is a known reaction involved in lipid peroxidation. Thus, the resulting oxidative damage of cells and tissues is further propagated due to the interaction between ROS and other biomolecules, such as lipids and proteins (Fig. 1.b). Lipid peroxidation is one of the radiation-induced oxidative damage responses; this leads to harmful biological consequences, such as increase in membrane permeability, disruption of ion gradients and altered activity of membrane-associated proteins (Wong-Ekkabut et al., 2007, Corre et al., 2010).

Figure 1. a) Interaction between ionizing radiation and water molecules leads to ionization and excitation reactions producing reactive oxygen species (ROS). **b)** Main cellular and molecular processes induced by direct or indirect effect from exposure to ionizing radiation.

In recent years, experimental evidence has converged on the conclusion that also proteins comprise a primary target of ionizing radiation, and that their impaired function promotes the manifestation of DNA damage to both mammalian and prokaryotic cells (Du and Gebicki, 2004, Krisko and Radman, 2010, Daly, 2012). These studies support the hypothesis that the survival of many organisms depends on the level of oxidative protein-damage following exposure to ionizing radiation, because such damage affects the efficiency and functionality of enzymes, including those involved in DNA repair and replication (Daly et al., 2007, Daly, 2012).

Furthermore, the excess of ROS produced by ionization events in cells and tissues can alter the physiological redox balance, not only by inducing direct oxidative damage onto biomolecules, but also by interfering with the redox signalling molecules, responsible for the regulation of a great number of cellular and molecular processes (Droge, 2002, Sarsour et al., 2009). Tight control of the redox environment is a vital requirement for homeostatic cellular function. For instance, at physiological levels, ROS are responsible for the regulation of specific genes (Allen and Tresini, 2000), for the modulation of ion channels activity, and can also be involved in signal transduction processes as second messengers (Schulze-Osthoff et al., 1997).

If the antioxidant defences cannot restore redox balance, or fail to ameliorate oxidative stress, the accumulation of oxidative damaged biomolecules will lead to tissue injury, including DNA mutagenesis, carcinogenesis, accelerated cell senescence, or cell death (Minafra and Bravatà, 2014, Li and Chen, 2018). At a molecular level this is induced by a variety of cell damage responses, including cell cycle arrest, altered cell proliferation, membrane rupture, distorted signalling networks and mitochondrial dysfunctions (Fig. 1.b) (Spitz et al., 2004, Azzam et al., 2012).

To conclude, the investigation of cellular and molecular mechanisms behind the phenotypical effects observed after chronic exposure to ionizing radiation are important for the prediction of potential adverse effects at an individual and population level.

1.6 Caenorhabditis elegans and radiation research

In 1897, a French zoologist and botanist, Emile Maupas, described *Caenorhabditis elegans* as a species of nematode dwelling in rich humus, in which "[he] came twice across...in the surroundings of Algiers" (Maupas 1900). Much has changed in the way biologists look at this nematode, since this organism was firstly observed, and its anatomy described. In the early '70s, Sydney Brenner was the first one to realize the great potential of this tiny nematode as a model organism. Later, Sulston and Horvitz (1977) investigated the cell and tissue differentiation during embryogenesis and postembryonic development, describing the nematode entire cell lineage and providing invaluable information for the forward and reverse genetics studies performed later on this organism.

For all these reasons, as more recently described by Corsi et al. (2015), biologists see in *C. elegans* a lot more than a nematode dwelling the rich humus, it actually represents a "transparent window into biology".

In the field of radiation biology, the first study of radiation effects on *C. elegans* was performed by Herman (1976), who described the chromosomal rearrangement following X-ray exposure. Later on, the discovery of *C. elegans* radioresistance, by performing acute irradiation studies, was obtained by Hartman (1982) who identified radiation-sensitive mutants. Pre-treatment with 90% of oxygen, to induce oxidative stress, was later shown to induce hyper-resistance, in terms of increased survivals, in wild-type nematodes exposed to 400 Gy of X-rays (Yanase et al., 1999). Over time, research into radiation-induced mutations continued, until the interest shifted towards the molecular mechanisms behind the resistant and sensitive phenotypes (Sakashita et al., 2010). This research includes a multitude of functional genetic studies, which comprise life-span studies, the use of mutant and reporter strains, gene expression analysis, genome-wide or single-gene RNAi (Rosenbluth et al., 1985, Hartman et al., 1988, Takanami et al., 2000, Gartner, 2000, Nelson et al., 2002, Boulton et al., 2002, van Haaften et al., 2006, Sakashita et al., 2010, Ermolaeva et al., 2013). For instance, in the early 2000's, research into DNA damage response and gene functions was performed by Gartner (2000), who made use of C. elegans and ionizing radiation to unravel the mechanisms behind cell-cycle arrest and the activation of the core apoptotic machinery

following genotoxic stress. Later on, 45 genes within conserved pathways of DNAdamage response were shown to protect *C. elegans* from effects of acute ionizing radiation (van Haaften et al., 2006). Functional analysis of the *rad-51* gene demonstrated a vital role of this *recA* homolog in meiosis, fertility and organism resistance during development to acute doses of gamma radiation (20 Gy, 4 Gy·min⁻¹) (Rinaldo et al., 2002).

Notably, all these studies rely on acute doses (20 to 1000 Gy) of ionizing radiation, which are not environmentally realistic. Exposure to low doses or low dose-rates represents a more relevant scenario for the assessment of risks related to exposure in the environment, because critical developmental stages or the entire life cycle can be subjected to such stress (Hinton et al., 2013). Hence, performing chronic irradiation experiments on this radioresistant model organism to sub-lethal doses of exposure can improve the knowledge on radiosensitive processes and mechanisms of toxicity for other animal species. For all these reasons, *C. elegans* represents a suitable biological model system and was therefore adopted in this PhD study to investigate the phenotypical effects, as well as the cellular and molecular mechanisms induced by chronic exposure to ionizing radiation.

1.7 C. elegans as a model organism

C. elegans is a free-living nematode, about 1 mm long and transparent, that survives by feeding on microbes, primarily bacterial cells. Although often considered a soil nematode, it is mostly isolated from rotting vegetable matter, which represents a rich source of bacteria. In the laboratory, *C. elegans* can be cultivated on agar plates, seeded with a thin lawn of *Escherichia coli*, as well as in swirling liquid cultures (Lewis and Fleming, 1995). Its life cycle is characterized by four moulting stages (L1 to L4) before it reaches sexual maturity (Fig. 2). At room temperature, this cycle is complete in 3 days, thus allowing for rapid studies. Embryogenesis takes approximately 16 hours at 20 °C and embryos hatch at the 558 cell-stage into the first stage of development (L1). After each larval stage, a period of inactivity follows and cell proliferation arrests. Particularly, under food depravation, hatched embryos arrest in L1 stage. In this period of inactivity, L1 larvae can survive for up to 6-10 days, without feeding, and when food becomes

available they can resume metabolism and normal moulting development (Johnson et al., 1984), After alkaline hypochlorite treatment of gravid hermaphrodites, embryos can be isolated and this first stage of inactivity (at L1 stage) can be induced by starvation, allowing for synchronization of the population, which represents a very convenient feature for laboratory experiments (Porta-de-la-Riva et al., 2012). Once its development is completed, cell proliferation is restricted to the germline, while the number of somatic cells remains a constant 959 (Fig. 2). Because of this invariant number of somatic cells, over the years, researchers have been able to track the fate of every cell from the fertilization stage until the adulthood, generating a complete cell lineage map (Sulston and Horvitz, 1977, Kimble and Hirsh, 1979). Furthermore, the possibility to see inside the organism is not only useful for observing cellular events such as mitosis or cytokinesis in real-time, but it also allows the use of fluorescent reporter genes such as green fluorescent protein (GFP) to mark cells, label proteins or monitor gene expression in live animals (Chalfie et al., 1994). Normally, a population consists mostly (99%) of self-fertilizing hermaphrodites, producing both oocytes and spermatocytes (Fig. 2). This represents a valuable feature in genetics for many reasons: it permits the maintenance of homozygous mutation without the need for mating, the offspring of an unmated hermaphrodite are isogenic and due to the production of large number of offspring (\sim 300 per adult unmated hermaphrodite), it is also suitable for studying effects over multiple generations.

Males do arise, although at a very low frequency (0.2%), introducing genetic variation and increasing the number of produced offspring (up to \sim 1000). This is beneficial to the population under stress conditions, such as starvation or heat stress, since it potentially enhances the chances to survive the environmental changes (Morran et al., 2009).

To summarize, this transparent worm is one of the most well studied biological systems for which complete cell lineage (Sulston and Horvitz, 1977), neuronal networks (White et al., 1986) and genome sequence have been established (The *C. elegans* Sequencing Consortium, 1998). Moreover, *C. elegans* research has broad implications because many cellular and molecular processes that control animal development are evolutionary conserved.

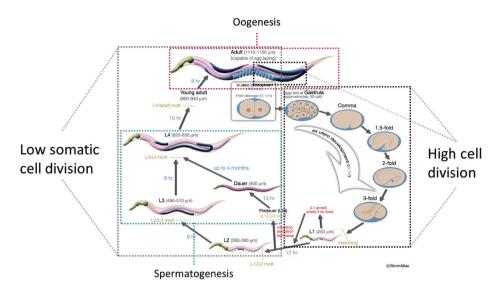
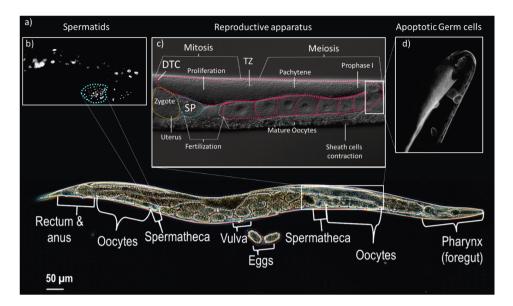
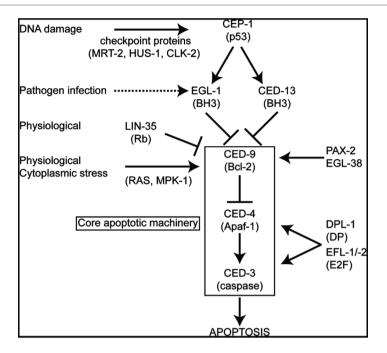



Figure 2. Life cycle of the nematode *Caenorhabditis elegans* adapted from wormatlas.com.

1.8 The reproductive system in C. elegans

Already in the 1970s, the reproductive system of the nematode *C. elegans* was adopted as a model system for reproductive studies. Wild-type *C. elegans* presents sexual dimorphism, with self-fertilizing hermaphrodites and males. The hermaphrodites present an ovotestis able to produce haploid amoeboid sperm, stored in the spermatheca from the L4 stage, when the germ line switches function to produce oocytes (Fig. 3.b). Particularly, an adult hermaphrodite possesses two U-shaped gonadal arms, one for each body extremity, which are joined at a common uterus and where the germline resides (Fig. 3.a). Germ cells at different stages of differentiation are contained in each gonadal arm. These develop sequentially from the proliferative germ cells, located near the somatic distal tip cell (DTC), through meiotic prophase I in the distal gonad and across the loop, finally culminating in the proximal gonad where fully formed oocytes are ready to migrate through the spermatheca, get fertilized and enter inside the uterus (Fig. 3.c).

Figure 3. Anatomy and reproductive apparatus physiology of the nematode *C. elegans.* **a**) Phasecontrast micrograph of an adult hermaphrodite (72 hours from L1 stage) during the reproductive stage of its lifecycle. **b**) DAPI stained spermatids stored in the spermathecal compartment (blue region) of the gonadal arm. **c**) DIC (differential interference contrast) micrograph of the nematode reproductive apparatus, including the gonadal arm (pink region) where mature oocytes are produced through proliferative stage and Meiosis I and II, until fertilization and zygote formation (yellow circle) (DTC: distal tip cell; TZ: transition zone; SP: spermatheca). **d**) Micrograph of the apoptotic germ cell corpses emitting fluorescent signal (512 nm emission and 40X objective), from the loop region of the gonadal arm in the *C. elegans* reporter strain *CED1::GFP.* (Photo: E. Maremonti)


The reproductive tract differentiates during the post-embryonic development, from two primordial germ cells (Z2 and Z3) positioned between the two somatic precursor cells (Z1 and Z4). Already in L1 stage, the precursors Z2 and Z3 start to proliferate in order to generate the germ cells inside the gonadal arms, while the somatic gonad primordium is formed within the second molt and it is composed of twelve cells in total, including the two DTCs, one for each gonad. In the hermaphrodite, male germ cells are specified in the L3 stage and will differentiate into mature sperm in the L3/L4 stage, when spermatogenesis is completed. Female germ cells specify from L4 stage, and germ cell proliferation to produce oocytes continues for the entire duration of the nematode life. An adult hermaphrodite is able to use all of the stored spermatids in order to produce up to ~300 self-progeny (Singson, 2001). If mated with a male, the number of progeny

can reach up to \sim 1000. The number of stored spermatids thus comprises the primary limiting factor for the number of offspring by self-fertilization (Rinaldo et al., 2002).

Under chronic or acute exposure to ionizing radiation, gonad development and gametogenesis have been shown to be delicate processes (Sowmithra et al., 2015, Hertel-Aas et al., 2011a, UNSCEAR, 2008, UNSCEAR, 1996), therefore irradiation experiments, performed during the post-embryonic and larval development of the nematodes, can serve to identify potential radiosensitive developmental stages and biological processes.

1.9 Germ line apoptosis and the effect of DNA damage

The gonad germ cells represent a unique tissue, where cells are pluripotent and "immortal", and thus can differentiate in all cell types in the next generation (Kimble and Hirsh, 1979). In the adult nematode, the germline represents the only tissue that contains stem cells, with the ability to replenish the cell population. An important feature of the gonads is the capacity to ensure a quality control of the produced cells, through the intrinsic mechanism of germ cell apoptosis (Fig. 3.d). This is a physiological event and an important surveillance mechanism, where half of the potential oocytes are removed, in order to ensure a healthy cell population of the germline (Gumienny et al., 1999). Germline apoptosis only occurs during oocyte production and it is restricted to the gonadal loop region (Fig. 3.d), where the oocytes complete the meiotic prophase I in the pachytene region prior to transition into the diplotene stage (Fig. 3.c). The physiological germline programmed cell death occurs in the absence of any external stress, by the activation of the core apoptotic machinery, involving CED-9, CED-3 and CED-4 (Ellis and Horvitz, 1986, Lettre and Hengartner, 2006) (Fig. 4).

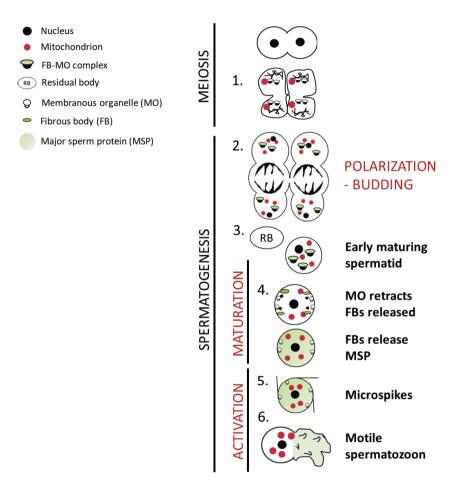
Figure 4. Main pathway and genes involved in physiological and DNA damage-induced germ cell apoptosis in the nematode *C. elegans*. Adopted from Gartner et al. (2005).

A clear distinction has been identified between the physiological and the CEP-1dependent germline apoptosis. The latter is induced by DNA damage or effects on chromosomal integrity and, depending on the type of damage, specific upstream sensor proteins are triggered, including HUS-1, CLK-2, CES-2 and EGL-1 (Lettre and Hengartner, 2006) (Fig. 4). In particular, a study by Gartner (2000) showed that acute exposure to high doses (3.9 Gy·min⁻¹, total dose ≥ 60 Gy) of gamma radiation, in L4 nematodes, induced a 10-fold increase in the number of apoptotic germ cells, 24 hours after the exposure, and the arrest of germ stem cells proliferation. Damage to reproductive tissues can have negative consequences in terms of fertility, but it can also induce mutations and heritable effects. Therefore, investigating adverse effects on germ cells proliferation and maturation after chronic exposure to gamma radiation can help us understand the mechanisms behind the radiation-induced reprotoxic effects seen in *C. elegans* (Buisset-Goussen et al., 2014).

1.10 Spermatogenesis

In both hermaphrodites and male germ cells of *C. elegans*, the molecular events driving the early stages of meiotic development include chromosome pairing, synapsis and recombination, and they occur in a similar way. However, unlike developing oocytes, where meiotic divisions lead to one single gamete, after the meiotic prophase, spermatocytes divide symmetrically, resulting in four equally sized gametes (Fig. 5)(Chu et al., 2006, Chu and Shakes, 2013). The progression of spermatids formation from the division zone starts with the formation of mature fibrous body (FB) and membranous organelle (MO) complexes, which are essential for the assembly and envelopment of the Major Sperm Proteins (MSP) (Fig. 5, 1). After this process, budding, maturation and sperm activation are the three key events leading to the production of mature spermatozoa (Fig. 5) (Chu and Shakes, 2013).

During the first of these events, (Fig. 5, 2) the late-stage budding spermatid is fully polarized, with FB-MOs and chromatin masses partitioned to the extremities and the spindle microtubules positioned in the central residual body. This division leads to the early maturing spermatid (Fig. 5, 3), where the MO retracts and the FBs are released into the cytoplasm where they begin to disassemble and release the MSPs (Fig. 5, 4).


At this stage (Fig. 5, 4), the late-stage quiescent spermatid is externally activated (Fig. 5, 5) to form microspikes from the fusion of the MOs with the plasma membrane. The maturation is finally accomplished when the spermatozoon is motile (Fig. 5, 6) and presents a distinct cell body containing fused MOs and a pseudopod enclosing the MSPs.

Thanks to several genome-wide expression studies, essential regulatory genes involved in *C. elegans* spermatogenesis have also been identified (Reinke et al., 2000, Ortiz et al., 2014). These results have demonstrated that chromosome IV is enriched in spermatogenesis specific genes, such as the MSP encoding genes, which have distinct temporal expression profiles (Chu and Shakes, 2013).

In contrast to the oogenesis program, spermatogenesis presents a faster rate of progression through meiotic prophase. While in oocytes checkpoint for DNA damage and meiotic recombination errors lead to removal of damaged cells by programmed cell death (Gartner, 2000), no apoptosis occurs in male germ cells (Jaramillo-Lambert et al., 2010). However, as in many other species, during meiosis I of spermatogenesis, the

32

chromatin is reorganized into a compact form by sperm chromatin enriched proteins (SPCH) and a sperm –specific histone 2 variant (HTAS-1), ensuring DNA protection and successful fertilization (Chu et al., 2006, Ellis and Stanfield, 2014).

Figure 5. The progression of spermatid formation and pseudopod assembly to produce motile spermatozoa in *C. elegans*.

1.11 Ionizing radiation-induced DNA damage and repair

Genomic integrity is essential to the health of the individual as well as to the reproductive success of a species (Kermi et al., 2019). For this reason, organisms are equipped with faithful replication and repair mechanisms to prevent accumulation of damage and the transmission of altered genetic information. Nucleic acids are vulnerable to the effects of ionizing radiation whereby induced DNA damage range from simple single strand lesions or oxidized nucleobases, to complex clustered double strand breaks (Hall and Giaccia, 2006, Cadet et al., 2003, Brown and Rzucidlo, 2011). Single non-synonymous base mutations may ultimately lead to cancerous phenotype cells. Severe complex DNA damage, like chromosomal aberrations, will induce DDR (DNA damage response) and cell cycle arrest, where the consequences to the cell are highly dependent on the efficacy of the DNA repair machinery (Li and Chen, 2018). Irreparable damage may lead to apoptosis, senescence or necrosis (Wang et al., 2018). Even if cells are rescued, they may still inherit genomic instability, which means that latent damage may produce long-term effects.

In *C. elegans*, many DNA damage checkpoints and repair functions have been identified, and the majority of these mechanisms play essential roles during DNA replication, cell-cycle control, development, mitosis and meiosis (Boulton et al., 2002). The first class of genes encoding for DNA repair mechanisms was identified by Hartman (1982), who isolated radiosensitive mutants (*rad-1* to *rad-9*) after exposure to acute doses of UV radiation and ionizing radiation. Canonical DNA repair pathways and their related genes, such as nucleotide excision repair (NER), mismatch repair, non-homologous end joining (NHEJ), and homologous recombination (HR) were identified in *rad* mutants and functionally investigated in detail by RNAi, protein-protein interaction mapping, as well as phenotypical analysis (Hartman et al., 1988, Schumacher, 2001, Chin and Villeneuve, 2001, Boulton et al., 2002, Clejan et al., 2006, Lans and Vermeulen, 2015).

Besides the canonical DNA repair pathways, a tissue-specific DNA damage response has been identified and characterized by Lans and Vermeulen (2015). Particularly, nonproliferating somatic cells in larvae or adult worms have shown to be much more resistant to ionizing radiation than germ cells, presumably due to transcriptional repression of checkpoint signalling proteins (Vermezovic et al., 2012). However, in

34

response to different types of genotoxic insults, proliferating germ cells of *C. elegans* present a strong activation of cell cycle checkpoints and multiple, partially redundant, repair pathways, facilitating robust and efficient maintenance of the genome integrity (Lans and Vermeulen, 2015, Andux and Ellis, 2008). Most of the DNA damage that occurs in somatic proliferating cells is sensed by checkpoint mechanisms and repaired during S-phase by delaying the progression into mitosis. In contrast, early embryonic cells are characterized by rapid progression through the cell cycle and lack of Gap phases, for these reasons the mechanisms are activated by endogenous, developmentally programmed cues (Lans and Vermeulen, 2015, Brauchle et al., 2003, Encalada et al., 2000). When unscheduled signals occur, such as replication problems due to DNA damage, checkpoint asynchrony is reduced, the germ line fails to develop, and the nematode is rendered sterile (Brauchle et al., 2003, Kalogeropoulos et al., 2004). Although the rapid cell progression and lack of Gap phases could potentially lead to a higher sensitivity to DNA damage during early embryogenesis, paradoxically, embryos show a higher tolerance due to active checkpoint silencing during DNA damage response, which ensure cell cycle progression and provides an improved possibility of survival (Holway et al., 2006).

Overall and despite the tissue-specificity of DNA damage response, *C. elegans* presents a robust DNA repair system, which investigations often involve genotoxic stress by acute exposure to high doses of ionizing radiation. Nevertheless, there is a lack of information with respect to DNA damage response induced by chronic exposure at low dose-rate ionizing radiation. Such information could be extremely important because it may unravel the mechanisms of toxicity behind the reproduction impairment from chronic exposure to ionizing radiation.

1.12 Mitochondrial functions and mitochondrial DNA

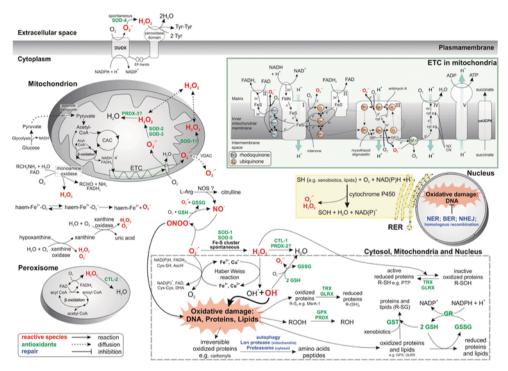
Mitochondria represent a vulnerable target of ionizing radiation for several reasons. They occupy a substantial fraction (4-25%) of the cell volume (Kam and Banati, 2013). By their role in energy metabolism, they consume about 90% of the oxygen and thus they represent the main source of ROS in the organism (Leach et al., 2001). Importantly, the physiological and the radiolysis-dependent ROS production act synergistically, and may eventually lead to malfunction of the mitochondrial electron transport chain (ETC) machinery (Leach et al., 2001). This constructs a self-propagating cycle which may cause redox imbalance, oxidative damage or ultimately mitochondrial dysfunction (Szumiel, 2015). Due to lack of histones, mitochondrial DNA (mtDNA) represents a vulnerable target of oxidative damage. Excess of ROS may therefore cause mutation and damage to mtDNA, which in turn may alter the production of proteins required for mitochondrial processes (Azzam et al., 2012). Thus, radiation-induced mitochondrial ROS has the potential to affect the mtDNA copy number (Malakhova et al., 2005), modulate the gene expression, induce autophagy, and apoptosis (Sidoti-de Fraisse et al., 1998). Mitochondrial stress response may also propagate to other compartments of the cell, including the nucleus, and thus damage nuclear DNA (Azzam et al., 2012). Mutations on the mtDNA and or nuclear DNA can persist and lead to heritable mitochondrial and cellular dysfunctions with serious consequences for the progeny of irradiated cells (Kim et al., 2006). For all these reasons, and due to lack of knowledge in this research area, it is important to investigate the potential adverse effects of chronic gamma irradiation on the mitochondrial gene expression and on the mtDNA.

1.13 The antioxidant defences in *C. elegans* and their potential role in tolerance to ionizing radiation

Due to aerobic metabolism, cells are continuously exposed to oxidative insult, with as many as 50000 lesions of DNA modifications per day (Swenberg et al., 2010). Organisms are therefore equipped with a series of antioxidant enzymes and molecules to maintain the physiological redox balance, and to prevent oxidative damage.

In most species, the antioxidant defence systems (AOD) are composed of a series of water soluble scavengers compounds, such as vitamin E, vitamin C and glutathione, and antioxidant enzymes, such as superoxide dismutases (SOD), catalases, glutathione-S-transferases and glutathione peroxidases (GPx), which enable the detoxification of reactive oxygen species (ROS) and reactive nitrous species (RNS) (Davies, 2000). *C. elegans* is well equipped to handle oxidative stress and inherits a robust and elaborate AOD system (Fig. 6), which is comprehensively reviewed by Braeckman et al. (2017).

36


In the nematode *C. elegans* the biology of SOD and catalases is unusual. While most organisms possess a single isoform of SOD per each compartment of the cell, C. elegans possesses two isoforms per each compartment (Doonan et al., 2008). The cytosolic sod-1 and mitochondrial *sod-2* represent the major isoforms, expressed during reproductive development, whereas sod-3 and sod-5 are mostly expressed in the dauer stage. Another dissimilarity is related to the incorporation of copper to mature Cu/Zn SODs, which in *C. elegans* relies on an unidentified glutathione-dependent pathway in contrast to the copper chaperone of SOD (CCS) required for the rest of the eukaryotes (Giglio et al., 1994). Moreover, this nematode possesses three catalase encoding genes in its genome, in contrast with other metazoans where only a single catalase is present (Gems and Doonan, 2008). The glutathione-S-transferases (GSTs) together with GSH are major cellular detoxification enzymes. Seven species-independent and additional speciesspecific classes of GSTs have been identified and described (Board et al., 2000). In C. elegans, the genome contains over 50 putative GSTs, most of which are classified as nematode-specific (Campbell et al., 2001). One specific member of these GSTs classes, Ce-GST-p24, has been shown to induce oxidative stress-resistance, when RNAi was performed under exposure of nematodes to different ROS inducer compounds (Leiers et al., 2003).

Furthermore, ROS can serve as important signalling molecules, in particular O_2 and H_2O_2 can bind redox-sensitive switches, for instance the cysteine residues on the active sites to form disulphides, thus modulating protein conformation and activity. Because of this important role in activating redox-sensitive proteins, the cellular redox state and thus the levels of superoxide/ H_2O_2 must be maintained within a narrow range. This does not only ensure the constitutive signals resulting from the homeostatic redox state, but also allows for meaningful thresholds, where a change in the redox state can be used to signal a change in metabolism, environment or stress (Johnston and Ebert, 2012)

Following irradiation, cells and tissues appear to respond by increasing the expression of cellular antioxidant defences (Okunieff et al., 2008). This increased antioxidant capacity has been hypothesized to be at least partially responsible for radiation-induced adaptive responses (Spitz et al., 2004). The ability of an organism to tolerate ionizing radiation is dependent on the efficiency of its DNA repair mechanisms (Cox and Battista, 2005, Zahradka et al., 2006), but also on the robust antioxidant defence system to

37

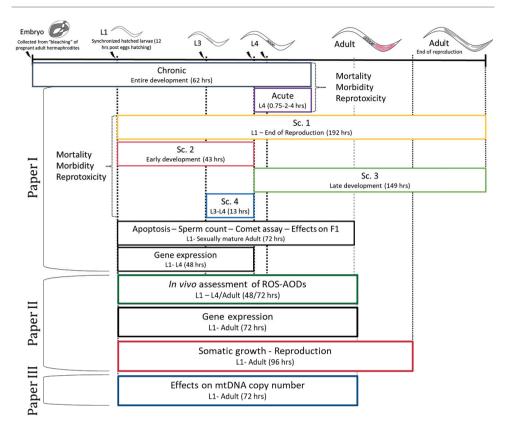
scavenge ROS and prevent oxidative damage to essential biomolecules (Daly et al., 2007, Daly, 2012, Krisko et al., 2012a). For these reasons and due to its highly specialized redox control system (Braeckman et al., 2017), the nematode *Caenorhabditis elegans* represents an optimal model to investigate whether ROS accumulation and AODs activation would induce a stress condition or an adaptive response under chronic exposure to ionizing gamma radiation.

Figure 6. Schematic representation of ROS formation and Antioxidant defence systems in different compartments of the cell in the nematode *C. elegans*. Adopted from Braeckman et al. (2017).

1.14 Specific objectives of the study

The overall purpose of this PhD study was to improve knowledge on molecular mechanisms of toxicity and tolerance induced by chronic exposure to ionizing radiation in the nematode *Caenorhabditis elegans*.

Therefore, specific objectives were to:


- 1. Characterize toxic effects of chronic exposure to ionizing radiation on survival, growth and reproduction.
- 2. Investigate life stage-dependent radiosensitivity.
- 3. Investigate radiosensitivity of specific tissues and cells.
- Investigate organism, tissue and cell specific ROS production, AODs response and oxidative stress effects in nematodes subjected to chronic gamma radiation.
- 5. Assess whole genome transcriptomic changes induced by exposure to gamma radiation.
- 6. Assess effects of chronic gamma radiation on mitochondrial functions including transcription and mtDNA copy number variation.

2. Methodology

2.1 Experimental design

During this PhD research, three main exposure regimes were employed: chronic, lifestage specific and acute. The chronic exposure of embryos/L1 nematodes, followed the same experimental design for every experiment performed, using three biological replicates combined with a fixed set of dose-rates of gamma radiation (0 - 0.4 - 1 - 10 $- 40 - 100 - 1000 \text{ mGy} \cdot h^{-1}$). In addition, an acute exposure of L4/Young adult nematodes was performed at dose-rates ranging from 1410.6 to 1490 mGy \cdot h⁻¹ (Paper I). The duration of each exposure was chosen according to the aim of the study, as presented in Fig. 7.

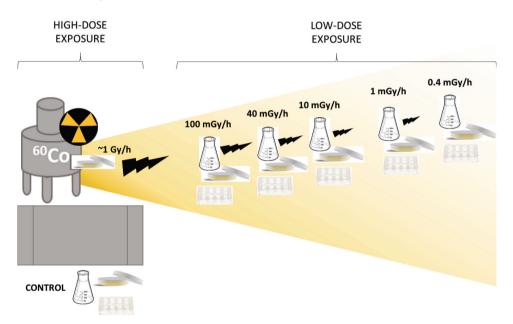
The aim of the first study (Paper I) was to identify differences between effects induced by acute or chronic exposures, as well as potential radiosensitive developmental stages. Therefore, effects on the reproductive capacity of nematodes were assessed after exposure during different stages of development, following four different designed scenarios. Each scenario covered early or late stages of development, as well as the nematode entire life cycle (Fig. 7). Since reprotoxic effects were observed following chronic exposure of early developmental stages, effects on the nematode germline proliferation were assessed with respect to germ cell apoptosis and spermatids production. Moreover, a transcriptome analysis was performed on nematodes exposed to 100 mGy·h⁻¹ during this radiosensitive stage, in order to identify potential molecular mechanisms underlying the observed reprotoxic effects. Adverse effects on parentally exposed embryos (F1) were assessed, in the same study (Paper I), by measuring DNA damage effects on embryonic cells with the Comet assay, as well as phenotypical effects with respect to reproductive capacity and somatic growth (Fig. 7).

Figure 7. Experimental design employed for studying effects of chronic gamma irradiation in the nematode *C. elegans*. From L1 stage, the nematode development takes ~72 hours to reach sexual maturation, while it takes ~8 days (192 hours) to the end of reproduction at 20 °C. In Paper I, reprotoxic effects were assessed in two independent experiments, using different scenarios of exposure (i.e. Acute vs Chronic, or different stages of development: Sc. 1-4). This resulted in the identification of L1-L4 as radiosensitive larval stages. Therefore, irradiation during these phases of development was adopted to assess effects on spermatogenesis, germ cell apoptosis, genotoxicity, ROS production/AODs activation, gene expression and effects on mtDNA copy number. In parenthesis the duration of each exposure in hours.

In Paper II, nematodes were irradiated during the radiosensitive stage of development (L1- L4/Young adult, 48- or 72-hours development), identified in Paper I, in order to measure the accumulation of ROS and the activation of AODs *in vivo*, by using the *C. elegans* reporter strain *sod1::gfp* and the ratiometric biosensors *HyPer* and *Grx1- roGFP2*. The wild-type N2 was also used in this study for the assessment of somatic growth and reproduction as phenotypical endpoints, as well as for the analysis of differential gene expression through RNA-sequencing, following similar exposure

conditions (Fig. 7). In Paper III, attention was focused on the mitochondrial DNA (mtDNA), which is known to be a vulnerable target of ionizing radiation and ionizing radiation-induced oxidative stress. Specifically, effects on the mtDNA copy number were evaluated through the development of a new method, using digital Polymerase Chain Reaction (PCR) analysis. For this purpose, irradiation was performed using low (0 – 0.4 – 1 – 10 – 40 – 100 mGy·h⁻¹) as well as high (~1000 mGy·h⁻¹) dose-rates of exposure over the entire nematode larval development (from L1, L2/3 or L4 stage to sexually mature adult, 72 hours development) (Fig. 7).

2.2 Gamma irradiation and dosimetry


All the irradiation experiments carried out in this study were performed at the Figaro Experimental Radiation Facility (NMBU) (Lind et al., 2019). The 400 GBq ⁶⁰Co source provides a near cone-shaped radiation field where the area for irradiation increases as doses decrease (Fig. 8). At maximum load (400 GBq), the dose-rates range from 3 Gy·h⁻¹ (inside collimator) down to 0.4 mGy·h⁻¹, allowing for simultaneous, chronic exposure of organisms over the whole dose-rate field (Papers I – II – III) (Fig. 8, low-dose exposure). Exposure at the highest dose-rates (Papers I and III) was obtained for small samples by positioning NGM Petri dishes (Ø 3 or 6 cm) within the collimator during irradiation (Fig. 8, high-dose exposure). Control samples were placed in a section of the hall, outside the beam cone and shielded with two mobile lead (6 mm) walls resulting in air kerma rates 3-5 μ Gy·h⁻¹ (Nanodots, Landauer) (Fig. 8). Moreover, technical equipment installed in the irradiation room allowed for the monitoring of light (darkness) and temperature (20°C) conditions providing high reproducibility over the different experimental studies (Lind et al., 2019).

For the studies conducted in Paper I and III, all the irradiation experiments were performed in triplicates in NGM Petri dishes vertically positioned facing the gamma source, this allowed for homogenous exposure over the entire experimental unit.

Irradiation experiments conducted in Paper II were performed in triplicates by using NGM Petri dishes as well as liquid cultures of nematodes placed in front rows of 24-well Petri dishes or in tissue-culture flasks (15 mL).

42

Field dosimetry (air kerma rates measured with an ionization chamber) was traceable to the Norwegian Secondary Standard Dosimetry Laboratory (Bjerke and Hetland, 2014). Air kerma rates were measured using an Optically Stimulated Luminescence (OSL) based nanoDots dosimetry (Landauer®) by positioning the dosimeters at the front and back of the experimental units. Dose-rates to water were calculated according to Hansen et al. (2019) and used as a proxy for dose-rates to the nematodes. Measured total doses, dose-rates and duration of the exposures, can be found in the Supporting Material for Paper I, II and III.

Figure 8. Irradiation set up, experimental units, and dose-rates of exposure adopted in this PhD study and performed at the Figaro Low dose-rate Experimental Irradiation Facility (NMBU).

2.3 C. elegans strains and culturing

The N2 Bristol strain was adopted in this study as the wild-type *C. elegans* background for all the irradiation experiments. Germ cell apoptosis was assessed by using the *C. elegans* reporter strain *bcIs39* [*lim-7p::ced-1::GFP+lin-15(+)*], which enables the quantification of apoptotic germ cells engulfment corpses as described by Zhou et al. (2001) (Paper I). The expression of superoxide dismutase 1 was measured *in vivo* by

using the reporter strain *sod-1::gfp* (Doonan et al., 2008), while the ratiometric biosensors *HyPer* and *Grx1-roGFP2* were adopted to measure H_2O_2 levels and glutathione redox changes (Back et al., 2012) (Paper II).

Before performing the experiments, worms were maintained for two months at 20 °C in swirling liquid cultures under dark conditions (Brenner, 1974), in order to obtain a healthy stock population. Synchronous populations of nematodes were obtained by alkaline hypochlorite treatment as described by Stiernagle (2006).

2.4 Developmental and morphological effects assessment

Morphology and effects on development were assessed on nematodes after exposure to ionizing gamma radiation by visual investigation under a semi-automated research light microscope (at 20X or 40X, phase-contrast optics) (Upright Microscope Leica DM6 B). Specifically, nematodes were observed at the end of each exposure in order to identify any visible morphological change or delay during the larval development (Paper I). For this purpose, at least 10 individuals per treatment were anesthetized using 30 mM of NaN₃, placed onto 2% agarose pads, and observed under the microscope.

Furthermore, adverse effects on nematode development were evaluated by measuring the total body length of individuals at different larval stages (Paper I) or after reaching sexual maturity (Paper I - II). This quantitative analysis was performed on nematodes stained with 1 ml Rose Bengal (0.3 g·L·1) at 80 °C for 10 min, according to ISO guideline (International Organization for Standardization, n. 10872, 2010). NGM plates or 24-well tissue culture plates were finally stored at 4 °C and worms were randomly imaged under a stereo microscope (Leica M205C, 10X magnification) coupled with a computer-connected camera. The body length was measured by using the Leica software, provided with an auto calibrated micrometre scale bar.

2.5 Effects on reproduction

In Paper I, reprotoxic effects were evaluated by measuring the cumulative number of larvae (hatched eggs and L1, "total brood size") produced by five nematodes (3

biological replicates, n=15 nematodes per treatment) until they stopped reproducing. Specifically, from 48 hours onwards from L1 stage, the adult worms were transferred to fresh NGM plates every two days for a total of 8 days.

In Paper II, however, the criteria for standard 96 hours toxicity tests were followed (International Organization for Standardization, n. 10872, 2010) and the cumulative number of larvae (hatched eggs and L1) was measured only at 96 hours of irradiation from L1 stage.

At the end of each experiment, nematodes were stained by adding 0.5 mL of Rose Bengal (0.3 g·L⁻¹) to the wells and placed for 10 minutes at 80 °C. Plates were stored at 4 °C until nematodes on all plates were measured using a stereo microscope (Leica M205C, 16X magnification) for total number of offspring per recovered adult (reproduction), and for the number of pregnant nematodes (fertility), using a hand-held tally counter.

2.6 Germline apoptosis

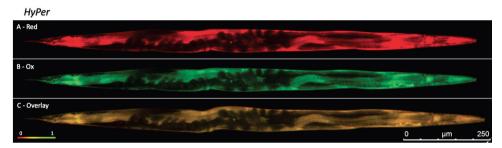
The effect on germ cell apoptosis was measured in Paper I by exposing the *C. elegans* reporter strain *CED1::GFP* for 72 hours from L1 stage to different dose-rates of gamma radiation. At the end of the exposure, ~100 worms per treatment (two biological replicates) were mounted onto 2% agarose pads, anesthetized with 30 mM NaN₃ in M9 buffer, and apoptotic germ cells identified as previously described by Lu et al. (2009). Images of one gonadal arm in each adult hermaphrodite (n = 60, per treatment), 16 hours post L4-molt, were captured as ~10 serial Z-sections of 1.0 μ m interval using Nomarski optics in combination with fluorescence signal under a semi-automated research light microscope (Upright Microscope Leica DM6 B) equipped with a GFP ET filter system (512 nm emission and 40X objective). The frequency of *CED1::GFP* clustering around cell corpses was successively quantified as described by Zhou et al. (2001).

2.7 Spermatids quantification

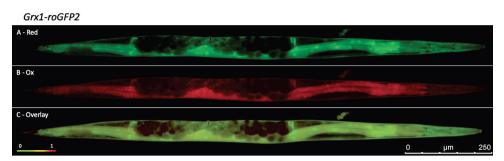
Effects on spermatogenesis and sperm production were investigated in Paper I in order to examine the potential cause of the observed reprotoxic effects. For this purpose, a spermatid quantification was performed on dissected gonads from hermaphrodite nematodes irradiated for 72 hours from L1 stage (Fig. 3, Table S.3 in Supporting Material for Paper I).

After the exposure, nematodes were dissected using a 0.5x16 mm gouge needle in M9 buffer to expose the spermatheca, fixed with Paraformaldehyde (2%) and permeabilized by freeze cracking (Sadler and Shakes, 2000). A total of > 45 nematodes per each treatment were dissected (>15 per slide, in triplicate). Slides were then stained with 10 μ l DAPI DNA staining (10 μ g·mL⁻¹) for 20 minutes, before proceeding with the spermatids count, under a semi-automated research light microscope (Upright Microscope Leica DM6 B) equipped with a DAPI filter system (461 nm emission and 40X objective). For each analysed spermatheca, images were captured as a ~20 serial Z-sections of ~5.0 μ m interval.

2.8 Monitoring *in vivo* ROS production and AODs response to ionizing radiation in *C. elegans*


While conventional redox-sensitive fluorogenic probes are nonspecific, irreversible, and disruptive, genetically encoded fluorescent sensors can overcome such limitations (Gomes et al., 2005, Meyer and Dick, 2010). Therefore, in Paper II, ROS production and induction of Antioxidant defences (AODs) following chronic exposure to gamma radiation were assessed by using the *sod1::gfp* reporter strain and two ratiometric biosensors, *HyPer* and *Grx1-roGFP2* (Doonan et al., 2008, Cabreiro et al., 2011, Back et al., 2012). Specifically, the *sod1::gfp* reporter strain was implemented to measure the expression of the cytosolic superoxide dismutase 1, while the ratiometric biosensors *HyPer* and *Grx1-roGFP2* were adopted to measure the levels of H₂O₂ and the glutathione redox changes.

The *sod1::gfp* reporter strain, carrying a transgene of green fluorescent protein (gfp) driven by the superoxide dismutase 1 (*sod-1*) promoter, can reveal the capacity of this organism to dismutate the superoxide anion (O_2^{*-}) in terms of expression of the gene *sod-1*, when the stressed nematodes are examined under a fluorescent microscope (Fig. 9) (Doonan et al., 2008). Therefore, this reporter strain was adopted for measuring the indirect production of the superoxide radical after chronic exposure to gamma radiation.


Figure 9. Phase-contrast (**a**) and epifluorescence (**b**) image (405 nm excitation and 535 nm emission filters for fluorescent intensity measurements) of *sod1::gfp* adopted for the quantification of Superoxide Dismutase 1 (SOD1) expression after chronic exposure to gamma radiation in Paper II. (Photo: E. Maremonti)

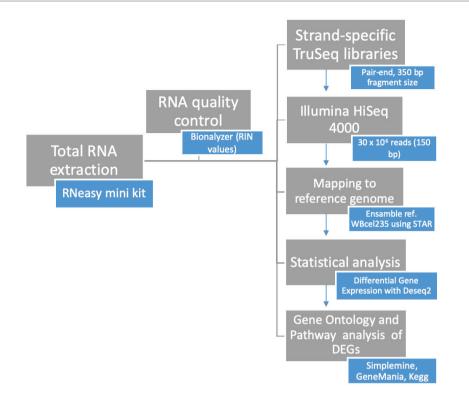
The spontaneous or catalytic breakdown of superoxide anions (O_2^{\bullet}) is one of the most common biological sources of hydrogen peroxide, this is a potent ROS produced by the partial reduction of oxygen during aerobic respiration or due to the exposure of cells to a variety of physical, chemical, and biological agents (Veal et al., 2007). The production of H₂O₂ was monitored *in vivo* in *C. elegans* by using the biosensor *HyPer* (Fig. 10). *HyPer* (named after hydrogen peroxide) is a genetically encoded fluorescent H₂O₂ sensor. It consists of a *cpYFP* (circularly permuted yellow fluorescent protein) fused with the regulatory domain of *OxyR-RD* and has a high affinity and selectivity for H_2O_2 (Belousov et al., 2006). These nematodes are therefore enable to emit fluorescence proportionally to the levels of H_2O_2 produced in response to stressors, and therefore were used to assess effects on cellular levels of H_2O_2 *in vivo* by epifluorescence microscopy (Back et al., 2012).

Figure 10. Epifluorescence images of *Hyper* ratiometric biosensor, taken with two different filter cubes (excitation 490 nm and emission 535 nm, reduced state (**a**), 405 nm excitation and 535 nm emission filters, oxidized state (**b**)) and as overlay (**c**) for the quantification of hydrogen peroxide levels as a measure of oxidized/reduced ratio (Back et al., 2012) after chronic exposure to gamma radiation (Paper II). (Photo: E. Maremonti)

The glutathione disulphide-glutathione couple [GSSG]/[2GSH] is considered to be the major thiol-disulphide redox buffer and the most abundant redox couple in a cell (Gilbert, 1990, Schafer and Buettner, 2001). *Grx1-roGFP2* (redox-sensitive green fluorescent protein 2) is a ratiometric biosensor, where the fusion of the human *Grx1* to the redox-sensitive *roGFP2* greatly enhances the response to glutathione redox changes (Fig. 11) (Gutscher et al., 2008, Back et al., 2012). The [GSSG]/[2GSH] equilibrium is an important indicator of cellular redox status, therefore, oxidized to reduced ratio [GSSG]/[2GSH] of *Grx1-roGFP2* was used as a proxy to assess the impact of chronic exposure to ionizing radiation on the redox potential and to visualize the relative oxidation pattern in the nematode *C. elegans* (Back et al., 2012).

Figure 11. Epifluorescence images of *Grx1-roGFP2* ratiometric biosensor, taken with two different filter cubes (405 nm excitation and 535 nm emission filters, reduced state (**a**), excitation 490 nm and emission 535 nm, oxidized state (**b**)) and as overlay (**c**) for the quantification of glutathione redox changes measured as an oxidized/reduced ratio (Back et al., 2012) after chronic exposure to gamma radiation (Paper II). (Photo: E. Maremonti)

2.8.1 Epifluorescence microscopy


Genetically encoded fluorescent sensors *sod1::gfp, HyPer* and *Grx1-roGFP2* were irradiated for 48 and 72 hours from L1 stage. Immediately after the exposure, nematodes were transferred onto an agar pad (2 % agar) on a glass slide and immobilized with 30 mM of NaN₃ (NaAzide), then subsequently mounted and observed for the fluorescent signals.

Anatomical localization and intensity average of the fluorescent signal for *sod1::gfp* were assessed under a semi-automated research light microscope (Upright Microscope Leica DM6 B, 10X magnification) equipped with a 405 nm excitation and 535 nm emission filters for fluorescent intensity measurements (n= 10) (Fig. 9). For the ratio between the oxidized and reduced forms of either the *HyPer* (Fig. 10) or *Grx1-roGFP2* strains (Fig. 11) (n= 10), a second image, at excitation 490 nm and emission 535 nm, was taken. Intensity-normalized images of at least ten nematodes per treatment were taken within 30 minutes from the sampling and quantification of the fluorescence signals was performed on the Leica® LAS software. Further details of the method and method validation are available in *Sections 2.6* of Paper II and *S.M.2 - S.M.3* of Paper II *Supporting Material*.

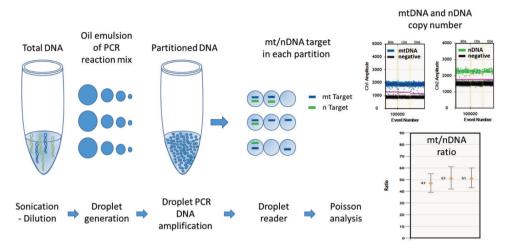
2.9 Transcriptomic analysis through RNA sequencing

Total gene expression via RNA sequencing analysis has become a widely adopted tool to assess changes in the transcriptome profiles of organisms under certain environmental stressors, including gamma radiation (Hurem et al., 2017b). This method allows for the identification of differentially expressed genes (DEGs) by measuring global gene expression, in comparison to a control group. Thus, it provides with important information with respect to repression or activation of transcription of single genes, canonical pathwavs and molecular functions affected bv the environmental/experimental conditions.

For this reason, in Paper I and II, RNA sequencing analysis was adopted in order to obtain the transcriptomic profiles of nematodes chronically exposed to different doserates of gamma radiation. Synchronized populations were irradiated in triplicates for 48 (Paper I) and 72 hours (Paper II) from L1 stage, in order to assess changes in the gene expression before and after reaching sexual maturation. After the irradiation, three selected exposure treatment were chosen (0.4, 10 and 100 mGy·h⁻¹) and nematodes snap-frozen in liquid nitrogen until further analysis as described in the workflow diagram presented in Fig. 12.

Figure 12. Workflow diagram of RNA sequencing analysis, from total RNA extraction to statistical analysis of differentially expressed genes (DEGs) (FDR <0.05, $-0.3 \ge \log 2FC \ge 0.3$), performed on the L1 stage *C. elegans* chronically exposed to gamma radiation for 48 and 72 hours.

2.10 Mitochondrial DNA copy number variation by droplet digital PCR analysis


The hither to most predominantly used techniques for measuring the presence and concentration of a DNA sequence has been by real-time quantitative Polymerase Chain Reaction (qRT-PCR or qPCR). In qPCR the target DNA is amplified until a certain level of fluorescent signal (cycle threshold, CT) is produced and detected. The number of DNA molecules is then calculated based on the number of amplification cycles needed to reach the CT threshold relative to a standard curve obtained by amplification from serial dilution of known concentrations of input target DNA.

Sykes et al. (1992) pioneered a major advance in the PCR technique by using the combination of limiting dilution, end-point PCR and Poisson distribution. This new strategy is now called digital PCR (dPCR), and it is based on dilution and partition of samples into hundreds or even millions of separate reaction "chambers", so each contains one (positive partition) or no copies (negative partition) of the sequence of interest (Baker, 2012). By simply counting the number of positive versus the number of negative partitions, it is possible to determine the absolute copy number of the selected DNA sequence (Basu, 2017). The advantage of this new technique is that by using the same primers and probes of qPCR it is possible to obtain the absolute quantification of nucleic acids in a more sensitive, precise and accurate way, which in turn allows researchers to explore complex genetic landscapes (Hindson et al., 2011).

In droplet digital PCR (ddPCR) an emulsion of oil, PCR reaction mix and stabilizing chemicals, obtained with a droplet generator instrument, is used to partition the total DNA samples into circa 20.000 nanoliter droplets representing the reaction chambers (Hindson et al., 2011)(Fig. 13). Dilution of the DNA followed by sonication or treatment with restriction enzymes is commonly applied in order to optimize template DNA partitioning, droplet formation and the ddPCR performance. The DNA amplification is performed in a standard thermal cycler instrument until it reaches the endpoint or plateau phase. Subsequently, the plate is transferred into a droplet reader, which functions like a flow cytometer where droplets are aspirated and streamed into the detector, where the injection of a spacer fluid separates and aligns them for single-file simultaneous two-color detection (Hindson et al., 2011). Based on fluorescence amplitude, a threshold assigns each droplet as PCR product positive or negative. The use of TaqMan assays provides specific duplexed detection of target and reference genes.

This type of assay is described in detail in Paper III and it was adopted in our study for the quantification of the absolute copy number of mitochondrial DNA (mtDNA), measured as ratio mt/nDNA (nuclear DNA). For this purpose, five mitochondrial targets and two reference nuclear genes were used in a duplex ddPCR format (Paper III). The mtDNA CNV (copy number variation) was assessed in response to chronic exposure to ionizing gamma radiation, as changes in the mitochondrial genome content have been shown in other model organisms after acute X-ray irradiation (Evdokimovsky et al., 2011).

52

Figure 13. Experimental procedure applied for the quantification of mtDNA copy number variation as a measure of mt/nDNA ratio in *C. elegans* chronically exposed to ionizing radiation by using duplex droplet digital PCR assay.

2.11 Effects on parentally irradiated nematodes (F1): DNA damage, development and reproduction

The effects of chronic exposure to ionizing gamma radiation was evaluated on the progeny (F1) of F0 irradiated nematodes, in terms of embryonic DNA damage, development and reproduction (Fig. 14). For this purpose, and in order to avoid further damage induced by using alkaline hypochlorite treatment (bleaching), a method was optimized for the isolation of gastrula-stage embryos from reproducing adult hermaphrodites. This method is described in detail in Section 2.8 of Paper I and it was implemented with a cell isolation procedure in order to perform the Comet assay on homogeneous essentially undifferentiated embryonal cells.

Briefly, F0 nematodes were exposed for 72 hours from L1 stage to increasing dose-rates of ionizing gamma radiation (Section 2.2). At the end of the irradiation, embryos (F1) from exposed nematodes (F0) were isolated and filtered in order to remove the excess of *E. coli* cells. Synchronous populations of L1 stage nematodes (F1) were obtained from incubation overnight in non-seeded NGM plates of the *E. coli*-free embryos. These were

kept under control conditions and adopted for assessing effects on morphology, development and total brood size, as previously described in Section 2.4 and 2.5 for F0 nematodes.

For the DNA damage assessment, the collected and filtered F1 embryos were mechanically disrupted with a glass Dounce tissue homogenizer in order to isolate single cells, which were lysed and adopted in the Comet assay (Section 2.8.1 of Paper I). The method established by the current study provided high number of viable cells and low level of background DNA damage in control cell populations (2.2 - 5.8% of tail intensity), compared to previous methods (~30% of tail intensity) (Sobkowiak and Lesicki, 2009, Ng et al., 2019).

Figure 14. Experimental set up for assessing DNA damage and effects on development and reproduction on parentally exposed nematodes (F1) (Paper I).

2.12 Statistical analysis

Data analysis was performed on Minitab[®] 18 (Minitab Statistical Software (2010). [Computer software]. State College, PA:Minitab, Inc. (<u>www.minitab.com</u>)), JMP Pro v14 (SAS institute, Cary, NC, USA) and SigmaPlot 10.0 (Systat Software, San Jose, CA).

Difference between exposure groups were assessed using parametric or nonparametric test, based on normality distribution of data and homogeneity of variance (homoscedasticity). One-way Analysis of Variance (ANOVA) was adopted in the first case, followed by Tukey *post hoc* for multiple comparisons, whereas in case of nonnormally distributed data, the Kruskal-Wallis test was adopted. Normality and homoscedasticity assumption were assessed on residuals by using Anderson-Darling normality test and visually on residuals vs. fitted value plot, respectively. Statistical significance was considered when *p*-value was lower than 0.05, unless differently stated.

In Paper I, the Effective Dose-Rate estimations were obtained on 10 and 50% of the population (EDR10 and EDR50) for reproduction and DNA damage on embryonic cells, by using the free software RegTox developed by Eric Vindimian (http://www.normalesup.org/~vindimian/en_download.html). For this purpose, the Hill model was used with corresponding confidence intervals of 95%. Principal Component Analysis (PCA) was performed in order to evaluate correlation between selected endpoints.

In Paper II, simple linear regression analysis (SLR) (Montgomery et al., 2012) was applied in order to assess increase in the ROS levels with respect to dose-rate and time of exposure.

In Paper III, a linear model was adopted in order to evaluate the influence of the reference gene (multi-copy *act* or single-copy *gpi-1*) on the measure of mtDNA copy number variation in response to ionizing radiation exposure. When required, a log transformation of the dose-rates and the mt/nDNA ratios was applied and a regression analysis performed. The Logistic 4P Hill model was adopted to identify the effective dose inducing increase in the mtDNA copy number after chronic exposure to different doses of gamma radiation.

3. Results

3.1 Paper I

In Paper I, different scenarios of exposure to ionizing radiation were compared in order to identify the most radiosensitive larval stages of *C. elegans* and to assess whether similar total doses of chronic or acute exposure would induce equivalent adverse effects. The results from total brood size experiments demonstrated a clear reduction in the reproductive capacity (43%), when nematodes were subjected to chronic irradiation at doses \geq 6.7 Gy during larval development. Conversely, acute exposure using similar doses during the post-mitotic stage in young adult nematodes did not induce any adverse effect. This result indicated that developing larvae were more sensitive to gamma radiation, and accordingly the L1- young L4 stages were identified as the most susceptible to reprotoxicity, since even lower doses (4.3 Gy, 100 mGy·h⁻¹) were able to induce a significant reduction in the number of produced offspring (35%).

In order to unravel the mechanisms of toxicity behind the observed impairment of the nematode reproductive capacity under chronic exposure to ionizing radiation, a systematic investigation of vulnerable larval developmental processes and molecular mechanisms was performed by measuring germ cell apoptosis, sperm production and total gene expression. This analysis revealed that doses of exposure down to ~2.8 Gy (40 mGy·h⁻¹) resulted in enhanced germ cell apoptosis and significantly reduced the number of spermatids. RNA sequencing analysis showed down-regulation of more than 140 genes related to reproduction, of which 101 down-regulated genes were specific to sperm production and maturation, including 28 Major Sperm Protein (MSP), sperm meiosis genes *smz-1* and *smz-2* and the sperm specific histone 2 variant (*htas-1*).

Differential regulation of genes related to cell cycle, programmed cell death, chromatin organization, DNA repair, spindle formation and embryonal development were also found, suggesting potential adverse effects on the progeny of irradiated nematodes. The enhanced DNA damage, demonstrated by Comet assay carried out on F1 parentally irradiated embryos, validated this hypothesis, and was accompanied by impairment of the nematode somatic growth. However, no significant effect was observed on F1 nematodes in terms of hatching, survival or loss in their reproductive capacity.

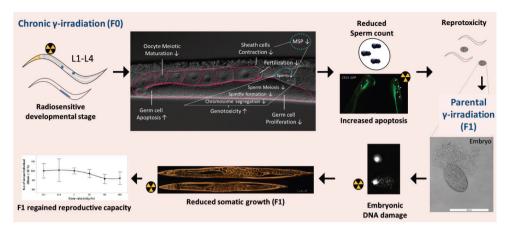


Figure 15. Graphical summary of main findings from Paper I.

3.2 Paper II

In this study, the ability of the nematode *C. elegans* to tolerate chronic ionizing radiation exposure was assessed by measuring ROS production and AODs activation, in combination with phenotypical adverse effects on somatic growth and reproductive capacity. For this purpose, spatiotemporal patterns of hydrogen peroxide (H₂O₂) were measured *in vivo* together with the expression of superoxide dismutase 1 (*sod-1*) and glutathione redox potential, by using a GFP reporter strain (*sod1::gfp*) and two ratiometric biosensors (*HyPer* and *Grx1-roGFP2*). Furthermore, a global gene expression analysis on young adult nematode, exposed for 72 hours from L1 stage, was performed in order to identify cellular and molecular mechanisms triggered by chronic gamma radiation exposure, by assessing changes in the nematode transcriptome profile.

In line with previous studies, results showed adverse effects on reproduction when nematodes were exposed to gamma radiation during the larval development at doses \geq 3.9 Gy (dose-rate \geq 40 mGy·h⁻¹), this result was also corroborated by differential regulation of more than 300 genes related to reproduction. The observed reprotoxic effect was accompanied by a dose-dependent and time dependent (48 and 72 hours) increase of H₂O₂ levels and AODs activation via higher expression of *sod-1*. Moreover, a temporary but significant redox imbalance was shown at 48 hours of exposure by increased oxidized/reduced ratio of *Grx1-roGFP2*. The data showed that at dose-rates ≤ 10 mGy·h⁻¹ (total dose ~1 Gy) defence mechanisms were able to prevent the manifestation of oxidative stress response, whereas at dose-rates ≥ 40 mGy·h⁻¹ (total dose 1.9 Gy) the continuous formation of radicals caused a redox shift, leading to oxidative stress transcriptomic response. This included changes in mitochondrial function, as indicated by the down-regulation of 10 of the twelve mtDNA encoded genes essential for the assembly of the mitochondrial electron transport chain (ETC), but also changes in functions related to protein degradation, lipid metabolism and collagen synthesis.

Moreover, genotoxic effects were among the most over-represented functions affected by chronic gamma irradiation, as indicated by differential regulation of genes involved in DNA damage, DNA repair, cell-cycle checkpoints, chromosome segregation and chromatin remodelling.

Results

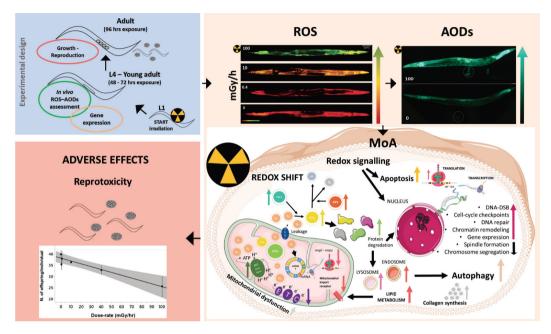


Figure 16. Graphical summary of assessed endpoints and main findings from Paper II.

3.3 Paper III

Following oxidative stress, mtDNA damage has been shown to be more extensive and persist longer than nuclear DNA damage, thus, mtDNA CNV (copy number variation) has been proposed as a marker for mitochondrial dysfunction following exposure to ionizing radiation (Malik and Czajka, 2013). The standard method used for quantification of mtDNA content relies on standard quantitative PCR, which provides a relative rather than an absolute quantification and presents some limitations.

In Paper III, a method based on droplet digital PCR (ddPCR) was developed in order to measure the absolute variation in the mtDNA copy number in *C. elegans*, following chronic exposure to gamma radiation. For this purpose, five mitochondrial target (COX1, COX3, ND5, s-rRNA and tRNA-val/ND6) and two nuclear reference genes (single-copy *gpi-1* and multi-copy *act*) were selected and amplified pairwise in duplex PCR format, in order to obtain an absolute quantification of the ratio mt/nDNA.

Results showed that the optimized ddPCR method represents a more simple and robust means of quantification, that can overcome the known uncertainties related to qPCR measurements. The method was used to investigate the effects of chronic gamma irradiation after low (up to 7.2 Gy, dose-rate $\leq 100 \text{ mGy} \cdot \text{h}^{-1}$) and high (24 to 72 Gy, dose-rate $\sim 1 \text{ Gy} \cdot \text{h}^{-1}$) dose ranges of exposure. A significant difference (~ 1.6 -fold increase) was observed in terms of mtDNA content after exposure to high doses compared to low doses and control treatments. This result showed a Hill type dose-dependent increase of the mtDNA copy number and a predicted dose threshold of effect at 10.3 ±1 Gy. Thus, nematodes subjected to low dose-range chronic exposure to high dose range appeared to induce mtDNA replication, which may suggest a compensatory response to counteract genotoxic effects or mitochondrial dysfunction.

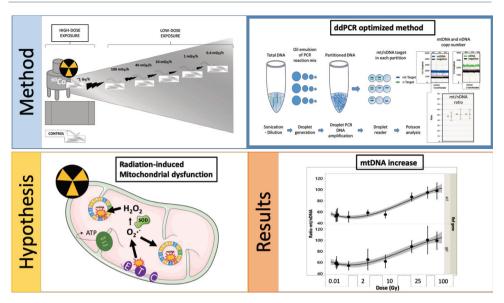


Figure 17. Graphical summary of method development and main findings from Paper III.

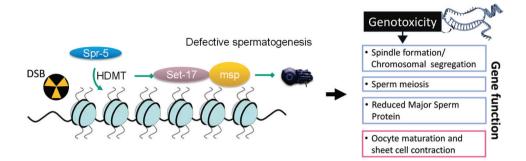
4. Discussion

The vast differences between radioresistant and radiosensitive species are well documented and have been known for decades (Harrison and Anderson, 1996, UNSCEAR, 2006, Garnier-Laplace et al., 2013), however, the underlying mechanisms represent a long standing scientific conundrum. A recent review lists several potential factors that might influence species radiosensitivity, including exposure scenario, stage of development, biology of the organisms and the evolved cellular and molecular defence systems (Adam-Guillermin et al., 2018). The lack of knowledge on vulnerability of developmental stages or different tissues to the effects of chronic ionizing radiation exposure in radioresistant species, underlines the importance of the current study. The research performed in this thesis addressed the effects of chronic exposure to ionizing radiation in the soil invertebrate *C. elegans*, to elucidate the mechanisms involved in sensitivity and tolerance of an important and hitherto presumed radioresistant model organism (Krisko et al., 2012b, Sugimoto et al., 2006, Guo et al., 2013, Vermezovic et al., 2012). For this purpose, a multitude of cellular and molecular biology techniques was applied after irradiation of nematodes to a range of low and high dose-rates of gamma radiation from a 60 Co source (0.4 to ~1 Gy·h⁻¹). Moreover, this study required the development and optimization of new methods, including the gastrula-stage embryonal cells isolation in order to assess DNA damage via the Comet assay or the droplet digital PCR method, optimized to measure the mtDNA copy number variation. Furthermore, by comparing acute *versus* chronic gamma irradiation, and by performing exposure of different stages during nematode development, novel insights with respect to reprotoxic effects, sensitive larval stages and cell-specific sensitivity were obtained. Successively, this study addressed the interaction between ROS production, AODs responses, DNA damage and repair, and mitochondrial function. Finally, the results were compiled and integrated into a conceptual adverse outcome pathway (AOP) network on radiation induced reprotoxic effects in *C. elegans*.

4.1 Life stage-dependent radiosensitivity in C. elegans

A major aim of this PhD study was to investigate to what extent life history traits or certain stage(s) of *C. elegans* development showed higher sensitivity to ionizing radiation. The first major objective was thus to investigate the difference in sensitivity between post-mitotic adult hermaphrodites and developing larvae. In line with previous studies (Krisko et al., 2012a, Weidhaas et al., 2006, Dubois et al., 2018), results showed that acute or chronic exposure of post-mitotic adult hermaphrodites to ionizing radiation (at doses up to \sim 15 Gy) did not induce any adverse effect in terms of survival, somatic growth or reproductive capacity of nematodes (Paper I, Fig. 2 & 3). Whereas, results from three independent experiments on nematodes chronically exposed during larval development showed reprotoxic effects induced at doses \geq 3.9 Gy (dose-rates \geq 40 mGy·h⁻¹), even when different culturing conditions were employed (NGM agar plates and swirling liquid culture, Papers I and II respectively). Specifically, impairment of the reproductive capacity was measured at similar doses of exposure (\geq 4.3 Gy in Paper I and \geq 3.9 Gy in Paper II), even though the duration and dose-rates of exposure were different (100 mGy \cdot h⁻¹ for 43 and 62 hours, and 40 mGy \cdot h⁻¹ for 96 hours, respectively). Previous studies have shown negative effects on vulval development, fertility and reproduction following exposure throughout the larval development, but at significantly higher doses (>70 Gy) (Weidhaas et al., 2006, Bailly et al., 2010), compared to the highest dose (\sim 19 Gy) adopted in the current study.

The reduced reproductive capacity shown in Papers I and II was in line with previous studies on other invertebrates, which have shown comparable reprotoxic effects at similar total doses following exposure during the development (Hertel-Aas et al., 2007, Parisot et al., 2015). Notably, the irradiation during the embryonal developmental stage of nematode unhatched eggs, performed in Paper I, did not enhance the reprotoxic effects compared to exposure of early larval stages (L1-Young L4).


To conclude, in support of the first hypothesis of the study, larval development was demonstrated to be a more sensitive stage compared to the post-mitotic stage of the nematode life cycle. Specifically, the L1 to young L4-molt was unequivocally shown to be the most sensitive, and probably represent the critical stages of development, being affected by gamma radiation, at doses \geq 3.9 Gy (dose-rate \geq 40 mGy·h⁻¹). These

observations strongly suggested that the observed reprotoxic effects were linked to adverse effects on the gonadal development or on the production of gametes.

4.2 Vulnerable cell types and biological processes in irradiated nematodes

Reproduction is recognized to be one of the most radiosensitive endpoints, possibly because cells undergoing rapid division either for renewal (i.e. germ cells) or growth (i.e. embryonal development) are more vulnerable (UNSCEAR, 2006). With respect to this theory, one of the main objectives investigated in the current study was to assess tissue and cell-specific radiosensitivity. Thus, novel insights into the mechanisms underlying nematode reprotoxicity were discovered by studying the effects of chronic gamma irradiation on oogenesis and spermatogenesis (Paper I). The initial results from the present study indicated that sperm is the most vulnerable cell type, which was affected at doses ≥ 2.8 Gy (dose-rates ≥ 40 mGy·h⁻¹) (Paper I), since a significantly reduced number of spermatids was observed after 72 hours of exposure. This is consistent with previous studies performed on several more radiosensitive species, including earthworms (Hertel-Aas et al., 2011b), fish (UNSCEAR, 1996, Kuwahara et al., 2002) and rodents (Haines et al., 2001, Liu et al., 2006), showing that sperms are vulnerable to ionizing radiation. Interestingly, this effect on sperm was not observed when a targeted exposure of the spermatogenesis process was performed in Paper I, possibly because the total dose of exposure was not sufficiently high (1.3 Gy, L3-L4 stage, 13 hours exposure to 100 mGy·h⁻¹). Similarly, prolonged irradiation postspermatogenesis to significantly higher doses (~15 Gy, Paper I) did not affect reproduction, suggesting that mature sperm were essentially tolerant to radiation. This is consistent with the fact that mature sperm are transcriptionally silent and have condensed chromatin (Ellis and Stanfield, 2014, Chu and Shakes, 2013). Together, these findings indicated that injury had to occur during the early gonadal development in order to manifest during the production of sperm germ cells. Consistent with this model, RNAseq analysis at 48 hours of 100 mGy·h⁻¹ irradiation (~4.8 Gy), identified dysregulation of genes with essential role in the meiotic process during *C. elegans* spermatogenesis. A previous study showed that the perturbation of the S phase via RNAi or exposure to 120 Gy resulted in arrest of the male germ line nuclei in the proliferative zone, which suggested that male as well as hermaphrodite germ cells are competent for checkpoint signalling (Jaramillo-Lambert et al., 2010). Furthermore, the male checkpoint machinery was shown to be more successful than the corresponding hermaphrodite mechanism at handling an asynapsed chromosome, thus improving the chromosome transmission (reproductive success). This implies that the male germ cells possess functional gamete quality control, despite absence of physiological or CED-3 caspase-activated apoptosis (Jaramillo-Lambert et al., 2010). This may indicate that the radiation induced reprotoxic effects in *C. elegans* may be gender specific.

In good accordance to this hypothesis, in Paper I, the spermatids reduction in hermaphrodites was correlated with significant down-regulation of genes essential for chromosome segregation during sperm meiosis (*smz-1* and *smz-2*) and chromatin condensation during sperm maturation (htas-1). Inhibition of these genes has previously been shown to induce the arrest of spermatocytes progression through meiotic division in males, with negative consequences for their fertility (Chu et al., 2006). The observed effects are in good accordance with immature spermatocyte formation being a vulnerable process, as suggested by Hasan et al. (1989). Moreover, this was further corroborated by the down-regulation of 28 sperm cytoskeletal structural proteins (MSP) (Paper I), required not only for sperm motility but also for the stimulation of oocyte meiotic maturation and ovulation (Miller et al., 2001) (Fig. 18). At 72 hours of exposure the spr-5-regulated set-17 was significantly down-regulated (Paper I-II). Set-17 is a lysin methyltransferase, which controls the expression of the MSP gene clusters (Engert et al., 2018), while *spr-5* is a histone H3K4 demethylase with a role in meiotic double-strand break repair (Nottke et al., 2011). Spr- 5 mutants have shown perturbation of DSB repair, including increased p53-dependent germ cell apoptosis, increased levels of the DSB repair marker RAD-51, sensitivity toward DSBinducing treatments (Nottke et al., 2011) and progressive sterility over many generations (Katz et al., 2009). In the same study by Katz et al. (2009), this sterility was correlated with the dysregulation of spermatogenesis-expressed genes and with the transgenerational accumulation of the demethylated histone H3 on lysine 4 (H3K4me2). This may imply that complex DNA damage such as DSB, may have affected the regulation of spr-5 and set-17, thereby leading to impaired expression of the spermatogenesis gene program (Fig. 18), as well as suggest potential adverse effects on the transmission of the epigenetic memory over multiple generations (Katz et al., 2009).

Figure 18. Proposed model for gamma radiation induced defective sperm meiosis in the *C. elegans* hermaphrodite. Repair of complex DNA damage such as DSB is initiated via histone demethylation by *spr-5*, which concomitantly represses *set-17* regulated genes including *msp.* DNA damage onto the gametes causes defective chromosomal segregation and spindle formation. The concerted effect leads to reduced number of mature sperms with the downstream feedback inhibition of oocyte maturation and sheet cell contraction signalling.

In addition to a differential regulation of spermatogenic genes, the degree of sperm reduction and the normal sperm reserve in the hermaphrodites (Singson, 2001) were demonstrated to comprise the main determining factor for the radiation induced impairment of reproductive capacity. However, exposure at \sim 2.8 Gy during larval development, including post-embryonic development, induced adverse effects on oocytes as well as on developing spermatids. Enhanced germ cell apoptosis, measured after 72 hours of irradiation, demonstrated that proliferating oocytes were also vulnerable to the effects of ionizing radiation at comparable doses of exposure (2.9 Gy). Germ cell apoptosis in *C. elegans* has previously been shown to act as a protective mechanism that removes damaged cells and reduces the probability of mis-repair at acute high doses (>30 Gy) of ionizing radiation (Bailly and Gartner, 2013). The current study demonstrates that apoptosis is a highly sensitive defence mechanism and can be activated at 10-fold lower doses (Paper I).

In line with the second hypothesis formulated in the study, the results demonstrated that the reproductive apparatus is a vulnerable target for chronic low-dose gamma irradiation due to high cell proliferation in the gonadal tissues and specifically because of vulnerable cells undergoing meiosis.

These results are important because, in contrast to effects observed at high doses during acute exposure of *C. elegans* males (Jaramillo-Lambert et al., 2010), the current study demonstrates that developing spermatids of hermaphrodites are intrinsically more radiosensitive than oocytes, presumably due to lack of proper checkpoint mechanisms, absence of apoptosis, and no means for replenishment of non-functional cells. In contrast, the apoptotic machinery constitutes an efficient defence mechanism for excluding DNA damaged oocytes.

The observed effects on *C. elegans* spermatogenesis is a *bona fide* example of an important principle that even resistant species may inherit vulnerable cellular and molecular processes, which may have consequences to the population sustainability. This is in contrast with other soil organisms, such as earthworms, where radiation-induced sterility is reversible, and individuals showed full recovery of the reproductive capacity within two months after termination of the exposure (Hertel-Aas et al., 2011a).

In the *C. elegans* hermaphrodite spermatogenesis is restricted to a short stage during germline development prior the onset of oogenesis and cannot be resumed (L'Hernault, 2006). Hence, it is tempting to speculate that a chronic exposure scenario over multiple generation could potentially favour a higher incidence of males to compensate for the stress conditions. This could potentially ameliorate the reprotoxic effects caused by the reduced sperm production in the hermaphrodites.

This means that chronic radiation is likely to cause long-term transgenerational effects, thus, further investigation over multiple generations is necessary, to properly address adverse effects on the progeny of irradiated nematodes, as previously reported by Buisset-Goussen et al. (2014) and as suggested by the *spr-5* role in epigenetic and fertility (Katz et al., 2009, Kerr et al., 2014).

4.3 Effects on the progeny of irradiated nematodes

A remarkable capacity to repair radiation-induced DNA damaged has been previously shown in radiorestistant and desiccation-resistant species such as tardigrades, bdelloid rotifers and the bacterium *D. radiodurans* (Zahradka et al., 2006, Gladyshev and Meselson, 2008b, Hashimoto et al., 2016). In contrast, in *C. elegans*, exposure to significantly lower doses (100 mGy·h⁻¹, total dose 4.8 and 7.2 Gy) provided during larval development (Papers I-II) affected the expression of genes related to reproductive system, meiotic chromosome segregation, aneuploidy, spindle formation and embryonic development, strongly indicating adverse effects on the DNA of cells under division. Moreover, the severe genotoxic effects shown in proliferating germ cells from chronically irradiated F0 nematodes (Paper I) suggested that potential adverse effects could be protracted to developing embryos in their progeny (F1).

For this reason, DNA damage analysis was performed on undifferentiated cells extracted from gastrula stage F1 embryos from irradiated parents (F0). In line with Bergonie's (1906) classic radiation biology hypothesis that proliferating cells would be a vulnerable target for ionizing radiation, this revealed that 100% of the cells carried significant DNA damage from doses to parents \geq 2.9 Gy (dose-rate \geq 40 mGy·h⁻¹) (Paper I). This was further corroborated by gene expression analysis, which identified 24 upregulated genes related to 'Variant Sister Chromatid segregation defective in early embryo', and that also comprised the most significantly enriched phenotypical variant (3.1-fold enrichment) (Paper II).

Consistent with previous studies (Dubois et al., 2018, Bailly et al., 2010, Clejan et al., 2006), this severe genotoxic effect did not induce any deleterious consequence on hatchability and/or viability of the parentally irradiated embryos (Paper I). However, in order to study potential adverse effects on the nematode development, somatic growth and reproductive fitness were monitored by measuring total body length and total brood size on parentally irradiated F1 nematodes, under control conditions. Results from this analysis showed a significant reduced somatic growth, but no obvious effect on cell viability, or tissue formation. Surprisingly, despite the observed genotoxic effect, nematodes maintained their reproductive fitness, since no significant reduction was detected in the number of viable progenies. Thus, showing that nematodes irradiated during early embryogenesis can produce viable embryos, even when the majority of the proliferating embryonal cells carried a substantial damage on their DNA.

Interesting, significant effects on somatic growth were shown for all the parentally irradiated nematodes, including the lowest dose of exposure (0.03 Gy, dose-rate 0.4

mGy·h⁻¹, Paper I). This result is consistent with the gene expression GO-term analysis (Paper II) performed at 100 mGy·h⁻¹, showing down-regulation of multiple biological functions related to embryonic and post-embryonic development, while 'Pleiotropic severe defects in early embryo' was significantly up-regulated.

Checkpoint response to DNA damage has previously shown to be actively silenced in irradiated embryos of *C. elegans*, thus allowing their survival after exposure to DNA-damaging agents (Holway et al., 2006). Based on these findings, Holway et al. (2006) proposed that adherence to the schedule of cell division is evolutionary selected over error-free replication during early embryogenesis. In agreement with this model, the present study showed that despite the severe damage to DNA exerted by low-dose gamma irradiation, embryos were able to survive and reproduce, but at the cost of somatic growth.

The effects on nematode body size has been previously related to dysregulation of genes with autophagic functions, such as *unc-51*, encoding for a serine-threonine kinase (Megalou and Tavernarakis, 2009). Specifically, *unc-51* mutants have shown defects in autophagy, which resulted in significantly shorter mean body size but constant number of cells. Consistent with this study and with the reduced body size observed in parentally irradiated F1 nematodes, the transcriptomic analysis (paper II), showed significant up-regulation of *unc-51*, *atg-6* and *atg-9*, all genes involved in the autophagic process (Megalou and Tavernarakis, 2009). This might suggest that autophagy is important to the recovery of radiation-damaged embryos, however this hypothesis needs to be further investigated.

4.4 ROS production as a molecular initiating event of ionizing radiation effects

The radioresistance demonstrated for bdelloid rotifers, tardigrades and certain bacteria such as *D. radiodurans* has been associated to their remarkable ability to survive and resume reproduction or growth after desiccation (Welch et al., 2009, Fredrickson et al., 2008, Gladyshev and Meselson, 2008a). Specifically, they have evolved and adapted to survive enhanced damage to biomolecules caused by the production of ROS from the

disruption of the electron transport chain during the desiccation process (Leprince et al., 1994, França et al., 2007). The mechanisms involved in the adaptive response demonstrated after exposure to ionizing radiation include the protection of proteins from oxidative damage (i.e. potent antioxidant complexes consisting of Mn²⁺ - Pi, and small organic molecules specifically protect proteins from oxidation in *D. radiodurans*) (Daly, 2012), as well as an exceptional anti-oxidant capacity (Daly, 2012, Daly et al., 2007, Krisko et al., 2012a). For these reasons, one of the hypotheses formulated in this study, was that the anti-oxidant defence capacity of *C. elegans* (described in Section 1.13) (Braeckman et al., 2017) would ameliorate oxidative damage and thereby provide tolerance towards chronic exposure to ionizing radiation. This hypothesis was tested by investigating organism, tissue and cell-specific ROS production, AODs response and oxidative stress effects in nematodes subjected to chronic gamma radiation using reporter strains, ratiometric biosensors and transcriptomic analysis (Paper I-II).

The results in Paper II showed that chronic exposure to doses \geq 3.9 Gy (40 mGy·h⁻¹), induced reprotoxic effects, high levels of H_2O_2 and a temporary glutathione redox imbalance in young adult nematodes. Moreover, consistent with enhanced germ cell apoptosis, the gonads showed persistent redox imbalance in nematodes irradiated for 72 hours at 100 mGy·h⁻¹ (\sim 7.2 Gy). These adverse effects, however, were accompanied by enhanced activation of anti-oxidant defences, such as cytosolic superoxide dismutase, catalase and glutathione, as demonstrated in vivo as well as by gene expression analysis (Paper I-II). RNA sequencing revealed up-regulation of many genes involved in the oxidative stress response after 48 (i.e. atg-9, ubc-3, ubc-8, ubh-4, epg-9, mak-1 and jnk-1) or 72 hours of exposure (i.e. sod-1, ctl-1, glrx-10, gst-20, trx-2 and trxr-2) (Paper I-II). Moreover, and in line with the restored glutathione redox potential (Paper II) measured after 72 hours of exposure, genes required for the glutathione de novo synthesis were found up-regulated. However, evidence of the significant oxidation was found in the temporary redox imbalance measured at 48 hours and in the persistent high levels of H₂O₂ measured after 72 hours of exposure. This was further corroborated by 85 differentially regulated genes (DEGs) (72 hours of exposure) found in common with a study from Shin et al. (2011), where the oxidative stress transcriptomic response was analysed after exposure to ROS-inducing agents, such as the herbicide Paraquat. Most of these genes had functions related to mitochondrial ATP synthesis, mitochondrial ribosomal activity/assembly, collagen production, response to heat stress, chromatin modification and ubiquitination, giving further evidence to the oxidative-stress response induced by chronic gamma irradiation. In line with these results, at high doses of acute exposure (>100 Gy) a previous study by Krisko et al., (2012a) demonstrated a 10-fold lower tolerance of *C. elegans* in comparison to the highly radioresistant rotifer *Adineta vaga*. Specifically, *C. elegans* showed higher levels of ionizing radiation-induced protein carbonylation, accompanied by similar adverse effects on fecundity.

Excess of ROS formed inside the mitochondria may trigger the downstream regulation of genes involved in apoptosis by the ROS-dependent signalling pathway (Sidoti-de Fraisse et al., 1998). However, no apoptosis or impaired viability on somatic cells was assessed in the current study, Paper I and II showed enhanced germ cell apoptosis, as well as differential expression of genes related to cell-cycle checkpoint, DNA double strand break, DNA repair and 87 genes involved in programmed cell death. These included the well-known markers for DNA damage-induced apoptosis *egl-1* and *hus-1* (Hofmann et al., 2002) and was consistent with the significant oxidation measured in the gonads of nematodes irradiated for 72 hours (Paper II), as well as with the meiotic impairment and thus the reprotoxic effects (Paper I-II).

Taken together these findings indicate that nematodes can maintain homeostasis at chronic exposure to dose-rates $\leq 10 \text{ mGy}\cdot\text{h}^{-1}$ (~1 Gy total dose). Since, despite the enhanced ROS levels, the activation of a multitude of defence mechanisms, aids the maintenance of somatic cell viability, growth, and normal biological functions, demonstrating its robust and efficient AOD and DNA repair systems. This is consistent with a previous study from Dubois et al., (2018) on protein carbonylation, showing that defence mechanisms, such as the 20S proteasome activity, was induced at similar doses (≥ 1 Gy) of chronic gamma-irradiation. However, exposure to 100 mGy·h⁻¹ (~7.2 Gy) demonstrated enhanced oxidation in the gonadal arms, with adverse consequences for the nematode reproductive capacity. In contrast to the soma, germ cells under division in the reproductive tissue showed high vulnerability and specifically the developing sperm. In order to maintain high levels of defence, considerable energy expenditure might be required, and this could partially explain the impaired reproductive fitness observed at ≥ 40 mGy·h⁻¹ (~3.9 Gy) in F0 nematodes and the reduced somatic growth observed in their progeny F1 (Paper I-II). It may thus appear that the nematode AODs

are capable of ameliorating ox-stress damage at doses ≤ 1 Gy. In contrast, the AODs were not able to counteract manifestation of ox-stress at doses ≥ 3.9 Gy, which indicates that tolerance to high level radiation in *C. elegans* requires the concerted action of multiple cellular mechanisms.

4.5 Effects of chronic ionizing radiation exposure on mitochondria

Processes associated with oxidative phosphorylation are known to be a susceptible target of radiation exposure, and consequent dysfunctions lead to further production of mitochondrial ROS due to alteration of the complexes involved in electron transport chain (ETC) and ATP synthase activity (Kam and Banati, 2013). This is consistent with the model where cells deficient in mitochondrial ETC (rho(o) cells) do not show radiation-induced ROS production (Leach et al., 2001), and in line with resistance to genotoxic stress shown in germ cells under reduced mitochondrial activity (Torgovnick et al., 2018). In Paper II, the significant down-regulation of fundamental genes required for the assembly of the complexes I, III, IV and V of the mitochondrial ETC, was accompanied with similar dysregulation of genes encoding for mitochondrial ribosomal proteins, all essential for the ETC proper assembly and function (Berg et al., 2006). This strongly suggested cellular redox imbalance as well as an early sign of mitochondrial dysfunction.

Mitochondrial DNA (mtDNA) is more vulnerable to oxidative stress conditions and inflicted damage persists longer than corresponding lesions onto nuclear DNA (Yakes and Van Houten, 1997). This might be due to its close proximity to the ETC, the lack of protective histones or fewer DNA repairing mechanisms (Mandavilli et al., 2002, Sawyer and Van Houten, 1999), which subsequently may render the mtDNA a more susceptible target to radiation-induced genotoxicity (Malakhova et al., 2005, Kam and Banati, 2013). Since increased levels of mtDNA have been reported in mammalian systems exposed to ionizing radiation (Nugent et al., 2010, Malakhova et al., 2005), mtDNA copy number variation (CNV) has been proposed as a measure for radiation-induced mitochondrial dysfunction (Malik and Czajka, 2013). For these reasons, one of the hypotheses formulated in this study was that mitochondria would present radiation-induced dysfunction and nematodes would counteract mtDNA damage by increasing the mtDNA

replication. For this purpose, in Paper III a new and accurate method for the quantification of mtDNA CNV was developed as a measure of mt/nDNA ratio, by using droplet digital PCR analysis (ddPCR).

This method revealed high accuracy and a simple and robust means of quantification that overcomes the known uncertainties related to qPCR measurements (Section 2.10 and Paper III) (Côté et al., 2011, Kam et al., 2013). Due to the high precision of ddPCR, it was possible to accurately detect significant changes in the mtDNA copy number by using both low and high dose ranges of chronic gamma radiation exposure. Specifically, a ~2-fold significant increase of mtDNA copies was observed, but this effect was only shown at doses of exposure \geq 24 Gy (~1 Gy·h⁻¹). Under low-dose range exposure (0.03 – 7.2 Gy, dose-rates ranging from 0.4 to 100 mGy·h⁻¹), the number of mtDNA copies was similar to the control levels, thus indicating the ability of *C. elegans* to maintain a stable mtGenome content. However, by using a Logistic 4P Hill model, a threshold effect was measured at 10.3 ± 1 Gy, which is a dose ~2.4-fold higher than the one required for the manifestation of reprotoxic effects (Paper I-II).

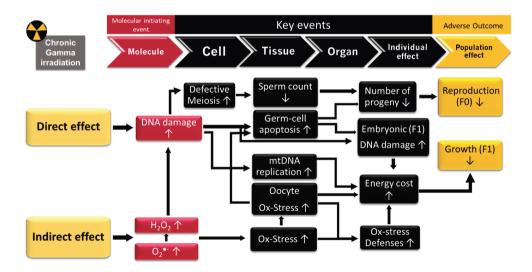
Even though mtDNA damage was not an end-point assessed in the current study, this new method supports the hypothesis that nematodes would increase the mtDNA replication due to increased mitochondrial oxidative damage and genotoxic effects, as shown by the high levels of ROS, DNA damage and AODs measured in Paper I and II. Moreover, *C. elegans* post-mitotic cells show a remarkable ability to maintain viability even when subjected to high doses of ionizing radiation (<19 Gy). It follows that mitochondrial functions maintain at a level that sustains cell viability. Thus, it is conceivable that the effects induced by chronic exposure to ionizing radiation trigger the activation of mtDNA replication as defence mechanisms. Hence, it is tempting to speculate that mitochondrial robustness contributes to the intrinsic radioresistance of *C. elegans*, however, this subject requires further investigation.

5. Conclusions

The results presented in this thesis provide important novel information about the mechanisms of toxicity and tolerance induced by chronic exposure to gamma radiation in a generally radioresistant organism. C. elegans has been reported to survive up to 3-5 kGy, while this study demonstrates that chronic irradiation to total dose \geq 3.9 Gy (\geq 40 $mGv \cdot h^{-1}$) may have devastating impact on reproduction, and hence population sustainability. Furthermore, reproduction is highly sensitive, particularly if vulnerable larval stages and proliferative germ cells experience chronic exposure to gamma radiation. These effects are directly related to impairment of spermatogenesis, where sperm meiosis and maturation were identified as the most radiosensitive processes. The findings from this research thus demonstrate that despite the activation of defence mechanisms to counteract radiation-induced damage, chronic exposure during larval development induces reprotoxic effects at approximately 13-fold lower total doses (~3.9 Gy), compared to previously published acute studies on post-mitotic adult larvae $(\sim 50 \text{ Gy})$ (Dubois et al., 2018). Notably, the current work did not detect any evidence of somatic cell death or failure in tissue development from the exposure conditions inducing reprotoxicity.

This study also showed that *C. elegans* do mount multiple defence responses, including DNA repair and AODs when subjected to chronic irradiation. Particularly, the enhanced AOD levels together with the oxidative-stress transcriptomic response suggest that these defences aid to counteract the radiation-induced excess ROS. Furthermore, the homeostatic maintenance of normal biological functions was observed at dose-rates $\leq 10 \text{ mGy}\cdot\text{h}^{-1}$, whereas at dose-rates $>40 \text{ mGy}\cdot\text{h}^{-1}$ a significant redox imbalance was shown particularly in the gonad. Enhanced germ cell apoptosis and impaired sperm meiosis at dose-rates $\geq 40 \text{ mGy}\cdot\text{h}^{-1}$ represent *bona fide* evidence of DNA damage response. These effects culminate in reduced reproductive capacity.

The down-regulation of essential mitochondrial ETC genes, suggested that mitochondria comprise a vulnerable target of chronic ionizing radiation. However, results showed stable mtDNA content after low-dose chronic exposure (\leq 7.2 Gy), implying the normal replication and integrity of the mitochondrial genome. In contrast,


74

high-doses of chronic exposure (\geq 24 Gy) induced significantly higher mtDNA copy number, indicating a compensatory mechanism.

Through the establishment of a new protocol for the quantification of DNA damage on embryonal cells via Comet assay, this study demonstrated that the progeny (F1) of irradiated F0 nematodes may suffer severe DNA damage. However, parentally irradiated nematodes were able to maintain normal cell and tissue functionality, as well as reproductive capacity at the expense of reduced somatic growth.

Finally, the main findings of this study were integrated into an Adverse Outcome Pathway (AOP) framework (Ankley et al., 2010) (Fig. 19). This AOP links the molecular initiating events by direct and indirect effects, to key events including oxidative stress, genotoxic and reprotoxic effects, which lead to adverse outcome on the population level.

Taken together these results provide new insight in the molecular and cellular mechanisms induced by chronic exposure to ionizing radiation in a radioresistant organism, which could be used for future multi-generational studies on the same model system, or for comparisons to both radiosensitive or more radioresistant species.

Figure 19. Conceptual AOP model of chronic exposure to ionizing radiation in the nematode *C. elegans.* Molecular initiating events include ROS formation and DNA damage. Key events include oxidative stress and genotoxic effects on proliferative germ cells, accompanied by activation of defense mechanisms, including AODs, DNA repair and mtDNA replication and increased energy cost. Reprotoxicity and reduced growth cause adverse outcome at the population level.

6. Limitations of the study and future prospective

The current study investigated mechanistic effects induced by chronic exposure to ionizing radiation, for this purpose higher doses than the ones considered environmentally relevant were employed. Environmental scenarios of exposure, such as those presented in the Chernobyl Exclusion Zone after more than 20 years from the accident, have shown negligible or no effect on nematode populations exposed to estimated total dose-rates of $200 \ \mu$ Gy·h⁻¹ (Lecomte-Pradines et al., 2014). However, the doses and dose-rates adopted in the current study were intended to include a full dose-response for toxic effects assessment. The estimated dose-rates for the soil dwelling organisms (i.e. earthworms), five months after the Chernobyl nuclear accident, were above ~85 Gy (Krivolutzkii and Pokarzhevskii, 1992). Therefore, they might only represent relevant doses of exposure during a short period of time, directly after contamination from nuclear accidents. For these reasons, results presented in this work are primarily relevant at the mechanistic cellular and molecular level for comparison to other model organisms or to environmentally relevant scenarios of exposure.

Another limitation presented in the current study concerns the high inter-individual variability measured in terms of glutathione redox potential. This did not prevent proper assessment of oxidation effects after 72 hours of gamma irradiation. Therefore, in order to overcome the intrinsic variability, future analysis should employ a higher number of individuals per replicate, or further validation by using different methods.

The alteration of essential molecular and cellular mechanisms may over time exacerbate effects onto important biological functions and over multiple generations. For instance, mitochondrial dysfunction may lead to changes in metabolism due to defective energy production, which are adverse effects that could potentially represent a threat for the population dynamics in the environment. Development, longevity and reproductive fitness are essential for the population dynamics of a species, representing the most important ecological functions and the basis for the population survival. For these reasons, multigenerational studies should be performed in order to obtain a more reliable information with respect to radiosensitivity and population dynamics in response to chronic exposure to ionizing radiation. Such studies could monitor the male incidence over multiple generations, in order to investigate potential adaptive

responses induced by chronic ionizing radiation exposure. Particularly, further analysis on genotoxicity is necessary to elucidate DNA damage effects in vulnerable cell-types or vulnerable organelles, such as the developing sperm of hermaphrodites and the mitochondria. Analysis directed to spermatid morphology and viability, in combination with analysis on targeted spermatogenic genes could aid identifying the cause of the faulty sperm meiosis. Among these, functional analysis of the genes involved in the *set-17* and *spr-5* pathways also in other species could give a better understanding of the conserved nature and effects on the spermatogenic genes regulation and on its epigenetic consequence.

References

7. References

- ABELLA, M. K. I. L., MOLINA, M. R., NIKOLIĆ-HUGHES, I., HUGHES, E. W. & RUDERMAN, M. A. 2019. Background gamma radiation and soil activity measurements in the northern Marshall Islands. *Proceedings of the National Academy of Sciences*, 116, 15425.
- ADAM-GUILLERMIN, C., HERTAL-AAS, T., OUGHTON, D., BLANCHARD, L., ALONZO, F., ARMANT, O. & HOREMANS, N. 2018. Radiosensitivity and transgenerational effects in non-human species. *Annals of the ICRP*, 0146645318756844.
- ADAM-GUILLERMIN, C., PEREIRA, S., DELLA-VEDOVA, C., HINTON, T. & GARNIER-LAPLACE, J. 2012. Genotoxic and Reprotoxic Effects of Tritium and External Gamma Irradiation on Aquatic Animals. *In:* WHITACRE, D. M. (ed.) *Reviews of Environmental Contamination and Toxicology.* New York, NY: Springer New York.
- ALLEN, R. & TRESINI, M. 2000. Oxidative stress and gene regulation. *Free Radical Biology Medicine*, 28, 463-499.
- ANDERSSON, P., GARNIER-LAPLACE, J., BERESFORD, N. A., COPPLESTONE, D., HOWARD, B. J., HOWE, P., OUGHTON, D. & WHITEHOUSE, P. 2009. Protection of the environment from ionising radiation in a regulatory context (protect): proposed numerical benchmark values. *Journal of Environmental Radioactivity*, 100, 1100-1108.
- ANDUX, S. & ELLIS, R. E. 2008. Apoptosis maintains oocyte quality in aging *Caenorhabditis elegans* females. *PLoS genetics*, 4, e1000295.
- ANKLEY, G. T., BENNETT, R. S., ERICKSON, R. J., HOFF, D. J., HORNUNG, M. W., JOHNSON,
 R. D., MOUNT, D. R., NICHOLS, J. W., RUSSOM, C. L., SCHMIEDER, P. K., SERRRANO,
 J. A., TIETGE, J. E. & VILLENEUVE, D. L. 2010. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment.
 Environmental Toxicology and Chemistry, 29, 730-741.
- AZZAM, E. I., JAY-GERIN, J.-P. & PAIN, D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. *Cancer letters*, 327, 48-60.

- BACK, P., DE VOS, W. H., DEPUYDT, G. G., MATTHIJSSENS, F., VANFLETEREN, J. R. & BRAECKMAN, B. P. 2012. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans. *Free Radic Biol Med*, 52, 850-9.
- BAILLY, A. & GARTNER, A. 2013. Germ Cell Apoptosis and DNA Damage Responses. In: SCHEDL, T. (ed.) Germ Cell Development in C. elegans. New York, NY: Springer New York.
- BAILLY, A. P., FREEMAN, A., HALL, J., DECLAIS, A.-C., ALPI, A., LILLEY, D. M., AHMED, S.
 & GARTNER, A. 2010. The Caenorhabditis elegans homolog of Gen1/Yen1 resolvases links DNA damage signaling to DNA double-strand break repair. *PLoS genetics*, 6, e1001025.
- BAKER, M. 2012. Digital PCR hits its stride. *Nature Methods*, 9, 541-544.
- BASU, A. S. 2017. Digital assays part I: partitioning statistics and digital PCR. *SLAS TECHNOLOGY: Translating Life Sciences Innovation*, 22, 369-386.
- BELOUSOV, V. V., FRADKOV, A. F., LUKYANOV, K. A., STAROVEROV, D. B., SHAKHBAZOV,
 K. S., TERSKIKH, A. V. & LUKYANOV, S. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. *Nature Methods*, 3, 281.
- BERG, J. M., TYMOCZKO, J. L. & STRYER, L. 2006. *Biochemistry. 5th*, New York: , WH Freeman.
- BERGONIE, J. 1906. Interpretation de quelques resultats de la radiotherapie et ssai de fixation d'une technique rationelle. *Compt Rend Acad Sci*, 143, 983-985.
- BJERKE, H. & HETLAND, P. O. 2014. Dosimetri ved FIGARO gammaanlegget ved NMBU, ÅS. Målerapport fra oppmåling av doseraten i strålefeltet fra kobolt-60. NRPA Technical Document Series, 2.
- BLOK, J. & LOMAN, H. 1973. The effects of gamma-radiation in DNA. *Current Topics in Radiation Research*, 9, 165-245.
- BOARD, P. G., COGGAN, M., CHELVANAYAGAM, G., EASTEAL, S., JERMIIN, L. S., SCHULTE,
 G. K., DANLEY, D. E., HOTH, L. R., GRIFFOR, M. C. & KAMATH, A. V. 2000.
 Identification, characterization, and crystal structure of the Omega class glutathione transferases. *Journal of Biological Chemistry*, 275, 24798-24806.

- BOULTON, S. J., GARTNER, A., REBOUL, J., VAGLIO, P., DYSON, N., HILL, D. E. & VIDAL, M. 2002. Combined functional genomic maps of the C. elegans DNA damage response. *Science*, 295, 127-131.
- BRAECKMAN, B. P., BACK, P. & MATTHIJSSENS, F. 2017. Oxidative stress. *Ageing: Lessons from C. elegans.* Springer.
- BRAUCHLE, M., BAUMER, K. & GÖNCZY, P. 2003. Differential Activation of the DNA Replication Checkpoint Contributes to Asynchrony of Cell Division in C. elegans Embryos. *Current Biology*, 13, 819-827.
- BRENNER, S. 1974. The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.
- BROWN, K. R. & RZUCIDLO, E. 2011. Acute and chronic radiation injury. *Journal of Vascular Surgery*, 53, 15S-21S.
- BUISSET-GOUSSEN, A., GOUSSEN, B., DELLA-VEDOVA, C., GALAS, S., ADAM-GUILLERMIN, C. & LECOMTE-PRADINES, C. 2014. Effects of chronic gamma irradiation: a multigenerational study using *Caenorhabditis elegans*. J Environ Radioact, 137, 190-7.
- CABREIRO, F., ACKERMAN, D., DOONAN, R., ARAIZ, C., BACK, P., PAPP, D., BRAECKMAN,
 B. P. & GEMS, D. 2011. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. *Free Radical Biology and Medicine*, 51, 1575-1582.
- CADET, J., DOUKI, T., GASPARUTTO, D. & RAVANAT, J.-L. 2003. Oxidative damage to DNA: formation, measurement and biochemical features. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 531, 5-23.
- CAMPBELL, A. M., TEESDALE-SPITTLE, P. H., BARRETT, J., LIEBAU, E., JEFFERIES, J. R. & BROPHY, P. M. 2001. A common class of nematode glutathione S-transferase (GST) revealed by the theoretical proteome of the model organism Caenorhabditis elegans. *Comparative Biochemistry Physiology Part B: Biochemistry Molecular biology of the cell*, 128, 701-708.
- CHALFIE, M., TU, Y., EUSKIRCHEN, G., WARD, W. W. & PRASHER, D. C. 1994. Green fluorescent protein as a marker for gene expression. *Science*, 263, 802-805.

- CHIN, G. M. & VILLENEUVE, A. M. 2001. C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. *Genes & Development*, 15, 522-534.
- CHOI, K.-M., KANG, C.-M., CHO, E. S., KANG, S. M., LEE, S. B. & UM, H.-D. 2007. Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. *Oncology reports*, 17, 1183-1188.
- CHOPPIN, G., LILJENZIN, J.-O. & RYDBERG, J. 2002. *Radiochemistry and nuclear chemistry*, Butterworth-Heinemann.
- CHU, D. S., LIU, H., NIX, P., WU, T. F., RALSTON, E. J., YATES III, J. R. & MEYER, B. J. 2006. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. *Nature*, 443, 101.
- CHU, D. S. & SHAKES, D. C. 2013. Spermatogenesis. *Germ cell development in C. elegans.* Springer.
- CLEJAN, I., BOERCKEL, J. & AHMED, S. 2006. Developmental Modulation of Nonhomologous End Joining in *Caenorhabditis elegans. Genetics*, 173, 1301-1317.
- CONSORTIUM, T. C. E. S. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. *Science*, 2012-2018.
- COPPLESTONE, D., BIELBY, S., JONES, S., PATTON, D., DANIEL, P. & GIZE, I. 2001. Impact Assessment of ionising Radiation on Wildlife.
- CORRE, I., NIAUDET, C. & PARIS, F. 2010. Plasma membrane signaling induced by ionizing radiation. *Mutation Research/Reviews in Mutation Research*, 704, 61-67.
- CORSI, A. K., WIGHTMAN, B. & CHALFIE, M. 2015. A transparent window into biology: a primer on Caenorhabditis elegans. *Genetics*, 200, 387-407.
- CÔTÉ, H. C. F., GERSCHENSON, M., WALKER, U. A., MIRO, O., GARRABOU, G., HAMMOND, E., VILLARROYA, J., GIRALT, M., VILLARROYA, F., CINQUE, P., GARCIA-ARUMI, E., ANDREU, A. L., PINTI, M. & COSSARIZZA, A. 2011. Quality assessment of human mitochondrial DNA quantification: MITONAUTS, an international multicentre survey. *Mitochondrion*, 11, 520-527.

- COX, M. M. & BATTISTA, J. R. 2005. Deinococcus radiodurans the consummate survivor. *Nature Reviews Microbiology*, *3*, 882-892.
- DALY, M. J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. *Nature Reviews Microbiology*, 7, 237.
- DALY, M. J. 2012. Death by protein damage in irradiated cells. *DNA Repair (Amst)*, 11, 12-21.
- DALY, M. J., GAIDAMAKOVA, E. K., MATROSOVA, V. Y., VASILENKO, A., ZHAI, M., LEAPMAN, R. D., LAI, B., RAVEL, B., LI, S.-M. W. & KEMNER, K. M. 2007. Protein oxidation implicated as the primary determinant of bacterial radioresistance. *PLoS biology*, **5**, e92.
- DALY, M. J., OUYANG, L., FUCHS, P. & MINTON, K. W. 1994. In vivo damage and recAdependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. *Journal of bacteriology*, 176, 3508-3517.
- DAVIES, K. J. 2000. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. *IUBMB life*, 50, 279-289.
- DOONAN, R., MCELWEE, J. J., MATTHIJSSENS, F., WALKER, G. A., HOUTHOOFD, K., BACK, P., MATSCHESKI, A., VANFLETEREN, J. R. & GEMS, D. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. *Genes Dev*, 22, 3236-41.
- DROGE, W. 2002. Free radicals in the physiological control of cell function. *Physiological reviews*, 82, 47-95.
- DU, J. & GEBICKI, J. M. 2004. Proteins are major initial cell targets of hydroxyl free radicals. *Int J Biochem Cell Biol*, 36, 2334-43.
- DUBOIS, C., LECOMTE, C., RUYS, S. P. D., KUZMIC, M., DELLA-VEDOVA, C., DUBOURG, N., GALAS, S. & FRELON, S. 2018. Precoce and opposite response of proteasome activity after acute or chronic exposure of C. elegans to γ-radiation. *Scientific Reports*, 8, 11349.

- DUNCAN LYNGDOH, R. H. & SCHAEFER III, H. F. 2009. Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers. *Accounts of chemical research*, 42, 563-572.
- ELLIS, H. M. & HORVITZ, H. R. 1986. Genetic control of programmed cell death in the nematode C. elegans. *Cell*, 44, 817-829.
- ELLIS, R. E. & STANFIELD, G. M. The regulation of spermatogenesis and sperm function in nematodes. Seminars in cell & developmental biology, 2014. Elsevier, 17-30.
- ENCALADA, S. E., MARTIN, P. R., PHILLIPS, J. B., LYCZAK, R., HAMILL, D. R., SWAN, K. A. & BOWERMAN, B. 2000. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. *Developmental biology*, 228, 225-238.
- ENGERT, C. G., DROSTE, R., VAN OUDENAARDEN, A. & HORVITZ, H. R. 2018. A Caenorhabditis elegans protein with a PRDM9-like SET domain localizes to chromatin-associated foci and promotes spermatocyte gene expression, sperm production and fertility. *PLoS genetics*, 14, e1007295.
- ERMOLAEVA, M. A., SEGREF, A., DAKHOVNIK, A., OU, H.-L., SCHNEIDER, J. I., UTERMÖHLEN, O., HOPPE, T. & SCHUMACHER, B. 2013. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. *Nature*, 501, 416.
- EVDOKIMOVSKY, E. V., USHAKOVA, T. E., KUDRIAVTCEV, A. A. & GAZIEV, A. I. 2011. Alteration of mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice after irradiation at lethal dose. *Radiation and Environmental Biophysics*, 50, 181-188.
- FRANÇA, M., PANEK, A. & ELEUTHERIO, E. 2007. Oxidative stress and its effects during dehydration. *Comparative Biochemistry Physiology Part A: Molecular Integrative Physiology*, 146, 621-631.
- FREDRICKSON, J. K., SHU-MEI, W. L., GAIDAMAKOVA, E. K., MATROSOVA, V. Y., ZHAI, M., SULLOWAY, H. M., SCHOLTEN, J. C., BROWN, M. G., BALKWILL, D. L. & DALY, M. J. 2008. Protein oxidation: key to bacterial desiccation resistance? *The ISME journal*, 2, 393.

- GARNIER-LAPLACE, J., GERAS'KIN, S., DELLA-VEDOVA, C., BEAUGELIN-SEILLER, K., HINTON, T., REAL, A. & OUDALOVA, A. 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose-rates. *Journal of environmental radioactivity*, 121, 12-21.
- GARTNER, A., BOAG, P. R. & BLACKWELL, T. K. 2005. Germline survival and apoptosis. *WormBook: The Online Review of C. elegans Biology [Internet].* WormBook.
- GARTNER, A., MILSTEIN, S., AHMED, S., HODGKIN, J., & HENGARTNER, M. O. 2000. A Conserved Checkpoint Pathway Mediates DNA Damage–Induced Apoptosis and Cell Cycle Arrest in C. elegans. *Molecular cell*, 5, 435-443.
- GEMS, D. & DOONAN, R. 2008. Oxidative Stress and Aging in the NematodeCaenorhabditis elegans. *Oxidative Stress in Aging.* Springer.
- GIGLIO, M.-P., HUNTER, T., BANNISTER, J. V., BANNISTER, W. H. & HUNTER, G. J. 1994. The manganese superoxide dismutase gene of Caenorhabditis elegans. *Biochemistry and molecular biology international*, 33, 37-40.
- GILBERT, H. F. 1990. Molecular and cellular aspects of thiol–disulfide exchange. *Advances in enzymology and related areas of molecular biology*, 63, 69-172.
- GLADYSHEV, E. & MESELSON, M. 2008a. Extreme resistance of bdelloid rotifers to ionizing radiation. *Proceedings of the National Academy of Sciences*, 105, 5139.
- GLADYSHEV, E. & MESELSON, M. 2008b. Extreme resistance of bdelloid rotifers to ionizing radiation. *Proceedings of the National Academy of Sciences*, 105, 5139-5144.
- GOMES, A., FERNANDES, E. & LIMA, J. L. 2005. Fluorescence probes used for detection of reactive oxygen species. *Journal of biochemical and biophysical methods*, 65, 45-80.
- GOMES, T., SONG, Y., BREDE, D. A., XIE, L., GUTZKOW, K. B., SALBU, B. & TOLLEFSEN, K.
 E. 2018. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. *Science of The Total Environment*, 628, 206-216.

- GOMES, T., XIE, L., BREDE, D., LIND, O.-C., SOLHAUG, K. A., SALBU, B. & TOLLEFSEN, K. E. 2017. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: photosynthetic performance and ROS formation. *Aquatic toxicology*, 183, 1-10.
- GUMIENNY, T. L., LAMBIE, E., HARTWIEG, E., HORVITZ, H. R. & HENGARTNER, M. O. 1999. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. *Development*, 126, 1011-1022.
- GUO, X., SUN, J., BIAN, P., CHEN, L., ZHAN, F., WANG, J., XU, A., WANG, Y., HEI, T. K. & WU,
 L. 2013. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans. *Radiat Res*, 180, 268-75.
- GUTSCHER, M., PAULEAU, A.-L., MARTY, L., BRACH, T., WABNITZ, G. H., SAMSTAG, Y., MEYER, A. J. & DICK, T. P. 2008. Real-time imaging of the intracellular glutathione redox potential. *Nature Methods*, 5, 553.
- HAINES, G. A., HENDRY, J. H., DANIEL, C. P. & MORRIS, I. D. 2001. Increased levels of comet-detected spermatozoa DNA damage following in vivo isotopic-or Xirradiation of spermatogonia. *Mutation Research/Genetic Toxicology Environmental Mutagenesis*, 495, 21-32.
- HALL, E. J. & GIACCIA, A. J. 2006. *Radiobiology for the Radiologist*, Lippincott Williams & Wilkins.
- HANSEN, E., LIND, O., OUGHTON, D. & SALBU, B. 2019. A framework for exposure characterization and gamma dosimetry at the NMBU FIGARO irradiation facility. *International journal of radiation biology*, 95, 82-89.
- HARRISON, F. & ANDERSON, S. 1996. Taxonomic and developmental aspects of radiosensitivity. Lawrence Livermore National Lab., CA (United States).
- HARTMAN, P. S., & HERMAN, R. K. 1982. Radiation-sensitive mutants of Caenorhabditis elegans. *Genetics*, 102, 159-178.
- HARTMAN, P. S., SIMPSON, V. J., JOHNSON, T. & MITCHELL, D. 1988. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans. *Mutation Research Letters*, 208, 77-82.

- HASAN, M., KHALEQUZZAMAN, M. & RAHMAN KHAN, A. J. E. E. A. 1989. Development of Tribolium anaphe irradiated as larvae of various ages with gamma rays. 53, 92-94.
- HASHIMOTO, T., HORIKAWA, D. D., SAITO, Y., KUWAHARA, H., KOZUKA-HATA, H., SHINI, T., MINAKUCHI, Y., OHISHI, K., MOTOYAMA, A., AIZU, T., ENOMOTO, A., KONDO,
 K., TANAKA, S., HARA, Y., KOSHIKAWA, S., SAGARA, H., MIURA, T., YOKOBORI, S.I., MIYAGAWA, K., SUZUKI, Y., KUBO, T., OYAMA, M., KOHARA, Y., FUJIYAMA, A.,
 ARAKAWA, K., KATAYAMA, T., TOYODA, A. & KUNIEDA, T. 2016. Extremotolerant
 tardigrade genome and improved radiotolerance of human cultured cells by
 tardigrade-unique protein. *Nature Communications*, 7, 12808.
- HERMAN, R. K., ALBERTSON, D. G., & BRENNER, S. 1976. Chromosome rearrangements in Caenorhabditis elegans. *Genetics*, 83, 91-105.
- HERTEL-AAS, T., BRUNBORG, G., JAWORSKA, A., SALBU, B. & OUGHTON, D. H. 2011a. Effects of different gamma exposure regimes on reproduction in the earthworm Eisenia fetida (Oligochaeta). *Science of The Total Environment*, 412-413, 138-147.
- HERTEL-AAS, T., OUGHTON, D. H., JAWORSKA, A., BJERKE, H., SALBU, B. & BRUNBORG,G. 2007. Effects of chronic gamma irradiation on reproduction in the earthworm Eisenia fetida (Oligochaeta). *Radiation research*, 168, 515-526.
- HERTEL-AAS, T., OUGHTON, D. H., JAWORSKA, A. & BRUNBORG, G. 2011b. Induction and repair of DNA strand breaks and oxidised bases in somatic and spermatogenic cells from the earthworm Eisenia fetida after exposure to ionising radiation. *Mutagenesis*, 26, 783-793.
- HINDSON, B. J., NESS, K. D., MASQUELIER, D. A., BELGRADER, P., HEREDIA, N. J., MAKAREWICZ, A. J., BRIGHT, I. J., LUCERO, M. Y., HIDDESSEN, A. L. & LEGLER, T.
 C. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. *Analytical chemistry*, 83, 8604-8610.
- HINTON, T. G., GARNIER-LAPLACE, J., VANDENHOVE, H., DOWDALL, M., ADAM-GUILLERMIN, C., ALONZO, F., BARNETT, C., BEAUGELIN-SEILLER, K., BERESFORD, N. A., BRADSHAW, C., BROWN, J., EYROLLE, F., FEVRIER, L., GARIEL, J. C., GILBIN, R., HERTEL-AAS, T., HOREMANS, N., HOWARD, B. J., IKÄHEIMONEN, T., MORA, J. C., OUGHTON, D., REAL, A., SALBU, B., SIMON-CORNU, M., STEINER,

M., SWEECK, L. & VIVES I BATLLE, J. 2013. An invitation to contribute to a strategic research agenda in radioecology. *Journal of Environmental Radioactivity*, 115, 73-82.

- HOFMANN, E. R., MILSTEIN, S., BOULTON, S. J., YE, M., HOFMANN, J. J., STERGIOU, L., GARTNER, A., VIDAL, M. & HENGARTNER, M. O. 2002. Caenorhabditis elegans HUS-1 Is a DNA Damage Checkpoint Protein Required for Genome Stability and EGL-1-Mediated Apoptosis. *Current Biology*, 12, 1908-1918.
- HOLWAY, A. H., KIM, S.-H., LA VOLPE, A. & MICHAEL, W. M. 2006. Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. *J Cell Biol*, 172, 999-1008.
- HOREMANS, N., SPURGEON, D. J., LECOMTE-PRADINES, C., SAENEN, E., BRADSHAW, C.,
 OUGHTON, D., RASNACA, I., KAMSTRA, J. H. & ADAM-GUILLERMIN, C. 2019.
 Current evidence for a role of epigenetic mechanisms in response to ionizing
 radiation in an ecotoxicological context. *Environmental Pollution*, 251, 469-483.
- HORIKAWA, D. D., SAKASHITA, T., KATAGIRI, C., WATANABE, M., KIKAWADA, T., NAKAHARA, Y., HAMADA, N., WADA, S., FUNAYAMA, T., HIGASHI, S., KOBAYASHI, Y., OKUDA, T. & KUWABARA, M. 2006. Radiation tolerance in the tardigrade Milnesium tardigradum. *International Journal of Radiation Biology*, 82, 843-848.
- HUREM, S., GOMES, T., BREDE, D. A., LINDBO HANSEN, E., MUTOLOKI, S., FERNANDEZ,
 C., MOTHERSILL, C., SALBU, B., KASSAYE, Y. A., OLSEN, A.-K., OUGHTON, D.,
 ALESTRÖM, P. & LYCHE, J. L. 2017a. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. *Environmental Research*, 159, 564-578.
- HUREM, S., MARTÍN, L. M., BREDE, D. A., SKJERVE, E., NOURIZADEH-LILLABADI, R., LIND, O. C., CHRISTENSEN, T., BERG, V., TEIEN, H.-C., SALBU, B., OUGHTON, D. H., ALESTRÖM, P. & LYCHE, J. L. 2017b. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. *PLOS ONE*, 12, e0179259.
- HUTCHINSON, F. 1966. The molecular basis for radiation effects on cells. *Cancer research*, 26, 2045-2052.

- INTERNATIONAL, O., FOR, STANDARDIZATION 2010. Water quality Determination of the Toxic effect of Sediment and Soil Samples on Growth, Fertility and Reproduction of *Caenorhabditis elegans (Nematoda)*. *ISO 10872:2010*.
- JARAMILLO-LAMBERT, A., HARIGAYA, Y., VITT, J., VILLENEUVE, A. & ENGEBRECHT, J. 2010. Meiotic errors activate checkpoints that improve gamete quality without triggering apoptosis in male germ cells. *Current Biology*, 20, 2078-2089.
- JOHNSON, T. E. & HARTMAN, P. S. 1988. Radiation Effects on Life Span in Caenorhabditis Elegans. *Journal of Gerontology*, 43, B137-B141.
- JOHNSON, T. E., MITCHELL, D. H., KLINE, S., KEMAL, R. & FOY, J. 1984. Arresting development arrests aging in the nematode Caenorhabditis elegans. *Mechanisms of ageing development*, 28, 23-40.
- JOHNSTON, A. D. & EBERT, P. R. 2012. The Redox System in C. elegans, a Phylogenetic Approach. *Journal of Toxicology*, 2012, 20.
- KALOGEROPOULOS, N., CHRISTOFOROU, C., GREEN, A. J., GILL, S. & ASHCROFT, N. R. 2004. chk-1 is an essential gene and is required for an SM checkpoint during early embryogenesis. *Cell cycle*, 3, 1194-1198.
- KAM, W., LAKE, V., BANOS, C., DAVIES, J. & BANATI, R. J. I. J. O. M. S. 2013. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. 14, 11544-11559.
- KAM, W. W.-Y. & BANATI, R. B. 2013. Effects of ionizing radiation on mitochondria. Free Radical Biology Medicine, 65, 607-619.
- KAMSTRA, J. H., HUREM, S., MARTIN, L. M., LINDEMAN, L. C., LEGLER, J., OUGHTON, D., SALBU, B., BREDE, D. A., LYCHE, J. L. & ALESTRÖM, P. 2018. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. *Scientific Reports*, 8, 15373.
- KATZ, D. J., EDWARDS, T. M., REINKE, V. & KELLY, W. G. 2009. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. *Cell*, 137, 308-320.

- KERMI, C., AZE, A. & MAIORANO, D. 2019. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. *Genes*, 10, 398.
- KERR, S. C., RUPPERSBURG, C. C., FRANCIS, J. W. & KATZ, D. J. 2014. SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. *Proceedings of the National Academy of Sciences of the United States of America*, 111, 9509-9514.
- KIM, G. J., FISKUM, G. M. & MORGAN, W. F. 2006. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. *Cancer research*, 66, 10377-10383.
- KIMBLE, J. & HIRSH, D. 1979. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. *Developmental biology*, 70, 396-417.
- KRISKO, A., LEROY, M., RADMAN, M. & MESELSON, M. 2012a. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. *Proc Natl Acad Sci U S A*, 109, 2354-7.
- KRISKO, A., LEROY, M., RADMAN, M. & MESELSON, M. 2012b. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. *Proceedings of the National Academy of Sciences*, 109, 2354.
- KRISKO, A. & RADMAN, M. 2010. Protein damage and death by radiation in *Escherichia* coli and *Deinococcus radiodurans*. Proceedings of the National Academy of Sciences, 107, 14373-14377.
- KRIVOLUTZKII, D. & POKARZHEVSKII, A. 1992. Effects of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power station. *Science of the total environment*, 112, 69-77.
- KUWAHARA, Y., SHIMADA, A., MITANI, H. & SHIMA, A. 2002. A critical stage in spermatogenesis for radiation-induced cell death in the medaka fish, Oryzias latipes. *Radiation research*, 157, 386-392.
- L'HERNAULT, S. W. 2006. Spermatogenesis. *WormBook: The Online Review of C. elegans Biology [Internet].* WormBook.
- LANS, H. & VERMEULEN, W. 2015. Tissue specific response to DNA damage: C. elegans as role model. *DNA Repair (Amst)*, 32, 141-8.

- LEACH, J. K., VAN TUYLE, G., LIN, P.-S., SCHMIDT-ULLRICH, R. & MIKKELSEN, R. B. 2001. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. *Cancer research*, 61, 3894-3901.
- LECOMTE-PRADINES, C., BONZOM, J. M., DELLA-VEDOVA, C., BEAUGELIN-SEILLER, K., VILLENAVE, C., GASCHAK, S., COPPIN, F., DUBOURG, N., MAKSIMENKO, A., ADAM-GUILLERMIN, C. & GARNIER-LAPLACE, J. 2014. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone. *Science of The Total Environment*, 490, 161-170.
- LECOMTE-PRADINES, C., HERTEL-AAS, T., COUTRIS, C., GILBIN, R., OUGHTON, D. & ALONZO, F. 2017. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans. *J Toxicol Environ Health A*, 80, 830-844.
- LEIERS, B., KAMPKÖTTER, A., GREVELDING, C. G., LINK, C. D., JOHNSON, T. E. & HENKLE-DÜHRSEN, K. 2003. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. *Free Radical Biology and Medicine*, 34, 1405-1415.
- LEPRINCE, O., ATHERTON, N. M., DELTOUR, R. & HENDRY, G. A. 1994. The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L.(an electron paramagnetic resonance study). 104, 1333-1339.
- LETTRE, G. & HENGARTNER, M. O. 2006. Developmental cell biology: developmental apoptosis in C. elegans: a complex CEDnario. *Nature Reviews Molecular Cell Biology*, 7, 97.
- LEWIS, J. A. & FLEMING, J. T. 1995. Chapter 1 Basic Culture Methods. *In:* EPSTEIN, H. F. & SHAKES, D. C. (eds.) *Methods in Cell Biology.* Academic Press.
- LI, T. & CHEN, Z. J. 2018. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. *The Journal of Experimental Medicine*, 215, 1287.
- LIND, O. C., OUGHTON, D. H. & SALBU, B. 2019. The NMBU FIGARO low dose irradiation facility. *International journal of radiation biology*, 95, 76-81.

- LIU, G., GONG, P., ZHAO, H., WANG, Z., GONG, S. & CAI, L. 2006. Effect of low-level radiation on the death of male germ cells. *Radiation research*, 165, 379-389.
- LOMAX, M. E., FOLKES, L. K. & O'NEILL, P. 2013. Biological Consequences of Radiationinduced DNA Damage: Relevance to Radiotherapy. *Clinical Oncology*, 25, 578-585.
- LU, N., YU, X., HE, X. & ZHOU, Z. 2009. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. *Methods Mol Biol*, 559, 357-70.
- MALAKHOVA, L., BEZLEPKIN, V. G., ANTIPOVA, V., USHAKOVA, T., FOMENKO, L., SIROTA, N. & GAZIEV, A. I. 2005. The increase in mitochondrial DNA copy number in the tissues of γ-irradiated mice. *Cellular Molecular Biology Letters*, 10, 721.
- MALIK, A. N. & CZAJKA, A. 2013. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? *Mitochondrion*, 13, 481-492.
- MANDAVILLI, B. S., SANTOS, J. H. & VAN HOUTEN, B. 2002. Mitochondrial DNA repair and aging. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 509, 127-151.
- MEGALOU, E. V. & TAVERNARAKIS, N. 2009. Autophagy in Caenorhabditis elegans. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793, 1444-1451.
- MERRIFIELD, M. & KOVALCHUK, O. 2013. Epigenetics in radiation biology: a new research frontier. *Frontiers in genetics*, 4, 40.
- MEYER, A. J. & DICK, T. P. 2010. Fluorescent protein-based redox probes. *Antioxidants & redox signaling*, 13, 621-650.
- MILLER, M. A., NGUYEN, V. Q., LEE, M.-H., KOSINSKI, M., SCHEDL, T., CAPRIOLI, R. M. & GREENSTEIN, D. 2001. A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. *Science*, 291, 2144-2147.
- MINAFRA, L. & BRAVATÀ, V. 2014. Cell and molecular response to IORT treatment. *Translational Cancer Research*, 3, 32-47.
- MONTGOMERY, D. C., PECK, E. A. & VINING, G. G. 2012. *Introduction to linear regression analysis*, John Wiley & Sons.

- MORRAN, L. T., CAPPY, B. J., ANDERSON, J. L. & PHILLIPS, P. C. 2009. Sexual partners for the stressed: facultative outcrossing in the self-fertilizing nematode Caenorhabditis elegans. *Evolution: International Journal of Organic Evolution*, 63, 1473-1482.
- NELSON, G. A., JONES, T. A., CHESNUT, A. & SMITH, A. L. 2002. Radiation-induced Gene Expression in the Nematode Caenorhabditis elegans. *Journal of Radiation Research*, 43, S199-S203.
- NEWMAN, M. C. 2009. Fundamentals of ecotoxicology, CRC press.
- NG, L. F., NG, L. T., VAN BREUGEL, M., HALLIWELL, B. & GRUBER, J. 2019. Mitochondrial DNA damage does not determine *C. elegans* lifespan. *Frontiers in Genetics*, 10.
- NIKJOO, H., O'NEILL, P., TERRISSOL, M. & GOODHEAD, D. T. 1999. Quantitative modelling of DNA damage using Monte Carlo track structure method. *Radiation and Environmental Biophysics*, 38, 31-38.
- NOTTKE, A. C., BEESE-SIMS, S. E., PANTALENA, L. F., REINKE, V., SHI, Y. & COLAIÁCOVO, M. P. 2011. SPR-5 is a histone H3K4 demethylase with a role in meiotic doublestrand break repair. *Proceedings of the National Academy of Sciences*, 108, 12805-12810.
- NUGENT, S., MOTHERSILL, C. E., SEYMOUR, C., MCCLEAN, B., LYNG, F. M. & MURPHY, J. E. J. 2010. Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors. *International Journal of Radiation Biology*, 86, 829-841.
- OKUNIEFF, P., SWARTS, S., KENG, P., SUN, W., WANG, W., KIM, J., YANG, S., ZHANG, H., LIU, C. & WILLIAMS, J. P. 2008. Antioxidants reduce consequences of radiation exposure. *Oxygen Transport to Tissue XXIX.* Springer.
- ORTIZ, M. A., NOBLE, D., SOROKIN, E. P. & KIMBLE, J. 2014. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. *Genes, Genomes, Genetics*, 4, 1765-1772.
- PARASHAR, V., FRANKEL, S., LURIE, A. G. & ROGINA, B. 2008. The effects of age on radiation resistance and oxidative stress in adult Drosophila melanogaster. *Radiation research*, 169, 707-711.

- PARISOT, F., BOURDINEAUD, J.-P., PLAIRE, D., ADAM-GUILLERMIN, C. & ALONZO, F. 2015. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations. *Aquatic Toxicology*, 163, 27-36.
- PENTREATH, R. J., LOCHARD, J., LARSSON, C. M., COOL, D. A., STRAND, P., SIMMONDS, J., COPPLESTONE, D., OUGHTON, D. & LAZO, E. 2014. ICRP Publication 124: Protection of the Environment under Different Exposure Situations. *Annals of the ICRP*, 43, 1-58.
- PEREIRA, S., BOURRACHOT, S., CAVALIE, I., PLAIRE, D., DUTILLEUL, M., GILBIN, R. & ADAM-GUILLERMIN, C. 2011. Genotoxicity of acute and chronic gammairradiation on zebrafish cells and consequences for embryo development. *Environmental toxicology and chemistry*, 30, 2831-2837.
- PORTA-DE-LA-RIVA, M., FONTRODONA, L., VILLANUEVA, A. & CERON, J. 2012. Basic Caenorhabditis elegans methods: synchronization and observation. *J Vis Exp*, e4019.
- REINKE, V., SMITH, H. E., NANCE, J., WANG, J., VAN DOREN, C., BEGLEY, R., JONES, S. J. M., DAVIS, E. B., SCHERER, S., WARD, S. & KIM, S. K. 2000. A Global Profile of Germline Gene Expression in C. elegans. *Molecular Cell*, 6, 605-616.
- REISZ, J. A., BANSAL, N., QIAN, J., ZHAO, W. & FURDUI, C. M. 2014. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. *Antioxidants & redox signaling*, 21, 260-292.
- RINALDO, C., BAZZICALUPO, P., EDERLE, S., HILLIARD, M. & LA VOLPE, A. 2002. Roles for Caenorhabditis elegans rad-51 in Meiosis and in Resistance to Ionizing Radiation During Development. *Genetics*, 160, 471.
- ROSENBLUTH, R. E., CUDDEFORD, C. & BAILLIE, D. L. 1985. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of γ-radiation. *Genetics*, 109, 493-511.
- SADLER, P. L. & SHAKES, D. C. 2000. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. *Development*, 127, 355-366.

- SAKASHITA, T., TAKANAMI, T., YANASE, S., HAMADA, N., SUZUKI, M., KIMURA, T., KOBAYASHI, Y., ISHII, N. & HIGASHITANI, A. 2010. Radiation Biology of Caenorhabditis elegans: Germ Cell Response, Aging and Behavior. *Journal of Radiation Research*, 51, 107-121.
- SALBU, B. 2008. Radioactive particles released from different nuclear sources: With focus on nuclear weapons tests. *Nuclear Risks in Central Asia*. Springer.
- SALBU, B., KREKLING, T., OUGHTON, D., ØSTBY, G., KASHPAROV, V., BRAND, T. & DAY, J. 1994. Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. *Analyst*, 119, 125-130.
- SALBU, B. J. R. P. D. 2000. Source-related characteristics of radioactive particles: a review. 92, 49-54.
- SARSOUR, E. H., KUMAR, M. G., CHAUDHURI, L., KALEN, A. L. & GOSWAMI, P. C. 2009. Redox control of the cell cycle in health and disease. *Antioxidants redox signaling*, 11, 2985-3011.
- SAWYER, D. E. & VAN HOUTEN, B. 1999. Repair of DNA damage in mitochondria. *Mutation Research/DNA Repair*, 434, 161-176.
- SCHAFER, F. Q. & BUETTNER, G. R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30, 1191-1212.
- SCHULZE-OSTHOFF, K., BAUER, M., VOGT, M., WESSELBORG, S. & BAEUERLE, P. A. 1997. Reactive oxygen intermediates as primary signals and second messengers in the activation of transcription factors. *Oxidative stress and signal transduction*. Springer.
- SCHUMACHER, B., HOFMANN, K., BOULTON, S., & GARTNER, A. 2001. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. *Current biology*, 11, 1722-1727.
- SCHWARTZ, J. L., JORDAN, R., SUN, J., MA, H. & HSIE, A. W. 2000. Dose-dependent changes in the spectrum of mutations induced by ionizing radiation. *Radiation Research*, 153, 312-317.

- SHIN, H., LEE, H., FEJES, A. P., BAILLIE, D. L., KOO, H.-S. & JONES, S. J. 2011. Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. *BMC research notes*, 4, 34.
- SIDOTI-DE FRAISSE, C., RINCHEVAL, V., RISLER, Y., MIGNOTTE, B. & VAYSSIÈRE, J.-L. 1998. TNF-α activates at least two apoptotic signaling cascades. *Oncogene*, 17, 1639.
- SINGSON, A. 2001. Every sperm is sacred: fertilization in Caenorhabditis elegans. *Developmental biology*, 230, 101-109.
- SOBKOWIAK, R. & LESICKI, A. 2009. Genotoxicity of nicotine in cell culture of Caenorhabditis elegans evaluated by the comet assay. *Drug and Chemical Toxicology*, 32, 252-257.
- SOWMITHRA, K., SHETTY, N. J., HARINI, B. P., JHA, S. K. & CHAUBEY, R. C. 2015. Effects of acute gamma radiation on the reproductive ability of the earthworm Eisenia fetida. *Journal of Environmental Radioactivity*, 140, 11-15.
- SPITZ, D. R., AZZAM, E. I., LI, J. J. & GIUS, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. *Cancer and Metastasis Reviews*, 23, 311-322.

STIERNAGLE, T. 2006. Maintenance of C. elegans. WormBook, 1-11.

- STOHL, A., SEIBERT, P., WOTAWA, G., ARNOLD, D., BURKHART, J. F., ECKHARDT, S., TAPIA, C., VARGAS, A., YASUNARI, T. J. J. A. C. & PHYSICS 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. 12, 2313-2343.
- SUGIMOTO, T., DAZAI, K., SAKASHITA, T., FUNAYAMA, T., WADA, S., HAMADA, N., KAKIZAKI, T., KOBAYASHI, Y. & HIGASHITANI, A. 2006. Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation. *Int J Radiat Biol*, 82, 31-8.
- SULSTON, J. E. & HORVITZ, H. R. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. *Developmental biology*, 56, 110-156.

- SUTHERLAND, B. M., BENNETT, P. V., SIDORKINA, O. & LAVAL, J. 2000. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. *Proceedings of the National Academy of Sciences*, 97, 103-108.
- SVOBODA, P. & HARMS-RINGDAHL, M. 2005. Influence of chromatin structure and radical scavengers on yields of radiation-induced 8-oxo-dG and DNA strand breaks in cellular model systems. *Radiation research*, 164, 303-311.
- SWENBERG, J. A., LU, K., MOELLER, B. C., GAO, L., UPTON, P. B., NAKAMURA, J. & STARR, T. B. 2010. Endogenous versus Exogenous DNA Adducts: Their Role in Carcinogenesis, Epidemiology, and Risk Assessment. *Toxicological Sciences*, 120, S130-S145.
- SYKES, P., NEOH, S., BRISCO, M., HUGHES, E., CONDON, J. & MORLEY, A. 1992. Quantitation of targets for PCR by use of limiting dilution. *Biotechniques*, 13, 444-449.
- SZUMIEL, I. 2015. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. *Int J Radiat Biol*, 91, 1-12.
- TAKANAMI, T., MORI, A., TAKAHASHI, H. & HIGASHITANI, A. 2000. Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. *Nucleic Acids Research*, 28, 4232-4236.
- THOMPSON, L. H. 2012. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. *Mutation Research/Reviews in Mutation Research*, 751, 158-246.
- TORGOVNICK, A., SCHIAVI, A., SHAIK, A., KASSAHUN, H., MAGLIONI, S., REA, S. L., JOHNSON, T. E., REINHARDT, H. C., HONNEN, S., SCHUMACHER, B., NILSEN, H. & VENTURA, N. 2018. BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in Caenorhabditis elegans. *EMBO reports*, 19, e45856.
- UNSCEAR 1996. Sources and effects of ionizing radiation: Report to the General Assembly, with Scientific Annexes, United Nations Publications.
- UNSCEAR 2000. *Sources and effects of ionizing radiation: sources,* United Nations Publications.

- UNSCEAR 2006. Effects of ionizing radiation: UNSCEAR 2006 Report to the General Assembly, with scientific annexes. United Nations Publications.
- UNSCEAR 2008. Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 Report to the General Assembly, with Scientific Annexes, United Nations.
- VAN HAAFTEN, G., ROMEIJN, R., POTHOF, J., KOOLE, W., MULLENDERS, L. H. F., PASTINK, A., PLASTERK, R. H. A. & TIJSTERMAN, M. 2006. Identification of Conserved Pathways of DNA-Damage Response and Radiation Protection by Genome-Wide RNAi. *Current Biology*, 16, 1344-1350.
- VANDENHOVE, H., VANHOUDT, N., CUYPERS, A., VAN HEES, M., WANNIJN, J., HOREMANS, N. J. P. P. & BIOCHEMISTRY 2010. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. 48, 778-786.
- VEAL, E. A., DAY, A. M. & MORGAN, B. A. 2007. Hydrogen peroxide sensing and signaling. *Molecular cell*, 26, 1-14.
- VERMEZOVIC, J., STERGIOU, L., HENGARTNER, M. O. & D'ADDA DI FAGAGNA, F. 2012. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. *Cell Death and Differentiation*, 19, 1847-1855.
- WANG, J.-S., WANG, H.-J. & QIAN, H.-L. 2018. Biological effects of radiation on cancer cells. *Military Medical Research*, **5**, 20.
- WEIDHAAS, J., EISENMANN, D., HOLUB, J. & NALLUR, S. 2006. A Caenorhabditis elegans tissue model of radiation-induced reproductive cell death. *Proceedings of the National Academy of Sciences*, 103, 9946-9951.
- WELCH, D. B. M., RICCI, C. & MESELSON, M. 2009. Bdelloid rotifers: progress in understanding the success of an evolutionary scandal. *Lost sex.* Springer.
- WENDEL, C. C., FIFIELD, L. K., OUGHTON, D. H., LIND, O. C., SKIPPERUD, L., BARTNICKI, J., TIMS, S. G., HØIBRÅTEN, S. & SALBU, B. 2013. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway. *Environment International*, 59, 92-102.

- WHITE, J. G., SOUTHGATE, E., THOMSON, J. N. & BRENNER, S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans: the mind of a worm. *Phil. Trans. R. Soc. Lond*, 314, 1-340.
- WONG-EKKABUT, J., XU, Z., TRIAMPO, W., TANG, I.-M., TIELEMAN, D. P. & MONTICELLI,
 L. 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. *Biophysical journal*, 93, 4225-4236.
- XIE, L., SOLHAUG, K. A., SONG, Y., BREDE, D. A., LIND, O. C., SALBU, B. & TOLLEFSEN, K.
 E. 2019. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. *Science of The Total Environment*, 680, 23-34.
- YAKES, F. M. & VAN HOUTEN, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. *Proceedings of the National Academy of Sciences*, 94, 514-519.
- YANASE, S., HARTMAN, P. S., ITO, A. & ISHII, N. 1999. Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 426, 31-39.
- YUSHKOVA, E. 2019. Effects of ionizing radiation at Drosophila melanogaster with differently active hobo transposons. *International Journal of Radiation Biology*, 95, 1564-1572.
- ZAHRADKA, K., SLADE, D., BAILONE, A., SOMMER, S., AVERBECK, D., PETRANOVIC, M., LINDNER, A. B. & RADMAN, M. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. *Nature*, 443, 569.
- ZHOU, Z., HARTWIEG, E. & HORVITZ, H. R. 2001. CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans. *Cell*, 104, 43-56.

Errata

Thesis: Investigating sensitivity and tolerance to chronic gamma irradiation in the nematode *Caenorhabditis elegans*

Page number	Paragraph	Line	Change from	Change to
31	Capture Figure 4.	2	(Gartner et al. 2005)	Gartner et al. (2005)
41	Capture Figure 7.	3	(from L1 stage)	-
47	Figure 9.	8	Missing scalebar	Scalebar (250 µm)
51	2.10	1	Technique	Techniques
52	2.10	27	-	(nuclear DNA)
54	2.11	4	Lysate	Lysed
62	4.	11	Mechanism	Mechanisms

8. Scientific papers

Paper I

Science of the Total Environment 695 (2019) 133835

Contents lists available at ScienceDirect

Science of the Total Environment

iournal homepage: www.elsevier.com/locate/scitotenv

Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis

Erica Maremonti^{a,*}, Dag M. Eide^{a,b}, Deborah H. Oughton^a, Brit Salbu^a, Fabian Grammes^c, Yetneberk A. Kassaye^a, Rémi Guédon^d, Catherine Lecomte-Pradines^d, Dag Anders Brede^a

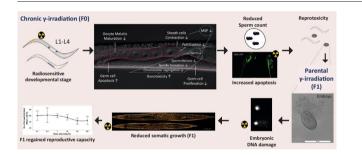
a Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway ^b Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway

^c Centre for Integrative Genetics (CIGENE), Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway

^d Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France

HIGHLIGHTS

- · Radiosensitivity of C. elegans developmental stage L1-Young L4 was demonstrated following chronic gammairradiation.
- · Reprotoxic effects were a consequence of sperm meiosis and spermatogenesis impairment.
- Genotoxicity persisted in offspring (F1) of irradiated nematodes and was associated with somatic growth impairment.
- · A conceptual model for cellular and biological processes affected by gamma radiation in C. elegans was developed based on RNAseq analysis.


ARTICLE INFO

Article history: Received 2 July 2019 Received in revised form 31 July 2019 Accepted 6 August 2019 Available online 09 August 2019

Editor: Henner Hollert

Keywords: Caenorhabditis elegans Ionizing gamma radiation Reprotoxicity Early life stages Spermatogenesis

GRAPHICAL ABSTRACT

ABSTRACT

The current study investigated life stage, tissue and cell dependent sensitivity to ionizing radiation of the nematode Caenorhabditis elegans. Results showed that irradiation of post mitotic I4 stage larvae induced no significant effects with respect to mortality, morbidity or reproduction at either acute dose ≤ 6 Gy (1500 mGy·h⁻¹) or chronic exposure ≤ 15 Gy (≤ 100 mGy·h⁻¹). In contrast, chronic exposure from the embryo to the L4-young adult stage caused a dose and dose-rate dependent reprotoxicity with 43% reduction in total brood size at 6.7 Gy (108 mGy·h⁻¹). Systematic irradiation of the different developmental stages showed that the most sensitive life stage was L1 to young L4. Exposure during these stages was associated with dose-rate dependent genotoxic effects, resulting in a 1.8 to 2 fold increase in germ cell apoptosis in larvae subjected to 40 or 100 mGv \cdot h⁻¹, respectively. This was accompanied by a dose-rate dependent reduction in the number of spermatids, which was positively correlated to the reprotoxic effect (0.99, PCC). RNAseq analysis of nematodes irradiated from L1 to L4 stage revealed a significant enrichment of differentially expressed genes related to both male and hermaphrodite reproductive processes. Gene network analysis revealed effects related to down-regulation of genes required for spindle formation and sperm meiosis/maturation, including smz-1, smz-2 and htas-1. Furthermore, the expression of a subset of 28 set-17 regulated Major Sperm Proteins (MSP) required for spermatid production was correlated (R² 0.80) to the reduction in reproduction and the number of spermatids. Collectively these observations corroborate the impairment of spermatogenesis as the major cause of gamma radiation induced life-stage dependent reprotoxic effect.

Corresponding author.

E-mail address: erica.maremonti@nmbu.no (E. Maremonti).

https://doi.org/10.1016/j.scitotenv.2019.133835 0048-9697/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Furthermore, the progeny of irradiated nematodes showed significant embryonal DNA damage that was associated with persistent effect on somatic growth. Unexpectedly, these nematodes maintained much of their reproductive capacity in spite of the reduced growth.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

At the cellular level, ionizing radiation is known to inflict damage either indirectly via formation of free radicals or by direct interaction with essential molecules including proteins, lipids, RNA and DNA (Reisz et al., 2014), resulting in a complex mixture of adverse effects. While established genotoxic mechanisms include a combination of DSB, SSB (double strand break, single strand break) and oxidative lesions to DNA (Lomax et al., 2013), the adverse effects at an organism level can differ between individual species (Bréchignac et al., 2012; Garnier-Laplace et al., 2013; UNSCEAR, 2006). The biological response to ionizing radiation may also differ between chronic and acute exposure, both in the quality and intensity of effects (Kovalchuk et al., 2000; Pereira et al., 2011; Schwartz et al., 2000; Dubois et al., 2018). Chronic exposure is defined as an exposure of at least 10% of the duration of a species lifespan, and could consequently cover the entire developmental phase of an organism. In this sense, chronic exposure to low doses of ionizing radiation has the potential to produce long-term and hereditary effects. For any species, an assessment of the impacts of chronic radiation on survival, growth, developmental, reproductive and hereditary effects is essential to predict the consequences for a population's sustainability (Adam-Guillermin et al., 2018). Furthermore, certain life stages, tissues or cell types may inherently be more vulnerable to the effects of ionizing radiation, this influencing species radiosensitivity. Reproduction is known to be one of the most radiosensitive biological functions even in tolerant species, as well as being ecologically most relevant (UNSCEAR, 1996). Exposure to chronic ionizing radiation of invertebrates have demonstrated that doses corresponding to <10% of the lethal dose were harmful to reproductive performance, and that the negative effects persisted over multiple generations (Parisot et al., 2015; Hertel-Aas et al., 2011).

The nematode *Caenorhabditis elegans* tolerates acute doses of ionizing radiation >1 KGy without mortality (Johnson and Hartman et al., 1988). This tolerance has been linked to the ability of *C. elegans* to maintain genomic stability following radiation-induced DNA damage by activating checkpoints that induce cell-cycle arrest or apoptosis (Gartner et al., 2000). The majority of studies have been performed using acute high dose X-ray, proton beam or gamma irradiation of post mitotic stage young adult larvae (Gartner et al., 2000; van Haaften et al., 2006; Krisko et al., 2012; Guo et al., 2013; Min et al., 2017). However, in the last decade, more studies have focused on sub-lethal effects on multiple generations as well as on modelling approaches. These have shown that reproduction is a sensitive phenotypical change in nematodes, but there is still little mechanistic understanding of the factors influencing differences between chronic and acute exposures (Buisset-Goussen et al., 2014; Lecomte-Pradimes et al., 2017).

The current study utilizes *C. elegans* to compare the effects of acute *versus* chronic gamma irradiation. This includes a systematic investigation of life stage, tissue and cell dependent radiosensitivity during the *C. elegans* development. A combined RNA-sequencing and phenotypic analysis was performed with the aim to elucidate the processes leading to reproduction impairment.

2. Materials and methods

2.1. C. elegans strains and culturing

The N2 Bristol strain was obtained from *Caenorhabditis* Genetic Centre, Minneapolis, MN and used in this study as the wild-type *C. elegans* background for all the irradiation experiments, with the exception of germ cell apoptosis assessment. The GFP (green fluorescent protein) reporter strain bcls39 [lim-7p::ced-1::GFP + lin-15(+)] was employed to quantify engulfment corpses of apoptotic germ cells as described by Zhou et al. (2001).

Before performing the experiments, worms were maintained for two months at 20 °C in swirling liquid cultures under dark conditions (Brenner, 1974), in order to obtain a healthy stock population. Synchronous populations of nematodes were obtained by alkaline hypochlorite treatment as described by Stiernagle (2006).

2.2. Nematode irradiation and dosimetry

Gamma radiation exposures were conducted at the FIGARO experimental facility at the Norwegian University of Life Sciences (NMBU, Ås, Norway) (Lind et al., 2019). For every experiment performed in this study (Fig. 1), synchronous cohorts of embryos or L1 nematodes were placed on NGM plates (\emptyset 3 or 6 cm) (1.7% agar, 2.5 mg·mL⁻¹ peptone, 25 mM NaCl, 50 mM KH₂PO₄ pH 6.0, 5 µg·mL⁻¹ cholesterol, 1 mM CaCl₂, 1 mM MgSO₄) with fresh *Escherichia coli* OP50 as a food source (cultured overnight at 37 °C in L-Broth medium, Lewis and Fleming (1995)). Experiments were conducted at 20 °C in the dark. For each experiment, three control NGM plates were placed behind lead shielding, and three plates per exposure position were placed at distances equivalent to dose rates from 0.4 to 1490 mGy·h⁻¹ (Supporting material S.M. 1, Table S.1).

Field dosimetry (air kerma rates measured with an ionization chamber) was traceable to the Norwegian Secondary Standard Dosimetry Laboratory (Bjerke and Hetland, 2014). Air kerma rates were measured using an Optically Stimulated Luminescence (OSL) based nanoDots dosimetry (Landauer) or Radio Photo Luminescent dosimeters (RPL, GD-301 type, Chiyoda Technol Corporation, Japan) by positioning the dosimeters at the front and back of the plates. Dose rates to water were calculated according to Hansen et al. (2019) and used as a proxy for dose rates to the nematodes (S.M. 1, Table S.1).

2.3. Comparing effects on reproduction by acute and chronic exposure to gamma radiation

To assess the effects of acute irradiation on reproduction, synchronous L4 nematodes were irradiated at 1445 mGy·h⁻¹ for 0.75, 2 and 4 h, and total brood size was measured. To assess the effects of chronic irradiation, synchronized nematodes were exposed to 6 dose-rates ranging from 0.9 to 227.9 mGy·h⁻¹ from the unhatched embryonic stage until they reached sexual maturity, for a total of 62 h (Fig. 1 and Table S.1 for total dose). Effects on reproduction were assessed by measuring the total number of offspring per adult hermaphrodite (three biological replicates and 5 individuals per replicate).

2.4. Analysis of life stage dependent effects of gamma radiation

To assess life stage dependent adverse effects of ionizing radiation, triplicate samples of synchronized nematodes were irradiated using five dose rates from 0.4 to 100 mGy· h^{-1} plus a control treatment, during selected developmental stages. Four exposure scenarios were designed (see Fig. 1 and Tables S.1–2 for dosimetry) and effects on morphology, growth, fecundity, and total fertility were measured.

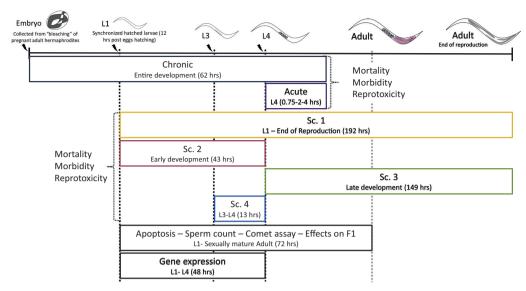


Fig. 1. Experimental design for the gamma irradiation exposures performed in the current study. The irradiation time (hours) is given in parenthesis for each scenario.

2.4.1. Reprotoxic effect assessment

Reproduction effects were evaluated by measuring the cumulative number of larvae (hatched eggs and L1) produced by five nematodes (3 biological replicates, n = 15 per treatment) (Table S.1 for dosimetry). From 48 h onwards from L1 stage, the adult worms were transferred to fresh NGM plates every two days for a total of 8 days, and offspring were stained with 1 mL Rose Bengal (0.3 g/L) in an oven at 80 °C for 10 min. NGM plates were then stored at 4 °C and the larvae counted, using a Leica stereo microscope (Leica M205C, 16× magnification).

2.5. Assessment of germline apoptosis

CED1::GFP nematodes were exposed in duplicates (n = 100) on NGM agar plates (0.3 cm) from L1 molt for 72 h (Fig. 1) to either 10.8, 40.8 or 99.9 mGy·h⁻¹ of gamma radiation plus control (Table S.3 for do-simetry). After irradiation, ten worms per treatment were mounted onto 2% agarose pads, anesthetized with 30 mM NaN₃ in M9 buffer, and apoptotic germ cells identified as previously described by Lu et al. (2009). Images of one gonadal arm in each adult hermaphrodite (n = 20), 16 h post L4 molt, were captured as ~10 serial *Z*-sections of 1.0 µm interval using Nomarski optics in combination with fluorescence signal under a semi-automated research light microscope (Upright Microscope Leica DM6 B) equipped with a GFP ET filter system (512 nm emission and 40× objective). The frequency of *CED1::GFP* clustering around cell corpses was successively quantified as described by Zhou et al. (2001).

2.6. Spermatids quantification

After 72 h of irradiation (Fig. 1 and Table S.3 for dosimetry), worms were mounted on glass microscope slides pre-coated with Poly-Lysine (1 mg·mL⁻¹), dissected using a 0.5 × 16 mm gouge needle in M9 buffer to expose the spermatheca, fixed with Paraformaldehyde (2%) and permeabilized by freeze cracking (Sadler and Shakes, 2000). For this purpose, fifteen to twenty hermaphrodites per slide were dissected (three slides per treatment, n > 45) under a Leica stereo microscope (Leica M205C, 16× magnification). Slides were then stained with 10 µI DAPI DNA staining (10 µg·mL⁻¹) for 20 min, before proceeding with

the spermatids count, under a semi-automated research light microscope (Upright Microscope Leica DM6 B) equipped with a DAPI filter system (461 nm emission and $40 \times$ objective).

For each analyzed spermatheca, images were captured as a ~20 serial Z-sections of ~5.0 µm interval.

2.7. Gene expression analysis

2.7.1. Transcriptomic analysis

RNA sequencing was performed in order to obtain gene expression profiles of triplicate nematode populations exposed to 10.8 or 99.9 mGy · h⁻¹ compared to control nematodes (see Table S.3 for dosimetry). For this purpose, total RNA was extracted from samples snapfrozen immediately after 48 h of exposure from L1 stage on L4-young adult nematodes (n = 1000 per replicate) with Direct-zol Reagent (Nordic Biosite) and purified with RNeasy Mini Kit (Zymo Research) according to manufacture instruction. In brief, 100 µL of RNase-free Water and 600 µL of Direct-zol were added to each thawed sample, consisting of ~1000 nematodes, prior to homogenization with bead beating (0.1-0.5 mm Ø) using FastPrep (20 m/s per 10 s). The homogenate was transferred to a new Eppendorf tube, mixed with 700 µL of absolute ethanol (96% EtOH) and treated with DNase I and DNA digestion buffer on Zymo-spin mini Column, before further purification on column. RNA purity and yield (A260/A280 > 1.8, A260/A230 > 2, yield >100 ng/µL) was determined using NanoDrop-1000 Spectrophotometer (NanoDrop Technology, Wilmington, DE) and quality (RIN > 7) was assessed with Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA) using RNA Nano LabChip Kit (Agilent Technologies). Photometric parameters and RNA integrity number determined the quality of the RNA sequenced samples. Strand-specific TruSeg™ RNA-seg pair-end libraries with 350 bp fragment size were prepared for each treatment (three biological replicates). For each sample ca 30×10^6 reads (read length 150 bp) were sequenced using two lanes of Illumina HiSeq 4000 (Norwegian High Throughput Sequencing Centre in Oslo, Norway), and made available on ArrayExpress (accession E-MTAB-8004).

Sequenced reads were mapped to the Ensemble reference genome WBcel235 using STAR (Dobin et al., 2013). Statistical analysis for detection of differentially expressed genes (DEGs) was done in R using Deseq2 package (rlog, variance Stabilizing Transformation) transformed data (Love et al., 2015), with FDR ≤0.05 and 0.3 ≤ $log_2 fc$ ≤ -0.3 as cut off.

2.7.2. Gene ontology and gene set enrichment analysis

In order to obtain information about processes affected by gamma radiation with respect to anatomical, phenotypical and functional processes down to the single-cell level, the DEGs were subjected to gene ontology(GEA), tissue(TEA) and phenotype(PEA) enrichment analyses using the WormBase Enrichment tool (Angeles-Albores et al., 2016; Lee et al., 2017). Analysis was performed using hypergeometric probability distribution with Benjamini-Hochberg step-up algorithm FDR correction (Angeles-Albores et al., 2017).

2.7.3. Pathway and network analysis

For predicted pathway and biological function analyses of DEGs, SimpleMine (Lee et al., 2017), Reactome Knowledgbase (Fabregat et al., 2017) and KEGG Pathways (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 2018) tools were used. The analysis was performed on the total number of DEGs for each of the exposure groups and the most significant categories found in each of the databases were compiled and subsequently manually curated in order to obtain annotations of the cellular and molecular processes affected by exposure to gamma radiation.

Gene interaction analysis was performed using GeneMANIA 3.5.1 (Warde-Farley et al., 2010; Franz et al., 2018) within Cytoscape 3.7.1 to identify predicted networks based on the total DEGs resulting from the 100 mGy h^{-1} exposure.

2.8. Effects of parental irradiation on F1 nematodes

2.8.1. DNA damage analysis on nematode embryonic cells with comet assay

Triplicate samples of synchronous L1 stage larvae (>2500 per replicate) were irradiated for 72 h (Fig. 1) using dose rates from 0.43 to 99.9 mGy · h⁻¹ (see Table S.3 for dosimetry). Embryos of irradiated parents were then sampled and DNA damage immediately assessed using the Comet assay. The method detects single strand breaks and alkali-labile DNA lesions using GelBond® films, for a high throughput single cell gel electrophoresis (Gutzkow et al., 2013) was adapted to the conditions of the present experiment. At the end of the irradiation, adult nematodes were removed from NGM plates with 3×2 mL of ice-cold Merchant's buffer (0.14 M NaCl, 0.00147 M KH2PO4, 0.0027 M KCl, 0.0081 M Na2HPO4, 0.01 M Na2EDTA, pH 7.4). Embryos were gently dislodged from the agar surface by using the tip of a Pasteur pipette. The collected volume (6 mL), containing embryos was filtered using a cell-strainer (Ø 15 um mesh) to remove the E. coli cells. Retained embryos were further rinsed with 6 mL of ice-cold Merchant's buffer. Nematodes embryos were then collected from the cell-strainer in 6 mL of ice-cold Merchant's buffer, and centrifuged at 3000g for 2 min.

Three biological replicates, each comprising >12,000 embryos, were placed in 0.5 mL ice-cold Merchant's buffer (pH 7.4) and cells extracted by mechanical dissociation using a 2 mL glass Dounce tissue grinder and piston B (Sigma-Aldrich®, Germany). After extraction, the resulting cell suspension was transferred into a new Eppendorf tube with 0.5 mL of ice-cold Merchant's buffer and settle by gravity on ice for 10 min. A volume of ~400 µL was then gently removed from the supernatant, and a sample from the suspension close to the pellet was taken in order to check for cell viability by using Trypan blue exclusion assay (10 mg·mL⁻¹) (Sigma-Aldrich®, Germany) (Strober, 2015). The cellsuspension was adjusted to $1 \times 10^6 \text{ cells} \cdot \text{mL}^{-1}$ and resuspended in 1:1 low melting point agarose (1.35%, LMP) at 37 °C. By using a multichannel pipette, four technical replicates ($4 \times 4 \mu L$), from each biological replicate were immediately dispensed onto a cold GelBond® film. Cell lysis was performed overnight in lysis buffer at 4 °C (2.5 M NaCl, 0.1 M Na2EDTA, 0.01 M Tris-base, 0.2 M NaOH, 0.034 M N-Laurylsarcosine, 10% DMSO, 1% Triton X-100, pH 10). The unwinding was performed by immersing the films in cold electrophoresis solution (0.3 M NaOH, 0.001 M Na₂EDTA, pH 13) for 40 min. Electrophoresis was performed in cold, freshly prepared electrophoresis solution for 20 min at 4 °C, 25 V and 0.8 V/cm, with circulation of the solution kept over time.

Immediately after the electrophoresis, the films were immersed in neutralization buffer (0.4 M Tris-HCL, pH 7.5) 2×5 min, fixed in ethanol (>90 min in 96% EtOH) and dried overnight.

SYBR®Gold Nucleic Acid Gel Stain (Life Technologies, Paisley, UK) in TE-buffer (1:10,000) (1 mM Na2EDTA, 10 mM Tris-HCl, pH 8) was used to stain the nuclei before scoring of films, once the drying process was accomplished. Comets' scoring was performed at 40× magnification under an Olympus BX51microscope (light source: Olympus BH2-RFL-T3, Olympus Optical Co., Ltd.; camera: A312f-VIS, BASLER, Ahrensburg, Germany). Forty randomly chosen cells per replicate (160 cells per biological replicate, total of 480 cells per dose rate) were scored using the Comet IV analysis software (Perceptive Instruments Ltd., Bury St. Edmunds, UK). Tail intensity (% Tail DNA), defined as the percentage of DNA migrated from the head of the comet into the tail, was used as a measure of DNA damage induced by gamma radiation. Mean percentage (%) of DNA in the tail per exposure group was calculated using the median values of % Tail DNA from the 40 comets from each technical replicate (total of 12 median values per exposure group).

2.8.2. Developmental and reprotoxic effects assessment in progeny (F1) of exposed (F0) nematodes

The effect of ionizing radiation was evaluated on the progeny (F1) of nematodes (F0) exposed for 72 h from L1 stage to reproducing adult hermaphrodites (Fig. 1). Adults were washed off the NGM plates using 2×3 mL of M9-buffer. Subsequently, embryos were gently dislodged from the agar surface using the tip of a Pasteur pipette. M9 buffer was added to the plates and the collected volume (6 mL), containing embryos was filtered throughout a cell-strainer (Ø 15 µm mesh) in order to remove *E. coli* cells. Embryos were washed off the cell-strainer with 6 mL of M9 buffer, centrifuged at 3000g for 2 min, and incubated on non-seeded NGM plates overnight. The following day, synchronous L1 nematodes were transferred to seeded NGM plates (three biological replicates and 5 individuals per replicate) and kept under control conditions. Effects on morphology, growth, development and reproduction were assessed as previously described (Sections 2.4.1 and S.1).

2.9. Statistical analysis

Statistical analysis was performed using Minitab® 18 (Minitab Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com)), JMP Pro v14 (SAS institute, Cary, NC, USA) and SigmaPlot 10.0 (Systat Software, San Jose, CA). Significant differences between different treatments were calculated using oneway analysis of variance (ANOVA) and, when significance was found, the Tukey pairwise comparisons method was applied. For ANOVA analysis, normality and homogeneity assumption were assessed on residuals by using Anderson-Darling normality test and visually on residuals vs. fitted value plot, respectively. Statistical significance was considered when *p*-value was lower than 0.05, unless differently stated.

The Effective Dose-Rate estimations were obtained on 10 and 50% of the population (EDR10 and EDR50) for reproduction and DNA damage on embryonic cells, by using the free software RegTox developed by Eric Vindimian (http://www.normalesup.org/~vindimian/en_ download.html). For this purpose, the Hill model was used with corresponding confidence intervals of 95%.

Principal Component Analysis (PCA) was performed in order to find possible correlation between selected endpoints.

3. Results

3.1. Chronic exposure to ionizing radiation exacerbates reprotoxic effects compared to acute irradiation

In order to compare toxic effects of acute and chronic irradiation on nematodes, synchronous populations of C. elegans were exposed to similar total doses, but at different dose-rates of gamma radiation (S.1 Table for dosimetry). The chronic exposure from egg stage to young adult stage (62 h) was performed with dose-rates ranging from 0.9 to 227 mGy \cdot h⁻¹, while acute exposure of young adult nematodes was conducted at 1445 mGy \cdot h⁻¹. Neither exposure resulted in any mortality nor in any obvious morbid effects. However, while acute exposure did not induce any significant effect in terms of reproduction, the total number of hatched larvae per adult hermaphrodite was significantly affected in chronically exposed nematodes. The number of offspring was significantly reduced (Tukey post hoc, p-value <0.05) by 43% and 61%, when nematodes were chronically exposed from embryos to adult stage to 108 mGv·h⁻¹ (total dose 6.7 Gv) and 228 mGv·h⁻¹ (total dose of 14 Gy), respectively (Fig. 2). The calculated EDR50 (i.e., the dose rate able to inflict a 50% effect on reproduction) was 160 mGy $\cdot h^{-1}$ (equivalent total dose 9.9 Gy), with the 95% confidence interval ranging from 134 to 192 mGy · h⁻¹. The corresponding EDR10 was estimated to 31.3 mGy \cdot h⁻¹ (95% CI 15.9 to 49.3 mGy \cdot h⁻¹), with ED10 total dose of 1.9 Gy.

In contrast, the acute exposure of L4 nematodes (total dose up to 6.0 Gy) did not show any significant effect on reproduction (Tukey *post hoc, p*-value >0.05) (Fig. 2). This indicated that radiosensitivity of *C. elegans* could be linked to vulnerable life stage(s) or processes during larval development.

3.2. Exposure to gamma radiation during early larval development is detrimental to reproduction

Life-stage dependent radiosensitvitiy was assessed with respect to development, morbidity, fecundity and the cumulative number of hatched larvae per adult hermaphrodite by targeted irradiation of selected developmental stages (Fig. 1).

This revealed a significant contribution of life-stage dependent sensitivity with respect to reprotoxic effects (Fig. 3). As expected, no significant morbidity or effect on fecundity was seen, while a minor reduction of the total body length was measured (SM.1, Section S.1). A dose-rate dependent effect on reproduction was seen in nematodes exposed

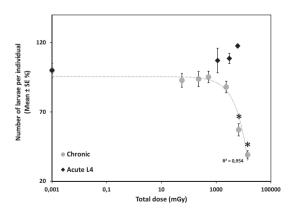


Fig. 2. Total number of offspring per adult hermaphrodite (Mean \pm SE in %) measured after chronic or acute exposure to ionizing gamma radiation. Adults were placed on fresh plates every 24 h from onset of egg laying for a total of 6 days. Asterisk indicates significant difference from control treatment (p-value <0.05).

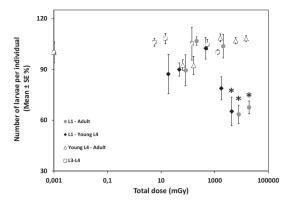


Fig. 3. Total number of offspring per adult hermaphrodite (Mean \pm SE in %) measured after four different scenarios of exposure to chronic gamma radiation. Asterisk indicates significant difference from control treatment (*p*-value <0.05).

from the L1 stage throughout the reproductive period of adult hermaphrodite (192 h) as well as those exposed from L1 up to the Young L4 stage (43 h) (Fig. 3). At the two highest dose-rates of exposure (40.8 and 99.9 mGy·h⁻¹), nematodes irradiated from L1 molt to end of reproduction (total doses 7.8 and 19 Gy, respectively) showed a significant decrease in the cumulative number of hatched larvae (37% and 34% reduction respectively) compared to controls (Tukey *post hoc*, *p*-value < 0.05). Nematodes irradiated at 99.9 mGy·h⁻¹ from L1 to young L4 molt (total dose 4.3 Gy) showed a 35% reduction (Tukey *post hoc*, *p*-value < 0.05), while no significant decrease, compared to controls, was seen at 40.8 mGy·h⁻¹ (total dose 1.8 Gy) (Tukey *post hoc*, *p*-value > 0.05). This demonstrates that despite the differences in exposure times and total dose, the detrimental effects on reproduction were similar when these two scenarios were compared.

In contrast, neither nematodes irradiated from L4 molt throughout the reproductive period (143 h), nor the nematodes exposed from L3 to early L4 molt showed any significant reprotoxic effect (Tukey *post hoc*, *p*-value > 0.05), even when the total dose reached 14.9 Gy.

3.3. Enhanced germ cell apoptosis in chronically irradiated young adult nematodes

Assessment of apoptosis after 72 h of exposure to gamma radiation revealed a dose-rate dependent increase in the number of germ cell corpses in the *C. elegans* reporter strain *CED1::GFP* (MD701) (Fig. 4a-c). A significantly increased number of apoptotic germ cells was found when nematodes were exposed to the two highest dose-rates (40.8 and 99.9 mGy·h⁻¹) compared to control nematodes (Tukey *post hoc*, *p*-value < 0.05). At these dose-rates we observed an average of 3.1 and 3.4 apoptotic germ cells per gonadal arm respectively (Fig. 4a,b). This corresponds to a 2-fold increase in apoptosis compared to the control treatment (1.7 apoptotic germ cells per gonadal arm). We also noted a slight (1.6-fold higher), but not significant effect on germ cell apoptosis in nematodes exposed to 10.8 mGy·h⁻¹ (Tukey *post hoc*, *p*-value > 0.05).

3.4. Chronic irradiation reduces the number of spermatids

In order to identify the cause of the reprotoxicity shown after irradiation during the early development, effects induced by chronic gamma irradiation on spermatogenesis were assessed in adult hermaphrodites at 72 h of exposure from L1 stage (Fig. 5). Nematodes exposed to total doses equal or >2.8 Gy showed a significant reduction in the number of spermatids compared to control nematodes, with dose-rates of 38.9

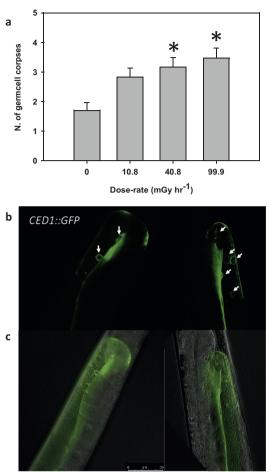


Fig. 4. a) Effect of chronic exposure to gamma radiation (72 h) on germ-cell apoptosis (number of germ cell corpses \pm Cl) pr gonadal arm in young adult *(ED1::GPP*) hermaphrodites (n = 20). Asterisks indicate significant difference compared to control treatment (p-value <0.05). b) Epifluorescence photomicrographs of gonadal arms in control hermaphrodite (left) and hermaphrodite irradiated at 100 mGy-h⁻¹ (right). White arrows indicate apoptotic germ cells expressing the *(CD1::GPP*. Scale bar: 50 µm. c) Nomarski and epifluorescence photomicrographs of gonadal arms from the same mematodes shown in Fig. 5b. Scale bar: 50 µm.

and 101 mGy \cdot h⁻¹ showing a 34% and 23% of reduction, respectively (Tukey *post hoc*, p-value < 0.05).

3.5. Gene expression analysis

In order to identify changes in the gene expression profiles during critical stages of gonadal development, a transcriptome analysis was performed on nematodes exposed to 10 and 100 mGy·h⁻¹ for 48 h from L1 stage (S.M. 1). A total number of 1.75×10^3 genes was expressed in all samples, while the number of differentially expressed genes (DECs) was 359 at the highest dose-rate of exposure (100 mGy·h⁻¹) compared to 540 resulting from the 10 mGy·h⁻¹ exposure group (FDR < 0.05, log2FC \leq -0.3 or \geq 0.3) (Figs. S.2a-b and S.3a).

Among the DEGs a group of 54 genes was found to be in common between nematodes exposed to 10 and 100 mGy h^{-1} (Fig. S.3b).

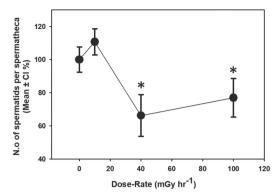


Fig. 5. Effect of chronic gamma irradiation on the number of spermatids per spermatheca (Mean % relative to control \pm Confidence Interval, n = 20) counted in young adult hermaphrodites (72 h from L1 stage). Asterisk indicates significant difference compared to control treatment (p-value <0.05).

3.5.1. Functional enrichment analysis of DEGs

Gene function analysis of DEGs assessed by Gene Ontology (GOTERM) enrichment showed distinct differences in functionally enriched categories between the 10 and 100 mGy \cdot h⁻¹ exposures.

A total of 21 significantly over-represented Biological Functions were identified for the 10 mGy \cdot h⁻¹ group (Fig. S.4). Integrated pathway analysis combining the outputs from Simplemine, Reactome and KEGG databases corroborated the enrichment analysis from the 10 mGy \cdot h⁻¹ exposed group with respect to cuticle-collagen, protein and lipid metabolism (Table S.4). In addition, we found 10 genes with functions related to biological oxidation and Glutathione metabolism and 45 genes related to Immune system, Signal transduction, Peroxisome and Response to pathogens.

A total of 18 GOTERMs were significantly over-represented among the down-regulated genes in the 100 mGy $\cdot h^{-1}$ exposure group (Fig. 6a), while no significant GOTERM resulted from the list of upregulated genes. The GOTERMs were related to cellular components such as organelle, cytoplasm, nucleus, nucleolus, cytoskeleton, mitochondrion, and structural constituent of ribosome. Biological and molecular functions included multicellular organism reproductive process, rRNA metabolic process, RNA splicing, peptide biosynthetic process and macromolecule biosynthetic process (Fig. 6 and Table S.5). From the 100 mGy · h⁻¹ group 159 of 174 down-regulated genes had an annotation in the Tissue Enrichment Analysis tool (TEA, Fig. 6b). The significantly enriched terms were mostly related to reproduction, and included Reproductive system, Male, Spermatheca, Oocyte and Amphid sheath cell. The Phenotype Enrichment Analysis (PEA, Fig. 6c) showed that the Linker-cell migration variant, Cytoplasmic processing body (P-granule) variant, and Spindle position variant were the most significant terms. Pathway analysis identified 7 biological functions related to reproduction (Table S.5). These comprised exclusively down-regulated genes (101) related to spermatogenesis, 28 of them being Major Sperm Proteins, 3 genes related to sperm meiosis and maturation. Fifteen of these genes also participate in germline proliferation, spindle formation and oogenesis.

In addition, a significant effect was identified on Cell-cycle, Programmed cell death, Chromatin organization and DNA repair, Cellular stress response, Immune system modulation, and Signal transduction. A further 24 DEGs were related to Protein Metabolism, Macroautophagy and Peroxisome. Among these, we found up-regulation of stressactivated protein kinases (*jnk-1* and *mak-1*) (Kawasaki et al., 1999), a target of ERK kinase MPK-1 (*toe-4*) (Miller and Chin-Sang, 2012), ferritin (*ftn-1*) (Kim et al., 2004), Ubiquitin conjugating enzymes (*ubc-3* and *ubc-8*) (Dove et al., 2017; Jones et al., 2001) and Ubiquitin carboxylterminal hydrolase (*ubh-4*), which are hallmarks of cell response to damage to proteins, mitochondria and lipids.

3.5.2. Network analysis

In order to identify operational gene interactions, a Genemania (Franz et al., 2018) network analysis was performed on the complete list of DEGs resulting from the 100 mGy·h⁻¹ exposure group. Out of 359 genes, 331 clustered into three distinct groups, connected by co-expression, shared protein domain and physical or predicted interaction (Fig. S.5). One of these clusters corresponded to the genes involved in reproduction identified by Tissue Enrichment and Pathway analysis. Within this cluster, we identified a common attribute in the Cytosolic Motility Protein (Fig. S.5). This included a total of 71 genes, 64 of these were spermatogenic (assigned according to Ortiz et al. (2014)), including *ssp-10*, *ssp-35* and *sss-1* as well as 28 MSP class genes. In addition, nearest neighbors included htas-1 (sperm specific histone H2A) *smz-1* and *smz-2* (involved in spermatid meiosis chromosome segregation) (Samson et al., 2014; Chu et al., 2006).

The second cluster was defined by 11 Serine/Threonine protein kinase genes (Figs. S.5, S.6) related to stress response, cell-cycle control and meiosis. Among these genes, *mak-1*, *jnk-1* and *air-1* were identified by the first neighbor analysis as main inter-nodes connecting 157 genes. Specifically, the Aurora/Ipl1 Related kinase *air-1* represented a major node, showing co-expression with two subsets of genes (Fig. S.6), one interconnecting two of the major clusters and containing 8 genes with protein kinase activity (*W02B12.12*, *Y38H8A.3*, *C39H7.1*, *T05A7.6*, *mak-1*, *T07F12.4*, *F32B6.10* and *ZC123.4*). In addition, *air-1*, which is required

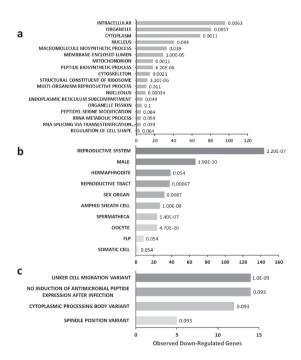


Fig. 6. a) Functional categories of over-represented Gene Ontology (GO) terms, b) Tissue Enrichment Analysis (TEA) and c) Phenotype Enrichment Analysis (PEA) of down regulated genes resulting from C. elegans exposed for 48 h to 100 mGy·h⁻¹ of gamma radiation. Hypergeometric probability distribution was adopted to calculate the enrichment of down-regulated genes observed in each specific function. (Data labels indicate q-values).

for the assembly/stabilization of female meiotic spindle microtubules (Sumiyoshi et al., 2015), physically interacts with *spd*-5 and *ran-1* (Boxem et al., 2008), also involved in spindle formation (Hamill et al., 2002; Cheng et al., 2008).

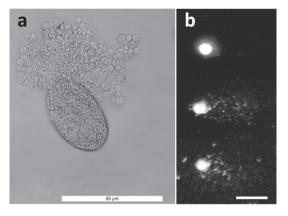
The third cluster comprised genes related to gene regulation and chromatin remodeling, such as cec-5 gene, predicted to have methylated histone binding activity, rpb-5, Y54H5A.1 and ruvb-2 with DNA binding activity (Poulin et al., 2005) and the major sperm protein vpr-1, which is required for proper distal tip cell migration during somatic gonad development (Cottee et al., 2017). The latter was also identified as a major node, sharing the same protein domain with 30 spermatogenic genes and co-expression with 9 non-spermatogenic genes. The cec-5 and let-418 genes, involved in the negative regulation of germline transcription and vulva development (Käser-Pébernard et al., 2014; Turcotte et al., 2018), were connected to 26 genes, including air-1 and vpr-1 (targets of cec-5). Furthermore let-418 targets were ima-3 involved in meiosis I (Weber and Brangwynne, 2015), emb-4 required for regulation of the transcription in the germ line (Tyc et al., 2017), and his-24 involved in epigenetic regulation of heterochromatin (Jedrusik-Bode, 2013).

3.6. Adverse effects on the progeny (F1) of irradiated nematodes

3.6.1. Radiation induced DNA damage in C. elegans embryonic cells

In order to assess DNA damage on the progeny of irradiated parents, a protocol for performing Comet Assay on *C. elegans* embryonic cells was developed (see Section 2.8.1). The Comet assay was performed using embryos to extract homogeneous essentially undifferentiated cell populations that were mitotically active (Fig. 7a) (Ehrenstein and Schierenberg, 1980; Wood, 1988). The established protocol produced high numbers of viable cells (assessed using trypan blue staining), with low level background comet tail in control cell populations (2.2–5.8%) compared to a previous study done by Ng et al. (2019).

Comet assay on embryonic cells showed a tendency of increased DNA damage (Mean % tail intensity and frequency of cells with significant DNA damage) after exposure of parents to dose-rates ranging from 0.43 to 10.8 mGy h^{-1} although this was not statistically significant (Tukey *post hoc*, p > 0.05) (see Figs. 7c and S.7). However, exposure to dose-rates of 40.8 and 99.9 mGy h^{-1} caused significant DNA damage, with a 3.9 and 4.4 fold increase of tail intensity, compared to non-irradiated embryonic cells (Tukey *post hoc*, p < 0.05, Fig. 7b,c).


The EDR50 value calculated for the DNA damage was $38.4 \text{ mGy} \cdot \text{h}^{-1}$, with the 95% confidence interval ranging from 13.9 to $39.2 \text{ mGy} \cdot \text{h}^{-1}$.

Moreover, the proportion of damaged cells increased in a dose rate dependent manner, where all cells from the 40.8 and 99.9 mGy \cdot h⁻¹ (2.94 and 7.19 Gy total dose) treatments showed DNA damage significantly higher than control level (6% tail intensity) (Fig. S.7).

3.6.2. Significant size reduction accompanied by low reprotoxic effects on parentally irradiated F1 nematodes

To investigate the late effects on the parentally irradiated (F1) embryos, the F1 generation was followed during development and effects were measured with respect to mortality, morphology, growth, and reproduction.

No effect was observed with respect to mortality, but a clear dose/ dose rate-dependent reduction on the total body length was measured at 96 h post L1 molt (see Fig. 8a–c). This reduction was statistically significant already at the lowest dose-rate of exposure 0.43 mGy·h⁻¹ (Tukey *post hoc*, *p*-value < 0.05). The reduction in body length was not associated with other visible anatomical morbid changes as formation of pharynx, gastrointestinal tract, and reproductive systems appeared intact, but were smaller in size (Fig. 9c). We also observed a trend towards reduced total brood size for the parentally irradiated F1 nematodes, (Fig. 8b), but the effect was not significant compared to control nematodes (Tukey *post hoc*, *p*-value > 0.05).

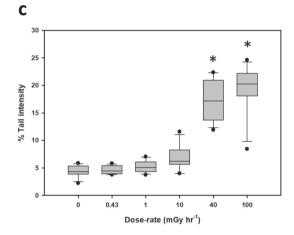


Fig. 7. a) Undifferentiated mitotically active embryonic cells harvested by mechanical disruption of gastrula stage embryos of irradiated parents. Micrograph from a semi-automated research light microscope at 40×, bright field optics. Scale bar: 50 μm. b) Comet micrographs taken at 40× magnification under an Olympus BX51 microscope (light source: Olympus BH2-RFL-T3, Olympus Optical Co.). From Top to Bottom: Control, 40 and 100 mGy.h⁻¹. Scale bar: 10 μm. c) DNA damage (Mean of Tail intensity in %) assessed on embryonal cells from parentally irradiated embryos, using the Comet assay. Asterisks indicate significant difference from control treatment (p-value <0.05).</p>

4. Discussion

4.1. Chronic irradiation induces life-stage dependent reprotoxic effects in C. elegans

Caenorhabditis elegans is considered among the most radioresistant of organisms, tolerating >1 kGy dose of ionizing gamma radiation (Hartman and Herman, 1982, Hartman et al., 1988, Johnson and Hartman, 1988, Gartner et al., 2000, Bailly and Gartner, 2013, Guo et al., 2013). In contrast, recent studies have revealed that chronic exposure may cause adverse cellular and reproductive effects at much lower doses (Hartman and Herman, 1982; Hartman et al., 1988; Johnson and Hartman, 1988; Gartner et al., 2000; Bailly and Gartner, 2013; Guo et al., 2013; Buisset-Goussen et al., 2014; Lecomte-Pradines et al., 2017; Dubois et al., 2018). We therefore hypothesized that the apparent differences in effect may either be caused by different efficacy of acute *versus* chronic irradiation. Alternatively, the discrepancy in effects may

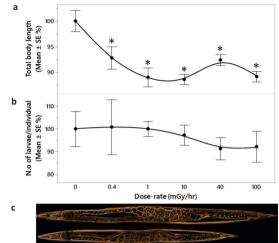


Fig. 8. Effects on somatic growth in offspring of nematodes exposed to gamma radiation. a) Total body length relative to control \pm SE in % measured at 96 h of development using a stereo microscope (Leica M205C, 10× magnification) coupled with a computerconnected camera. Asterisks indicate significant difference compared to control treatment (*p*-value <0.05). b) Total number of offspring per adult hermaphrodite (Mean % relative to control nematodes \pm SE), produced by nematodes parentally exposed to chronic gamma radiation. Adults were placed on fresh plates every 48 h from onset of egg laying for a total of 6 days. c) Physiological appearance of F1 adult hermaphrodites (96 h post L1), resulting from parental (F0) exposure to chronic gamma radiation (UP: Control, Bottom: 100 mGy-h⁻¹). Micrographs from a semi-automated research light microscope at 10×, phase-contrast optics, Scale bar: 100 µm.

be related to radiosensitivity of individual life stages, cell types or molecular functions in *C. elegans*.

In the present study, exposure of L4 young adults C. elegans to acute and chronic gamma irradiation (~6 Gy) did not cause any significant effect with respect to mortality, morbidity, or any of the reproductive endpoints, confirming that nematodes can tolerate high acute doses of radiation without mortality (Hartman and Herman, 1982; Krisko et al., 2012) (Fig. 2). Results are also consistent with previous studies where significant effects on hatchability and fecundity appeared only at doses >50 Gy (Krisko et al., 2012 and Dubois et al., 2018). In comparison, subjecting nematodes during development (embryos to L4 young adults) to chronic irradiation at a similar cumulative dose (>4 Gv), did not affect mortality or morbidity, but caused significant reprotoxic effects (Figs. 2 and 3). This demonstrates that the pre-L4 young adult stage is more sensitive to ionizing gamma radiation compared to the post mitotic stage. However, it was not evident whether the observed reprotoxic effects were related to a specific developmental stage, tissue or vulnerable cell type.

The results from the four exposure scenarios further support the differences in radiosensitivity between early and late larval development in this nematode. A dose-dependent reprotoxic effect was observed when larvae were exposed during their early development (L1-Young L4), while no effects were seen when adult stages were irradiated (Fig. 3). Furthermore, our results showed that extending the irradiation to include the embryonal stage did not enhance the reprotoxic effect compared to exposure during larval stage only. In *C. elegans* DNA repair is particularly robust during early embryogenesis (Clejan et al., 2006), and somatic cells in larvae are more tolerant to DNA damage than germ cells (Vermezovic et al., 2012; Lans and Vermeulen, 2015). Based on the observed reprotoxic effects (Figs. 2 and 3), it appears that the post-embryonic development is the phase where the critical damage occurred. During this phase, cell proliferation resumes and

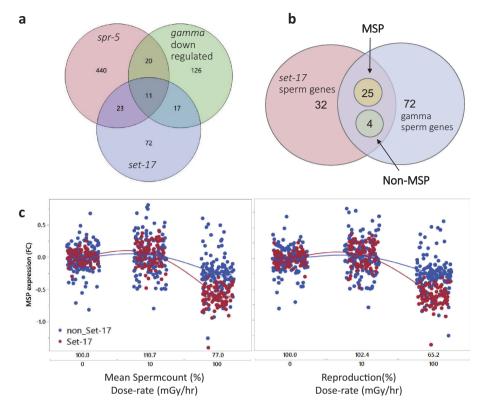


Fig. 9. a) Venn diagram of down-regulated genes resulting after chronic exposure to gamma radiation (4.8 Gy) or regulated by spr-5 or set-17 (gene expression data from Katz et al. (2009) and Engert et al. (2018), respectively). b) Venn diagram of spermatogenic genes regulated by chronic exposure to 4.8 Gy of gamma radiation and by set-17 (Engert et al., 2018), c) MSP expression (Fold Change) plotted as a function of fertility (No. offspring/individual %), No. of spermatids (%) and dose-rate of exposure (mGv·h⁻¹) to gamma radiation ($R^2 = 0.8$). In red 25 MSP genes found significantly down-regulated (FDR <0.05) after chronic exposure to 4.8 Gy of gamma radiation and in common with set-17 regulated spermatogenic genes found by Engert et al. (2018). In the set of a specific data of the set of a specific data of the set of a set of the set of a set of the set of a set of the set of

the reproductive tract is generated, with the establishment of Z1-Z4 gonad (Pazdernik and Schedl, 2013) and Z2 and Z3 germline precursor cells to initiate gonadogenesis (Kimble and Hirsh, 1979).

The reduction in number of hatched larvae per adult caused by irradiation of L1- Young L4 to a total dose of 4.3 Gy was similar to that following irradiation of the L1 to the end of reproduction to a total dose of 7.8 Gy. Furthermore, since no effects were seen when the L4-adults were irradiated to total doses of up to 15 Gy, it would appear that the L1 to the young L4 stage are the most critical radiosensitive stages with respect to reprotoxicity (Figs. 2 and 3). The results thus suggest that post L4 stage larvae are able to effectively ameliorate genotoxic effects, at least up to doses of 15 Gy.

4.2. Effect of ionizing radiation on the C. elegans germline: Enhanced apoptosis and impaired sperm production

In order to investigate the mechanisms behind the observed reprotoxicity we assessed adverse effects on the germline of irradiated nematodes with respect to DNA damage, by measuring the number of apoptotic cells and the number of produced spermatids. The apoptosis assessment was carried out using a reporter strain (*CED1::GFP*), while the N2 Bristol strain was used for the spermatid measurement. In both cases, irradiation covered the radiosensitive L1-L4 developmental stage.

Germ cell death in *C. elegans* is known to be a natural physiological event, where half of the potential oocytes are removed (Gumienny et al., 1999; Lettre and Hengartner, 2006). Apoptosis is as an important surveillance mechanisms that ensures quality control in the germline (Bailly and Gartner, 2013), which may be enhanced by genotoxic insult like high doses of ionizing radiation via a series of DNA damage response mechanisms including cell-cycle arrest and programmed cell death (Gartner et al., 2000).

Strikingly, our results showed that, in comparison to the reprotoxic effects and to previous studies where germ cell apoptosis was only identified after acute doses of exposure, exerted on L4 nematodes, (>60 Gy) (Schumacher et al., 2001; Schumacher et al., 2005), already a dose as low as 2.9 Gy during L1 to L4 stages effectively enhanced the number of apoptotic germ cells (Fig. 4a). Thus showing that proliferating oocytes are very vulnerable to the effects of ionizing radiation, but also that germ cell apoptosis in *C. elegans* is a highly responsive protective mechanism that removes damaged cells and reduces the probability of misrepair at such low doses. The enhanced germ cell apoptosis observed in the present study may therefore be considered as a defense mechanism activated to obtain an efficient removal of non-salvageable oocytes (Andux and Ellis, 2008), preserving the embryos genome integrity (Lans and Vermeulen, 2015) and viability of the progeny (Bailly and Gartner, 2013).

While oocytes are continuously produced and can be replenished, each hermaphrodite produces a limited amount (~300) of spermatocytes during the L3/L4 stage (Chu and Shakes, 2013). The internal fertilization of *C. elegans* is extremely efficient. An unmated hermaphrodite will use all of its sperm to produce offspring (Singson, 2001). Spermatogenesis has been reported to be affected by chronic irradiation in other invertebrate species (Hertel-Aas et al., 2011). We therefore hypothesized that spermatogenesis might also be a vulnerable process in C. elegans. Accordingly, we found a significant reduction on the number of spermatids at 2.8 Gy (Fig. 5), which is similar to the dose causing enhanced germ cell apoptosis (Fig. 4). In terms of the dose rates, in both cases dose-rates of 8–10 mGy \cdot h⁻¹ showed non-significant effects from controls, while significant changes were seen at higher doserates such as 40 and 100 mGy·h⁻¹. The Pearson correlation analysis identified a positive correlation between the reduction in spermatids and the observed reprotoxic effect (PCC: 0.99 for L1-End of reproduction, PCC: 0.86 for L1-Young L4 exposure) (Figs. 2-4, S.8). Consistently, the limiting factor for self-fertility in C. elegans is not the number of oocytes, but rather the amount of self-sperm produced by the hermaphrodite (Hodgkin and Barnes, 1991).

Our results therefore suggest that the defective spermatogenesis induced by chronic exposure to ionizing radiation is the most plausible cause of the life stage-dependent reprotoxic effects in *C. elegans.*

4.3. Chronic exposure to gamma radiation impairs expression of genes required for spermatogenesis, oogenesis and embryogenesis

Ionizing gamma radiation is able to exert adverse effects on genes and proteins directly, through DNA damage (single and double strand breaks as well as DNA oxidation), or indirectly via formation of free radicals, recombination and induction of ROS (National Research Council, 2006). Consistent with these known effects, the transcriptomic analysis revealed that chronic exposure to gamma radiation induced differential regulation of genes involved in Cell-cycle control, Programmed cell death, Chromatin organization, DNA repair, Biological oxidation and Cellular stress response (Table S.5). The transcriptomic data also reflected significant differences between exposure to 10 $\text{mGy} \cdot \text{h}^{-1}$ and 100 mGy \cdot h⁻¹ (0.4 and 4.8 Gy total dose) with respect to toxic effects, including reproduction, apoptosis and spermatid production. It is known that the set of genes involved in apoptotic cell clearance in C. elegans, also mediates the removal of residual bodies during spermatogenesis. Defective clearance of residual bodies has been proven to reduce the number of spermatids in both males and hermaphrodites, possibly by decreasing sperm transfer efficiency (Huang et al., 2012; Ellis and Stanfield, 2014). Notably, physiological germ-cell death has not been reported in male gonads, and apoptosis appears to be restricted to oogenesis in hermaphrodites (Lettre and Hengartner, 2006).

We therefore hypothesized that other *hitherto* unknown mechanisms could be involved in the impaired spermatogenesis.

In line with the observed adverse phenotypic effects, the gene expression analysis at L4-stage showed that central molecular and cellular processes related to reproduction, and in particular to spermatogenesis, were negatively affected at 100 mGy-h⁻¹ (total dose >4 Gy) (Fig. 6a-c, Table S.5). Consistent with the reduction of spermatids (Fig. 5), we found significant down-regulation of genes related to chromosome segregation in sperm meiosis (*smz-1* and *smz-2*) (Chu et al., 2006) and chromatin condensation during sperm maturation (*htas-1*) (Samson et al., 2014). Throughout spermatogenesis, the processes of meiosis, sperm differentiation, and chromatin remodeling are intimately intertwined, RNA inhibition of the gene *smz-1* or *smz-2* has shown to induce the arrest of spermatocytes progression through meiotic division thus affecting male fertility (Chu et al., 2006).

Moreover, down regulation of 28 sperm cytoskeletal structural protein genes (MSP) and 3 sperm-specific genes also suggested a severe defect in spermatogenesis (Table S.5). This family of proteins accounts for >40% of the cytosolic protein in *C. elegans* sperm (Smith, 2006). Several gamete-signaling events are required for high levels of oocyte maturation and ovulation and major sperm proteins (MSPs) play a central role not only in pseudopod motility, but also in promoting oocyte meiotic maturation, sheath contraction and ovulation of the oocyte in the spermatheca (Miller et al., 2001). When we performed a more thorough investigation on the 101 down-regulated genes spermatogenic (assigned according to Ortiz et al. (2014)), a significant correspondence (29 genes) with a previous study from Engert et al. (2018) was found (Fig. 9a,b). In the study from Engert and co-authors, a 50% reduction in terms of fertility was due to down-regulation of 28 MSP genes as a result of the mutation in the gene set-17(n5017). Furthermore, let-418, which was down-regulated in our transcriptomic analysis, interacts physically and genetically with spr-5 to promote the normal development of germline stem cells (Käser-Pébernard et al., 2014). Spr-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair (Nottke et al., 2011). Loss of spr-5 and let-418 has shown to induce immediate sterility and aberrant gonad development, demonstrating a collaborative role of these two genes in promoting fertility (Käser-Pébernard et al., 2014). Our network analysis showed interactions via co-expression between chromo-domain genes let-418 and cec-5 with 26 genes involved in gonad development, regulation of transcription in the germ line and meiosis (Fig. S.5).

This may imply that DNA double-strand breaks, resulting from exposure to ionizing radiation, may play a role in the regulation of *spr-5* and *set-17* and thereby inducing defective meiosis, which is consistent with the down-regulation of *smz-1* and *smz-2*, reduction of spermatocytes, fertility and consequently the down-stream regulation of 28 MSP genes (Fig. 9a-c).

We also identified a potential downstream effect of the impaired spermatocyte/MSP expression by the down-regulation of spd-5 and air-1, two genes essential for the centrosome maturation and spindle assembly during the first mitotic division of the C. elegans zygote (Hamill et al., 2002). Consistent with this result, air-1 was also a target of the major sperm protein vpr-1 in our network analysis (Fig. S.6). This is an essential gene which shares the protein domain with the MSPs and whose expression is crucial in neuron and germ cells to induce gonadogenesis (Cottee et al., 2017), suggesting that in C. elegans exposure of early life stages to ionizing radiation may also impair this signaling mechanism required for the development of sexual organs. Moreover, prior to fertilization, the major sperm proteins have shown to promote oocyte microtubule reorganization (Harris et al., 2006). This suggests that the down-regulation of Aurora A kinase/AIR-1, shown in our transcriptomic analysis, may play a central role not only for the impairment during the formation of the spindle microtubules in female meiosis, but also for the regulation of mitotic cell cycle, as shown by the physical interaction with the gene spd-5. This notion was further supported by the down regulation of 23 genes related to germline proliferation, spindle assembly, oogenesis and embryonic development (Table S.5). In sum these observations substantiate that chronic exposure to ionizing radiation (>4 Gy total dose) in early stage nematodes has a profound effect on the entire C. elegans reproductive system (Fig. 10).

4.4. Embryonic DNA damage leads to a significant impairment on somatic growth but minimal effects on reproduction in the progeny (F1) of irradiated nematodes

Although DNA damage like DSB may cause replication problems (Bailly and Gartner, 2013), particularly when cell division rate is high *e.g.* during early embryogenesis, a previous study showed that *C. elegans* embryos are relatively tolerant to high doses of UV or other genotoxic agents (Holway et al., 2006). However, little was known about parental exposure to low doses of the germline and the later effects on the surviving embryos. Therefore, in this study we have investigated the embryonic DNA damage exerted by parental exposure to low doses of ionizing gamma radiation in combination with somatic growth impairment and reprotoxic effects on the F1 progeny. The focus of these experiments was therefore to examine the radiosensitivity in nematodes exposed during the proliferation stage, corresponding to cell divisions from a single cell (prior fertilization) to 558 essentially undifferentiated

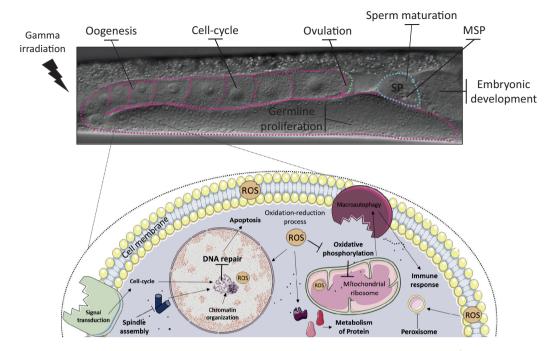


Fig. 10. Conceptual model of cellular and molecular processes induced (†) or inhibited (T) after chronic exposure to gamma radiation (100 mGy·h⁻¹) in the nematode C. elegans.

cells by the end of "16 E stage" (Ehrenstein and Schierenberg, 1980; Wood, 1988). Our results demonstrated a dose-dependent sensitivity of embryonic cells in terms of DNA damage. Specifically, at accumulated doses higher than 2.9 Gy we observed an increased frequency of damaged cells (Fig. S.7) and a significantly higher damage compared to background levels (control treatment) (Fig. 7b,c).

Despite the significant damage seen in these embryonic cells and consistent with Dubois et al. (2018), we could not observe any deleterious effect on hatching and or lethality on embryos parentally exposed at doses up to 7.2 Gy. In a previous study, an acute dose of 50 Gy during early embryonal development was required to induce almost complete embryonic lethality for wild type. This effect was considered to be a consequence of cell proliferation (Cleian et al., 2006). In the same study, no embryonic lethality was observed when late-stage embryos, composed of non-cycling cells, were irradiated with doses up to 140 Gy, even in NHEI (non-homologous end joining) or HR (homologous recombination) deficient mutant strains. Consistent with these results, we did not observe any lethality or significant effect on the nematodes fertility at much lower doses of exposure, since the total number of offspring showed only a minor and non-significant decrease at doses higher than 2.9 Gy (dose-rate of 40 mGy \cdot h⁻¹) (Fig. 8b). This result showed that nematodes parentally exposed were either able to ameliorate the observed genotoxic effect, or that the doses adopted in our study were not sufficient to induce any impairment during the development of the somatic gonads.

In contrast, parental irradiation was able to induce a clear dosedependent reduction in terms of somatic growth of the offspring (Fig. 8a), with nematodes being significantly smaller already at the lowest dose of exposure (0.03 Gy, dose-rate of 0.4 mGy \cdot h⁻¹). Although we did not assess DNA damage in somatic cells any further during the nematodes' development, the combination of somatic growth impairment with the high levels of genotoxicity seen in embryonic cells (Figs. 7b,c, S.7) demonstrates the remarkable tolerance of these embryos, but implies a considerable related cost to repair this damage. HR is known to provide error free DSB repair, but this repair mechanism is only active when the sister chromatid template is available, *i.e.* in proliferating somatic cells and germ cells at all embryonic stages (Clejan et al., 2006). In contrast, non-proliferating somatic cells arrest in G1 and perform NHEJ, which is the major pathway for repair of radiation-induced DNA damage in quiescent somatic cells of *C. elegans* embryos, but is an error prone mechanism. Indeed, a mis-segregation of chromosome fragments was found by Clejan et al. (2006) to be the likely trigger for the somatic developmental abnormalities displayed in irradiated latestage NHEJ mutant embryos.

Thus, parental irradiation of nematodes impairs the somatic growth of embryos significantly, while the negative effects on reproductive performance are less severe. This is probably a result of the different activity of these DNA repair pathways on a mixed population of replicating and quiescent cells that rely on HR and NHEJ.

5. Conclusions

Sensitivity to ionizing gamma radiation in *C. elegans* is highly dependent on life stage. The post-mitotic adult nematodes tolerate both acute and high dose chronic irradiation without adverse effects. In contrast, L1-L4 developmental stages are highly sensitive to gamma radiation induced reprotoxic effects. At the mechanistic level, gamma irradiation induced genotoxic insult, germ cell apoptosis and reduced spermatids production. The decrease in spermatids production was identified as the major cause of the reduced fertility. Parental exposure leads to DNA damage in developing embryos. Surprisingly, these progeny were able to maintain a high reproductive capacity, despite reduced somatic growth.

Supplementary data to this article can be found online at https://doi. org/10.1016/j.scitotenv.2019.133835.

CRediT authorship contribution statement

Erica Maremonti: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing - original draft, Writing - review & editing. Dag M. Eide: Data curation, Formal analysis. Deborah H. Oughton: Conceptualization. Brit Salbu: Resources. Fabian Grammes: Data curation. Yetneberk A. Kassaye: Methodology. Rémi Guédon: Methodology, Data curation. Catherine Lecomte-Pradine: Methodology. Dag Anders Brede: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

We thank Nicolas Dubourg for assistance with RPL-dosimetry. We kindly thank Lisa Rossbach, Kristine Bjerve Gützkow and Ann-Karin Olsen for their help with the experiments.

Funding

This work was supported by the Norwegian University of Life Sciences (NMBU) through a PhD scholarship and by the Research Council of Norway through its Centre of Excellence (CoE) "Centre for Environmental Radioactivity" (CERAD, project No. 223268). RG was supported by PNREST Anses, Cancer ITMO AVESIAN, 2015/1/212 project.

References

- Adam-Guillermin, C., Hertal-Aas, T., Oughton, D., Blanchard, L., Alonzo, F., Armant, O., Horemans, N., 2018. Radioesnsitivity and transgenerational effects in non-human species. Ann. ICRP 47 (3–4), 327–311 (014664518756844).
- Andux, S., Ellis, R.E., 2008. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet. 4, e1000295.
- Angeles-Albores, D., Lee, R.Y., Chan, J., Sternberg, P.W., 2016. Tissue enrichment analysis for C. elegans genomics. BMC Bioinf. 17, 366.
- Angeles-Albores, D., Leighton, D.H., Tsou, T., Khaw, T.H., Antoshechkin, I., Sternberg, P.W., 2017. The Caenorhabditis elegans female-like state: decoupling the transcriptomic effects of aging and sperm status. G3: Genes, Genomes, Genetis: 7, 2969–2977.
- Bailly, A., Gartner, A., 2013. Germ cell apoptosis and DNA damage responses. In: Schedl, T. (Ed.), Germ Cell Development in C. elegans. Springer New York, New York, NY.
- Bjerke, H., Hetland, P.O., 2014. Dosimetri ved FIGARO gammaanlegget ved NMBU, ÅS. Målerapport fra oppmåling av doseraten i strålefeltet fra kobolt-60. NRPA Technical Document Series p. 2.
- Boxem, M., Maliga, Z., Klitgord, N., Li, N., Lemmens, I., Mana, M., De Lichtervelde, L., Mul, J.D., Van De Peut, D., Devos, M., Simonis, N., Yildirim, M.A., Cokol, M., Kao, H.–L., De Smet, A.–S., Wang, H., Schlaitz, A.–L., Hao, T., Milstein, S., Fan, C., Tipsword, M., Drew, K., Galli, M., Rhrissorrakrai, K., Drechsel, D., Koller, D., Roth, F.P., lakoucheva, L.M., Dunker, A.K., Bonneau, R., Gunsalus, K.C., Hill, D.E., Piano, F., Tavernier, J., Van Den Heuvel, S., Hyman, A.A., Vidal, M., 2008. A protein domain-based interactome network for *C. elegans* early embryogenesis. Cell 134, 534–545.
- Bréchignac, F., Bradshaw, C., Carroll, S., Fuma, S., Håkanson, L., Jaworska, A., ... Sazykina, T., 2012. Towards an ecosystem approach for environment protection with emphasis on radiological hazards. IUR, Report 7.
- Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71–94.
- Buisset-Goussen, A., Goussen, B., Della-Vedova, C., Galas, S., Adam-Guillermin, C., Lecomte-Pradines, C., 2014. Effects of chronic gamma irradiation: a multigenerational study using *Caenorhabditis elegans*. J. Environ. Radioact. 137, 190–197.
- Cheng, H., Govindan, J.A., Greenstein, D., 2008. Regulated trafficking of the MSP/Eph receptor during oocyte meiotic maturation in *C. elegans*. Curr. Biol. 18, 705–714.
- Chu, D.S., Shakes, D.C., 2013. Spermatogenesis. Germ Cell Development in C. elegans. Springer.
- Chu, D.S., Liu, H., Nix, P., Wu, T.F., Ralston, E.J., Yates III, J.R., Meyer, B.J., 2006. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443, 101.
- Clejan, I., Boerckel, J., Ahmed, S., 2006. Developmental modulation of nonhomologous end joining in *Caenorhabditis elegans*. Genetics 173, 1301–1317.

- Cottee, P.A., Cole, T., Schultz, J., Hoang, H.D., Vibbert, J., Han, S.M., Miller, M.A., 2017. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development. Development 144, 2187–2199.
- Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
- Dove, K.K., Kemp, H.A., Di Bona, K.R., Reiter, K.H., Milburn, L.J., Camacho, D., Fay, D.S., Miller, D.L., Klevit, R.E., 2017. Two functionally distinct E2/E3 pairs coordinate sequential ubiquitination of a common substrate in *Caenorhabditis elegans* development. Proc. Natl. Acad. Sci. 114, E6576–E6584.
- Dubois, C., Lecomte, C., Ruys, S.P.D., Kuzmic, M., Della-Vedova, C., Dubourg, N., Galas, S., Frelon, S., 2018. Precoce and opposite response of proteasome activity after acute or chronic exposure of C *elegans* to γ-radiation. Sci. Rep. 8, 11349.
- Ehrenstein, G.V., Schierenberg, E., 1980. Cell lineages and development of *Caenorhabditis elegans* and other nematodes. Cell Lineages and Development of Caenorhabditis elegans and Other Nematodes, pp. 1–71.
- Ellis, R.E., Stanfield, G.M., 2014. The regulation of spermatogenesis and sperm function in nematodes. Semin. Cell Dev. Biol. 17–30 Elsevier.
- Engert, C.G., Droste, R., Van Oudenaarden, A., Horvitz, H.R., 2018. A Caenorhabditis elegans protein with a PRDM9-like SET domain localizes to chromatin-associated foci and promotes spermatocyte gene expression, sperm production and fertility. PLoS Genet. 14, e1007295.
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Kormiger, F., May, B., 2017. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655.
- Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., Bader, G.D., Morris, Q., 2018. GeneMANIA update 2018. Nucleic Acids Res. 46, W60–W64.
- Garnier-Laplace, J., Geras'kin, S., Della-Vedova, C., Beaugelin-Seiller, K., Hinton, T., Real, A., Oudalova, A., 2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J. Environ. Radioact. 121, 12–21. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J., Hengartner, M.O., 2000. A conserved
- Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J., Hengartner, M.O., 2000. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C elegans. Mol. Cell 5, 435–443.
- Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R., Hengartner, M.O., 1999. Genetic control of programmed cell death in the *Caenorhabditis elegans* hermaphrodite germline. Development 126, 1011–1022.
- Guo, X., Sun, J., Bian, P., Chen, L., Zhan, F., Wang, J., Xu, A., Wang, Y., Hei, T.K., Wu, L., 2013. Radiation-induced bystander signaling from somatic cells to germ cells in *Caenorholditis elegans*. Radiat. Res. 180, 268–275.
- Gutzkow, K.B., Langleite, T.M., Meier, S., Graupner, A., Collins, A.R., Brunborg, C., 2013. High-throughput comet assay using 96 minigels. Mutagenesis 28, 333–340.
- Hamill, D.R., Severson, A.F., Carter, J.C., Bowerman, B., 2002. Centrosome maturation and mitotic spindle assembly in *C. elegans* require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684.
- Hansen, E., Lind, O., Oughton, D., Salbu, B., 2019. A framework for exposure characterization and gamma dosimetry at the NMBU FIGARO irradiation facility. Int. J. Radiat. Biol. 95, 82–89.
- Harris, J.E., Govindan, J.A., Yanamoto, I., Schwartz, J., Kaverina, I., Greenstein, D., 2006. Major sperm protein signaling promotes oocyte microtubule reorganization prior to fertilization in *Caenorhabditis elegans*. Dev. Biol. 299, 105–121.
- Hartman, P.S., Herman, R.K., 1982. Radiation-sensitive mutants of Caenorhabditis elegans. Genetics 102, 159–178.
- Hartman, P.S., Simpson, V.J., Johnson, T., Mitchell, D., 1988. Radiation sensitivity and DNA repair in *Caenorhabditis elegans* strains with different mean life spans. Mutat. Res. Lett. 208, 77–82.
- Hertel-Aas, T., Brunborg, G., Jaworska, A., Salbu, B., Oughton, D.H., 2011. Effects of different gamma exposure regimes on reproduction in the earthworm *Eisenia fetida* (*Oligochaeta*). Sci. Total Environ. 412–413, 138–147.
- Hodgkin, J., Barnes, T.M., 1991. More is not better: brood size and population growth in a self-fertilizing nematode. Proc. R. Soc. Lond. B 246, 19–24.
- Holway, A.H., Kim, S.-H., La Volpe, A., Michael, W.M., 2006. Checkpoint silencing during the DNA damage response in *Caenorhabditis elegans* embryos. J. Cell Biol. 172, 999–1008.
- Huang, J., Wang, H., Chen, Y., Wang, X., Zhang, H., 2012. Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance. Development 139, 4613–4622.
- Jedrusik-Bode, M., 2013. Histone H1 and heterochromatin protein 1 (HP1) regulate specific gene expression and not global transcription. Worm 2, e23703.
- Johnson, T.E., Hartman, P.S., 1988. Radiation effects on life span in *Caenorhabditis elegans*. J. Gerontol. 43, B137–B141.
- Jones, D., Crowe, E., Stevens, T.A., Candido, E.P.M., 2001. Functional and phylogenetic analysis of the ubiquitylation system in *Caenorhabditis elegans*: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 3, 1 research0002.
- Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., Tanabe, M., 2018. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595. Käser-Pébemard, S., Müller, F., Wicky, C.J.S.C.R., 2014. LET–418/Mi2 and SPR-5/LSDI coop-
- Käser-Pébemard, S., Müller, F., Wicky, CJS.C.R., 2014. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells. 2, 547-559.
- Katz, D.J., Edwards, T.M., Reinke, V., Kelly, W.G., 2009. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137 (2), 308–320.
- Kawasaki, M., Hisamoto, N., Iino, Y., Yamamoto, M., Ninomiya-Tsuji, J., Matsumoto, K., 1999. A Caenorhabditis elegans JNK signal transduction pathway regulates

coordinated movement via type-D GABAergic motor neurons. EMBO J. 18, 3604-3615.

- Kim, Y.-I., Cho, J.H., Yoo, O.J., Ahnn, J., 2004. Transcriptional regulation and life-span modulation of cytosolic aconitase and ferritin genes in C. elegans. J. Mol. Biol. 342, 421–433.
- Kimble, J., Hirsh, D., 1979. The postembryonic cell lineages of the hermaphrodite and male gonads in *Caenorhabditis elegans*. Dev. Biol. 70, 396–417.Kovalchuk, O., Dubrova, Y.E., Arkhioov, A., Hohn, B., Kovalchuk, L., 2000. Germline DNA:
- wheat mutation rate after Chernobyl. Nature 407, 583.
- Krisko, A., Leroy, M., Radman, M., Meselson, M., 2012. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc. Natl. Acad. Sci. U. S. A. 109, 2354–2357.
- Lans, H., Vermeulen, W., 2015. Tissue specific response to DNA damage: C. elegans as role model. DNA Repair (Amst) 32, 141–148.
- Lecomte-Pradines, C., Hertel-Aas, T., Coutris, C., Gilbin, R., Oughton, D., Alonzo, F., 2017. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode *Caenorhabditis elegans*. J. Toxic. Environ. Health A 80, 830–844.
- Lee, R.Y.N., Howe, K.L., Harris, T.W., Arnaboldi, V., Cain, S., Chan, J., Chen, W.J., Davis, P., Gao, S., Grove, C., Kishore, R., Muller, H.-M., Nakamura, C., Nuin, P., Paulini, M., Raciti, D., Rodgers, F., Russell, M., Schindelman, G., Tuli, M.A., Van Auken, K., Wang, Q., Williams, G., Wright, A., Yook, K., Berriman, M., Kersey, P., Schedl, T., Stein, L., Sternberg, P.W., 2017. WormBase 2017: molting into a new stage. Nucleic Acids Res. 46, D869–D874.
- Lettre, G., Hengartner, M.O., 2006. Developmental cell biology: developmental apoptosis in C. elegans: a complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97.
- Lewis, J.A., Fleming, J.T., 1995. Chapter 1 basic culture methods. In: Epstein, H.F., Shakes, D.C. (Eds.), Methods in Cell Biology. Academic Press.
- Lind, O.C., Helen Oughton, D., Salbu, B., 2019. The NMBU FIGARO low dose irradiation facility. Int. J. Radiat. Biol. 95, 76–81.
- Lomax, M.E., Folkes, L.K., O'neill, P., 2013. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. 25, 578–585. Love, M.I., Anders, S., Kim, V., Huber, W., 2015. RNA-Seq workflow: gene-level exploratory
- analysis and differential expression. FResearch 4.
- Lu, N., Yu, X., He, X., Zhou, Z., 2009. Detecting apoptotic cells and monitoring their clearance in the nematode *Caenorhabditis elegans*. Methods Mol. Biol. 559, 357–370.
- Miller, M.A., Chin-Sang, I.D., 2012. Eph receptor signaling in C. elegans. WormBook: The Online Review of C. elegans Biology, p. 1.
- Miller, M.A., Nguyen, V.Q., Lee, M.-H., Kosinski, M., Schedl, T., Caprioli, R.M., Greenstein, D., 2001. A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144–2147.
- Min, H., Sung, M., Son, M., Kawasaki, L. Shim, Y.-H., 2017. Transgenerational effects of proton beam irradiation on *Caenorhabditis elegans* germline apoptosis. Biochem. Biophys. Res. Commun. 490, 608–615.
- National, Research, Council, 2006. Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. National Academies Press. Ng, LF, Ng, LT, Van Breugel, M, Halliwell, B, Gruber, J, 2019. Mitochondrial DNA damage
- does not determine C. *elegans* lifespan. Front. Genet. 10.
- Nottke, A.C., Beese-Sims, S.E., Pantalena, L.F., Reinke, V., Shi, Y., Colaiácovo, M.P., 2011. SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc. Natl. Acad. Sci. 108, 12805–12810.
- Ortiz, M.A., Noble, D., Sorokin, E.P., Kimble, J., 2014. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode *Caenorhabditis elegans*. Genes, Genomes, Genetics 4, 1765–1772.
- Parisot, F., Bourdineaud, J.-P., Plaire, D., Adam-Guillermin, C., Alonzo, F., 2015. DNA alterations and effects on growth and reproduction in *Daphnia magna* during chronic exposure to gamma radiation over three successive generations. Aquat. Toxicol. 163, 27–36.
- Pazdernik, N., Schedl, T., 2013. Introduction to Germ Cell Development in Caenorhabditis elegans. Germ Cell Development in C. elegans. Springer.
- Pereira, S., Bourrachot, S., Cavalie, I., Plaire, D., Dutilleu, M., Gilbin, R., Adam-Guillermin, C., 2011. Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environ. Toxicol. Chem. 30, 2831–2837.

- Poulin, G., Dong, Y., Fraser, A.G., Hopper, N.A., Ahringer, J., 2005. Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in *Caenorhabditis* elegans. EMBO 1, 24, 2613–2623.
- Reisz, J.A., Bansal, N., Qian, J., Zhao, W., Furdui, C.M., 2014. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 21, 260–292.
- Sadler, P.L., Shakes, D.C., 2000. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 127, 355–366.
- Samson, M., Jow, M.M., Wong, C.C., Fitzpatrick, C., Aslanian, A., Saucedo, I., Estrada, R., Ito, T., Park, S.-K.R., Yates III, J.R., 2014. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. *elegans*. PLoS Genet. 10, e1004588.
- Schumächer, B., Hofmann, K., Boulton, S., Gartner, A., 2001. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11, 1722–1727.
- Schumacher, B., Schertel, C., Wittenburg, N., Tuck, S., Mitani, S., Gartner, A., Conradt, B., Shaham, S., 2005. C *elegans* ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ. 12, 153.
- Schwartz, J.L., Jordan, R., Sun, J., Ma, H., Hsie, A.W., 2000. Dose-dependent changes in the spectrum of mutations induced by ionizing radiation. Radiat. Res. 153, 312–317.
- Singson, A., 2001. Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev. Biol. 230, 101–109.
- Smith, H., 2006. Sperm motility and MSP. WormBook 2006, 1-8.
- Stiernagle, T., 2006, Maintenance of C. elegans (February 11, 2006). In: Wormbook (Ed.), The C. elegans Research Community. WormBook https://doi.org/10.1895/wormbook (1.101.1).
- Strober, W., 2015. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 111, A3. B. 1–A3. B. 3.
- Sumiyoshi, E., Fukata, Y., Namai, S., Sugimoto, A., 2015. Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis. Mol. Biol. Cell 26, 4187–4196.
- Turcotte, C.A., Sloat, S.A., Rigothi, J.A., Rosenkranse, E., Northrup, A.L., Andrews, N.P., Checchi, P.M., 2018. Maintenance of genome integrity by Mi2 homologs CHD-3 and LET-418 in *Caenorhabdidis legans*. Cenetics 208, 991–1007.
- Tyc, K.M., Nabih, A., Wu, M.Z., Wedeles, C.J., Sobotka, J.A., Claycomb, J.M., 2017. The conserved intron binding protein EMB-4 plays differential roles in germline small RNA pathways of C. elegans. Dev. Cell 42 (e6), 256–270.
- UNSCEAR, 1996. Sources and Effects of Ionizing Radiation: Report to the General Assembly, With Scientific Annexes. United Nations Publications.
- UNSCEAR, 2006. Effects of Ionizing Radiation: UNSCEAR 2006 Report to the General Assembly, With Scientific Annexes. United Nations Publications.
- Van Haaften, G., Romeijn, R., Pothof, J., Koole, W., Mullenders, L.H.F., Pastink, A., Plasterk, R.H.A., Tijsterman, M., 2006. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr. Biol. 16, 1344–1350.
- Vermezovic, J., Stergiou, L., Hengartner, M.O., D'adda Di Fagagna, F., 2012. Differential regulation of DNA damage response activation between somatic and germline cells in *Caenorhabditis elegans*. Cell Death Differ, 19, 1847–1855.
- Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T., 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220.
- Weber, Stephanie C., Brangwynne, Clifford P., 2015. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25, 641–646.
- Wood, W.B., 1988. In: Wood, W.B. (Ed.), Embryology in the Nematode C. elegans. Cold Spring Harbor Laboratory Press, pp. 215–241 Chapter 8.
- Zhou, Z., Hartwieg, E., Horvitz, H.R., 2001. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56.

Supporting Material 1.

Gamma radiation induces Life stage-dependent reprotoxicity in *Caenorhabditis elegans* via impairment of spermatogenesis

Erica Maremonti ¹, Dag M. Eide ^{1,2}, Deborah H. Oughton ¹, Brit Salbu ¹, Fabian Grammes ³, Yetneberk A. Kassaye ¹, Rémi Guédon ⁴, Catherine Lecomte-Pradine ⁴, Dag Anders Brede ¹

¹ Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway

² Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway

³ Centre for Integrative Genetics (CIGENE), Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1432, Ås, Akershus, Norway.

⁴ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France

*Corresponding author: erica.maremonti@nmbu.no

S. 1. Assessment of morphological and developmental effects

To examine radiation-induced morphological changes, at 72 hours of development from L1 stage, treated animals (n=10 per treatment) were anesthetized using 30 mM of NaN₃, placed onto 2% agarose pads, and observed using a semi-automated research light microscope (at 20X or 40X, phase-contrast optics) (Upright Microscope Leica DM6 B).

Adverse effects on the nematodes development were further evaluated by measuring the total body length of ten individuals per treatment every 24 hours from L1 stage and until 96 hours of exposure (**Table S.2** for dosimetry). For this purpose, treated nematodes were stained with 1 ml Rose Bengal ($0.3 \text{ g}\cdot\text{L}^{-1}$) at 80 °C for 10 min, according to ISO guideline (International Organization for Standardization, n. 10872, 2010) . NGM plates were finally stored at 4 °C and worms (n=10 per each treatment) were randomly imaged under a stereo microscope (Leica M205C, 10X magnification) coupled with a computer-connected camera. The body length was measured by using the Leica software, provided with an auto calibrated micrometer scale bar.

Chronic exposure to Gamma radiation induces minor dose rate-dependent effects on growth and development

In order to investigate toxicological and adverse phenotypic effects, synchronized L1 stage larvae were subjected to chronic gamma radiation exposure at dose rates ranging from 0.43 to 99.9 mGy·hr⁻¹ (**Table S.2**).

After 72 hours of irradiation from L1 stage, when nematodes were scored for morbid phenotypes, no obvious morphological alteration was detected in any of the exposed nematodes (**Fig. S.1.a**). However, analysis of nematodes irradiated at 99.9 mGy·hr⁻¹ for 96 hours, and for some individuals we observed vacuole-like structures occupying the space where the vulva cells should be (see **Fig S.1.a**, vulva), consistent with previously observations by Weidhaas et al. (2006).

Effects on growth were assessed in continuously exposed nematodes during development, by monitoring the body size every 24 hours from L1 molt to adult stage (96 hours). After 24 hours of irradiation the total body length of nematodes exposed to 99.9 mGy·hr⁻¹ showed to be significantly lower (9% reduction, Tukey *post hoc, p*-value < 0.05) in comparison to control nematodes (**Fig. 2**). A significant increase (9 and 11%) of the total body length was recorded at 0.43 and 1.1 mGy·hr⁻¹, respectively (Tukey *post hoc, p*-value < 0.05). These significant differences on the total body size were no longer observed at 48, 72 and 96 hours of exposure (p-value > 0.05), in comparison with non-irradiated nematodes when Tukey *post hoc test* was performed. Nevertheless, after 96 hours of irradiation there was a tendency towards reduced size, as nematodes exposed to 40.8 or 99.9 mGy·hr⁻¹ showed a reduction of 8% on their total body length, compared to control nematodes (Tukey *post hoc, p*-value < 0.1)(**Fig. S.1.b**).

No significant effects were found in nematodes exposed for a shorter period and at lower cumulative doses, when different stages of development were targeted (data not shown).

			Total dose (Gy)					
	Mortality - Morbidity - Reproduction experiments							
Dose rate (mGy∙hr ⁻¹)	62 hrs	0.75-2-4 hrs	Dose rate (mGy∙hr⁻¹)	192 hrs 43 hrs	143 hrs	13 hr:		
	Chronic	Acute		Sc.1	Sc.2	Sc.3	Sc.4	
0	0	0	0	0	0	0	0	
0.9	0.06	-	0.43	0.08	0.02	0.06	0.01	
3.6	0.23	-	1.1	0.21	0.05	0.16	0.01	
8.4	0.52	-	10.8	2.07	0.46	1.61	0.14	
37.4	2.32	-	40.8	7.83	1.75	6.08	0.53	
107.6	6.67	-	99.9	19.18	4.30	14.89	1.30	
227.9	14.13	-						
1410.6		1.06						
1435.3		2.87						
1490		5.96						

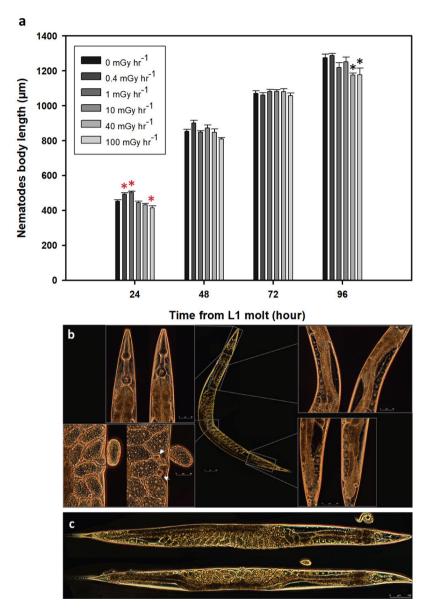
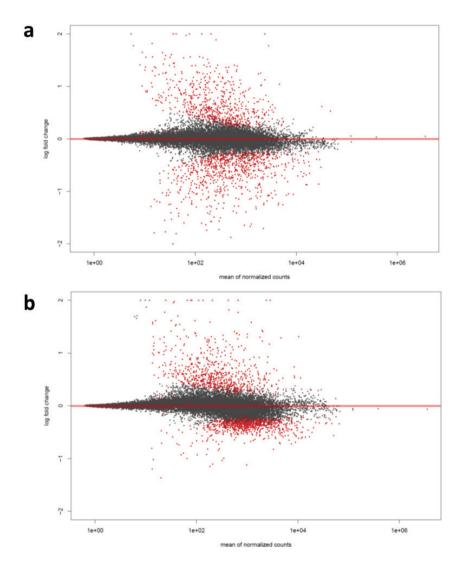

Table S.1. Dose-rates and total doses of exposure used for assessing mortality, morbidityand reprotoxic effects under different scenarios of exposure.

Table S.2. Dose-rates and total doses of exposure used for assessing effects on somaticgrowth under different scenarios of exposure.

		Total dose (Gy)						
Dose rate (mGy∙hr⁻¹)	Irradiation tim	Irradiation time during somatic growth experiment (hrs						
	24	48	72	96				
0	0.00	0.00	0.00	0.00				
0.43	0.01	0.02	0.03	0.04				
1.1	0.03	0.05	0.08	0.11				
10.8	0.26	0.52	0.78	1.04				
40.8	0.98	1.96	2.94	3.92				
99.9	2.40	4.80	7.19	9.59				


Table S.3. Dose-rates and total doses of exposure used for assessing germ-cell apoptosis, embryonic DNA-damage and effects on the progeny (F1) of irradiated nematodes, number of spermatids and gene expression in L4/young adult hermaphrodites.

	Apoptosis - Comet assay - Effects on F1 nematodes		perm count	Gene expression		
Dose rate (mGy∙hr⁻¹)	Total dose after 72 hrs (Gy)	Dose rate (mGy∙hr⁻¹)	Total dose after 72 hrs (Gy)	Dose rate (mGy∙hr⁻¹)	Total dose after 48 hrs (Gy)	
0	0.00	0	0	0	0	
0.43	0.03	-	-	-	-	
1.1	0.08	-	-	-	-	
10.8	0.78	8	0.58	8	0.38	
40.8	2.94	38.9	2.81	-	-	
99.9	7.19	100.9	7.26	100.9	4.84	

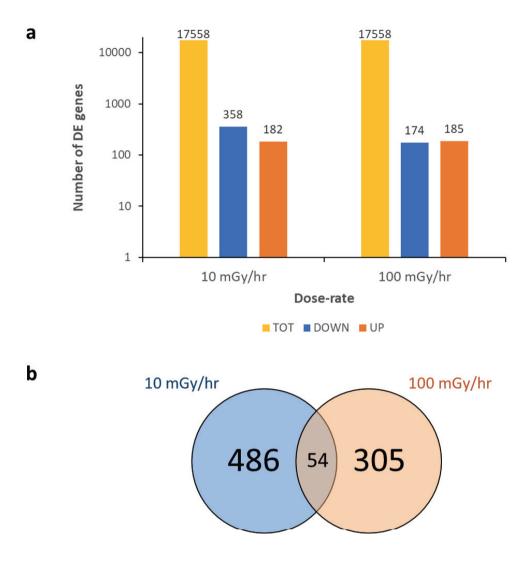


Figure S.1. a) Effects on somatic growth (total body length in µm) measured on nematodes exposed to chronic doses of ionizing radiation every 24 hours from L1 stage using a stereo microscope (Leica M205C) coupled with a computer-connected camera. Red and black asterisks indicate significant difference compared to control treatment at p-values <0.05 or <0.1 respectively. **b)** Morphological and developmental effects assessed in young adult hermaphrodites (middle) after 72 hours of exposure from L1 stage to chronic doses of ionizing radiation (Left: Control, Right: 100 mGy·hr-1) using a semi-automated research light microscope (from top-left: pharynx, anterior-posterior gonads and vulva, at 10X, 20X or 40X, phase-contrast optics, Scale bar 25, 50 or 100 µm). From Up-left micrographs of Pharynx, Anterior gonads, Posterior gonads and Vulva with laid embryo. White arrows

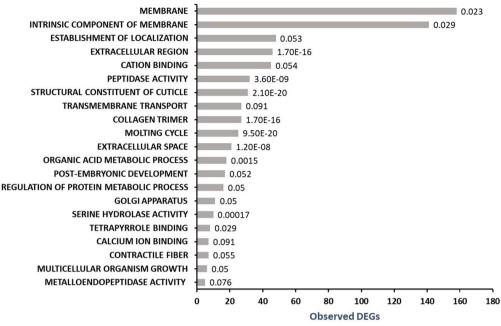

radiation (**UP**: Control, **Bottom**: 100 mGy·hr-1) using a semi-automated research light microscope (10X, phase-contrast optics, Scale bar 100 μ m).

Fig. S.2. MA plot of the total number of 1.75×10^3 genes resulting from 10 (a) and 100 mGy·hr⁻¹ (b) exposure groups compared to control. An average of 55 ± 12 million pair-end reads were mapped from both irradiated and non-irradiated groups. Red dots represent differentially expressed genes (DEGs) (FDR <0.05).

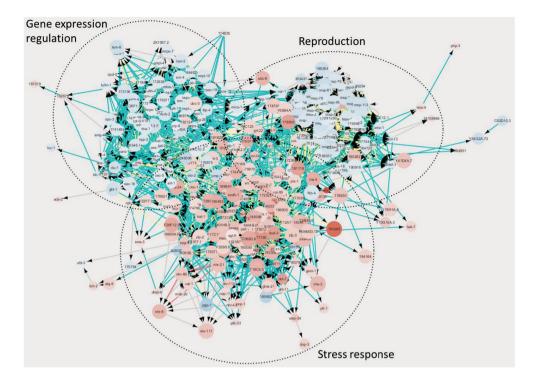


Figure S.3. a) Expressed and differentially expressed (DE) genes after 48 hours of exposure to 10 and 100 mGy·hr⁻¹. Threshold set to FC ± 1.2 and False Discovery Rate (FDR) <0.05. Total number of expressed genes (yellow), down-regulated genes (blue) and up-regulated genes (red). **b)** Venn diagram of common and unique sets of DEGs between two exposure treatments (10 and 100 mGy·hr⁻¹ in blue and orange respectively).

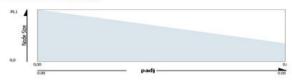
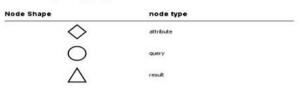
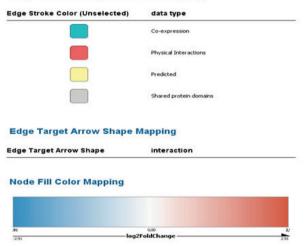
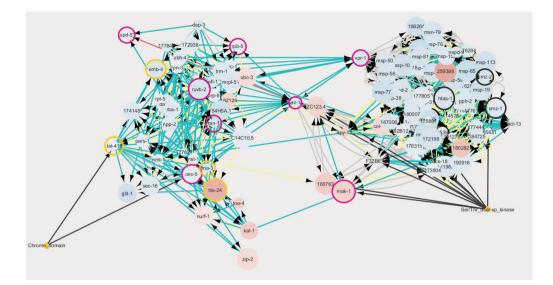


Figure S.4. Functional categories of over-represented Gene Ontology (GO) biological processes that were down regulated in *C. elegans* after 48 hours of exposure to 10 mGy·hr⁻¹ of gamma radiation. Hypergeometric probability distribution is adopted to measure the number of enriched terms (observed number of DEGs in each specific function). (Data labels indicate *q*-values).


9


Node Size Mapping


Node Shape Mapping

Edge Stroke Color (Unselected) Mapping

Figure S.5. Network analysis of 331 DEGs resulting from exposure to 100 mGy·hr⁻¹ of gamma radiation. Dotted line circles indicate separation into the three main subset gene networks identified by Genemania plug-in within the software Cytoscape.

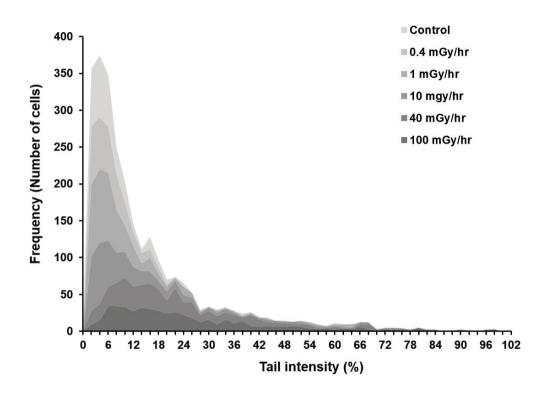
Node Size Mapping

AL 4		
8		
3		
0,00		0
0.00	padj	

Node Shape Mapping

Edge Stroke Color (Unselected) Mapping

Edge Stroke Color (Unselected)	data type	
	Co-expression	
	Physical Interactions	
	Predicted	
	Shared protein domains	


Edge Target Arrow Shape Mapping

Edge Target Arrow Shape	interaction


Node Fill Color Mapping

Figure S.6. Network analysis of genes involved in chromatin remodeling (yellow circles), spindle formation, gonad development (pink circles) and sperm meiosis/maturation (black circles) resulting from exposure to 100 mGy·hr⁻¹ of gamma radiation.

Figure S.7. Frequency of cell tail intensity distribution assessed via Comet assay in *C. elegans* embryos parentally irradiated to chronic doses of ionizing radiation.

Figure S.8. Principal Component Analysis of selected endpoints assessed after chronic exposure to gamma radiation in the nematode *C. elegans*, showing negative correlation between Reproduction/Sperm count, Apoptosis, Dose-rate and DNA damage and positive correlation between Reproduction and Sperm count.

Table S. 6. Total number of offspring per adult hermaphrodite (Mean \pm SE) measured after chronic or acute exposure to ionizing gamma radiation. Asterisk indicates significant difference from control treatment (*p*-value < 0.05).

Condition of irradiation				No. of l	arvae/in	dividual (Mean ± S	E)					
	0 mGy/hr	0.9 mGy/hr	3.6 mGy/hr	8.4 mGy/hr	37.4 mGy/hr	107.6 mGy/hr	227.9 mGy/hr	1410.6 mGy/hr	1435.3 mGy/hr	1490 mGy/hr			
Chronic	224.8 ± 9	208 ± 19	211 ± 13	214 ± 16	198 ± 16	128 ± 17*	88 ± 11*	-	-	-			
Acute	182 ± 19							195 ± 34	198 ± 14	214 ± 5			

Table S. 7. Total number of offspring per adult hermaphrodite (Mean \pm SE) measured after four different scenarios of exposure to chronic doses of ionizing radiation. Asterisk indicates significant difference from control treatment (*p*-value < 0.05).

Condition of irradiation	No. of larvae/individual (Mean ± SE)						
	0	0.43	1.1	10.8	40.8	99.9	
	mGy/hr	mGy/hr	mGy/hr	mGy/hr	mGy/hr	mGy/hr	
L1 - Adult	269 ± 16.6	240 ± 24	287 ± 7	279 ± 19	171 ± 15*	182 ± 10*	
L1 - Young L4	270 ± 16.6	234 ± 31	242 ± 10	275 ± 17	212 ± 18	175 ± 23*	
Young L4 - Adult	271 ± 16.6	249 ± 8	248 ± 15	292 ± 6	287 ± 5	291 ± 5	
L3 - Young L4	272 ± 16.6	285 ± 6	291 ± 8	283 ± 26	281 ± 8	269 ± 4	

Table S. 8. Number of spermatids per spermatheca (Mean) in young adult hermaphrodites(72 hours from L1 stage). Asterisk indicates significant difference compared to controltreatment (*p*-value <0.05).</td>

Dose-rate (mGy/hr)	Total dose (mGy)	No. of spermatids/spermatheca (Mean)	CI (95%)
0	0	60.95	4.68
8	0.58	67.47	5.27
38.9	2.81	40.38*	5.1
100.9	7.26	46.93*	5.46

Table S. 9. Total number of offspring per adult hermaphrodite (Mean \pm SE) and total body length (Mean \pm SE), measured in F1 nematodes parentally irradiated to different dose-rate of ionizing gamma radiation. Asterisk indicates significant difference from control treatment (*p*-value < 0.05).

Dose-rate (mGy/hr)	No. of larvae/individual (Mean)	SE	Total body length (mm)	SE
0	295.6	22.6	1.462	0.03
0.43	298.0	35.8	1.357*	0.03
1.1	295.7	9.7	1.3015*	0.03
10.8	287.6	12.9	1.2955*	0.01
40.8	269.9	14.5	1.3512*	0.01
99.9	272.6	19.9	1.3037*	0.02

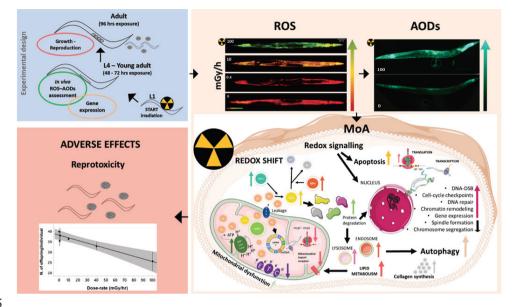
References

- International Organization for Standardization *(ISO)* 2010. Water quality—Determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of *Caenorhabditis elegans(Nematoda)* 10872:2010.
- WEIDHAAS, J., EISENMANN, D., HOLUB, J. & NALLUR, S. 2006. A Caenorhabditis elegans tissue model of radiation-induced reproductive cell death. Proceedings of the National Academy of Sciences, 103, 9946-9951.

Pathway analysis	Ensamble ID	Gene name	Annotation	q-value	log₂FC
Cuticle-Collagen					
	WBGene00000749	col-176	COLlagen	0.029421212	-1.356262716
	WBGene00000606	col-17	COLlagen		-1.049929221
	WBGene00000649	col-73	COLlagen		-0.842774792
	WBGene00000683	col-109	COLlagen	0.000114273	-0.83545642
	WBGene00000639	col-63	COLlagen	0.005213502	-0.83070014
	WBGene00000684	col-110	COLlagen		-0.807077269
	WBGene00000625	col-48	COLlagen		-0.702528432
	WBGene00000672	col-97	COLlagen	0.010997706	-0.69997479
	WBGene00000711	col-138	COLlagen	0.019832004	
	WBGene00000626	col-49	COLlagen		-0.667666949
	WBGene00000755	col-182	COLlagen	0.022920046	-0.60784418
	WBGene00000748	col-175	COLlagen	0.009758625	-0.594351121
	WBGene00000742	col-169	COLlagen	0.049574492	-0.571543661
	WBGene00000615	col-38	COLlagen	0.039723735	-0.501625924
	WBGene00022591	cuti-1	CUTicle and epithelial Integrity		-1.030034295
	WBGene00005018	sqt-3	Cuticle collagen 1		-1.232519516
	WBGene00000599	col-10	Cuticle collagen 10		-0.512417659
	WBGene00004398	rol-8	Cuticle collagen 6		-1.217906086
	WBGene00000251	bli-1	Cuticle collagen bli-1		-1.661494223
	WBGene00001064	dpy-2	Cuticle collagen dpy-2		-1.549680081
	WBGene00001067	dpy-5	Cuticle collagen dpy-5		-0.679075962
	WBGene00001069	dpy-7	Cuticle collagen dpy-7		-1.328328985
	WBGene00003057	lon-3	Cuticle collagen Ion-3	5.42E-11	-1.718550619
	WBGene00005016	sqt-1	Cuticle collagen sqt-1	1.54E-06	-1.253553104
	WBGene00013960	cutl-8	CUTiclin-Like	0.005686441	-0.8094778
	WBGene00011888	cutl-15	CUTiclin-Like	3.63E-05	-0.70548195
	WBGene00017351	cutl-5	CUTiclin-Like		-0.546270686
	WBGene00001065	dpy-3	DumPY: shorter than wild-type		-1.602607707
	WBGene00001073	dpy-3 dpy-11	DumPY: shorter than wild-type		-0.966704484
Franciski to to		99-11		0.00.700000	
Energy Metabolism					
	WBGene00000928	dao-2	Dauer or Aging adult Overexpression		-1.649412217
	WBGene00000930	dao-4	Dauer or Aging adult Overexpression		-1.045818187
	WBGene00000929	dao-3	Dauer or Aging adult Overexpression	0.000841848	-0.595404862
	WBGene00003254	mig-23	Nucleoside-diphosphatase mig-23	0.023420205	-0.389694104
	WBGene00003731	nhx-3	Probable Na(+)/H(+) antiporter nhx-3	0.000367636	0.85194663
	WBGene00007848	cytb-5.1	Cytochrome B	0.047499527	-0.411655567
	WBGene00007942	idh-2	Isocitrate dehydrogenase [NADP]	0.007187994	
	WBGene00018682	aagr-4	Acid Alpha Glucosidase Relate		-1.003473152
	WBGene00020307				-0.650920054
		T07D3.4	Orthologous to the human gene, Fukutin		
	WBGene00020491	T13G4.4	Predicted to have metal ion binding activity and methyltransferase activity		-0.451192387
	WBGene00007964	cyp-25A2	CYtochrome P450 family		-1.180958277
	WBGene00008564	acox-1.1	Acyl-coenzyme A oxidase	0.013989087	-0.696593952
	WBGene00008732	F13B12.4	Putative pyridoxal-phosphate dependent protein F13B12.4	0.001302026	-0.693569176
	WBGene00010924	M153.1	Predicted to have pyrroline-5-carboxylate reductase activity	0.017381287	-0.512893305
	WBGene00013585	cyp-42A1	CYtochrome P450 family	0.017473063	-0.98009234
	WBGene00015894	acdh-2	Acyl CoA DeHydrogenase	0.005328346	1.099522227
	WBGene00019967		CYtochrome P450 family		0.797419283
	WBGene00020107	cyp-33C8 R151.2	Orthologous to the human gene PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE 1	0.043796666	
	WBGene00020215	T04G9.4	Orthologous to the human gene, Fukutin		-0.649231368
	WBGene00077701	poml-3	PON (paraoxonase) and MEC-6 Like	0.041533638	0.532087931
Aetabolism of proteins					
	WBGene00004270	rab-6.2	Ras-related protein Rab-6.2	0.008007338	-0.4692537
	WBGene00015734	copd-1	Probable coatomer subunit delta	0.026207217	-0.427236613
	WBGene00009674	nucb-1	NUCleoBindin homolog	0.009189867	-0.452734267
	WBGene00007507	C10C5.3	Aminoacylase	0.026847049	0.866689785
	WBGene00004025	phy-2	Prolyl 4-hydroxylase subunit alpha-2		-0.765982128
	WBGene00008435		Putative glutaminase 2	0.042993653	0.457614431
		glna-2		0.042993653 1.40E-05	-0.68167274
			Probable phosphoserine aminotransferase		
	WBGene00009177	F26H9.5		7.44E-05	-1.080973304
	WBGene00011938	alh-13	Glutamate 5-kinase		
	WBGene00011938 WBGene00016201	alh-13 tdo-2	Tryptophan 2.3-dioxygenase	1.22E-05	-0.86595332
	WBGene00011938 WBGene00016201 WBGene00022176	alh-13 tdo-2 Y71H2AM.11	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity	0.042279569	-0.425409751
	WBGene00011938 WBGene00016201	alh-13 tdo-2	Tryptophan 2.3-dioxygenase	0.042279569	
	WBGene00011938 WBGene00016201 WBGene00022176	alh-13 tdo-2 Y71H2AM.11	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2	0.042279569	-0.425409751 -0.735218489
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00002065	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase	0.042279569 0.000874492 0.040431999	-0.425409751 -0.735218489 -0.441478504
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00002065 WBGene00008547	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4	0.042279569 0.000874492 0.040431999 0.01732802	-0.425409751 -0.735218489 -0.441478504 -0.460011681
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene0000265 WBGene00008547 WBGene00003497 WBGene00003497	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00002065 WBGene00008547 WBGene00003703 WBGene00007703 WBGene00003963	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene0002065 WBGene00003647 WBGene00003497 WBGene00003963 WBGene00003963	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2	Tryptophan 2.3-dioxygenase Predicted to have dipelidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378
	WBGene00011938 WBGene00018201 WBGene00022176 WBGene0000847 WBGene00003497 WBGene00003493 WBGene00003493 WBGene00001169	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene0002065 WBGene00003647 WBGene00003497 WBGene00003963 WBGene00003963	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1 acn-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guaryl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive angiotensin-converting enzyme-related protein	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378
	WBGene00011938 WBGene00018201 WBGene00022176 WBGene0000847 WBGene00003497 WBGene00003493 WBGene00003493 WBGene00001169	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973 0.000902991 0.002156267	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832 -0.839263639 -0.638213739
	WBGene00011938 WBGene00022176 WBGene00022176 WBGene0000265 WBGene00008547 WBGene00003963 WBGene00003963 WBGene00001169 WBGene00001646	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1 acn-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guaryl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive angiotensin-converting enzyme-related protein	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973 0.000902991 0.002156267	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832 -0.839263639
	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00022176 WBGene00003497 WBGene00003497 WBGene00003497 WBGene00001169 WBGene00001646 WBGene00001653	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1 acn-1 F47B7.2	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Suffrydri) oxidase	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.00025697 0.00025991 0.002156267 0.005903339	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832 -0.839263639 -0.638213739
Metabolism of lipids	WBGene00011938 WBGene002176 WBGene00022176 WBGene00022176 WBGene00003847 WBGene00003497 WBGene00003983 WBGene00001846 WBGene0001646 WBGene00018453	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdf-2 eef-1A.2 gna-1 acn-1 F47B7.2 sec-22	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sulfitydryl oxidase Yeast SEC homolog	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.00025697 0.00025991 0.002156267 0.005903339	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832 -0.839263639 -0.638213739 -0.638213739
Metabolism of lipids	WBGene0011938 WBGene00022176 WBGene00022176 WBGene0002085 WBGene0000547 WBGene00003497 WBGene0001985 WBGene0001169 WBGene0001165 WBGene0001853 WBGene0001853 WBGene0001853	alh-13 tdo-2 Y7H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 gna-1 acn-1 acn-1 F47B7.2 sec-22 pdi-6	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1: is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sufflydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973 0.000902991 0.002156287 0.005903339 0.025089958	-0.425409751 -0.735218489 -0.441478504 -0.460011881 -0.382249522 -0.6789882858 -0.758994378 -0.880123832 -0.839263639 -0.638213739 -0.638259607 -0.509474836
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene0002065 WBGene0000547 WBGene00003497 WBGene0000149 WBGene0001169 WBGene0001646 WBGene00016533 WBGene00016853 WBGene00016853 WBGene00016934	alh-13 tdo-2 Y7H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdf-2 eef-1A.2 gna-1 aon-1 F47B7.2 sec-22 gnd-6 mboa-3	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmenbrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamire 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Suthrypt/ oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT	0.042279569 0.000874492 0.040431999 0.01732802 0.01732802 0.019506875 0.048610242 0.000256973 0.002902991 0.002156287 0.0025089958 0.025089958	-0.425409751 -0.735218489 -0.441478504 -0.460011681 -0.382349522 -0.67898258 -0.758994378 -0.839213832 -0.638213739 -0.638253639 -0.638213739 -0.638259607 -0.509474836
Metabolism of lipids	WBGene00011938 WBGene002176 WBGene00022176 WBGene0002065 WBGene00003497 WBGene00003963 WBGene00003963 WBGene0001646 WBGene0001645 WBGene00016853 WBGene0016853 WBGene0016853	alh-13 tdo-2 Y7H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 pdi-2 eef-1A.2 gna-1 F47B7.2 sec-22 pdi-6 mboa-3 agmo-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sufflydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Akydglycord monoxygenase	0.042279569 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.00266873 0.00266873 0.00256893339 0.025089958 0.025089958	-0.425409751 -0.735218489 -0.451078504 -0.450011681 -0.382349522 -0.678982858 -0.758994378 -0.880123832 -0.880258659 -0.6885123739 -0.688659607 -0.559474836 -0.511462334 -0.511462334
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00022176 WBGene00002547 WBGene0000547 WBGene00003963 WBGene00003963 WBGene00001646 WBGene00015533 WBGene00015833 WBGene0001588 WBGene0001588 WBGene00016934 WBGene00016934 WBGene0001893 WBGene0001893 WBGene0001984	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 gdf-1 gdf-1 gdf-1 gdf-1 acn-1 F47B7.2 gca-1 acn-1 F47B7.2 gc-22 pdi-6 mboa-3 agmo-1 art-1	Tryptophan 2.3-dioxygenase Predicted to have dipidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Suffhydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyl transferase. MBOAT Akydjycord Innoxoygenase Probable very-long-chain enoyl-CoA reductase art-1	0.042279669 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.04861024 0.0002697 0.000902991 0.002156267 0.00590339 0.025089958 0.0229615679 6.66E-05 0.022227467	-0.425409751 -0.735218489 -0.451478504 -0.460011881 -0.382349522 -0.6739824552 -0.673982455 -0.758994378 -0.880123832 -0.638213739 -0.638213739 -0.638259607 -0.509474836 -0.511462334 -0.511462334 -0.579081913 -0.579081913
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00022176 WBGene00003847 WBGene00003963 WBGene00003963 WBGene00001863 WBGene0001646 WBGene00016853 WBGene00018653 WBGene00018653 WBGene00016853	alh-13 tdo-2 tdo-2 tdo-2 tdo-2 tf-2 F07A11.4 mup-4 gpt-1 pdi-2 gpt-1 acn-1 acn-1 sec-22 pdi-6 mboa-3 agmo-1 art-1 pyr-1	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 5-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sulfhydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Akydglycerol monocxygenase Probable very-long-chain encyl-CAA reductase art-1 Glutamine-dependent carbamoy-phosphate synthase	0.042279669 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973 0.000902991 0.002165267 0.005903339 0.025089958	-0.425409751 -0.75218489 -0.451078504 -0.460011881 -0.382249522 -0.678982858 -0.75894378 -0.880123832 -0.8392263639 -0.638213739 -0.6382659607 -0.59474836 -0.511462334 -0.579081913 -0.3679081913 -0.367968523
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00022176 WBGene00002547 WBGene0000547 WBGene00003963 WBGene00003963 WBGene00001646 WBGene00015533 WBGene00015833 WBGene0001588 WBGene0001588 WBGene00016934 WBGene00016934 WBGene0001893 WBGene0001893 WBGene0001984	alh-13 tdo-2 Y71H2AM.11 iff-2 F07A11.4 mup-4 gbf-1 gdf-1 gdf-1 gdf-1 gdf-1 acn-1 F47B7.2 gca-1 acn-1 F47B7.2 gc-22 pdi-6 mboa-3 agmo-1 art-1	Tryptophan 2.3-dioxygenase Predicted to have dipidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Suffhydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyl transferase. MBOAT Akydjycord Innoxoygenase Probable very-long-chain enoyl-CoA reductase art-1	0.042279669 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.000256973 0.000902991 0.002165267 0.005903339 0.025089958	-0.425409751 -0.735218489 -0.451478504 -0.460011881 -0.382349522 -0.6739824552 -0.673982455 -0.758994378 -0.880123832 -0.638213739 -0.638213739 -0.638259607 -0.509474836 -0.511462334 -0.511462334 -0.579081913 -0.579081913
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00020165 WBGene0000547 WBGene0000547 WBGene00003487 WBGene00001169 WBGene00015483 WBGene0001543 WBGene0001543 WBGene0001543 WBGene0001543 WBGene00015483 WBGene00015188 WBGene00001518 WBGene0000077701	alh-13 tolo-2 YTH2AM.11 YTH2AM.11 F07A11.4 mup.4 g0f-1 pdi-2 g0a-1 acn-1 acn-1 F47B7.2 g0a-1 acn-1 F47B7.2 g0a-3 agmo-1 art-1 pyr-1 pom1-3	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sufflwydr oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog	0.042279669 0.000874492 0.040431999 0.01732802 0.035761966 0.019606875 0.048610242 0.00026903 0.000902991 0.002156267 0.00590333 0.025089958 0.025089958 0.0229615679 6.66E-05 0.022227467 0.010762796	-0.4254(99751 -0.735218489 -0.441478504 -0.382349522 -0.382349522 -0.382349522 -0.37589842858 -0.382349522 -0.678984285 -0.638213739 -0.638213739 -0.638213739 -0.6382659607 -0.5598474836 -0.5514462334 -0.557081913 -0.324921045 -0.6532087931
Metabolism of lipids	WBGene00011938 WBGene00016201 WBGene00022176 WBGene00022176 WBGene0002176 WBGene00003065 WBGene00003497 WBGene00001646 WBGene0001645 WBGene0001645 WBGene0001645 WBGene00016453 WBGene00016453 WBGene00016453 WBGene00016453 WBGene00016453 WBGene00016453 WBGene00016934 WBGene00017210 WBGene0001854 WBGene000198 WBGene000198 WBGene00019834 WBGene00019854 WBGene0005564	alh-13 tot42 Y71H2AM.11 iff-2 F07A114 pdi-2 gbf-1 ach-1A.2 gna-1 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-1A.2 gna-1 ach-	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate h-acetyltransferase Inactive anglotensin-converting enzyme-related protein Suffrytryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Alkyldycord monocoygenase Probable very-long-chain encyl-CoA reductase art-1 Glutamise-dependent carbamoly-phosphate synthase PON (pranoxonase) and MEC-6 Like Acyl-coenzyme A oxidase	0.042279669 0.000874492 0.040431999 0.01732802 0.035761986 0.049610242 0.000256973 0.000902991 0.002166287 0.005903339 0.025089958 0.0229615679 6.66E-05 0.022227467 0.010762786 0.041533638 0.013989087	-0.4254(99751 -0.735218489 -0.41478504 -0.450011681 -0.382249522 -0.678982585 -0.382249522 -0.678982583 -0.880123832 -0.638213739 -0.638213739 -0.638253739 -0.538459607 -0.50474836 -0.579001913 -0.524221045 -0.52421045 -0.656956823 -0.638552
Metabolism of lipids	WBGene00011938 WBGene000122176 WBGene00022176 WBGene0002176 WBGene0000547 WBGene0000547 WBGene00001847 WBGene0001847 WBGene00018483 WBGene00018533 WBGene00018833 WBGene0001168 WBGene0001168 WBGene0001168 WBGene0001168 WBGene0001168 WBGene0001168 WBGene0001168 WBGene0001168 WBGene00017168 WBGene00017701 WBGene00004259 WBGene000077701 WBGene00006607 WBGene00006607	alh-13 tdo-2 Y7/H2AM.11 iff-2 F07A114 pdf-1 pdf-2 gna-1 acr-1 F47B7.2 sec-22 pdf-6 gmo-3 agmo-1 art-1 porf-3 acox-1.1 F09B12.3	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive anglotensin-converting enzyme-related protein Sufflydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Akylglycerol monooxygenase Probable very-long-chain encyl-CAA reductase art-1 Glutamine-dependent carbanoy-phosphate synthase PON (paraoxonase) and MEC-6 Like Acyl-coerzyme A oxidase PUative phosphates 2	0.042279569 0.000874492 0.040431999 0.01732802 0.035761996 0.048610242 0.000266973 0.00256973 0.002508958 0.02508958 0.02208958 0.02208958 0.022027467 0.010762796 0.041533638 0.013989087 0.02731574	0.4254(99751 0.735218489 0.441478504 0.382349522 0.382349522 0.6758982585 0.638249378 0.839243639 0.638243739 0.638254374 0.6382547339 0.638259607 0.559474836 0.5514462334 0.551462334 0.657966923 0.652087931 0.683799095
Metabolism of lipids	WBGene00011938 WBGene000122176 WBGene00022176 WBGene00022176 WBGene0002857 WBGene0000547 WBGene00003497 WBGene0000169 WBGene000169 WBGene0001646 WBGene0001648 WBGene0001648 WBGene0001648 WBGene0001648 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001883 WBGene0001883 WBGene0001883 WBGene0001883 WBGene000188 WBGene00077701 WBGene00077701 WBGene0007864 WBGene0007864 WBGene0007864	alh-13 tio-2 Y71H2AM.11 iff-2 F07A114 pdf-2 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 gbf-	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive angiotensin-converting enzyme-related protein Sulfhydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Alkydjoverol monocxygenase Probable very-hong-chain encyl-coA reductase art-1 Glutamine-dependent carbamoyl-phosphate synthase PON (paraoxonase) and MEC-6 Like Aoyl-conzyme A oxidase Putative phospholipase B-like 2 Cytochrom P450 family	0.042279669 0.000874492 0.040431999 0.01732802 0.035761986 0.01960875 0.048610242 0.000256973 0.000902991 0.002166267 0.005903339 0.025089958 0.025089958 0.022027467 0.010762796 0.041533638 0.013989087 0.027361574 0.027361574	-0.4254(99751 -0.735218489 -0.441478504 -0.480011881 -0.382249522 -0.678982858 -0.382249522 -0.678982858 -0.880123832 -0.638213739 -0.638213739 -0.638259807 -0.50474836 -0.511462334 -0.57906193 -0.324921045 -0.632047831 -0.63290495 -0.63299995 -0.63299995
Metabolism of lipids	WBGene0011938 WBGene000122176 WBGene00022176 WBGene00022176 WBGene0000547 WBGene0000547 WBGene0000547 WBGene00001847 WBGene00001847 WBGene000018483 WBGene00001883 WBGene0001583 WBGene0001584 WBGene0003564 WBGene0003864 WBGene0003864 WBGene0003864 WBGene00031897	ah-13 tdo-2 Y7/H2AM.11 iff-2 F07A114 mup-4 gbf-1 pdi-2 gna-1 acn-1 acn-1 acn-1 acn-1 acn-1 acm-3 acgmo-1 acgmo	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal on binding activity Eukaryotic translation initiation factor SA-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acelyltransferase Inactive anglotensin-converting enzyme-related protein Sufflydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyl transferase. MBOAT Aikylglycorol monocxygenase Probable very-long-chain encyl-CA reductase art-1 Glutamine-dependent carbamoy-phosphate synthase PON (paraoxonase) and MEC-6 Like Acyl-coenzyme A oxidase PLative phospholipase B-like 2 Cytochrome P450 family Putative sphopiolipid detta(4)-desaturase/C4-monooxygenase	0.042279659 0.000874492 0.000874492 0.01732802 0.035761996 0.01960875 0.048610242 0.000266973 0.00590291 0.0025089958 0.025089958 0.022045579 0.66E-05 0.02227467 0.010762796 0.01762796 0.01762736 0.014533638 0.013989087 0.027315174 1.99E-05 0.027041389	-0.425409751 -0.735218489 -0.441478504 -0.450011881 -0.382349522 -0.678982858 -0.68922858 -0.68924378 -0.839243639 -0.63924378 -0.63924378 -0.63924378 -0.599474836 -0.57904783 -0.57904783 -0.657906923 -0.667966923 -0.683799095 -1.180958277 -0.3377943661
Metabolism of lipids	WBGene00011938 WBGene000122176 WBGene00022176 WBGene00022176 WBGene0002857 WBGene0000547 WBGene00003497 WBGene0000169 WBGene000169 WBGene0001646 WBGene0001648 WBGene0001648 WBGene0001648 WBGene0001648 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001693 WBGene0001883 WBGene0001883 WBGene0001883 WBGene0001883 WBGene000188 WBGene00077701 WBGene00077701 WBGene0007864 WBGene0007864 WBGene0007864	alh-13 tio-2 Y71H2AM.11 iff-2 F07A114 pdf-2 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 pdf-3 gbf-1 gbf-	Tryptophan 2.3-dioxygenase Predicted to have dipeptidase activity and metal ion binding activity Eukaryotic translation initiation factor 5A-2 Ubiquitin carboxyl-terminal hydrolase Transmembrane matrix receptor MUP-4 Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity Protein disulfide-isomerase 2 Elongation factor 1-alpha Glucosamine 6-phosphate N-acetyltransferase Inactive angiotensin-converting enzyme-related protein Sulfhydryl oxidase Yeast SEC homolog Protein disulfide-isomerase A6 homolog Membrane Bound O-Acyt transferase. MBOAT Alkydjoverol monocxygenase Probable very-hong-chain encyl-coA reductase art-1 Glutamine-dependent carbamoyl-phosphate synthase PON (paraoxonase) and MEC-6 Like Aoyl-conzyme A oxidase Putative phospholipase B-like 2 Cytochrom P450 family	0.042279669 0.000874492 0.04031999 0.01732802 0.035761966 0.01960875 0.048610242 0.000266973 0.000266973 0.000266973 0.0025089958 0.025089958 0.025089958 0.022027467 0.010762796 0.045153638 0.013989087 1.99E-05 0.027241389 0.020741389	-0.4254(99751 -0.735218489 -0.441478504 -0.480011881 -0.382249522 -0.678982858 -0.382249522 -0.678982858 -0.880123832 -0.638213739 -0.638213739 -0.638259807 -0.50474836 -0.511462334 -0.57906193 -0.324921045 -0.632047831 -0.63290495 -0.63299995 -0.63299995

	WBGene00000198	art-1	Probable very-long-chain enoyl-CoA reductase art-1	0.022227467	0 224021045
Biological oxidation	WBGeneodooriss	dit-i		0.022221401	-0.324921043
Biological oxidation					
	WBGene00001775	gst-27	Glutathione S-Transferase	0.019860851	-0.49934459
	WBGene00019967	cyp-33C8	CYtochrome P450 family	0.003703653	0.797419283
	WBGene00013585	cyp-42A1	CYtochrome P450 family	0.017473063	-0.98009234
	WBGene00001790	gst-42	Probable maleylacetoacetate isomerase		-0.579469882
	WBGene00007964	cyp-25A2	Cytochrome P450 family	1.99E-05	-1.180958277
	WBGene00007507	C10C5.3	Aminoacylase	0.026847049	0.866689785
	WBGene00013263	txdc-12.1	ThioredoXin Domain Containing protein homolog		-1.044322973
	WBGene00018656	txdc-12.2	ThioredoXin Domain Containing protein homolog	0.002596175	-1.010094036
	WBGene00007848	cytb-5.1	Cytochrome B	0.047499527	-0.411655567
	WBGene00022176	Y71H2AM.11	Predicted to have dipeptidase activity and metal ion binding activity	0.042279569	-0.425409751
lutathione metabolism					
	WBGene00012416	Y7A9A.1	Predicted to have glutathione hydrolase activity		-0.660250459
	WBGene00001775	gst-27	Glutathione S-Transferase	0.019860851	-0.49934459
	WBGene00001790	gst-42	Probable maleylacetoacetate isomerase	0.005935935	
	WBGene00007942	idh-2	Isocitrate dehydrogenase [NADP]		-0.504615694
	WBGene00013263	txdc-12.1	ThioredoXin Domain Containing protein homolog	8.34E-05	-1.044322973
Arginine and Proline metabolism					
motaboliom	WBGene00004025	phy-2	Prolyl 4-hydroxylase subunit alpha-2	0.010208732	-0.765982128
	WBGene00010924	M153.1	Predicted to have pyrroline-5-carboxylate reductase activity	0.017381287	
	WBGene00011938	alh-13	Glutamate 5-kinase		-1.080973304
	WBGene00022076	daao-1	D-amino-acid oxidase		1.221635327
Enden to -!-	**S 361600022070	uddu-1		5.07 E=00	
Endocytosis					
	WBGene00007703	gbf-1	Ortholog of human GBF1; is predicted to have ARF guanyl-nucleotide exchange factor activity		-0.382349522
	WBGene00000157	aps-2	AP complex subunit sigma	0.047092712	
	WBGene00000161	apa-2	AP-2 complex subunit alpha	0.006097248	-0.459154019
Homeostasis					
	WBGene00011102	R07E3.1	Predicted to have cysteine-type peptidase activity	0.011928966	-0.579331727
	WBGene00000778	cpn-2	Transgelin		-0.908390631
	WBGene00018533	F47B7.2	Sulfhydryl oxidase		-0.638213739
	WBGene00003930				-0.638213739 -0.333806379
Insurance	***************************************	pat-3	Integrin beta pat-3	0.0000002004	0.00000010
Immune system					
	WBGene00004270	rab-6.2	Ras-related protein Rab-6.2	0.008007338	-0.4692537
	WBGene00011112	R07E5.4	Predicted to have Gamma interferon inducible lysosomal thiol reductase GILT domain		-0.328449654
	WBGene00010681	mak-1	MAP kinase-activated protein kinase mak-1	0.001210994	0.568135885
	WBGene00011000	R03G8.6	Aminopeptidase	0.020735016	0.51371417
	WBGene00008284	C53D6.7	Galectin	0.033724619	0.563490853
	WBGene00005078	src-2	Tyrosine protein-kinase src-2		-0.709847836
	WBGene00020465	T12E12.6	Predicted to have metallopeptidase activity and zinc ion binding activity	0.019021401	-1.51757324
	WBGene00003930	pat-3	Integrin beta pat-3		-0.333806379
	WBGene00001169	eef-1A.2	Elongation factor 1-alpha		-0.758994378
	WBGene00000778	cpn-2	Transgelin		-0.908390631
	WBGene00007605				-0.758188683
		hrg-7 C11H1.3	Heme Responsive Gene	0.009761102	
	WBGene00007529		Predicted to have ubiquitin-protein transferase activity		
	WBGene00014053	ZK669.3	GILT-like protein ZK669.3	9.19E-05	1.065458083
	WBGene00018533	F47B7.2	Sulfhydryl oxidase	0.002156267	
Oleval taxa di si	WBGene00013197	ttm-5	Putative sphingolipid delta(4)-desaturase/C4-monooxygenase	0.027041389	-u.377943661
Signal transduction					
	WBGene00000116	alh-10	ALdehyde deHydrogenase		-0.477796164
	WBGene00010681	mak-1	MAP kinase-activated protein kinase mak-1	0.001210994	0.568135885
	WBGene00009059	chw-1	CHp/Wrch Rho-like protein homolog		-0.492526261
	WBGene00012186	mlt-11	Predicted to have serine-type endopeptidase inhibitor activity		-1.105389286
	WBGene00000161	apa-2	AP-2 complex subunit alpha	0.006097248	
	WBGene00006367	sym-2	RNA-binding protein sym-2		-0.393475323
	WBGene00004210	ptc-3	Protein patched homolog 3	1.10E-05	-0.98922291
	WBGene00005078	src-2	Tyrosine protein-kinase src-2	0.004028965	-0.709847836
	WBGene00013585	cyp-42A1	Cytochrome P450 family	0.017473063	-0.98009234
	WBGene00003930	pat-3	Integrin beta pat-3		-0.333806379
	WBGene00018547	clec-78	C-type LECtin	0.038658657	-0.725883807
	WBGene00000157	aps-2	AP complex subunit sigma	0.047092712	-0.37633588
Peroxisome					
	WBGene00007942	idh-2	Isocitrate dehydrogenase [NADP]	0.007187994	-0.504615694
	WBGene00008564	acox-1.1	Acyl-coenzyme A oxidase	0.013989087	
	WBGene00022076	daao-1	D-amino-acid oxidase	3.07E-05	1.221635327
esponse to pathogens					
	WBGene00009096	fipr-1	FIP (Fungus-Induced Protein) Related	0.009761102	0.97620127
	WBGene00008245	fipr-10	FIP (Fungus-Induced Protein) Related	0.004335349	1.319133771
	WBGene00010183	fipr-13	FIP (Fungus-Induced Protein) Related	0.04680313	0.870697563
	WBGene00010183 WBGene00009097			0.04680313	0.870697563
		fipr-2	FIP (Fungus-Induced Protein) Related		
	WBGene00007989	fipr-22	FIP (Fungus-Induced Protein) Related	0.035761966	0.806967999
	WBGene00009090	fipr-3	FIP (Fungus-Induced Protein) Related	0.012842431	0.982508393
	WBGene00007541	fipr-4	FIP (Fungus-Induced Protein) Related	0.00412602	1.31346106
	WBGene00044174	fipr-5	FIP (Fungus-Induced Protein) Related	9.65E-05	1.234043356
	WBGene00007544	fipr-6	FIP (Fungus-Induced Protein) Related	0.041533638	0.993062156
	WBGene00007543	fipr-7	FIP (Fungus-Induced Protein) Related	0.049750793	0.820568788
	WBGene00007537	fipr-8	FIP (Fungus-Induced Protein) Related	0.024613984	0.879130513
			r n (r angas maalood i lotelli) Nelatod	0.024013304	0.010100010
	WBGene00044175	fipr-9	FIP (Fungus-Induced Protein) Related	0.008007338	1.177600384

	Ensamble ID	Gene name	Annotation	q-value	log ₂ FC
Sperm Cytoskeletal structural proteins					
	WBGene00007714	C25D7,1	Major sperm protein	0.0173359	-0.42462
	WBGene00018840	F58A6.9	Major sperm protein	0.0087362	-0.656501
	WBGene00009682	msd-2	Major Sperm protein Domain containing	0.0035314	
	WBGene00003468	msp-113	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0010018	
	WBGene00003470	msp-152	Major sperm protein 152	0.0131545	-0.43782
	WBGene00003426 WBGene00003429	msp-19 msp-31	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142 Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0002551 0.0159394	
	WBGene00003431	msp-33	Major sperm protein 133 140/43/30/3 1/33/33/0 1/03/6 1/113/142	0.0188356	
	WBGene00003432	msp-36	Major sperm protein 10/36/56/76	0.0457516	
	WBGene00003434	msp-38	Major sperm protein 38	0.0061242	
	WBGene00003435	msp-40	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0387605	-0.355356
	WBGene00003438	msp-45	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0091287	
	WBGene00003442	msp-49	Major sperm protein 49	0.0217256	
	WBGene00003443	msp-50	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0089973	
	WBGene00003444	msp-51	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0006118	-0.606367
	WBGene00003446 WBGene00003448	msp-53 msp-55	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142 Major sperm protein 55/57	4.72E-06 1.90E-06	-0.679666
	WBGene00003449	msp-56	Major sperm protein 10/36/56/76	0.0056099	
	WBGene00003450	msp-57	Major sperm protein 55/57		-0.704053
	WBGene00003452	msp-59	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0002551	
	WBGene00003458	msp-65	Major sperm protein 19/31/40/45/50/51/53/59/61/65/81/113/142	0.0002912	
	WBGene00003463	msp-76	Major sperm protein 10/36/56/76	0.0030554	-0.502776
	WBGene00003464	msp-77	Major sperm protein 77/79	0.0001117	
	WBGene00003465	msp-78	Major sperm protein 78	0.0148364	
	WBGene00003466	msp-79	Major sperm protein 77/79	0.0020472	
	WBGene00003467	msp-81	Major Sperm Protein	0.0077619	
	WBGene00006039	ssp-10	Sperm-specific class P protein 10	0.0002003	
	WBGene00010091 WBGene00006056	ssp-35 sss-1	Sperm Specific family, class P Sperm-Specific family, class S	0.0151902 8.80E-05	-0.40244 -0.546967
	WBGene00018008	vpr-1	Major sperm protein	0.0249191	
	WBGene00022002	Y59E9AR.7	Major sperm protein	0.0359681	-0.733635
Sperm meiosis and Chromosome segragation		ein 4		0.0447005	0.000505
	WBGene00000098	air-1	Aurora/IpI1 Related kinase Importin subunit alpha-3	0.0417025 0.044438	-0.389565 -0.45933
	WBGene00002074	ima-3		0.044436	
	WBGene00007733	smz-1	Sperm Meiosis PDZ domain containing proteins	0 0184597	-0.398857
	WBGene00007733 WBGene00020661	smz-1 smz-2	Sperm Meiosis PDZ domain containing proteins Sperm Meiosis PDZ domain containing proteins	0.0184597 0.0326802	-0.398857 -0.423683
Sperm maturation					-0.398857 -0.423683
Sperm maturation					
Sperm maturation	WBGene00020661 WBGene00014240	smz-2 htas-1	Sperm Meiosis PDZ domain containing proteins Histone H2A	0.0326802	-0.423683
·	WBGene00020661 WBGene00014240	smz-2 htas-1	Sperm Meiosis PDZ domain containing proteins Histone H2A	0.0326802	-0.423683 -0.502406 -0.45933
·	WBGene00020661 WBGene00014240 WBGene00002074	htas-1 ima-3 air-1 dap-3	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3	0.0326802 0.000189 0.044438 0.0417025 0.0372581	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000933 WBGene00000933	smz-2 htas-1 ima-3 air-1 dap-3 daz-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1	0.0326802 0.000189 0.044438 0.0417025 0.0372581 0.0448321	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene0000093 WBGene00000935 WBGene00001258	htas-1 ima-3 air-1 dap-3 daz-1 emb-4	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain	0.0326802 0.000189 0.044438 0.0447025 0.0372581 0.0448321 0.0173359	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464885
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000983 WBGene00000933 WBGene00001258 WBGene00001250	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histidine-tRNA ligase	0.0326802 0.000189 0.044438 0.044438 0.0372581 0.0448321 0.0448321 0.0173359 0.0132773	-0.423683 -0.502406 -0.45933 -0.45933 -0.45933 -0.45948 -0.427359 -0.34584 -0.464885 -0.463158
·	WBGene00020661 WBGene00014240 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00000935 WBGene000001258 WBGene00002001 WBGene0000201 WBGene00014240	htas-1 ima-3 air-1 dap-3 daz-1 emb-4	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lpl1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-tRNA ligase Histone H2A	0.0326802 0.000189 0.044438 0.044438 0.0447025 0.0372581 0.0448321 0.0132773 0.0132773 0.000189	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464855 -0.463158 -0.502406
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000983 WBGene00000933 WBGene00001258 WBGene00001250	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histidine-tRNA ligase	0.0326802 0.000189 0.044438 0.044438 0.0372581 0.0448321 0.0448321 0.0173359 0.0132773	-0.423683 -0.502406 -0.45933 -0.45933 -0.45933 -0.427359 -0.34584 -0.464885 -0.464885 -0.4643158 -0.502406 -0.45933
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000938 WBGene00000938 WBGene00000938 WBGene00001258 WBGene0001258 WBGene0001258 WBGene00012274	smz-2 htas-1 ima-3 air-1 dap-3 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lpl1 Related kinase Marmalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine H2A Importin subunit alpha-3	0.0326802 0.000189 0.044438 0.044438 0.0417025 0.0372581 0.0448321 0.0173359 0.0173359 0.000189 0.044438	-0.423683 -0.502406 -0.45933 -0.45933 -0.427359 -0.34584 -0.464885 -0.463158 -0.463158 -0.463933 -0.331753
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000983 WBGene00000983 WBGene00000935 WBGene00001258 WBGene00002001 WBGene0001254 WBGene0001254 WBGene0002001 WBGene0002001 WBGene0002001 WBGene0001254 WBGene0001254	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lpl1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine H2A Histoine H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0372581 0.047359 0.044832 0.044338 0.0360204 0.0374243 0.0461447	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464885 -0.463188 -0.502406 -0.45933 -0.31753 -0.31753 -0.31753 -0.322319 -0.342538
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene0000093 WBGene00000933 WBGene00001258 WBGene00001258 WBGene0001201 WBGene00014240 WBGene00014240 WBGene00014240 WBGene00014240 WBGene0002074 WBGene00002074 WBGene0002074 WBGene0002074 WBGene0002074 WBGene0002074	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histidine-HRAN ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0448321 0.0132773 0.000189 0.044438 0.0360204 0.0374243 0.0374243 0.0077619	-0.423683 -0.502406 -0.45933 -0.45933 -0.389565 -0.427359 -0.34584 -0.4543158 -0.4543158 -0.454335 -0.454335 -0.331753 -0.372319 -0.42548 -0.512348
·	WBGene00020661 WBGene00014240 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00000933 WBGene00000383 WBGene00002001 WBGene00002001 WBGene00002001 WBGene00002011 WBGene00002012 WBGene00003821 WBGene00003421 WBGene0000733 WBGene0000733	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/IpI1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins	0.0326802 0.000189 0.04438 0.04438 0.04438 0.04432 0.04432 0.04432 0.0132773 0.000189 0.044438 0.0360204 0.0374243 0.0461447 0.0077619 0.0184597	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.450385 -0.469333 -0.3512349 -0.45284 -0.512348 -0.512348 -0.512348 -0.512348
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00002074 WBGene0000201 WBGene0000201 WBGene0000201 WBGene0002014240 WBGene00002074 WBGene0002074 WBGene00020641 WBGene00020661 WBGene00020661	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 Ruv9-like 2 Sperm Meiosis PDZ domain containing proteins	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0372581 0.047359 0.044328 0.037273 0.000189 0.044438 0.0360204 0.0374243 0.0461447 0.0077619 0.0184597 0.0326802	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464885 -0.453158 -0.45933 -0.31753 -0.31753 -0.31753 -0.31753 -0.31753 -0.31753 -0.32348 -0.328857 -0.423685 -0.423683 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.42368 -0.4258 -0.4258 -0.39856 -0.39856 -0.3585 -0.4558 -0.3585 -0.4558 -0.4558 -0.4558 -0.3585 -0.458
Germline proliferation	WBGene00020661 WBGene00014240 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00000933 WBGene00000383 WBGene00002001 WBGene00002001 WBGene00002001 WBGene00002011 WBGene00002012 WBGene00003821 WBGene00003421 WBGene0000733 WBGene0000733	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/IpI1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins	0.0326802 0.000189 0.04438 0.04438 0.04438 0.04432 0.04432 0.04432 0.0132773 0.000189 0.044438 0.0360204 0.0374243 0.0461447 0.0077619 0.0184597	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464885 -0.453158 -0.45933 -0.31753 -0.31753 -0.31753 -0.31753 -0.31753 -0.31753 -0.32348 -0.328857 -0.423685 -0.423683 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.423685 -0.42368 -0.4258 -0.4258 -0.39856 -0.39856 -0.3585 -0.4558 -0.3585 -0.4558 -0.4558 -0.4558 -0.3585 -0.458
·	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00002074 WBGene0000201 WBGene0000201 WBGene0000201 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene0002074 WBGene0002075 WBGene00020681 WBGene000004325 WBGene000004325	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histofine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5	0.0326802 0.000189 0.044438 0.044438 0.04432 0.01372581 0.04432 0.0132773 0.00189 0.04438 0.0360204 0.0374243 0.0461447 0.0077619 0.0184597 0.0326802 0.045081	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.463185 -0.452406 -0.45933 -0.331753 -0.372319 -0.4512348 -0.512348 -0.512348 -0.423683 -0.423683 -0.319305
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000983 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00002001 WBGene0001254 WBGene0001254 WBGene0002074 WBGene00020687 WBGene00020681 WBGene00004955 WBGene0000098	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histidina-HRAN ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spend Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0448321 0.0173359 0.0448321 0.0173359 0.0448321 0.017357 0.000189 0.044438 0.0461447 0.0077619 0.0184597 0.0374243 0.045081 0.045081 0.045081	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.463158 -0.502406 -0.45318 -0.45318 -0.331753 -0.321753 -0.32175 -0.423683 -0.319305 -0.339565
Germline proliferation	WBGene00020661 WBGene00014240 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00001258 WBGene00002074 WBGene0001258 WBGene0001258 WBGene0002074 WBGene0002074 WBGene0002074 WBGene0002074 WBGene00020112 WBGene00020112 WBGene0002081 WBGene0002081 WBGene0002085 WBGene0002085 WBGene00004955 WBGene00000988 WBGene000002124	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 smz-1 kkc-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lpl1 Related kinase Marmalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histoline H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Sperm Meiosis PDZ domain containing proteins Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0472581 0.047359 0.0132773 0.000189 0.044438 0.0374243 0.0461447 0.0376204 0.0326802 0.045081 0.045081	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.45935 -0.463158 -0.45933 -0.3502406 -0.45933 -0.31753 -0.31753 -0.31753 -0.31753 -0.322348 -0.322349 -0.328365 -0.389565 -0.381073 -0.389565 -0.381073
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000983 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00002001 WBGene0001254 WBGene0001254 WBGene0002074 WBGene00020687 WBGene00020681 WBGene00004955 WBGene0000098	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histidina-HRAN ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spend Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0448321 0.0173359 0.0448321 0.0173359 0.0448321 0.017357 0.000189 0.044438 0.0461447 0.0077619 0.0184597 0.0374243 0.045081 0.045081 0.045081	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.4634885 -0.45033 -0.331753 -0.372319 -0.45338 -0.512348 -0.512348 -0.512348 -0.319305 -0.329565 -0.3319305
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000933 WBGene0000933 WBGene00001258 WBGene00001258 WBGene00002071 WBGene00002011 WBGene00002011 WBGene00002014240 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002075 WBGene00020661 WBGene000004955 WBGene000002084 WBGene000002084 WBGene000020841 WBGene00002214 WBGene000024455	smz-2 htas-1 ima-3 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 ruvb-2 smz-1 smz-1 smz-2 spd-5 air-1 klc-1 rac-1 spd-5	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunt 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0448321 0.043273 0.00189 0.04438 0.0360204 0.0360204 0.0360204 0.0360204 0.0362024 0.0362024 0.0362024 0.0362024 0.0417025 0.0417025 0.0415699 0.0461447 0.045081	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.463185 -0.502406 -0.453138 -0.31753 -0.312318 -0.319305 -0.389566 -0.39566 -0.39566 -0.39566 -0.395
Germline proliferation	WBGene00020661 WBGene00014240 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002012 WBGene00002012 WBGene00002014 WBGene00002015 WBGene00002015 WBGene00002015 WBGene00002015 WBGene00002015 WBGene00002015 WBGene00002015 WBGene00022012 WBGene00002013 WBGene00002013 WBGene00002013 WBGene00002013 WBGene000002014 WBGene000002085 WBGene00000214 WBGene00000214 WBGene00000214 WBGene00000214 WBGene00000214 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 npfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1 klc-1 ran-1 spd-5 spd-5	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/IpI1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histidine–tRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/IpI1 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/IpI1 Related kinase	0.0326802 0.000189 0.044438 0.044438 0.044432 0.04482 0.04482 0.04482 0.04482 0.04482 0.04482 0.04482 0.04484 0.0374243 0.0461447 0.0326802 0.045081 0.045081 0.0445487 0.045081 0.0445487 0.045081 0.04417025	-0.423683 -0.502406 -0.45933 -0.45933 -0.389565 -0.427359 -0.34584 -0.462485 -0.463158 -0.4502406 -0.45933 -0.31753 -0.31753 -0.31753 -0.327219 -0.34548 -0.3389565 -0.389
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00000935 WBGene00001258 WBGene00001258 WBGene00002074 WBGene00002074 WBGene00002074 WBGene0002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene000020753 WBGene000020861 WBGene000020855 WBGene000004955 WBGene000004955 WBGene00004955 WBGene000004955 WBGene000004985 WBGene000004985 WBGene000004985 WBGene000004985 WBGene000004985	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 htas-1 ima-3 nst-1 ruvb-2 smz-1 smz-2 spd-5 air-1 kkc-1 ran-1 smd-5 sm2-5 air-1 dap-3	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lpl1 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histidine–IRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lpl1 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/lpl1 Related kinase Mammalian cell Death Associated Protein related	0.0326802 0.000189 0.044438 0.044438 0.04432 0.047359 0.0132773 0.00189 0.04438 0.0360204 0.0374243 0.0360204 0.0374243 0.0461447 0.0326802 0.045081 0.0417025 0.0417025 0.0417025	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.462485 -0.45035 -0.450385 -0.45038 -0.31753 -0.337753 -0.3398565 -0.427359 -0.389565 -0.389565 -0.3819305 -0.389565 -0.389556 -0.389556 -0.389556 -0.
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene0000093 WBGene0000933 WBGene00001258 WBGene00001258 WBGene00002071 WBGene00002011 WBGene00002011 WBGene00002014240 WBGene00002014 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002075 WBGene00004302 WBGene000004302 WBGene000002081 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004305 WBGene000004305 WBGene000004305 WBGene000004305 WBGene00000933 WBGene00000933 WBGene00000933	smz-2 htas-1 ima-3 dap-3 daz-1 emb-4 hars-1 htas-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1 klc-1 ran-1 spd-5 air-1 dap-3 daz-1	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain Histoine-HRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0448321 0.013273 0.000189 0.0443273 0.000189 0.044438 0.0360204 0.0374243 0.0461447 0.0326802 0.045081 0.0417025 0.0415699 0.0461447 0.045081 0.0417025 0.0372581 0.0417025 0.0372581 0.044321	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.463185 -0.453185 -0.502406 -0.453185 -0.321739 -0.331753 -0.372319 -0.45388 -0.512348 -0.319305 -0.339565 -0.3319305 -0.389565 -0.34584 -0.389565 -0.34584 -0.389565 -0.427359 -0.34554
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00001258 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002012 WBGene00002017 WBGene00002017 WBGene00002087 WBGene00002085 WBGene00002085 WBGene00000935 WBGene0000098 WBGene0000098 WBGene0000098 WBGene00000935 WBGene00000935 WBGene00000933 WBGene00000937 WBGene00000937 WBGene00000937	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1 klc-1 ran-1 spd-5 air-1 dap-3 daz-1 ima-3	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Marmalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histidine–tRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Importin subunit alpha-3	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0447025 0.0372581 0.044832 0.047359 0.044832 0.04132773 0.000189 0.044438 0.0374243 0.0461447 0.0326802 0.045081 0.04417025 0.0417025 0.0417025 0.0372581 0.044832	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.464855 -0.463158 -0.463158 -0.45933 -0.3502406 -0.45933 -0.31753 -0.372319 -0.423683 -0.319305 -0.389565 -0.381073 -0.34538 -0.389565 -0.381073 -0.34538 -0.389565 -0.381073 -0.34538 -0.389565 -0.381073 -0.345484 -0.389565 -0.427359 -0.345484 -0.42838 -0.458458 -0.389565 -0.389565 -0.427359 -0.389565 -0.427359 -0.389565 -0.427359 -0.389565 -0.427359 -0.427359 -0.427359 -0.427359 -0.427359 -0.427359 -0.42755 -0.427359 -0.427359 -0.427359 -0.4584 -0.45938
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene00000933 WBGene0000933 WBGene00001258 WBGene00001258 WBGene00002074 WBGene0000201 WBGene0000201 WBGene0002014240 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00020783 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004302 WBGene000004303 WBGene000004305 WBGene0000043	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 htas-1 ima-3 nst-1 ruvb-2 smz-1 smz-1 smz-2 spd-5 air-1 klc-1 ran-1 spd-5 air-1 dap-3 daz-1 ima-3 pfd-5	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histoine-IRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Importin subunit alpha-3 Probable prefoldin subunit 5	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0372581 0.047359 0.0132773 0.00189 0.04438 0.0360204 0.0374243 0.0461447 0.037619 0.0184597 0.0326802 0.045081 0.0417025 0.0417025 0.0417025 0.0417025 0.0417025 0.044388 0.0372581 0.044438 0.034438 0.034243	-0.423683 -0.502406 -0.45933 -0.389565 -0.427359 -0.34584 -0.462485 -0.45933 -0.31753 -0.33753 -0.33753 -0.3398565 -0.4238857 -0.423683 -0.339365 -0.339565 -0.427359 -0.389665 -0.427359 -0.34544 -0.45933 -0.34544 -0.45933 -0.372319 -0.34584 -0.45933 -0.372319 -0.34584 -0.45933 -0.372319 -0.372549 -0.34584 -0.45933 -0.372549 -0.34584 -0.5255 -0.27559 -0.34584 -0.5255 -0.27559 -0.34584 -0.5255 -0.27559 -0.34584 -0.5255 -0.27559 -0.34584 -0.5255 -0.27559 -0.34584 -0.5255 -0.27559 -0.34584 -0.5555 -0.27559 -0.34584 -0.5555 -0.27559 -0.34584 -0.5555 -0.27559 -0.34584 -0.5555 -0.27559 -0.34584 -0.345
Germline proliferation	WBGene00020661 WBGene00014240 WBGene00002074 WBGene000002074 WBGene00000933 WBGene00000933 WBGene00001258 WBGene00001258 WBGene00001258 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002074 WBGene00002012 WBGene00002017 WBGene00002017 WBGene00002087 WBGene00002085 WBGene00002085 WBGene00000935 WBGene0000098 WBGene0000098 WBGene0000098 WBGene00000935 WBGene00000935 WBGene00000933 WBGene00000937 WBGene00000937 WBGene00000937	smz-2 htas-1 ima-3 air-1 dap-3 daz-1 emb-4 hars-1 htas-1 ima-3 nst-1 pfd-5 ran-1 ruvb-2 smz-1 smz-2 spd-5 air-1 klc-1 ran-1 spd-5 air-1 dap-3 daz-1 ima-3	Sperm Meiosis PDZ domain containing proteins Histone H2A Importin subunit alpha-3 Aurora/lp11 Related kinase Marmalian cell Death Associated Protein related DAZ protein 1 Intron-binding spliceosomal/Aquarius' protein with a helicase-like domain Histidine–tRNA ligase Histone H2A Importin subunit alpha-3 Guanine nucleotide-binding protein-like 3 homolog Probable prefoldin subunit 5 GTP-binding nuclear protein ran-1 RuvB-like 2 Sperm Meiosis PDZ domain containing proteins Spindle-defective protein 5 Aurora/lp11 Related kinase Kinesin Light Chain GTP-binding nuclear protein ran-1 Spindle-defective protein 5 Aurora/lp11 Related kinase Mammalian cell Death Associated Protein related DAZ protein 1 Importin subunit alpha-3	0.0326802 0.000189 0.044438 0.044438 0.044438 0.0447025 0.0372581 0.044832 0.047359 0.044832 0.04132773 0.000189 0.044438 0.0374243 0.0461447 0.0326802 0.045081 0.04417025 0.0417025 0.0417025 0.0372581 0.044832	-0.423683 -0.502406 -0.45933 -0.45933 -0.389565 -0.427359 -0.34584 -0.462485 -0.463158 -0.453158 -0.45031753 -0.351248 -0.3172348 -0.319305 -0.389565 -0.389565 -0.34538 -0.34934 -0.349345 -0


mbryonic development					
	WBGene00000098	air-1	Aurora/IpI1 Related kinase	0.0417025	-0.389
	WBGene00016907	C53H9.2	Predicted GTP binding activity	0.0462789	-0.405
	WBGene00000474	cey-3	C. elegans Y-box	0.044754	
	WBGene00001161	efl-1	E2F-like (mammalian transcription factor)	0.0358504	-0.42
	WBGene00001258	emb-4	Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain	0.0173359	
	WBGene00002045	icd-1	Transcription factor BTF3 homolog	0.0387183	
	WBGene00002074	ima-3	Importin subunit alpha-3	0.044438	-0.4
	WBGene00002214	klc-1	Kinesin Light Chain	0.0415699	
	WBGene00003821	nst-1	Guanine nucleotide-binding protein-like 3 homolog	0.0360204	
	WBGene00004189	pars-1	Prolyl Amino-acyl tRNA Synthetase	0.0298758	
	WBGene00020112	pfd-5	Probable prefoldin subunit 5	0.0374243	
	WBGene00004046	plp-1	Pur alpha Like Protein	0.0436353	
	WBGene00004302 WBGene00013985	ran-1	GTP-binding nuclear protein ran-1	0.0461447 0.0091723	-0.4
Cell-cycle	WBGeneoo013985	sec-16	Protein transport protein Sec16	0.0091723	-0.41
	WBGene00001161	efl-1	E2F-like (mammalian transcription factor)	0.0358504	-0.4
	WBGene00001258	emb-4	Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain	0.0173359	-0.46
	WBGene00014240	htas-1	Histone H2A	0.000189	-0.50
	WBGene00019246	rpb-5	DNA-directed RNA polymerases I, II, and III subunit RPABC1	0.0386856	-0.36
	WBGene00022852	ZK1127.5	Probable RNA 3'-terminal phosphate cyclase-like protein	0.044754	-0.37
ogrammed cell death	M/D 0	-1-4		0.0447005	0.00
	WBGene00000098	air-1	Aurora/IpI1 Related kinase	0.0417025	-0.38
	WBGene00000474	cey-3	C. elegans Y-box	0.044754	-0.33
	WBGene00000933	dap-3	Mammalian cell Death Associated Protein related	0.0372581	
	WBGene00017488	dct-7	DAF-16/FOXO Controlled, germline Tumor affecting	0.0244993	
	WBGene00001161 WBGene00002045	efl-1	E2F-like (mammalian transcription factor) Transcription factor BTF3 homolog	0.0358504	-0.4
	WBGene00002045 WBGene00003059	icd-1		0.0387183	
		lpd-2	Lipid Depleted	0.0370568	
	WBGene00012556	mrps-10	Probable 28S ribosomal protein S10, mitochondrial	0.0358504	
	WBGene00020549	nmt-1	Glycylpeptide N-tetradecanoyltransferase	0.0392083	
	WBGene00003821	nst-1	Guanine nucleotide-binding protein-like 3 homolog	0.0360204	
	WBGene00004189	pars-1	Prolyl Amino-acyl tRNA Synthetase	0.0298758	
	WBGene00004302	ran-1	GTP-binding nuclear protein ran-1	0.0461447	-0.4
	WBGene00004312	rba-1	Probable histone-binding protein rba-1	0.0162808	
	WBGene00004476	rps-7	40S ribosomal protein S7	0.0128192	
	WBGene00004917 WBGene00004955	snr-4	Probable small nuclear ribonucleoprotein Sm D2	0.0091287 0.045081	-0.43
hromatin organization	WBGene00004955	spd-5	Spindle-defective protein 5	0.043081	-0.31
nionaan organization	WBGene00017993	cec-5	C. elegans Chromodomain protein	0.0148364	-0.31
	WBGene00002637	let-418	Protein let-418	0.0469882	
	WBGene00001837	hda-4	Histone deacetylase 4	0.0326786	
	WBGene00001898	his-24	Histone H1,1	0.00118	1.25
	WBGene00014240	htas-1	Histone H2A	0.000189	
	WBGene00004312	rba-1	Probable histone-binding protein rba-1	0.0162808	-0.39
DNA repair					
	WBGene00001258	emb-4	Intron-binding spliceosomal'Aquarius' protein with a helicase-like domain	0.0173359	-0.46
	WBGene00019246	rpb-5	DNA-directed RNA polymerases I, II, and III subunit RPABC1	0.0386856	-0.36
Immune System					
	WBGene00001500 WBGene00019185	ftn-1 H10E21,5	Ferritin Zinc finger, RING-type and Zinc finger, RING/FYVE/PHD-type	0.044754 0.0068583	
	WBGene00002178	jnk-1	Stress-activated protein kinase jnk-1	0.0120895	
	WBGene00010681	mak-1	MAP kinase-activated protein kinase mak-1	0.0003041	
	WBGene00019782	M60.7	Ankyrin repeat-containing domain, SOCS box-like domain superfamily	0.0058122	
	WBGene00012194	toe-4	Target Of ERK kinase MPK-1	0.0383117	
	WBGene00006702	ubc-3	UBiquitin Conjugating enzyme	0.0091287	
	WBGene00006705	ubc-8	UBiquitin Conjugating enzyme	0.0071042	
	WBGene00014848	VM106R,1	Ortholog of human KCTD12, KCTD16, and KCTD8	0.0455031	
	WBGene00022026	Y65B4A,2	Predicted to have cysteine-type peptidase activity	0.0009935	
letabolism of protein					
	WBGene00001229	eif-3,F	Eukaryotic translation initiation factor 3 subunit F	0.003598	-0.59
	WBGene00019782	M60.7	Ankyrin repeat-containing domain, SOCS box-like domain superfamily	0.0058122	2.356
	WBGene00004312	rba-1	Probable histone-binding protein rba-1	0.0162808	
	WBGene00018853	sec-22	Yeast SEC homolog	0.0457516	-0.5
	WBGene00006702	ubc-3	UBiquitin Conjugating enzyme	0.0091287	
	WBGene00006705	ubc-8	UBiquitin Conjugating enzyme	0.0071042	
	WBGene00006724	ubh-4	Ubiquitin carboxyl-terminal hydrolase ubh-4	0.0244993	
Signal Transduction					
	WBGene00012907	cpt-1	Carnitine Palmitoyl Transferase	0.044754	0.48
	WBGene00020506	dop-3	Dopamine receptor 3	0.025045	
	WBGene00002178	jnk-1	Stress-activated protein kinase jnk-1	0.0120895	
				0.0440004	0 748
	WBGene00002181	kal-1	Human KALImann syndrome homolog	0.0148364	
	WBGene00010681	mak-1	MAP kinase-activated protein kinase mak-1	0.0003041	0.653
					0.653 1.143

Macroautophagy - Cellular responses to stress				
	WBGene00020706	atg-9	Autophagy-related protein 9	0.0173359 0.65691
	WBGene00022078	epg-9	Ectopic P Granules	0.0197544 0.89962
	WBGene00010681	mak-1	MAP kinase-activated protein kinase mak-1	0.0003041 0.65357
	WBGene00002178	jnk-1	Stress-activated protein kinase jnk-1	0.0120895 0.57053
Peroxisome				
	WBGene00004058	pmp-1	Peroxisomal Membrane Protein related	0.01287255 -0.6820
	WBGene00011173	acs-18	Fatty Acid CoA Synthetase family	0.0454965 -0.3302
	WBGene00013999	ZK550.5	Uncharacterized protein	0.0249191 -0.366
Structural constituent of mitochondrial ribosome				
	WBGene00010458	mrpl-10	Mitochondrial Ribosomal Protein, Large	0.009422 -0.4586
	WBGene00007712	mrpl-34	Mitochondrial Ribosomal Protein, Large	0.0378533 -0.5441
	WBGene00015092	mrpl-47	Mitochondrial Ribosomal Protein, Large	0.0303043 -0.3313
	WBGene00011740	mrpl-51	39S ribosomal protein L51, mitochondrial	0.0091723 -0.4430
	WBGene00012556	mrps-10	Probable 28S ribosomal protein S10, mitochondrial	0.0358504 -0.4284
	WBGene00011391	mrps-12	Mitochondrial Ribosomal Protein, Small	0.0150873 -0.3339
	WBGene00020499	mrps-18,C	Mitochondrial Ribosomal Protein, Small	0.0230003 -0.447
	WBGene00014224	mrps-23	Probable 28S ribosomal protein S23, mitochondrial	0.0392729 -0.5136
	WBGene00023487	mrps-24	28S ribosomal protein S24, mitochondrial	0.0003041 -0.4600
	WBGene00013324	mrps-7	28S ribosomal protein S7, mitochondrial	0.0148364 -0.4254
Methabolic pathways - Oxidative phosphorylation				
	WBGene00011173	acs-18	Fatty Acid CoA Synthetase family	0.0454965 -0.3302
	WBGene00000198	art-1	Probable very-long-chain enoyl-CoA reductase art-1	0.0240548 -0.3346
	WBGene00015467	basl-1	BAS-Like	0.0402681 -0.3940
	WBGene00006519	cox-6A	Cytochrome c oxidase subunit 6A, mitochondrial	0.0405776 -0.3446
	WBGene00012166	nuo-6	NADH Ubiquinone Oxidoreductase	0.0439367 -0.3818

Paper II

1	In vivo assessment of reactive oxygen species production and
2	oxidative stress effects induced by chronic exposure to gamma
3	radiation in Caenorhabditis elegans
4	
5	
6	*Erica Maremonti ^{1, 3} , Dag M. Eide ^{2, 3} , Lisa M. Rossbach ¹ , Ole Christian Lind ^{1, 3} , Brit Salbu ^{1,}
7	³ , Dag Anders Brede ^{1, 3}
8	
9	¹ Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian
10	University of Life Sciences (NMBU), 1432 Ås, Norway
11	² Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
12	³ Centre for Environmental Radioactivity (CERAD)
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	*Corresponding author

24 Graphical abstract

27 Highlights

28		
29	•	Chronic exposure to gamma radiation causes increased cellular ROS and induces
30		Antioxidant defences in the nematode Caenorhabditis elegans
31	•	Oxidative stress transcriptomic response is induced by chronic gamma
32		irradiation
33	•	Mitochondrial functions are negatively affected by chronic gamma irradiation
34	•	Gamma radiation-induced reproductive impairment is associated with
35		dysregulation of meiotic cell-cycle checkpoints, spindle formation and
36		chromosome segregation
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

50 Abstract

In the current study, effects of chronic exposure to ionizing gamma radiation were assessed in the radioresistant nematode *Caenorhabditis elegans* in order to understand whether antioxidant defences (AODs) could ameliorate radical formation, or if increased ROS levels would cause oxidative damage. This analysis was accompanied by phenotypical as well as molecular investigations, via assessment of reproductive capacity, somatic growth and RNA-seq analysis.

57 The use of a fluorescent reporter strain (*sod1::gfp*) and two ratiometric biosensors (*HyPer* 58 and Grx1-roGFP2) demonstrated increased ROS production (H₂O₂) and activation of AODs 59 (SOD1 and Grx) in vivo. The data showed that at dose-rates ≤ 10 mGy·h⁻¹ defence 60 mechanisms were able to prevent the manifestation of oxidative stress. In contrast, at dose-61 rates \geq 40 mGy·h⁻¹ the continuous formation of radicals caused a redox shift, which lead to 62 oxidative stress transcriptomic responses, including changes in mitochondrial functions, 63 protein degradation, lipid metabolism and collagen synthesis. Moreover, genotoxic effects 64 were among the most over-represented functions affected by chronic gamma irradiation, 65 as indicated by differential regulation of genes involved in DNA damage, DNA repair, cell-66 cycle checkpoints, chromosome segregation and chromatin remodelling. Ultimately, the 67 exposure to gamma radiation caused reprotoxic effects, with >20% reduction in the 68 number of offspring per adult hermaphrodite at dose-rates $\geq 40 \text{ mGy}\cdot\text{h}^{-1}$, accompanied by 69 the down-regulation of more than 300 genes related to reproductive system, apoptosis, 70 meiotic functions and gamete development and fertilization.

Keywords: Ionizing gamma radiation; *Caenorhabditis elegans; in vivo* Redox sensors;
 reactive oxygen species; mitochondrial dysfunction

73 1. Introduction

74

75 Exposure to ionizing radiation can cause harmful toxic effects either by direct energy 76 deposition onto biomolecules or by indirect damage through the production of free radicals 77 (Reisz et al., 2014). The indirect effects proceed through a chain of physical and chemical 78 events which leads to the production of free-radicals due to dissociation of water molecules. 79 and thus to a dose-dependent formation of reactive oxygen species (ROS), such as 80 superoxide (O_2^{-1}) , hydroxyl radicals (HO), hydrogen radicals (H) and hydrogen peroxide 81 (H₂O₂) (Yamamori et al., 2012, Riley, 1994, Smith et al., 2012). These radicals are 82 continuously produced in the cells of organisms during exposure to jonizing radiation, and 83 increased ROS levels have been measured in a wide range of species, including the green 84 algae Chlamydomonas reinhardtii, the aquatic macrophyte Lemna minor and zebrafish (Xie 85 et al., 2019, Gomes et al., 2017, Hurem et al., 2017). Despite a short (nanoseconds) half-life 86 (Bergendi et al., 1999), the formation of ionizing radiation-induced radicals has shown to 87 increase persistently in the cells during prolonged exposures (Tateishi et al., 2008, Chen et 88 al., 2003). This may result in changes of the cellular redox balance, which can lead to the 89 perturbation of essential biochemical processes including metabolism (Finkel and 90 Holbrook, 2000). For instance, radiation may cause mitochondrial dysfunction, by 91 compromising the electron transport chain (ETC), which exacerbates endogenous ROS 92 production and the formation of oxidative stress condition (Reisz et al., 2014). Increased 93 generation of mitochondrial ROS following low-dose irradiation plays multiple roles in 94 signalling cascades and mediates apoptosis, thus may contribute significantly to cell 95 survival (Azzam et al., 2012). Accordingly, oxidative damage to essential biomolecules,

96 including DNA, lipids and proteins are important contributors to the late effects following 97 exposure to ionizing radiation (Spitz et al., 2004, Azzam et al., 2012, Dubois et al., 2018, 98 Hertel-Aas et al., 2011, Gomes et al., 2018). Therefore, it is becoming increasingly evident 99 that not only the indirect effects during the exposure itself, but even the subsequent 99 production of free radicals plays a significant role to the overall biological effects of this 91 stressor. Hence, detailed investigations into the role of ROS and the changes in the redox 92 status produced following the exposure to ionizing radiation is of high importance.

At the species level, radiosensitivity ranges over several orders of magnitude (UNSCEAR,
1996). It has been postulated that the ability of an organism to tolerate ionizing radiation
is dependent on the efficiency of DNA repair mechanisms, and robust antioxidant defences
to mitigate ROS and prevent oxidative stress (Daly, 2012).

107 The nematode *Caenorhabditis elegans* is amongst the most radioresistant organisms and is 108 frequently used in radiation biology studies, particularly the post-mitotic stage can tolerate 109 high doses of both X-ray and gamma radiation (Hartman et al., 1988, Buisset-Goussen et al., 110 2014, Guo et al., 2013, Krisko et al., 2012). Interestingly, C. elegans possesses a wider range 111 of antioxidant defences (AODs), compared to most organisms (Gems and Doonan, 2008, 112 Doonan et al., 2008). Among these, the glutathione peroxidases (GPx) play an important 113 role in oxidative stress defence, through ROS scavenging. Glutathione (GSH) is therefore 114 central to the maintenance of cellular redox homeostasis (Wu et al., 2004, Back et al., 2012). Measurement of the ratio between the oxidized to reduced [GSSG]/[2GSH] form of GSH has 115 116 been shown to be a reliable proxy for oxidative stress manifestation (Braeckman et al., 117 2016, Braeckman et al., 2017, Storey, 1996). Due to its highly specialized ROS and redox 118 control system (Braeckman et al., 2016), C. elegans presents a suitable model for studying

119	radiation	induced	ROS	production,	besides	being	а	well-defined	model	organism	for
120	genetics a	ınd cell bi	ology	(Honnen, 20	17).						

Therefore, in the current study, we investigate the effects of chronic exposure to gamma radiation on the accumulation of free radicals and the subsequent antioxidant responses in relation to apical reproductive and developmental effects in the nematode *C. elegans*. Furthermore, we examined the changes on the transcriptome upon irradiation during the entire larval development, in order to identify cellular and molecular functions related to the observed adverse effects and mechanisms mediating tolerance to ionising radiation.

- 128
- 129
- 130 2. Material and methods
- 131
- 132 2.1 Culture and maintenance of nematodes
- 133

Synchronised cohorts of nematodes were maintained in continuously shaking liquid
cultures at 20 °C in the dark (Lewis and Fleming, 1995). The following strains were used:
N2, wild type (Bristol) (*Caenorhabditis Genetic Centre*, Minneapolis, USA); *sod1::gfp*transgene, (GA508 wuIs54[pPD95.77 sod-1::GFP, rol-6(su1006)] (Institute of Healthy
Ageing Genetics, University College London) (Doonan et al., 2008); H₂O₂ biosensor (HyPer)
(*jrIs1[Prpl-17::HyPer]*; [GSSG]/[2GSH] biosensor (*jrIs2[Prpl-17::Grx1-roGFP2]*) (Back et al.,
2012).

141	Synchronization of nematodes was performed prior exposure to gamma radiation by
142	alkaline hypochlorite treatment (Porta-de-la-Riva et al., 2012). To facilitate hatching, eggs
143	were suspended in 1 ml M9 buffer and placed on NGM-Petri dishes overnight.
144	Viability and hatching of L1 stage nematodes was assessed prior the start of the exposure.
145	
146	
147	2.3 Exposure to gamma radiation
148	
149	The external gamma radiation exposure was conducted at the FIGARO 60 Co irradiation
150	facility (maximum permissible activity 400 GBq) at the Norwegian University of Life
151	Sciences (NMBU) (Lind et al., 2019). Nematodes were exposed, in triplicate, in liquid media
152	(15 ml tissue-culture flasks or front row 24-well cell culture plates) or on NGM-Petri dishes
153	(Ø 6 cm) (Porta-de-la-Riva et al., 2012) containing 15 or 0.5 ml of fresh <i>Escherichia coli OP50</i>
154	(cultured overnight at 37 °C in L-Broth medium, (Lewis and Fleming, 1995)), respectively,
155	re-suspended in moderately hard reconstituted water (MHRW) plus cholesterol (United

156 States Environmental Protection Agency, 2002) at pH 7.5 (Khanna et al., 1997).

157 During exposure, controls were placed, in triplicate, behind lead shielding, while exposure containers were placed at distances corresponding to a calculated average absorbed dose-158 159 rates to water of 0.43 - 1.1 - 10.8 - 40.8 and $99.9 \text{ mGy}\cdot\text{h}^{-1}$ (Table S.8 for dose-rates and 160 respective total doses). Field dosimetry (air kerma rates measured with an ionization 161 chamber) was traceable to the Norwegian Secondary Standard Dosimetry Laboratory 162 (Norwegian Radiation Protection Authority, DSA, Oslo, Norway) (Bjerke and Hetland, 163 2014). Air kerma rates were measured using an Optically Stimulated Luminescence (OSL) based nanoDots dosimetry system (Landauer®) by positioning the dosimeters at the front
and back of the experimental units. Dose rates to water, calculated according to Lindbo
Hansen E. (2017), were used as a proxy for dose rates to the nematodes.

167

168

169 2.4 Effects on somatic growth and reproduction

170

N2 nematodes were used to assess phenotypic endpoints (growth, fertility and
reproduction) by performing standard 96 hours toxicity tests in 24-well cell culture plates,
carried out at 20 °C in the dark (International Organization of Standardization, 2010).
Organisms (n = 12 ±5 per well) were exposed to gamma radiation from L1 stage in
triplicates.
For sampling, nematodes were stained with 0.5 mL of Rose Bengal (0.3 g/L) and placed for
10 minutes at 80°C. Plates were stored at 4 °C until nematodes on all plates were measured

using a stereo microscope (Leica M205C, 16X magnification) for total body length (size),
total number of offspring per recovered adult (reproduction), and for the number of
pregnant nematodes (fertility), using a hand-held tally counter (International Organization

181 of Standardization, 2010).

182

183

2.5 Monitoring *in vivo* ROS production response to ionizing radiation in *C. elegans*

186

187 While conventional redox-sensitive fluorogenic probes are nonspecific, irreversible, and 188 disruptive, genetically encoded fluorescent sensors can overcome such limitations (Gomes 189 et al., 2005, Meyer and Dick, 2010). Therefore, in the current study the *sod1::gfp* reporter 190 strain and two ratiometric biosensors, *HyPer* and *Grx1-roGFP2*, were employed as *in vivo* 191 proxies for ROS production following chronic exposure to gamma radiation (Doonan et al., 192 2008, Cabreiro et al., 2011). Specifically, the *sod1::afp* reporter strain was implemented to 193 measure the expression of the cytosolic Superoxide dismutase 1, while the ratiometric 194 biosensors *HyPer* and *Grx1-roGFP2* were adopted to measure the levels of H_2O_2 and the 195 glutathione redox changes.

Treatments with Paraquat or H₂O₂ were used as positive controls for method validation for
the *sod1::gfp* reporter strain and the *Grx1-roGFP2* ratiometric biosensor, respectively
(Supporting material, Section S.M. 2-3.).

199

200

201 2.6 Epifluorescence microscopy

202

To analyse for changes in expression patterns following the exposure to ionizing gamma radiation, nematodes, exposed for 48 and 72 hours from L1 stage, were transferred immediately onto an agar pad (2 % agar) on a glass slide, immobilized with 30 mM of Sodium Azide (NaAzide), mounted and observed for the fluorescent signals.

Anatomical localization and intensity average of the fluorescent signal for *sod1::gfp* were
assessed under a semi-automated research light microscope (Upright Microscope Leica
DM6 B, 10X magnification) equipped with a 405 nm excitation and 535 nm emission filters

210 for fluorescent intensity measurements (n = 10). For the ratio between the oxidized and 211 reduced forms of either the HyPer or Grx1-roGFP2 strains (n= 10), a second image, at 212 excitation 490 nm and emission 535 nm, was taken. For each experiment, gain and 213 exposure settings were kept unvaried between different treatments, in order to ensure 214 comparable and unbiased measurements of the fluorescent signal. Intensity-normalized 215 images of at least ten nematodes per treatment were taken within 30 minutes from the 216 sampling and quantification of the fluorescence signals was performed on the Leica® LAS 217 software. A method validation with ROS inducer compounds (Paraguat and H_2O_2) was 218 performed for the quantification of the fluorescent signal in sod1::gfp and Grx1-roGFP2 219 (Supporting Material, sections S.M.2 and S.M.3). Gamma irradiation over 48 or 72 hours 220 induced decrease in *sod1::gfp* worm size in relation to controls, therefore fluorescence 221 signals were normalized to the worms' total body length. Oxidized/reduced HyPer and 222 Grx1-roGFP2 ratios were calculated as described by Back et al. (2012).

223

224

- 225 2.7 Gene expression analysis
- 226 2.7.1 Transcriptomic analysis

227

RNA sequencing was performed in order to obtain gene expression profiles of nematodes
exposed to 0.4, 10.8 or 99.9 mGy·h⁻¹ compared to control nematodes. For this purpose, after
72 hours of exposure from L1 stage to young adult stage (n=1000 per replicate, three
biological replicates per treatment), nematodes were washed and snap-frozen in LIN

232 (liquid nitrogen) and stored at -80 °C until used. Total RNA was extracted using Direct-zol 233 Reagent (Nordic Biosite) and purified with RNeasy Mini Kit (Zymo Research) according to 234 manufacture instruction. RNA purity and yield (A260/A280 > 1.8, A260/A230 > 2, yield > 235 100 ng/ μ l) was determined using NanoDrop-1000 Spectrophotometer (Thermo Scientific, 236 Wilmington, DE) and quality (RIN > 7) was assessed with Agilent 2100 Bioanalyzer (Agilent 237 Technologies, Palo Alto, CA) using RNA Nano LabChip Kit (Agilent Technologies). 238 Photometric parameters and RNA integrity number determined the quality of the RNA 239 sequenced samples. Strand-specific TruSeq[™] RNA-seq pair-end libraries with 350 bp 240 fragment size were prepared for each treatment (three biological replicates). For each 241 sample ca 30x10⁶ reads (read length 150 bp) were sequenced using two lanes of Illumina 242 HiSeq 4000 (Norwegian High Throughput Sequencing Centre, UiO Oslo, Norway), and made 243 available on ArravExpress with E-MTAB-8284.

Sequenced reads were mapped to the Ensemble reference genome WBcel235 using STAR (Dobin et al., 2013). Statistical analysis for detection of differentially expressed genes (DEGs) was done using Deseq2 package in the R software (rlog, variance Stabilizing Transformation) for transformed data (Love et al., 2015), with FDR ≤ 0.05 and $0.3 \leq \log 2$ fc ≤ -0.3 as cut off.

249

250

251 2.7.2 Gene set enrichment analysis and phenotypical analysis

252

In order to obtain information about processes affected by gamma radiation with respect
to anatomical, phenotypical and functional processes down to the single-cell level, the DEGs

255 were subjected to gene ontology (GEA), tissue (TEA) and phenotype (PEA) Enrichment 256 Analyses the WormBase Enrichment using tool (BioRxiv: 257 https://doi.org/10.1101/106369) (Angeles-Albores et al., 2016, Lee et al., 2017). Analysis 258 were performed using HyPergeometric probability distribution with Benjamini-Hochberg 259 step-up algorithm FDR correction (Angeles-Albores et al., 2017).

Moreover, a phenotypical analysis was performed by comparing the list of DEGs from the 100 mGy·h⁻¹ exposure group with selected phenotypical variants using the public knowledge resource WormBase (Lee et al., 2017).

263

264

265 **2.8 Statistical analysis**

266

Results from somatic growth and reproduction assessment were analysed using the Oneway Analysis of Variance (ANOVA) and when significance was found the Tukey *post hoc* test was adopted for comparison with the control group. Normality and homogeneity assumption were assessed on residuals by using Anderson-Darling normality test and visually on residuals vs. fitted value plot, respectively.

Fluorometric ratios from *HyPer* and *Grx1-roGFP2* and fluorescence intensity from *sod1::gfp*were used to measure levels of ROS in irradiated nematodes. Linear trends were estimated
using Simple Linear Regression analysis (SLR) (Montgomery et al., 2012), while ANOVA and
Tukey *post hoc* analysis were adopted for multiple comparisons with control treatment.
Statistical analysis were performed using JMP Pro v14 (SAS institute, Cary, NC, USA) and
SigmaPlot 10.0 (Systat Software, San Jose, CA).

279

280 **3. Results**

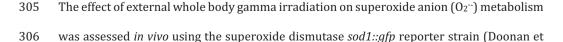
281

3.1Chronic Gamma irradiation induced dose rate-dependent reprotoxic
 effect in *C. elegans* and no significant effects on somatic growth

284

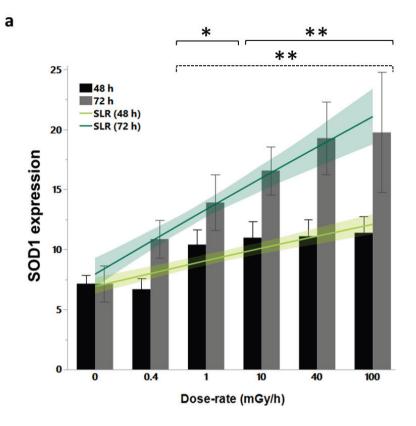
In the nematode *Caenorhabditis elegans*, chronic exposure to gamma radiation did not
induce any significant effect on lethality, morbidity, hatchability, or reproductive capacity
at dose-rates ≤10 mGy·h⁻¹ (total dose ≤1.4 Gy, Fig. 1.b). Furthermore, non-significant effects
on size/total body length were found in any of the wild-type irradiated groups compared
to control nematodes (Fig. 1.a).
However, after 96 hours of exposure, a significant linear dose-dependent reduction (SLR,

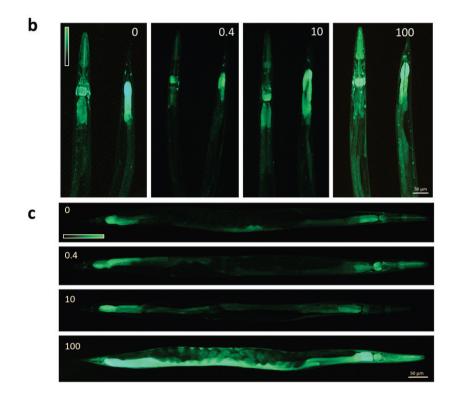
p-value <0.001) in the number of offspring was shown with reproduction reduced by 20


and 40% (Tukey post hoc, p-value <0.05) following exposure to 40 and 100 mGy·h⁻¹,

respectively (total doses ~3.9 and 9.6 Gy, **Fig. 1.b**).

Figure 1. Effects on a) Somatic growth and b) reproduction on wild-type *C. elegans* exposed to gamma
radiation (mGy·h⁻¹, total doses in Table S.8) for 96 hours, in front row of 24-well plates containing MHRW/*E. coli* OP50 suspension. Data represents Mean ± SE (n = 15). Asterisks indicate significant difference to control
treatment (Tukey post hoc, p-value < 0.05).


302 3.1.1 Linear increase of *sod-1* expression following chronic gamma
 303 irradiation



al., 2008). In contrast to N2 strain, a minor but significant dose-dependent effect on somatic growth was shown when the *sod1::gfp* reporter strain was irradiated (SLR, *p*-value <0.05), with a 10% reduction of the body length following 100 mGy·h⁻¹ of gamma irradiation (total dose ~7.2 Gy, Tukey *post hoc*, *p*-value <0.05) (**Fig. S.1**).

311 Total body *sod-1* expression at 48 hours of irradiation ($\geq 1 \text{ mGy} \cdot h^{-1}$) increased significantly 312 in a dose-rate dependent manner (SLR, *p*-value < 0.0001) (Fig. 2.a). The expression of sod-313 1 also showed a time-dependent increase, since gamma radiation induced a significantly 314 higher expression at 72 hours of exposure in all treatments compared to 48 hours and to 315 non-irradiated nematodes (SLR, p-value < 0.0001). Moreover, One-Way ANOVA and Tukey 316 post hoc tests showed a significant threshold-effect between 0.4 and 1 mGv·h⁻¹ (total dose 317 between 0.02 and 0.05 Gy), with all exposure groups having a significantly higher expression of SOD1 compared to the control and 0.4 mGv· h^{-1} treatments at both 48 or 72 318 319 hours of exposure (p-value <0.001 and <0.0001) (Fig. 2.a). The highest dose-rates of 320 exposure in particular (40 and 100 mGy· h^{-1}), showed a 2-fold increase compared to the 321 control group (Tukey post hoc, p-value <0.0001) (Fig. 2.a). Visually, this mark increase was 322 seen in nematodes' images, as shown in Fig. 2. b-c. Consistent with a previous study 323 conducted by Doonan et al. (2008), the signal from non-irradiated or low-dose exposed 324 nematodes was primarily evident in the anterior and posterior part of the intestine, while 325 at the highest dose-rate, the expression pattern was visible across the entire intestinal 326 length for all the nematodes imaged after 48 or 72 hours of exposure (Fig. 2.b-c). 327 Additionally, at 100 mGy· h^{-1} (total dose ~7.2 Gy) in 40% of the assessed nematodes the 328 fertilized embryos, both inside the uterus (in particular those in close proximity of the 329 vulva) and the laid embryos exhibited enhanced fluorescent signal, while control embryos

330 did not show any expression (Fig. 3.b-d). Similarly, the vulva muscles along the body wall, 331 together with the pharyngeal epithelium and muscles, the anterior/posterior intestine and 332 the anus revealed a higher expression at 100 mGy·h⁻¹ (total dose \sim 7.2 Gy) in 50% of the 333 imaged nematodes (n = 10, **Fig. 3.a-b-c**). The profound increase in *sod-1* expression in most 334 parts of the nematodes' body is consistent with a model where the energy depositions and 335 radical formation occurs uniformly in all irradiated cells, while the *sod-1:gfp* reporter is not 336 equally effectively expressed in all tissues (Doonan et al., 2008). The fact that sod-1 337 expression inevitably leads to H₂O₂ formation implied that further downstream effects on 338 ROS metabolism might result from the irradiation.

343 Figure 2. a) Sod-1 expression assessed in vivo in C. elegans reporter strain sod1::gfp, after 48 and 72 hours of 344 exposure to increasing dose-rates of gamma radiation (mGy·h⁻¹, total doses in Table S.8), in MHRW 345 containing OP50. Data represent Mean ± 95% CI (n = 10), values are normalized to somatic growth. Dashed 346 or continuous line with asterisk indicates significant difference to control treatment at 48 and 72 hours, 347 respectively (Tukey post hoc, p-value < 0.001 and < 0.0001). Projected on top of the bar chart are the 348 regression lines for the SOD-1 expression on the log_{10} (dose rate) values. **b**) Relative epifluorescence images 349 of the expression pattern at different dose-rates of exposure (mGy-h⁻¹) after 48 (head and tail, respectively) 350 and (c) 72 hours of irradiation (tail to head orientation). Scale bar: 50 µm.

351

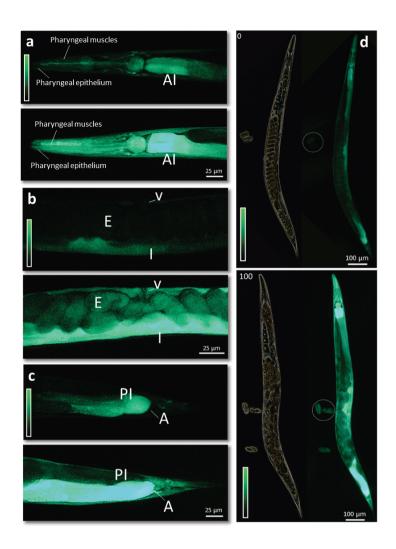
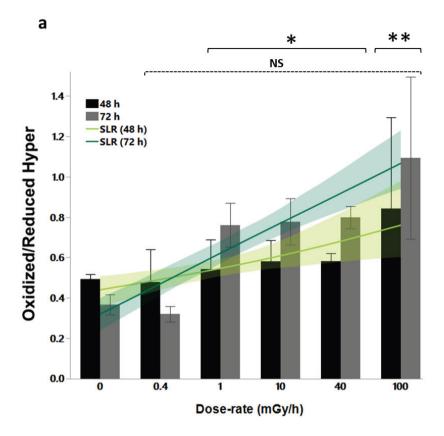
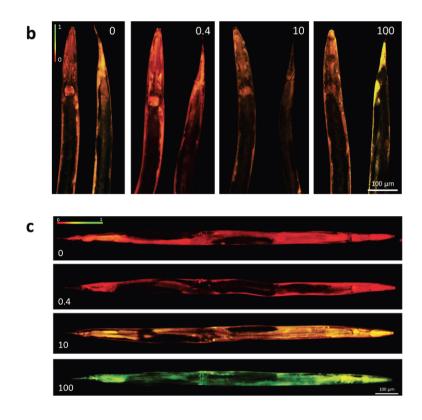


Figure 3. Epifluorescence images of the expression pattern assessed *in vivo* in (a) pharynx (AI: anterior
intestine); b) mid-body (E: embryos, V: vulva, I: intestine), and (c) tail (PI: posterior intestine, A: anus) of *C. elegans* reporter strain *sod1::gfp* after 72 hours of irradiation to 0 (control) (Top) or 100 mGy·h⁻¹ (total dose
~7.2 Gy, Bottom). d) Phase-Contrast optics and epifluorescence images of control (Top) nematodes or
nematodes exposed to 100 mGy·h⁻¹ (Bottom) for 72 hours from L1 stage, white circle indicates laid embryos
(from top to bottom, head to tail orientation). Scale bar: 25 or 100 µm.

360 3.1.2 Dose-rate dependent increase in H₂O₂ production

361


362 The primary source of cellular H_2O_2 is via catalytic dismutation of O_2 . by antioxidant 363 enzymes including SOD1 (Back et al., 2012). The effects of gamma radiation on peroxide 364 metabolism were investigated *in vivo* by using the *HyPer* biosensor (Back et al., 2012). At 365 48 hours of exposure, analysis of the entire body of the nematodes showed that H₂O₂ levels 366 increased linearly with dose-rate (SLR, p-value <0.001) (Fig. 4.a). At 100 mGy-h⁻¹ (total 367 dose \sim 4.8 Gy) the H₂O₂ levels were visibly increased (Fig. 4.b), however, due to high inter-368 variability between organisms within the same treatment, this was not significant (Tukey 369 *post hoc, p*-value > 0.05). Nonetheless, it was clear that the H_2O_2 levels increased with 370 exposure time. At 72 hours of irradiation, a significant dose-dependent increase (SLR, p-371 value <0.0001) in the oxidized/reduced *HyPer* ratios was measured from doses $\ge 1 \text{ mGy-h}^{-1}$ 372 ¹ (Tukey post hoc, p-value < 0.001), as shown in Fig. 4.a. Consistent with the sod-1 373 expression, the highest dose-rate (100 mGy·h⁻¹, total dose \sim 7.2 Gy) induced the highest 374 levels of H_2O_2 , either at 48 or 72 hours (Tukey *post hoc*, *p*-value < 0.0001). This shows that 375 gamma radiation at these dose-rates caused a significant peroxide production that 376 surpassed the nematodes capacity to sequester H_2O_2 . In contrast, both the control and 0.4 377 mGy· h^{-1} groups showed a decreased H₂O₂-level between 48 and 72 hours of exposure.


378

Accordingly, when assessing the accumulation of hydrogen peroxide in different tissues at 48 hours, it was evident that no visible oxidation pattern was identified with no evident change observed in the fluorescence ratio below 100 mGy·h⁻¹ (total dose <7.2 Gy, **Fig. 4.b**), while after 72 hours of exposure, at ≥ 10 mGy·h⁻¹ the nematodes showed a significant

enhanced level of oxidation (Fig. 4.c). Moreover, the HyPer oxidation pattern showed a 383 384 visible dose-dependent increase, from a reduced signal observed in the control and 0.4 385 mGy· h^{-1} groups, to an oxidized signal in the 10 and 100 mGy· h^{-1} groups (**Fig. 4.c**, total doses 386 in **Table S.8**). In order to investigate whether there were differences between certain 387 tissues or cell types, the *HyPer* ratios were quantified in the Pharynx posterior bulb and in the Posterior intestine after exposure to 100 mGy·h⁻¹ compared to non-irradiated 388 389 nematodes (Fig. 5.a-b-c). Consistent with the whole-body measurements (Fig. 4.a and 5.a), 390 the 100 mGy- h^{-1} exposure (total dose ~7.2 Gy) showed a significant difference in the 391 oxidation signal (green fluorescent signal) compared to controls, specifically in the pharynx 392 and along the posterior part of the intestine (Student's t-test, *p*-value <0.0001) (Fig. 5). The 393 results did however not reveal any difference between different tissues or cell types 394 (Student's t-test, *p*-value >0.05).

395

399 Figure 4. a) H₂O₂ level assessed in vivo, in C. elegans ratiometric biosensor HyPer, after 48 and 72 hours of 400 exposure to gamma radiation (total doses in Table S.8), in front row 24-well plates containing MHRW/OP50. 401 Data represent Mean ± 95% CI (n = 10). Dashed or continuous line with asterisk indicates non-significant (NS) 402 or significant difference to control treatment at 48 and 72 hours, respectively (Tukey post hoc, p-value < 0.001 403 and < 0.0001). Projected on top of the bar chart are the regression lines for the H_2O_2 levels on the log_{10} (dose 404 rate) values. (b) Relative epifluorescence images of the H_2O_2 oxidation pattern at different dose-rates of 405 exposure (mGy· h^{-1}) after (b) 48 (head and tail respectively) and (c) 72 hours of irradiation (from left to right, 406 tail to head orientation). Scale bar: 100 µm.

407

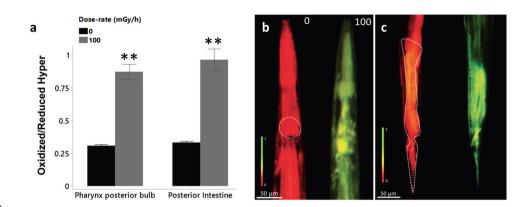


Figure 5. a) H₂O₂ level assessed *in vivo* in specific tissues of *C. elegans* ratiometric biosensor *HyPer*, after 72
hours of exposure to 0 and 100 mGy·h⁻¹ (total dose ~7.2 Gy) of gamma radiation. Asterisk indicates significant
difference to control treatment (Student's t test, *p*-value < 0.0001). (b) Epifluorescence images of the relative
expression pattern assessed *in vivo* in (b) the pharynx posterior bulb and (c) posterior intestine of *C. elegans*biosensor *HyPer* after 72 hours of irradiation to 0 (control) or 100 mGy·h⁻¹. Scale bar: 50 µm.

418

419	3.1.3	Glutathione	redox	changes
-----	-------	-------------	-------	---------

420

The glutathione disulphide-glutathione couple [GSSG]/[2GSH] serves as the cell's primary mediator for the maintenance of redox homeostasis (Back et al., 2012). Therefore, the oxidized to reduced ratio [GSSG]/[2GSH] of *Grx1-roGFP2* (Back et al., 2012) was used as a proxy to assess the impact of chronic exposure to ionizing radiation *in vivo* on the redox potential and to visualize the relative oxidation pattern in the nematode *C. elegans*. At 48

hours from L1 stage, at dose-rates as low as 0.4 mGy-h^{-1} (total dose ~0.02 Gy), a significant imbalance between oxidized to reduced signal was measured on the irradiated *Grx1roGFP2* compared to control nematodes (Tukey *post hoc*, *p*-value < 0.001) (**Fig. 6.a**). This significant oxidative imbalance was shown for all measured dose-rates (Tukey *post hoc*, *p*value < 0.001). Despite the statistically significant imbalance detected on the whole-body measurements after 48 hours of exposure, in all the irradiated groups, we found no evidence of tissue-specific effect compared to control nematodes (**Fig. 6.b**).

433 In contrast, at 72 hours of exposure, assessment of oxidative effects on whole body was 434 hampered by excessively large variation between individuals (S.M.4, Fig. S.4.a-b). 435 However, previous reports have demonstrated large differences between tissues (Back et 436 al., 2012). At this time-point, the only dose-rate inducing a higher but not statistically 437 significant oxidation of the [GSSG]/[2GSH] couple was 100 mGy·h⁻¹ (total dose \sim 7.2 Gy) 438 (Tukey *post hoc*, *p*-value > 0.05) (**Fig. 6.a**), we therefore, investigated effects on different 439 tissues and cell types in this exposure group compared to control nematodes. This analysis 440 showed a significant oxidation in the gonads compared to the control (Student's t-test, p-441 value <0.001) (Fig. 7.b-c), while the signal measured in the spermatheca showed no 442 difference between these two groups (Student's t-test, *p*-value > 0.05) (Fig. 7.c-d).

443

444

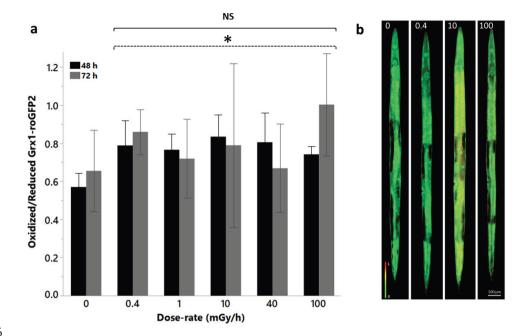


Figure 6. a) *In vivo* measurement of oxidized to reduced ratio of the *C. elegans* ratiometric biosensor *Grx1*-*roGFP2*, assessed after 48 and 72 hours of exposure to gamma radiation (total doses in Table S.8), in front
row 24-well plates containing MHRW/OP50. Data represent Mean ± 95% CI (n = 10). Dashed or continuous
line indicates non-significant (NS) or significant difference (asterisk) to control treatment at 48 and 72 hours,
respectively (Tukey *post hoc*, *p*-value < 0.001). (b) Relative epifluorescence images of the oxidation pattern in *Grx1-roGFP2* at different dose-rates of exposure (mGy·h⁻¹) after 48 hours of irradiation (from top to bottom,
head to tail orientation). Scale bar: 100 µm.

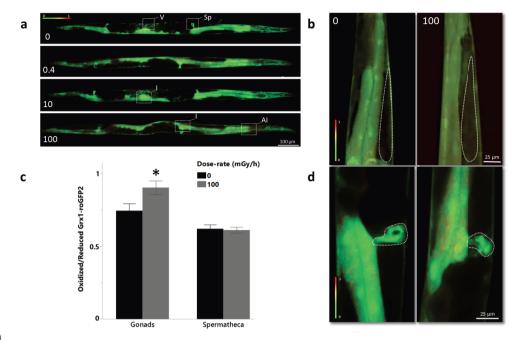


Figure 7. a) Epifluorescence images of the oxidation pattern in *Grx1-roGFP2* after 72 hours of gamma
irradiation to different dose-rates of exposure (mGy·h⁻¹, total doses in Table S.8) in the entire body (V: vulva,
Sp: spermatheca, I: intestine, AI: Anterior Intestine) (from left to right, tail to head orientation) or in selected
tissues b) gonad and d) spermatheca. (c) Relative measurement of the GSSG/2GSH ratio in gonad and
spermatheca after exposure to 0 (control) or 100 mGy·h⁻¹ of gamma radiation. Asterisk indicates significant
difference to control treatment (Student's t test, *p*-value < 0.001). Scale bar: 25 or 100 µm.

3.2 Chronic exposure to gamma radiation induces dose-rate dependent
effects on *C. elegans* transcriptome

472 A gene expression analysis was performed after 72 hours of exposure to gamma radiation 473 from L1 stage in order to identify potential changes in the nematode's transcriptional 474 program. The RNA-seq analysis revealed a clear dose-dependent increase in the number of 475 differentially expressed genes (DEGs) (Fig. S.5.a). No significant differences in the gene 476 expression profile were found in nematodes exposed to 0.4 mGy·h⁻¹ compared to the 477 control group, while the 10 and 100 mGy·h⁻¹groups (total doses \sim 0.8 and 7.2 Gy) showed a 478 total of 62 and 1317 DEGs, respectively, with 15 DEGs in common between these two 479 treatments (**Fig. S.5.b** and **Table S.1**). The complete list of DEGs resulting from 10 and 100 480 mGy·h⁻¹ exposure groups can be found in **Supplementary Tables S.2 and S.3**, respectively. 481

482

483 3.2.1 Functional enrichment analysis of DEGs

484

A gene set enrichment analysis was performed on the DEGs resulting from 10 and 100 mGy·h⁻¹ exposure groups in order to identify functions significantly affected by exposure to gamma radiation with respect to tissue, phenotype and gene ontology (**Fig. S.6-7, Table 1-2, Table S.6**). A clear distinction between the expression profiles was found in the DEGs resulting from the two exposure groups (**Fig. S.5**). The exposure to 10 mGy·h⁻¹ (total dose ~0.8) indicated overall effects on functions related to intestine, immune, reproductive and nervous systems (**Fig. S.6.a-b-c**).

492

When the same analysis was performed on 100 mGy·h⁻¹ DEGs, several functions and categories related to reproduction and effects on progeny were significantly enriched 495 among down-regulated genes. Specifically, the reproductive system, embryonic 496 development, meiotic chromosome segregation and cell cycle, spindle defective in early 497 embryo, aneuploidy and embryonic cell physiology were among the most over-represented 498 functions and variants observed (Fig. S.7.a-b-c, Table S.4). The TEA tool identified more 499 than 300 down-regulated genes related to the reproductive system and more than 100 500 genes related to the muscular system (Fig. S.7.c, Table S.4). From the muscular system 501 category, 19 genes had mitochondrial functions, including mitochondrial ribosomal 502 proteins (*mrpl* and *mrps*), genes involved in mitochondrial membrane and genome maintenance (pgs-1, R04F11.5, tomm-7, C27H6.9 and rpap-3) and mitochondrial 503 504 dysfunction or disease (F39H2.3, nuaf-1 and pgs-1) (Table S.4). The Embryonic 505 development variant identified by the PEA tool, on the other hand, included 94 down-506 regulated genes, among these, genes required for mejotic and mitotic chromosome 507 segregation (mut-2, dnc-2, him-10, nmat-2, cec-3, syp-3, rsa-1, unc-59, cids-1, him-8, nos-2, 508 hpo-9 and hus-1), apoptosis and DNA repair (rad-54, ced-12, pch-2, tyms-1, uri-1), gamete 509 development and fertilization (trcs-1, nos-2, unc-59, pgs-1, uri-1, spd-3, hus-1 and mdt-6) (Table S.4). The genes mut-2, hus-1, nos-2, him-10, cids-1, syp-3, rsa-1 and him-8 are all 510 511 related to adverse 'variant Aneuploidy', 'Chromosome segregation', 'Meiotic cell-cycle 512 functions' and the 'Reproductive system' (Table S.4).

513

514 Similarly, the up-regulated genes resulting from the same exposure group showed that 515 important functions with respect to cellular development, post-embryonic development, 516 cuticle and collagen synthesis, sex organ, protein interaction and cytokinesis were affected 517 (**Table 1, 2, Table S.6**). The GEA tool identified multiple molecular functions related to the modulation of gene expression via transcriptional initiation, post-transcriptional modification and RNA transport and processing (Table 1, Table 5.5). Also chromatin remodelling appeared to be affected as evidenced by 'Protein heterodimerization activity' category, which included 31 core histories (**Table 1**, **Table S.5**). The most significantly enriched PEA category comprised 24 up-regulated genes related to 'Variant Sister Chromatid segregation defective in early embryo' (q-value < 0.00001) (Table 2, Table S.5). Further indication of effects related to cell division and reproduction were seen by 19 histones and ribosomal subunits encoding genes associated to 'Diplotene absent during oogenesis' phenotype. Another 19 up-regulated genes were related to 'Apoptosis fails to occur'. These included activator of the programmed cell-death pathway, *eql-1*, regulator of asymmetric cell division, ces-2, regulator of cell fate during post-embryonic development, *mab-5, mcd-1,* which promotes the developmentally programmed progression of cells through apoptosis and 7 genes encoding for large and small ribosomal subunits (*rpl* and *rps*) (**Table S.5**). Collectively, a large proportion of the DEGs were related to cell cycle impairments and responses to genotoxic effects.

Table 1. Over-represented biological processes, molecular functions and cellular components functional

542 categories, from Gene Ontology (GO), which were up-regulated in *C. elegans* after 72 hours of exposure to 100

543 mGy·h⁻¹ of gamma radiation. HyPergeometric probability distribution is adopted to measure the number of

544 enriched terms (Observed number of DEGs in each specific function).

Term (GEA)	Observed	Enrichment Fold Change	P value	Q value
Intracellular GO:0005622	466	1.1	0.0053	0.023
Organelle GO:0043226	401	1.1	0.0019	0.011
Cytoplasm GO:0005737	295	1.1	0.016	0.061
Cellular developmental process GO:0048869	92	1.7	5.90E-07	9.40E-06
Regulation of nucleobase-containing compound metabolic process GO:0019219	91	1.2	0.015	0.061
Membrane-enclosed lumen GO:0031974	86	1.3	0.0026	0.013
Supramolecular complex GO:0099080	61	2.7	1.90E-13	6.10E-12
Cytoskeleton GO:0005856	60	1.8	6.50E-06	6.90E-05
Hydrolase activity acting on acid anhydrides GO:0016817	57	1.3	0.027	0.087
Structural constituent of cuticle GO:0042302	53	4.4	1.10E-21	1.50E-19
Post-embryonic development GO:0009791	53	1.5	0.0015	0.0093
Collagen trimer GO:0005581	49	4	3.20E-18	2.10E-16
Peptide biosynthetic process GO:0043043	48	1.8	2.00E-05	0.0002
Neurogenesis GO:0022008	44	2.3	1.10E-07	2.40E-06
Neuron development GO:0048666	39	2.5	2.50E-08	6.30E-07
Cell projection organization GO:0030030	39	1.8	8.10E-05	0.00074
Protein heterodimerization activity GO:0046982	35	4.6	9.40E-16	4.00E-14
Nucleoplasm GO:0005654	33	1.6	0.0024	0.013
Actin filament-based process GO:0030029	31	2.7	1.30E-07	2.40E-06
Cell part morphogenesis GO:0032990	30	2.5	7.40E-07	1.10E-05
Nucleoside phosphate metabolic process GO:0006753	30	1.4	0.02	0.07
Ribose phosphate metabolic process GO:0019693	29	1.7	0.0012	0.0083
Cell morphogenesis involved in differentiation GO:0000904	28	2.5	3.10E-06	3.60E-05
Purine nucleotide metabolic process GO:0006163	28	1.8	0.00066	0.0048
Neuron projection guidance GO:0097485	24	2.8	8.00E-07	1.10E-05
Regulatory region nucleic acid binding GO:0001067	24	1.8	0.0014	0.0093
Post-embryonic animal organ development GO:0048569	22	1.7	0.0041	0.019
Negative regulation of RNA metabolic process GO:0051253	22	1.5	0.018	0.063
Purine nucleoside monophosphate metabolic process GO:0000976	21	2.3	8.40E-05	0.00074
Structural constituent of ribosome GO:0003735	21	2.1	0.00043	0.0035
Transcription regulatory region sequence-specific DNA binding GO:0000976	20	1.9	0.0018	0.011
RNA splicing via transesterification reactions GO:0000375	18	2.2	0.00064	0.0048
RNA polymerase II regulatory region DNA binding GO:0001012	17	1.8	0.0066	0.028
Reproductive system development GO:0061458	17	1.8	0.0071	0.029
Development of primary sexual characteristics GO:0045137	16	2	0.0028	0.014
Regulation of cellular amide metabolic process GO:0034248	16	2	0.0031	0.015
Molting cycle GO:0042303	14	1.7	0.016	0.061
Negative regulation of transcription by RNA polymerase II GO:0000122	14	1.7	0.017	0.063
Small ATPase binding GO:0031267	13	1.7	0.025	0.083
Ribonucleoprotein granule GO:0035770	12	1.7	0.024	0.082

Table 2. Functional over-represented variants from Phenotype Enrichment analysis (PEA) that were upregulated in *C. elegans* after 72 hours of exposure to 100 mGy·h⁻¹ of gamma radiation (total doses ~7.2 Gy).
Hypergeometric probability distribution is adopted to measure the number of enriched terms (Observed
number of DEGs in each specific function).

Term (PEA)	Observed	Enrichment Fold Change	P value	Q value
Protein interaction variant WBPhenotype:0001369	71	1.3	0.0053	0.09
Avoids bacterial lawn WBPhenotype:0000402	65	1.6	4.20E-05	0.0046
Cytokinesis variant WBPhenotype:0002408	48	1.7	6.40E-05	0.0047
Endosome morphology variant WBPhenotype:0002090	45	1.5	0.0028	0.055
Lysosome-related organelle morphology variant WBPhenotype:0002095	42	1.5	0.0024	0.054
Neuronal outgrowth variant WBPhenotype:0000572	38	1.7	0.00051	0.023
Sluggish WBPhenotype:0000646	34	1.6	0.0015	0.049
Endosome localization variant WBPhenotype:0002100	34	1.7	0.00088	0.032
Sister chromatid segregation defective early emb WBPhenotype:0000772	26	3.1	2.40E-08	5.20E-06
Pleiotropic defects severe early emb WBPhenotype:0000270	22	2	0.00037	0.02
Diplotene absent during oogenesis WBPhenotype:0001954	19	1.9	0.0016	0.049
Apoptosis fails to occur WBPhenotype:0000184	16	1.9	0.0035	0.063
Gonad small WBPhenotype:0001957	15	2.1	0.0022	0.053

556

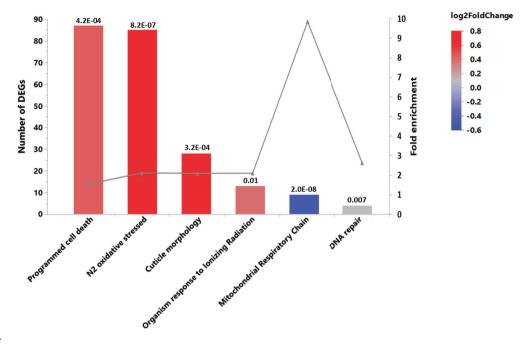
557

558 3.2.2 Over-represented categories modulated by ionizing radiation-induced

559 oxidative damage

560

The transcriptome analysis, at 100 mGy·h⁻¹, identified several genes involved in oxidationreduction processes and AOD (antioxidant defences) system, within the cytosol or in the mitochondrion (*ctl-1*, *COX1*, *COX2*, *COX3*, *cox-4*, *cox-5B*, *cox-6C*, *cox-7C*, *CYTB*, *hpo-19*, *sdhd-1*, *ucr-2.1*, *gst-20*, *egl-1*, *egl-18*, *trx-2*, *trxr-2*, *sod-1* and *rad-8*). Moreover, we found significant up-regulation of genes involved in the glutathione *de novo* synthesis, such as F22F7.7 and gln-3. Therefore, in order to identify specific transcriptional responses related to the


567 increased generation of ROS and evidence of oxidative damage effects on cell physiology

568 and metabolism, we performed an in depth manual assignment of the DEGs from 569 nematodes exposed to 100 mGy·h⁻¹ into relevant categories assigned from the curated 570 WormBase phenotype (Lee et al., 2017) and transcriptomic analysis of oxidative stress 571 (Shin et al., 2011) (Fig. 8, Table S.7). As expected, a number of genes within Oxidative 572 stress response, PCD (Programmed Cell Death), DNA damage and response to ionizing 573 radiation were found (Fig. 8). Within the first most over-represented category 574 (Programmed cell death), we found genes related to general response to stress, such as 575 Autophagy (atq-3, atq-9, ces-2 and rab-7), but also Cell cycle and Cell division (pch-2, eql-1, 576 hus-1, ced-12, dapk-1, ces-2, chk-1, mcd-1, tads-1, pcn-1, car-1, set-17), Ribosomal proteins 577 (rpl-12, rpl-13, rpl-18, rpl-19, rpl-20, rpl-26, rps-10, rps-20, rps-26, rps-3, rps-6, rps-9), 578 Proteasome (pbs-1, pbs-1, pbs-5) and Histones (his-24, his-68, his-3, his-7, his-61, his-47) 579 (Table S.7). Phenotypes directly related to exposure to ionizing radiation were also found 580 with respect to organismal and germline response, these included genes related to cell cycle 581 and DNA repair (rad-54, chk-1, hus-1, umps-1 and rpa-2), innate immune response (elt-2). 582 chromosome segregation and apoptosis (*hus-1*, *rad-54*, *ing-3*, *lin-40* and *car-1*).

583 From the total DEGs resulting after exposure to 100 mGy·h⁻¹ we found 40 genes involved in 584 mitochondrial functions, among them, genes related to mitochondrial membrane, 585 mitochondrial ribosomal proteins, mitochondrial metabolism and mitochondrial 586 respiratory chain. Among the selected phenotypes, mitochondrial metabolism included 587 mostly up-regulated genes, while mitochondrial respiratory chain was the only phenotype 588 significantly down-regulated, comprising 10 (COX1, COX2, COX3, ND1, ND2, ND3, ND4, ND5, 589 *CYTB* and *ATP6*) of the 12 genes which encode for the oxidative phosphorylation system 590 (Chomyn and Attardi, 2014) (Table S.7).

591 The second most represented category (Fig. 8) included 85 genes found in common with 592 RNA sequencing analysis performed on oxidative stressed wild-type N2 (499 DEGs in total) 593 after exposure to Paraquat from a previous study by Shin et al. (2011). Among these DEGs 594 found in common, 80 genes showed significant up-regulation and were mostly related to 595 Collagen (col-104, col-107, col-109, col-130, col-155, col-166, col-167, col-48, col-77, col-81, 596 col-95, let-2), Mitochondrion (sdhd-1, tomm-7, F58F12.1), Histones (his) and Ribosomal 597 proteins (*rpl, rps*), the list also included the heat-shock protein *hsp-3* and the *daf-2* regulated 598 gene *dao-2*.

599 Consistent with the effects induced by oxidative damage (Shin et al., 2011), lipid 600 metabolism, cuticle morphology, protein degradation and energy expenditure were also 601 among the most over-represented phenotypes, comprising mostly up-regulated genes 602 (**Table S.7**).

604

Figure 8. Over-represented categories modulated by ionizing radiation-induced oxidative damage resulting
from 72 hours exposure to 100 mGy·h⁻¹ of gamma radiation (total doses ~ 7.2 Gy) in the nematode *C. elegans.*(Data labels indicate Fisher's exact test *p*-values).

608

609

610 **4.** Discussion

611

The oxidative damage exerted on cellular molecules and macromolecules accounts for the total indirect effect following exposure to ionizing radiation (Azzam et al., 2012, Reisz et al., 2014). Therefore, the assessment of ROS/AOD levels and the subsequent oxidative damage response represents a fundamental parameter to understand and monitor the 616 changes in the homeostasis of an organism. To the best of our knowledge, this is the first 617 study to demonstrate in vivo ROS formation, antioxidant response and oxidative stress 618 effects to the cellular redox homeostasis in a radiation tolerant organism subjected to 619 chronic gamma irradiation. Furthermore, we connect molecular initiating events related to 620 ROS production and redox imbalance to phenotypical effects by performing a deep gene 621 expression analysis. Consistent with previous studies (Buisset-Goussen et al., 2014, 622 Maremonti et al., 2019), only dose-rates \geq 40 mGy·h⁻¹ (total doses \geq 3.9 Gy) were able to 623 inflict a reprotoxic effect (Fig. 1). In line with studies performed on other aquatic and soil 624 organisms (Gomes et al., 2018, Gomes et al., 2017, Xie et al., 2019), our study suggests that 625 ROS production plays an important role in the induction of molecular, cellular and 626 organismal adverse effects also in C. elegans, with reproduction being the most 627 radiosensitive endpoint compared to somatic growth, fertility and mortality (Hertel-Aas et 628 al., 2007, Adam-Guillermin et al., 2012, Hurem et al., 2017, Parisot et al., 2015). No 629 significant effects with respect to somatic growth or somatic cell viability could be detected 630 even for nematodes that received 100 mGy· h^{-1} (total doses ~9.6 Gy) during their entire 631 larval development. This demonstrates that C. elegans has a relatively high tolerance 632 towards the effects of gamma radiation at the organismal level, but the mechanisms 633 involved remained to be elucidated. By using ROS reporter strain we were able to 634 investigate whether ionizing radiation affected cellular metabolism in C. elegans in vivo, but also to address whether tolerance to ionizing radiation is mediated by high anti-oxidant 635 636 capacity.

637

4.1 ROS production and scavenging in *C. elegans* exposed to chronic gamma radiation

641

642 External gamma irradiation causes ionizations homogenously in the whole body of an 643 organism like *C. elegans*. We therefore hypothesised that ROS formation would be dose-rate 644 dependent and uniform within all cells and tissues of the nematode. To investigate the effect 645 of gamma radiation on ROS formation in *C. elegans* we first assessed the effect on *sod-1* gene 646 expression as a proxy for O_2 . production. The results confirmed an overall linear 647 correlation between dose-rate and *sod-1* expression (Fig. 2). The response was uniform 648 throughout the entire nematode body, including embryos (Fig. 2.c and 3.d). Any 649 discrepancies could be ascribed to tissue specific constraints of sod-1::gfp expression 650 (Doonan et al., 2008). The fact that *sod-1* expression increased with time implies continuous 651 formation and accumulation of O2^{...} during the exposure. These observations are consistent 652 with the LET-model for radiolysis radical formation (Smith et al., 2012). Notably, the O2.-653 formation by gamma radiation appears to be quite high considering that the *sod-1* response 654 was about 3-fold higher compared to Paraquat exposure (Fig. S.2). This indicated a 655 considerable potential for other effects of ROS and oxidative damage.

In other species (i.e. bdelloid rotifers) the enhanced capacity for scavenging reactive molecular species generated by ionizing radiation has been addressed as one of the major contributors to radiation resistance (Krisko et al., 2012). Therefore, in the current study, we have assessed the redox status after chronic irradiation, in order to verify whether the unusually high abundance of AODs in *C. elegans* compared to other organisms plays a key role in its tolerance towards ionizing radiation.

662 Consistent with results from other organisms expressing high radioresistance (Krisko et al., 663 2012), we measured higher levels of AODs in nematodes exposed to much lower dose-rates 664 of gamma radiation. In particular, after 48 hours of exposure and from dose-rates higher 665 than 1 mGy· h^{-1} (total doses ≥ 0.05 Gy), we measured a linear dose-rate dependent increase 666 of cytosolic superoxide dismutase and a significant imbalance in the oxidation of the 667 [GSSG]/[2GSH] couple (**Fig 2. a** and **6. a**). On the other hand, at this time-point, H_2O_2 levels 668 did not show a significant change in any of the irradiated groups, even though a linear dose-669 dependent increase was detected (SLR) (Fig 4. a). A time-dependent increase in the levels 670 of SOD1 and H₂O₂ was measured after 72 hours of irradiation, with SOD1 and H₂O₂ levels 671 being significantly increased already at dose-rates $\geq 1 \text{ mGy-h}^{-1}$ (total doses $\geq 0.08 \text{ Gy}$). At this 672 time-point, as should be expected, the highest dose-rate of exposure (100 mGy· h^{-1} , total 673 dose ~7.2 Gy) showed the most elevated levels of ROS and AODs (Fig 2. a, 4. a, 6. a).

674 Under 'normal' aerobic conditions, during mitochondrial respiration, approximately 2 – 3% 675 of oxygen is incompletely reduced and leads to the production of a small amount of 676 superoxide radical anion $(O_{2^{-}})$ through the mitochondrial electron transport chain (ETC) 677 (Turrens, 2003). This free radical is transformed into hydrogen peroxide (H₂O₂), which is 678 also a potent oxidizing agent, by the mitochondrial isoforms SOD2 and SOD3 (manganese 679 superoxide dismutase) (Brady, 2006, Brand, 2010, Daiber, 2010, Dröse and Brandt, 2012). 680 Nevertheless, O_2 .⁻⁻ may also leak into the cytosol through the voltage-dependent anion channels (Han et al., 2003) to become the substrate for the cytosolic Cu, Zn-SOD (SOD1). 681

Upon cell exposure to ionizing radiation, the physiological production of ROS in the
different compartments of the cell are joined by ROS produced by water radiolysis (Szumiel,
2015). Moreover, perturbation in the redox balance can be further affected when

mitochondrial dysfunction occurs in irradiated cell, leading to ulterior production of
mitochondrial ROS in addition to the radicals resulting from the water radiolysis (Azzam et
al., 2012).

688 Therefore, we suggest that chronic exposure to gamma radiation may induce the 689 accumulation of $O_2^{...}$ inside the mitochondria, which due to the increased leakage of $O_2^{...}$ in 690 the cytosol contributed to the increased *sod-1* expression (Fig. 2.a). Moreover, the 691 dismutation of O_2 ⁻ and the consequently increased production of H_2O_2 (Fig. 4.a) and other 692 ROS, over time, culminated in the observed effect on the redox status (Fig. 6.a, 7.b). 693 Maintenance of the proper [GSSG]/[2GSH] ratio ensures redox homeostasis, whereas 694 changes to this ratio provides effective means to adjust the redox state between as well as within cellular compartments under different physiological conditions (Johnston and Ebert, 695 696 2012). The significant changes in the ratio of reduced glutathione to glutathione disulphide 697 in the different tissues and cell compartments (Fig. 6 and 7.b-c) indicated that ROS were 698 produced at higher rates than *C. elegans* was able to sequester. Furthermore, the increased 699 ROS production did significantly affect the overall cellular redox balance at 48 hours of 700 exposure (Fig. 6.a). It appears that at 72 hours of exposure the nematodes mobilized AOD 701 systems were capable of counteracting the redox imbalance in most tissues (Fig 7.a) 702 despite the increased ROS levels (Fig. 2.a and Fig. 4.a).

Glutathione plays an essential role in the antioxidant defence system, as a source of electrons for antioxidant enzymes such as glutaredoxins and peroxidases (Pompella et al., 2003). Two possible events can explain the partial restored balance of glutathione, observed after 72 hours of exposure: i) the high concentrations (1-11 mM) of glutathione in the cell, which ensure an abundance of electrons for these antioxidant systems and thus

708a robust buffer against oxidative shifts in the redox state (Schafer and Buettner, 2001); ii)709the induced glutathione *de novo* synthesis, as indicated by the up-regulation of gamma-710glutamylcyclotransferase (*F22F7.7*) and glutamine synthetase (*gln-3*) (Lu, 2009), resulting711from RNA-seq analysis on nematodes exposed to 100 mGy·h⁻¹ (total dose ~7.2 Gy) (**Table**712**S.3**).

713 However, changing the redox balance can alter the physiological homeostasis of an 714 organism not only because ROS are harmful for proteins, lipids and nucleic acids, but also 715 because they represent important signalling molecules in a biological system, and even a 716 minor change can result in a substantial alteration for example in terms of metabolism, cell 717 proliferation and host defence (Finkel and Holbrook, 2000). Despite the partially restored 718 redox balance, observed after 72 hours with the Grx1-roGFP2 strain, the increased 719 expression of SOD1 and the high H₂O₂ levels measured, together with the glutathione redox 720 imbalanced, observed after 48 hours of chronic gamma irradiation and in the gonads of 72 721 hours irradiated nematodes, implied that the changes of the redox status of the nematodes 722 could cause significant oxidative damages and affect molecular, cellular and physiological 723 processes of the organism.

724

725

4.2 Ionizing radiation-induced oxidative stress effects lead to differential
regulation of genes required for cuticle morphology, protein degradation,
lipid metabolism and gene expression

729

730 In the current study, the overall redox balance of nematodes exposed to chronic gamma 731 radiation was shown to be shifted towards a more oxidized status, since increased levels of 732 ROS and a temporary but significant imbalance in the ratio of reduced glutathione to 733 glutathione disulphide were measured. Within the "redox hypothesis" paradigm (Jones, 734 2008), much of the toxicity of oxidative stress could result from an oxidative shift in redox 735 state within one or more cellular compartments. This shift might transiently disrupt redox 736 signalling as well as perturb the regular function of redox regulated proteins within these 737 compartments. The result could still be pathological oxidative damage to cellular 738 components, even though the cause could be indirect. Therefore, we anticipated a 739 significant change in the transcriptome profile of irradiated nematodes, as a response to 740 the observed increased levels of ROS and AODs.

As hypothesised, the transcriptome analysis performed on nematodes exposed to 100 mGy·h⁻¹ revealed differential modulation of genes involved in oxidation-reduction processes and accordingly a significant enhancement of functions related to stress response (Sections 3.2.1-3.2.2).

In line with the results from the *sod1::gfp* reporter strain and the two ratiometric biosensors adopted in our study, RNA sequencing revealed dysregulation of genes involved in AOD system such as *sod-1, ctl-1, glrx-10, gst-20, trx-2* and *trxr-2*. Moreover, changes in the redox balance affected glutathione metabolism, by up-regulation of glutathione *de novo* synthesis (Section 3.2.2).

Oxidative stress response was the most up-regulated phenotypical variant gene category
observed, followed by lipid metabolism, cuticle morphology and protein degradation (Fig.
8, Table S.7), all functions that have been previously correlated to oxidative damage in *C*.

elegans (Shin et al., 2011), which corroborates that chronic gamma radiation does cause an
oxidative stress type transcriptional response.

755 Chronic exposure to 100 mGy·h⁻¹ of ionizing gamma radiation (total dose \sim 7.2 Gy) induced 756 up-regulation of 53 genes related to structural constituent of cuticle, collagen trimmer and 757 moulting cycle. As suggested by Shin and co-authors (2011), this significant enrichment 758 may indicate the involvement of collagens in the adaptive mechanism response against the 759 ionizing radiation-induced oxidative stress. In this organism, the cuticle represents the 760 barrier between the animal and the external environment, therefore it may have a direct 761 protective function towards environmental perturbations as well as being indirectly 762 regulated in response to ROS production and oxidative damage. Moreover, accumulation or 763 excess of collagen has been shown to cause radiation-induced fibrosis, as well as to be a 764 response to loss of redox-sensitive control during the inflammatory or proliferative stage 765 (Sarsour et al., 2009).

766 Proteins segregation and degradation has also been addressed as a major target of ionizing 767 radiation-induced oxidative damage, particularly, the carbonylation damage is 768 unrepairable and when this impairs the activity of key proteins, such as those needed to 769 repair and replicate the DNA, cell survival is endangered (Nyström, 2005, Daly, 2012). 770 Consistently, the differential regulation of 12 genes involved in protein ubiquitination 771 activity (C17H11.6, mib-1, plr-1, rle-1, siah-1, skr-16, smo-1, ubc-15, ubc-20, ubc-3, ubl-1, urm-772 1), together with 6 genes encoding for proteasome subunits and protease activity (asp-1, 773 pbs-1, pbs-2, pbs-5, psmd-9, try-10) gave indication of protein damage effects under 774 exposure to chronic gamma radiation. This result was further validated by 17 DEGs

identified in the over-represented category "Protein degradation variant" resulting from
the oxidative-stress induced phenotype analysis (**Table S.7**).

777 Excessive ROS formation can also affect lipids, in particular the oxidative deterioration of 778 polyunsaturated fatty acids present in cellular membranes can lead to membrane 779 destabilization and therefore further oxidative damage to biomolecules (Halliwell and 780 Gutteridge, 2015). Consistent with the increased levels of H_2O_2 measured with the *HyPer* 781 biosensor, we observed effects on lipids through the identification of more than 50 DEGs 782 involved in lipid metabolism (Table S.7), the up-regulation of 86 genes involved in 783 membrane-enclosed lumen, 45 and 42 genes involved in endosome and lysosome-related 784 morphology, respectively (Table 1, 2, Table S.5). These results suggest that under chronic 785 exposure to ionizing gamma radiation, the modulation of processes involved in 786 maintenance, biosynthesis and accumulation of lipids is a further response to ROS 787 production, as well as associated to effects on cell and organelle's membrane.

788 To further validate the hypothesis that the increased ROS levels was among the molecular 789 initiating events responsible for the observed redox imbalance and the modulation of the 790 nematode's transcription profile, we found 85 genes in common with wild-type oxidative 791 stressed after exposure to Paraquat from Shin and co-authors (2011) ("N2 oxidative 792 stressed" category, **Fig. 8** and **Table S.7**). These genes were mostly involved in collagen 793 production, mitochondrial functions, ATP synthesis, chromatin modification (histones and 794 methyltransferase activity), ribosomal functions, response to heat stress and 795 ubiquitination; giving further evidence of the specific mode of action of ionizing gamma 796 radiation in terms of oxidative damage on a molecular and cellular level.

Furthermore, as a consequence of changes in the physiological process of cellular signalling, we observed a significant enrichment in molecular functions required for the modulation of the gene expression (Section 3.2.1), including chromatin remodelling and transcriptional regulation. Molecular functions related to chromatin domains, transcription, posttranscriptional modifications, RNA transport and processing were significantly overrepresented (**Table 1**, **Fig. 9**), giving indication of changes in the gene expression profile of nematodes under exposure to chronic gamma radiation.

These findings demonstrate that a tolerant organism, like the nematode *C. elegans*, is able to effectively respond to a persistent stress condition, such as a chronic irradiation during the entire larval development, by modulating its biological, cellular and molecular functions (**Fig. 9**), in order to maintain the organism homeostasis, however this comes to the cost of energy expenditure and reproductive fitness (**Fig. 1**).

- 810
- 811

4.3 Transcriptomic analysis reveals mitochondrial functions and ATP
synthesis as targets of ionizing gamma radiation in *C. elegans*

814

Exposure to ionizing radiation is associated with the manifestation of mitochondrial dysfunction (Azzam et al., 2012). Oxidative phosphorylation is susceptible to this stressor, due to the alteration of the complexes involved in the Electron Transport Chain (ETC) and the ATP synthase activity (Kam and Banati, 2013). As a response to oxidative stress, the mtDNA copy number increases (Hori et al., 2008) and in order to ensure stable levels of ATP also the mitochondrial mass increases (Dayal et al., 2009). Dysfunctions in the ETC

leads to further production of mitochondrial ROS, and conversely, cells deficient in 821 822 mitochondrial ETC (rho^(o) cells) do not show radiation-induced ROS production (Leach et 823 al., 2001). Consistently, we observe compelling down-regulation of all ten protein encoding 824 genes out of the 12 genes required for the assembly of the Mitochondrial respiratory chain 825 (COX1, COX2, COX3, ND1, ND2, ND3, ND4, ND5, CYTB and ATP6) (Fig. 8, Table S.7). 826 Furthermore, we identified down-regulation of 10 genes encoding for small and large 827 mitochondrial ribosomal proteins (mrpl-10, mrpl-18, mrpl-28, mrpl-36, mrpl-41, mrpl-49, 828 mrpl-50, mrps-17, mrps-21, mrps-23), which are required for the proper assembly and 829 function of ETC mediated energy production (Berg et al., 2006). We also observed 830 differential regulation of genes involved in Mitochondrial metabolism (immt-1, let-2, ril-1, 831 cox-4, sdha-1, madd-2, unc-52, rict-1, pgs-1, bcs-1, mics-1, mspn-1, mttu-1, nuaf-1, rad-8, ZK1128.1), genome maintenance (C27H6.9), protein import (tomm-22, tomm-7, ddp-1). 832 833 Energy expenditure (sdha-1, cox-5B, rict-1, sdhd-1, T02H6.11) (Table S.7) and ATP 834 synthesis (asb-2, asa-2, atp-1, atp-4, atp-5, catp-1, vha-3 and F58F12,1) (Fig. 9). Differential 835 regulation of the mitochondrial cytochrome b and its subunits (CYTB, hpo-19, sdhd-1, ucr-836 2.1) was also observed, specifically the inhibition of cytochrome b5 reductase (hpo-19) has 837 previously shown to induce decreased levels of poly-unsaturated fatty acids (PUFAs), 838 which leads to decreased fat accumulation, reduced brood size and impaired development 839 (Zhang et al., 2016).

Mitochondrial dysfunctions in irradiated cells can significantly contribute to perturbation in the physiological redox reactions and signalling (Kam and Banati, 2013). Such perturbation can lead to signalling cascades which can induce a multitude of other nontargeted responses such as apoptosis, autophagy, nuclear DNA damage, genomic instability and other degenerative conditions (Sidoti-de Fraisse et al., 1998, Lomonaco et al., 2009,
Choi et al., 2007, Sarsour et al., 2009). Thus, consistent with the induced AODs and ROS
production, measured in the current study, the changes observed in the nematode's
transcriptome profile, with respect to mitochondrial functions and ATP production, were a
clear evidence of the mitochondrial vulnerability under exposure to ionizing radiation and
a signal for late consequences on other cellular, molecular and biological functions.

850

851

4.4 Ionizing radiation-induced DNA damage leads to histones up-regulation
and methylation, defective chromosome segregation, programmed cell
death, and impairment of nervous system and embryonic development

856 Upon severe stress condition, survival is dependent on the ability of the cell to adapt or 857 resist the stress, by for instance repairing or replacing the damaged molecules (Finkel and 858 Holbrook, 2000). Beyond the well-known DNA repair mechanisms of homologous 859 recombination (HR) and non-homologous end-joining (NHEJ), emerging evidence indicates 860 that also epigenetic changes can enable adaptation responses in the surviving cells 861 (Szumiel, 2015, Wei et al., 2018). Consistent with this hypothesis, we identified a significant 862 up-regulation of 20 core histone encoding genes (H3, H4), which might represent a 863 response to DNA damage and, in this sense, a protective mechanism via the promotion of 864 chromatin condensation (Takata et al., 2013). Furthermore, methylation of lysine residues 865 on histones can play an important role in determining the repair pathway upon doublestrand breaks (DSBs)(Wei et al., 2018). In good accordance, we identified a significant up-866

regulation of *dot-1.1, set-9, set-16* and *set-26*, which encode for histone-lysine Nmethyltransferases. The genes *set-9* and *set-26* are also required for longevity, germline development and heat stress response, giving further evidence of the connection between oxidative damage and adverse effects exerted by chronic irradiation on the reproductive system.

872 Consistent with our previous study (Maremonti et al., 2019), we found further indication of 873 adverse effects exerted by chronic gamma irradiation on chromosome segregation, mitotic 874 and meiotic cell-cycle, spindle formation and embryonic development (Fig. S.7; Tables 1, 875 2, Table S.6). In both studies, these effects were accompanied by impairment of the 876 nematodes reproductive capacity (Fig. 1.b), which was further supported, in the current 877 study, by the down-regulation of more than 300 genes related to the reproductive system (Fig. S. 7.c). Specifically, we found a differential regulation of cellular and molecular 878 879 functions related to reproduction, such as gamete development and fertilization, 880 cytokinesis, sister chromatid segregation defective in early embryo, diplotene absent 881 during oogenesis, gonad small, reproductive system development, meiotic chromosome 882 segregation, spindle position and orientation and aneuploidy. As already shown in our 883 previous study, where enhanced germ cell apoptosis and impaired spermatogenesis lead to 884 reprotoxicity (Maremonti et al., 2019), all these over-represented categories gave further 885 evidence of the persistent adverse effects induced by chronic gamma irradiation on the 886 meiotic process, which subsequently leads to loss of the reproductive fitness.

887

Oxidative metabolic processes that produce ROS are important for the regulation of the cellcycle functions, proliferation and differentiation (Sarsour et al., 2009). Hence, metabolic

890 defects that disrupt signalling function of ROS could be detrimental to a multitude of 891 cellular processes. In line with our previous research (Maremonti et al., 2019), in the 892 current study, chronic gamma irradiation showed effects on the cell-cycle via induction of 893 genomic instability and DNA damage through the differential expression of genes involved 894 in DNA double strand break (dsb-3), cell-cycle checkpoint (hus-1, cdc-25.2, cdc-37, cdc-48.3, 895 chk-1, cki-1) and DNA repair (rad-54, chd-7, laf-1, pif-1, snrp-200, ssl-1, pms-2, nth-1, polk-1, 896 *rpa-2* and *unc-51*). A cell damaged beyond repair will be destined to apoptosis; increased 897 levels of ROS formed inside the mitochondrion have the potential to induce downstream 898 regulation of genes required for apoptosis by the early ROS-dependent signalling pathway 899 (Sidoti-de Fraisse et al., 1998). Consistently, we found 87 differentially expressed genes 900 involved in programmed cell death (Fig. 8, Table S.7), among them egl-1 and hus-1, which 901 are clear markers of DNA damage-induced apoptosis (Hofmann et al., 2002).

902 On the other hand, proliferative disorders due to differential regulation of the cell-cycle 903 under redox cycle control, are addressed as the cause of many dysfunctions as well as 904 diseases, including cancer and neurodegenerative disorders (Sarsour et al., 2009). 905 Consistently, a significant modulation of genes related to nervous system functions was 906 identified in our gene expression analysis, through the up-regulation of genes involved in 907 neurogenesis, neuronal development, neuron projection guidance and neuronal outgrowth 908 (Table 1, 2, Table S.6). These results suggest an effect exerted by ionizing radiation on 909 somatic cells. Specifically, and in contrast to the germline, adverse effects on somatic cells 910 might induce a savage beyond repair as indicated by the categories apoptosis fails to occur, 911 defective locomotion (sluggish), endosome and lysosome-related morphology variants 912 (Table 2) and autophagy related genes (unc-51, atg-3, atg-9, ces-2 and rab-7). In particular, 913 the lysosome-mediated self-degradation process of autophagy can be used to supply the 914 cells with energy or provide building block for the synthesis of macromolecules, under 915 stress condition (Erdélyi et al., 2011). This mechanism is known to be specific for terminally 916 differentiated cells, where it is required for the effective elimination of damaged, non-917 functional macromolecules and organelles, in order to avoid this cellular toxins to interfere 918 with cellular functions (Vellai et al., 2009). Moreover, the over-activation of autophagy in 919 cells of the nervous system has been suggested as the cause of "physiological" death 920 (Takács-Vellai et al., 2006). Autophagy and apoptosis are two intertwined processes 921 required redundantly for viability and normal development in *C. elegans* (Erdélyi et al., 922 2011). In line with the significantly enhanced embryonic DNA damage and reduced somatic 923 growth, observed in parentally irradiated nematodes from our previous study (Maremonti 924 et al., 2019), the differential regulation of genes related to autophagy, programmed cell 925 death, embryonic and post-embryonic development (Fig. S.7, Fig. 8, Table 1), strongly 926 suggests that the effects of chronic gamma irradiation persist on the progeny of irradiated 927 nematodes.

Taken together these results demonstrate the ability of *C. elegans* to activate its wide range of AODs and protective mechanisms against increased levels of ROS following chronic gamma irradiation throughout its life cycle. This did however present a stress condition able to induce changes in the physiological oxidants levels, which lead to a comprehensive modulation of cellular and molecular functions (**Fig. 9**), leading up to adverse effects on energy production/expenditure and reproductive capacity as well as persistent damage on the parentally irradiated offspring (Maremonti et al., 2019).



Figure 9. Conceptual model of cellular and molecular processes induced ([†]) or inhibited ([↓]) after 72 hours of
chronic exposure to gamma radiation (100 mGy·h⁻¹) in the nematode *C. elegans.*

939 ETC: Electron Transport Chain. VDAC: Voltage-Dependent Anion Channel. SOD: Superoxide Dismutase. *mrpl*

940 – mrps: Mitochondrial Ribosomal Protein Large – Small subunit. mtDNA: mitochondrial DNA. GPx: Glutathione

941 Peroxidases. *rpl – rps*: Ribosomal Protein Large – Small subunit. DNA-DSB: DNA Double Strand Break.

942

943

944 Conclusion

945

In the radioresistant nematode *C. elegans,* chronic exposure to ionizing gamma radiation, during larval development, significantly enhances the levels of ROS and induces activation of AODs. At doses $\leq 10 \text{ mGy} \cdot \text{h}^{-1}$ (total doses $\leq 0.8 \text{ Gy}$)nematodes demonstrate to tolerate chronic gamma irradiation, while at doses $\geq 40 \text{ mGy} \cdot \text{h}^{-1}$ (total doses $\geq 2.9 \text{ Gy}$), the observed 950 redox shift in the cell induces oxidative damage and changes in the redox signalling 951 functions, modulating a cascade of molecular and cellular processes in the entire organism 952 with adverse consequences for its reproductive system. Specifically, oxidative damage of 953 proteins, lipids and DNA is suggested as the cause of mitochondrial dysfunctions, impaired 954 energy production, autophagy induction, enhanced programmed cell death and defective 955 meiosis, which leads to impairment of the reproductive fitness and potential adverse effects 956 on the progeny. Findings from the current study provide detailed information of the 957 consequences of chronic exposure to ionizing radiation, as well as the important role of 958 redox balance and signalling for the cellular homeostasis, particularly in the gonads. Future 959 research should be focused on the effects of this imbalance at the mitochondrial level, with 960 emphasis on the potential adverse effects of ROS on the ATP production and the 961 mitochondrial genome.

962

963

964 Funding

965

This work was supported by the Norwegian University of Life Sciences (NMBU) through a
PhD scholarship and by the Research Council of Norway through its Centre of Excellence
(CoE) "Centre for Environmental Radioactivity" (CERAD, project No. 223268).

969

972 Acknowledgments

We are grateful to Dr. Marina Ezcurra and Prof. David Gems from the Institute of Healthy Ageing Genetics (University College London) for providing the C. elegans reporter strain sod-1::gfp (GA508 wuls54[pPD95.77 sod-1::GFP, rol-6(su1006)]) and Dr. Braeckman from the Laboratory for Ageing Physiology and Molecular Evolution (University of Ghent, Belgium) for providing the C. elegans biosensors Grx1-roGFP2 and HyPer. We also thank Fabian Grammes for bioinformatics assistance and Simen Gylterud Owe, YeonKyeong Lee, Hilde Raanaas Kolstad and Lene Cecilie Hermansen for kind assistance and help during the microscopy analysis.

996 References

- 998 ADAM-GUILLERMIN, C., PEREIRA, S., DELLA-VEDOVA, C., HINTON, T. & GARNIER-
- 999 LAPLACE, J. 2012. Genotoxic and Reprotoxic Effects of Tritium and External Gamma
- 1000 Irradiation on Aquatic Animals. *In:* WHITACRE, D. M. (ed.) *Reviews of Environmental*1001 *Contamination and Toxicology.* New York, NY: Springer New York.
- ANGELES-ALBORES, D., LEE, R. Y., CHAN, J. & STERNBERG, P. W. 2016. Tissue enrichment
 analysis for *C. elegans* genomics. *BMC bioinformatics*, 17, 366.
- 1004 ANGELES-ALBORES, D., LEE, R. Y., CHAN, J. & STERNBERG, P. W. 2017. Phenotype and gene
- 1005 ontology enrichment as guides for disease modeling in C. elegans. *BioRxiv*, 106369.
- AZZAM, E. I., JAY-GERIN, J.-P. & PAIN, D. 2012. Ionizing radiation-induced metabolic
 oxidative stress and prolonged cell injury. *Cancer letters*, 327, 48-60.
- 1008 BACK, P., DE VOS, W. H., DEPUYDT, G. G., MATTHIJSSENS, F., VANFLETEREN, J. R. &
- BRAECKMAN, B. P. 2012. Exploring real-time in vivo redox biology of developing
 and aging Caenorhabditis elegans. *Free Radic Biol Med*, 52, 850-9.
- 1011 BERG, J. M., TYMOCZKO, J. L. & STRYER, L. 2006. Biochemistry. 5th, New York: , WH Freeman.
- 1012 BERGENDI, L., BENEŠ, L., ĎURAČKOVÁ, Z. & FERENČIK, M. 1999. Chemistry, physiology and
- 1013 pathology of free radicals. *Life Sciences*, 65, 1865-1874.
- 1014 BJERKE, H. & HETLAND, P. O. 2014. Dosimetri ved FIGARO gammaanlegget ved NMBU, ÅS.
- 1015 Målerapport fra oppmåling av doseraten i strålefeltet fra kobolt-60. NRPA Technical
- 1016 Document Series, 2.

1017 BRADY, N. R., HAMACHER-BRADY, A., WESTERHOFF, H. V., & GOTTLIEB, R. A. 2006. A wave

- 1018 of reactive oxygen species (ROS)-induced ROS release in a sea of excitable 1019 mitochondria. *Antioxidants & redox signaling*, 8, 1651-1665.
- 1020 BRAECKMAN, B., BACK, P. U., MATTHIJSSENS, F. G. E., OLSEN, A. E. & GILL, M. S. E. 2017.
- 1021 Oxidative Stress. In: RATTAN, S. I. S. (ed.) Healthy Ageing and Longevity. Springer.
- 1022 BRAECKMAN, B. P., SMOLDERS, A., BACK, P. & DE HENAU, S. 2016. In Vivo Detection of
- 1023 Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. *Antioxidants*1024 & *Redox Signaling*, 25, 577-592.
- BRAND, M. D. 2010. The sites and topology of mitochondrial superoxide production.
 Experimental gerontology, 45, 466-472.
- 1027 BUISSET-GOUSSEN, A., GOUSSEN, B., DELLA-VEDOVA, C., GALAS, S., ADAM-GUILLERMIN, C.
- 1028 & LECOMTE-PRADINES, C. 2014. Effects of chronic gamma irradiation: a
 1029 multigenerational study using *Caenorhabditis elegans*. *J Environ Radioact*, 137, 1901030 7.
- 1031 CABREIRO, F., ACKERMAN, D., DOONAN, R., ARAIZ, C., BACK, P., PAPP, D., BRAECKMAN, B.
- P. & GEMS, D. 2011. Increased life span from overexpression of superoxide
 dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. *Free Radical Biology and Medicine*, 51, 1575-1582.
- 1035 CHEN, Q., CHAI, Y. C., MAZUMDER, S., JIANG, C., MACKLIS, R. M., CHISOLM, G. M. & ALMASAN,
- 1036A. 2003. The late increase in intracellular free radical oxygen species during1037apoptosis is associated with cytochrome c release, caspase activation, and1038mitochondrial dysfunction. *Cell Death Differ*, 10, 323-34.

1039 CHOI, K.-M., KANG, C.-M., CHO, E. S., KANG, S. M., LEE, S. B. & UM, H.-D. 2007. Ionizing
1040 radiation-induced micronucleus formation is mediated by reactive oxygen species
1041 that are produced in a manner dependent on mitochondria, Nox1, and JNK. *Oncology*1042 reports, 17, 1183-1188.

- 1043 CHOMYN, A. & ATTARDI, G. 2014. Mitochondrial gene products. *Current Topics in*1044 *Bioenergetics: Structure, Biogenesis, and Assembly of Energy Transducing Enzyme*1045 *Systems*, 15, 295.
- DAIBER, A. 2010. Redox signaling (cross-talk) from and to mitochondria involves
 mitochondrial pores and reactive oxygen species. *Biochim Biophys Acta*, 1797, 897906.
- DALY, M. J. 2012. Death by protein damage in irradiated cells. *DNA Repair (Amst)*, 11, 1221.
- 1051 DAYAL, D., MARTIN, S. M., OWENS, K. M., AYKIN-BURNS, N., ZHU, Y., BOOMINATHAN, A.,
- PAIN, D., LIMOLI, C. L., GOSWAMI, P. C., DOMANN, F. E. & SPITZ, D. R. 2009.
 Mitochondrial Complex II Dysfunction Can Contribute Significantly to Genomic
 Instability after Exposure to Ionizing Radiation. *Radiation Research*, 172, 737-745,
- 1055

9.

- 1056 DOBIN, A., DAVIS, C. A., SCHLESINGER, F., DRENKOW, J., ZALESKI, C., JHA, S., BATUT, P.,
 1057 CHAISSON, M. & GINGERAS, T. R. 2013. STAR: ultrafast universal RNA-seq aligner.
 1058 *Bioinformatics*, 29, 15-21.
- 1059 DOONAN, R., MCELWEE, J. J., MATTHIJSSENS, F., WALKER, G. A., HOUTHOOFD, K., BACK, P.,
- 1060 MATSCHESKI, A., VANFLETEREN, J. R. & GEMS, D. 2008. Against the oxidative 1061 damage theory of aging: superoxide dismutases protect against oxidative stress but

- 1062 have little or no effect on life span in Caenorhabditis elegans. *Genes Dev*, 22, 3236-1063 41.
- 1064 DRÖSE, S. & BRANDT, U. 2012. Molecular mechanisms of superoxide production by the 1065 mitochondrial respiratory chain. *Mitochondrial Oxidative Phosphorylation*. Springer.

1066 DUBOIS, C., LECOMTE, C., RUYS, S. P. D., KUZMIC, M., DELLA-VEDOVA, C., DUBOURG, N.,

- 1067 GALAS, S. & FRELON, S. 2018. Precoce and opposite response of proteasome activity
 1068 after acute or chronic exposure of C. elegans to γ-radiation. *Scientific Reports*, 8,
 1069 11349.
- 1070 ERDÉLYI, P., BORSOS, É., TAKÁCS-VELLAI, K., KOVÁCS, T., KOVÁCS, A. L., SIGMOND, T.,

1071 HARGITAI, B., PÁSZTOR, L., SENGUPTA, T., DENGG, M., PÉCSI, I., TÓTH, J., NILSEN, H.,

1072 VÉRTESSY, B. G. & VELLAI, T. 2011. Shared developmental roles and transcriptional
 1073 control of autophagy and apoptosis in *Caenorhabditis elegans. Journal of Cell Science*,

- 1074 124, 1510-1518.
- FINKEL, T. & HOLBROOK, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. *Nature*, 408, 239.
- 1077 GEMS, D. & DOONAN, R. 2008. Oxidative Stress and Aging in the NematodeCaenorhabditis
 1078 elegans. *Oxidative Stress in Aging.* Springer.
- GOMES, A., FERNANDES, E. & LIMA, J. L. 2005. Fluorescence probes used for detection of
 reactive oxygen species. *Journal of biochemical and biophysical methods*, 65, 45-80.
- 1081 GOMES, T., SONG, Y., BREDE, D. A., XIE, L., GUTZKOW, K. B., SALBU, B. & TOLLEFSEN, K. E.
- 10822018. Gamma radiation induces dose-dependent oxidative stress and1083transcriptional alterations in the freshwater crustacean Daphnia magna. Science of1084The Total Environment, 628, 206-216.

1085 GOMES, T., XIE, L., BREDE, D., LIND, O.-C., SOLHAUG, K. A., SALBU, B. & TOLLEFSEN, K. E.

- 2017. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation:
 photosynthetic performance and ROS formation. *Aquatic toxicology*, 183, 1-10.
- 1088 GUO, X., SUN, J., BIAN, P., CHEN, L., ZHAN, F., WANG, J., XU, A., WANG, Y., HEI, T. K. & WU, L.
- 2013. Radiation-induced bystander signaling from somatic cells to germ cells in
 Caenorhabditis elegans. *Radiat Res*, 180, 268-75.
- HALLIWELL, B. & GUTTERIDGE, J. M. 2015. *Free radicals in biology and medicine*, Oxford
 University Press, USA.
- HAN, D., ANTUNES, F., CANALI, R., RETTORI, D. & CADENAS, E. 2003. Voltage-dependent
 anion channels control the release of the superoxide anion from mitochondria to
 cvtosol. *Journal of Biological Chemistry*, 278, 5557-5563.
- 1096 HARTMAN, P. S., SIMPSON, V. J., JOHNSON, T. & MITCHELL, D. 1988. Radiation sensitivity
- and DNA repair in Caenorhabditis elegans strains with different mean life spans. *Mutation Research Letters*, 208, 77-82.
- 1099 HERTEL-AAS, T., BRUNBORG, G., JAWORSKA, A., SALBU, B. & OUGHTON, D. H. 2011. Effects
- of different gamma exposure regimes on reproduction in the earthworm Eisenia
 fetida (Oligochaeta). *Science of The Total Environment*, 412-413, 138-147.
- 1102 HERTEL-AAS, T., OUGHTON, D. H., JAWORSKA, A., BJERKE, H., SALBU, B. & BRUNBORG, G.
- 2007. Effects of chronic gamma irradiation on reproduction in the earthworm
 Eisenia fetida (Oligochaeta). *Radiation research*, 168, 515-526.
- 1105 HOFMANN, E. R., MILSTEIN, S., BOULTON, S. J., YE, M., HOFMANN, J. J., STERGIOU, L.,
- 1106 GARTNER, A., VIDAL, M. & HENGARTNER, M. O. 2002. Caenorhabditis elegans HUS-1

- Is a DNA Damage Checkpoint Protein Required for Genome Stability and EGL-1Mediated Apoptosis. *Current Biology*, 12, 1908-1918.
- 1109 HONNEN, S. 2017. Caenorhabditis elegans as a powerful alternative model organism to
- promote research in genetic toxicology and biomedicine. *Archives of Toxicology*, 91,2029-2044.
- 1112 HORI, A., YOSHIDA, M., SHIBATA, T. & LING, F. 2008. Reactive oxygen species regulate DNA
- copy number in isolated yeast mitochondria by triggering recombination-mediated
 replication. *Nucleic Acids Research*, 37, 749-761.
- 1115 HUREM, S., GOMES, T., BREDE, D. A., LINDBO HANSEN, E., MUTOLOKI, S., FERNANDEZ, C.,
- 1116 MOTHERSILL, C., SALBU, B., KASSAYE, Y. A., OLSEN, A.-K., OUGHTON, D., ALESTRÖM,
- 1117 P. & LYCHE, J. L. 2017. Parental gamma irradiation induces reprotoxic effects
- accompanied by genomic instability in zebrafish (Danio rerio) embryos. *Environmental Research*, 159, 564-578.
- 1120 INTERNATIONAL, O., FOR, STANDARDIZATION 2010. Water quality—Determination of the
- 1121 toxic effect of sediment and soil samples on growth, fertility and reproduction of
- 1122 *Caenorhabditis elegans(Nematoda)*
- 1123 International Organization for Standardization (ISO) 10872:2010.
- JOHNSTON, A. D. & EBERT, P. R. 2012. The Redox System in C. elegans, a Phylogenetic
 Approach. *Journal of Toxicology*, 2012, 20.
- JONES, D. P. 2008. Radical-free biology of oxidative stress. *American Journal of Physiology- Cell Physiology*, 295, C849-C868.
- 1128 KAM, W. W.-Y. & BANATI, R. B. 2013. Effects of ionizing radiation on mitochondria. *Free*1129 *Radical Biology Medicine*, 65, 607-619.

- KHANNA, N., CRESSMAN III, C., TATARA, C. & WILLIAMS, P. 1997. Tolerance of the
 nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. *Archives of Environmental Contamination and Toxicology*, 32, 110-114.
- 1133 KRISKO, A., LEROY, M., RADMAN, M. & MESELSON, M. 2012. Extreme anti-oxidant
 protection against ionizing radiation in bdelloid rotifers. *Proc Natl Acad Sci U S A*,
 1135 109, 2354-7.
- 1136 LEACH, J. K., VAN TUYLE, G., LIN, P.-S., SCHMIDT-ULLRICH, R. & MIKKELSEN, R. B. 2001.
- 1137 Ionizing radiation-induced, mitochondria-dependent generation of reactive
 1138 oxygen/nitrogen. *Cancer research*, 61, 3894-3901.
- 1139 LEE, R. Y. N., HOWE, K. L., HARRIS, T. W., ARNABOLDI, V., CAIN, S., CHAN, J., CHEN, W. J.,
- DAVIS, P., GAO, S. & GROVE, C. 2017. WormBase 2017: molting into a new stage. *Nucleic acids research*. 46, D869-D874.
- 1142 LEWIS, J. A. & FLEMING, J. T. 1995. Chapter 1 Basic Culture Methods. *In:* EPSTEIN, H. F. &
 1143 SHAKES, D. C. (eds.) *Methods in Cell Biology.* Academic Press.
- LIND, O. C., OUGHTON, D. H. & SALBU, B. 2019. The NMBU FIGARO low dose irradiation
 facility. *International journal of radiation biology*, 95, 76-81.
- LINDBO HANSEN E., P. O. H. Ø. 2017. Air kerma measurements with Landauer nanoDots in
 Cs-137 and Co-60 beams. Teknisk dokument nr. 8. *Norwegian Radiation Protection*
- 1148
 Authority.
- 1149 LOMONACO, S. L., FINNISS, S., XIANG, C., DECARVALHO, A., UMANSKY, F., KALKANIS, S. N.,
- 1150MIKKELSEN, T. & BRODIE, C. 2009. The induction of autophagy by γ-radiation1151contributes to the radioresistance of glioma stem cells. International journal of
- 1152 *cancer*, 125, 717-722.

- LOVE, M. I., ANDERS, S., KIM, V. & HUBER, W. 2015. RNA-Seq workflow: gene-level
 exploratory analysis and differential expression. *FResearch*, 4.
- 1155 LU, S. C. 2009. Regulation of glutathione synthesis. *Molecular Aspects of Medicine*, 30, 42-59.
- 1156 MAREMONTI, E., EIDE, D. M., OUGHTON, D. H., SALBU, B., GRAMMES, F., KASSAYE, Y. A.,
- 1157 GUÉDON, R., LECOMTE-PRADINE, C. & BREDE, D. A. 2019. Gamma radiation induces
- 1158 life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of1159 spermatogenesis. *Science of The Total Environment*, 133835.
- MEYER, A. J. & DICK, T. P. 2010. Fluorescent protein-based redox probes. *Antioxidants & redox signaling*, 13, 621-650.
- MONTGOMERY, D. C., PECK, E. A. & VINING, G. G. 2012. Introduction to linear regression
 analysis, John Wiley & Sons.
- NYSTRÖM, T. 2005. Role of oxidative carbonylation in protein quality control and
 senescence. *The EMBO journal*, 24, 1311-1317.
- 1166 PARISOT, F., BOURDINEAUD, J.-P., PLAIRE, D., ADAM-GUILLERMIN, C. & ALONZO, F. 2015.
- 1167 DNA alterations and effects on growth and reproduction in Daphnia magna during 1168 chronic exposure to gamma radiation over three successive generations. *Aquatic*
- 1169 *Toxicology*, 163, 27-36.
- POMPELLA, A., VISVIKIS, A., PAOLICCHI, A., TATA, V. D. & CASINI, A. F. 2003. The changing
 faces of glutathione, a cellular protagonist. *Biochemical Pharmacology*, 66, 14991503.
- PORTA-DE-LA-RIVA, M., FONTRODONA, L., VILLANUEVA, A. & CERON, J. 2012. Basic
 Caenorhabditis elegans methods: synchronization and observation. *J Vis Exp*, e4019.

- 1175 REISZ, J. A., BANSAL, N., QIAN, J., ZHAO, W. & FURDUI, C. M. 2014. Effects of ionizing
- radiation on biological molecules—mechanisms of damage and emerging methods
 of detection. *Antioxidants & redox signaling*, 21, 260-292.
- RILEY, P. A. 1994. Free radicals in biology: oxidative stress and the effects of ionizing
 radiation. *Int J Radiat Biol*, 65, 27-33.
- 1180 SARSOUR, E. H., KUMAR, M. G., CHAUDHURI, L., KALEN, A. L. & GOSWAMI, P. C. 2009. Redox
- 1181 control of the cell cycle in health and disease. *Antioxidants*
- 1182 *redox signaling*, 11, 2985-3011.
- 1183 SCHAFER, F. Q. & BUETTNER, G. R. 2001. Redox environment of the cell as viewed through
- the redox state of the glutathione disulfide/glutathione couple. *Free Radical Biology and Medicine*, 30, 1191-1212.
- 1186 SHIN, H., LEE, H., FEJES, A. P., BAILLIE, D. L., KOO, H.-S. & JONES, S. J. 2011. Gene expression
- 1187 profiling of oxidative stress response of C. elegans aging defective AMPK mutants
- using massively parallel transcriptome sequencing. *BMC research notes*, 4, 34.
- 1189 SIDOTI-DE FRAISSE, C., RINCHEVAL, V., RISLER, Y., MIGNOTTE, B. & VAYSSIÈRE, J.-L. 1998.
- 1190 TNF-α activates at least two apoptotic signaling cascades. *Oncogene*, 17, 1639.
- 1191 SMITH, J. T., WILLEY, N. J. & HANCOCK, J. T. 2012. Low dose ionizing radiation produces too
- few reactive oxygen species to directly affect antioxidant concentrations in cells. *Biol Lett*, 8, 594-7.
- SPITZ, D. R., AZZAM, E. I., LI, J. J. & GIUS, D. 2004. Metabolic oxidation/reduction reactions
 and cellular responses to ionizing radiation: a unifying concept in stress response
 biology. *Cancer and Metastasis Reviews*, 23, 311-322.

- STOREY, K. B. 1996. Oxidative stress: animal adaptations in nature. *Braz J Med Biol Res*, 29,
 1715-33.
- SZUMIEL, I. 2015. Ionizing radiation-induced oxidative stress, epigenetic changes and
 genomic instability: the pivotal role of mitochondria. *Int J Radiat Biol*, 91, 1-12.
- TAKÁCS-VELLAI, K., BAYCI, A. & VELLAI, T. 2006. Autophagy in neuronal cell loss: a road to
 death. *Bioessays*, 28, 1126-1131.
- 1203 TAKATA, H., HANAFUSA, T., MORI, T., SHIMURA, M., IIDA, Y., ISHIKAWA, K., YOSHIKAWA,
- 1204 K., YOSHIKAWA, Y. & MAESHIMA, K. 2013. Chromatin Compaction Protects Genomic
 1205 DNA from Radiation Damage. *PLOS ONE*, 8, e75622.
- 1206 TATEISHI, Y., SASABE, E., UETA, E. & YAMAMOTO, T. 2008. Ionizing irradiation induces
- apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent
 superoxide generation. *Biochem Biophys Res Commun*, 366, 301-7.
- TURRENS, J. F. 2003. Mitochondrial formation of reactive oxygen species. *J Physiol*, 552,
 335-44.
- 1211 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, U. E. 2002. Methods for
- Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and
 Marine Organisms. . *5th ed. EPA-821-R-02-012*.
- 1214 UNSCEAR 1996. Sources and effects of ionizing radiation: Report to the General Assembly,
 1215 with Scientific Annexes, United Nations Publications.
- 1216 VELLAI, T., TAKÁCS-VELLAI, K., SASS, M. & KLIONSKY, D. 2009. The regulation of aging:
 1217 does autophagy underlie longevity? *Trends in cell biology*, 19, 487-494.

- 1218 WEI, S., LI, C., YIN, Z., WEN, J., MENG, H., XUE, L. & WANG, J. 2018. Histone methylation in
- DNA repair and clinical practice: new findings during the past 5-years. *Journal of Cancer*, 9, 2072-2081.
- WU, G., FANG, Y.-Z., YANG, S., LUPTON, J. R. & TURNER, N. D. 2004. Glutathione Metabolism
 and Its Implications for Health. *The Journal of Nutrition*, 134, 489-492.
- 1223 XIE, L., SOLHAUG, K. A., SONG, Y., BREDE, D. A., LIND, O. C., SALBU, B. & TOLLEFSEN, K. E.
- 2019. Modes of action and adverse effects of gamma radiation in an aquatic
 macrophyte Lemna minor. *Science of The Total Environment*, 680, 23-34.
- 1226 YAMAMORI, T., YASUI, H., YAMAZUMI, M., WADA, Y., NAKAMURA, Y., NAKAMURA, H. &
- 1227 INANAMI, 0. 2012. Ionizing radiation induces mitochondrial reactive oxygen species
- 1228 production accompanied by upregulation of mitochondrial electron transport chain
- function and mitochondrial content under control of the cell cycle checkpoint. *FreeRadic Biol Med*, 53, 260-70.
- 1231 ZHANG, Y., WANG, H., ZHANG, J., HU, Y., ZHANG, L., WU, X., SU, X., LI, T., ZOU, X. & LIANG, B.
- 1232 2016. The cytochrome b5 reductase HPO-19 is required for biosynthesis of
- 1233 polyunsaturated fatty acids in Caenorhabditis elegans. *Biochimica et Biophysica Acta*
- 1234 (BBA) Molecular and Cell Biology of Lipids, 1861, 310-319.
- 1235
- 1236
- 1237
- 1238 The word file Supporting Material provides method validation for microscopy analysis and fluorescence1239 measurements, additional gene expression and gene set enrichment analysis data.

- 1 Supporting material Paper II

In vivo assessment of ROS production and oxidative stress effects induced by chronic exposure to gamma radiation in Caenorhabditis elegans Erica Maremonti ^{*1, 3}, Dag M. Eide ^{2, 3}, Lisa M. Rossbach ¹, Ole Christian Lind ^{1, 3}, Brit Salbu ^{1, 3}, Dag Anders Brede ^{1, 3} ¹ Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway ² Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway ³ Centre for Environmental Radioactivity (CERAD) *Corresponding author

22 S.M.1. Effects of chronic exposure to ionizing gamma radiation on the somatic

23 growth of sod-1::gfp C. elegans reporter strain

24

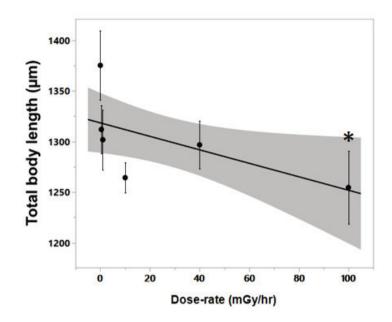


Figure S.1. Effects on somatic growth in *C. elegans* reporter strain *sod1::gfp* exposed to gamma radiation
for 96 hours, in 24-well plates containing OP50 re-suspended in MHRW. Data represents Mean ± SE (n =
10). Asterisks indicate significant difference to control treatment (Tukey *post hoc, p*-value < 0.01).

- 29
- 30
- 31
- . -
- 32

S.M.2. Effect of 24 hours exposure to different concentrations of Paraquat on
the SOD1 expression in *sod1::gfp C. elegans* reporter strain: validation of
microscopy analysis and fluorescence measurements

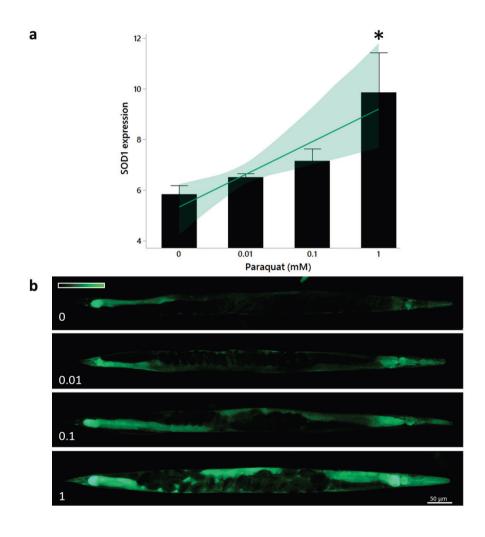


Figure S.2. a) Sod-1 expression assessed *in vivo* (at 72 hours of development from L1 stage), in *C. elegans*reporter strain *sod1::gfp*, after 24 hours of exposure to Paraquat (mM), in MHRW containing OP50. Data
represent Mean ± SE (n = 10) (Doonan et al., 2008). Asterisk indicates significant difference to control
treatment (Tukey *post hoc*, *p*-value < 0.01). Expression was normalized to size of individual nematodes.

- 41 (b) Epifluorescence images of the relative expression pattern at different concentrations of exposure
- 42 (mM) (from left to right, tail to head orientation). Scale bar: 50 μm.
- 43
- 44 S.M.3. Effects of the exposure to different concentrations of H₂O₂ on the Grx1-
- 45 roGFP2 C. elegans ratiometric biosensor: positive validation of microscopy
- 46 analysis and fluorescence measurements
- 47

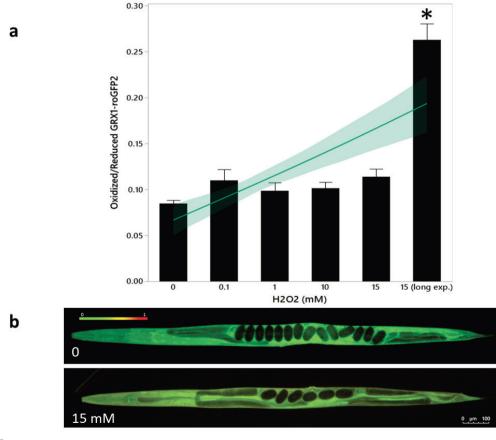
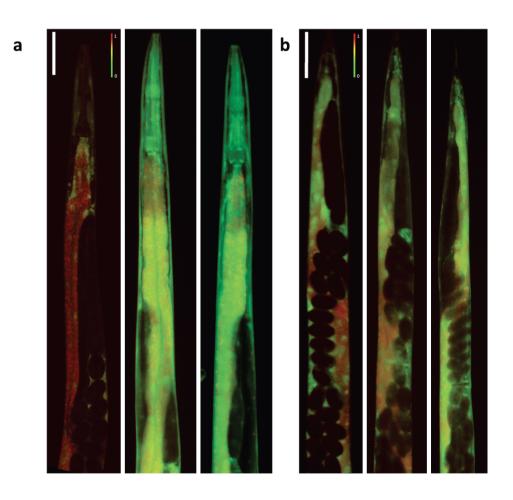
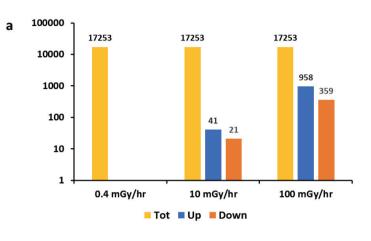
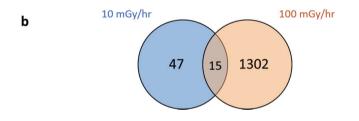
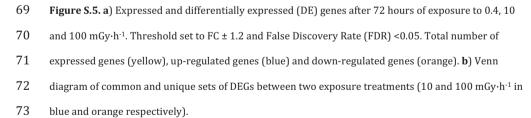



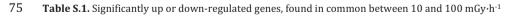
Figure S.3. a) Oxidized/reduced ratio assessed *in vivo*, in the *C. elegans* ratiometric biosensor *GRx1*-*roGFP2* (Back et al., 2012) (72 hours of development from L1), after exposure to increasing concentrations
of H₂O₂ (mM), for 5 or 15 minutes (long exp.) in MHRW containing OP50. Data represent Mean ± SE (n =


- 52 10). Asterisk indicates significant difference to control treatment (Tukey *post hoc*, *p*-value < 0.01) (15
 53 (long exp.) indicates 15 minutes exposure). (b) Epifluorescence images of the relative oxidation pattern
 54 at different concentrations of exposure (mM) (Bottom image is from nematode exposed to 15 mM, long
 55 exposure: 15 minutes) (from left to right, head to tail orientation). Scale bar: 50 μm.
 56
- 57 S.M.4. High inter-variability of the oxidation pattern in the ratiometric biosensor 58 Grx1-roGFP2 exposed to 100 mGy·h⁻¹ of ionizing gamma radiation
- 59



60


Figure S.4. a) Anterior and b) Posterior body of *C. elegans Grx1-roGFP2* strain showing high intervariability between individuals exposed for 72 hours from L1 stage to 100 mGy·h⁻¹ of gamma radiation.
Scale bar: 100 μm.


65 S.M.5. Gene expression analysis performed on nematodes irradiated for 72
66 hours to increasing dose-rates of ionizing gamma radiation

exposure groups compared to Control group.

	S	hared DEGs	10 mG	y/hr	100 m	Gy/hr
EnsambleID	Gene name	Annotation	log2FC	FDR	log2FC	FDR
WBGene00012953	fbxa-216	F-box A protein	0.468072867	2.45E-02	0.345287744	1.71E-02
WBGene00009957	F53B2.8	hypothetical protein	0.833717544	2.67E-04	0.368170583	3.09E-02
WBGene00008577	F08G2.5	hypothetical protein	1.249817566	6.33E-03	1.041943411	2.46E-03
WBGene00016942	C55B7.3	Tyrosine-protein phosphatase	1.227866744	1.08E-13	0.68843637	4.51E-0
WBGene00019564	K09D9.1	hypothetical protein	2.167652542	2.41E-13	0.677561002	1.12E-02
WBGene00018725	kreg-1	Protein kreg-1	2.257878476	3.45E-10	0.668460874	2.31E-0
WBGene00009349	F32H5.3	hypothetical protein	0.751678447	1.23E-02	0.558969603	8.88E-0
WBGene00020188	T03F1.6	hypothetical protein	0.758306039	4.40E-04	0.553824844	1.98E-0
WBGene00008944	F19B2.5	hypothetical protein	0.753568331	2.29E-08	0.533228228	5.11E-0
WBGene00019300	swt-1	Sugar transporter SWEET1	-0.593285466	2.63E-03	-0.704903581	2.94E-0
WBGene00009724	F45D3.4	hypothetical protein	-0.473218912	6.78E-05	-0.574599837	1.79E-0
WBGene00017488	dct-7	DAF-16/FOXO Controlled, germline Tumor affecting	-1.192527634	3.52E-02	-0.520429229	4.05E-0
WBGene00003093	lys-4	LYSozyme	-0.441889856	3.70E-04	-0.433754268	6.54E-0
WBGene00020891	T28C12.4	Carboxylic ester hydrolase	-0.502730788	5.33E-03	-0.41011037	3.34E-0
WBGene00009785	F46C5 10	hypothetical protein	-0 430737642	1 62E-02	-0 377481597	4 68F-0

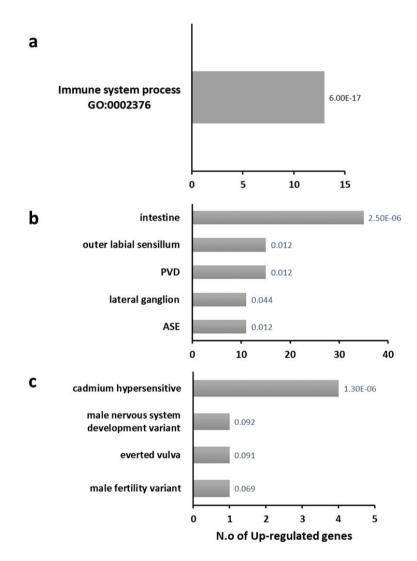


Figure S.6. Functional categories over-represented terms of Up-regulated (n=41) DEGs (n=62) from *C. elegans* subjected to 10 mGy·h⁻¹ gamma radiation for 72 hours. (a) Gene Ontology (GO), (b) Phenotype,
and (c) Tissue Enrichment analysis. Hypergeometric probability distribution is adopted to measure the
number of enriched terms (observed number of DEGs in each specific function). Data labels indicate *q*values.

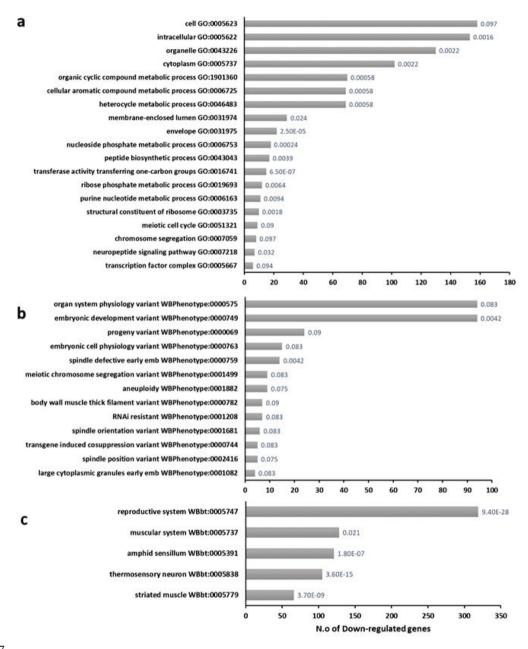


Figure S.7. Over-represented biological processes, molecular functions and cellular components
functional categories and variants, from (a) Gene Ontology (GO), (b) Phenotype and (c) Tissue
Enrichment analysis that were down-regulated in *C. elegans* after 72 hours of exposure to 100 mGy·h⁻¹ of

- 91 gamma radiation. Hypergeometric probability distribution is adopted to measure the number of enriched
- 92 terms (observed number of DEGs in each specific function). Data labels indicate *q*-values.

- ____

- 115 Table S.6. Functional over-represented categories from Tissue Enrichment analysis (TEA) that were up-
- 116 regulated in *C. elegans* after 72 hours of exposure to 100 mGy· h^{-1} of gamma radiation. Hypergeometric
- 117 probability distribution is adopted to measure the number of enriched terms.

Term (TEA)	Observed	Enrichment Fold Change	P value	Q value
Pharynx WBbt:0003681	427	1.1	0.0094	0.074
PVD WBbt:0006831	251	1.2	0.0042	0.059
Outer labial sensillum WBbt:0005501	250	1.2	0.01	0.074
Corpus WBbt:0003733	214	1.4	1.90E-06	0.00054
Hermaphrodite WBbt:0007849	214	1.2	0.0032	0.05
Sex organ WBbt:0008422	170	1.4	1.00E-05	0.0015
Nerve ring WBbt:0006749	86	1.3	0.0057	0.067
Midbody WBbt:0005740	84	1.5	0.00025	0.014
	60			
Dorsal nerve cord WBbt:0006750		1.3	0.0092	0.074
Anal depressor muscle WBbt:0004292	59	1.7	2.40E-05	0.0023
Somatic gonad WBbt:0005785	56	1.4	0.004	0.059
Lateral nerve cord WBbt:0006769	45	1.5	0.004	0.059
Psub1 WBbt:0006874	31	1.8	0.00064	0.022
Intestinal muscle WBbt:0005796	29	2	0.00019	0.014
Anal sphincter muscle WBbt:0005798	21	2.2	0.00028	0.014
	19	1.9		
Uterine muscle WBbt:0005342			0.0021	0.039
Anchor cell WBbt:0004522	13	2.4	0.00072	0.022
P11 WBbt:0004410	11	2.6	0.00096	0.022
P8.p WBbt:0006896	11	2.3	0.0027	0.044
P6.p WBbt:0006894	11	2.1	0.0063	0.067
P7.p WBbt:0006895	11	2	0.0071	0.069
	10	2.7		
Body wall WBbt:0005742			0.0011	0.023
P4.p WBbt:0006892	10	2.1	0.0069	0.069
P3.p WBbt:0006891	10	2.1	0.0069	0.069
P5.p WBbt:0006893	10	1.9	0.016	0.078
ABpraappa WBbt:0006035	9	2.9	0.0008	0.022
MSapa WBbt:0005898	8	3.3	0.0005	0.02
MSapp WBbt:0006036	8	3.2	0.00063	0.022
ABpraappp WBbt:0006270	8	2.8	0.0018	0.037
P12 WBbt:0004409	8	2.3	0.0079	0.069
Somatic cell WBbt:0008378	8	2	0.015	0.078
ABprpaapa WBbt:0006047	7	2.9	0.0023	0.041
MSpapp WBbt:0006201	7	2.6	0.0041	0.059
ABarpaapa WBbt:0005844	7	2.6	0.0041	0.059
ABplppap WBbt:0006028	7	2.5	0.0059	0.067
ABplpppp WBbt:0006647	7	2.5	0.0059	0.067
ABplpappp WBbt:0006390	7	2.4	0.0069	0.069
ABalaaaa WBbt:0006427	7	2.4	0.0069	0.069
P10 WBbt:0006779	7	2.4	0.0081	0.069
Anal region WBbt:0006919	7	2.3	0.0094	0.074
ABprappp WBbt:0006702	7	2.2	0.013	0.075
ABarpaaa WBbt:0006398	7	2.1	0.016	0.078
ABpraapp WBbt:0006335	6	2.5	0.0093	0.074
ABprapaap WBbt:0006624	6	2.5	0.0093	0.074
ABplpaapa WBbt:0006115	6	2.5	0.0093	0.074
P8 WBbt:0006777	6	2.5	0.0093	0.074
ABalaapp WBbt:0006553	6	2.5	0.0093	0.074
ABalappa WBbt:0006157	6	2.4	0.011	0.074
ABalaapa WBbt:0006130	6	2.4	0.011	0.074
ABarpppap WBbt:0006251	6	2.4	0.011	0.074
ABprppppp WBbt:0005983	6	2.3	0.013	0.076
ABplapapp WBbt:0006413	6	2.3	0.013	0.076
ABprappaa WBbt:0006350	6	2.3	0.013	0.076
P7 WBbt:0006776	6	2.3	0.013	0.076
ABprapapp WBbt:0006290	6	2.3	0.013	0.076
P9 WBbt:0006778	6	2.3	0.013	0.076
MSaapp WBbt:0006425	6	2.3	0.015	0.078
ABplappap WBbt:0006067	6	2.3	0.015	0.078
ABplpaaa WBbt:0006315	6	2.3	0.015	0.078
ABplpppap WBbt:0006665	6	2.3	0.015	0.078
ABprpapaa WBbt:0006446	6	2.3	0.015	0.078
ABprappap WBbt:0006220	6	2.3	0.015	0.078
ABprapapa WBbt:0006510	6	2.3	0.015	0.078
	6	2.3	0.015	0.078
ABplpaap WBbt:0006077				
Caaaa WBbt:0005899	6	2.2	0.017	0.078
ABalaaap WBbt:0005982	6	2.2	0.017	0.078
ABplpappa WBbt:0006232	6	2.2	0.017	0.078
ABplpppa WBbt:0006423	6	2.2	0.017	0.078
ABplppaa WBbt:0006170	6	2.1	0.02	0.081
			0.01	0.001
ABprpappa WBbt:0006088	6	2.1	0.02	0.081
ABprpppaa WBbt:0006552	6	2.1	0.02	0.081
ABpraaaa WBbt:0006442	6	2.1	0.023	0.089
	6	2.1	0.023	0.089

Table S.8. Dose-rates (mGy·h⁻¹) of exposure and relative total absorbed

121 d	oses (Gy)	calculated	based o	n total	exposure	time (h).
-------	-----------	------------	---------	---------	----------	-----------

Total Dose (Gy)									
Exposure time (hours)									
Dose-rate (mGy/hr)	48	72	96						
0	0	0	0						
0.43	0.02	0.03	0.04						
1.1	0.05	0.08	0.11						
10.8	0.52	0.78	1.04						
40.8	1.96	2.94	3.92						
99.9	4.80	7.19	9.59						

123 References

- BACK, P., DE VOS, W. H., DEPUYDT, G. G., MATTHIJSSENS, F., VANFLETEREN, J. R. & BRAECKMAN, B. P. 2012. Exploring real-time in vivo redox biology of developing and aging *Caenorhabditis elegans*. Free Radic Biol Med, 52, 850-9. DOONAN, R., MCELWEE, J. J., MATTHIJSSENS, F., WALKER, G. A., HOUTHOOFD, K., BACK, P., MATSCHESKI, A., VANFLETEREN, J. R. & GEMS, D. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev, 22, 3236-41.

Table S.2. List of differentially expressed genes (DEGs) resulting from nematodes
exposed to 10 mGy·h⁻¹ of ionizing gamma radiation for 72 hours from L1 stage.

150

Table S.3. List of differentially expressed genes (DEGs) resulting from nematodes
exposed to 100 mGy·h⁻¹ of ionizing gamma radiation for 72 hours from L1 stage.

153

Table S.4. Over-represented categories with relative DEGs resulting from Gene
Ontology, Tissue and Phenotype Enrichment analysis performed on DEGs resulting from
nematodes exposed to 10 mGy·h⁻¹ of ionizing gamma radiation for 72 hours from L1
stage.

158

Table S.5. Over-represented categories with relative DEGs resulting from Gene
Ontology, Tissue and Phenotype Enrichment analysis performed on DEGs resulting from
nematodes exposed to 100 mGy·h⁻¹ of ionizing gamma radiation for 72 hours from L1
stage.

163

Table S.7. Over-represented categories with relative DEGs related to Oxidative stress
response resulting from Phenotype Enrichment analysis performed on DEGs resulting
from nematodes exposed to 100 mGy·h⁻¹ of ionizing gamma radiation for 72 hours from
L1 stage.

168

169

N.B: The large excel-files for Tables S.4 an S.5 will be available on the official publication
by the journal *Free Radical Biology and Medicine*, but can also be provided upon request
to the corresponding author.

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	lfcSE	pvalue	padj	baseMean
1	WBGene00019667	spe-49	hypothetical protein	5.835011028	1.356479717	5.58E-07	0.000294	7.104863298
2	WBGene00016502	C37C3.10	hypothetical protein	4.192110805	0.83036642	7.16E-08	5.39E-05	8.629470792
3	WBGene00005448	srh-241	Serpentine Receptor, class H	4.015699705	1.349875233	0.000229	0.049448	4.698697594
4	WBGene00005657	srr-6	Serpentine Receptor, class R	2.463204765	0.46663219	5.68E-09	5.28E-06	16.25545662
5	WBGene00045457	F33H12.7	hypothetical protein	2.365274255	0.475340101	2.67E-08	2.22E-05	20.71585297
	WBGene00018725	kreg-1	Protein kreg-1		0.319670129			28.77794178
	WBGene00016785	C49G7.7	hypothetical protein					18.41118282
	WBGene00019564	K09D9.1	hypothetical protein		0.268306378	4.57E-17		68.59505449
	WBGene00008602	oac-14	O-ACyltransferase homolog		0.333281902			52.99411438
	WBGene00012101	zip-10	Transcription factor zip-10		0.271896949	9.10E-12	1.60E-08	80.2077153
	WBGene00003092	lys-3	Lysozyme-like protein 3	1.714447705			0.007588	19.66319043
	WBGene00011672	cyp-13A5	Putative cytochrome P450 CYP13A5	1.585070831	0.1901651		5.60E-14	158.573594
	WBGene00017093	E02C12.8	hypothetical protein		0.195203434	4.83E-15		129.276103
	WBGene00006628	tsp-2	TetraSPanin family		0.494931598			29.44890233
	WBGene00019660	K11H12.4	hypothetical protein		0.218954257	8.89E-12		79.37156273
	WBGene00011957	T23F11.6	hypothetical protein		0.383364208	2.55E-05		26.99600907
	WBGene00018707	oac-31	O-ACyltransferase homolog		0.376540174	2.51E-05		27.83332322
	WBGene00008577	F08G2.5	hypothetical protein	1.249817566			0.006331	33.24005044
	WBGene00016942	C55B7.3	Tyrosine-protein phosphatase	1.227866744	0.15006983	1.36E-17	1.08E-13	174.36698
	WBGene00020760	T24C4.4	hypothetical protein		0.256600758			47.89305532
	WBGene00007833	oac-6	O-ACyltransferase homolog		0.177226956			100.8800663
	WBGene00010658	K08D8.4	hypothetical protein Glutathione S-Transferase		0.169050711 0.178945098	1.54E-11		180.4371305 143.8145744
	WBGene00001770 WBGene00015932	gst-22 C17H12.6			0.303604307			
	WBGene00016788	C17H12.6 C49G7.10	hypothetical protein		0.303604307	9.43E-11		153.3377331
	WBGene00002274	lec-11	hypothetical protein Galectin	0.886722738	0.14043446	9.43E-11 1.20E-11		
	WBGene00012494	nhr-232	Nuclear Hormone Receptor family		0.213323988		0.001129	112.51913
	WBGene00009957	F53B2.8	hypothetical protein		0.190605293			239.5829128
	WBGene00008255	C51E3.10	hypothetical protein		0.146796628	4.90E-07 1.20E-09	1.19E-06	158.7550853
	WBGene00010749	K10D11.5	hypothetical protein		0.173409032			147.1542355
	WBGene00020188	T03F1.6	hypothetical protein		0.179141069	8.92E-07	0.00044	
	WBGene00008944	F19B2.5	hypothetical protein		0.120358035	1.74E-11		444.0647034
	WBGene00003995	pgp-1	Multidrug resistance protein pgp-1	0.75342572	0.16531086		0.000134	308.7975379
	WBGene00009349	F32H5.3	hypothetical protein		0.233562975	4.52E-05	0.01231	75.11060785
	WBGene00021204	fbxb-77	F-box B protein		0.224552131			63.71281014
	WBGene00003480	klf-3	Kruppel-Like Factor (zinc finger protein)		0.211256458		0.011428	113.5870144
	WBGene00008486	ugt-44	UDP-GlucuronosylTransferase			8.67E-12		
	WBGene00002058	ifd-2	Intermediate filament protein ifd-2		0.131247413			280.7445392
39	WBGene00012953	fbxa-216	F-box A protein	0.468072867	0.157961149	0.000103	0.024534	187.2262341
	WBGene00003613	nhr-14	Nuclear hormone receptor family member nhr-14		0.134472599	3.03E-05	0.00921	235.211134
	WBGene00017964	F31F7.1	hypothetical protein	0.317737756		0.000232	0.049499	
	WBGene00000781	cpr-1	Gut-specific cysteine proteinase	-0.346217983	0.105055607		0.010004	4788,749729
43	WBGene00003093	lys-4	LYSozyme	-0.441889856	0.103037708	7.26E-07	0.00037	2880.365065
44	WBGene00003163	mdl-1	MAD-Like	-0.456923254	0.115024366	3.11E-06	0.001328	347.4871568
45	WBGene00003511	mxl-3	MaX-Like	-0.36631772	0.124870366	0.000126	0.028351	626.8109522
46	WBGene00008038	C40H1.2	hypothetical protein	-0.569446497	0.187672822	8.77E-05	0.021647	87.43566117
47	WBGene00008341	ttr-44	TransThyretin-Related family domain	-0.409926079	0.097710035	1.11E-06	0.000532	419.3991215
48	WBGene00009724	F45D3.4	hypothetical protein	-0.473218912	0.10023116	9.87E-08	6.78E-05	483.5247348
49	WBGene00009785	F46C5.10	hypothetical protein	-0.430737642	0.13804584	6.45E-05	0.016164	221.3207507
50	WBGene00009895	scl-2	SCP-Like extracellular protein	-0.462111977	0.14744487		0.015745	254.1703789
51	WBGene00010204	F57F5.1	hypothetical protein		0.081311397		0.000251	23371.7932
	WBGene00010793	LLC1.2	hypothetical protein		0.095760458		0.013806	1891.065613
	WBGene00012251	clec-49	C-type LECtin	-0.411954042	0.129443197	5.32E-05	0.014008	455.5392515
	WBGene00013996	ZK550.2	hypothetical protein	-0.459452288	0.146551784	6.06E-05	0.01569	195.9956877
	WBGene00017488	dct-7	DAF-16/FOXO Controlled, germline Tumor affecting		0.420186048			
	WBGene00017565	ddo-2	D-aspartate oxidase 2	-0.302302751	0.09242679			1108.776985
	WBGene00017969	F32A5.3	Uncharacterized serine carboxypeptidase F32A5.3	-0.374105296			0.005329	567.3321485
	WBGene00019164	H06H21.8	hypothetical protein		0.089504604		5.71E-06	
	WBGene00019300	swt-1	Sugar transporter SWEET1	-0.593285466	0.158838169		0.002633	
	WBGene00020453	fbxa-55	F-box A protein	-0.72388904		5.83E-08	4.60E-05	154.7174557
61	WBGene00020891	T28C12.4	Carboxylic ester hydrolase		0.142628755		0.005329	244.293457
	WBGene00022643	ZK6.8	hypothetical protein		0.186272234			

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
	WBGene00003124	mai-1	ATPase inhibitor mai-1, mitochondrial	0.384035309	0.199038			129.1903092
	WBGene00012928 WBGene00021927	aakb-2 abhd-14	AMP-Activated Kinase Beta subunit ABHvdrolase Domain containing homolog	0.704067441 0.904012272	0.160277	7.13E-07 0.001637		525.8503672 40.81840548
	WBGene00016507	abhd-5.2	Abhydrolase domain-containing nonloog Abhydrolase domain-containing protein abhd-5.2	-0.385250492	0.11802	0.000123	0.001576	316.37267
	WBGene00000033	abu-10	Activated in Blocked Unfolded protein response	0.992118465	0.934096	0.004538		24.10569073
	WBGene00000034 WBGene00020366	abu-11 acdh-10	Activated in Blocked Unfolded protein response Probable medium-chain specific acyl-CoA dehydrogenase 10, mitochondrial	1.463216475 0.333466049	0.475275 0.096595	8.14E-05 8.04E-05		29.01330834 1656.969774
8	WBGene00020812	acdh-7	Acyl CoA DeHydrogenase	0.734684536	0.198222	1.17E-05	0.000273	987.5483089
	WBGene00011543	acl-2	ACyLtransferase-like	-0.325932704 0.323491327	0.09893	0.000148		1536.551905
10	WBGene00016995 WBGene00008565	acly-1 acox-1.2	Probable ATP-citrate synthase Acyl-coenzyme A oxidase	0.355092148	0.076889	4.34E-06 7.23E-06	0.000131	2176.307437 449.1193248
12	WBGene00022037	acs-13	fatty Acid CoA Synthetase family	0.542693195	0.158237	4.36E-05	0.000756	6766.72062
	WBGene00000066 WBGene00000067	act-4 act-5	Actin-4 ACTin	0.716588298 0.606783569	0.18996	9.45E-06 9.25E-07	0.000238	13620.48055 2133.991095
	WBGene00016509	adss-1	Adenylosuccinate synthetase	0.368879115	0.160223			3783.351885
	WBGene00021009	afd-1	AFaDin (actin filament binding protein) homolog	0.845487334	0.140896	1.18E-10		649.9574212
1/	WBGene00019322 WBGene00015547	ahcy-1 ain-1	Adenosylhomocysteinase ALG-1 INteracting protein	0.312881415 0.433179041	0.145416 0.098123	0.004093 1.05E-06		19161.69995 1972.480252
19	WBGene00000100	ajm-1	Apical junction molecule	0.491217988	0.184897	0.000566	0.005062	1172.020081
20	WBGene00011474 WBGene00000106	aldo-1	Fructose-bisphosphate aldolase 1 Protein argonaute	1.011023307 0.344356241	0.264336 0.135399	6.24E-06 0.001318	0.000172 0.009695	696.9996209 1647.333901
	WBGene00011193	alg-2 algn-13	Asparagine Linked Glycosylation (ALG) homolog, Nematode	-0.428517056	0.073949	7.59E-10		827.8141613
23	WBGene00000112	alh-6	ALdehyde deHydrogenase	0.499957391	0.163898	0.000169	0.002012	960.8827981
	WBGene00000113 WBGene00000114	alh-7 alh-8	ALdehyde deHydrogenase ALdehyde deHydrogenase	0.933995953 0.494885649	0.165033	8.66E-10 0.000726		336.8998634
	WBGene00000123	ama-1	DNA-directed RNA polymerase II subunit RPB1	0.339749104	0.093857	4.23E-05		2077.224042
	WBGene00011573	anmt-3	Amine N-MethylTransferase	0.343928429	0.14446	0.001997		383.9559638
	WBGene00000144 WBGene00000149	apc-10 apl-1	Anaphase-promoting complex subunit 10 Amyloid-beta-like protein	-0.408763507 0.41887973	0.080473 0.121707	4.38E-08 5.82E-05		749.1095626 1977.587268
30	WBGene00000170	aqp-2	AQuaPorin or aquaglyceroporin related	0.931834793	0.205455	3.06E-07	2.01E-05	2434.690998
	WBGene00044689	arid-1	ARID (AT-rich Interactive Domain-containing protein) homolog	0.347678836	0.103268	9.94E-05		2390.741908
	WBGene00010268 WBGene00011055	arrd-10 arrd-14	ARRestin Domain protein ARRestin Domain protein	0.527612055 0.322669395	0.2641 0.18433	0.002342 0.00832	0.014808	72.33478501 102.804032
34	WBGene00000207	asb-2	ATP Synthase B homolog	0.350570716	0.153325	0.002417	0.015157	2647.297355
	WBGene00016019 WBGene00000210	ascc-1	activating signal cointegrator 1 complex subunit 1 homolog Probable ATP synthase subunit g 2, mitochondrial	-0.3111703 0.361556566	0.078204	1.19E-05	0.000277	945.3955379 1525.081601
	WBGene00000210 WBGene00000214	asg-2 asp-1	ASpartyl Protease	0.633421947	0.174047 0.374941	0.003646		1525.081601 7572.537787
38	WBGene00007100	asps-1	ASPScr1 (ASPSCR1) homolog	-0.355639313	0.068592	2.73E-08	3.16E-06	2364.525515
	WBGene00021922 WBGene00020706	atg-3 atg-9	Autophagy-related protein 3 Autophagy-related protein 9	0.692818768 0.474106118	0.236332 0.180674	0.000174 0.000631		625.7441249 815.2125202
	WBGene00010419	atg-9 atp-1	ATP synthase subunit alpha, mitochondrial	0.518834935				19304.94776
42	WBGene00020275	atp-4	ATP synthase subunit	0.360239329	0.246731	0.009967	0.044719	4853.569454
	WBGene00007385 WBGene00010960	atp-5 ATP6	ATP synthase subunit ATP synthase F0 subunit 6	0.317425921	0.13193 0.127605	0.00221 6.49E-05		7053.972054 38953.46577
45	WBGene00018794	attf-3	AT hook Transcription Factor family	0.361705062	0.127005	0.001563	0.011046	758.7584988
46	WBGene00000231	atx-2	Ataxin-2 homolog	0.30452198	0.184885	0.011162	0.048699	2458.389091
	WBGene00206362 WBGene00015011	B0041.11 B0041.8	hypothetical protein hypothetical protein	0.548828666	0.190113 0.060193	0.000253 6.35E-09		839.3297747 4137 034427
49	WBGene00015023	B0205.9	hypothetical protein	-0.305029574	0.063863	3.29E-07		2257.193144
	WBGene00007133	B0284.3	hypothetical protein	0.682615868	0.226987	0.000137		69.38823803
	WBGene00007144 WBGene00015155	B0334.4 B0353.1	hypothetical protein hypothetical protein	-0.303459196 0.403805413	0.063192 0.201454	2.92E-07 0.003468		2956.233142 113.7458496
53	WBGene00015156	B0361.2	CWF19-like protein 2 homolog	-0.362814874	0.062239	1.22E-09	2.61E-07	2026.921364
54	WBGene00015160	B0361.6	Putative methyltransferase B0361.6	-0.351507909 -0.336189021	0.068486	4.23E-08		
	WBGene00015189 WBGene00007188	B0432.8 B0464.9	hypothetical protein Probable protein phosphatase methylesterase 1	-0.457744007	0.079105	0.000968 7.33E-10	0.007644 1.81E-07	733.2526594 1272.038772
57	WBGene00015220	B0507.3	hypothetical protein	0.411108792	0.253116	0.006554	0.032422	66.3700256
	WBGene00000236 WBGene00017450	bag-1 bath-27	BAG family molecular chaperone regulator 1 BTB and MATH domain containing	-0.377272654 -0.386391464	0.061592 0.09277	1.24E-10 3.90E-06		1815.918669 676.5047756
	WBGene00019141	bath-5	BTB and MATH domain containing	-0.374429992	0.092639	6.68E-06		579.3820232
	WBGene00012713	bckd-1A	2-oxoisovalerate dehydrogenase subunit alpha	0.418074938		0.000535		
62	WBGene00010042 WBGene00012943	bcs-1 bed-2	BCS1 (mitochondrial chaperone) homolog BED-type zinc finger putative transcription factor	-0.342691426 0.740729449	0.075111 0.157605	7.55E-07 1.58E-07		1372.187158 721.8537487
64	WBGene00011872	blos-1	Biogenesis of lysosome-related organelles complex 1 subunit 1	-0.317096061	0.084245	2.67E-05		
65	WBGene00020783	blos-4	Biogenesis of lysosome-related organelles complex 1 subunit 4	-0.390850345	0.125285			743.0014987
	WBGene00021376 WBGene00000273	blos-7 brp-1	BLOC (Biogenesis of Lysosome-related Organelles Complex) and Related complexes subunit homolog Bypass of Response to Pheromone in yeast	0.428689243 0.317656187	0.283779 0.130849	0.006966 0.002093	0.03399	501.5860345 3305.263967
68	WBGene00007216	C01A2.4	hypothetical protein	-0.363352906	0.090459	7.85E-06	0.000206	937.6444709
	WBGene00015291 WBGene00015339	C01B12.8 C02E7.6	hypothetical protein hypothetical protein	-0.409319381 2.365851201	0.093482 0.60735	1.39E-06 3.77E-06	5.76E-05 0.000121	1037.072593 148.7810905
	WBGene00015340	C02E7.6 C02E7.7	hypothetical protein	1.935079736	0.615973	6.43E-05		29.65703455
72	WBGene00015353	C02F5.13	TM2 domain-containing protein C02F5.13	-0.361437954	0.077593	4.36E-07	2.52E-05	817.3864113
	WBGene00015456 WBGene00015472	C04G6.6 C05D9.3	hypothetical protein Uncharacterized integrin beta-like protein C05D9.3	0.41346283 0.440704921	0.209912 0.111664	0.003553 7.60E-06	0.020264 0.000201	128.0819417 393.8767
75	WBGene00015505	C06A5.8	hypothetical protein	-0.312260348	0.082488	2.59E-05	0.000511	768.0020407
76	WBGene00007365	C06B3.6	hypothetical protein	-0.543249034	0.080039	1.00E-12	1.60E-09	824.1004526
	WBGene00007372 WBGene00015529	C06B8.7 C06E2.5	hypothetical protein hypothetical protein	0.37156502 0.361922963	0.154517 0.217982	0.001661 0.007718		253.9726101 311.7847012
79	WBGene00015561	C07A12.7	hypothetical protein	0.757449998	0.123716	6.06E-11	2.68E-08	280.4275788
80	WBGene00015565 WBGene00044773	C07D8.6 C08A9.10	hypothetical protein hypothetical protein	0.636064855	0.188843		0.000785	3000.132772 397.882895
	WBGene00044773 WBGene00007435	C08A9.10 C08B11.8	hypothetical protein Probable dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-qlucosyltransferase	-0.499429348 -0.385199504	0.212979 0.081338	0.001212 2.71E-07	0.009057 1.85E-05	397.882895 1249.218482
83	WBGene00015613	C08F1.10	hypothetical protein	0.310486368	0.121471	0.001542		568.7392558
	WBGene00007449 WBGene00044418	C08F8.9 C08G5.7	hypothetical protein hypothetical protein	0.950080739 1.124077204	0.511148 0.30899	0.001796 1.19E-05		83.34835906 37.75783917
86	WBGene00007479	C09F9.2	hypothetical protein	1.02078016	0.327404	7.86E-05	0.001141	132.1654168
87	WBGene00007486	C09G1.4	hypothetical protein	0.472313528	0.269847	0.004358	0.023781	59.84374194
88	WBGene00015662 WBGene00007507	C10A4.1 C10C5.3	hypothetical protein Aminoacylase	-0.439069077 -0.340381791	0.422077	0.010449 0.005482		31.32022127 116.4087486
90	WBGene00007515	C10C6.7	hypothetical protein	-0.588623384	0.250427	0.001	0.007829	78.49045266
91	WBGene00015710	C12D5.9	hypothetical protein	-0.501675245	0.211543	0.001138	0.008638	81.68729189
	WBGene00015744 WBGene00015745	C13F10.5 C13F10.6	hypothetical protein	-0.363159224 -0.362827423	0.099245	3.24E-05 2.12E-08	0.000603 2.64E-06	947.495071 2707 66877
94	WBGene00184990	C14B1.12	hypothetical protein	-0.387276548				869.7251206
	WBGene00007585	C14C10.2	hypothetical protein	-0.304620946				286.6762585
	WBGene00015766 WBGene00007602	C14C11.2 C15C6.3	hypothetical protein hypothetical protein	-0.301528666 0.386701107				987.7036907 1329.218192
98	WBGene00015807	C16A3.2	hypothetical protein	-0.354803687	0.106839	0.000115	0.0015	693.1969499
	WBGene00015843	C16C8.5	hypothetical protein	-0.443387217	0.124993	3.59E-05	0.000651	469.5631263
	WBGene00044236 WBGene00015899	C17E4.11 C17E7.4	hypothetical protein hypothetical protein	-0.301497799 0.411206659	0.112268 0.163756			321.3903372 738.4876936
102	WBGene00270322	C17G10.13	hypothetical protein	-0.414400045	0.082605	5.86E-08	5.41E-06	729.1723066
	WBGene00015926	C17H11.6	RBR-type E3 ubiquitin transferase	0.496247947	0.09948	5.35E-08	5.19E-06	367.8959318
103	WDO 000000000	C18D11.1	hypothetical protein	0.575671194	0.166733 0.070581	3.67E-05 4.29E-07		193.2983175 1204.963334
103 104	WBGene00007679 WBGene00016021		hypothetical protein	-0 331455706				
103 104 105 106	WBGene00016021 WBGene00016048	C23H3.5 C24B9.3	hypothetical protein hypothetical protein	-0.331455796 0.468097088	0.215847	0.001951	0.012926	1429.854585
103 104 105 106 107	WBGene00016021 WBGene00016048 WBGene00007720	C23H3.5 C24B9.3 C25D7.10	hypothetical protein hypothetical protein	0.468097088 -0.322433932	0.215847 0.114995	0.001951 0.00072	0.012926 0.006113	1429.854585 932.4195275
103 104 105 106 107 108	WBGene00016021 WBGene00016048 WBGene00007720 WBGene00016146	C23H3.5 C24B9.3 C25D7.10 C26F1.1	hypothetical protein hypothetical protein hypothetical protein	0.468097088 -0.322433932 0.763866761	0.215847 0.114995 0.28772	0.001951 0.00072 0.000353	0.012926 0.006113 0.003469	1429.854585 932.4195275 101.1147038
103 104 105 106 107 108 109 110	WBGene00016021 WBGene00016048 WBGene00007720 WBGene00016146 WBGene000016148 WBGene00007766	C23H3.5 C24B9.3 C25D7.10 C26F1.1 C26F1.3 C27C7.1	hypothelical protein hypothelical protein hypothelical protein hypothelical protein hypothelical protein	0.468097088 -0.322433932 0.763866761 -0.380729936 0.895315732	0.215847 0.114995 0.28772 0.064038 0.272874	0.001951 0.00072 0.000353 3.72E-10 4.75E-05	0.012926 0.006113 0.003469 1.08E-07 0.000803	1429.854585 932.4195275 101.1147038 1630.37246 700.3181563
103 104 105 106 107 108 109 110 111	WBGene00016021 WBGene00016048 WBGene00007720 WBGene00016146 WBGene00016148	C23H3.5 C24B9.3 C25D7.10 C26F1.1 C26F1.3	hypothetical protein hypothetical protein hypothetical protein	0.468097088 -0.322433932 0.763866761 -0.380729936 0.895315732	0.215847 0.114995 0.28772 0.064038 0.272874	0.001951 0.00072 0.000353 3.72E-10 4.75E-05 6.00E-05	0.012926 0.006113 0.003469 1.08E-07 0.000803 0.000956	1429.854585 932.4195275 101.1147038 1630.37246 700.3181563 785.4884401

11 1		ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
111.4 Subscription4.5 store3.5 store			C27H6.9					2.26E-05	1126.352741
111000			C30G12.2					2.24E-11	435.6991649
1111Machesim1.000000000000000000000000000000000000									459.0161555
11 0.000000000 0.00000000 0.000000000 0.0000000000 0.00000000000 0.00000000000 0.00000000000000000000000000000000000	117	WBGene00007878	C33A11.2	hypothetical protein		0.227181	0.001557		181.5744866
10) 1.3.00000 0.000000 0.00000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1) 1.50007000 1.5000700 1.5000700 1.5000 1.5000 1.5000									
11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
13 0.1000/0000000 0.00000				hypothetical protein 60S acidic ribosomal protein P2					
1.3. Monumental end 0.111200 0.01212 0.01214 <td>124</td> <td>WBGene00016494</td> <td>C37A2.8</td> <td>hypothetical protein</td> <td>-0.436475052</td> <td>0.091124</td> <td>1.73E-07</td> <td>1.28E-05</td> <td>1999.008937</td>	124	WBGene00016494	C37A2.8	hypothetical protein	-0.436475052	0.091124	1.73E-07	1.28E-05	1999.008937
11 0.00000000000000000000000000000000000	125	WBGene00016511	C37H5.13					0.000455	422.4138569
13 1000000000000000000000000000000000000									
111 1.0000000000000 Control 0.000000000000 Control 0.000000000000 Control 0.000000000000 Control 0.00000000000 Control 0.00000000000 Control 0.00000000000 Control 0.00000000000 Control 0.0000000000000 Control 0.00000000000 Control 0.00000000000 Control 0.00000000000 0.00000000000 0.000000000000 0.00000000000000000000000000000000000	128	WBGene00016540	C39F7.5	hypothetical protein		0.185179	0.0027	0.016447	170.7652934
11 1.9.1098/m0010111 C1.7.1 Spatial prime 0.3.2014									
13.1 Technologic prime 1.00000 0.00000 0.0000 0.0000 <	131	WBGene00016574	C41H7.4		0.430316182	0.217444	0.003242	0.018856	253.9131662
11 Modernal product pr									
11 0.55822 0.0001				hypothetical protein hypothetical protein					
11 Witz-mouthinit C.B.(1) 3 Appendix presents 0.889700 (0.8020) 0.8020 (0.8070)<	135	WBGene00016616	C43H6.3	hypothetical protein					
13 Wildmonthild -0.378020 0.0193 0.	136	WBGene00016674 WBGene00016706	C45G9.2			0.081249	4.98E-07	2.74E-05 0.002085	975.8389093 74 18210504
140 VIBE-BADDONCED CODEST Apple amples 0.00019 0.0001	138	WBGene00016767	C49C8.3	hypothetical protein	-0.377929553	0.157537	0.001601	0.011259	187.1502137
141 Wild-mod018000 C2022.6 Monthmat preter 0.8321.0 0.8121.0	139	WBGene00016791	C49H3.4		-0.349314324	0.091174	1.77E-05	0.000379	535.4718593
11.1 Wilden-World Wild CX801.3 moderatio press 0.0000 0.155.077 14.4 Wilden-World Wilden 0.201.0 0.0000 0.155.077 14.4 Wilden-World Wilden 0.201.0 0.00000 0.0000 0.0000			C50B6.7 C50D2.6			0.165939	0.000316		
144 VIGLandCHTM C.330.5 mignating picture A.307.0 M.62.6 M.000.7 M.62.00 M.62	142	WBGene00016816	C50E3.5	hypothetical protein	-0.361410322	0.099683	3.73E-05	0.000669	1315.200752
144 Wilds-wold/Wilds 0.5205 wold/wilds 0.5205 0.5207 0.0207 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
14 br Winn-w00081 CSD2.0 hypothnet growin 3.5011710 0.0070 2.501270 0.00101 VIII.00 VIIII.00 VIII.00 VIII.00 VIIII.00 VIIIII.00 VIIIII.00 VIIIIII.00				hypothetical protein					
14 MCGuard201842 C.2027.1 Typespecial production 0.0014000 0.005.0 0.115.00				hypothetical protein					
14 Mindback000081 CSAA. Monthal gradies -3.3311000 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.0029 7.82-50 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 0.00119	147	WBGene00008318 WBGene00016942	C54G4.9 C55B7 3		-0.321622246 0.68843637	0.09395	9.66E-05 1.00E-06	0.00132 4.51E-05	
15 Witzuw2000014 C240.13 Mysterwatchicking 4.33915711 0.5007 40.550 0.5007 0.5018 15 Witzuw200014 orthol Catholic structure 4.33915711 0.5007 0.5168 0.5007 0.5168 0.5007 0.5168 0.5007 0.5168 0.5007 0.5168 0.5007 0.5168 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0.5178 0.5007 0	149	WBGene00008343	C56A3.4	hypothetical protein	-0.335410399	0.082598	7.29E-06	0.000194	982.5399109
15 Wildbackbild CBC103 Machaca probe 2.3019441 2.001941 2.001941 2.001941 0.0019 0.0119 2.3313200 0.0119 2.3313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.2313200 0.0119 0.0119 0.2311200 0.0119 0.01119 0.0119 0.01119 0.0	150	WBGene00008344							
15 WG:sewS000011 cb.3770-32 0.1480 0.5277-32 0.1080 0.5277-32 15 WG:sewS0011877 cb.377 0.1080 0.0071 0.7278-32 0.1081 0.0071 0.7278 0.0071							1.45E-06		
150 MGG-mc0000004 0.33177748 0.038 0.0012 0.0181 10.22081 160 MGG-mc000006 0.0144 0.0124 0.01				Putative carbonic anhydrase 3					
19 Willsame001987 0.131211005 0.1584 0.00577 0.07295 157.2018 19 Willsame001987 0.0057 0.07195 0.12795 157.2018 0.0077 0.07195 0.02795 157.2018 0.0077 0.07195 0.02795 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19 Wildsams2000038 co.1-1 Colicity are inper aduation include co.366888 0.17852 0.00141 16.02149 16.02149 16.02149 16.02149 16.02149 0.00131 16.02149 0.00141 16.02149 0.00141 16.02249 0.00141 16.02249 16.02149 0.00141 16.02249 0.00141 16.02249 0.00141 16.02249 0.00149 0.00149 <td>156</td> <td>WBGene00013672</td> <td>catp-1</td> <td>Cation transporting ATPase</td> <td>0.312310005</td> <td>0.15449</td> <td>0.00537</td> <td>0.027835</td> <td>157.2208188</td>	156	WBGene00013672	catp-1	Cation transporting ATPase	0.312310005	0.15449	0.00537	0.027835	157.2208188
19 WBGew6001277 col3 COLArge and Flogr August Hamorighton factor -0.34855558 0.05786 3.0156.0			CC8.2	Protein phosphatase 1 regulatory subunit					
160 WBCsenf002037 col.21 Person Encoderating (TP-1) 0.014816480 0.17119 2.001-05 0.00141 4.42:15800 161 WBCsenf001562 col.21 Col.24 0.00141 0.11116 0.00237 0.00141 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.0111 0.0112 0.01111 0.01111 0.01111 0.01111	158	WBGene00000368 WBGene00012277			-0.349555555	0.179557	0.000141 3.93E-08	0.001741 4.31E-06	
110. WBGene0002107 cb.37 Postbis HugB co-Agreeme cb.37 0.6197000 0.64771 0.00820 0.67280 0.61720 0.00820 0.67280	160	WBGene00020391	cct-7	Chaperonin Containing TCP-1	0.619496598	0.171189	2.00E-05	0.000416	4452.115806
161 WBGem0010552 cd. Dhalen Cylar mindra 0.310132 0.0231 0.0237 0.72484227 163 DBGem001056 cd. Dhalen Cylar mindra 0.34444697 0.264449 0.26449 0.26449 0.26449 0.26449 0.26449 0.26479 0.74579 0.1471791 164 WBGem000156 cd. Dhalen Cylar mindra contain protein ce-3 0.4277944 0.0284 2.06774 0.0284 2.06774 0.0284 2.06774 0.018749 0.16794 0.0287 0.0287 <						0.125377			1822.454346
Hith WBGemc001997 cd.ht Calibren family Deskders D.2138 H.I.F. A.B.C.I.G. N.T.28330 HV WBGemc0001997 cd.st C.G.B.W.C.A.T.Inthances lexing panels i homolog 1.334 1.116 1.335 1.334<	162	WBGene00010562		Cell Division Cycle related	-0.310032391	0.096331			
198 WBGene000158 cec3 Chemo domain-containing protein cec3 -0.422700174 0.002764 2.671-63 0.110.3416 197 WBGene0000058 cel1-32 Cal data Mathemanity protein cec3 0.31475438 0.007264 0.227166 0.110.3416 197 WBGene00000455 cel1-32 Hemedox protein cel-34 0.31475438 0.01386 0.00224 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.01286 0.01286 0.01286 0.01286 0.01286 0.01286 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 0.02246 0.01286 <	164	WBGene00019994	cdh-1	CaDHerin family		0.221359	1.11E-06		
197 WBCens000044 col-12 Cal death abromally profen 12 col-12 2.076.0									
119 WESmed000045 cmi-32 1.5.474748 0.508798 0.02738 0.8489 42.271697 117 WESmed0000457 cmi-33 Montebox profile on-34 0.45017445 0.21779 0.04415 0.51489 42.271697 117 WESmed0001457 cmi-33 0.44417 0.4501774 0.31426 0.4501774 0.31426 0.4501774 0.31427 0.450177 0.01417 0.4501774 0.31427 0.4501774 0.31427 0.4501774 0.31427 0.4501774 0.31427 0.4501774 0.31427 0.4501774 0.31472 0.4501774 0.31472 0.4501774 0.31472 0.4501774 0.31472 0.4501774 0.31472 0.11472	167	WBGene00000426	ced-12	Cell death abnormality protein 12	-0.318630367	0.067569	4.22E-07	2.47E-05	2016.364156
1710 WBGmed000457 c.Biggen Homesbox probin ch-34 0.5667710 0.56867710 0.50827 60.514344 177 WBGmed000457 c.Biggen Homesbox probin ch-36 0.5514344 0.37707 0.11622 6.3734440 177 WBGmed001458 c.Biggen Homesbox 0.55514744 0.557505 0.01465 0.01222 6.3734440 177 WBGmed000472 c.Biggen Y-box 0.54514710 0.558567710 0.50814710 0.5081710 0.01462 6.0570021 0.00147									
111 WEGme000138 cell-30 K-50.4480 56.74440 171 WEGme000138 cell-30 C.50.9814400 30.5315 63.744800 50.744800 174 WEGme000047 cell-40 cell-40 may formation protein 2 64.551554 64.1417 61.5516 60.0227 10.6177 61.66177 60.7460 60.0228 10.6271 60.001472 61.7460 60.001472 61.7460 60.001472 61.7460 60.001472 61.7460 60.001472 61.7460 60.00247 60.001472 61.7460 60.00247 60.001472 61.7460 60.00247 60.001472 61.7460 60.00247 60.00147 60.7460 60.00247 60.00147 60.7460 60.00247 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.00147 60.7460 60.0014620 60.001470<				Homeobox protein cen-32					
173 WEGene000199 cn+2 Cel Auth peochaston poten 0.44007474 0.33162 0.00354 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.02034 0.03054 0.00034 0.03054 0.00034 0.03054 0.00034 0.03054 0.00034 0.03054 0.00034 0.03054 0.00034 0.03054 0.00034 0.03054 0.0014 0.02132 2.01223 2.01223 2.01223 2.01223 2.01233 0.0014 0.03054 0.0141 0.01364 0.03054 0.0141 0.0141 0.0141 0.01354 0.00034 0.0141	171	WBGene00000457	ceh-36	Homeobox protein ceh-36	0.491074485	0.297479	0.004615	0.024809	85.0434434
174 WEGew000047 cse.2 Cell death specification protein 2 0.4539853 0.2122 10.05797003 175 WEGew000075 ch.2 2.115.0 0.0207 0.011472 0.01147 176 WEGew0000753 ch.2 Firzabe/2 0.01147 0.01147 0.01147 0.01147 177 WEGew0000753 ch.4 Ch.7 Chronodmain and Helasab Domain protein 0.4413930 0.11148 0.01147 0.01148 2.01148	172	WBGene00013583 WBGene00011069							
176 WBGeme0000475 cn/2-2 C128/m24-2 0.00217 <td>174</td> <td>WBGene00000469</td> <td></td> <td></td> <td>0.456395534</td> <td>0.241469</td> <td>0.003545</td> <td></td> <td></td>	174	WBGene00000469			0.456395534	0.241469	0.003545		
177 WBGeme0000789 ch-2 Finzz.me ² 2 25.002281 25.00281 178 WBGem0001801 ch-10 Rothin 0.34782478 0.387847 0.00381 30.578971 179 WBGem0001861 ch-1 Rothins 0.34782478 0.11884 0.00180 1.01833 180 WBGem0000566 ch-1 Chrine Kinase chi-1 0.34782478 0.11884 0.00183 1.01833 180 WBGem0000566 ch-1 Chrine Kinase chi-1 0.34802522 0.07758 1.476.0 0.54810252 0.07758 1.476.0 0.54810252 0.07758 1.476.0 0.54810252 0.07758 1.476.0 0.54810252 0.07758 1.476.0 0.54810252 0.07758 1.476.0 0.54810252 0.07781 1.486.0 0.02728 0.25579785 0.448.0 0.02782 0.07781 1.476.0 0.458252 0.07781 1.476.0 0.448.950371 0.04810 0.448.950371 0.04810 0.04810 0.04781 0.777813 1.476.0 0.448.950371 0.04810 0.04810 0.778731373 0.04810 0.04810 0.7787313737373 0.786.0 0.77873137									
179 WBGme00001891 ch-1 Rontellumone-protein knase ch-1 0.379766567 0.16807 312-66 0.00001 189.5555 181 WBGme00001847 ch-1 Cl-10 domain-containing protein 1.334160 0.18187 312-66 0.00003 189.5555 181 WBGme00001547 ch-6 CL-10 domain-containing protein 1.334160 0.18187 312-66 0.00147 187.14190 184 WBGme00001547 ch-6 C-10pa LECIn 0.34812054 0.21388 0.0738 0.03554 448.320371 185 WBGme0001566 ch-8 C-10pa LECin 0.34812071 0.3227068 0.03188 2.225.46 0.724.86 1.0486.3168 187 WBGme0001564 ch-8 C-10pa LECin 0.3227088 0.0318 2.225.67 0.0318 2.225.67 0.0318 2.227.68 0.04147 0.0148 2.0418.227.17 189 WBGme0001564 cm-1 Protein-cm-1 0.3271527 0.02146 2.225.777.18 0.0214 2.227.68 0.04147 0.0148 2.04168 0.0116 0.0118 0.02148 0.02146 0.02148 0.0216			cey-4 cfz-2						
180 WBGene00001589 ch4 Sinenbronne-protein in protein 1 0.647/027/4 0.1680/5 321.640 0.00003 1059.555 181 WBGene00001580 ch4-1 Chdena Krassa A -0.33843022 0.07781 1.858.77 18.857.7450 0.08181 5.046-0 0.00147 15.87.7450 183 WBGene00015867 ch-2 Chyna LECDin 0.7780 1.7781 1.786.7									
181 WBCene00015847 cbl. Cbl. Domine Ninase A 182 WBCene00000561 cbl. Chlone Ninase A 33832222 077781 1.852-67 252.977551 183 WBCene00000561 cbl. Cpl.el.ECIn 0.31824248 0.21582 0.07181 0.351242 184 WBCene00001561 cbl. C.Yope LECIn 0.31824248 0.21582 0.07181 0.32624 185 WBCene0001563 cbl. C.Algont-Mac protein R 0.4811271 0.2482 0.24826 1.2582 0.07181 0.358244 0.482171 0.2482 1.24826 1.03537 1.8411271 1.2482 1.037173 1.8411271 1.2482 1.037173 1.8411271 1.2482 1.0371733 3.8412271 1.8411271 1.2482 1.0371733 3.8412271 1.038144 1.04928714 1.01928714 1.129827143 1.8411271 1.2482									
18 WBcame0000351 chi-1 Cyclin-dependent Kinase inhibito 1 0.74880323 0.77787 1.77-26 5.94-50 225.297768 184 WBcame0001867 che-83 C.yape LECin 0.31824549 0.21380 0.02380 0.2216.2 224.401027 186 WBcame00018647 che-84 C.yape LECin 0.327161 0.01807 0.024801 224.54 224.54 1.546.51165 186 WBcame0001654 cmi-1 Calcinnotainculain-dipendent protein kinase type 1 0.46031814 0.36977 0.07480 237.57 1.977773 1.777.64 27.77168 1.977773 1.777.64 27.77168 1.977773 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.977773 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.9777733 1.777.64 27.77168 1.777743 1.777.64 27.77168 1.777743 1.77764 2.7716817 1.77764 1.77764 1.77764 1.77764 1.77774 1.77774 1.77764 <t< td=""><td></td><td></td><td></td><td></td><td>-0.338431606</td><td></td><td>5.04E-06</td><td></td><td></td></t<>					-0.338431606		5.04E-06		
184 WBGme0000384 cle-78 C-lyee LECin 0.318752 486.35037 0.038754 486.35037 186 WBGem0010460 cle-88 C-lyee LECin 0.7130778 0.53712 0.00420 12.431037 186 WBGem0010400 cle-88 C-lyee LECin 0.421078 0.424018 1.2426.00 12.448.01037 187 WBGem0000255 cn.1. Calcunniationalin-disclepteding protein 0.420118 0.20177 0.410118 0.20177 0.410118 0.20177 0.10118 0.10118 0.10118 0.10118 0.00					-0.339362522				
188 WBGem00198547 cb-78 C-type LetClin 0.71430783 0.537812 0.00482 2.734.06 156.86.51165 189 WBGem000015806 chi.1 Cal_ponit-Kie proteins 0.42142118 0.128067 0.009138 2.234.06 157.373133 189 WBGem00001564 cmi.1 Protein cmi.1 -0.3271081 0.08817 0.08917 0.09018 2.234.073313 189 WBGem00000577 cat.10 -0.01480 10.1748.0177 0.014148 10.1748.0177 199 WBGem00000577 cat.10 COLlagan 0.489374 0.48995 0.0033 9.1378544 199 WBGem00000680 cat.16 COLlagan 1.5357132 0.48995 0.00334 0.537854 199 WBGem00000681 cat.16 COLlagan 1.5357132 0.48995 0.00324 0.527854 199 WBGem00000584 cat.117 COLlagan 0.3334774 0.13847 0.32274 0.32274 0.32274 0.32274 0.32274 0.32374 0.32274 0.32274 0.32274 0.3237 0.3334774 0.01484 0.02288 0.0228				Cyclin-dependent kinase inhibitor 1 C-type I ECtin					
187 WBGame00002808 cmk-1 Cal_poni-Hike protein kinase typs 1 0.428124018 0.12866 0.00033 39.48.02237 188 WBGame00001864 cmh-1 Protein cmh-1 -0.327133270 0.08917 0.50872 0.00048 25.77318 189 WBGame00000577 cal-10 0.024148 1.51877-1186102 0.024148 0.00044 27.1186102 191 WBGame00000577 cal-10 COLlagen 0.0483374 0.58339 0.00044 0.047374 0.03337 0.53787544 191 WBGame00000577 cal-10 COLlagen 1.535971320 0.448995 0.00024 0.02174 6170.09291 191 WBGame00000581 cal-107 COLlagen 1.535971320 0.448950 0.0228 80.272875 191 WBGame00000581 cal-117 COLlagen 0.35704445 0.73974 0.222377 1.88704538 0.3304774 0.02228 80.5706981 191 WBGame00000581 cal-117 COLlagen 0.3304774 0.02017 0.027337 3.8319185 198 WBGame00000581 cal-118 COLlagen 0.3304774	185	WBGene00018547	clec-78	C-type LECtin	0.711300783	0.537812	0.004621	0.024809	129.4310237
18 WBceme0000653 cm-1 Catcumcalmodulin-dependent protein kinase type 1 0.46301514 0.368012 0.00815 5.667.5 180 WBceme00006554 cm-1 hpothticical protein 1.34103048 0.30815 5.067.5 0.20815 5.067.5 0.20815 5.067.5 0.20815 5.067.5 0.20815 5.067.5 0.20815 5.067.5 0.20815 5.067.5 0.00813 2.771.168102 0.00813 2.771.168102 0.00813 2.067.6 0.00813 3.067.64 0.00813 3.067.64 0.00813 3.076.64 0.00813 3.076.64 0.00813 3.076.64 0.00813 3.076.64 0.00813 0.03313 0.537.876.64 19 WBCeme0000061 ca-116 COLlagen 1.505.71318 0.488925 0.0128 0.0327.8 0.0228 8.027.2718141 19 WBCeme0000061 ca-117 COLlagen 0.303477 0.0174 0.0108 0.227.8 7.0718141 19 WBCeme0000062 ca-118 COLlagen 0.303477 0.0168 0.0228 8.00				C-type lectin domain-containing protein 88					
19) WBGene0000057 col-10 Collagen 0.380147 2.172_05 0.00445 27.17168102 19) WBGene00000577 col-103 Collagen 0.488454880 0.00430 0.00131 27.468.0137 19) WBGene00000577 col-103 Collagen 1.15753544 0.49995 0.00321 35.375544 19) WBGene00000580 col-106 Collagen 1.559571320 0.489925 0.00321 38.21.32844 19) WBGene00000581 cal-107 Collagen 0.32726 39.27.3274 0.02268 80.27.3284 0.02268 0.02268 0.02268 0.02278 0.02278 0.02278 0.02278 0.02278 0.02278 0.02278 0.02278 0.02278 0.02278 0.02378 0.02278 0.02787 0.0228 0.02787 0.02787 0.02788 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787 0.02787									
191 WBGeme0000075 cd-101 COLlagen 0.38844988 0.40346 0.00105 0.0013 12746.0137 192 WBGeme00000678 cd-114 COLlagen 1.1675344 0.449353 0.00333 0.03337 95.1387654 193 WBGeme00000681 cd-117 COLlagen 1.27480617 0.00221 384315 0.00223 385312 0.00223 385312 0.02502 367.06446 0.02502 367.06446 0.02502 367.06446 0.02502 367.06446 0.02502 367.06446 0.02502 367.06446 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02502 367.06456 0.02522 367.0717 0.01987 22.771841 19 WBGeme0000068 cd-117 COLlagen 0.3304771 0.31347 0.034771 0.31347 0.01345 30.05677 27.0144 1.98.0717 20.0156 0.01454 357.077 0.01257 35.77718441 19.98.0717									
152 WBGeme00000677 col-103 COLlagen 0.469374 0.569349 0.00014 6170.009399 159 WBGeme00000680 col-106 COLlagen 1.53957142 0.449955 0.00327 85.378564 196 WBGeme0000683 col-106 COLlagen 1.539571320 0.449955 0.00327 85.213269 196 WBGeme0000683 col-107 COLlagen 0.87704445 0.749965 0.00228 80.223247 43.81163 0.0228 80.223247 43.81163 0.0228 80.931163 0.81704445 0.749965 0.02528 0.02168 0.02168 0.02168 0.02168 0.02168 0.02168 0.02168 0.02168 0.01164 0.02168 0.02168 0.01164 0.02168 0.00167 0.01869 0.02168 0.00168 0.01164 0.00169 0.0186 0.00168 0.01164 0.000068 0.01164 0.000068 0.01164 0.000068 0.01268 0.00071 0.01164 0.000071 0.00163 0.01164 0.000066 0.01268 0.00076 0.01168 0.000076 0.01164 0.000068 0.00176 0.01168			cog-1 col-101						
19 WBGme00000677 col-104 COLlagen 1.16763344 0.449956 0.00333 0.03337 95.13876544 19 WBGme00000681 col-107 COLlagen 1.27468021 1.394916 0.04992 0.02234 87.6768645 19 WBGme00000681 col-107 COLlagen 0.87764444 0.48925 57.7674 0.02222 345 19 WBGme00000691 col-117 COLlagen 0.85764444 0.03744 0.02174 0.01987 0.2372171841 19 WBGme00000692 cal-117 COLlagen 0.33027741 0.31327 0.01987 2.27718441 19 WBGme00000692 cal-118 COLlagen 0.33027741 0.31327 0.01987 0.22721718441 19 WBGme00000692 cal-118 COLlagen 0.33027741 0.31327 0.01987 0.22721718441 20 WBGme00000693 cal-12 COLlagen 0.33027741 0.31327 0.01164 802.23514 20 WBGme0000073 cal-12 COLlagen 0.3502714 0.02031 3.25274 20 WBGme00000712 cal-138	192	WBGene00000677	col-103	COLlagen	0.49630734	0.598349	0.009054	0.041714	6170.099399
195 WBGeme0000081 col-107 COLlagen 1.27468021 1.394916 0.04096 0.0223 87 196 WBGeme0000081 col-117 COLlagen 0.85760445 0.279963 0.0479 0.0279 0.0277 0.21520 7.67560861 197 WBGeme00000591 col-117 COLlagen 1.80162137 0.313287 4.395-10 0.801707 200 WBGeme00000592 col-118 COLlagen 0.303047741 0.313287 0.02523 8.16530 200 WBGeme0000058 cal-122 COLlagen 0.27416094 0.02523 8.1063,67771 201 WBGeme0000058 cal-122 COLlagen 0.984267702 0.00252 8.1058 0.01168 8008,3008777 202 WBGeme000073 cal-126 COLlagen 0.984267702 0.00252 8.1058 0.01168 8008,300877 202 WBGeme000073 cal-126 COLlagen 0.9504410 0.957341 0.00278 1.8572913 203 WBGeme000071 cal-136 COLlagen 0.9504140 0.02574 0.0028 3.52371 0.0028 3.52371	193	WBGene00000678 WBGene00000690				0.449995			
198 WBGme0000083 co.149 COLlagen 0.85704445 0.74953 0.0467 0.627622 46.67669861 198 WBGme00000854 co.117 COLlagen 1.80162135 0.33747 43.877 53.8519185 198 WBGme00000854 co.117 COLlagen 0.3304774 0.0167 0.01897 0.22331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.518 0.02331 24.53178 0.02331 24.253178 0.02331 24.253178 0.02321 0.1164 130.86,8771 0.02332 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02331 24.253178 0.02724 25.577 0.007371 1.05315871 0.	195	WBGene00000681	col-107	COLlagen	1.279468021	1.394916	0.004096	0.02266	89.02223157
198 WBGeme00000594 col-117 COLlagen 1.08124834 0.370141 0.00167 0.00187 28.27791841 198 WBGeme00000683 col-118 COLlagen 0.3304774 0.01387 0.00187 0.02331 24.55391755 200 WBGeme00000683 col-128 COLlagen 0.374548 0.00183 0.01184 19306.87071 201 WBGeme00000683 cal-124 COLlagen 0.98427702 0.30223 8.105.50 0.01188 688.30657 202 WBGeme0000704 cal-124 COLlagen 0.98427702 0.30223 8.105.50 0.01188 608.2183809 208 WBGeme0000704 cal-130 COLlagen 0.39594143 0.00206 0.00318 37.251143 0.00206 0.00318 37.251143 0.00206 0.00373 7.807377 10.01251945 57.65 0.00767 0.30578 0.00767 0.30578 0.00773 0.33771 40.1251945 57.6510 0.00773 0.33771 40.1251945 57.6510 0.00767 0.33771 40.1251945 57.65081 2.01486 57.650818 2.01486 57.650818 2	196	WBGene00000683	col-109	COLlagen	0.857804454	0.749963	0.004674	0.025023	46.67669861
199 WBGeme0000082 col-118 COLlagen 0.33047741 0.13874 0.034961 0.00608 200 WBGeme0000086 col-122 COLlagen 0.74510964 0.074560 0.00628 0.01544 1005647071 201 WBGeme00000866 col-122 COLlagen 0.87325631 0.52237 0.00258 0.01548 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01546 0.00628 0.01572 0.00156 0.02272 15772 0.00109 0.00148 170582307 203 WBGeme00000714 col-130 COLlagen 0.39549713 0.0218 0.00785 15.1572431 0.00281 15.25231 0.00785 15.1572431 0.00785 15.1572431 0.00148 15.752431 0.00148 15.752431 0.00785 15.1572431 0.00148 15.752431 0.00148 15.752431 0.00148 15.752431 0.00148 15.752431 0.00148 15.752431 0.00148 15.752431 0.00148 0.00148									
201 WBGeme0000086 col-122 COLlagen 0.8735931 0.52237 0.02258 0.01581 6983.390877 202 WBGeme00000699 col-125 COLlagen 0.94492772 0.03228 81.05 0.00168 60.03223 81.05 0.00168 60.03223 81.05 0.00128 81.05 0.0118 82.759846 0.01188 81.05 81.12 0.00128 <td< td=""><td>199</td><td>WBGene00000692</td><td>col-118</td><td>COLlagen</td><td>0.303047741</td><td>0.13874</td><td>0.004019</td><td>0.022331</td><td>284.5391785</td></td<>	199	WBGene00000692	col-118	COLlagen	0.303047741	0.13874	0.004019	0.022331	284.5391785
22 WBGeme00000698 col-124 COLlagen 0.96492772 0.308223 8.10E-05 0.001166 680.283800 203 WBGeme00000703 col-129 COLlagen 1.205242415 0.308213 0.02027 0.33813 0.02027 204 WBGeme00000703 col-139 COLlagen 0.950941432 0.35151 0.02075 15.252151431 206 WBGeme0000712 col-139 COLlagen 0.8999723 0.274 4.58E-05 0.00075 15.3752913 207 WBGeme0000715 col-142 COLlagen 0.8999722 0.274 4.58E-05 0.00078 11.85752913 208 WBGeme0000715 col-142 COLlagen 0.8999722 0.2149 0.01386 60.818448 201 WBGeme000072 col-143 COLlagen 0.89591710 0.0148 10.85618144 211 WBGeme000072 cal-15 Putative culdie collagen 155 0.01498 60.8581713 0.01148 10.8584571 0.24178 0.00148 10.85845718 0.24178 0.01148 10.85845718 0.24178 0.01148 10.85845718 0.24178 <td< td=""><td></td><td></td><td></td><td>COLlagen</td><td></td><td></td><td></td><td></td><td></td></td<>				COLlagen					
203 WBGeme00000794 col-125 COLlagen 1.20524415 0.833513 0.0027 0.01727 1579803024 204 WBGeme00000704 col-130 COLlagen 0.950814132 0.015772 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00108 15722 0.00178 15722 0.00178 15722 0.00178 15722 0.00178 15722 15722 0.00178 15722 0.00178 15722 0.00178 15722 0.00178 15722 1572 0.00178 15722 1572 0.00178 15722 1572 0.00178 15722 1572 10.01138 0.00178 15722 1572 0.00178 15721 1572 1572 10.01138 10.01138 15722 1572 1572 10.01138 1572 1572 1572 1572 1572 1572 1572 1572				COLlagen					
25 WBGeme0000774 col-130 COLlagen 1.389697138 0.503541 0.00226 0.00231 53.2511631 206 WBGeme0000773 col-130 COLlagen 0.899997023 0.274 4.585-05 0.000751 0.00276 0.002751 155.752913 207 WBGeme00007715 col-140 COLlagen 0.49997023 0.007751 0.007571 10.125.1542 208 WBGeme0000716 cal-142 COLlagen 0.00716 0.00777 0.0087771 14.748011 208 WBGeme0000716 cal-142 COLlagen 0.0779484 57.474 58.074 14.88614 211 WBGeme0000728 cal-155 COLlagen 0.26589410 0.251931 0.07146 57.1646 57.165281 212 WBGeme0000728 cal-165 COLlagen 0.2619761 0.241935 0.021618 0.026897 3.26161 0.035697 3.16122539 212 WBGeme0000739 cal-165 COLlagen 0.2619761 0.241978 0.07174 0.02178 5.02714 5.817-62 3.7145855 216 WBGeme0000754 cal-167 <	203	WBGene00000699	col-125	COLlagen	1.205242415	0.833513	0.00287	0.017272	157.9803024
208 WBGeme00000712 col-139 COLlagen 0.89997028 0.274 4.58E-05 0.00785 118.5762913 207 WBGeme00000715 col-140 COLlagen 0.46980750 0.2714 4.58E-05 0.00785 118.5762913 208 WBGeme00000715 col-142 COLlagen 0.507984584 0.305068 0.00778 214.7480811 208 WBGeme0000722 col-143 COLlagen 0.57984584 0.01186 0.65811448 210 WBGeme0000722 col-155 Putative culcie collagen 0.35591416 0.01938 0.0268157 1.04168 0.52758681 211 WBGeme0000728 col-155 Putative culcie collagen 155 0.00187 0.24187 0.02118 0.03561416 0.03561416 0.01388 0.02118 0.0356171 0.01428 0.02187 1.04162233 0.21178 0.00187 1.0416223 0.02118 0.0561713 0.01468 0.05861713 0.01468 0.03567416 0.04188 0.02117 2.02147 0.01148 0.056171 0.04188 0.02117 0.01188 0.0561713 0.02117 0.01188	204	WBGene00000703				0.315772	0.000109		
207 WBGene0000713 col:442 COLlagen 0.46689767 0.360680 0.00773 0.036773 14012.51964 208 WBGene00000716 col:442 COLlagen 0.67094855 0.326101 0.00763 0.036773 14012.51964 208 WBGene00000716 col:443 COLlagen 0.67094855 0.326101 0.00762 0.01863 60.8181.444 210 WBGene0000722 col:450 COLlagen 0.77956223 0.02748 5.775678681 211 WBGene0000723 col:450 COLlagen 0.36594104 0.21913 0.00748 0.57568681 213 WBGene0000733 col:465 COLlagen 0.36594104 0.21913 0.00748 5.75578681 214 WBGene0000733 col:465 COLlagen 0.3659474 0.02417 0.00169 5.54579 214 WBGene0000740 col:476 COLlagen 1.209494350 0.93611 0.00343 0.01723 2.6226.38977 216 <wbgene00000757< td=""> col:48 COLlagen 0.20149 CoL</wbgene00000757<>	206	WBGene00000712	col-139	COLlagen	0.899597028	0.274	4.58E-05	0.000785	118.5752913
20 WBGeme0000716 col:43 COLlagen 0.670948954 0.324601 0.01762 0.011836 606.1814.44 21 WBGeme0000723 col:40 COLlagen 0.77956223 0.35271 0.00167 0.08165 7.57589681 21 WBGeme0000723 col:15 COLlagen 0.355714 0.001640 0.0723 0.07418 0.3565479 21 WBGeme0000733 col:16 COLlagen 0.65801713 0.442470 0.00140 0.00138 30.5545479 21 WBGeme0000733 col:16 COLlagen 0.658017713 0.442470 0.00140 0.00186 56.71745558 21 WBGeme0000740 col:16 COLlagen 1.20949412 0.03481 0.00186 6.1796558 216 WBGeme0000757 col:14 COLlagen 0.53976767 0.03418 0.00121 2.04487 6.4786558 216 WBGeme00000757 col:14 COLlagen 0.7074417 0.36408 0.00512 0.04487 6.788.2279 218 WBGeme0000058 col:14 COLlagen 0.3496712 0.04487 6.788.2279	207	WBGene00000713	col-140	COLlagen	0.466987657	0.350608		0.036737	14012.51945
210 WBGeme00000722 col-149 COLlagen 0.77962232 0.382731 0.00167 0.00163 55.27589681 211 WBGeme00000728 col-15 Putative culcie collagen 155 0.74508271 0.24178 0.00141 0.01393 30.555441.00 0.00168 55.27589681 212 WBGeme0000728 col-155 Putative culcie collagen 155 0.74508271 0.24178 0.00141 0.01393 30.55645.79 214 WBGeme0000739 col-166 COLlagen 0.56961710 0.5696171 0.404268 0.0328 0.017965 5.471-66 27.1456568 216 WBGeme0000734 cal-161 COLlagen 0.5937677 0.18418 0.00118 0.001721 1226.5387 216 WBGeme000074 cal-161 COLlagen 0.5937677 0.18418 0.00118 0.001721 1226.5387 217 WBGeme0000054 cal-161 COLlagen 0.5937677 0.18418 0.00118 0.00177 50.544 216 WBGeme0000054 cal-181 COLlagen 0.2	208	WBGene0000715			1.035015817 0.670948954	0.324801	5.9/E-06 0.001629	0.000167	234.7480811 6068 181448
212 WBGeme0000728 col-155 Putative culcie collagen 155 0.74508271 0.242187 0.00140 0.01388 330.5564379 213 WBGeme00000739 col-166 COLlagen 0.65801713 0.04268 0.0350.77951 214 WBGeme0000739 col-166 COLlagen 1.30497162 0.28327 5.442.68 0.0116 80.677951 214 WBGeme0000749 col-167 COLlagen 1.30497162 0.288327 0.01688 60.17951 214 WBGeme0000754 col-161 COLlagen 0.59376773 0.18418 0.001738 0.01784 82.71852 216 WBGeme00000754 col-161 COLlagen 0.59376773 0.18048 0.00173 0.20172 12262.39877 217 WBGeme000001754 col-161 Collagen 19 0.01714 0.00048 0.00173 1227.1226.39877 218 WBGeme00000186 col-16 Calcele collagen 19 0.0337448 0.21149 0.00171 0.03217 6557.135344 220 WBGeme0000161 col-39 Calcele collagen 19 0.14144144 0.339347 322.715328	210	WBGene00000722	col-149	COLlagen	0.779562323	0.352731	0.001057	0.008163	55.27589681
213 WBG-me00000733 col-160 COLlagen 0.658017713 0.404268 0.00358 0.020187 280.077931 214 WBG-me00000730 col-167 COLlagen 1.304997162 0.68827 541-66 271.455558 215 WBG-me00000740 col-167 COLlagen 1.20044336 0.936511 0.003423 0.19686 64.7196558 215 WBG-me00000757 col-161 COLlagen 0.530767673 0.30418 0.001521 20.06487 647.862259 217 WBG-me00000757 col-164 COLlagen 0.7074117 0.306404 0.001521 20.04687 647.822279 218 WBG-me00000506 col-10 Cutide collagen 19 0.3642638 0.20153 0.3037640 0.330472 325-56 0.000173 39375090 219 WBG-me00000516 col-39 Cutide collagen 34 1.11191952 0.303421 325-56 0.000173 39.27183241 229 WBG-me00000516 col-39 Cutide collagen 34 1.43144312 0.378242 3.252827 <									
214 WBGeme00000739 col-168 COLlagen 1.304997162 0.288327 5.94E-08 5.41E-08 25.71468568 216 WBGeme0000074 col-167 COLlagen 1.200943580 0.95611 0.034237 1.07965688 216 WBGeme00000754 col-181 COLlagen 0.53377673 0.19846 60.17956588 216 WBGeme00000754 col-181 COLlagen 0.53376737 0.19846 60.01723 12262.39877 217 WBGeme0000056 col-19 Cutide collagen 19 0.63307448 0.21141 0.00176 60.7135544 218 WBGeme0000056 col-19 Cutide collagen 19 0.63307448 0.21141 0.00171 0.02171 60.537672 218 WBGeme00000516 col-3 Collagen 1.3149414 0.378548 0.21141 0.00173 327155281 22 WBGeme00000516 col-4 Collagen 1.3999474 0.23715528 2282479 222 WBGeme00000520 col-4 Collagen 0.70205484 0.581286 0.00483 0.22877 34.2917512 224 WBGeme00000520 col-43									
216 WBGeme00000754 co.141 COLlagen 0.53776773 0.193418 0.001723 12262.39877 217 WBGeme00000754 co.1416 COLlagen 0.77074811 0.306408 0.001723 12282.39877 218 WBGeme00000506 co.149 Cutales collagen 0.63307448 0.21141 0.00178 0.02171 605.3772 218 WBGeme00000506 co.149 Cutales collagen 0.38442888 0.20203 0.02171 605.3772 219 WBGeme00000516 co.3 Collagen 1.344414 0.37352 0.222.39 0.00171 0.02171 605.3772 22 WBGeme0000516 co.3 Collagen 1.344414 0.37352 2.224.66 0.00173 3.2715251 22 WBGeme0000526 co.43 Collagen 1.3999474 0.38158 6.745-0 0.00173 3.2715251 22 WBGeme00000520 co.43 Collagen 0.7205483 0.58128 0.0483 0.02675 3.24156 22 WBGeme00000520 c	214	WBGene00000739	col-166	COLlagen	1.304997162	0.268327	5.94E-08	5.41E-06	237.1458558
217 WBGene000006757 col-148 COLlagen 0.70744117 0.306048 0.000572 0.004877 67.88.22279 218 WBGene00000609 col-10 Collagen 19 0.63305744 0.21149 0.00111 0.00207 57.135344 219 WBGene00000609 col-20 Collagen 19 0.3484285 0.22053 0.00374 0.22131 15066.37672 220 WBGene00000616 col-39 Cutide collagen 34 1.11191952 0.309421 325-50 0.000073 39.27183281 222 WBGene00000516 col-39 Cutide collagen 34 Cutide collagen 54 1.43144312 0.378242 62.85-60 0.00073 39.27183281 222 WBGene0000528 col-43 COLlagen 1.3099474 0.45804 0.00585 0.00585 0.2281734 224 WBGene00000520 col-43 COLlagen 0.73024843 0.581258 0.00483 0.228778 224 WBGene00000520 col-44 COLlagen 0.73024843 0.581258 0.00483 0.25878 3.			col-167	COLlagen COLlagen					
218 WBGene00000608 col-19 Cutide collagen 19 0.63307464 0.211459 0.000171 0.957.138544 219 WBGene00000601 col-30 Cutide collagen 34 0.21015 0.00057464 0.21145 0.000171 0.957.138544 220 WBGene00000651 col-34 Cutide collagen 34 1.1191982 0.339421 3.255.05 0.00063 3.93975968 221 WBGene0000616 col-39 Cutide collagen 19 1.43144312 0.736256 6.2825.06 0.000173 3.927185281 222 WBGene0000620 col-43 COLlagen 1.3099474 0.484904 0.00055 0.00853 3.9227183281 223 WBGene0000620 col-43 COLlagen 0.73026434 0.58228 0.00483 0.326753 3.4361571 224 WBGene00000520 col-43 COLlagen 0.73026434 0.58158 6.7460 0.000173 3.927185281 224 WBGene00000520 col-44 COLlagen 0.73026434 0.58158 6.7460 0.00853 0.32678	217	WBGene00000757	col-184	COLlagen	0.770748117	0.306048	0.000512	0.004687	6479.822759
220 WBGene(0000611 col:44 Cuticle collagen 34 1.11191622 0.330421 3.25E-05 0.00003 39.3377096 221 WBGene(0000616 col:34 Cuticle collagen 39 1.43144124 0.738265 252.973 222 WBGene(0000616 col:42 COLlagen 1.30989474 0.648904 0.00063 39.3275096 222 WBGene(0000620 col:42 COLlagen 1.30989474 0.648904 0.00065 30.92281734 223 WBGene(0000620 col:43 COLlagen 0.702054834 0.58228 0.00483 0.25678 34.4361571 224 WBGene(0000620 col:43 COLlagen 0.301158 67.420 0.00118 0.00578 3.083191616 224 WBGene(0000620 col:43 COLlagen 0.381158 67.420 0.00118 3.081156 67.400 0.031158 67.420 0.0018158 67.420 0.00183 0.05678 34.3915716 0.00118 67.420 0.00118 67.400 0.00118 0.02178 0.00118 0	218	WBGene00000608	col-19	Cuticle collagen 19	0.633057464	0.211459	0.000171	0.002017	6957.136344
221 WBGeme00000616 col-39 Cuticle collagen 39 1.43144312 0.378326 6.28E-50 0.000173 39.27183281 222 WBGeme0000626 col-42 COLlagen 1.3099474 0.484904 0.00850 0.00851 0.228221734 223 WBGeme00000620 col-43 COLlagen 0.730254834 0.582280 0.00483 0.25875 34.43615715 224 WBGeme00000620 col-43 COLlagen 0.730254834 0.581258 0.00483 0.25876 34.3615175 224 WBGeme00000620 col-43 COLlagen 0.730254834 0.581258 0.00483 0.25878 38.9191616				CULlagen Culticle collagen 34					
222 WBGene00013488 col-42 COLlagen 1.3099474 0.648904 0.00085 1022.281734 223 WBGene00000620 col-43 COLlagen 0.730254834 0.582288 0.00483 0.025678 34.43615715 224 WBGene00000625 col-44 COLlagen 1.365118076 0.361158 6.74-60 0.000188 838191616	221	WBGene00000616	col-39	Cuticle collagen 39	1.431443142	0.376326	6.28E-06	0.000173	39.27183281
224 WBGene00000625 col-48 COLlagen 1.365118076 0.361158 6.74E-06 0.000183 83.98191616				COLlagen					
					1.830899913	0.696614			

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
	WBGene00000653	col-77	COLlagen	1.003842472			0.005155	
227	WBGene00000656 WBGene00000657	col-80 col-81	Putative cuticle collagen 80 COLlagen	0.802776789 1.035489211	0.423711 0.398111	0.001942 0.000335	0.012882 0.003341	5696.97044 50.69038652
229	WBGene00000664	col-89	COLlagen	0.984752827	0.601403	0.002556	0.015808	24.474175
	WBGene00000667 WBGene00000668	col-92 col-93	COLlagen COLlagen	0.705560228 0.55360609	0.330239 0.482854	0.001322 0.006917	0.009718	44.62640166 5029.591915
232	WBGene00000669	col-93	COLlagen	1.033231828	0.312898	4.18E-05	0.000734	178.274793
	WBGene00000670	col-95	COLlagen	0.400486733	0.240654	0.006414		2120.853845
	WBGene00000671 WBGene00000672	col-96 col-97	COLlagen COLlagen	0.902252237	0.298701	0.00011	0.001449	56.777721 62.59057482
236	WBGene00000673	col-98	COLlagen	0.867272025	0.398106	0.000939	0.007474	1677.234115
	WBGene00000674 WBGene00021292	col-99 copb-1	Putative cuticle collagen 99 Coatomer subunit beta	1.083883039 0.301536632	0.300464 0.08998	1.36E-05 0.00014	0.000308	124.0229179 2611.737761
239	WBGene00000768	cor-1	Coronin-like protein cor-1	0.517583172	0.153787	5.90E-05	0.000948	192.618167
	WBGene00010964	COX1	cytochrome c oxidase subunit I	-0.564287741	0.098621	7.97E-10 4.22E-09	1.86E-07	58242.78892 44059.44091
241	WBGene00010965 WBGene00010962	COX2 COX3	cytochrome c oxidase subunit II cytochrome c oxidase subunit III	-0.591370434 -0.392635368	0.097161	4.22E-09 6.17E-06	6.72E-07 0.000171	37155.27909
243	WBGene00012354	cox-4	Cytochrome OXidase assembly protein	0.514435837	0.226738	0.001373	0.010003	3236.810037
	WBGene00000371 WBGene00017926	cox-5B cox-6C	Cytochrome OXidase assembly protein Cytochrome OXidase assembly protein	0.426891424 0.507203885		0.003349	0.019342 0.038869	3095.73987 906.2387741
	WBGene00009161	cox-7C	Cytochrome OXidase assembly protein	0.881349024	0.62131	0.003559	0.02029	1601.862585
	WBGene00010723 WBGene00019357	cpg-7 cpg-8	Chondroitin proteoglycan 7 Chondroitin proteoglycan 8	0.592513718 0.984170332	0.239657 0.370312	0.000734 0.000299	0.006195	80.93737424 1285.206594
249	WBGene00000776	cpg-0 cpl-1	CathePsin L family	0.623346133	0.181316	4.11E-05	0.000723	16843.94328
250	WBGene00000779 WBGene00000785	cpn-3	CalPoNin	0.353024187 0.318244509	0.153533 0.192491	0.002525 0.010597	0.015671 0.04696	5421.222641 1534.508484
252	WBGene00017313	cpr-5 cpsf-2	Cathepsin B-like cysteine proteinase 5 Probable cleavage and polyadenylation specificity factor subunit 2	-0.324428114	0.062203	4.53E-08	4.65E-06	2109.863889
253	WBGene00022271	cpx-1	Putative complexin-1	0.577701209	0.18559	0.000113	0.001479	124.329749
254 255	WBGene00000792 WBGene00000793	crb-1 crh-1	Drosophila CRumBs homolog CREB Homolog	0.406321519 0.50417349	0.163886	0.001156 0.00025	0.008736 0.002677	246.3631919 744.4578926
256	WBGene00010303	cri-3	Conserved regulator of innate immunity protein 3	0.399523988	0.153572	0.000874	0.007098	2898.314186
	WBGene00000804 WBGene00011915	csc-1 ctf-8	Chromosome segregation and cytokinesis defective protein 1 Chromosome Transmission Fidelity factor homolog	0.457270093	0.257587 0.09492	0.004294 5.73E-05	0.023508	847.1209514 635.9026971
259	WBGene00000830	ctl-1	Catalase-2	0.521888802	0.200937	0.000571	0.005097	105.0615445
	WBGene00000832	ctn-1	alpha-CaTuliN (catenin/vinculin related)	0.642277573		1.21E-06	5.13E-05	270.8970327
261	WBGene00013093 WBGene00009983	cup-14 cut-2	hypothetical protein Cuticlin-2	0.426637035 1.909315682	0.762525	5.17E-06 0.000352	0.00015 0.003469	1052.454314 165.5095001
263	WBGene00013180	cutl-10	CUTiclin-Like	1.071035954	0.298738	1.60E-05	0.000349	58.12406397
264	WBGene00017421 WBGene00000870	cutl-29 cyd-1	CUTiclin-Like G1/S-specific cyclin-D	0.577746424 0.54267436	0.587655	0.007323 4.77E-07	0.035342 2.65E-05	34.83347155 369.5619037
266	WBGene00000886	cyn-10	Peptidyl-prolyl cis-trans isomerase 10	-0.398831579	0.082601	1.66E-07	1.23E-05	1268.553319
	WBGene00000881 WBGene00000882	cyn-5 cyn-6	Peptidyl-prolyl cis-trans isomerase 5 Peptidyl-prolyl cis-trans isomerase 6	0.458717347 0.412959768		8.21E-05 5.61E-05	0.001169	7566.990776 815 843537
269	WBGene00019962	cysl-3	Cysteine synthase 3	0.3020016		0.008827	0.040845	396.3050181
	WBGene00000829	CYTB	cytochrome b	-0.403706952 -0.334154334		6.54E-06	0.000179	
	WBGene00017002 WBGene00017005	D1007.4 D1007.8	hypothetical protein hypothetical protein	-0.334154334		0.000349 0.000187		615.0532444 807.6793058
273	WBGene00008420	D2030.11	hypothetical protein	-0.424177163	0.103042	4.07E-06	0.000126	596.5629727
	WBGene00008413 WBGene00008417	D2030.3 D2030.7	hypothetical protein hypothetical protein	-0.30518993 -0.338067443	0.0722 0.090547	4.30E-06 2.77E-05	0.000131 0.000535	1664.337609 2150.472721
276	WBGene00017068	D2092.8	hypothetical protein	0.872083678	0.904505	0.005345	0.027748	
	WBGene00017073 WBGene00017074	D2096.6 D2096.7	hypothetical protein	0.815046287	0.490149	0.002772 5.80E-11	0.016791 2.65E-08	51.1754689 1141.277714
	WBGene00017074 WBGene00018976	daam-1	DAAM (Disheveled-Associated Activator of Morphogenesis) homolog	-0.434242293 0.509745546	0.379429	0.006548		81.99077258
	WBGene00000901	daf-5	hypothetical protein	0.592706516		1.01E-06		429.0788323
	WBGene00015939 WBGene00000928	damt-1 dao-2	DNA N6-methyl methyltransferase Dauer or Aging adult Overexpression	-0.356507063 0.608670964	0.104596 0.239313	8.40E-05 0.000581	0.001187 0.005159	631.2855733 695.3420457
283	WBGene00003400	dapk-1	Death-associated protein kinase dapk-1	0.590438009	0.124944	1.66E-07	1.23E-05	239.7794544
284	WBGene00010664 WBGene00000940	dbn-1 dcs-1	DreBriN 1/DreBriN-like (where Drebrin is from Developmentally REgulated BRaIN protein) family homolog m7GpppX diphosphatase	0.58066874 -0.344287343	0.244442 0.091225	0.000927 2.38E-05	0.007399 0.000475	1419.364132 1182.848614
286	WBGene00017488	dct-7	DAF-16/FOXO Controlled, germline Tumor affecting	-0.520429229	0.59198	0.008716	0.040451	29.72237633
287	WBGene00013000 WBGene00000941	ddl-2 ddp-1	Daf-16-Dependent Longevity (WT but not daf-16 lifespan increased) Mitochondrial import inner membrane translocase subunit Tim8	0.782895355 0.692232561	0.171052 0.628842	2.68E-07 0.005602	1.84E-05 0.028767	226.4404934 435.1533882
289	WBGene00010296	dgat-2	acyl-CoA:DiacylGlycerol AcylTransferase	0.415769818		0.002666		155.4523853
	WBGene00000958	dgk-1	Diacylglycerol kinase	0.378505255	0.254626	0.00896		97.05478173
	WBGene00007974 WBGene00000976	dhfr-1 dhs-13	Putative dihydrofolate reductase DeHydrogenases, Short chain	-0.345491409 0.690064915		3.56E-07 6.96E-06	2.18E-05 0.000188	2516.662741 1793.435592
293	WBGene00000988	dhs-25	DeHydrogenases, Short chain	0.423014908	0.185561	0.001785	0.012135	2070.77665
	WBGene00017735 WBGene00000998	did-2 dig-1	Doa4-Independent Degradation, homologous to yeast Did2 Mesocentin	0.428841107 0.323052872	0.201922 0.194332	0.002551 0.009616	0.015789 0.043539	1671.089343 702.0531889
296	WBGene00001000	dim-1	Disorganized muscle protein 1	0.454243506	0.098135	3.62E-07	2.21E-05	2873.01521
	WBGene00008549 WBGene00001008	din-1 dlk-1	Daf-12-interacting protein 1 Mitogen-activated protein kinase kinase kinase dlk-1	0.315527612 0.633463896	0.114691	0.000887 3.14E-08	0.007174 3.59E-06	1285.328532 374.532254
299	WBGene00022060	dmd-9	DM (Doublesex/MAB-3) Domain family	0.624574556	0.141485	7.16E-07	3.48E-05	187.974246
	WBGene00001018	dnc-2	Probable dynactin subunit 2	-0.32686747		4.29E-09	6.72E-07	2431.832314
	WBGene00021149 WBGene00001036	dnc-3 dnj-18	DyNactin Complex component DNaJ domain (prokaryotic heat shock protein)	-0.333814348 -0.331850931	0.07255	6.68E-07 5.32E-07	3.32E-05 2.87E-05	1015.785503 1052.212194
303	WBGene00001042	dnj-24	DNaJ domain (prokaryotic heat shock protein)	0.364810691	0.145357	0.001297	0.009587	192.5304463
	WBGene00001044 WBGene00001048	dnj-26 dnj-30	DNaJ domain (prokaryotic heat shock protein) DNaJ domain (prokaryotic heat shock protein)	-0.502525038 -0.31107777	0.090338	2.42E-09 4.52E-07	4.44E-07 2.57E-05	565.6870706 1506.139474
306	WBGene00008316	dod-18	Downstream Of DAF-16 (regulated by DAF-16)	-0.418922328	0.089071	2.85E-07	1.92E-05	564.0509053
307	WBGene00021474 WBGene00001076	dot-1.1 dpy-17	Histone-lysine N-methyltransferase, H3 lysine-79 specific DumPY: shorter than wild-type	0.444451011 1.227347056	0.181623 0.398103	0.001105 8.07E-05	0.008457 0.001161	1373.15027 2028.490773
309	WBGene00001077	dpy-18	Prolyl 4-hydroxylase subunit alpha-1	0.325474514	0.079781	7.06E-06	0.00019	681.8905017
310	WBGene00001081 WBGene00001065	dpy-22 dpy-3	Mediator of RNA polymerase II transcription subunit 12 DumPY: shorter than wild-type	0.394207846 2.068235176	0.278463 0.35695	0.009093 3.25E-10	0.041808 1.02E-07	850.789052 80.49004021
312	WBGene00001088	dpy-30	Dosage compensation protein dpy-30	0.46728693	0.185499	0.000872	0.007089	1982.501892
	WBGene00001069 WBGene00016701	dpy-7	Cuticle collagen dpy-7	1.111370763	0.368165	0.000102	0.001372	191.4957557
	WBGene00016701 WBGene00001105	dsb-3 dsl-3	Double-Strand Break factor Delta-like protein	-0.313180459 0.385974496		2.14E-05 0.002593	0.00044	729.5904238 218.4381938
316	WBGene00001113	dur-1	Dauer Up-Regulated	0.360129802	0.145053	0.001418	0.010229	243.3664255
	WBGene00001131 WBGene00017153	dys-1	Dystrophin-1 hypothetical protein	0.599969778		1.44E-05 0.0012		460.353147 311.2686912
319	WBGene00008442	E01B7.2	hypothetical protein	-0.354307952	0.080249	1.46E-06	5.94E-05	754.2900434
	WBGene00008447	E01G4.5	hypothetical protein	0.374965552		0.00116		246.042104
322	WBGene00008455 WBGene00017105	E02H1.1 E02H9.7	Probable dimethyladenosine transferase hypothetical protein	-0.306115241 -0.321965777	0.141557		0.01744	700.0361225 373.3821347
323	WBGene00020770	eat-17	hypothetical protein	0.30980892				743.737699
	WBGene00001148 WBGene00001156	eat-20 ech-7	Abnormal pharyngeal pumping eat-20 Enoyl-CoA Hydratase	0.327822187 0.32526438		0.00073 0.001306	0.006169 0.009639	651.568937 1005.189101
326	WBGene00017142	EEED8.14	hypothetical protein	-0.417101276	0.090159	4.20E-07	2.47E-05	767.8649915
	WBGene00017134 WBGene00001168	EEED8.3 eef-1A.1	hypothetical protein Elongation factor 1-alpha	-0.382105803 0.362980287		9.86E-18 0.00651		6481.341488 133514.328
329	WBGene00001169	eef-1A.2	Elongation factor 1-alpha	0.869397617	0.142867	6.97E-11	2.98E-08	3247.090459
	WBGene00018846	eef-1B.1	Probable elongation factor 1-beta/1-delta 1	0.773973615	0.335946	0.000794	0.006602	10163.98276
	WBGene00012768 WBGene00001162	eef-1B.2 efl-2	Probable elongation factor 1-beta/1-delta 2 E2F-like (mammalian transcription factor)	0.430991285	0.185862	0.001594	0.0011247	7361.331325 708.1233605
333	WBGene00001170	egl-1	Programmed cell death activator egl-1	1.372562445	0.220915	2.56E-11	1.64E-08	61.84897162
334	WBGene00001186 WBGene00001196	egl-18 egl-30	hypothetical protein hypothetical protein	0.470112338 0.304911046		8.25E-05 0.000787	0.00656	810.1734568 2647.996666
336	WBGene00001215	ego-2	Enhancer of Glp-One (glp-1)	0.476444685	0.205806	0.001358	0.009926	1041.63647
	WBGene00001232 WBGene00012738	eif-3.I eif-3.I	Eukaryotic translation initiation factor 3 subunit I Eukaryotic Initiation Factor	0.445179671				3220.729848 1066.435163
338	12/30	GII-J.J		0.401140730	J.240300	3.000/98	0.000010	100.400100

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	lfcSE	pvalue	padj	baseMean
	WBGene00001234	eif-6	Eukaryotic translation initiation factor 6	0.561601839	0.417898	0.005688	0.029142	1058.691067
	WBGene00001235 WBGene00001236	elb-1 elc-1	ELongin B ELongin C	0.836479786	0.29208	0.000187 7.61E-08	0.002155 6.68E-06	290.7457649 1415.369361
342	WBGene00016029	elf-1	ETS-Like transcription Factor homolog	0.3167723	0.164679	0.006387	0.031854	168.7513766
	WBGene00018330 WBGene00001247	elks-1 elo-9	mammalian ELKS/CAST/ERC/Rab6 interacting protein homolog Elongation of very long chain fatty acids protein	0.409722663 0.303734703	0.19559 0.162462	0.002814 0.007698	0.017007 0.036629	371.222816 208.026527
345	WBGene00001250	elt-2	Transcription factor elt-2	0.378992143	0.162925	0.001919	0.012774	160.3932188
	WBGene00001251 WBGene00001253	elt-3 elt-6	Erythroid-Like Transcription factor family Erythroid-Like Transcription factor family	0.385698544	0.145328 0.339117	0.000812	0.00672	284.1153922 82.01856089
348	WBGene00001309	emr-1	Emerin homolog 1	0.360582638	0.170953	0.003374	0.019455	1457.614985
349	WBGene00017164	eng-1	Endo-b-N-acetylGlucosaminidase ENbancer of Uncoordination	-0.36086456	0.08875	6.41E-06		642.6204401
	WBGene00010362 WBGene00008003	enu-3.1 enu-3.2	ENhancer of Uncoordination ENhancer of Uncoordination	0.328861468 0.833944051	0.201753 0.305067	0.009685	0.043744 0.002853	272.5834594 368.1217641
	WBGene00021015	enu-3.3	ENhancer of Uncoordination	0.652141605	0.232095			220.8518007
	WBGene00021034 WBGene00010477	enu-3.4 enu-3.6	ENhancer of Uncoordination ENhancer of Uncoordination	0.76140544 0.650676501	0.343818 0.380008			51.39457856 70.09255611
355	WBGene00019487	ephx-1	EPHeXin (Eph-interacting GEF) homolog	0.382874101	0.119806	0.000157	0.001898	348.2906989
356 357	WBGene00001330 WBGene00007589	eps-8 erg-28	EPS (human endocytosis) related Probable ergosterol biosynthetic protein 28 homolog	0.514475375 -0.325435194	0.174669 0.117554	0.000227 0.000756	0.002488 0.006357	694.8908111 299.4755549
358	WBGene00001340	etr-1	ELAV-Type RNA binding-protein family	0.316415315	0.125255	0.00162	0.011345	1320.615113
359 360	WBGene00001371 WBGene00010325	exl-1 exos-3	Chloride intracellular channel exl-1 EXOSome (multiexonuclease complex) component	-0.328000163 -0.317099004	0.082408 0.070288	1.09E-05 1.10E-06	0.000262 4.80E-05	676.6476665 1643.129285
361	WBGene00001377	eya-1	Eyes absent homolog 1	0.652554362	0.120554	4.29E-09	6.72E-07	209.2535325
	WBGene00008488 WBGene00008536	F01D4.5 F02H6.3	hypothetical protein hypothetical protein	-0.319030513 -0.342117039	0.081887 0.078573	1.61E-05 1.99E-06	0.00035 7.42E-05	1106.667042 1500.270536
364	WBGene00017210	F07E5.5	hypothetical protein	0.349050052	0.18479	0.005693	0.029151	706.4765561
	WBGene00008561 WBGene00017238	F07H5.10 F08B4.7	hypothetical protein U1 small nuclear ribonucleoprotein C	-0.320194628 0.30672894	0.062388 0.171273	4.59E-08 0.008639	4.68E-06 0.040167	1813.783716 1939.803453
367	WBGene00017263	F08F3.6	hypothetical protein	-0.321312228	0.092751	8.19E-05	0.001169	1768.804426
	WBGene00008577 WBGene00008578	F08G2.5 F08G2.7	hypothetical protein hypothetical protein	1.041943411 0.779294044	0.378636	0.000223 6.71E-05	0.002457 0.001024	33.24005044 114.3084481
370	WBGene00008610	F09C3.2	hypothetical protein	0.642751781	0.278261	0.000954	0.007562	50.59095136
371	WBGene00008622 WBGene00017289	F09C8.2 F09E5.11	hypothetical protein hypothetical protein	0.442221317 -0.38473593	0.133564 0.069949	8.47E-05 5.01E-09	0.001193 7.65E-07	843.5719222 1287.485769
	WBGene00017286	F09E5.11 F09E5.8	Pyridoxal phosphate homeostasis protein	-0.312841824	0.069949	2.04E-05		898.1454614
	WBGene00017302	F09F7.5	hypothetical protein	0.349368243	0.164345	0.00353	0.020161	197.1296336
	WBGene00008639 WBGene00017344	F10B5.2 F10E7.2	Protein AAR2 homolog hypothetical protein	-0.312792222 0.681487389	0.085689 0.264184	4.34E-05 0.000474	0.000755 0.00442	926.698562 357.2596004
	WBGene00017360	F10E9.11	hypothetical protein	-0.311021511	0.12483	0.001842	0.012428	1537.706828
378 379	WBGene00017358 WBGene00008667	F10E9.7 F10G8.9	hypothetical protein hypothetical protein	-0.390161766 -0.346035711	0.074744 0.092271	2.24E-08 2.47E-05	2.73E-06 0.00049	1627.4909 445.5590116
380	WBGene00008707	F11E6.3 F13A2.4	hypothetical protein	0.85576429	0.610892	0.00366	0.020758	1645.214164
381 382	WBGene00017413 WBGene00017416	F13A2.4 F13B6.1	hypothetical protein hypothetical protein	0.532992119 0.537554892		0.002437	0.015254 0.039713	96.81952635 19.96731639
383	WBGene00017423	F13C5.2	hypothetical protein	0.461925051	0.120616	1.16E-05	0.000273	1009.347917
	WBGene00008742 WBGene00008743	F13D12.8 F13D12.9	hypothetical protein hypothetical protein	0.427293483 0.568674176	0.25969	0.005804 0.004566	0.029545	60.45643097 46.35534491
386	WBGene00008760	F13E9.11	hypothetical protein	0.421633759	0.339921	0.009662	0.04366	416.3601245
	WBGene00017459 WBGene00017484	F14D2.11 F15E6.3	hypothetical protein hypothetical protein	-0.418223485 0.389444588	0.178893 0.176646	0.001628 0.00246	0.011385	119.9180156 429.9206926
389	WBGene00008865	F15G9.1	hypothetical protein	0.37705444	0.19291	0.004285	0.023473	310.8399761
	WBGene00008944 WBGene00017621	F19B2.5 F20A1.10	hypothetical protein hypothetical protein	0.533228228 0.602364512	0.123033	1.20E-06 0.001475	5.11E-05 0.01057	444.0647034 358.220546
392	WBGene00017632	F20B6.9	hypothetical protein	1.449518279	0.426007	2.77E-05	0.000535	25.1397763
	WBGene00008973 WBGene00017708	F20D1.1 F22E5.9	hypothetical protein hypothetical protein	0.659805063 -0.512674615	0.167951 0.106296	5.35E-06 1.18E-07	0.000154 9.40E-06	1037.098968 420.1319888
395	WBGene00017724	F22F7.7	Gamma-glutamylcyclotransferase	0.361557517	0.163303	0.002692	0.016429	228.9162831
	WBGene00009064 WBGene00017734	F22G12.4 F23C8.5	hypothetical protein hypothetical protein	0.742750206 0.746040925	0.130754 0.384663	8.48E-10 0.001842	1.91E-07 0.012428	700.7437429 1309 264363
398	WBGene00017736	F23C8.7	Tyrosine-protein kinase	0.417509667	0.385161	0.010914	0.047962	32.42380735
	WBGene00009123 WBGene00009220	F25H2.12 F28D9.4	hypothetical protein hypothetical protein	-0.371405761 0.635041921	0.094286 0.152985	1.02E-05 2.17E-06		645.4965083 270.9630882
401	WBGene00009262	F30A10.3	Kinase	-0.303282246	0.06351	3.32E-07	2.09E-05	2130.744737
	WBGene00009270 WBGene00017939	F30F8.1 F31A3.5	hypothetical protein hypothetical protein	-0.339843709 0.420074253	0.078204	2.09E-06 0.000263	7.70E-05 0.00278	3166.880386 537.9591193
404	WBGene00009305	F32A7.4	hypothetical protein	-0.356416653	0.0836	2.80E-06	9.53E-05	1698.078221
	WBGene00009314 WBGene00017984	F32B4.4 F32D1.5	hypothetical protein GMP reductase	0.759406338 0.397116442	0.192976	4.62E-06 0.000513	0.000138	564.5563483 7712.052337
407	WBGene00017986	F32D1.5	hypothetical protein	0.618732382	0.390072	0.003832	0.021495	1359.650697
	WBGene00017992 WBGene00009346	F32E10.5 E32H2 10	hypothetical protein	-0.311697036 -0.352334984	0.073606	3.87E-06 1.07E-06	0.000123 4 71E-05	1259.73592 1029.002587
	WBGene00009349	F32H2.10 F32H5.3	hypothetical protein hypothetical protein		0.244356	0.001185	0.008879	75.11060785
	WBGene00009361	F33E2.5	hypothetical protein	0.495931035	0.174758	0.000324	0.00327	402.7728617
413	WBGene00044666 WBGene00018145	F33G12.7 F37C4.5	hypothetical protein Protein F37C4.5	1.122809016	0.163223 0.398579	0.001815 0.000165	0.012294 0.001966	368.0982818 1098.296596
414	WBGene00009533	F38B7.2 F39H2.3	hypothetical protein	-0.437298979 -0.351190849	0.287191	0.006592 1.00E-09	0.032597	135.0638681 2032.757493
416	WBGene00009563 WBGene00009574	F40E10.6	hypothetical protein hypothetical protein	0.477673261	0.136817	4.02E-05	0.000711	2032.757493 965.709574
417	WBGene00009575 WBGene00009606	F40F8.1 F40G12.11	UMP-CMP kinase		0.071371	1.47E-06 5.31E-06	5.94E-05 0.000153	1895.163151 1510.002237
419	WBGene00077531	F40G9.15	hypothetical protein hypothetical protein	0.375313026	0.084075		0.000153	98.20122085
	WBGene00185078 WBGene00018252	F40G9.17 F40H3.6	hypothetical protein	0.306213867 0.542493558	0.16387	0.007557	0.036157 0.007342	854.326581 341.1339832
422	WBGene00018268	F41C3.2	hypothetical protein hypothetical protein	-0.864935869	0.442235	0.001751	0.011976	28.83977611
423	WBGene00018297	F41F3.3	hypothetical protein hypothetical protein	2.359045431	0.305878	5.89E-16	3.78E-12	263.4582079
424 425	WBGene00018337 WBGene00009644	F42A9.8 F42G4.7	hypothetical protein hypothetical protein	-0.346880803 0.560558725	0.128635 0.250972	0.000853 0.001309	0.006965 0.009648	584.4381534 125.7947419
426	WBGene00018373	F43B10.1	hypothetical protein	0.333748317 0.520198588	0.182227	0.006896	0.033733	227.5001402 141 8427992
427	WBGene00009657 WBGene00009659	F43G6.4 F43G6.7	hypothetical protein hypothetical protein	0.520198588		0.00133 1.45E-05	0.009757	141.8427992 101.3662397
429	WBGene00018399	F43H9.3	hypothetical protein	-0.325783698	0.082178	1.16E-05		890.0541675
	WBGene00018405 WBGene00018408	F44A2.5 F44B9.5	hypothetical protein Ancient ubiquitous protein 1 homolog	0.353971151				201.6477339 1180.112126
432	WBGene00009688	F44E5.1	hypothetical protein	0.727707334	0.552806	0.004587	0.024703	1762.087623
	WBGene00009713 WBGene00009724	F44G4.3 F45D3.4	hypothetical protein hypothetical protein	-0.400914119 -0.574599837				643.661926 483.5247348
435	WBGene00009740	F45H10.3	hypothetical protein	0.871960144	0.381522	0.000811	0.006716	1102.037229
	WBGene00009785 WBGene00018489	F46C5.10 F46E10.2	hypothetical protein hypothetical protein	-0.377481597 1.53626587	0.133706	0.00051 5.79E-11	0.004681 2.65E-09	221.3207507 136.0202353
438	WBGene00009787	F46F2.3	hypothetical protein	0.580293544	0.47238	0.006339	0.031666	1142.042251
439	WBGene00018519 WBGene00009825	F46H5.3 F47G4.4	Probable arginine kinase F46H5.3 hypothetical protein	0.413222459	0.13431	0.000219 3.58E-10	0.00242 1.07E-07	12952.91793 181.5152125
441	WBGene00018710	F52G3.1	hypothetical protein	0.493917285	0.195788	0.000793	0.0066	778.8861906
	WBGene00018717 WBGene00018734	F52H2.5 F53A10.2	hypothetical protein	-0.335104409 0.610052205		0.000331 2.15E-06	0.003324 7.88E-05	303.676383 241.4926918
	WBGene00018734 WBGene00009957	F53A10.2 F53B2.8	hypothetical protein hypothetical protein	0.610052205 0.368170583				239.5829128
445	WBGene00018762	F53E10.6	RRP15-like protein	0.451732985	0.186988	0.001169	0.008806	1178.62547
446 447	WBGene00009982 WBGene00044423	F53F1.4 F53F10.8	hypothetical protein hypothetical protein	1.205855838 -0.329404297		1.06E-08 0.000206	1.42E-06 0.002303	238.2579633 525.1974725
448	WBGene00009994	F53F4.12	hypothetical protein	-0.367493585	0.098173	2.33E-05	0.00047	832.13353
450	WBGene00010002 WBGene00018772	F53F8.5 F53G12.4	hypothetical protein hypothetical protein	0.305321123 0.476662974	0.774851	0.001419 0.009742	0.010231 0.043911	1514.398711 24.45777682
451	WBGene00018778	F53H1.4	hypothetical protein	0.352396558	0.089644	1.17E-05	0.000273	3194.645001

		ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	lfcSE	pvalue	padj	baseMean
del social del soc			F54F7.3						
A. B. Sociesting P. B. B. S. P.	453	WBGene00010081	F55A11.8		-0.301652518		5.35E-06	0.000154	
Add Decision (Control of Add Decision (Control of Add Decision (Control of Add Decision (Control of Add Decision (Control Add Decis	454	WBGene00010141 WBGene00018975		hypothetical protein					
Add B. Schwardshilds Add B. Sc			F57A10.4	hypothetical protein	-0.554780543	0.095776	5.52E-10	1.45E-07	459.7334142
del Additional (and second secon									
del Alberton									
del Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>460</td><td>WBGene00138720</td><td>F58H1.8</td><td>hypothetical protein</td><td>-0.344473998</td><td>0.108111</td><td>0.000196</td><td>0.002227</td><td>546.9681369</td></thcontr<></thcontrol<></thcontrol<>	460	WBGene00138720	F58H1.8	hypothetical protein	-0.344473998	0.108111	0.000196	0.002227	546.9681369
Add by Construction First by Construction Open of the set of the	461	WBGene00045272 WBGene00044251	F59C12.4 F59C6 12	hypothetical protein					
display display <t< td=""><td>463</td><td>WBGene00010337</td><td>F59F4.2</td><td>hypothetical protein</td><td>0.582247845</td><td>0.399338</td><td>0.005021</td><td>0.026475</td><td>1265.047448</td></t<>	463	WBGene00010337	F59F4.2	hypothetical protein	0.582247845	0.399338	0.005021	0.026475	1265.047448
44 Major district short parts 1 0.33000 0.2300 0.2010	464	WBGene00019068		Fatty Acid Amide Hydrolase homolog		0.142108	0.000225	0.002469	
display display <t< td=""><td></td><td></td><td></td><td>Ficter familier of Fictorial Fictoria Fictorial Fictorial Fictorial Fictoria</td><td></td><td></td><td></td><td></td><td></td></t<>				Ficter familier of Fictorial Fictoria Fictorial Fictorial Fictorial Fictoria					
d) d) 1.11111 Dially incoments 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.11111111 0.11111111 0.11111111 0.11111111 0.111111111 0.111111111 0.111111111 0.1111111111 0.111111111111111111111111111111111111				Fatty-acid and retinol-binding protein 2					
111 1.0.1000 1.0.100 0.0110 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
11 1.000000000000000000000000000000000000	470	WBGene00022816		FiBrilliN homolog		0.207624			
11 NUME-MODUPSID Image: A perturbation of the second				F-box A protein					
c4 Wildenwold:13 Hash Hash </td <td>472</td> <td>WBGene00012879 WBGene00012953</td> <td>fbxa-215 fbxa-216</td> <td></td> <td></td> <td>0.062463</td> <td>4.34E-08 0.00284</td> <td>4.53E-06 0.017136</td> <td></td>	472	WBGene00012879 WBGene00012953	fbxa-215 fbxa-216			0.062463	4.34E-08 0.00284	4.53E-06 0.017136	
11 640.2 64	474	WBGene00021576	fbxc-51	F-box C protein	0.303031301	0.115919	0.001388	0.010077	772.9079684
17 NUCLEMONICITY B.A.J. Pacid sympty inscription 0.6127 0.0270	475	WBGene00019207 WBGene00001423		Facilitated glucose transporter protein 1		0.1239	0.000301	0.003085	1775.633219
r.P. Willingendorli 171 Ind. 1 PÅD gendes 3.27.5.6 100.2001 1.5.2.0 100.200									
no. no. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
41 Wils-exclosive 0.00000 0.0000 0.00									
44.9 MBL-m-000140 H_1-71 MEL-La Pupta -0.00014 0.00014	481	WBGene00001444	flp-1	SQPNFLRF-amide	-0.328691626	0.103583	0.000211	0.002358	420.716818
dist Number of the Parties 0.00011 0.000011 0.00011 0.			flp-16 flp-17						
Heis Windows000000 9.23 PMPC.in Product Normal Produc	483	WBGene00044686	flp-28	FMRF-Like Peptide	0.454287445	0.27235	0.005111	0.026838	261.9473933
H3 Wildmund001452 fig-2 Fernitation Of Germine -3.5404001 0.07075 H5 LF 500 2.255 H1 A5000 H4 Wildmund001452 FEL (Ferni Fellung eris Lakaceyons) branking 0.01554422 0.07085 0.0056 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 0.00576 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
18 No.1.1 Bet demundance protein for 1 0.99802077 0.10007 0.90007	486	WBGene00001451 WBGene00001482		Eminization Of Germline			0.005159 1.61E-07	0.027013 1.22E-05	
40 Wildback0001492 Itm.1 FEED docume (pactable incomplane) family 0.01002422 0.01001422 0.0000 0.0100142 0.0100142 0.0100142 0.0100142 0.0100142 0.00000 0.00000 0.00000	488	WBGene00001484	fox-1	Sex determination protein fox-1	0.368495927	0.100002	2.90E-05	0.000553	435.20757
141 WitSchwitzbild 1.2085-027 1.0085-027 1.0085-027 1.0085 2.0055 1.448400 041 WitSchwitzbild 1.014 1.014 0.0005 1.448400 041 WitSchwitzbild 1.014 0.0005 1.448400 0.0005 1.448400 041 WitSchwitzbild 1.015 0.0005 1.448400 0.0005 1.448400 041 WitSchwitzbild 1.015 0.0005 1.0156 0.0005 1.0156 0.0005 1.0156 0.0005 1.0156 0.0005 1.0156 0.0005 1.0156 0.0005 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0117 0.0116 0.0116 0.0117 0.0116 0.0117 0.0									
440 MiGG-m0019117 tb.11 Full Sink backing point monking 1.1277/340 0.252 28.66 0.00001 10.1777/300 460 MiGG-m0010710 gd-11 GG-14 GG-14 10.1777/300 0.252 28.66 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.00001 0.00001 10.1777/300 0.252 0.00001 10.1777/300 0.00001 10.1777/300 0.00001 0.00001 10.1777/300 0.00001 10.1777/300 10.1777/300 0.00001 10.1777/300 10.1777/30									
display profile profile a profile a profile profile a profile profile a profile a profile a profile a profile a profi	492	WBGene00016489	fubl-3	FUBp (FUBP) Like	0.488494187	0.170047			514.649843
dis Williem/002/107 pp.1 Gold numeral Control Nordregenation) 0.47888.77 0.1788.27				FUS/TLS RNA binding protein homolog					
displaced00151 gh.1 GGA (Fuc) freezing protein 0.32807788 0.17822 0.00528 0.01318 0.16148 0.01318 0.16148 0.01318 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1148 0.11318 0.1118 0.11318 0.1118 0.11318 0.1118 0.11318 0.1118 0.11318	495	WBGene00021697		GCN (yeast General Control Nondrepressible) homolog	0.472838373	0.101902	3.42E-07	2.13E-05	1564.885572
des Willisami0021131 op.10 G.201295 6.201295			gfi-1	GEI-4 (Four) Interacting protein		0.176923	0.006258	0.031346	618.4068968
HBCsen002014 pp.11 Pro2270802 0.1311 0.01168 0.01178 7522708802 D0 WEGsen0001680 pp.31 Gen1/minity - Screpting derivations 0.02261 0.01186 7522708802 D0 WEGsen0001680 pp.31 Gen1/minity - Screpting derivation 0.02586 0.01486 0.00148 0.01486 0.00148 0.01486 0.014	497 498	WBGene00001604 WBGene00021331	gln-3 alax-10	Glutamine synthetase GlutaRedoXin					
10 Wildemotor) 0.327008 0.1270 0.02712 0.0272 0.02712 0.0272 0.02712 0.0272 0.02712 0.0272 0.02712 0.0272 0.02712 0.0272 0.02712 0.027	499	WBGene00020146	got-1.2	Probable aspartate aminotransferase, cytoplasmic	0.323514433	0.133311	0.001995	0.013178	752.2760882
92 WBCene0001152 pr.43 GRaceDing findgelogia larmin/j 0.45294840 0.252945 0.251945 0			gpd-1						
Bit Wildsmein001352 grint Edit homolog 6.5890000 0.54000 0.0171 0.01711			gpa-4 ard-3						
950 WBGenex001713 pri-16 GRound-Like (or Instead) 1.1.2.33022 0.3524.4 2.555-6 9.355-6			grdn-1	Girdin homolog					
900 WBGened0001711 grid GRound-Like (grid Hallacy) 0.0029 1.2424707 907 WBGened001714 grid GRound-Like (grid Hallacy) 0.0029 1.2424707 907 WBGened001714 grid GRound-Like (grid Hallacy) 0.0029 0.00294 0.00			grh-1 arl-16						
Bornel MelleneoContribute Desting Trivito Desting Trivito <thd< td=""><td>506</td><td>WBGene00001713</td><td>grl-4</td><td>GRound-Like (grd related)</td><td>0.686393356</td><td>0.147561</td><td>2.02E-07</td><td>1.44E-05</td><td>359.2413739</td></thd<>	506	WBGene00001713	grl-4	GRound-Like (grd related)	0.686393356	0.147561	2.02E-07	1.44E-05	359.2413739
999 WEGene001211 gines Rich Sected Probin 0.5241 44877 0.58540 0.08445 0.510320 910 WEGene0001403 gin. Gynes Rich Sected Probin 0.4421240 0.5814140 0.5814160 911 WEGene0001403 gin. S.burd Apha 0.44214240 0.5814440 0.5814140 911 WEGene0001404 H0.0073 S.burd Apha 0.23841444 0.0875 0.03234 44.44203 911 WEGene00011517 H1.0073 bynchristical probin 0.23841444 0.0875 0.02534 44.44203 911 WEGene0011518 H11E13 bynchristical probin 0.2385178 0.14075 0.02534 0.14075 0.02534 0.144297 0.02534 0.14353 0.14351 0.01563 0.044812 0.04817 0.00258 0.01563 0.044812 0.04812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.044812 0.01633 0.0448123 0.01633 0.01633			grl-5	GRound-Like (grd related)		0.846245		0.02691	43.42407787
910 WBGme001412 gr-b Gytone Rich Sectored Protein 6.4.012502 8.000256 8.01015 8.0101250 911 WBCme0001456 gr-C Gytone Rich Sectored Protein 0.32642780 0.30267 8.000258 0.000158 9.01118 0.000158 9.01158 0.001158 0.001158 0.001158 0.001158 0.001158 0.001168 0.001178 0.001262 0.001262 0.00118 0.001178 0.001262 0.00118 0.00									
SH2 WEGene0000189 gin 2 Generations 0.0120467 0.0120467 0.010016 0.00216 10.2108016 SH3 WEGene0001877 HUG0035 hypothesic protein 0.320531 0.10019 0.0022 208519897 SH3 WEGene0011877 HUG0035 hypothesic protein 0.320531 0.0023 208519897 SH3 WEGene001189 H1112.1 hypothesic protein 0.3208578 0.1009 0.0023 20851987 SH3 WEGene001189 H1112.1 hypothesic protein 0.3208578 0.1009 0.00118 0.10183 20.408027 SH3 WEGene0011260 H24464.3 Achot deflyrogenae class-3 0.5340268 0.10140 0.00175 1068.47997 SH3 WEGene0011260 H2446.4 Harpothesic protein 0.540268 0.11409 0.00118 81.31716 SH3 WEGene0011260 Harpothesic protein 0.540268 0.14308 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.14282 0.1428	510	WBGene00016403	grsp-3	Glycine Rich Secreted Protein			0.000305	0.003105	56.1012502
913 WEGene000058 inport 0.0238 0.0238 0.0337100 054 WEGene0001594 HOGOLA hypothetical protein 0.0238 0.01375 0.0232 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.0238 0.01375 0.01376 0.01376 0.01376 0.01380			gsa-1						
514 WBGeme0011954 H04003 hypothetical protein 0.38862787 0.20284 0.02173 0.02284 144.540238 515 WBGeme0011918 H1110.1 hypothetical protein 0.3289578 0.14097 0.02383 0.01508 260.45027 517 WBGeme0011918 H1110.1 hypothetical protein 0.3289578 0.14097 0.02383 0.01508 200.45027 518 WBGeme0011917 H14.425 hypothetical protein -3.34171048 0.14734 0.00173 184.47927 519 WBGeme0011927 H14.425 hypothetical protein -3.34171048 0.01173 184.47927 510 WBGeme001920 H242C31 Accold elayropgemenc das-3 0.01173 184.47927 523 WBGeme004200 H242C31 hypothetical protein -4.48617386 7.414 0.00118 14.44923 524 WBGeme004202 hypothetical protein -4.48617386 7.414 0.00118 841.49827 524 WBGeme0040203 hypothetical protein 0.3493874 0.124 2.00114 63.612867 524 WBGeme0001208 hypothetical									
b16 WBGeme0019170 H060L46 hypothetical protein 0.4283588 0.0227 0.0227 10.10427 0.0228 0.0127 10.10427 0.0216 0.04680227 517 WBGeme0019180 H111.21 hypothetical protein 1.3442070 0.0216 0.04680227 518 WBGeme0019200 L4432 A.010173 10.8447097 0.0217 10.8447097 521 WBGeme0019230 H240243 A.0011641 dehydrogmaxe class-3 0.54483287 0.44832 10.01137 10.8447997 521 WBGeme004520 H270422 hypothetical protein 0.4681556 0.41124 10.00137 10.8447997 523 WBGeme004521 H27041643 Hangehotic (PCP Instand) 0.38498717 0.00163 0.00163 0.00163 0.00163 0.00163 0.00163 0.001642 21.910928 524 WBGeme0001220 hap-1 Incer melangoritanase ma-34 0.69352430 0.00173 10.8424 0.00163 62.326440 524 WBGeme0001823 hap-1 Incer melangoritanase ma-34			H04D03.3	hypothetical protein					
617 WBCene00019189 H1112.1 hypothetical probin 0.328857.6 0.1497.9 0.0233 0.01460237 518 WBCene0011520 H1112.1 hypothetical probin 0.3544025 0.1754.9 0.0014 0.0173 1769.447051 52 WBCene0011520 H24602.1 hypothetical probin 0.45412 2.1574.7 1549.04501 0.0014 0.0173 1769.447051 52 WBCene0001520 H2500.2 hypothetical probin 0.46812536 0.1583 0.0011 0.00137 1769.447051 52 WBCene0001520 H2500.21 hypothetical probin 0.46812536 0.15816 0.0011 0.00163 0.612.8917.8 52 WBCene0001520 h.147 1.426.020 0.0016 0.0026 0.00162 0.0016 0.0026 0.0016 0.0026 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0026 0.0116 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0126 <td></td> <td></td> <td></td> <td>hypothetical protein</td> <td></td> <td></td> <td></td> <td></td> <td></td>				hypothetical protein					
519 WBGene0001917 H14422.5 hypothetical protein 0.3584 071714 0.15782 0.00014 0.03969 17.3501771 529 WBGene00012520 H226032 hypothetical protein 0.458182284 1.4128 0.00014 0.0013 0.0718 75.75820389 521 WBGene0001420 H370024 H470044 H474744 KAS1049 0.005372 1.2127 0.21247 0.00024 0.005322 2.21974 0.00024 0.005432 2.91990289 524 WBGene00001823 ham- hypothetical protein suburit 0.0053743 0.00542 2.91990289 0.00542 2.91990289 0.00543 0.00542 2.91990289 0.00543 0.00576 0.00212 0.00542 2.91990289 0.00543 0.00576 0.00212 0.0126 0.00543 2.00021 0.0126 0.00243 0.00542 2.91990289 0.00576 0.00121 0.0126 0.00243 0.00242 0.00212 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 <td< td=""><td>517</td><td>WBGene00019188</td><td>H11E01.3</td><td>hypothetical protein</td><td>0.32985766</td><td>0.140979</td><td>0.002393</td><td>0.015063</td><td>200.4860297</td></td<>	517	WBGene00019188	H11E01.3	hypothetical protein	0.32985766	0.140979	0.002393	0.015063	200.4860297
52 WBGene00191260 H244243 Ackohd dehydegename class-3 0.534622588 0.117409 0.00011 0.00173 751-52008 52 WBGene00019220 H260022 hypothetical protein 0.46812586 0.4121 0.00018 0.00191 0.00173 571-552008 52 WBGene00014220 Harn Hypothetical protein 0.00191	518	WBGene00019189 WBGene00019197					2.41E-06 0.008504	8.57E-05	79.15444061
S2 WBGene00042821 H2922.1 hypothetical probin 0.48821780.21814 1.58.26 0.000853 81.289176 S2 WBGene0001184 haff HAF	520	WBGene00019240	H24K24.3		0.534926588	0.173409	0.00014	0.001735	
S2 WBGeme0004200 H3rd Hypothetical protein 0.64833227 0.21174 7.552-05 0.00111 68.627.1663 D52 WBGeme00001820 han-1 hypothetical protein 0.59978399 0.44538 27.55-05 9.405-03 23.3984688 D52 WBGeme0001820 han-1 inonine tryhosphate prophosphates 0.398271 0.00171 1.845-05 0.0111 0.55248 25.484833 D52 WBGeme0001820 han-1 inonine tryhosphates acaving protein subanit 0.0939249 0.39827 0.00171 1.425-05 0.0111 0.01124 23.3984688 D52 WBGeme0001854 hi-3 Historn H1.3 0.0111 0.0112 0.01124 23.48539 D53 WBGeme0001854 hi-3 Historn H1.3 0.0111 0.0112 0.01124 0.0112 0.0112 0.01124 <td>521</td> <td>WBGene00019250</td> <td>H28G03.2</td> <td>hypothetical protein</td> <td></td> <td>0.141281</td> <td>0.000101</td> <td>0.001367</td> <td></td>	521	WBGene00019250	H28G03.2	hypothetical protein		0.141281	0.000101	0.001367	
524 WBGeme0001814 Haf4 HyDerblaid 0.34603077 0.1242 0.00052 0.001532 19902285 525 WBGeme0001823 hap-1 Incsine triphosphate prychosphatase -0.3580715 0.00972 0.1532 0.00576 0.005827 0.00120 0.01324 211200818 525 WBGeme0001823 hap-1 Incsine triphosphate prychosphatase -0.3580715 0.009724 0.005827 0.00120 0.01324 211200818 525 WBGeme0001824 hap-1 Heitone H13 1.0017192 0.11242 211200818 0.00131 0.1124 0.00132 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.01031 0.1124 0.00131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.1124 0.01131 0.11									
S2 WBGene0001823 hnp-1 Insert priposphate prychosphatese -0.386871 0.00716 0.00267 20.2056 92.356877 S2 WBGene0001823 hnh1 Hetorofinaric GTPase Activating Protein subunit 0.65731527 0.14372 2.216-00 95.322843 S2 WBGene0001854 hi3 Hetore H1.3 1.0022406 0.00103 1.922-88339 S3 WBGene0001854 hi3 Hetore H1.1 1.0022406 0.0133 0.0422-88339 S3 WBGene00011867 hi1-7 Hatore H1.1 1.01273008 0.22440 1.972-71 1.424-89 1.71.51948 S3 WBGene00011867 hi1-7 Hetore M1.10 0.4357152 0.373874 0.07818 1.676-7 3.22744 1.675-7 3.227445 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22744 1.675-7 3.22747 1.675-7 3.227474 1.675-7 3.2274744 1.675-7 3.227474	524	WBGene00001814	haf-4	HAIF transporter (PGP related)	0.348036774	0.1242	0.00062	0.005432	291.9909285
S27 WBGeme0001282 hep-1 Znc metaliportelmais mis-3' 0.005912 0.013712 2.01372 2.01372 2.01372 S28 WBGeme0001283 hil-2 Histone H1.3 1.06224308 0.337438 6.885-60 0.00139 194.2 83339 S30 WBGeme0001858 hil-7 Histone H1.3 1.0622401 0.71572 2.02140 0.715712 2.02140 0.715712 2.02140 0.7157115 0.00342 0.14228 50.00763371 0.00342 0.14228 50.0763371 0.00342 0.14228 50.0763371 0.00342 0.01238 0.1426 0.007633 0.00342 0.00342 0.01238 0.1426 0.007633 0.00342 0.01238 0.1426 0.007633 0.00342 0.00342 0.01242 1.0147444 0.00354 0.00761 0.00142 1.1453014 0.00343 0.03743 0.01763 0.0014 0.014747 0.5267 0.0014 0.01424 1.0147145 0.01764 0.00564 0.0014 0.01474 0.02564 0.0014 0.00574 0.00574 0.00574 0.00574 0.00574 0.00574 0.00574 0.00574 0.00574 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
S2 WBGeme0001853 hi-2 Histone H1-2 1.06224308 0.337438 0.88E-05 0.00139 1422.83839 S3 WBGeme0001858 hi-7 Histone H1 Like 0.46571522 0.06313 0.00427 0.42282 60.778371 S3 WBGeme0001856 him-7 Histone P11 Like 0.46671522 0.06313 0.716276 7.332E-0 164.74030 S3 WBGeme0001867 him-18 High Incidence of Males (norsased X chromosome loss) -0.3357494 0.079813 6.67E-07 3.22E-08 154.742448 S3 WBGeme0001867 him-1 Histone H1 -0.3577491 0.079813 6.67E-07 3.22E-08 154.742448 S3 WBGeme000188 him-2 Histone H1 -0.3577491 0.07981 0.4258 1.452.747448 S3 WBGeme0001918 him-3 Histone H2 2.3712422 0.47719 5.25E-07 1.78E-06 595.359754 S3 WBGeme0001919 him-4 Histone H2 1.1811474 0.37163 0.0265 0.00261 0.00571 150.507511 S4 WBGeme00001912 him-4 Histone H3 <td></td> <td></td> <td></td> <td>Zinc metalloproteinase nas-34</td> <td></td> <td></td> <td></td> <td></td> <td></td>				Zinc metalloproteinase nas-34					
S0 WBGene0001854 hi-3 Histone H1 Jie 1.08178068 0.229444 1.97E-07 1.42E-06 1271.519488 S3 WBGene00001869 him-10 KneetChore protein Auf2 homolog -0.31620028 0.06318 0.97481 0.74252 0.04252 0.07589719 S3 WBGene00001869 him-10 KneetChore protein Auf2 homolog -0.3167040 0.97818 0.87428 0.87488 0.97818 0.87428 0.87488 0.87488 0.87484 0.87488	528	WBGene00021209	hgap-1	Heterodimeric GTPase Activating Protein subunit	0.657315275	0.143712	3.25E-07	2.08E-05	650.3226243
S1 WBGmeM0001858 hin ¹ Histone M1 Like 0.466712522 0.08313 0.004427 0.042826 90.07839719 S2 WBGmeM00011867 him-8 High Inclements of Males (increased X chromosome loss) -0.3637948 0.079813 6.67E-07 3.25E-08 158.479306 S3 WBGmeM00011876 hip-1 High Inclements of Males (increased X chromosome loss) -0.3637948 0.079813 6.67E-07 3.25E-08 158.479306 S3 WBGmeM00011876 hip-2 Histone H3 2.1885/7927 0.52281 1.10E-06 4.05E-08 5.021788 3.48E-08 5.021781 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 3.021782 5.021781 3.021782 5.021781 3.021782 5.027781 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 1.021782 3.0217	529	WBGene00001853 WBGene00001854							
S2: WBGene0000189 hin-10 KinetChore protein Nu2 Romolog -0.3162028 0.083128 9.71E-08 7.83E-08 248.419630 S3: WBGene0000187 hin-1 High Indiance of Males (ncrassed X kromosome loss) -0.3875948 0.93575845 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.9357584 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.9358784 0.9358784 0.935784 0.935784 0.935784 0.935784 0.9358784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.935784 0.9357845 0.935784 0.935784 0.935784 0.935784 0.935784 0.9357844 0.9357844 0.9357844 0.9357844 0.9357844 0.9357844 0.9357844 0.9357845 0.9357845 0.9357845 0.9357845 0.9357845 0.9357845 0.9357845 0.935784<	531	WBGene00001858	hil-7	Histone H1 Like	0.465712522	0.96313	0.009427	0.042926	900.7639719
S34 WBGeme00011735 hip-1 Histone H Histone H3 2.18675827 2.32281 1.10.6 4.382.60 2.872.474.48 S35 WBGeme00001386 his-2 Histone H1 1.22769334 0.457285 0.00116 0.02128 1116.3301 S37 WBGeme00001906 his-3 Histone H3 2.37142420 0.17716 5.252.67 1.76.65 555.559754 S38 WBGeme00001906 his-4 Histone H2A 0.73364741 0.15716 0.00263 0.00263 5.0539754 S38 WBGeme00001919 his-4 Histone H2B 1.18114742 0.37186 0.00263 0.002716 4.056263 0.00263 2.1223689 S4 WBGeme0000152 his-4 Histone H2B 1.18114742 0.37178 0.00265 0.00271 0.020751 4.0507511 S4 WBGeme0000152 his-4 Histone H3 1.0071834 0.457170 0.00265 0.001716 4.74457789 S4 WBGeme0000152 his-5 Histone H3 1.0071834 0.457170 0.00024 0.222349 0.00271 0.00265 2.7174527 2.224 0.0018 0.01716 4.74457789 0.01716 4.74457789	532	WBGene00001869 WBGene00001867		Kinetochore protein Nuf2 homolog Hinh Incidence of Males (increased X chromosome loss)		0.063128	9.71E-08		
S3S WBGeme00001876 his-2 Histone H3 2.18657927 0.523281 1.10E-06 4.80E-05 59.5017986 S3W WBGeme00001905 his-2 Histone H3 2.3774202 0.47778 0.00218 11.683018 S3W WBGeme00001905 his-32 Histone H3 2.3774202 0.47778 0.00218 11.78E-06 55.535774 S3W WBGeme00019187 his-4 Histone H2A 0.01218 11.78E-06 55.535774 S3W WBGeme00019187 his-4 Histone H2A 0.01218 11.78E-06 55.535774 S4W WBGeme0001922 his-4 Histone H3 1.0172041 0.03718 0.002247 0.022658 14.050781 S4W WBGeme0001922 his-4 Histone H3 1.00771334 0.047874 0.003763 0.001764 47.4657785 S4W WBGeme00019180 his-9 Histone H3 1.078067780 0.00234 0.01174 47.4657785 S4W WBGeme0001914 his-9 Histone H3 1.078067780 0.00234 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128 0.02128	534	WBGene00011735		Hsp-70 Interacting Protein homolog	0.955683021	0.193768	4.34E-08	4.53E-06	2887.247446
S7 WBGmen0001906 Nis-32 Histone H3 2.377 4202 0.477719 5.522 - 10 1.456-07 79.99398076 S3 WBGmen0001907 Nis-4 Histone H2B 0.73166774 0.1595 2.555-055 S3 WBGmen0001927 Nis-4 Histone H2B 1.01172045 0.37186 0.00247 0.00265 1.455-0559754 S4 WBGmen0001920 Nis-4 Histone H3 1.1010701334 0.00718 0.47171 0.00620 0.00223 2.27235696 S4 WBGmen0001920 Nis-45 Histone H2B 1.10203041 0.54918 0.00718 0.47467738 S4 WBGmen0001180 Nis-46 Histone H2B 1.0577740 0.469401 1.456778 0.00223 2.271713 S4 WBGmen0001180 Nis-59 Histone H3 1.0587740 0.469401 1.456778 0.0022 0.201161 6.23134018 S4 WBGmen0001182 Nis-69 Histone H4 0.47744932 0.499478 0.40245 7.5732318 S4 WBGmen0001187 Nis-60 Histone H4 0.47744932 0.499478 0.00141 0.4	535	WBGene00001876	his-2	Histone H3	2.186575927	0.523281	1.10E-06	4.80E-05	
S3 WBGeme0001909 his-35 Histone H2A 0.7368/77 0.2561 7.176-06 955.339774 S3 WBGeme0001919 his-4 Histone H32 1.01172045 0.07368 0.00223 3.21223656 S4 WBGeme0001919 his-4 Histone H3 1.1811472 0.37178 0.00265 4.00265 S4 WBGeme0001922 his-4 Probabe histone H2B 1.07131334 0.45751 0.00281 0.09716 3.9977631 S4 WBGeme0001922 his-4 Probabe histone H2B 1.07131344 0.45751 0.00286 0.001716 4.7465778 S4 WBGeme000192 his-69 Histone H3 1.9337744 0.46941 1.586 0.00234 0.2217131 S4 WBGeme0001880 his-59 Histone H3 1.9367744 0.46941 1.586 0.00234 0.00234 0.00234 0.00234 0.00234 0.00234 0.00234 0.00234 0.00234 0.00247 0.73745 0.0018 0.1421 5.737932 S4 WBGeme0001937 his-60 Histone H4 0.27947 0.2244 0.737493									
541 WBGeme0001919 his-45 Histone H3 1.18811472 0.37178 5.68E-50 0.00023 3.212236580 541 WBGeme0001922 his-49 Probabe histone H2B 4 1.02003410 0.56406 0.00123 3.212236580 542 WBGeme0001922 his-49 Probabe histone H2B 4 1.00781334 0.457517 0.00085 0.00716 457.4657783 543 WBGeme0001800 his-59 Histone H3 1.9337724 2.64101 0.8426 3.307752 544 WBGeme0001801 his-59 Histone H3 1.9337744 0.464941 1.542 0.00023 2.217313 545 WBGeme0001805 his-60 Histone H3 1.9337744 0.464941 1.542 0.00023 2.217313 546 WBGeme0001876 his-60 Histone H4 1.06734392 1.178441 0.00224 0.737723 2.224 0.00181 1.421157 564 WBGeme0001876 his-60 Histone H4 1.21678236 0.00247 0.73710376 1.261147 0.00248 0.7377302 1.2511057 565 WBGeme0001930 his-60 Histone H4 1.3603271 0.56547 0.00181 1.421157 0.00181									
514 WBGeme00001929 Nis-48 Histone H2 1.120/30041 0.554085 0.00121 0.000716 39.99478618 542 WBGeme00001929 Nis-49 Histone H2 1.00761334 0.45751 0.00856 0.00126 0.475617 30.986785 543 WBGeme00001891 Nis-59 Histone H3 2.31191705 0.397273 2.52E-10 8.445-68 3.33077529 544 WBGeme00001833 Nis-59 Histone H3 1.708607780 0.480461 1.82-50 0.00032 40.25217313 545 WBGeme0000195 Nis-69 Histone H4 0.457149302 1.171640 0.00124 0.42521731 544 WBGeme0000187 Nis-60 Histone H4 0.45749302 1.1716401 0.00028 2.716732314 545 WBGeme0000187 Nis-60 Histone H4 1.30802218 0.868143 0.00018 1.3421137 556 WBGeme0000187 Nis-60 Histone H4 1.30802218 0.868143 0.00018 1.3421137 556 WBGeme0000187 Nis-60 Histone H4 1.30802218 0.000217 1.0147343 0.0002	539	WBGene00001878		Histone H2B 2	1.011720451	0.37185	0.000247	0.002655	
542 WBGeme00001912 Nis-49 Probable histone H2B 4 1.00718134 0.467517 0.00088 0.007167 457.465778 543 WBGeme0000180 Nis-59 Histone H3 2.311917051 0.92727 3.2261 0.467617 0.67.465778 544 WBGeme0000180 Nis-59 Histone H3 1.928327451 0.469401 1.88E-06 6.21E-06 75.55577362 545 WBGeme00001914 Nis-59 Histone H3 1.038947725 0.800732 0.22214 0.04041 1.432-0 547 WBGeme00001937 Nis-60 Histone H4 0.45714932 0.00224 0.01151 6.22134018 548 WBGeme00001976 Nis-60 Histone H4 0.45744932 0.02243 0.01141 16.7562318 550 WBGeme0001977 Nis-60 Histone H4 1.36802218 0.868143 0.00247 0.01181 13.4211377 550 WBGeme0001978 Nis-60 Histone H4 1.36802218 0.868143 0.00247 0.011841 13.2782858 552 WBGeme0001978 Nis-60 Histone H4 0.27878301 0.00324 0.03242 0.03245 0.01281 15.248453 553 WBGeme0001918 Nis-60 Histone H4 0.2784858 0.24776 0.01481 0.7584855 554 WBGeme00001918 Nis-6						0.371708		0.000923	
544 WBGeme0001980 His-59 Histone H3 1.9.857/450 0.469403 1.9.85_0 6.27.16-0 7.5.95577320 545 WBGeme00019314 Nis-59 Histone H3 1.0.3097725 0.830732 0.02230 0.011415 6.2.3134015 547 WBGeme0001932 Nis-69 Histone H4 0.45724393 1.0.75641 0.0224 0.011415 6.2.3134015 548 WBGeme0001932 Nis-60 Histone H4 2.101477324 0.360282 2.27E-10 7.88E-08 1.7603347 548 WBGeme0001875 Nis-60 Histone H4 2.101477324 0.360282 2.27E-10 7.88E-08 1.7603347 558 WBGeme0001875 Nis-60 Histone H4 1.345132480 0.389897 0.20128 1.3411357 550 WBGeme0001875 Nis-60 Histone H4 1.34513480 0.389891 0.00170 0.002021 17.3101670 550 WBGeme00019182 Nis-60 Histone H4 0.07380801 0.374130 0.00032 0.03328 17.3569619 550 WBGeme00019182 Nis-60 Histone H4 0.07380801 0.374130 0.00032 0.03328 0.03728 0.00038 0.011251	542	WBGene00001922	his-48	Probable histone H2B 4	1.007813834	0.457517	0.000885	0.007167	457.4657758
545 WBGeme00001933 Nie-99 Histone H3 1.70807780 0.480481 1.43E-05 0.00023 402521731 564 WBGeme00001905 Nie-60 Histone H4 0.4579322 0.17158 0.63702 0.00223 0.2521731 574 WBGeme00001905 Nie-60 Histone H4 0.45724392 1.175641 0.03928 2.271-0 584 WBGeme00001879 Nie-60 Histone H4 2.10147733 0.80265 2.771-0 7.0303847 595 WBGeme00001879 Nie-60 Histone H4 1.3062216 0.856143 0.00769 0.00001 13.14211357 505 WBGeme00001930 Nie-60 Histone H4 1.30603216 0.02847 0.01541 0.579885 0.011241 0.517983 0.101241 0.51798 0.011241 0.51798 0.011241 0.51798 0.011241 0.51798 0.011241 0.51798 0.011241 0.517984 0.017241 0.5179 0.011241 0.51798 0.011241 0.51798 0.011241 0.51798 0.011241 0.51798 0.02371 0.011241 0.011241 0.51	543	WBGene00001891							
547 WBGeme0001905 Histone H4 0.4672/49392 1.175641 0.00224 57.2752218 548 WBGeme0001937 Nis-60 Histone H4 2.10147732 0.30265 2.277.052318 549 WBGeme0001877 Nis-60 Histone H4 1.7189541 0.559837 7.32E-05 0.001081 13.421137 550 WBGeme0001370 Nis-60 Histone H4 1.3080221 0.589834 0.00706 0.00232 7.32E-05 0.001081 13.421137 551 WBGeme00001330 Nis-60 Histone H4 1.30803218 0.858143 0.007388381 0.371413 0.00328 12.71572353 0.665479 0.01781 65123463 553 WBGeme00001912 Nis-60 Histone H4 0.0748801 0.037413 0.00138 0.00242 0.02321 17.356919 554 WBGeme00001912 Nis-60 Histone H4 0.07489301 0.371433 0.00108 70.27241595 555 WBGeme00001917 Nis-63 Histone H2 0.774697153 0.282642 0.00108	545	WBGene00001933		Histone H3	1.708607789	0.480481	1.43E-05	0.00032	402.5217313
548 WBGreen0001192 His-60 Histone H4 2.10147324 0.280285 2.27E-10 7.88E-08 13.6033847 569 WBGreen00011875 His-60 Histone H4 1.341532408 0.586834 0.00705 0.00082 174.31411357 551 WBGreen00011875 His-60 Histone H4 1.341532408 0.586814 0.00775 0.00882 174.3101676 551 WBGreen0001138 His-60 Histone H4 1.215722385 0.655147 0.01599 0.211251 651.123463 552 WBGreen0001134 His-60 Histone H4 0.473480 0.01579 0.01599 0.01521 0.551.123463 552 WBGreen0001134 His-60 Histone H4 0.4974380 0.037490 10.0169 0.752.61595 555 WBGreen0001137 Histone H4 0.74407153 0.032324 0.00048 35.989721 555 WBGreen0001137 Histone H24 0.494141 0.457168 0.00141 3.1308575 555 WBGreen0001137 Histone H2A 1.5689983									
549 WBGeme0001979 His-00 Histone H4 1.71895411 0.569833 7.32E_05 0.001081 13.4211357 550 WBGeme00001930 Nis-60 Histone H4 1.36032216 0.85813 0.00247 0.01581 35.14211357 551 WBGeme00001930 Nis-60 Histone H4 1.30603216 0.85813 0.00247 0.01581 55.2123463 552 WBGeme00001930 Nis-60 Histone H4 0.07383801 0.374139 0.00322 0.03232 0.03232 0.03232 0.03232 0.03232 0.03232 0.03232 0.03232 0.03235 11.356991 554 WBGeme00001912 Nis-60 Histone H4 0.073690110 0.03716 0.01068 70.2541595 555 WBGeme00001930 Nis-60 Histone H2 0.01048 0.237241595 0.00048 6.38727.14 555 WBGeme00001937 Nis-63 Histone H2A 0.1588568 0.02076 0.00048 6.38972.14 555 WBGeme00001937 Nis-63 Histone H2A 0.									
551 WBGeme00001930 His do Histone H4 1.308032216 0.858133 0.02447 0.015481 3.078983568 552 WBGeme00001930 Nie-60 Histone H4 1.21782385 0.02447 0.015481 3.078983568 553 WBGeme00001912 Nie-60 Histone H4 0.07340301 0.0374130 0.007321 0.00322 0.03232 0.03232 0.0374130 0.007322 0.00332 0.00322 0.0374130 0.00732 0.00323 0.00323 0.00343 0.004059 41.334655 555 WBGeme00001937 Nie-63 Histone H2 0.75401451 0.27969 0.001161 0.05868 0.00045 41.334655 555 WBGeme00001937 Nie-63 Histone H2A 0.7540515 0.02746 0.00146 42.31036977 555 WBGeme00001937 Nie-63 Histone H2A 0.401414 0.7540511 0.0318 0.01444 42.3103697 555 WBGeme00001937 Nie-63 Histone H2A 0.401414 0.7540511 0.01744 42.3103697	549	WBGene00001879	his-60	Histone H4	1.718955411	0.559993	7.32E-05	0.001081	131.4211357
552 WBGreenC00019138 Hisbone H4 12.15782385 0.065479 0.011590 0.011251 656.1234433 553 WBGreenC00019134 Hisbone H4 0.97338801 0.03179 0.010329 0.00325 107.3569819 554 WBGreenC00019134 Hisbone H4 0.84938104 0.437138 0.00325 0.001679 0.011608 70.75241595 555 WBGreenC00019134 Hisbone H4 0.744007153 0.203242 0.00048 63.59837214 555 WBGreenC0001936 His-2 Probabe hatone H2B 4 1.445491611 0.457685 505.05.05 0.000484 63.59837214 557 WBGreenC0001937 His-8 Hisbone H2A 0.404314 0.26796 0.001416 0.358554 0.401421 1.8038 54.1742867 558 WBGreenC0001937 His-8 Hisbone H2A 1.671200300 0.06141 0.30385 54.1742867 558 WBGreenC0001937 His-8 Hisbone H2A 1.671203050 0.06121 1.8684323 569 WBGreenC0001937 Hisbone									
553 WBGeme00001912 Nie-60 Histone H4 0.07383801 0.374130 0.00032 0.000325 17.3569919 554 WBGeme00001914 Nie-60 Histone H4 0.84931840 0.473130 0.001705 0.273241595 555 WBGeme000019341 Nie-60 Histone H4 0.73401715 0.283242 0.00043 0.00469 441.334655 555 WBGeme00001937 Nie-63 Histone H2 1.516969363 0.267665 5000946 663897214 557 WBGeme00001937 Nie-63 Histone H2A 1.516969363 0.267966 0.00146 423.1303977 558 WBGeme0001917 Hie-88 Histone H2A 0.4041348 0.267966 0.00146 423.1303971 558 WBGeme0001917 Hie-88 Histone H2A 0.4041348 0.267969 0.00146 423.1303971 558 WBGeme0001917 Hie-88 Histone H2A 0.267969 0.021174 1.26814204 561 WBGeme0001937 Hie-88 Histone H2A 0.227945 0.23716			his-60 his-60						
555 WBGerre00001941 Histone H4 0.734607153 2.28324 0.0043 0.00469 441.334655 555 WBGerre00001936 Histone H2 1.45491611 0.45765 590.256 0.00143 0.001459 441.334655 555 WBGerre00001937 Histone H2 1.51898633 0.5266 0.00141 0.35893714 557 WBGerre00001942 Histone H2 0.004148 0.25796 0.00141 0.3386 564.1742987 556 WBGerre00001942 Histone H2A 0.4043148 0.26796 0.00161 0.3386 564.1742987 556 WBGerre00001881 Histone H2A 1.5708549 0.400722 2.392-50 0.000476 80.444343 561 WBGerre00001921 Histone H2A 1.20152037 0.77552 0.20756 0.512-65 447.8565397 562 WBGerre00001921 Histone H2A 1.20152037 0.77552 0.00275 2.875.358 0.00275 2.875.358 0.012762 2.372733886 562 WBGerre00001921 his-78 Hist	553	WBGene00001912	his-60	Histone H4	0.97838801	0.374193	0.000332	0.003325	117.3569919
555 WBGreen00011938 Nis-62 Probable Instone H2B 4 1.445491611 0.457685 5.90E-65 0.000948 6838937214 557 WBGreen00011938 Nis-63 Histone H3 1.5168969353 0.02686 0.000131 0.00148 423.1303977 558 WBGreen00011942 Nis-88 Histone H2A 0.4043148 0.267968 0.001511 0.03385 541.1742867 558 WBGreen0001187 Nis-88 Histone H2A 1.671200050 0.406322 1.586.0 6.216-05 110.8034323 569 WBGreen0001181 Nis-88 Histone H2A 1.370385549 0.406722 2.38E-05 0.000476 80.4443843 561 WBGreen00011921 Nis-68 Histone H2A 1.20812037 0.77552 0.002756 9.017526 3.27933886 562 WBGreen00011921 Nis-76 Histone H2A 1.20812037 0.07576 2.027536 0.017576 2.327933896 562 WBGreen0001921 Nis-76 Histone H2A 1.015970241 0.032754582 3.0273354862	554	WBGene00001934 WBGene00001941							
557 WBGene00001937 his-83 Histone H3 1.516899363 0.52686 0.00013 0.001464 42.3103977 558 WBGene00001947 his-84 Histone H2A 0.4043148 0.26796 0.00151 0.0383 60.1142087 559 WBGene00001877 his-84 Histone H2A 0.401314 0.23796 0.00151 0.0383 60.1142087 559 WBGene0000187 his-86 Histone H2A 1.37038549 0.400729 2.387-50 0.00176 9.04443843 561 WBGene00001921 his-86 Histone H2A 1.22815446 0.23716 1.277-06 5.31E-06 4.47863937 562 WBGene00001921 his-87 Histone H2A 1.201813037 0.77552 0.002756 2.012763 2.37233898 562 WBGene00001921 his-76 Histone H2A 1.01570274 0.23723358962 563 WBGene00001924 histore H2A 1.01570274 0.3275353892 0.035549 0.035748 0.03554962	556	WBGene00001936	his-62	Probable histone H2B 4	1.445491611	0.457665	5.90E-05	0.000948	636.9837214
559 WBGene00001977 Nie-88 Histone H2A 1.67/200005 0.408322 1.58E-06 6.21E-05 110.8834/323 560 WBGene00001871 Nie-88 Histone H2A 1.37085549 0.400729 2.38E-05 0.000476 98.0443843 561 WBGene00001925 Nie-88 Histone H2A 1.22854446 0.233716 1.27E-06 5.31E-06 447443843 562 WBGene00001921 Nie-88 Histone H2A 1.201542074 0.775525 0.002576 2.37233898 563 WBGene00001921 Nie-78 Histone H2A 1.015820741 0.775525 0.002576 2.327333898 563 WBGene00001924 Nie-78 1.861776 2.327333898 0.05354962 0.053741 0.1057072 1.015702 3.2373358982	557	WBGene00001937	his-63	Histone H3			0.00013	0.001648	
500 WBGemeM000181 Nie-88 Histone H2A 1.370385549 0.400729 2.38E-65 0.000476 88.04443843 561 WBGemeM0001932 Nie-88 Histone H2A 1.228824468 0.203716 127.4585837 562 WBGemeM0001921 Nie-88 Histone H2A 1.20812037 0.775525 0.00256 0.01726 2.327533869 563 WBGemeM0001921 Nie-78 Histone H33 type 1 1.016920274 1.016776 2.88E-03545492									
562 WBG-me0001921 Nie-88 Histone H2A 12.08132037 0.775525 0.002536 0.011726 32.27933896 563 WBG-me0001945 Nie-71 Histone H33 type 1 0.101590274 10.01590274 10.01590274 0.02555 0.002556 0.002556 0.01576 2.882-05354982	560	WBGene00001881	his-68	Histone H2A	1.370385549	0.400729	2.39E-05	0.000476	98.04443843
563 WBGene00001945 his-71 Histone H3.3 type 1 1.015920741 0.186776 2.88E-09 4.99E-07 220.3554982									
564 WBGene00001946 his-72 Histone H3.3 type 2 0.853825962 0.427741 0.001424 0.010267 2538.853859	563	WBGene00001945	his-71		1.208132037	0.186776	2.88E-09	4.99E-07	220.3554982
	564	WBGene00001946	his-72				0.001424	0.010267	2538.853859

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
	WBGene00001882	his-8	Histone H2B 2	0.753682683				87.50734179
	WBGene00001948 WBGene00001971	hlh-1 hmg-1.1	Myoblast determination protein 1 homolog HMG	0.592543464	0.185075		0.001192 0.002033	158.3639145 6425.606494
	WBGene00001976	hmg-11	HMG	1.56314097	0.270123	3.45E-10	1.05E-07	512.4131572
	WBGene00001977	hmg-12	HMG	0.494798536	0.497529		0.040554	2137.880076
	WBGene00022277 WBGene00020268	homt-1 hpo-19	Alpha N-terminal protein methyltransferase 1 NADH-cytochrome b5 reductase	0.314405905	0.115588 0.051647	0.000964 7.73E-10	0.007629 1.83E-07	360.8371899 4653.062115
572	WBGene00022447	hpo-20	Phosphatidylinositol-glycan biosynthesis class W protein	0.477408979	0.188987	0.000815	0.006742	214.6450362
573 574	WBGene00012550 WBGene00015463	hpo-21 hpo-9	Probable signal peptidase complex subunit 2 hypothetical protein	0.725005685	0.238916 0.079706	0.000123 1.78E-05	0.001577 0.00038	2967.95621 2598.976661
575	WBGene00001999	hrp-1	Heterogeneous nuclear ribonucleoprotein A1	0.716803928	0.163538	7.61E-07	3.62E-05	10951.3256
	WBGene00002000 WBGene00002011	hrp-2 hsp-12.2	human HnRNP A1 homolog Heat shock protein Hsp-12.2	0.445298839 0.470770762	0.116093 0.148194	1.11E-05 0.000121	0.000265	8422.172267 562.9461228
	WBGene00002007	hsp-3	Heat shock protein heap 12.2 Heat shock 70 kDa protein C		0.109537		0.000372	11568.79452
	WBGene00002040 WBGene00002042	hum-7 hus-1	Heavy chain, Unconventional Myosin human HUS1 related	0.507599876	0.157567 0.075314	9.72E-05 4.57E-11	0.001324 2.25E-08	195.8158399 720.1290469
581	WBGene00010416	hxk-2	Phosphotransferase	0.32420015	0.114496	0.000666	0.005758	1109.855975
582	WBGene00001564 WBGene00002055	icl-1 ifc-1	Malate synthase Intermediate filament protein ifc-1	0.43980481 0.498064927	0.126881 0.15641	4.51E-05 0.000108	0.000778 0.001433	4071.228663 289.7058582
584	WBGene00002065	iff-2	Eukaryotic translation initiation factor 5A-2	0.724049881	0.16703	9.03E-07	4.12E-05	1602.868119
585	WBGene00020160	igcm-3	ImmunoGlobulin-like Cell adhesion Molecule family	0.338163663 0.375589245	0.097092	7.12E-05	0.001063	1518.487898 924 4998928
587	WBGene00020511 WBGene00013095	immt-1 ing-3	MICOS complex subunit MIC60-1 Inhibitor of growth protein	0.337792918	0.118168	0.000179 0.00056	0.002094	1425.718005
	WBGene00012148 WBGene00016871	inos-1	INOsitol-3-phosphate Synthase	0.839229395 0.447355396	0.219607	7.05E-06 0.00036	0.00019	838.6414089 219.7751871
	WBGene00002123	inso-1 inx-1	INSOmniac (Drosophila sleep affecting) homolog Innexin	0.447355396	0.265674			237.9531909
	WBGene00002175	jac-1	Juxtamembrane domain-associated catenin	0.643270409	0.132981	8.99E-08	7.45E-06	334.1999492
	WBGene00012982 WBGene00002179	jmjd-2 jph-1	Lysine-specific demethylase 4 JunctoPHilin	0.351561771 0.469818039	0.177145 0.157962		0.024809 0.002536	845.7685603 547.3431788
594	WBGene00010483	K01G12.3	hypothetical protein	-0.310462388	0.10331	0.00041	0.003903	335.1387488
	WBGene00010498 WBGene00010491	K02B12.5 K02B7.3	hypothetical protein hypothetical protein	-0.340000087 0.411308727	0.10934 0.168301	0.000251 0.00123	0.002686	1380.521224 477.8997691
597	WBGene00019354	K03B4.2	hypothetical protein	0.450436196	0.171643	0.000705	0.006034	1279.795412
	WBGene00019355 WBGene00019458	K03B4.4 K06H7.7	hypothetical protein hypothetical protein	0.825960658	0.365219	0.000888 9.23E-05	0.007177 0.001279	36.01915002 680.0241472
600	WBGene00010608	K07A1.1	hypothetical protein	-0.351146371	0.075303	4.45E-07	2.56E-05	1390.955088
	WBGene00010619 WBGene00019511	K07A1.15 K08A2.1	hypothetical protein hypothetical protein	-0.357534361 0.801878471	0.181034 0.252664	0.004545 7.30E-05	0.024529	217.6928766 560.7966643
603	WBGene00019538	K08D12.4	hypothetical protein	0.546927641	0.536109	0.007657	0.03654	32.45634515
	WBGene00010666 WBGene00010667	K08E4.2 K08E4.3	hypothetical protein hypothetical protein	-0.313001641 -0.349232388	0.115863 0.093039	0.001021 2.38E-05	0.00793 0.000475	536.6837202 583.6023486
606	WBGene00010703	K09A9.6	hypothetical protein	0.322015546	0.140858	0.002845	0.017157	263.8687412
607	WBGene00019564 WBGene00010721	K09D9.1 K09E4.3	hypothetical protein hypothetical protein	0.677561002 0.54156627	0.325606	0.001597 1.51E-05	0.011249	68.59505449 312.8647986
608	WBGene00010721 WBGene00044143	K09E4.3 K09E9.4	hypothetical protein	0.417083122		0.007395	0.000334	63.23560041
	WBGene00045265 WBGene00010738	K10C2.8	hypothetical protein	-0.33478588 1.001458037	0.214063	0.010288	0.045854 5.01E-10	163.8804653
	WBGene00019651	K10D3.4 K11D12.12	hypothetical protein hypothetical protein	-0.386067332	0.143933 0.11198	1.95E-13 6.41E-05	0.000998	748.4049839 368.7237742
	WBGene00010770	K11D2.4	hypothetical protein	0.728635589	0.275865		0.003644	278.0910121
	WBGene00019673 WBGene00019677	K12C11.1 K12H4.2	hypothetical protein hypothetical protein	0.501141312	0.200221 0.079959	0.000809 2.55E-06	0.006712 8.93E-05	808.48774 682.7708464
616	WBGene00002181	kal-1	human KALImann syndrome homolog	0.6825156	0.159633	1.20E-06	5.11E-05	201.6323074
617 618	WBGene00020064 WBGene00002184	kbp-1 kel-1	KNL (kinetochore null) Binding Protein KELch-repeat containing protein	-0.39023818 0.48264592	0.061015 0.256817	1.83E-11 0.003312	1.23E-08 0.019191	2155.750724 62.72303364
619	WBGene00020952	kel-8	Kelch-like protein 8	0.614725167	0.187374	6.22E-05	0.000975	251.7955346
620	WBGene00004130 WBGene00002214	ketn-1 klc-1	KETtiN (Drosophila actin-binding) homolog Kinesin Lipht Chain	0.507661815	0.123275 0.055454	3.23E-06 3.19E-09	0.000107 5.39E-07	2114.915983 5147.875693
622	WBGene00002222	klp-11	Kinesin-like protein	0.427326494	0.304903	0.008185	0.038452	196.8294273
	WBGene00002226 WBGene00002219	klp-16 klp-7	Kinesin-like protein Kinesin-like protein	0.343699035 0.469222776	0.154132 0.442873	0.002696	0.016433 0.041757	2318.977132 1301.829984
625	WBGene00020392	knl-3	Kinetochore NuLI	0.412677588	0.174124	0.001514	0.010779	1040.12149
	WBGene00018725 WBGene00002243	kreg-1 lad-2	Protein kreg-1 L1 CAM ADhesion molecule homolog	0.668460874 0.438397252	0.442627 0.39575	0.004184 0.009971	0.023075	28.77794178 64.04492899
628	WBGene00002244	laf-1	ATP-dependent RNA helicase laf-1	0.328135918	0.076204	2.66E-06	9.27E-05	4206.37906
	WBGene00002261 WBGene00002262	ldb-1 ldh-1	LIM Domain Binding protein L-lactate dehydrogenase	0.44293684 0.498400032	0.13978	0.000141 7.34E-05	0.001741 0.001082	727.9256707 1225.124117
631	WBGene00002264	lec-1	32 kDa beta-galactoside-binding lectin	1.053465896	0.317118	3.89E-05	0.000692	3136.342337
	WBGene00002275 WBGene00021945	lem-2 lem-4	LEM protein 2 Ankvrin repeat and LEM domain-containing protein 2 homolog	0.680654323 0.51053362	0.202824	4.57E-05 0.000157	0.000785	1368.76973 515.3425141
634	WBGene00002280	let-2	Collagen alpha-2(IV) chain	0.66279107	0.186415	2.24E-05	0.000454	4974.115108
	WBGene00002915 WBGene00002977	let-805 lev-10	hypothetical protein hypothetical protein	0.818328433	0.203242 0.148528		0.000102	712.4854049 255.4608513
637	WBGene00002978	lev-11	Tropomyosin	0.695674207	0.174249	5.79E-06	0.000164	7508.128453
638	WBGene00022500 WBGene00009799	lfi-1 lgc-47	Lin-5 (Five) Interacting protein Ligand-Gated ion Channel	0.391162332 0.480727484	0.097119 0.381212	6.61E-06 0.007898	0.000181 0.03744	1255.256683 53.3448871
640	WBGene00002990	lin-1	hypothetical protein	0.648274911	0.208869	0.00011	0.00145	119.4634263
641 642	WBGene00003006 WBGene00002991	lin-17 lin-2	hypothetical protein Protein lin-2	0.665394123 0.367464891	0.167566 0.130218	4.34E-06 0.00054	0.000131 0.004888	199.7566416 242.560528
643	WBGene00003025	lin-40	hypothetical protein	1.01466607	0.208575	5.93E-08	5.41E-06	768.1533133
	WBGene00018572 WBGene00003038	lin-42 lin-56	Period protein homolog lin-42 Protein lin-56	0.7474291 -0.418643309	0.226614 0.074746	5.05E-05 2.47E-09	0.00084 4.46E-07	140.6997943 808.3820576
646	WBGene00001562	lin-66	hypothetical protein	0.310860326	0.0815	2.34E-05	0.00047	3155.954719
	WBGene00002997 WBGene00022642	lin-8 lipl-5	Protein lin-8 Lipase	0.609017462 0.357195708	0.161572 0.142105	1.06E-05 0.001333	0.000259 0.009764	282.0241746 2967.827288
649	WBGene00003064	lpd-8	LiPid Depleted	-0.319336261	0.063153	7.09E-08	6.32E-06	2349.519821
650 651	WBGene00015779 WBGene00022129	Irch-1 Iron-11	Leucine-rich Repeats (LRR) and Calponin Homology (CH) domain homolog eLRR (extracellular Leucine-Rich Repeat) ONly	0.332179016 0.798849524	0.178433 0.164107	0.006553 6.50E-08	0.032422 5.83E-06	212.0645896 249.5755708
652	WBGene00022610	Itah-1.2	LeukoTriene A4 Hydrolase homolog	0.385876168	0.117848	0.000118	0.001529	731.4454779
653	WBGene00003093 WBGene00044690	lys-4 M02B7.7	LYSozyme hypothetical protein	-0.433754268 0.761352483	0.100709 0.498542	1.68E-06 0.003491	6.54E-05 0.019986	2880.365065 48.28844813
655	WBGene00010913	M110.3	hypothetical protein	-0.388839038	0.095516	5.46E-06	0.000156	1053.206074
	WBGene00044253 WBGene00010922	M117.6 M142.5	hypothetical protein hypothetical protein	-0.438435234 0.308298554	0.219066		0.018007 0.015587	154.6640937 765.752167
658	WBGene00010889	M18.3	hypothetical protein	-0.305304787	0.068065	1.37E-06	5.68E-05	1099.095516
659	WBGene00003111 WBGene00003102	mab-20 mab-5	Semaphorin-2A	0.395443571				
661	WBGene00003119	mac-1	Homeobox protein mab-5 Protein mac-1	0.686321291 0.791460194	0.18436	1.02E-06	4.53E-05	525.136848
	WBGene00016539	madd-2	hypothetical protein	0.426998303	0.160868	0.000682	0.005865	263.6752373
664	WBGene00008118 WBGene00021888	madf-8 manf-1	MADF domain transcription factor Mesencephalic astrocyte-derived neurotrophic factor homolog	0.310188339	0.131816	0.002629	0.016175	
665	WBGene00003129	map-1	Methionine aminopeptidase	0.470482714				
666 667	WBGene00009306 WBGene00009113	maph-1.1 maph-1.2	Microtubule-associated protein homolog maph-1.1 Microtubule-Associated Protein Homolog	0.770301052 0.384520699	0.216891	1.55E-07 0.005791	1.20E-05 0.029515	313.6154324 1921.343369
668	WBGene00007966	maph-1.3	Microtubule-Associated Protein Homolog	0.591172343	0.196808	0.000162	0.001936	1085.756835
	WBGene00013096 WBGene00003156	mcd-1 mcm-4	Modifier of cell death DNA replication licensing factor mcm-4	0.567337655 0.396521982				1069.87068 3514.601162
671	WBGene00015273	mct-2	MonoCarboxylate Transporter family	0.863464608	0.383683	0.00085	0.006953	56.29575985
672	WBGene00003162 WBGene00007026	mdh-2 mdt-31	Probable malate dehydrogenase, mitochondrial Mediator of RNA polymerase II transcription subunit 31	0.327320396	0.138773			8747.875937 500.5895181
674	WBGene00003164	mdt-6	Mediator of RNA polymerase II transcription subunit 6	-0.305877337	0.075211	8.62E-06	0.000222	2492.920469
	WBGene00003175 WBGene00003172	mec-12 mec-8	Detyrosinated tubulin alpha-3 chain hypothetical protein	0.36626935 0.350895987				259.8254778
677	WBGene00019757	memb-2	Golgi SNAP receptor complex member 2	-0.499895755		1.10E-11	8.89E-09	1390.314671
								_

InAmerican and any and any and any		ENSEMBLE GenelD	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
Dist Dist <thdist< th=""> Dist Dist <thd< td=""><td>678</td><td>8 WBGene00003229</td><td></td><td></td><td></td><td>0.155064</td><td></td><td></td><td></td></thd<></thdist<>	678	8 WBGene00003229				0.155064			
Normal stateNormal state<									
DistD	681	1 WBGene00003238	mig-1	hypothetical protein	0.47695818	0.181308	0.000616	0.005416	191.0711127
HerNon-matrix Non-matr									
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
B) B)<	686	6 WBGene00003375	mlp-1	MLP/CRP family (Muscle LIM Protein/Cysteine-rich Protein)	0.352183362	0.146353	0.001787	0.012135	484.7223005
00 000000000000000000000000000000000000									
B) MoDella (March 1) (March 2) Add 200 Sol 200<	689	9 WBGene00007139	mnp-1	Matrix non-peptidase homolog 1	0.340636006	0.108686	0.000239	0.002589	
b) B)<			moag-4 mob-1						
bit Without001100 runs Money Manual Association 0.1100100 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000	692	2 WBGene00008601 3 WBGene00020858	mob-2	Mps One Binder (Mats/MOB1) homolog MO25-like protein 3		0.129899	7.07E-05	0.001058 3.30E-05	
Wilds-ub012bit mpile Microsoft Resource impair. Lagin 0.3000 Microsoft Bits and Production 0.3000 Microsoft Bits and Producion 0.3000 Microsoft Bits and Pro	694	4 WBGene00019282	mps-2	MiRP K channel accessory Subunit	0.31935535	0.19875	0.010736	0.047392	467.3154981
bit Withound0110s mp-10 Michael prints 16, indexturbati -0.550.00 0.720 7.87.00 0.600 0.720 7.87.00 0.600 0.720 7.87.00 0.600 0.720 7.87.00 0.600 0.720 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.600 0.720 0.720 0.600 0.720			mrpl-10 mrpl-12						
No. No. Second protein protein second p			mrpl-18						
NUMBARD01127 mpda Mode and path of the second path	699	9 WBGene00010783	mrpl-36	Ribosomal protein	-0.306545672	0.152262	0.005701	0.029182	694.4778028
10 1000000000000000000000000000000000000	700	0 WBGene00015185 1 WBGene00011247	mrpl-41	39S ribosomal protein L41, mitochondrial Probable 39S ribosomal protein L49, mitochondrial			8.02E-05	0.001158	919.0462423 627.2468188
NH MEG-MC017158 mp.2 MCANCER MEDIA PackaG 0.0018 </td <td>702</td> <td>2 WBGene00011883</td> <td>mrpl-50</td> <td>Mitochondrial Ribosomal Protein, Large</td> <td>-0.348456078</td> <td>0.069855</td> <td>9.42E-08</td> <td>7.68E-06</td> <td>1092.490199</td>	702	2 WBGene00011883	mrpl-50	Mitochondrial Ribosomal Protein, Large	-0.348456078	0.069855	9.42E-08	7.68E-06	1092.490199
NHUE-MODITION mp.2 mp.20	703	3 WBGene00015487 4 WBGene00017924		28S ribosomal protein S17, mitochondrial Mitochondrial Ribosomal Protein. Small					
NY NY<	705	5 WBGene00014224	mrps-23	Probable 28S ribosomal protein S23, mitochondrial			0.000828	0.006821	1036.091564
10 Wildenwoldshift A. 1980200 0.61110 0.61171 0.6111 0.61171 0.6111 0.61171 0.61171 0.61171 0.6111 0.61171 0.6111 0.61111 0.6111 0.61111 0.6111 0.61111 0.6111 0.61111 0.61111 0.61111 0.61111 0.61111 0.61111 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
10 Wildserd000011 mth Public mitocondu IdM-specific 2-Public plane 11 Wildserd000014 m.d. Mth Public mitocondu IdM-specific 2-Public plane 11 Wildserd000014 m.d. Mth Public mitocondu IdM-specific 2-Public plane Public Mth 11 Wildserd000014 m.d. Mth Public Mth Public Mth Public Mth 11 Wildserd000014 m.d. Mth Public Mth			mspn-1	Mitochondrial sorting homolog					
11 NUMBER 1.1200000000000000000000000000000000000	710	0 WBGene00007114	mttu-1	Probable mitochondrial tRNA-specific 2-thiouridylase 1	-0.353920278	0.117332	0.000313	0.003173	262.618374
15 WBERNBOUNDED Inffac Marine Marine<	711 712	1 WBGene00022516 2 WBGene00003495			-0.329419077 1.124220966	0.071156 0.207376	5.90E-07 3.02E-09	3.05E-05 5.17E-07	1705.190012 1791.9566
11 Wind-action 0.207103 0.1007 0.00071	713	3 WBGene00003499	mut-2	MUTator	-0.32132807	0.075932	3.67E-06	0.000119	2154.548424
111 Windback 0.33210/10 0.32201/10 0.23201/10	715	5 WBGene00002348		Myosin-1	0.309710833	0.115965	0.00117	0.008806	1130.552943
111 Wilden-Mod22360 nmi-1 XCC malkprotesses not 1 -31057471 0.8990 5.75.0 0.5012 <td>716</td> <td>6 WBGene00003514 7 WBGene00003515</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	716	6 WBGene00003514 7 WBGene00003515							
T20 WBG-exc001089 ND1 MD1 desyngements should a start of start o	718	8 WBGene00003530	nas-11	Zinc metalloproteinase nas-11	-0.310875474	0.089599	8.57E-05	0.001202	653.330381
71 WEG-we001018 HD2 MCD1 displaysigness suburil 2 .0.00001 0.00001									
72 WEG-we000180 NDA MDA				NADH dehydrogenase subunit 2					
72 Wilderweit/D00119 n.ch. Nucleosite dipological family 0.811020 0.8111020 0.8111	723	3 WBGene00010963	ND4	NADH dehydrogenase subunit 4	-0.412938897	0.15141	0.000547	0.004935	9822.611924
T29 WEG-embOlitONT rmp. 1 METhylin methogenization family 0.4191520 0.119152 0.01002 0.000002 0.00002 0.00				NADH dehydrogenase subunit 5 Nucleoside dinhosnbate kinase					
T29 WBGene0000388 math 0.81220171 0.11201 0.0101 0.0107 0.000000 T29 WBGene00002595 mpth Natural Grain of Mage and prophetic gene extension in LBJ-colis brakhor, data and zata nutitati 0.0114014 0.0100000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000000 0.000000000000 0.00000000000000000000000000000000000	726	6 WBGene00010070	nep-17	NEPrilysin metallopeptidase family	0.41915255	0.118148	4.00E-05	0.000708	2040.111031
T20 W8Gener/D002777 min. Nuclei Factor (Nappa Byt polypedia gene enhancer in LB) scale inhibite, data and ratin reliated 0.1715.1448 0.1715.1448 0.1715.1458 0.01307 0.02387 722.77817 T21 W8Gener/D002369 min.1 Nuclei Honnone Receptor family 0.03147 0.03237 0.03337 0.03347 0.03347 0.03347 0.03347 0					0.356974211 0.561220173	0.217948	0.008186	0.038452	178.6420577 1730.403217
T2 WBGenetB0000395 rpt-1 Rest/ Res									
733 WBGenem003399 nh1-14 Audie Informe Receptor tamiy 0.39779696 0.1220 0.0027 0.24120 744 WBGenem003391 nh1-14 Audies Hormone Receptor tamiy 0.3977 0.1210 0.0027 0.00280 0.0027 0.22108 747 WBGenem003291 nh1-14 Audies Hormone neceptor family member rh-19 0.4451616 0.4661 0.00027 0.00228 0.00280 0.0027 0.22178 747 WBGenem003291 nh-14 Audies Hormone neceptor family member rh-19 0.4553787 0.0017 0.0027 123.2978 740 WBGenem003797 nh-11 Audies Hormone neceptor family member rh-19 0.4553787 0.0017 0.0027 123.3778024 741 WBGenem0003797 nh-11 Nucceptod-Lia Protein 0.4501477 0.45014 0.00331 0.00333 0.00331 0.00333 0.00331 <td< td=""><td>731</td><td>1 WBGene00003595</td><td>ngn-1</td><td>NeuroGeNin</td><td>0.591146435</td><td>0.216788</td><td>0.000357</td><td>0.003496</td><td>70.96741511</td></td<>	731	1 WBGene00003595	ngn-1	NeuroGeNin	0.591146435	0.216788	0.000357	0.003496	70.96741511
754 WBGene0003794 nrt-11 Nuclear Homone Receipter family 0.39197226 0.3719726 0.00186 0.00138 0.00286 0.00186 0.00138 0.00186 0.00138 0.00186 0.00138 0.00138 0.00186 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138									
728 WBGsmc0000318 nrb-28 Nuckar hommon receptor hamly member nrb-19 -0.304161926 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00228 0.00288	734	4 WBGene00003704	nhr-114	Nuclear Hormone Receptor family		0.172195			
738 WBGend0003491 ntr-16 Nucket homone neopior family 0.00237 0.00324 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00237 0.00134 0.00232 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00134 0.00114 0.00134 0.00114 0.00134 0.00114 0.00114 0.00114 0.001143 0.00114 0.00114	736	6 WBGene00003618	nhr-19	Nuclear hormone receptor family member nhr-19	-0.304161945	0.172364	0.00939	0.042788	126.6869416
739 WBGend00037597 nh-76 Nuclear Hormone Receptor family 0.002787 0.007686 0.00587 16.185377 740 WBGend0003762 nh-16 Nuclear Hormone Receptor family 0.40272 16.534042 741 WBGend0003772 nh-26 Nucreaptolic kas Portein 0.60583 0.00031 0.00323 0.00323 0.00323 0.00323 0.00328 0.007680 0.00028 0.007680 0.00028 0.007680 0.000280 0.007680 0.000280 0.007680 0.007680 0.007680 0.007680 0.007680 0.000280 0.007680 0.000280 0.007680 0.000280 0.007680 0.000280 0.007680 0.001280 0.001280 0.001280 0.001280 0.01213 1.25.184000 744 WBGend0001747 np.31 Nuclear Hormone Receptor family 0.3781 0.001580 0.01123 1.25.184001 745 WBGend0001747 np.31 Nuclear Hormone Receptor family 0.3781 0.00158 0.01123 1.25.114001 746 WBGend0001747 np.31 Nuclear Hormone Receptor family 0.3018 0.00159 0.00168 0.00168 0.00168 0.00171 0.3781 0.00169 0.00169 0.00169 0.00169 0.00168 0.00169	737 738	7 WBGene00003623 8 WBGene00003651		Nuclear hormone receptor family member nhr-25 Nuclear hormone receptor family member nhr-61	0.444516087 0.553634785	0.146061 0.192117	0.000205	0.002303 0.002573	287.7910244 152.37296
741 W6Genm00003750 rhp-12 Neuropetiol-Like Protein 0.88048177 0.2806187 0.28058 0.08058 0.8804877 743 W6Genm00003764 rhp-20 Neuropetiol-Like Protein 0.98051877 0.22807 0.00138 0.00281 0.770674277 745 W6Genm00003764 rhp-20 Neuropetiol-Like Protein 0.370171071 0.12504 0.00158 0.01161 0.11505 0.05128 0.01018 0.00281 0.770171071 0.12535 0.001161 0.01151 0.55228140 746 W6Genm00003767 rmm3- Neuropetiol-Like Protein 0.326078077 0.15604 0.01108 47.42725442 747 W6Genm00003764 rms-2 Nicola Mentadoricodine ademonstructedia ademythransferana 2 0.3260843 0.15647 0.01108 47.42725442 757 W6Genm00003764 rms-2 Nicola Mentadoricodine ademonstructedia 0.34078678 0.15644 0.15644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85644 0.15647 0.85645 0.56647	739	9 WBGene00015497	nhr-76	Nuclear Hormone Receptor family		0.160975	0.007666	0.036567	
743 WBCsmB00003776 0.2869 10.7087422 744 WBCsmB00003746 rh.9 NacroppidL-Like Protein 0.37711278 0.1869 0.00718 0.1215 13.231480 745 WBCsmB00003746 rh.9 NacroppidL-Like Protein 0.3771 0.0155 0.01158 0.01178 0.01158 0.01178 0.01158 0.01178 0.01158 0.01178 0.01158 0.01178 0.01158 0.01178 0.01158 0.01108 474.2725140 746 WBCsmB00001776 rm.3-1 NacroppidL-Like Protein 0.01169 474.2725140 0.03278 0.01108 474.2725140 746 WBCsmB00001778 rm.0-1 NCNO (conserved nuclear protein, als PS) homolog 0.03494 0.04649 0.0217 0.01108 474.2725140 757 WBCsmB00003788 rm.0-2 Nackar Proteomylas Protein 0.330494 0.02044 0.02144	741	1 WBGene00003750		Neuropeptide-Like Protein			0.000505	0.004647	
744 W6Come0000742 mp-67 Neuropsipic-Like Protein -0.3701278 0.5048 0.0078 0.0178 0.1513 0.0178 0.0018 0.0108 0.0118 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0118 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0187 0.0018 0.0118 0.0187 0.0018 0.0118 0.0186 0.0118 0.0187 <td></td> <td></td> <td>nlp-24 nlp-26</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			nlp-24 nlp-26						
740 WBGene00021428 nip-B0 Neuropspild-Like Protein -0.38550348 0.01514 0.01131 25.522810 747 WBGene0002176 nmaL Nocinamide/incoinie add motionalodie addinyl/transferase 2 -0.34278978 0.118027 0.01155 0.01108 8.508207 748 WBGene0001747 nmaL Nocinamide/incoinie add motionalogi/ticke/incoinie add PSF) homolog -0.342789787 0.011516 0.01151 0.011516 0.011516 0.01151 0.011516 0.011516 0.011516 0.011516 0.011516	744	4 WBGene00011227	nlp-67	Neuropeptide-Like Protein	0.479351832	0.480493	0.009388	0.042788	24.44910517
747 WBGene0002263 np-81 Nuccoppidie-Like Protein 0.76690119 0.7781 0.01556 0.01100 74.272542 748 WBGene00001747 mmp-1 Nuccommenderoticina ead mononuclocide ademylytransferase 2 0.32078978 0.01556 0.01100 74.272542 749 WBGene00007437 mmp-1 Nuccommenderoticina ead mononuclocide ademylytransferase 2 0.3208486 0.32037 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00278 0.00178 0.00178 0.00178 0.00278 0.00178 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.00178 0.00284 0.001784 0.001784 0.0	746	6 WBGene00011428		Neuropeptide-Like Protein Neuropeptide-Like Protein	-0.365503948	0.150303	0.001614	0.011315	205.5228104
749 WBGene0007747 nong-1 Neuronal Membrane GlycoProtein 0.44203805 0.25037 0.00576 0.03203 75.28191024 750 WBGene0000774 noc-2 NoNO (consumered nuclear protein, ska PSF) honolog 0.33208403 0.08544 3.0156.4 4.045796 0.03208 4.0454796 0.00544 0.0054			nlp-81						
751 WBGene0003784 no.e-2 NarOS related -4.03305843 1.0.8564 3.61E-08 4.03E-06 4788.44551 753 WBGene0003788 npp-2 Nuclear Pore complax Protein -0.33054083 0.02017 3.94E-12 8.18E-06 478.14551 754 WBGene00027681 npp-3 Nuclear Pore complax Protein -0.3006403 0.02801 1.94E-12 5.18E-06 5.18E-06 </td <td>749</td> <td>9 WBGene00017437</td> <td>nmgp-1</td> <td>Neuronal Membrane GlycoProtein</td> <td>0.404994668</td> <td>0.250377</td> <td>0.006756</td> <td>0.033203</td> <td>75.29819024</td>	749	9 WBGene00017437	nmgp-1	Neuronal Membrane GlycoProtein	0.404994668	0.250377	0.006756	0.033203	75.29819024
733 WBGene00007493 npp-2 Nuclear Pore complex Protein 4.0.34139065 0.0.2110 8.94E-12 8.19E-00 9.15E-06 5.687673 755 WBGene00012555 npp-25 Transmembrane protein 33 homolog 0.335164179 1.70486 0.00224 1.013390471 756 WBGene00012555 npp-4 Nucorine Keepptor Associated 0.351616719 1.70486 0.00354 0.02224 1.003440 0.02224 1.0138636 757 WBGene00012610 nth - Endonuclease III homolog 0.3902711 0.3902711 0.13967 0.00356 17.84085340 759 WBGene00012622 nth - Hort Like (yeast CCRAINOT complex component) 0.31902711 0.31967 0.00356 0.00481 18.8839171 760 WBGene00012622 nth - Hort Like (yeast CCRAINOT complex component) 0.31707355 0.129867 0.00386 0.42817 1.8567 0.00386 0.41161 0.129777 1.91746 0.42817 0.41617 1.9167 1.9167 1.91747 0.01868 4.035166 0.016777 1.91747 0.00356 0.411645 0.41617 1.9167 1.91674 1.9164 <td>750</td> <td>1 WBGene00017778 1 WBGene00003784</td> <td></td> <td></td> <td></td> <td>0.164674</td> <td>3.29E-07 3.61E-08</td> <td>2.08E-05 4.03E-06</td> <td>1990.389883 4664.979691</td>	750	1 WBGene00017778 1 WBGene00003784				0.164674	3.29E-07 3.61E-08	2.08E-05 4.03E-06	1990.389883 4664.979691
754 WBGene0007493 , np-23 Nuclear Pore compacy Protein -0.3006403 0.6005 1.81E-06 6.96E-03 2105.877295 756 WBGene0007051 nrn3 Nicolnic Receptor Associated 0.3321407 0.3321407 0.3321407 0.3321407 0.3321407 0.3316179 0.17048 0.0019 0.02217 73.183809 757 WBGene00012101 nth-1 Endonuclease III homoing -0.3001403 0.48183207 0.3818170 0.15087 0.0618 0.0018 0.02217 73.183809 758 WBGene0001225 nucl-1 Nichase CRANOT complex component) 0.3027217 0.3186779 0.00380 0.0018 0.8289471 0.888.90171 769 WBGene00003252 nucl-1 Nichase CRANOT complex component) 0.30272407 0.42055117 0.50387 0.681-0 1.916-0 0.00384 0.888.91711 1.888.99171 761 WBGene00003183 nucl-1 Nucleosome-remodeling factor subunit NURF301-ikke 0.4311414 1.42047 3.862.65 3.00384 0.00394 0.00324 0.00424 0.00392 0.00424 0.00392 0.00424 0.00524 0.00524 0	752	2 WBGene00013347	nova-1	NOVA kh (KH) homology domain homolog	0.332908423	0.122061	0.000847	0.006946	4788.844551
755 WBGene0007651 nn.3 Nicoline Receptor Associated 0.35168179 1.02221 0.00149 0.022254 1103.389047 776 WBGene00071101 nth-1 Nicoline Receptor Associated 0.35168179 0.136867 0.03686 0.777 0.03686 173.4168300 758 WBGene0007101 nth-1 Endonuclease III homoig 0.3802751 0.13867 0.00386 163.7489530 759 WBGene0007651 nt.3 NOT-Like (yeast CCR4NOT complex component) 0.31747537 0.00183 0.02481 188.849171 769 WBGene0007652 nt.3 NOT-Like (yeast CCR4NOT complex component) 0.31747537 0.23174555 0.16439 8.664-0 0.11617 15774537 763 WBGene00078030 oet.1 Nucleonoritabutin NURF301-like -0.3072204 0.05935 4.326-08 4.0364514 0.12477 0.01249 0.03252 4.0034706 4.0364514 0.14477 1.01464 0.01477 0.01461 0.01477 0.0148 0.02472 0.0148 0.02472 0.0148 0.02472 0.01478 0.01478 0.01478 0.01478 0.014542 0.014542 0.0	754	4 WBGene00007493	npp-23	Nuclear Pore complex Protein	-0.300864034	0.068085	1.81E-06	6.96E-05	2105.876795
77 WBGene0001101 nh. Neuronia SYmmetry 0.48188326 0.381486 0.07071 0.038658 175.4080536 759 WBGene00003252 nh.2 NOT-Like (yeast CCR4/NOT complex comporent) 0.3902751 0.13857 0.00285 0.00285 0.00285 0.00285 0.00286 0.00187 0.00186 0.00187 0.00186 0.00187 0.00186 0.00187 0.00186 0.00187 0.00186 0.00187 0.00186 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 0.00187 <td></td> <td></td> <td>npp-25</td> <td>Transmembrane protein 33 homolog Nicotinic Receptor Associated</td> <td></td> <td></td> <td></td> <td></td> <td></td>			npp-25	Transmembrane protein 33 homolog Nicotinic Receptor Associated					
759 WBGene0003825 ntl-2 NOT-Like (yeast CCRANOT complex component) 0.3902751 1.13867 0.00286 0.00186 0.00286 0.00186 0.00286 0.00186 0.00286 0.00186 0.00286 <td>757</td> <td>7 WBGene00021415</td> <td>nsy-4</td> <td>Neuronal SYmmetry</td> <td>0.481883261</td> <td>0.384186</td> <td>0.007671</td> <td>0.036568</td> <td>178.4086364</td>	757	7 WBGene00021415	nsy-4	Neuronal SYmmetry	0.481883261	0.384186	0.007671	0.036568	178.4086364
760 WBGene0003282 nti-3 NOT-Like (yeast CCR4NOT complex component) 0.317187733 0.123075 0.00226 2527.15337 761 WBGene00021622 nu-5 NADH Ubiquinner Cxixdroductase 0.93174955 0.14398 6.46-10 1.916-07 1957.75237 762 WBGene0000190 nu-1 Nucleosome-remodeling factor subunit NURF30-I&e -0.46531946 0.12037 6.003917 2527.242485 763 WBGene00001803 oet-1 Cocyte Excludef Factor -0.4619164 0.12037 2.01240 2464.4518 0.20371 246-12 3.038.45533 767 WBGene0000302 pat-1 Polyadomylate-hndrig protein -0.463.46627 0.00817 261-128 3.038.45533 767 WBGene0000317 pat-2 Polyadomylate-hndrig protein -0.423.46627 0.00817 261-26 9.151.49 1.00124 0.00221 1661.498 1.15972 770 WBGene0000331 pat-2 Polyadomylate-hndrig protein 0.0154.577 0.00341 1.00214 1.00214 1.00214 1.00214 1.0164.11577 0.0	759	9 WBGene00003825	ntl-2	NOT-Like (yeast CCR4/NOT complex component)	0.39027511	0.139657	0.00053	0.004819	1858.890171
762 WBGene00021962 nu-6 NADH Ubiquinone Oxidomductase 9.03174955 0.14399 6.461-0 1.91E-07 159775227 763 WBGene000018038 0.e1-1 Oxogte Excludel Factor -0.3072246 0.30935 0.326-5 0.3024206 0.30935 0.3224.045 0.45611184 0.12007 1.161-07 1.162-07	760	0 WBGene00003826	ntl-3	NOT-Like (yeast CCR4/NOT complex component)		0.123075	0.000286	0.002975	2537.215337
764 WBGene00019839 oot-1 Oocyne Excluded Factor -0.3072204 0.09395 3.28-08 4.382-08 2.4724405 765 WBGene00005393 oot-1 SPARC -0.40055020 0.09601 7.28E-12 3.18E-08 51244025 767 WBGene00003902 p.3-1 Polyadenylate-binding protein -0.433406027 0.06801 7.28E-12 8.19E-09 3338.555333 769 WBGene00003905 p.ab-2 Polyadenylate-binding protein 0.3425(3047 0.19834 0.00735 1289.493453 769 WBGene00003936 p.ab-12 Protein pat-12 notein pat-14 0.681154276 0.118342 0.00733 1289.493453 770 WBGene00003931 p.at-4 1496.116670 0.00523 0.00421 2.00523 0.00252 0.00421 2.18.60258 771 WBGene0000393 p.at-9 Paniyaed Arrest at Two-104 0.52042681 0.17737 0.00232 0.00241 2.23.526328 772 WBGene00003937 p.a-5 Protein same subuni bet pho 0.61052262 0.248450 <td>762</td> <td>2 WBGene00021562</td> <td>nuo-5</td> <td>NADH Ubiquinone Oxidoreductase</td> <td>0.931749555</td> <td>0.164399</td> <td>8.64E-10</td> <td>1.91E-07</td> <td>1597.475297</td>	762	2 WBGene00021562	nuo-5	NADH Ubiquinone Oxidoreductase	0.931749555	0.164399	8.64E-10	1.91E-07	1597.475297
765 WBGene0003893 osl-1 SPARC 0.44005503 0.9682 1.41E-07 1.10E-06 512.412822 766 WBGene0000302 pab-1 Polyadenylata-binding protein -0.453.6062 0.06017 2.00083 0.00282 1.968.64.3061 768 WBGene0003030 pab-2 Polyadenylata-binding protein 0.3445.2004 0.13082 0.00083 0.07124 1.968.64.3061 769 WBGene00003917 pa-2 Polyadenylata-binding protein 0.3445.2004 0.151342 0.00083 0.0737 7.83.3740 770 WBGene00003931 pal-4 Integrin-linked protein kinase homolog pat-4 0.33321408 0.11542 0.00023 0.0022 2.23.326530 771 WBGene00003947 pb-1 Proteasome subunt beta type 0.523426255 0.234252 0.24559 2.23.326530 773 WBGene00003951 pb-5 Proteasome subunt beta type 0.5234262 0.45559 4.556.4 4.156.04 4.156.04 4.156.04 4.156.04 4.156.04 4.156.04 4.156.04 4.156.04 4.156.04<									
767 WBGene00003802 pai-1 Polyaderylate-bindro protein 0.4032704 0.18904 0.00124 0.00893 0.00724 1.89044 0.00124 0.00893 0.00724 1.89044 0.00124 0.00893 0.00724 1.89044 0.00983 0.00724 1.89044 0.00983 0.00724 1.89044 0.00983 0.07145 0.00983 0.00724 1.48145 1.89044 1.89044 0.00983 0.00724 1.48145 1.89044 0.00124 0.00124 0.161454 0.00124 0.00124 1.68047 0.11844 0.00124 0.00124 0.1601455 0.00124 0.00124 0.1601455 0.00124 0.00124 0.1601455 0.00124 0.00124 0.1601455 0.00124 0.00124 0.1601455 0.00124 0.00124 0.1601455 0.01274 0.11545 0.00124 0.16162852 0.23824 0.00124 0.116145 0.00124 0.160145 0.01274 0.11645 0.01274 0.116145 0.01274 0.116145 0.00124 0.016145 0.01274 0.116145 0.									
769 WBGene00003917 par-2 hypothetical probin 0.328163047 0.168973 0.00019 0.309421 1496.115872 770 WBGene00003393 pat-4 Integrin-linked protein kinase homolog pat-4 0.33221408 0.115482 0.00023 0.00242 316.002585 771 WBGene0000393 pat-9 Paralysed Arrest 1Tw-oloid 0.53224630 1.017737 0.00023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0232 223.325582 773 WBGene00003947 pbs-1 Proteasome subunit beta type 0.558345225 0.248550 0.00231 0.0272 0.11648 0.00072 0.0176 0.1164 0.000734 0.475 1.15747 774 WBGene0000351 pbs-5 Proteasome subunit beta type 0.58734521 0.01764 0.11649 1.56429 9.156-0 0.150446 4153.0044 777 WBGene0000355 pc1-1 Proteasome subunit beta type 0.403746 0.18405 3.156-0 0.13047 1.42545 1.20.800374 1.42545 1.42648	767	7 WBGene00003902	pab-1	Polyadenylate-binding protein	0.403279048	0.158064	0.001249	0.009292	16966.43661
770 WBGene0000393 pat-12 Protein pat-12 notes in the set on holog pat-14 not holog pat-14 not holog pat-14 <	768	8 WBGene00003903 9 WBGene00003917		Polyadenylate-binding protein hypothetical protein	0.344520045 0.326163047	0.130529	0.000983	0.007735	
772 WBGene00003333 pa+9 Paniyad Arest at Two-fold 0.52042803 1.17737 0.00221 223.326528 773 WBGene00003947 pb+2 Proteasome subuni beta type 0.616282955 0.23823 0.00251 2175.31337 774 WBGene00003945 pb+2 Proteasome subuni beta type 0.52834252 0.24857 0.00124 0.00124 0.01786 61162829 242459 0.00124 0.01786 611787 4118.00441 0.45805 4153.00441 0.45805 4153.00441 0.45805 4153.00441 0.45805 4163.00441 0.45805 4163.00441 0.45805 4163.00441 0.45805 4164.004 814505 4163.00441 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 414505 4164.004 415050	770	0 WBGene00003936	pat-12	Protein pat-12	0.611542769	0.113434	6.21E-09	9.15E-07	736.3749
774 WBGene00003945 pbs-2 Proteasome subunt beta type 0.5283422 0.24450 0.001726 0.01786 0.007126 0.01786 0.001740 0.00491 0.00454 413.0044 775 WBGene0000861 pch.2 Ptatative pachytene checkpoint protein 2 -0.390330912 0.07594 6.19E-09 9.15E-07 244253012 777 WBGene00003055 pcn.1 Proliferating cell nuclear antigen 0.607127617 1.9346-7 3.942-08 3.916-03 372.111635 779 WBGene00003055 pcn.1 Proliferating cell nuclear antigen 0.607127617 1.93467 1.912470 9.836-45 0.100030 972.111635 780 WBGene00003055 pcn.2 Protein disulfide-isomerase 2 0.697406245 0.14460 3.786-06 10.00019 0.83245777 1.93467 1.986-7 1.426-05 1.208570 0.20126 0.00121 0.2124-05 0.00014 6.84245702 781 WBGene0001635 pem.2 PERMaatle eggshall 1.15968876 0.46796 0.00121 6.224-55 0.0074 6.284	772	2 WBGene00003933		Paralysed Arrest at Two-fold	0.520428631	0.177378	0.00023	0.00251	223.3265828
775 WBGene00003651 pb-5 Proteasome subunit pb-5 [*] 0.00172619 0.22973 0.000410 0.00454 413.00484 776 WBGene00003661 pc1. Potashoenokyportate CarboxyKinase 0.74814114 0.149598 3.916-06 1352.00733 777 WBGene00003055 pc1. Phosphoenokyportate CarboxyKinase 0.74814114 0.149598 3.916-06 1352.00733 779 WBGene000023055 pc1. Phosphoenokyportate CarboxyKinase 0.80734647 1.91240 3.916-06 1352.00733 780 WBGene00002305 pc1. Phosphoenokyportate CarboxyKinase 0.80745454 0.14469 3.924-05 0.130830 780 WBGene00002375 pen-2 Gamma-secretase subunit pen-2 -0.31130335 0.018199 4.224-05 100448 0.04541 0.649746 0.65733726 0.355420 0.00741 0.68426371 0.138467 1.92548 1.14566545 0.10043 0.04914 0.649746 0.6373726 0.355420 0.00724 0.6373745 0.355420 0.00424 0.04914 0.649746 <	773	3 WBGene00003947 4 WBGene00003948			0.616289295	0.238922	0.000524	0.004778	2175.10778
777 WBGene000021043 pck-1 Phosphoeno/pyruate CarboxyKinase 0.74814114 0.149588 3.45E-08 3.91E-06 1322.00733 778 WBGene00002355 pch Prolatinging cell nuclear antigen 0.6073547 0.12186 3.52E-05 0.01309 9712.411353 779 WBGene00002355 pch Phosphodiesterase 0.8074544 0.144678 3.82E-05 0.01308303 779 WBGene0000365 pch Phosphodiesterase 0.80745454 0.14469 3.78E-06 0.00121 372E-06 0.00124 0.6846820721 372E-06 0.00124 0.6846820721 372E-06 0.00124 0.6846820721 373E-06 0.00124 0.6846820721 372E-06 0.00124 0.6846820721 372E-06 0.00124 0.6846820721 372E-06 0.00124 0.68268266 372E-06	775	5 WBGene00003951	pbs-5	Proteasome subunit pbs-5	0.600722619	0.229973	0.000491	0.004545	4163.00484
778 WBGene00003855 por1 Proliferating cali nuclear antigen 0.8073647 0.12108 9.53E-55 0.001309 7912.411635 779 WBGene00003855 por1 Protein diaulifide-isomerane 2 0.99453777 1.93467 1.9186-7 1.2450-5 120.809 3761-5 120.807 120.817									
760 WBGene00003663 pol-2 Protain disulfide-isomerase 2 0.697406245 0.174469 3.76E-06 0.00012 9312430373 761 WBGene00001635 perm-2 Garma-screttase subunit per-2 -0.0113935 0.81599 2.82L-55 0.00714 682.403073 782 WBGene0001635 perm-2 PERMashle eggshall 1.5668576 0.466796 0.004213 0.22242-55 0.00744 6584282702 783 WBGene0001635 perm-4 PERMashle eggshall 0.567337255 0.355426 0.004213 0.222405 0.00744 6584282702 784 WBGene00003076 pes-4 PERmashle eggshall 0.567337255 0.355426 0.00023 218106134 109.004466 2.348076332 0.400496 2.000376 0.01341 109.004466 10.85767 0.00075 0.01341 109.004466 10.85767 0.00075 0.01341 109.004466 10.85767 0.00075 0.01341 109.004466 10.85767 0.00075 0.0034 12.81061 10.9076 0.00314 10.9044666 10.90376	778	8 WBGene00003955	pcn-1	Proliferating cell nuclear antigen	0.60735647	0.192108	9.53E-05	0.001309	7912.411635
761 WBGene00003875 pen-2 Gamma-secretase subunit pen-2 -0.30113035 0.01899 4.282-45 0.000741 688.2680.361 762 WBGene00016036 perm-4 PERMaable eggshall 1.15665637 0.466756 0.000741 689.2680.361 778 WBGene00016038 perm-4 PERMaable eggshall 0.567337285 0.355428 0.004241 0.00494 0.00494 0.00494 659.428770 0.23206 3116.09324 225.0549827 225.	780	0 WBGene00003963	pdi-2	Protein disulfide-isomerase 2	0.697408245	0.174469	3.76E-06	0.000121	9312.403973
783 WBGene0001683 perm-4 PERMaeble eggshell 0.65733726 0.355428 0.004213 0.02320 13110.9324 764 WBGene000016376 pe-4 Patterned Expression Site 0.730671119 0.23286 2.857426 0.00326 2.850426 0.004213 0.02320 13110.9324 785 WBGene000013080 pe-57 Patterned Expression Site 0.318763352 0.14085 0.00375 0.018134 190.9004805 786 WBGene0001130 pgm-1 ProCRaNulin homolog 0.7021427 0.18983 1.28E-45 0.00223 412.881061 787 WBGene0000413 pha-4 CDP-delacyo-ds-3-phosphatel 3-phosphatelytransferase -0.364817651 0.85776 0.00234 412.881061 789 WBGene00004013 pha-4 CDP-delacyo-ds-3-phosphatel 3-phosphatelytransferase -0.364817651 0.85776 0.00374 0.02108 400.035978 789 WBGene000020237 pha-4 Defective pharygead idend Toxin-related 0.80779908 0.00374 0.00377 0.03177 0.00377 0.03177 0.03077	781	1 WBGene00003975	pen-2	Gamma-secretase subunit pen-2	-0.301130935	0.081999	4.23E-05	0.000741	686.2686361
765 WBGene00003880 pes-7 Patterned Expression Site 0.318763322 0.14085 0.003075 0.01814 14 190.004805 786 WBGene00011836 pgm-1 ProGRaNulin homolog 0.70214527 0.18983 1.26E-05 0.00029 412.581061 787 WBGene00021677 pgs-1 CDP-data/ujkycencl-stycencl-st-phosphate13-phosphate13-phosphate142 0.304817561 0.87576 0.28E-06 9.71-65 10.857812 0.404965 10.857812 0.40397 10.836272564 0.17808 0.03377 0.03377 0.035778 0.803779600 0.307034 72.61814807 72.61814807 0.807779080 0.00177 0.0037 2.72.6181487 72.61814807 0.80779508 0.00177 0.0037 72.6181487	783	3 WBGene00016638	perm-4	PERMeable eggshell	0.567337285	0.355428	0.004213	0.023208	13116.09324
766 WBG-me00011936 pgm-1 ProGRaNulin homolog 0.70214527 0.18983 1.28E-45 0.00029 412.831061 787 WBG-me00021677 pg-1 CDP-diacyloycord-sphosphate13-phosphatikytransferase -0.364117651 0.08757 2.8EE-46 9.16C-5 10.65764 0.189823 2.8EE-46 9.16C-5 10.6576-5 10.857162 0.00324 10.389717 0.0034 0.00374 10.03576 0.17800 0.00374 0.035978 0.03978 0.00177 0.0037 2.26181459 7.26181459 7.26191459	784 784	4 WBGene00003978 5 WBGene00003980			0.730671119 0.318763352	0.223592	5.73E-05 0.003075	0.000926	226.5064982 190.9004805
788 WBGene00024013 pha-4 Defective pharyngad development protein 4 0.3682272564 0.178908 0.00374 0.02108 406.035978 WBGene0002277 phat-4 PHAryngad lawd Toxir-related 0.807196008 0.370076008 0.001077 0.0083 72.61818459	786	6 WBGene00011936	pgrn-1	ProGRaNulin homolog	0.70214527	0.189883	1.26E-05	0.00029	412.581061
789 WBGene00020237 phat-4 PHAryngeal gland Toxin-related 0.807196008 0.370038 0.001077 0.0083 72.61818459	788	8 WBGene00004013	pgs-1 pha-4	CDP-diacylgiycerolglycerol-3-phosphate 3-phosphatidyltransferase Defective pharyngeal development protein 4					
			phat-4						
	130		P.18 9		2.300024102				

		ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	lfcSE	pvalue	padj	baseMean
Print Particle of the second sec				21U-RNA biogenesis factor pid-1	-0.407842478				
Bis BookedNorm - 1 PROS Process framework - 2000000 - 2000000 - 2000000 - 20000000 - 20000000000 - 200000000000 - 200000000000 - 2000000000000 - 20000000000000 - 2000000000000000000000000000000000000									
PM Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontro< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcontro<></thcontrol<></thcontrol<>									
TP: Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>795</td><td>WBGene00012897</td><td>pisy-1</td><td>CDP-diacylglycerolinositol 3-phosphatidyltransferase</td><td>0.806846118</td><td>0.236464</td><td>3.23E-05</td><td></td><td>586.1128561</td></thcontr<></thcontrol<></thcontrol<>	795	WBGene00012897	pisy-1	CDP-diacylglycerolinositol 3-phosphatidyltransferase	0.806846118	0.236464	3.23E-05		586.1128561
PM PM PM PM PM <td></td> <td></td> <td>plp-2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			plp-2						
No. No. Nonline grant Nonline grant No. No. No. No. No.				Probable Es doiquitil-protein ligase pil-1 PMS (Post Meiotic Segregation) family				0.001008	1388.284025
Bit Number of the symplement part of the symp	799	WBGene00004075	pod-1	hypothetical protein	0.676934959	0.18984	2.73E-05	0.00053	4196.611403
B) Control Partial Number of partial B) B) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Bit Michael State Distance State Dist	802	WBGene00004128	pqn-41	Polyglutamine-repeat protein pqn-41	0.825936443	0.27001	0.000107	0.001424	368.4977198
No. 2002 Partial Sol 2002 Partia Sol 2002 Partial Sol 2002				Prion-like-(Q/N-rich)-domain-bearing protein					
No. 100 No. 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
B00 PRODUCTION inpl An Background price B000000000000000000000000000000000000			pqn-74	Prion-like-(Q/N-rich)-domain-bearing protein					
B00 Photo M2000000000000000000000000000000000000			pqn-87 prv-1	Prion-like-(Q/N-rich)-domain-bearing protein Axin-like protein prv-1					
11 1.0.1002.000000000000000000000000000000	809	WBGene00016623		Probable 26S proteasome non-ATPase regulatory subunit 9	-0.413312963	0.067811	1.31E-10	4.82E-08	
11 Marchaesstad jorden 0.88888 0.88888 0.8888 0.	810	WBGene00004205	psr-1	Bifunctional arginine demethylase and lysyl-hydroxylase psr-1		0.085204	3.56E-06	0.000116	
11 N11mm 0.31821 0.0170									
1110 Male - f open particulation 0.00000000000000000000000000000000000	813	WBGene00004235	ptr-21	PaTched Related family		0.089782	0.000114	0.001485	678.8843274
111 1.1000-0001100 10001101 4.6000 1000110 4.6000 1000110 4.6000 1000100 10000000 10000000 10000000 <td></td> <td></td> <td></td> <td>Protein Up-regulated in Dat-2(gt) Alpha-1.4 alucan phosphorylase</td> <td></td> <td></td> <td></td> <td></td> <td>128.5590818</td>				Protein Up-regulated in Dat-2(gt) Alpha-1.4 alucan phosphorylase					128.5590818
H11 Missaad001831 NG27.1 Norther press NG1.2 N	816	WBGene00019825	R02D3.8	hypothetical protein	-0.361525346	0.071211	5.44E-08	5.22E-06	920.7479404
1111 Mindback 1.0000 Mindback 0.0000 Mindback Mindback 0.0000 Mindback Mindback <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
B0 WBG				hypothetical protein					
111 1000000000000000000000000000000000000				hypothetical protein					
B1 Wilsew0011167 R0D15 m R0D151 m R0D151 m R0D151 m R0D150 m B2 Wilsew0011160 R0D15 m Papelheid press 2.387810 m 2.388810 m	821	WBGene00010989 WBGene00019855	R03D7.2 R03H10.2		0.377982398	0.206317	0.005349	0.02776	305.35087
125 Mpcmach201196 MpcDraft promo 3.8877845 0.877784 1.86.50 1.625.60 7.021184 126 MPCGace001198 MPCDraft promo 0.2331200 0.429844 0.42984 0.42984	823	WBGene00019872	R04E5.9	hypothetical protein	0.71819316	0.184416	5.61E-06	0.000159	96.0370508
B0 Production problem 1.997771 0.9876 W.E.G.W.OOM D1 WiGs-wOOM 0.9877 W.B.C.W.OOM 0.9878 <	824	WBGene00011017	R04F11.5	hypothetical protein			1.29E-06	5.38E-05	
ET Wilds-wilds 0.7145.1 Number of the second se									
150 WGGeme0011966 0.3586.221 0.151 0.0538 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0558	827	WBGene00011059	R06C1.4	hypothetical protein	0.756334354	0.178432	1.33E-06	5.54E-05	1560.526053
120 Wildsewool 1199 (F11022 Monitary preduct predu									
120 Williams/2011/250 P111400 Specifical protein -3.4607309 0.0077 S1.25.6 0.22.66 10.25.64 12.2616 17.464720 280 Williams/0000007 R1125.10 MpdMetail protein 2.2616 17.464720 12.861 17.464720 280 Williams/000001 R1252.10 MpdMetail protein 2.2616 17.664720 1.862 1.86177 1.8617 1.86				hypothetical protein					
131 WildlewindCollogie P.112/12 Microwind 4.3887277 0.5817 1.581727 0.5817 1.581727 0.5817 1.581727 0.5817 1.581727 0.58177 0.5817 <td></td> <td></td> <td></td> <td>hypothetical protein</td> <td></td> <td></td> <td></td> <td></td> <td></td>				hypothetical protein					
B8. WildsmitQU0000 R112.3 14 Specifical production of the second se	832	WBGene00011253 WBGene00020027	R11H6.5 R12C12 7	hypothetical protein hypothetical protein		0.080734	5.53E-08 4 14E-11	5.22E-06 2.24E-08	1835.343146 1719 447283
BB:MB:GeneGXXXXX F11E2.7 Typetheline groups 6.2002 19.4070800 BV WB:GeneGXXXXX AVEX.0 0.0002 19.4070800 6.2003 19.4070800 BV WB:GeneGXXXXX F11E2.7 Typetheline groups 6.2007141 6.1002 19.6000 BV WB:GeneGXXXXX F11E2.7 Typetheline groups 6.2007141 6.1002 19.6000 6.0002 19.6000 BV WB:GeneGXXXXX F11E2.7 Typetheline Groups 6.2007141 6.1002 19.6000 6.0002 19.6000 BV WB:GeneGXXXXX F11E2.7 Typetheline Groups 6.2007141 6.1002 19.6000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.000000 6.0000000 6.0000000 6.0000000 6.000000 6.0000000 6.0000000 6.000000000000 6.000000000000000000000000000000000000	834	WBGene00020039	R12E2.14	hypothetical protein	2.19144136	0.564855	4.31E-06	0.000131	21.09872237
B37 WBGerm6020044 P14115 TypeIntel prome 0.447911011 0.54584 0.00153 0.00154 0.41524 B47 WBGerm60200477 mth.51 Resented protein Res-18 0.420719734 0.10425 0.10154 0.0015	835	WBGene00020040		hypothetical protein			4.23E-07	2.47E-05	33.55723694
BN BGemG01462 F11544.2 hypothesis problem 0.3728387 0.1028 0.3565.6 0.0008 F709.58027 BV WGemG002011 F1154 D.0001 F709.58027 0.3165038 0.1116.8 0.0001 F709.58027 BV WGemG002027 mab FA RAB binly 0.3165038 0.151748 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.1116.8 0.0021 0.0116.8 0.0021 0.0116.8 0.0021 0.0121 0.0116.8 0.0021 0.0121 0.0116.8 0.0021 0.0121 <t< td=""><td></td><td></td><td>R12E2.7 R13A1.5</td><td>hypothetical protein</td><td></td><td>0.504994</td><td>0.009753</td><td>0.000202</td><td>29.7823715</td></t<>			R12E2.7 R13A1.5	hypothetical protein		0.504994	0.009753	0.000202	29.7823715
Bit No. Object State Distance State </td <td>838</td> <td>WBGene00014826</td> <td>R13H4.2</td> <td>hypothetical protein</td> <td></td> <td></td> <td>3.35E-05</td> <td>0.000618</td> <td></td>	838	WBGene00014826	R13H4.2	hypothetical protein			3.35E-05	0.000618	
Bit WitchmotONL22 Intel ¹ Bit Bit Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontro< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcontro<></thcontrol<></thcontrol<>									
B41 WEGeneroOctage rm40 Relizant-Arsensing protein 1, microbrontal -0.31000255 0.00105 <t< td=""><td>841</td><td>WBGene00004271</td><td></td><td>RAB family</td><td>0.310503908</td><td></td><td></td><td></td><td>2183.935575</td></t<>	841	WBGene00004271		RAB family	0.310503908				2183.935575
B44 WBG:mc000450 mm-2 mpschmical probin 1.3005778 0.7016 0.00161 0.00167 0.00168 0.00167				hypothetical protein					
H65 WEGene000410 rm.2 right(R), Nine-say RWA Synthesise -0.35577380 0.00528 5.557.00 10.4568 0.00541 17.278727 H64 WEGene0000410 rm.4 hypotholical protein homolog -0.35528010 0.00424 17.1278727 H64 WEGene0000420 rm.4 hypotholical protein homolog -0.33528056 0.00484 1.856.0 28.46.031 H64 WEGene0000420 rm.5 RFC [DVA replication factor lim.1/ -0.33528056 0.00484 1.856.0 28.46.031 H64 WEGene0000420 rm.5 RFC [DVA replication factor lim.1/ -0.33528056 0.00484 1.935.0 0.00385 0	843 844	WBGene00044305 WBGene00004300		Reticulon-4-interacting protein 1, mitochondrial hypothetical protein	-0.316062552	0.061802	5.58E-08 0.001401	5.22E-06 0.010153	
BHA Binding Molt produin forming 11.2286722 0.001181 0.01182 <th0.01182< th=""> <th0.01182< th=""> 0.01</th0.01182<></th0.01182<>	845	WBGene00004680	rars-2	arginyl(R) Amino-acyl tRNA Synthetase	-0.351974365	0.069362	5.58E-08	5.22E-06	1468.692213
B48 WEGene000428 m6-4 Substrate -0.32248156 0.8217 4.578-10 3.862-09 B48 WEGene000277 mp-4 Ford Trans Activity protein -0.32248156 0.85417 4.578-10 3.862-09 B48 WEGene000258 mp-4 Fhor GTPsex Activity protein -0.654121710 0.23142 0.05442175 0.16141111 0.23142 0.05442175 0.20348 0.05432176 0.20348 0.05432176 0.20348 0.05432176 0.20348 0.05432176 0.20348 0.05432176 0.05342176 0.054421776 0.05442176 <td< td=""><td>846</td><td>WBGene00004310</td><td></td><td>R-RAS related</td><td></td><td></td><td></td><td></td><td></td></td<>	846	WBGene00004310		R-RAS related					
MH3Geme000727 m-i Gaunie nucleofike suchange factor ne1-1 -3.38280805 0.04485 8.85E-11 3.86E-10 2.84E-00	848	WBGene00004326		hypothetical protein	-0.32248154	0.054217	4.57E-10	1.30E-07	3882.238935
851 WEGew000228 rgs-4 Rivo GTPase Actuality probin 0.65442197 0.6174101 0.2180 0.000401 13.986574 852 WEGew000264 rr.1-1 hypothetical probin 0.35035450 0.00247 18.66 0.00369 13.2321917 855 WEGew000252 rr.1 NNA-MickaceL Longwity 0.5588450 0.00350 0.00581 0.00350 0.00581 0.00358 0.0035				Guanine nucleotide exchange factor rei-1					
BS2 WBG-enc0000764 rp.4 Replating rp.6 0.0148 10.3181951 0.00481 0.3181951 BS3 WBG-enc000245 rt.1 hypothocia protein 0.00581<				RFC (UNA replication factor) family Rho GTPase Activating protein					
B54 WBGem00002645 re1-1 Hys/Antucad Longwity 0.32824362 0.00247 1.88E-05 0.00058 0.00057 0.00228 0.00228 0.00228 0.00228 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.0001	852	WBGene00007064	rga-9	Rho GTPase Activating protein	0.61541611	0.231882	0.000428	0.004048	193.5319651
B65 WBG-eme0000513 n:h-1 RMA-induced Longwity 0.008813 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00885 0.00748 2.208257 B67 WBG-eme00004587 m-4 RNA-induced Longwithy 0.018416 2.008214 375.146811 B60 WBG-eme0001888 m-6 RNA- (RMA RNA banding domain) containing 0.212141 207.14788 0.00835 0.00891 0.002214 375.1468811 B60 WBG-eme0001877 mp-3 Rapication Flocing Networks 0.345648697 0.17152 0.00370 170.44037 0.00385 0.00221 527.335971 B60 WBG-eme0000423 mp-112 0.054 choomal protein 1.12 0.056 choomal protein 1.12 0.056 choomal protein 1.12 0.02864 0.0071 0.02224 527.335971 B60 WBG-eme00004425 mp-18 0.055 choomal protein 1.12 0.056 choomal protein 1.12 0.056 choomal protein 1.12 0.05781 0.0278 0.02284 0.0378 0.02284 0.03781 0.0278 0.02284 <				Regulator of G-protein signaling rgs-6					
B65 WBG.ene000543 mb1 HM Binding protein 10.9597/417 0.46978 22.0982507 B67 WBG.ene000446 mb1 Regulation of Ingreshy WI Schwaltsprenden Ingaan 0.3109911 0.91786 22.0982507 B67 WBG.ene000457 mb1 Regulation of Ingreshy WI Schwaltsprenden Ingaan 0.3109911 0.91786 20.857821 B68 WBG.ene0004581 mp5 RWP (PRM MAL binding Gomain) cortaining 0.22124047 0.3148 0.03335 0.033907 1708.460378 B61 WBG.ene00018191 mp4 Regulation Potein Anonolog 0.344548067 0.1178.2 0.00485 0.02183 0.72648 22.038257 B62 WBG.ene00016757 mp1-1 Regulation Potein Anonolog 0.346458067 0.0118 0.3454916 0.02187 53.339704 B65 WBG.ene0004424 mp1-12 805 rhoosemin protein 113 0.34645907 0.01481 0.346491607 0.01481 50.339704 B66 WBG.ene0004424 mp1-12 805 rhoosemin protein 113 0.34649704 0.1469 0.02184 50.319704 B67 WBG.ene0004424 mp1-2 805 rhoosemin protein 124 0.34644	854	WBGene00009245		RNAi-Induced Longevity	0.352634524	0.205308	0.000853	0.000396	
B58 WBGene0001823 rip-1 Regulation of kngewity by E3 ubiquity-pretein igase 0.316099119 0.89819 6.998-56 0.00152 1892.38522 B59 WBGene0000488 rip-3 RNP (RM RNA brinding domain) cortaining 0.3154387 0.00134 0.00237 553.30333 B50 WBGene0001757 rip-3 Rna (RNA) Polymerase I Associated Pretein homolog 0.34569807 1.01541 0.00247 754.330337 B60 WBGene00017875 rip-3 Rna (RNA) Polymerase I Associated Pretein homolog 0.8424372 2.0148 1.648-66 1.1672 1.648-66 1.1672 1.048601481 0.4182-68 1.1672 1.04861148 0.31603911 0.00026 753.330373 B66 WBGene0000442 rp-14 605 rhosonmal protein L11 0.3866481 0.21082 0.00061 0.2384347 0.00065 0.0031 153.33313 B70 WBGene00004432 rp-14 605 rhosonmal protein L14 0.3865424077 0.00865 0.00375 0.00265 0.03375 0.00265 0.03375 0.00265 0.03375 0.00276 0.00375	856	WBGene00006513	rimb-1	RIM Binding protein	1.019597417	0.465902	0.000942	0.007488	
B59 WBGeme0004837 mp-5 RNA-binding dramal ordinating 0.8120407 0.28274 0.89757.4 0.000946 0.00284 0.000946 0.00284 0.000946 0.00284 0.000946 0.00284 0.000946 0.00141 0.00284 0.00141 0.00284 0.00141 0.00284 0.00141 0.00284 0.00141 0.00284 0.00141 0.00	857	WBGene00004409 WBGene00010923		60S acidic ribosomal protein P1 Regulation of longevity by E3 ubiguitin-protein linase		0.44726	0.000726 6.99E-05		
Bit WBGene0018191 rp1 Ras activating factor in development Of Garmine 0.312511428 0.17368 0.03330 0.039007 1790.40377 Bit WBGene0001877 rp.a7 Regitation Thombin A homolog 0.34643697 0.11253 0.04151 0.041	859	WBGene00004387	rnp-4	RNA-binding protein 8A	0.362085964	0.195732	0.005709	0.029214	3875.146861
B2: WBGene0019777 rp.a-2 Replication Frobin A homolog -0.34648307 0.74512 0.04311 0.02437 5073.35774 B63: WBGene0001377 rp.a-1 Rn (RNA / Polymerase III (B) subunit 0.34645302 0.0212 753.337374 B64: WBGene00004244 rp.112 D56 ribosomi probini 11-2 0.3866548 0.21628 0.00855 0.01753 33.3133 B68: WBGene00004244 rp.12 D56 ribosomi probini 113 0.3866548 0.21628 0.00855 0.01853 0.03288 201282 0.00485 0.01533 0.01288 509008 B68: WBGene00004431 rp-16 B065 ribosomi probini 119 0.35785 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375 0.02685 0.00375									
θet WBGene0002145 mpl-12 θoS rbosomal protein L12 0.05 rbosomal protein L13 0.05 rbosomal protein L13 0.05 rbosomal protein L14 0.05 rbosomal protein L13 0.05 rbosomal protein L14 0.05 rbosomal protein L14 0.05 rbosomal protein L18 0.05 rbosomal protein L14 0.05 rbosomal protein L18 0.05 rbosomal protein S12 0.05 rbosomal protein S1									
B65 WBGene00004423 rpl-12 605 rbosomal protein L1-2 0.0867643 0.346719 6.48E-05 0.001 1523.38133 B65 WBGene00004425 rpl-13 605 rbosomal protein L13 0.3866494 0.02723 0.04185 15255.19724 B65 WBGene00004431 rpl-19 605 rbosomal protein L18 0.5757245 0.0418 5355.90694 B65 WBGene00004431 rpl-19 605 rbosomal protein L18 0.21774 1818.45731 B70 WBGene00004401 rpl-20 605 rbosomal protein L28 0.01116 0.21692 0.01116 0.02069 6732.13131 B71 WBGene00004401 rpl-20 605 rbosomal protein L28 0.0001 0.00056 6732.13131 B71 WBGene00004401 rpl-24 605 rbosomal protein L7a 0.41476 0.02371 0.01180 0.41476 0.02371 0.01180 0.4148 0.02271 0.11180 0.4148 0.02281 0.11180 0.4148 0.02281 0.11180 0.4148 0.02281 0.11180 0.41481 0.02281 0.1118			rpap-3						
B66 WBGene000424 rpt-12 60S rbosomal protein L12 0.3686527 0.21082 0.0066 0.03234 2531.71101 B67 WBGene0000430 rpt-18 60S rbosomal protein L18 0.87562274 0.727233 0.00448 0.01465 555.50908 B68 WBGene0000432 rpt-20 60S rbosomal protein L18 0.3564207 0.1858 0.00542 0.02762 0.02763 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02764 0.02765 0.02764 0.02764 0.02764 0.02765 0.02764 0.02765 0.02764 0.02767 <			rpb-7 rol-11.2						
B8 WBGeme000430 rpl-18 60S rhosomal protein L18 0.87502254 0.727233 0.00448 0.02140 553.590904 B8 WBGeme0004432 rpl-20 60S rhosomal protein L18 0.38454077 0.18685 0.00347 0.02095 0.02147 0.01165 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.00147 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0147 0.0116 0.0116 0.0116 0.0116	866	WBGene00004424	rpl-12	60S ribosomal protein L12	0.36665943	0.210828	0.00666	0.032834	
B9 WBGene0000431 rpl-20 60S rbosomal protein L19 0.5172142 0.38254207 0.03854207 0.6855 0.00376 0.02095 2544.04899 B7 WBGene0000436 rpl-24 60S rbosomal protein L24 0.3454207 0.16852 0.00376 0.02095 2544.0889 B7 WBGene0000442 rpl-28 60S rbosomal protein L26 0.81562776 0.441764 0.00056 7.332 5522.6818 B7 WBGene0000442 rpl-74 60S rbosomal protein L7a 0.81662776 0.441764 0.00266 0.11636.02586 B7 WBGene0000441 rpl-74 60S rbosomal protein L7a 0.816.02586 0.12458 844E.07 3.812.698 B7 WBGene0000441 rpl-12 A0S rbosomal protein S.341 0.917 0.9168 0.0148 0.02124 0.01286 0.01248 0.02237 0.0121 0.01354 0.01248 0.02237 0.0149 0.0214 0.0149 0.0214 0.0149 0.0214 0.0149 0.0214 0.0149 0.0214 0.0149 0.0214 0.0149 0.0214 0.03444 0.0149 0.0214	867	WBGene00004425		60S ribosomal protein L13	0.815882076		0.002786	0.016855	
B70 WBGeme00004432 rpl-24 60S rbosomal protein L18a 0.3545/4077 0.16855 0.003647 0.20282 2674.034899 B71 <wbgeme0000440< td=""> rpl-24 60S rbosomal protein L26 0.16652 0.0070 0.00655 6728.213031 B72<wbgeme00004419< td=""> rpl-74 60S rbosomal protein L28 0.1615827.96 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.011585 0.01158<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wbgeme00004419<></wbgeme0000440<>									
B72 WBGene00004440 rpl-28 60S rbosomal protein L28 0.0071 0.00626 673.213031 B73 WBGene0000419 rpl-7A 60S rbosomal protein L7a 0.414746 0.00271 0.3388556 0.011180 0.04869 11536.2258 818.4439 B74 WBGene0000419 rpl-7A 60S rbosomal protein L7a 0.34765605 0.14176 0.002740 0.318555578 0.01458 0.01456 0.01248 84.447.0 B74 WBGene00004179 rps-10 Rbosomal Protein S12 0.0388698 0.00546 0.01282 10.1385 50.131565 B74 WBGene00004479 rps-10 Rbosomal Protein S12 0.00576 0.01385 50.131565 B74 WBGene00004469 rps-2 Rbosomal Protein S12 0.00776 0.00176 0.00076 0.00082 10.1338 50.131565 0.03776 0.00776 0.00176 0.00682 20.9314 10.9384557 0.00776 0.00076 0.00582 10.93845575 0.03776 0.00176 0.00584 10.0358 0.00174 0.00576 0.00584 10.0358 0.00174 0.00576 0.00584 10.0358	870	WBGene00004432	rpl-20	60S ribosomal protein L18a	0.395424077	0.18595	0.003647	0.020692	9674.034899
B73 WBGene0000442 ipi-28 60S rhosomal protein L7a 0.8156276 0.441767 0.00237 0.01335 552.568183 B74 WBGene0000442 ipi-A 60S rhosomal protein L7a 0.4416673 0.38656 0.11163 0.02856 0.01185 0.05865 0.124538 844E-07 3.91E-05 881.44839 B75 WBGene0000448 ipi-12 40S rhosomal protein S12 0.9885680 0.02186 0.02186 0.022837 0.02186 0.022837 0.02186 0.02186 0.02186 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.0118 0.02284 0.02186 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02284 0.02186 0.02186 0.02186 0.02186 0.02186 0.02184 0.02184 0.01284 0.02184 0.02184 0.02184 0.02184 0.02184 0.02184 0.02184 0.02184 0.01284 0.02184 0.00176 0.01064 0.02184 0.00176 0.010164 0.02184 0.01284 <td< td=""><td>871</td><td>WBGene00004436</td><td></td><td></td><td>0.349578827</td><td>0.16652</td><td></td><td></td><td></td></td<>	871	WBGene00004436			0.349578827	0.16652			
B7 WBGeme00012999 rp.a-1 DNA-directed rNA polymerase subunit 0.54758065 0.124538 8.44E-07 3.91E-05 881.44839 B7 WBGeme0000481 rp.a-1 Albosmal Protein S12 0.98858087 0.998580808 0.599851 0.00218 0.01385 5551.931665 B7 WBGeme0000481 rp.a-1 Ribosmal Protein S21 0.988590808 0.599851 0.00218 0.01285 5551.931665 B7 WBGeme00004489 rp.a-2 Ribosmal Protein S20 0.81765798 0.00776 0.00185 0.00857 0.00857 0.00857 0.00858 1.02894 1.28942542 B8 WBGeme0000472 rp.a-3 405 rbosomal protein S3 0.00877 0.04068 2.9814 1.038472216 0.22937 0.03954 469647774 B8 WBGeme00004771 rp.a-4 405 rbosomal protein S3 0.00854 1.108.2908 0.001864 4966.7773 405 456.76724 0.22948 0.001864 496.7774 B8 WBGeme00004770 rs.a-1 Serien/Provine-protein (77	873	WBGene00004442	rpl-28	60S ribosomal protein L28	0.815362796	0.441746	0.002037	0.013353	5925.68183
B7 WBGew00004479 rp-10 Rboomal Protein, Small subunit 0.34722015 0.19983 0.00546 0.022237 20447 2888 B7 WBGew0000447 rp-12 Rboomal Protein, Small subunit 0.631675789 0.515944 0.00546 0.01285 555131656 B7 WBGew00004487 rp-18 Rboomal Protein, Small subunit 0.726727318 0.515944 0.00541 0.02847 12492.2543 B7 WBGew00004495 rp-24 405 rboosmal protein S26 0.8171505327 0.407708 0.00112 0.00653 1138.85088 B8 WBGew00004475 rp-34 405 rboosmal protein S3 0.33494477 0.233742 0.01986 0.01986 505417061 B8 WBGew00004477 rp-9 405 rboosmal protein S3 0.03664 64657174 0.9864 16106.3906 0.66864 10.22818 0.00123 0.00964 16106.3906 0.56214 0.01127 0.00564 4565.1774 0.8804660004776 rp-9 405 rboosmal protein S9 0.03646 4668.67174 0.9804 4568.67174 0.9804 4568.67174 0.9804 4568.67174 0.9804 4568.67174 0.9804<			rpl-7A						
B77 WBGene00004491 rp-12 40S rbosomal protein 512 0.98858069 0.669681 0.02158 0.01258 0.01258 0.01258 0.01258 0.01258 0.01258 0.02157 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 0.00176 0.00128 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.02394 1.01394 855588 88 WBGene00004477 rp.s-3 40S rbosomal protein 53 0.03176271 0.03176271 0.03078 0.01464 448.671774 B8 WBGene00004477 rp.s-4 40S rbosomal protein 53 0.01644 1.016.3069 0.01257 0.01646 448.671774 B8 WBGene00004771 rp.s-6 40S rbosomal protein 53 0.01646 148.671774 0.021767 1.415.66 5.455781.42 0.010584 1.0103306 0.01277 1.415.66 5.455781.42 0.01287 1.415.66 5.455781.42 0			rpoa-1 ros-10	DNA-directed RNA polymerase subunit Ribosomal Protein, Small subunit					
879 WBGene00004499 rp.20 Ribosomal Protein, Smal subunit 0.7627218 0.317391 0.00075 0.00682 3163.4972 880 WBGene00004472 rp.3 40S ribosomal protein S3 0.34715032 0.40778 0.00176 0.00682 3361.47081 881 WBGene00004472 rp.3 40S ribosomal protein S3 0.343944573 0.23342 0.10868 223814 0.00877 0.004682 3361.47081 882 WBGene00004475 rp.6 40S ribosomal protein S3 0.61642456 0.51984 0.00878 0.01284 40.45171 883 WBGene00004475 rp.6 40S ribosomal protein S3 0.00868 0.01284 40.614942456 0.51984 0.008780 0.01284 40.614942456 0.01868 0.009580 0.009580 0.00284 42.0193308 0.009584 10.613408 0.009586 10.613408 0.009586 10.613408 0.009586 10.613408 0.009586 10.613408 0.009586 10.613408 0.009586 10.613408 0.001586 0.01281 10.613408 0.001586 0.01281 10.613408 0.001586 0.001581 0.00158 0.00158<	877	WBGene00004481	rps-12	40S ribosomal protein S12		0.569581	0.002158	0.013955	5551.931565
80 WBGene00004495 rps-2 405 rbosomal protein 532 0.407708 0.0112 0.0063 713.850588 85 WBGene00004495 rps-3 405 rbosomal protein 530 0.34376216 0.23381 0.00716 0.404708 0.23818 0.00716 0.40467 0.2381 0.00716 0.40467 0.2381 0.00716 0.4056 0.0056 7.552 0.00564 16106.3966 0.552 0.00564 16106.3966 0.00127 1.415.0 5.00564 7.652,673 0.00574 16106.3966 0.00127 1.415.0 5.00564 7.652,673 0.00128 7.552,673 0.00128 7.552,673 0.00128 7.552,673 0.00124 1.416.0,354 0.00124 1.416.0,354 0.00124 1.416.0,354 0.00124 1.416.0,354 0.00124 1.426,27127 0.0			rps-18						
B1 WBGene00004472 rps-3 40S rbosomal protein S3 0.3476216 0.228310 0.00776 0.040682 32814.7061 B82 WBGene00004475 rps-4 40S rbosomal protein S6 0.53742 0.1108 0.00876 0.040871 52.03742 0.1108 0.00876 0.040847 53.041121 B83 WBGene00004475 rps-6 40S rbosomal protein S6 0.051042 0.05984 0.00868 0.01280 0.03088 0.00958 1.0103.300 B83 WBGene00004770 rps-8 Ribosomal protein (rgps) haronicg 0.051179 1.416.306 5.816.420 6.816.457 1.456.457 6.886.46 1.22.28330 0.00958 1.012.655.761 (JA B88 WBGene00004700 rps-1 Robosomal protein (rgps) haronicg 0.0511412 0.17187 1.416.455.771 (JA 0.00058 0.01277 1.72.272.858 0.00161 0.00217 1.416.455.771 (JA 0.00264 1.831.4527.771 0.0223 0.003045 1.831.4527.771 0.0223 0.00164 1.831.4527.772.278.788 0.00161 0.0217 1.416.450.954.452.771.272.782.788 0.00161 0.0211 1.426.954.227.772.272.772.772.772.772.772.772.77	880	WBGene00004495			0.871550327				
83 WBGene00004775 rps-6 40S rbosomal protein 56 0.001047 0.030076 0.00127 0.050076 10103.3006 0.00127 0.050076 10103.3006 0.00127 0.050076 10103.300 0.000776 12.252.69330 0.000568 0.01217 0.01216 0.00126	881	WBGene00004472	rps-3	40S ribosomal protein S3					
84 WBGene0000478 rps-9 40S rbosomal protein S9 0.78624724 0.38058 0.00123 0.00564 1106.3306 85 WBGene00002750 rps-1 Rbosomal RNA-processing protein R3 -0.30191646 0.001287 1.41E.05 5.80E-0 455.5761.24 88 WBGene00001751 rsa-1 Sarine#Thronine-protein (FXBP) homolg 0.33188810 0.01287 1.41E.05 5.80E-0 455.5761.24 88 WBGene00016488 rsp-1 Probable spicing factor, angineserine-rich 1 0.5211421 0.174170 0.02024 0.00374 1633.14327 88 WBGene00004702 rsp-3 Probable spicing factor, angineserine-rich 5 0.646736074 0.22148 0.00111 0.02243 0.00374 1633.14327 89 WBGene00004702 rsp-5 Probable spicing factor, angineserine-rich 5 0.64736074 0.22148 0.00248 2.71725288 80 WBGene00004705 rsp-8 SR Protein (spicing factor) 0.91457 0.9243 0.00354 0.00248 2.717494 0.00157 0.52248 0.00128 2.710.40308 80 WBGene0001737 rsp-1 Regulater of Srappe formatio									
B8 WBGere00007710 rma-1 Series/Thronome-protein probabilitate 2A regulatory subunit rai-1 -0.320179809 0.071879 1.41E-0 5.80E-06 455.57E12 88 WBGere00011511 rbp-1 R-Svera Binding Potein (K7EP) homolog 0.31888110 0.015181 0.00126 0.002187 0.054510 0.00326 0.00204 453.43275 88 WBGere00004588 rp-1 Probable spicing factor, arginine/serine-rich 1 0.5221482 0.015410 0.00127 0.0223 0.000771 0.0223 0.000771 0.0223 0.000717 0.0223 0.000171 0.02243 0.000717 0.0223 0.000171 0.02243 0.000171 0.0223 0.000171 0.02243 0.000171 0.02243 0.000171 0.02243 0.000171 0.02243 0.000171 0.0024 2.01148 2.421752 0.000181 0.00251 0.00028 2.271159 0.000171 0.00025 0.00248 2.271159 0.000171 0.00025 0.00248 2.271159 0.000171 0.000171 0.00025 0.000248 2.271148 0.001711 0.001471 0.001747	884	WBGene00004478	rps-9	40S ribosomal protein S9	0.798247224	0.380588	0.001293	0.009564	16106.3906
B87 WBGene00011531 rsbp-1 RSeven Binding Protein (rzRP) homolog 0.31888017 0.154516 0.00138 0.002784 420.22212 B88 WBGene00004700 rsp-3 Probable spicing factor, arginine/serine-rich 1 0.50211842 0.00374 420.22212 B89 WBGene00004700 rsp-3 Probable spicing factor, arginine/serine-rich 3 0.33135523 0.221438 0.002717 0.02232 3127.79228 B90 WBGene00004703 rsp-6 Probable spicing factor, arginine/serine-rich 5 0.64736071 0.22143 0.00214 404.00354 B91 WBGene00004703 rsp-6 Probable spicing factor, arginine/serine-rich 6 0.4935337 0.21435 0.00242 0.01338 242.79129 B92 WBGene0001730 rsp-6 Regulator of Synapse formation 0.58837568 0.01874 402.01252 1.02514 404.00354 B93 WBGene0001370 rsp-4 Strapte formation 0.3218204 0.01874 1.02524 2.01745 0.00258 1254.42085 B94 WBGene0001290 sam-10 5.416240									
88 WBGered0004698 rp1 Probable splicing factor, arginalestrine-rich 1 0.52211422 0.174015 0.00235 0.003045 183.14327 88 WBGered0004702 rp5 Probable splicing factor, arginalestrine-rich 5 0.646736074 0.22143 0.00717 0.00235 0.003045 183.14327 89 WBGered0004702 rp5 Probable splicing factor, arginalestrine-rich 5 0.646736074 0.22143 0.00721 144.60934 89 WBGered0004705 rp6 Probable splicing factor, arginalestrine-rich 5 0.646736074 0.221435 0.00242 0.00181 0.0025 0.00284 427.040308 89 WBGered0004705 rp8 SR Protein (splicing factor) 0.90959828 0.3133 0.0025 0.00284 427.040308 89 WBGered001377 rp1 Regulator of S'rapse formation 0.58857586 0.218751 0.00274 568.1338658 89 WBGered00121870 sam-1 SAM (S-Aderney Mathemine) Transporter 0.37269841 0.187751 0.00281 2.223994 0.187761 0.00281 2.223				Seminerumeonime-protein prospnatase ZA regulatory subunit rsa-1 R-Seven Binding Protein (R7BP) homolog					
990 WBGewe00004702 rp.5 Probable splicing factor, arginanesarine-rich 5 0.644759074 0.220198 0.00161 0.00211 1464.609354 891 WBGewe00004705 rp.6 Probable splicing factor, arginalesarine-rich 5 0.49305370 0.221180 0.001211 1464.609354 891 WBGewe00004705 rp.8 SR protein (splicing factor) 0.90936282 0.33133 0.0025 0.00281 4270.40038 892 WBGewe0001320F rp.7 SR protein related 0.5985788 0.21874 0.00057 0.00251 0.64675 0.6561 0.01675 0.16162 0.11864 18.643598 0.00167 0.16167 10.84459 0.01675 0.11864 0.8459 0.8565788 0.21874 0.00176 0.01187 0.8167 0.61671 10.84459 0.00281 0.22198 0.00187 0.11864 0.01875 0.16167 10.8445989 0.01875 0.16167 10.844599 0.01875 0.16167 10.1871 3.2223984 0.179759 0.01785 0.01875 0.11871 0.2223989 0.01875	888	WBGene00004698	rsp-1	Probable splicing factor, arginine/serine-rich 1	0.502118421	0.174015	0.000295	0.003045	1638.143276
B1 WBGene00004703 rp-6 Probable splcing factor, arginentestrine-rich 6 0.4935337 0.231435 0.00242 0.01388 242.791299 B2 WBGene00004703 rp-8 SR Probin (splcing factor) 0.90996828 0.00457 1.085-05 0.00242 0.01388 242.791299 B3 WBGene00013260 rs-2 SR Probin (splcing factor) 0.90996828 0.094575 1.085-05 0.00268 1256.462068 B4 WBGene0001370 rs-1 Regulator of SYnapse formation 0.41032428 0.19775 0.00746 0.10672 1156.843569 B5 WBGene0001739 sam-1 SAM (S-Adenosyn Methorine) Tamopoter 0.3725041 0.10741 0.107671 0.01677 150.843569 B6 WBGene0001739 scn-1 Suppressor of Constitutive Dauer formation 0.4343478 0.15744 0.106837 10.17177219 B9 WBGene00017539 scn-1 Succristed dehydrogenase (ubquinone) envolveme small subunit, mitochondrial 0.310227816 0.17464 0.00681 1.1777219 B9 WBGene00001753 sch-1				Probable splicing factor, arginine/serine-rich 3 Probable splicing factor, arginine/serine-rich 5	0.391335523	0.222436	0.005717	0.02923	3127.792288
B92. WBGeme00004705 mp-8 SR Protein (splicing factor) 0.909598282 0.33133 0.0025 0.00284 4270.040308 B93. WBGeme00013207 mp-4 SR protein related 0.3727384 0.00457 168-05 0.00281 226.462068 B94. WBGeme00013177 mp-1 Regulator of SYnapse formation 0.54857588 0.218774 0.00457 168-01 0.01475 0.01672 101475 0.01748 58.41339686 B94. WBGeme000129107 sam-10 SAM (S-Adenosy Methodne) Transporter 0.3127384 0.01877 101677 101777 101777 101777 101777 101777 101777 101777 101777 101777 1017777 1017777 1017777 10177777 1017777 1017777 </td <td>891</td> <td>WBGene00004703</td> <td>rsp-6</td> <td>Probable splicing factor, arginine/serine-rich 6</td> <td>0.49335337</td> <td>0.231435</td> <td>0.002042</td> <td>0.013368</td> <td>3242.791299</td>	891	WBGene00004703	rsp-6	Probable splicing factor, arginine/serine-rich 6	0.49335337	0.231435	0.002042	0.013368	3242.791299
84 WBGene00013177 rsy-1 Regulator of SYnapse formation 0.56837598 0.218774 0.00052 0.001474 5581339585 856 WBGene0001290 sam-1 SAM (5-Adenosy) Methonine) Transporter 0.3167510 0.014751 0.00274 5581339585 866 WBGene00012970 sam-1 SAM (5-Adenosy) Methonine) Transporter 0.327625041 0.13771 0.00274 0.00187 0.01087 0.010877 0.01074 0.01167 0.011677 0.00187 0.000581 0.000581 0.00181 0.00151 0.00151 0.0117771719 969 WBGene000015391 stha-1 Succinate dehydrogenase (ubquinone) (synchrome b small subunit, mitochondrial 0.312272816 0.01784 0.00181 0.01211 127.01144 0.00185 0.01784 0.0269897 0.17584 0	892	WBGene00004705	rsp-8	SR Protein (splicing factor)	0.909936828	0.33133	0.00025	0.00268	4270.040308
B59 WBGene00012990 sam-10 Single-stranded DNA-binding protein homolog sam-10 0.41029428 0.194751 0.002746 0.01672 1156.848369 B69 WBGene00021730 sam-1 SAM (5-Adrosovy Methorine) Tinaporter 0.37265041 0.15704 0.01672 1156.848369 B79 WBGene00001730 sam-1 Suppressor of Constitutive Dauer formation 0.4343478 0.157442 0.00588 717.177279 B99 WBGene00011539 scm-1 Succinate dehydrogenase (ubqiurione) flavoprotein subunit, mitochondrial 0.370265041 0.71464 0.00668 117.177219 B99 WBGene000017539 sch-1 Succinate dehydrogenase (ubqiurione) flavoprotein subunit, mitochondrial 0.370278216 0.017830 0.00868 117.177219 B90 WBGene00007551 sch-1 Putatew succinate dehydrogenase (ubqiurione) flavoprotein subunit, mitochondrial 0.370278216 0.017480 0.00868 0.11424 20.00837 1174204 20.02837 B00 WBGene0000757 sea-2 Signal Element on Autosome 0.52529078 0.15746 2.006979 2.02.28499513 2.3249951	893 804	WBGene00013260			0.372273634	0.094575	1.05E-05 0.00052	0.004749	1295.462068
896 WBGene00021870 saml-1 SAM (S-Adenosyl Metholine) Transporter 0.372659041 0.157014 0.00167 0.812239954 897 WBGene00001730 scd-1 Suppressor of Constituive Duare formation 0.434344785 0.54242 0.00382 717.1772759 898 WBGene00011305 scm-1 Phospholid scramblase 0.4570478 0.00161 0.002182 0.00387 71.1772759 898 WBGene00015391 sdh-1 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 0.371628372 0.11696 0.000181 0.00211 124.70.41048 900 WBGene000015391 sdh-1 Putative succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial 0.322278216 0.17383 0.000956 0.04281 124.206633 900 WBGene00001575 sea-2 Signat Element on Autosome 0.525290786 0.157467 6.234-0278 0.003971 420.089971 900 WBGene000004751 sea-2 Signat Element on Autosome 0.52342278 0.005291 2.275-5 0.000596 2.24989513 900 WBGene000004751 sea-2 Signat Element on Autosome 0.52342278 0.035291	895	WBGene00012990	sam-10	Single-stranded DNA-binding protein homolog sam-10	0.410329428	0.194751	0.002746	0.016672	1156.848369
88 WBGene00011935 scm-1 Phospholipid scramblase 0.4570567 0.174645 0.000651 0.00583 1/1.1772719 899 WBGene000119351 sdha-1 Succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial 0.371628372 0.11696 0.000181 0.00211 1247.041048 900 WBGene00004751 sea-2 Signat Element on Autosome 0.52529796 0.157467 6.234-025 0.000976 420.08971 900 WBGene00004751 sea-2 Signat Element on Autosome 0.525290796 0.157467 6.000571 422.08693 902 WBGene00004751 sea-2 Ophosphoser/HRANGec) selenium transferase 0.3242272 0.000571 22.624.8949513				SAM (S-Adenosyl Methionine) Transporter					
B9 WBGreen00015391 shu-i Succinate dehydrogenase (ubquinone) [lavoprotein subunit, mitochondrial 0.371625372 0.11986 0.000181 0.00211 1247.041048 900 WBGreen000015391 sdd-i Putatelw succinate dehydrogenase (ubquinone) [lavoprotein subunit, mitochondrial 0.312678216 0.017838 0.00886 0.04281 214.260663 901 WBGreen00004751 sea-2 Signat Element on Autosome 0.52529076 0.15746 6.036291 227-65 0.00076 422.068971 902 <wbgreen00008795< td=""> sea-2 Signat Element on Autosome -0.32432728 0.058291 227-65 0.00076 422.068971 902<wbgreen00008795< td=""> sea-2 Ophosphosen/HRA/Geoj elemium transferase -0.3243278 0.058291 227-65 0.00076 422.068971</wbgreen00008795<></wbgreen00008795<>									
901 WBGene00004751 see-2 Signal Element on Autosome 0.525290796 0.157467 6.228-09 0.000976 492.0989779 920-100000000000000000000000000000000000	899	WBGene00015391	sdha-1	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	0.371626372	0.11696	0.000181	0.00211	1247.041048
902 WBGene00008379 secs-1 O-phosphoseryl-IRNA(Sec) selenium transferase -0.32432728 0.085291 2.27E-05 0.000459 622.8499513	900	WBGene00009353 WBGene00004751		Putative succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial Signal Element on Autocome	0.302278216	0.173638	0.009856	0.044281	2014.260663
	902	WBGene00008379	secs-1	O-phosphoseryl-tRNA(Sec) selenium transferase	-0.32432728	0.085291	2.27E-05	0.000459	622.8499513
	903	WBGene00021046	sedl-1	Probable trafficking protein particle complex subunit 2	0.608603276	0.51442	0.005982	0.030283	97.07075595

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
	4 WBGene00011411	sel-13	Suppressor/Enhancer of Lin-12	-0.316818038	0.073515	2.74E-06	9.40E-05	1524.36756
905	5 WBGene00011729 6 WBGene00011887	set-16 set-17	Histone-lysine N-methyltransferase SET (trithorax/polycomb) domain containing	0.54483976	0.155385		0.000603 0.000278	1177.458699 3111.475231
907	7 WBGene00012527	set-22	SET (trithorax/polycomb) domain containing	-0.326028871	0.075477	2.53E-06	8.92E-05	1185.265725
	8 WBGene00013106 9 WBGene00007403	set-26 set-3	Histone-lysine N-methyltransferase set-26	1.183138776 -0.301173217	0.258829	2.33E-07 2.27E-06		996.3234103 1364.944975
	0 WBGene00017482	set-9	SET domain-containing protein 3 Histone-lysine N-methyltransferase set-9	0.567555567				1101.603052
	1 WBGene00004783	seu-1	Suppressor of Ectopic Unc-5	0.309073799	0.139841			2431.530705
912 913	2 WBGene00013808 3 WBGene00020867	sfa-1 shc-2	Splicing FActor SHC (Src Homology domain C-terminal) adaptor homolog	0.487623423 0.405861942	0.10462 0.118582	3.01E-07 6.45E-05	2.01E-05 0.001	1667.124777 265.5423828
914	4 WBGene00006444	shn-1	Protein shank	0.42472865		0.008562	0.039897	207.2554937
916	5 WBGene00021369 6 WBGene00002207	siah-1 sid-3	E3 ubiquitin-protein ligase siah-1 Tyrosine-protein kinase sid-3	1.001959249 0.318411156	0.182945 0.158263	2.30E-09 0.005293	4.40E-07 0.027556	376.6288672 543.6685013
917	7 WBGene00004803	sir-2.4	NAD-dependent protein deacetylase sir-2.4	-0.374273824	0.085924	1.65E-06	6.47E-05	688.7668145
	8 WBGene00013725 9 WBGene00004822	ska-1 skr-16	Spindle and kinetochore-associated protein 1 SKp1 Related (ubiquitin ligase complex component)	-0.360871235 -0.307547779	0.066155	7.04E-09 0.002345		1527.651596 324.9427983
	0 WBGene00004830	slo-1	Calcium-activated potassium channel slo-1	0.518080303	0.375735			77.60536935
	1 WBGene00004875 2 WBGene00004885	smd-1 smg-7	S-adenosylmethionine decarboxylase beta chain Suppressor with Morphological effect on Genitalia	0.663133407 -0.34055069	0.149174 0.07681	5.72E-07 1.41E-06	2.98E-05 5.80E-05	1400.222112 848.104342
923	3 WBGene00004888	smo-1	Small ubiquitin-related modifier	0.539949384	0.465039	0.007417		4948.776019
924 925	4 WBGene00004891 5 WBGene00017265	smr-1 snpc-1.3	SMN (Survival of Motor Neuron protein) Related SNAPc (Small Nuclear RNA Activating Complex) homolog	0.445338649 -0.429034748	0.221191 0.247205	0.0029 0.005145		1102.458915 60.86990908
926	6 WBGene00015098	snpc-3.1	SNAPc (Small Nuclear RNA Activating Complex) homolog	0.585196595	0.224365	0.000505	0.004644	171.1386285
927 928	7 WBGene00021667 8 WBGene00011367	snpc-3.2 snpc-3.4	SNAPc (Small Nuclear RNA Activating Complex) homolog SNAPc (Small Nuclear RNA Activating Complex) homolog	0.579343078 -0.309110152	0.248736 0.09094	0.001027 0.000113	0.007963 0.001475	110.4667741 1237.743659
929	9 WBGene00004915	snr-2	Probable small nuclear ribonucleoprotein-associated protein B	0.398678764	0.161579	0.001018	0.007925	5153.814791
	0 WBGene00012896 1 WBGene00015974	snrp-200 snrp-40.2	Putative U5 small nuclear ribonucleoprotein 200 kDa helicase Small Nuclear RibonucleoProtein homolog	0.451662759 -0.333725944	0.114377 0.086649		0.000195	2673.52931 920.7056907
	2 WBGene00004927	snx-1	Sorting NeXin	0.743688461		3.07E-07		638.9186785
	3 WBGene00013011 4 WBGene00004930	snx-14 sod-1	Sorting NeXin Superoxide dismutase [Cu-Zn]	0.617974495 0.32510875		8.91E-05 0.001109		660.9321302 3853.289703
935	5 WBGene00013603	soem-1	Protein soem-1	0.379055173	0.170883	0.002483	0.015462	223.6116283
	6 WBGene00004947 7 WBGene00020496	sos-1 spat-3	Son of sevenless homolog Suppressor of PAr-Two defect	0.312789463 0.614034579	0.126317 0.140352	0.00189 8.37E-07		629.8999936 918.2430162
938	8 WBGene00004952	spd-1	hypothetical protein	0.460204197	0.187264	0.000995	0.007801	1046.421302
	9 WBGene00004954 0 WBGene00012909	spd-3 spds-1	hypothetical protein SPermiDine Svnthase	-0.453339547 0.562553801	0.082845	4.49E-09 9.41E-06		624.1318824 251.2688823
941	1 WBGene00021335	spp-23	SaPosin-like Protein family	1.570349759	0.366142	7.54E-07	3.61E-05	63.69586004
	2 WBGene00005018 3 WBGene00011522	sqt-3 srap-1	Cuticle collagen 1 Serine Rich Adhesion Protein-like	1.271241572 0.453316692		0.000711 3.31E-05		1120.822618 359.0736331
944	4 WBGene00005078	src-2	Tyrosine protein-kinase src-2	0.542898352	0.357435	0.005055	0.026622	62.03799427
	5 WBGene00005648 6 WBGene00017245	srp-7 srpa-72	SeRPin Signal recognition particle subunit SRP72	-0.321072317 0.379036922		5.38E-10 0.001567	1.45E-07 0.011074	4344.91401 1186.05165
947	7 WBGene00005832	srw-85	Serpentine Receptor, class W	0.449260849	0.627817	0.010854	0.047811	35.5221571
948 949	8 WBGene00007027 9 WBGene00020480	ssl-1 ssup-72	Helicase ssl-1 SSU (yeast Suppressor of SUa7) Protein homolog	0.773825598	0.124592 0.071712	3.37E-11 2.39E-09	2.06E-08 4.44E-07	1698.846714 934.3850633
950	0 WBGene00019983	sti-1	Stress-induced-phosphoprotein 1	0.582660008	0.17533	5.70E-05	0.000923	2465.138872
	1 WBGene00006063 2 WBGene00006066	sto-1 sto-4	Stomatin-1 Stomatin-4	0.420039715 0.360308811	0.10865 0.09442		0.000267	711.2180108 531.409298
	3 WBGene00007350 4 WBGene00006331	sucl-1	SuccinateCoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	0.441862832		0.000399		1355.599357 2943.400979
	5 WBGene00007985	sup-26 swah-1	SUPpressor SoWAH (Drosophila) homolog	-0.437094056	0.113758 0.099864	0.000576 1.23E-06		2943.400979 831.3944945
	6 WBGene00016373	swd-2.1	Set1 WD40 repeat protein	-0.317540632 0.360851403		5.51E-05		1458.051624 1947.73088
958	7 WBGene00004203 8 WBGene00019300	swsn-1 swt-1	SWI/SNF nucleosome remodeling complex component Sugar transporter SWEET1	-0.704903581	0.15873	0.005424 5.58E-07	0.028078 2.94E-05	148.9499398
	9 WBGene00044068 0 WBGene00021473	syd-9 sydn-1	hypothetical protein hypothetical protein	0.491693949 1.188696379		0.003132 8.96E-06	0.018361	346.165246 57.49835228
961	1 WBGene00007750	syg-2	Synaptogenesis protein syg-2	0.34435859	0.235113	0.011307	0.049071	218.400564
962	2 WBGene00012104 3 WBGene00006366	sygl-1 sym-1	hypothetical protein hypothetical protein	0.495176096 0.473844291	0.474342 0.202375	0.008571	0.039923 0.009461	1984.071052 754.9950698
964	4 WBGene00006377	syp-3	hypothetical protein	-0.3354636	0.069154	1.92E-07	1.39E-05	929.4353976
	5 WBGene00006374 6 WBGene00011310	syx-4 T01B4.3	Putative syntaxin-4 hypothetical protein	0.442658938 0.332949155				497.8555604 316.9962963
967	7 WBGene00011375	T02E1.2	hypothetical protein	-0.318654808	0.065011	1.65E-07	1.23E-05	1924.10595
968	8 WBGene00011383 9 WBGene00020181	T02E9.5 T02H6.11	hypothetical protein hypothetical protein	0.405479977 0.60407595		0.006066		878.8870619 1748.837458
970	0 WBGene00020188	T03F1.6	hypothetical protein	0.553824844	0.18383	0.000166	0.001977	238.8234312
971	1 WBGene00011435 2 WBGene00020229	T04D3.8 T05A8.3	hypothetical protein hypothetical protein	-0.364596872 0.488134302		0.001332 0.002908		181.5175584 171.0180648
973	3 WBGene00045249	T07A9.15	hypothetical protein	-0.634823077	0.142843	5.86E-07	3.04E-05	398.0445979
	4 WBGene00045407 5 WBGene00011606	T07D4.5 T08D2.1	hypothetical protein hypothetical protein	-0.376967883 0.736096124		2.24E-06 0.000655		1435.922536 61.79780036
	6 WBGene00011613	T08D2.8	hypothetical protein	0.972746203	0.290542			61.37440624
	7 WBGene00011631 8 WBGene00020379	T08G11.4 T09B4.5	hypothetical protein hypothetical protein	-0.33090379 0.47250837		9.43E-07 2.31E-06		1588.704349 2081.023679
979	9 WBGene00020402	T10B11.6	hypothetical protein	-0.332776824	0.072321	6.71E-07	3.32E-05	1108.721688
980 981	0 WBGene00020396 1 WBGene00020390	T10B5.10 T10B5.4	hypothetical protein hypothetical protein	0.882886579 0.332521203	0.381048 0.18238	0.000758 0.006994	0.006363 0.034115	29.39447727 137.3884607
982	2 WBGene00011688	T10C6.6	hypothetical protein	0.769574762	0.20399	8.88E-06	0.000227	796.6713114
984	3 WBGene00020411 4 WBGene00044604	T10E9.1 T10F2.5	hypothetical protein hypothetical protein	-0.380434816 -0.452340956	0.074372 0.092065	4.12E-08 8.92E-08	7.45E-06	1315.817039 678.4906654
985	5 WBGene00020433	T11F8.1	hypothetical protein	-0.475088341 -0.351652168	0.088334	7.22E-09	1.03E-06	887.4813669
	6 WBGene00020446 7 WBGene00011804	T12B3.3 T16G12.3	hypothetical protein hypothetical protein	-0.351652168 0.747923692	0.110963 0.217628	0.000197 3.19E-05		334.6041101 724.7329656
	8 WBGene00020588	T19H12.2	Acidic leucine-rich nuclear phosphoprotein 32-related protein 2	0.630498196	0.193351	6.75E-05	0.001028	5628.370737
	9 WBGene00011880 0 WBGene00011898	T21B6.3 T21C9.13	hypothetical protein hypothetical protein	0.590656564 -0.380458022	0.179398 0.058642	6.31E-05 1.18E-11		456.9396324 3941.033396
991	1 WBGene00020662	T21H3.1 T22B11.4	hypothetical protein	0.44799943	0.499629	0.010399	0.046236 5.41E-06	2668.24181
	2 WBGene00020678 3 WBGene00020674	T22B11.4 T22B7.7	hypothetical protein hypothetical protein	0.469248728 1.350568713	0.094054 0.19986	5.89E-08 6.44E-13		607.9748775 171.3854221
	4 WBGene00020709 5 WBGene00011941	T23B3.1 T23B5.4	hypothetical protein hypothetical protein	-0.308044112 -0.494279342	0.070523	2.24E-06		2533.958225 561.9631957
996	6 WBGene00020732	T23E5.4 T23E7.2	hypothetical protein	0.378741223				
	7 WBGene00011976 8 WBGene00044149	T24B8.2 T24D5.6	hypothetical protein hypothetical protein	-0.312745134 0.516007831	0.062123	8.79E-08	7.45E-06	2118.854812 223.75522
999	9 WBGene00012002	T24H10.4	hypothetical protein	-0.341980855	0.086495	1.12E-05	0.000265	1596.608962
	0 WBGene00020801 1 WBGene00020831	T25D10.4 T26C12.1	hypothetical protein Acetolactate synthase-like protein	0.323542468				
1002	2 WBGene00020854	T27C4.1	hypothetical protein	0.901117595	0.223041	2.74E-06	9.40E-05	140.7683299
1003	3 WBGene00012085 4 WBGene00012106	T27D12.1 T27F6.7	hypothetical protein hypothetical protein	0.470384868 0.501342529				359.7176906 199.2189543
1005	5 WBGene00012109	T28A8.3	hypothetical protein	-0.33659565	0.070973	3.27E-07	2.08E-05	1600.037217
1006	6 WBGene00020891 7 WBGene00012123	T28C12.4 T28D6.3	Carboxylic ester hydrolase hypothetical protein	-0.41011037 0.795997354	0.140399	0.000334		244.293457 485.0286232
1008	8 WBGene00012124	T28D6.4	hypothetical protein	0.72196596	0.269994	0.000354	0.003478	61.04062468
	9 WBGene00012125 0 WBGene00020894	T28D6.5 T28D9.1	hypothetical protein hypothetical protein	0.525710266 0.538726228				
1011	1 WBGene00006381	tac-1	Transforming acid coiled-coil-containing protein 1	0.568377229	0.314885	0.003047	0.018054	471.0401984
	2 WBGene00007217 3 WBGene00006383	tads-1 taf-2	Temporal Asymmetry between Division of Sister cells Transcription initiation factor TFIID subunit 2	-0.347020823 0.560562144				
1014	4 WBGene00006384	taf-3	TAF (TBP-associated transcription factor) family	0.325112632	0.200231	0.010031	0.044945	855.9091429
1015	5 WBGene00006385 6 WBGene00006386	taf-4 taf-5	TAF (TBP-associated transcription factor) family TAF (TBP-associated transcription factor) family	0.372686497 -0.322873215				827.4368202 2181.091759

International part of the sector protocol part of the sector part		ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
101 1									
No. No. Additional programme interfactoring and programme interfactoring an				TAF (TBP-associated transcription factor) family TAF (TBP-associated transcription factor) family					
No. No. <td>1020</td> <td>WBGene00006466</td> <td></td> <td>hypothetical protein</td> <td></td> <td>0.084304</td> <td></td> <td></td> <td></td>	1020	WBGene00006466		hypothetical protein		0.084304			
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.080935</td> <td></td> <td></td> <td></td>						0.080935			
No. No. <td>1023</td> <td>WBGene00006529</td> <td>tba-2</td> <td>Tubulin alpha-2 chain</td> <td>0.64655408</td> <td>0.359662</td> <td>0.002691</td> <td>0.016429</td> <td>17119.62819</td>	1023	WBGene00006529	tba-2	Tubulin alpha-2 chain	0.64655408	0.359662	0.002691	0.016429	17119.62819
Inst. Inst. The The Start Start Part of the S	1024	WBGene00006537 WBGene00012894							
Schemanne Construction Construction <td>1026</td> <td>WBGene00013196</td> <td>tbc-20</td> <td>TBC (Tre-2/Bub2/Cdc16) domain family</td> <td>0.324021784</td> <td>0.131024</td> <td>0.001775</td> <td>0.01211</td> <td>1647.426403</td>	1026	WBGene00013196	tbc-20	TBC (Tre-2/Bub2/Cdc16) domain family	0.324021784	0.131024	0.001775	0.01211	1647.426403
1000000000000000000000000000000000000									
111 PC Converts promoting functions for anota in a manufal product produ	1029	WBGene00006565	tfg-1	human TFG related	1.107064641	0.384589	0.000153	0.001855	538.0345403
Line Montprofit Line Montprofit Substrate Substrate <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
101 1 mage and is information in the part of a first of a part of	1032	WBGene00012904	tiar-2	TIA-1/TIAL RNA binding protein homolog	0.376206245	0.122106	0.000233	0.002537	919.9838854
1000 1000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
1111 UNDERCORD 1.11 Targets 1 Targets 1 Targets 1 Targets 2 State 2	1035	WBGene00006585	tni-3	Troponin I 3	0.705100139	0.174663	3.21E-06	0.000107	483.5052908
1110 Lab Tapah 1 Apple 1 1100 Non-constructure Apple 1 Apple	1036	WBGene00006586 WBGene00006587		Troponin I 4 TropoNin T					
1000 Number of Color Algorithm of The Number of Color Algorithm of Number of Number of Color Algorithm of Number of Number of Number of Color Algorithm of Number of Number of Number of Number of Number of Num	1038	WBGene00006588	tnt-3	TropoNin T	0.47168447	0.149489	0.000137	0.00172	1320.094277
101 Number 1 Imper 1									
1111 1111 Territy Density Landows 4.00001 4.0	1041	WBGene00012194	toe-4	Target Of ERK kinase MPK-1	0.77568584	0.261389	0.000142	0.001749	283.5644204
1144 Visional Control 1.114 A 172.65 202.000000 1145 Visional Control 1.114 1.114.84 1.114.84 1.114.84 1146 Visional Control 1.114 1.114.84 1.114.84 1.114.84 1146 Visional Control 1.114.84 1.114.84 1.114.84 1.114.84 1146 Visional Control 1.114.84 1.114.94 1.114.84 1.114.94 1146 Visional Control 1.114.84 1.114.94 1.114.84 1.114.94 1146 Visional Control 1.114.94 1.114.94 1.114.94 1.114.94 1147 Visional Control 1.114.94 1.114.94 1.114.94 1.114.94 1148 Visional Control 1.114.94 1.114.94 1.114.94 1.114.94 1149 Visional Control 1.114.94 1.114.94 1.1				Twenty One u-ma (21U-RNA) biogenesis Fouled Up Twenty One u-ma (21U-RNA) biogenesis Fouled Up		0.070602	3.82E-06		
100 UNDERWOODSTID Long-7 Mode of any presentation (DMP hands) 0.024840 0.0150 0.0151	1044	WBGene00012167	tofu-5	Twenty One u-ma (21U-RNA) biogenesis Fouled Up	-0.338059302	0.075239	1.07E-06	4.72E-05	2202.696092
1011 Tagle Of Spring 1012 Tagle Of Spring 1012 <td< td=""><td>1045</td><td>WBGene00021133 WBGene00022783</td><td>tomm-22</td><td>Mitochondrial import receptor subunit TOM22 homolog Mitochondrial import recentor subunit TOM7 homolog</td><td></td><td></td><td></td><td></td><td></td></td<>	1045	WBGene00021133 WBGene00022783	tomm-22	Mitochondrial import receptor subunit TOM22 homolog Mitochondrial import recentor subunit TOM7 homolog					
11000 Wildman 0002122 ring-1 Tenadors Associated Priori 0.00011 Springer Springer <td>1047</td> <td>WBGene00019466</td> <td></td> <td>Target Of Splicing</td> <td>0.368308859</td> <td>0.056294</td> <td>8.64E-12</td> <td>8.19E-09</td> <td>5170.323521</td>	1047	WBGene00019466		Target Of Splicing	0.368308859	0.056294	8.64E-12	8.19E-09	5170.323521
1150 Wild-ex/002101 http://doi.org/10.0001 0.01140 0.01141 0.01140 0.01141									
1152 Wild-end/0001189 w.b.1 Theory of the state	1050	WBGene00020216	trap-2	Translocon-associated protein subunit beta	0.583203373	0.1855	0.00011	0.001449	3608.537396
1150 WGGGG0001235 http://dis. 1.11200 1.11200 1.11200 1			trap-4						
1105 WGG-wG001255 4.3477391 0.008 4.567.00 4.547.00 1107 WGG-wG001255 4.347.00 0.0014 4.567.00	1053	WBGene00013255	tric-1B.1	Trimeric intracellular cation channel type 1B.1	0.75073818	0.173009	8.12E-07	3.83E-05	346.0975232
1100 WGS-wGXXXX 4.3856.477 0.078 4.256.38 7.276 1488.233 1103 WGS-wGXXXX 4.3950.477 0.0784 0.0578 0.0787 0.0786 0.	1054	WBGene00013268 WBGene00013259		Trimeric intracellular cation channel type 1B.2 Trafficking protein particle complex subunit 5	0.322875073	0.115585	0.000776 6 99E-05	0.006489	1151.914077
1155 MGS-und0014100 http://sin.ps.doi/	1056	WBGene00006618	trt-1	Telomerase Reverse Transcriptase	-0.396246727	0.072084	4.26E-09	6.72E-07	1486.233439
1999 WGCom000006 bp-10 Tempsone in the interaction of the interaction	1057	WBGene00007099 WBGene00014028		Probable thioredoxin-2 Probable dutathione reductase 2		0.065103	4.82E-08	4.87E-06	
1191 WSCeenWOODS4 11.11 Transporter of SP prefine 0.33326820 0.1157 0.01452 0.0157 0.01452 0.0157 0.01452 0.0157 0.01452 0.0157 0.01452 0.0157 0.01452 0.0157 0.01452 0.0157 0.0158 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 <t< td=""><td>1059</td><td>WBGene00008849</td><td>try-10</td><td></td><td>-0.515061731</td><td>0.265103</td><td>0.002558</td><td>0.01581</td><td></td></t<>	1059	WBGene00008849	try-10		-0.515061731	0.265103	0.002558	0.01581	
1101: Wildsmod000044 th.1 Transition space impact manifest related 4.3802248 0.41822.8 0.01107.8 0.4128.2 1001: Wildsmod00045 th.1 The honding impact mained 0.3128.2 0.00107.8 0.0128.2 0.0118.2 0.01									
1159. WBGsm002214 tb.7 Tin TancCognigate mgest domain preten malted 0.33455380 0.88845 2,456.50 0.0007 1171.156012 1169. WBGsm002215 b.2 Tille yreading 0.3455380 0.145.57 0.257.58270 0.751.45 1169. WBGsm002215 b.2 Cippating FMPA debiate preten maine 0.3523820 0.751.45 0.752.57 <t< td=""><td>1062</td><td>WBGene00006648</td><td>ttb-1</td><td>Transcription initiation factor IIB</td><td>0.436622465</td><td>0.187279</td><td>0.001508</td><td>0.010742</td><td>943.7237739</td></t<>	1062	WBGene00006648	ttb-1	Transcription initiation factor IIB	0.436622465	0.187279	0.001508	0.010742	943.7237739
1000 WBGenet00001379 Bu-1 The Through of the									
1697 Wildsem0002219 Lub2 TUB9-vielland 0.973522307 1.5846 4.16-11 2.26.163 0.97171218 168 Wildsem0002226 Lup2 Chystasmer RMA 2-binding parts 2 0.9225087 0.9228 0.922808 0.92280 0.92880 0.92280	1065	WBGene00006436	ttn-1	Titin homolog	0.483249059	0.148281	9.02E-05	0.001259	878.5099192
1101 Wildermot000226 u.d.2 Cytapiasmic RNA 2-Mathian protein 2-0 -0.34235570 0.73414 -7.647 2.662-05 89.880072 1101 Wildermot0011817 u.d.2 TWVFF and schwarg protein honolog -0.34133020 0.552-00 0.156-00 98.880072 1107 Wildermot002246 ymma Tymic/pite springer -0.34133020 0.552-00 0.017225 0.01720 0.017205 0.017205 0.01720 0.017205 0.01720 0.017205 0.01720 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.017205 0.00120 0.01120									
1101 WBGene00002265 ymt.2 TWK fumily optimisamic namelia 0.06180 0.0528 0.051	1068	WBGene00009256	tut-2	Cytoplasmic IRNA 2-thiolation protein 2	-0.342355507	0.073414	4.70E-07	2.62E-05	
11011 WBGene0002753 Mpm-1 Tymiolytale synthame -0.34033206 0.05824 1.221.06027 1107 WBGene0000712 ub.3 Ublguin Conjuguing mymm 0.30120023 0.12078 0.00248 0.12028 0.00126 0.01126 0.01126 0.01126 0.01126 0.01126 0.01126 0.01126 0.01126 0.0112 0.01126				TWinFilin actin binding protein homolog		0.150707	2.09E-06	7.70E-05	
1073 WBGene0000F72 UBsguin Conjugating enzyme 0.3737848 0.01885 <td< td=""><td>1071</td><td>WBGene00022455</td><td>tyms-1</td><td>Thymidylate synthase</td><td>-0.346333062</td><td>0.053623</td><td>1.66E-11</td><td>1.18E-08</td><td>2272.040687</td></td<>	1071	WBGene00022455	tyms-1	Thymidylate synthase	-0.346333062	0.053623	1.66E-11	1.18E-08	2272.040687
1014 WBCame.0000723 ubc.3 UBaguin Conjugating enzyme 0.0120231 0.127878 0.02442 0.712478 1079 WBCam.0001723 ub.3 UBaguin Conjugating enzyme 0.57263863 0.17118 7.726-58 0.01242 0.01244 0.01444 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01344 0.01224 0.0144 0.00044									
1000 WBG=we001154 u=c1 UBg=accCp/dtrome c oxfoReductan complex 0.5793086 0.1711 7.726.00 0.0121 0.0114 (0.1222) 1077 WBG=we001154 up63 UDP-Gaccorospillandeman 0.3802833 0.27888 0.0126 0.01216 0.01255 61.7573 541.25721 1078 WBG=we0001554 up63 UDP-Gaccorospillandemona 0.3802837 0.01816 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0116 <td>1074</td> <td>WBGene00006702</td> <td>ubc-3</td> <td>UBiquitin Conjugating enzyme</td> <td>0.301209231</td> <td>0.126788</td> <td>0.002482</td> <td>0.015462</td> <td>2872.047397</td>	1074	WBGene00006702	ubc-3	UBiquitin Conjugating enzyme	0.301209231	0.126788	0.002482	0.015462	2872.047397
1077 WEGene001154 ug1-30 Putathe UDP-ducarroopt (manufamesiane main and the UDP-ducarroopt (manufamesim (UDP-ducarroopt (manufamesim (UDP-ducarroopt (manufamesim (UDP				Ubiquitin-like protein 1					
1109 WBGeme001599 ump-10 Rub-Attending models um-10 6.42200402 0.020471 0.02428 0.020471 0.02428 0.020471 0.02185 0.010033 1108 WBGeme0000754 um-15 hypothetical protein 0.0118 0.0	1077	WBGene00011564	ugt-50	Putative UDP-glucuronosyltransferase ugt-50	0.35168862	0.150108	0.002118	0.013753	541.2567201
1080 WBGene0000750 unc.10 hppdhnetial protein 0.282289 0.00777 0.02838 0.01481 10.01141 1081 WBGene0000858 unc.10 hppdhnetial protein 0.3018448 0.108116 0.00117 15.01141 1081 WBGene0000744 unc.2 hppdhnetial protein 0.3018442 0.28228 0.00117 15.0127201 1086 WBGene0000744 unc.2 hppdhnetial protein 0.42730842 0.55524 0.00117 15.0127201 1086 WBGene0000774 unc.30 0.00171 15.012748 0.00117 15.012748 1086 WBGene0000776 unc.31 Protein unc.30 0.01171 15.012748 0.01171 15.012748 1086 WBGene0000776 unc.34 Protein unc.30 0.01128 11.01174 0.01171 15.0170448 1087 WBGene0000776 unc.34 Protein unc.30 0.01171 15.01174 0.01171 15.017044 1087 WBGene0000776 unc.34 Protein unc.30 0.01181 0.001171 15.01174 0.01171 15.0170444 15.0170444 15.0170444 15.									
1082 WBG-eme0006853 um-15 Paramosin 0.3487.34 0.1487.44 0.0381 15.15227.21 1083 WBG-eme0006742 um-55 Paramosin 0.75 8.2467.44 0.001 35.467.44 1084 WBG-eme00067742 um-55 Paramosin 0.7573.98287 0.2478.48 0.0012 0.01128 1.447.7544 1086 WBG-eme0006776 um-53 Protein um-53 0.00128 1.447.7544 1086 WBG-eme0006776 um-54 Psychetical protein 0.337.953888 0.00788 0.00212 0.00128 1.447.7544 1086 WBG-eme00067768 um-64 Psychetical protein 0.337.952.852 0.726.56 0.00214 0.00224 0.555.85 1.552.56 0.00126 6.147.753 1086 WBG-eme0006778 um-64 Psychetical protein 0.437.453.853 0.01226 6.97.455 9.01022 6.97.455 9.01022 6.97.457.95 0.02227 0.22.55 9.0456.75 1.52.56 4.25.56 9.0456.75 1.52.56 4.25.56 9.0456.75	1080	WBGene00006750	unc-10	Rab-3-interacting molecule unc-10	0.422360942	0.252269	0.005797	0.02953	95.01800933
108. WBG.me000574 un-2 Typothela problem 0.587744 0.17585 0.342.0 0.013 584.7246 108. WBG.me000574 un-2 Typothela problem 0.42730824 0.153.5872 0.0017 58.84222 108. WBG.me000574 un-23 Typothela problem 0.42730824 0.153.5772 0.0117 0.0126 1.4477441 108. WBG.me0005770 un-34 Typothela problem 0.33760231 0.0798 81.867 0.00214 1.239.5489 108. WBG.me0000578 un-34 Typothela problem 0.3374333 0.17780 0.00214 1.239.5489 108. WBG.me0000578 un-34 Typothela problem 0.3374334 0.10234 1.2276 0.227.57228 109. WBG.me0000578 un-34 Typothela problem 0.3374343 0.10284 1.226.6 0.226.85819 109. WBG.me0000578 un-42 Typothela problem 0.3374326 1.226.6 0.226.85819 109. WBG.me0000578 un-42 Typothela problem									
1065 WBGene00006764 un.c3 Homebox protein un-30 0.00437 67.41.88312 1066 WBGene00006769 un.c3 Homebox protein un-30 0.00298 0.10208 1.00228 0.01208 1.00228 0.01208 1.00228 0.01208 1.00228 0.00128				Paramyosin					
1068 WBCene00005776 un-33 Horneckox protein un-33 0.00228 0.0028 0.0028 0.0028 0.0028 0.00288 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1067 WBGeme00006779 un-33 Protein un-33 Match Status 1088 WBGeme00006770 un-44 hypothetical protein 0.37970319 0.0812 0.00129 0.00124 129.549488 1088 WBGeme0000770 un-44 hypothetical protein 0.3374383 0.01785 3.84-55 0.00284 25.27,752.28 1089 WBGeme0000770 un-54 Mypothetical protein 0.3302714 0.129.22 65.55.00 0.01722 69.81-477354 1098 WBGeme00006796 un-54 Mypothetical protein 0.3002818 0.10124 0.00025 55.65.00 25.65.06 98.46.97 1098 WBGeme00006976 un-54 Mypothetical protein 0.3002218 0.10124 0.00021 65.86.91 99.46 1098 WBGeme0006987 un-54 Mypothetical protein 0.30223741 0.00223 55.86.81 99.46 1098 WBGeme0006887 un-1 Ubiquital protein 0.323742 0.148 5.324-56 0.0022 55.86.81 99.26 1098									
1089 WBGme00006780 un-c44 hypothetical protein 0.37743361 0.107865 3.44E-05 0.00082 25.27.75228 1099 WBGme00006777 un-c52 Basement membrane protein kinase un-c51 0.03274146 0.127286 5.32E-08 5.22E-08 1456.57389 1002 WBGme00006773 un-c54 Myosin-4 0.982204488 0.035428 6.71C-08 5.22E-08 1456.57389 1002 WBGme00006703 un-c59 hypothetical protein -0.30006803 0.00543 0.00548 0.00127 6.00120 6.041774 0.0027 5.256.04 1405.6736 0.00274				Protein unc-33					
1091 WBGme00006777 un-52 Basement membrane proteopycan 0.032748 0.127988 5.53E-08 5.52E-08 1455.67369 1092 WBGme00006773 un-69 hypothetical protein -0.30006803 0.05542 1.15E-08 1.25E-08 4255.97469 1084 WBGme00006773 un-62 Spectrin beta chain 0.20225118 0.122198 1.21216 0.0022 60.0027 2252.724046 1009 WBGeme00008564 ur-1 URiputh-related modifier 1 homolg -0.41156475 0.0022 0.01427 179.35552 71.4567.0 2252.724046 1100 WBGeme00008564 ur-1 URiputhetical protein 0.23198726 0.13447 0.0022 0.01427 179.35552 11042743 0.0224 0.14271 179.35552 1104274 179.35552 11042743 11042743 11042743 11042741 179.35552 1104474 11042	1088	WBGene00006780					3.84E-05	0.000214	
102 WBGame0000779 un-54 Myosin-4 0.93250448 0.31822 6.87E-6.0 0.0122 6811.479735 103 WBGame0000776 un-62 Homeobox protein un-62 0.50154721 0.12146 0.00276 0.00276 0.8258-84867 1066 WBGame00006807 un-67 hyoothetical protein 1.2276/0377 0.5213 0.0276 0.528.848677 1076 WBGame00006807 un-63 hyoothetical protein 1.2281527 0.2116 0.0226 0.828.848677 1076 WBGame0006807 un-75 hyoothetical protein 0.8203 0.01281 0.4226 0.12176 0.4226 0.12176 0.4226 0.12176 0.4226 0.12176 0.4246 0.4217471 0.42184	1090	WBGene00006786							
193 WBGme0000773 un-69 hypothetical protein -0.3005830 0.055427 1.15E-08 4.255.9468 194 WBGme0000680 un-70 Spectrin beta chain 0.2322518 0.12198 8.747.0 196 WBGme0000680 un-70 Spectrin beta chain 0.2322518 0.12198 8.747.0 196 WBGme0000687 un-73 hypothetical protein 1.2811937 0.25 1.862.60 0.0025 56.03342020 197 WBGme0000687 ur-73 hypothetical protein 0.41159474 3.242.05 0.252724464 100 WBGme0000687 vab-10 hypothetical protein 0.32189762 0.131475 0.22182 2.44.06 0.232724446 1100 WBGme0000687 vab-10 hypothetical protein 0.32189762 0.13447 0.0222 0.01447 1.7335522 1100 WBGme00006874 vab-10 hypothetical protein 0.32189762 0.13447 0.0224 0.1447 1.7335525 1100 WBGme0001250 vah-1 hypothetical protein	1091	WBGene00006789				0.313622	5.53E-08 6.67E-05	0.001022	
1095 WBGene00006803 unc-70 Spectri hela chain 0.202051 0.102140 0.002261 0.00278 258.845679 1096 WBGene00006824 unc-65 hypothelical protein 1.281527 0.25 0.6561 3.142.06 10.8372432 1098 WBGene00016824 un-1 Ubiquit-related modifier 1 homolig -0.41153475 0.1574 5.465.0 0.00077 3.2572440 1100 WBGene0000882 vab-10 hypothelical protein 0.58207710 0.18477 0.21445 0.01427 0.3245.0 0.01427 1.7355.52 1100 WBGene0000882 vab-10 hypothelical protein 0.38779735 0.18477 0.01427 0.22446 1.25714073 1100 WBGene00012516 vab-1 hypothelical protein 0.38779735 0.18797 0.04872 0.02444 1.25714073 1100 WBGene00125216 vab-1 hypothelical protein 0.3879976 0.18797 0.01427 1.758552 1100 WBGene0012520 vab-2 vab-2 retato hypothelical protein	1093	WBGene00006793				0.055426	1.15E-08	1.52E-06	4295.99468
1097 WBGene0006824 un-69 hypothetical protein 1.2861827 0.25 1.08E-06 1.08.372432 1098 WBGene0016944 un-1 Ubiquit-related modifier 1 homoig -0.41153475 0.15745 5.4256 0.00077 3.25524406233 1100 WBGene0006882 vab-19 hypothetical protein 0.8802332 0.219385 2.41526 9.246-0 9.2454.06233 1100 WBGene0000682 vab-19 hypothetical protein 0.38750765 0.1477 0.2355525 1100 WBGene00015216 vab-1 hypothetical protein 0.38750765 0.1477 0.0235 0.02471 2.02446 1.257140735 1100 WBGene00015216 vab-1 hypothetical protein 0.38750765 0.17971 0.01472 1.7385532 1100 WBGene00012260 vg-1 vice Drotein ATase 16 KDa proteolipid submit 2/3 0.03875 5027 0.01481 1.02527 0.01481 0.02171 1.25714073 1100 WBGene0012280 vg-1 related or protein ATase 16 KDa protein/a protein factor 0.3870507 0.01									
1098 WBGene0019844 uri-1 UR1 (Unconventicular profeidin RPBS Interactor) homolog -3.302.3741 0.056514 5.24E_07 7.31E_07 2421.95832 1099 WBGene0018564 uri-1 Ubiquitir-state modifier 1 homolog -0.41156475 0.11784 5.34E_07 3.32E_07 3.32									
109 WBGeme0018504 um-1 Ubiquit-related modifier 1 homolog -0.41153475 0.118747 5.44E-05 0.00077 322.5724048 1100 WBGeme0000882 vab-19 hypothetical protein 0.552297719 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.212016 522.267 0.01221 522.267 0.01221 522.267 0.01427 1702.265 522.571407 52.552 10.01217 52.552 10.1127 52.552 10.1127 52.552 10.1127 52.552 10.1127 10.4247 52.552 10.1127 10.4247 10.552 10.0124 10.24715 80.552 10.0124 10.2241 10.2241 10.2241 10.2241 10.2241 10.2241 10.24715 80.552 10.0124 10.22417 10.24715 10.24715 10.24715 10.24715 10.24715 10.24715 10.24715 10.24715	1098	WBGene00016944		URI (Unconventional prefoldin RPB5 Interactor) homolog	-0.309233741	0.055914	5.24E-09	7.91E-07	2421.958832
1101 WBGene0000882 vab-19 hypothetical probin 0.88902326 0.219385 2.64E-06 9.24E-05 11.4067238 1102 WBGene00015216 vab-1 hypothetical probin 0.331389762 0.13457 0.00257 2.024464 12.5714073 1103 WBGene00015216 vab-1 hypothetical probin 0.88438440 0.00457 2.024464 12.57140735 1105 WBGene00016121 vha-3 V-ype protoin TPase 16 Nopeloin 0.88438440 0.00335 0.00211 12.57140735 1105 WBGene000016120 vhg-1 Vic (Drosophild vasa Intronic Gene) ortholin 0.38169760 0.00355 0.00344 6681.146757 1106 WBGene00012203 vps-2 related to yeast Vacuolar Protein Sorting factor -0.38109762 0.16529 1.15568 7.1070524 1110 WBGene00012168 vype2019 hypothetical protein -0.44030820 0.01577 1.15568 7.1070524 1110 WBGene00012168 vype2019 hypothetical protein -0.44030820 0.15589 7.1670524 1111 WBGene00012216 W02029.1 hypothetical protein -0.44030820 <td>1099</td> <td>WBGene00185048</td> <td>urm-1</td> <td>Ubiquitin-related modifier 1 homolog</td> <td></td> <td>0.118784</td> <td>5.34E-05</td> <td></td> <td>322.5724046</td>	1099	WBGene00185048	urm-1	Ubiquitin-related modifier 1 homolog		0.118784	5.34E-05		322.5724046
1102 WBGene00008696 vab-1 hypothetical protein 0.31437 0.0221 0.01427 17.3355325 1104 WBGene00015216 vab-1 hypothetical protein 0.33775075 0.01781 0.00727 0.02464 2.57140735 1104 WBGene00012151 V1151N14R-1 hypothetical protein 0.384569926 0.01180 0.00211 12.4547334 1106 WBGene00012263 vpi-2 V16 (Dracophile Vasa Intronic Gane) ortholog 0.484169131 0.016140 0.04574 60.14877 1106 WBGene00012263 vpi-2 hypothetical protein factor 0.484169131 0.01614 0.04574 10.51.38630 1100 WBGene00012188 W01674 hypothetical protein 0.31800027 0.27167 7.86.65 0.00115 41.251256 1110 WBGene00012188 W01274 hypothetical protein 0.348077 0.16822 0.00183 61.25138631 1110 WBGene0001218 W02275 hypothetical protein 0.48169131 0.00166 61.4779157 0.16826 0.00018 41.2513256<	1101	WBGene00006882	vab-19	hypothetical protein	0.88902325	0.219385	2.64E-06	9.24E-05	114.067293
1104 WBGene00012151 VH1N4R.1 'pyopthetical protein 0.83843040 2.20038 0.00113 0.002117 182.457354 1105 WBGene00006924 Vip.a VVspeproton ATTBase 16 KDa proteolipd subunit 2/3 0.336509256 0.01168 0.00138 0.002117 182.457354 1106 WBGene00006924 Vip.a VVspeproton ATTBase 16 KDa proteolipd subunit 2/3 0.336509256 0.00144 0.00434 15081.39857 1106 WBGene0001230 vps-2 related to yeast Vacuolar Protein Sorting factor -0.32143388 0.058624 8.18E-09 1.15E-08 2710.870824 1109 WBGene00012186 W01074 Hyopthetical protein -0.32143388 0.00287 0.01015 14.2513255 1110 WBGene00012186 W0207.5 Hyopthetical protein -0.34403840 0.327056 6.85E-05 0.00105 14.47715453 1111 WBGene00012216 W0207.5 Hyopthetical protein -0.440238280 0.00136 6.43716453 1111 WBGene00012205 W224.5 Hyopthetical protein -0.440238280 0.00137 <td>1102</td> <td>WBGene00006869</td> <td>vab-2</td> <td>hypothetical protein</td> <td>0.321389762</td> <td>0.134457</td> <td>0.002231</td> <td>0.014271</td> <td>179.3555325</td>	1102	WBGene00006869	vab-2	hypothetical protein	0.321389762	0.134457	0.002231	0.014271	179.3555325
1105 WBGene00006912 Vi-spe probin AT Pase 16 K0a proteolipid schuml 2/3 0.3856925 0.131669 0.00335 0.00344 4631.44577 1106 WBGene00006912 Vig-1 Vig (Drosophila vas Intronic Gene) ortholg 0.466191165 0.00325 0.00344 4603.148573 1107 WBGene00012033 vp-2 related to yeast Vacuolar Protein Sorting factor 0.3856926 0.16922 0.00444 0.00134 11526.02 0.00136 1156.02 0.00136 0.156.02 0.00136 1156.02 0.00136 1156.02 0.00136 0.156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136 1156.02 0.00136				hypothetical protein					
1107 WBGeme0012903 vps-2 related to yeast Vacuolar Protein Sorting factor 0.488-d511 0.11911 0.000680 0.000776 1323.406182 1108 WBGeme0012188 W01674 hypothticial protein -0.32014388 0.088624 8.169-0 11560-0 210.67062 1110 WBGeme0012188 W01274 hypothticial protein 0.31800827 1.1560-0 210.67062 1111 WBGeme001218 W0228.1 hypothticial protein 0.31800827 1.1560-0 20.00171 412.81251255 1111 WBGeme0012126 W0220.5 hypothticial protein -0.54379141 0.15520-0 0.00101 44.710533 1111 WBGeme0012210 W0220.5 hypothticial protein -0.447.033288 0.121159 2.465.40 0.00011 82.325451 1111 WBGeme0001220 W0245.4 hypothticial protein -0.447.0533 0.21134 2.465.40 0.00011 82.325451 1111 WBGeme0001224 W0245.4 hypothticial protein -0.447.8453 0.21134 2.465.40 0.00011 82	1105	WBGene00006912	vha-3			0.131669	0.000355		
1108 WBGeme0012820 vp.60 related by seat Vacoular Protein Sorting factor -0.321/43288 0.038824 8.18E-09 1.15E-08 271.0.710624 1109 WBGeme0012188 W01674 hypothetical protein 0.8007370 2.27157 7.800-50 0.00116 61.82513255 1110 WBGeme0012188 W02027 hypothetical protein 0.31800827 0.15682 0.00106 61.87005162 1111 WBGeme0012216 W02027 hypothetical protein 0.264379141 0.000587 0.00105 67.4710533 1113 WBGeme0012216 W02047 hypothetical protein 0.440238280 0.000105 67.48710533 1114 WBGeme0012267 W0245.2 hypothetical protein 0.440238280 0.00113 62.4655275 1114 WBGeme0012267 W0245.4 hypothetical protein 0.431975 0.21134 24.465 1114 WBGeme001228 W0245.4 hypothetical protein 0.431975 0.21214 0.00218 0.01218 24.471 25.0178232 1114 WBGeme001228									
1110 WBCene0001298 W0282.2 'mporthetical protein 0.31830027 0.116802 0.016529 7.16529 7	1108	WBGene00018290	vps-60	related to yeast Vacuolar Protein Sorting factor		0.058624	8.18E-09	1.15E-06	2710.670824
1111 WBGeme00020941 W02D7.5 hypothetical protein -0.544379141 0.165298 7.16E-05 0.001067 14.47491627 1112 WBGeme0012210 W02D9.4 hypothetical protein -0.364379141 0.165298 0.23756 6.856-05 0.001057 74.4710533 1113 WBGeme0012210 W02D9.4 hypothetical protein -0.44028288 0.12139 2.66E-05 0.000157 74.4710533 1113 WBGeme0012250 W02245.5 hypothetical protein 0.419722371 0.168228 0.01371 64.4553728 1115 WBGeme0012256 W0345.4 hypothetical protein 0.8389600 0.21133 0.41292357 0.01037 64.2524553 1111 WBGeme0012258 W034344 hypothetical protein 0.327860 0.22141 0.00372 64.85292851 1111 WBGeme0012258 W04844 hypothetical protein 0.327860 0.224811 0.00372 64.8292851 11110 WBGeme0012259 W04844 hypothetical protein 0.327860 0.22482 0.00487 0.	1109		W01G7.4 W02B8.2	he we will be all more the for-	0.860073078	0.274157	7.80E-05 0.000861	0.001135	418.2513255
1113 WBGene00012210 W0294.4 hypothetical protein -0.44023287 0.121392 2.66E.3 0.000519 28.3854.445 1114 WBGene00020567 W0245.5 hypothetical protein 0.41972237 0.146282 0.03021 44.6565728 1115 WBGene00020562 W0345.4 hypothetical protein 0.433101375 0.146282 0.03021 44.22508 0.03211 44.250 0.01013 18.2282851 1115 WBGene00012206 W0354.4 hypothetical protein 0.433101375 0.21327 0.012432 0.01425 250317 0.012432 0.01425 250317 0.012432 0.01426 0.01031 88.2282851 1119 WBGene0012249 W03454 hypothetical protein 0.3281647 0.03242 0.01427 0.022432 0.01427 0.022442 0.14521 5112 WBGene0001210 W0455.3 0.01471 0.11231 1121 WBGene0001202 W0455.3 0.01471 0.11232 1164.230108 0.01471 0.11232 1164.230108 0.01471 0.11232 1164.230108 </td <td></td> <td>WBGene00020941</td> <td></td> <td>hypothetical protein</td> <td>-0.544379141</td> <td>0.165299</td> <td>7.16E-05</td> <td>0.001067</td> <td>140.4791927</td>		WBGene00020941		hypothetical protein	-0.544379141	0.165299	7.16E-05	0.001067	140.4791927
1114 WBGeme00020967 W0245.2 hypothetical protein 0.41972247 0.146528 0.00386 0.003721 644.658726 1115 WBGeme00020967 W0245.5 hypothetical protein 0.833965806 0.01139 24.267 1116 WBGeme0002002 W0397.4 hypothetical protein 0.4339165806 0.01139 24.267 1117 WBGeme0001226 W03361.4 hypothetical protein 0.44751455 0.02241 0.0028 0.01147 25.29176323 1118 WBGeme001225 W03451.4 hypothetical protein -0.32876933 0.12452 0.01149 46.6299343 1118 WBGeme001229 W0484.5 hypothetical protein -0.32876933 0.12452 0.01149 66.6299343 1120 WBGeme0001297 W448.5 Salestifs 0.032144 0.02490 0.0151231 1121 WBGeme0001297 W448.5 Salestifs 0.032147 0.02482 0.014947 0.02047 0.01494 0.014947 0.01147 0.01147 0.01147 0.01147 0.01147			W02D9.10 W02D9.4				6.85E-05 2.66F-05		
1110 WBGeme00021002 W039:9.4 hypothetical protein 0.433/01975 0.21327 0.01447 250.9176220 1117 WBGeme0001222 W036114 hypothetical protein 0.44726485 0.02481 0.00350 0.012867 0.02247 0.01447 250.9176220 1118 WBGeme0001223 W03614 hypothetical protein -0.32876933 0.12452 0.001097 0.02481 0.00350 0.01286 0.02280 0.00680 0.0322 0.01487 250.9176220 1118 WBGeme0001239 W0484.4 hypothetical protein -0.32876933 0.124528 0.00480 0.01523 0.01847 250.9176220 1129 WBGeme00012019 W0485.2 hypothetical protein 0.32594746 0.20988 0.00482 0.024801 0.15123151 1129 WBGeme0001204 W0485.3 hypothetical protein 0.35744520 0.16118 0.00247 0.02447 1.46140 1.61017 1.612420 0.01246 0.161418 0.01247 1.612401 0.0124 1.6124010 0.02474 0.02047<	1114	WBGene00020957	W02H5.2	hypothetical protein	0.419722871	0.146626	0.000386	0.003721	644.6558726
1117 WBGene0001228 W03G11.4 hporthetical protein 0.447254853 0.228413 0.003283 0.012823 289.7025763 1118 WBGene00014239 W03G3.6 hporthetical protein -0.328676333 0.014262 0.00685 0.622943 1119 WBGene00012239 W04A8.4 hporthetical protein 0.32896476 0.006815 0.22392 9.014826 0.0101671521515 1120 WBGene00012109 W04B5.3 Galecin 0.41550286 0.23452 0.00427 0.22442 27.4317419 1122 WBGene00012102 W04B5.3 Galecin 0.41550286 0.234523 0.01471 0.101229 16142.30108 1122 WBGene0001205 W05F2.3 hporthetical protein 0.76530818 0.3714452 0.001471 0.101229 6142.30108 1124 WBGene00021035 W05F2.3 hporthetical protein 0.76530818 0.371447 0.01129 6142.30108 1124 WBGene0002104 W05F2.4 hporthetical protein 0.76411084 0.259657 0.00377 0.0368	1115 1116	WBGene00020962 WBGene00021002							
1119 WGenen0012239 W048.4 hypothetical protein 0.37809635 0.22042 0.006855 0.03229 931.885 158 1120 WGenen002119 W0485.3 Gal20147 0.00685 0.03229 931.885 158 1121 WGenen0021020 W0485.3 Gal20147 0.04385 0.0327 0.02442 24.31741 1122 WGene0001202 W0485.3 Gal20147 0.01417 0.01229 16142.3016 1122 WGene0001205 W05F2.3 hypothetical protein 0.37514452 0.037147 0.01417 0.01029 6142.30106 1124 WGene00021035 W05F2.3 hypothetical protein 0.75149014 0.03724 126.20017 1124 WGene0002104 W05F2.4 hypothetical protein 0.76140184 0.29725 0.00037 0.00036 94.4257443 1128 WGene0002104 W06F12 hypothetical protein 0.74410148 0.27050 0.00037 0.0036 94.4257643 1128 WGene0002106 W06F12.4 hypothetical protein 0.74496	1117	WBGene00012226	W03G11.4	hypothetical protein	0.447254853	0.228411	0.003328	0.019263	289.7025763
1120 WBGeme0002109 W0485.2 hypothetical protein 0.38259474 0.269383 0.04624 0.024809 10.15123151 1121 WBGeme00021207 W0485.3 Galactin 0.43156298 0.43156298 0.24282 0.00427 0.02427 0.02432 0.024823 0.02427 0.02427 0.02427 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.01147 0.01027 0.01147 0.01027 0.01047 0.01027 0.01047 0.01027 0.01047 0.01027 0.01037 0.0036 94.62371689 1124 WBGene00021036 W06F1-1 hypothetical protein 0.7441084 0.250567 0.00037 0.0036 94.6237149 1128 WBGene0002106 W06F1-2 hypothetical protein 0.7441084 0.25057 0.00037 0.0036 94.6237443 1128 WBGene0002106 W06F1-2 hypothetical protein 0.7441084 0.25057 0.002383 64.010278									
1122 WBGene00012274 W05B5.1 hypothetical protein 0.357164529 0.18818 0.00328 0.018849 391.6100172 1123 WBGene00021055 W05F2.3 hypothetical protein 0.765336188 0.370347 0.001417 0.011229 6144.230108 1124 WBGene00021056 W05F2.4 hypothetical protein 0.515490164 0.139726 17:25-0 0.00372 0.0036 94.4257643 1125 WBGene00021064 W06F1.1 hypothetical protein 0.74463741 0.27055 0.0036 94.4257643 1126 WBGene00021066 W06F12.2 hypothetical protein 0.74463741 0.27055 0.0037 0.036 94.4257643 1126 WBGene0002106 W06F12.2 hypothetical protein 0.74463741 0.27053 0.00383 64.010278 1127 WBGene0002106 W06H2.2 hypothetical protein 0.4279F1161 0.27045 0.00387 60.0373468 1128 WBGene0002106 W06H2.2 hypothetical protein 0.42387161 0.27049 0.00687 0.005	1120	WBGene00021019	W04B5.2	hypothetical protein	0.392594674	0.209936	0.004624	0.024809	101.5123151
1122 WBGree00021035 W05F2.3 hypothetical protein 0.76530418 0.370347 0.01147 0.10228 6142.20106 1124 WBGree00021036 W05F2.4 hypothetical protein 0.51490614 0.13726 7.755.00371685 1125 WBGree00021044 W05F1.1 hypothetical protein 0.74141084 0.25506 0.00037 0.0036 94.42575443 1126 WBGree00021064 W05F1.2 hypothetical protein 0.74463714 0.27050 0.00237 0.0036 94.42575443 1126 WBGree00021066 W06F1.2 hypothetical protein 0.74463714 0.27050 0.00287 0.0038 94.4257443 1128 WBGree00021066 W06F1.2 hypothetical protein 0.47486714 0.27050 0.00287 0.0382 79.383513815 1128 WBGree00021066 W06H2.2 hypothetical protein 0.53827476 0.01039 0.005807 0.005807 0.05807 0.03834 9.058734261 1128 WBGree00021066 W06H2.1 hypothetical protein 0.53827476 0									
1125 WBGene00021044 WOBH7.1 hypothetical protein 0.70411084 0.265067 0.0035 0.4.4257843 1126 WBGene00021064 WOBF12.2 hypothetical protein 0.749410874 0.27035 0.0036 9.4.4257843 1127 WBGene00021066 WOBF12.2 hypothetical protein 0.74941074 0.27035 0.00283 40.6010278 1127 WBGene00021066 WOBH2.2 hypothetical protein 0.427941161 0.27045 0.00367 0.0038 36.385734261 1128 WBGene0002106 WOB412.3 hypothetical protein 0.538247467 0.0139 0.006877 0.0038 36.8734261	1123	WBGene00021035	W05F2.3	hypothetical protein	0.765336188	0.370347	0.001417	0.010229	6164.230108
1128 WBGene00018206 W06F12.2 hypothetical protein 0.749463714 0.272053 0.00228 0.46.001276 1127 WBGene0002106 W06H1.2 hypothetical protein -0.42798116 0.27045 0.00268 0.00283 59.35613815 1128 WBGene0002106 W06H2.4 hypothetical protein 0.53827467 0.00398 0.005877 0.005897 0.005877	1124	WBGene00021036 WBGene00021044		hypothetical protein			1.75E-05 0.00037	0.000375	296.0371989 94 42575443
1128 WBGene00021080 W08A12.3 hypothetical protein 0.533627467 0.210039 0.000687 0.005902 78.08734261	1126	WBGene00012306	W06F12.2	hypothetical protein	0.749463714	0.272053	0.00028	0.00293	404.6010278
					-0.427981161 0.533627467	0.27045	0.006675	0.032893	59.38513815 78.08734261

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	lfcSE	pvalue	padj	baseMean
	WBGene00021101	W08F4.12	hypothetical protein	0.457215883				53.78010213
1131	WBGene00021093 WBGene00012359	W08F4.3 W09D10.1	hypothetical protein hypothetical protein	0.54259217 0.303079957	0.180108 0.164782	0.000176 0.008173	0.002062 0.038418	2459.310741 933.6120648
1132	WBGene00012358	W09D6.5	hypothetical protein	0.743014007		0.000234	0.002545	348.7016499
1134	WBGene00021123	W09G12.9	hypothetical protein		0.384649	0.004074	0.022578	102.1726232
1135	WBGene00012369 WBGene00021128	W09G3.6 W10C8.5	hypothetical protein hypothetical protein	0.346854391 0.3857996	0.120677	0.000527 0.002557		1231.446356 786.6192709
	WBGene00021125	W10C8.5	hypothetical protein	-0.594301946				55.01208747
1138	WBGene00006958	wve-1	WAVE (actin cytoskeleton modulator) homolog	0.309279993	0.141814	0.00392	0.021901	1584.358079
	WBGene00006959	xbp-1	X-box Binding Protein homolog	0.31333804		0.005241		3746.984842
	WBGene00002079 WBGene00012730	xpo-2 xrn-1	eXPOrtin (nuclear export receptor) 5'-3' exoribonuclease 1	0.306000317				3301.132351 779.6245794
1142	WBGene00006964	xrn-2	5'-3' exoribonuclease 2 homolog	0.769039566	0.179341	1.06E-06	4.69E-05	1839.046366
1143	WBGene00013666	Y105E8A.1	hypothetical protein	0.397719136	0.262461	0.007901	0.037441	200.4549105
1144	WBGene00013699 WBGene00013702	Y106G6D.2 Y106G6D.6	hypothetical protein hypothetical protein	-0.35388737 -0.366582356	0.106348	0.000108	0.001426	379.4160752 129.4034886
1146	WBGene00013726	Y106G6H.16	hypothetical protein	-0.342416552	0.120969	0.00059	0.005225	426.6513925
1147	WBGene00013741 WBGene00013790		hypothetical protein	0.738821153		0.003706		33.86962711 330 9996494
	WBGene00013790 WBGene00013792	Y116A8C.10 Y116A8C.13	hypothetical protein hypothetical protein	0.399033353 0.455190548				330.9996494 540.2672999
	WBGene00013819	Y116F11A.6	hypothetical protein	0.434952308		0.010441		39.3954211
	WBGene00022489	Y119D3B.12	hypothetical protein	0.309281928				1001.254719
	WBGene00022490 WBGene00022491	Y119D3B.13	hypothetical protein hypothetical protein	0.634738482 0.321243463				207.2238633 650.6102909
	WBGene00012431	Y11D7A.7	hypothetical protein	-0.341895188		1.32E-07		1123.635703
1155	WBGene00021189	Y13C8A.2	hypothetical protein	1.395275938	0.373539	7.74E-06	0.000203	70.53808141
	WBGene00021208 WBGene00021210	Y18H1A.2 Y18H1A.4	hypothetical protein hypothetical protein	1.323138917 0.871054978		3.07E-07 3.73E-06		235.9468584 370.1151899
1158	WBGene00021248	Y22D7AL.10	hypothetical protein		0.340591	0.003385		2885.975761
1159	WBGene00021269	Y23H5A.2	hypothetical protein	1.247190218		9.07E-05		46.62617349
	WBGene00021296 WBGene00021333	Y25C1A.13 Y34D9A.8	hypothetical protein hypothetical protein	0.315863222 1.309777065	0.11645	0.000972 5.09E-07		345.5571272 44.00448358
	WBGene00021333 WBGene00021377		tRNA-dihydrouridine(47) synthase [NAD(P)(+)]	0.323728381				447.9366031
1163	WBGene00235158	Y37E3.30	hypothetical protein	0.743586817		0.000187	0.002158	76.1095121
	WBGene00021430 WBGene00021427		hypothetical protein Protein transport protein Sec61 subunit beta	0.330588556 1.083338922				233.3553089 300.1537962
1166	WBGene00012664	Y39B6A.1	Protein transport protein Sec61 subunit beta hypothetical protein	0.954976186	0.815044	0.004325	0.023653	300.1537962 1294.638111
1167	WBGene00012700	Y39B6A.42	hypothetical protein	1.184834162	0.410309	0.000149	0.001819	439.4838733
1168	WBGene00012717 WBGene00021469	Y39E4B.6 Y39G10AR 11	hypothetical protein hypothetical protein	0.756011787 0.455890998		2.72E-06 0.00018		368.2584564 1263.060882
1170	WBGene00012722	Y39G8B.1	hypothetical protein	0.714856356		0.00018		332.5471677
1171	WBGene00021482	Y39H10A.6	hypothetical protein	0.542168857	0.140977		0.000227	343.376062
	WBGene00021502 WBGene00021533	Y40D12A.1 Y42G9A.3	hypothetical protein	-0.305166815 -0.451613928		0.000138 2.53E-06		861.8929647 310.3092244
	WBGene00021533		hypothetical protein hypothetical protein	-0.315881666				208.4614787
1175	WBGene00044922	Y43C5A.7	hypothetical protein	0.654956159	0.30085	0.001276	0.009465	321.7901758
	WBGene00012812	Y43F8B.1	hypothetical protein	0.783552598				604.2555701
11//	WBGene00012813 WBGene00012819	Y43F8B.2 Y43F8B.9	hypothetical protein hypothetical protein	0.471559816 0.827761401	0.212815	0.001728	0.0118/1	441.6676311 23.66242433
1179	WBGene00012825	Y43F8C.3	hypothetical protein	0.509280621	0.332813	0.005307	0.027605	143.5128497
1180	WBGene00012875	Y45F10B.13	hypothetical protein	0.35766325		0.000297	0.003066	437.2377191
	WBGene00021563 WBGene00021559		Zinc finger protein-like 1 homolog hypothetical protein	0.504627309		0.000405 1.26E-09		491.3431986 2614.553256
1183	WBGene00012908	Y46G5A.18	hypothetical protein	0.807434278		3.20E-07	2.08E-05	486.9653784
	WBGene00012899	Y46G5A.7	hypothetical protein	0.320752094		0.000911		332.398317
	WBGene00021605 WBGene00021607	Y46H3C.5 Y46H3C.7	hypothetical protein hypothetical protein	0.955782078 0.456303322		0.00201	0.013249	1111.621377 1719.086562
	WBGene00021625		hypothetical protein	2.521477928				88.53369816
1188	WBGene00021649	Y47G6A.25	hypothetical protein	-0.339291836	0.072798	4.86E-07	2.69E-05	1158.202179
	WBGene00012964 WBGene00012968	Y48A6B.3 Y48A6B.7	Putative H/ACA ribonucleoprotein complex subunit 2-like protein hypothetical protein	1.172148283 0.583521585	0.245944	9.05E-08 0.000864	7.45E-06	668.3271211 175.5745678
1191	WBGene00012970	Y48A6B.9	Enoyl-[acyl-carrier-protein] reductase, mitochondrial	0.492711407	0.163425	0.00019	0.002173	126.8228229
1192	WBGene00012978	Y48B6A.1	Ribosome biogenesis protein BOP1 homolog	0.450976894	0.124913	2.79E-05	0.000538	1142.039106
	WBGene00012994 WBGene00012989	Y48C3A.12 Y48C3A.5	hypothetical protein hypothetical protein	0.555583603 1.001296132				955.4685145 41.22175663
	WBGene00013001	Y48E1B.2	hypothetical protein	0.458656293				943.6878162
	WBGene00013007	Y48E1B.8	hypothetical protein	0.491612269				235.0060101
	WBGene00013014 WBGene00021658	Y48E1C.1 Y48G1A.2	hypothetical protein hypothetical protein	0.638062143 0.816871526				518.9632283 879.4360339
	WBGene00021675		hypothetical protein	0.694895932				228.9267046
	WBGene00021691	Y48G8AL.13	hypothetical protein	0.430960002	0.219531	0.003366		1072.502365
	WBGene00013026 WBGene00013030	Y49A3A.3 Y49E10.4	hypothetical protein hypothetical protein	-0.394461539 -0.36873252	0.065586	1.31E-05 2.64E-09	0.000298 4.63E-07	495.6408347 1389.326699
1203	WBGene00021153	Y4C6A.3	hypothetical protein	-0.413120687	0.069259	2.90E-10	9.45E-08	2085.194228
1204	WBGene00195169	Y50D4A.6	hypothetical protein	1.047143765				33.12812896
	WBGene00021749 WBGene00021758	Y50D4C.5 Y50D7A.10	hypothetical protein hypothetical protein	0.360896548				644.9107011 700.6109443
1207	WBGene00021763	Y51F10.2	hypothetical protein	0.494567586	0.358737	0.007013	0.03418	3822.066678
	WBGene00021764	Y51F10.3	hypothetical protein	0.57065099	0.12816	6.31E-07		873.3085742
	WBGene00013094 WBGene00044439	Y51H1A.3 Y51H7C.15	hypothetical protein hypothetical protein	1.259816771 0.749803146				518.1037915 62.14586955
1211	WBGene00013124	Y52B11A.4	hypothetical protein	0.677011474	0.472048	0.004419	0.02402	40.53366472
	WBGene00013127	Y52B11A.8 Y53C12A 10	Phospholipase A2-like protein Y52B11A.8	0.661161835	0.432101		0.022017	958.2321562 989.3537487
1213 1214	WBGene00175030 WBGene00013169		hypothetical protein hypothetical protein	-0.31575255 0.937300555	0.090056	7.33E-05 0.002984		989.3537487 18.46299484
1215	WBGene00013150	Y53F4B.3	hypothetical protein	0.556657364	0.271372	0.001989	0.013146	495.0159803
1216	WBGene00013156	Y53F4B.9	hypothetical protein	0.360869006		0.002102	0.013668	1444.258833
	WBGene00021813 WBGene00021816		hypothetical protein hypothetical protein	0.324951538 0.487373318	0.175343 0.12103	0.00689 4.87E-06		1662.774672 2002.669522
	WBGene00013189		hypothetical protein	0.388500659	0.11264			1204.117933
	WBGene00021853	Y54F10AM.11	hypothetical protein	0.643351345				406.8418634
	WBGene00021855 WBGene00013221	Y54F10AR.2	hypothetical protein hypothetical protein	-0.300842547 1.387562179				688.7886382 67.12320046
1223	WBGene00021876	Y54G2A.11	hypothetical protein	0.499889905	0.169862	0.000238	0.002589	377.5877748
	WBGene00021883		hypothetical protein	0.842891382	0.424221	0.001592	0.011237	1215.688445
1225	WBGene00021884 WBGene00021890	Y54G2A.19 Y54G2A.26	hypothetical protein hypothetical protein	0.681822767 0.413094281	0.30055	0.001004	0.007854	114.1977872 1695 256254
1227	WBGene00021909	Y55B1BL.1	hypothetical protein	0.409895228	0.156684	0.000808	0.006709	199.492498
	WBGene00021912	Y55B1BR.2	hypothetical protein	0.334811497				206.8725555
	WBGene00021915 WBGene00021928		hypothetical protein	0.692549418				74.32596002 73.85044639
	WBGene00021928 WBGene00021933	Y55F3AR.2	hypothetical protein hypothetical protein	0.957364548	0.195716	5.20E-08	5.13E-06	333.6829292
1232	WBGene00021939	Y55F3BR.2	hypothetical protein	0.534463015	0.178164	0.000184	0.002131	161.2302321
1233	WBGene00013244 WBGene00013227	Y56A3A.33 Y56A3A.6	hypothetical protein hypothetical protein	0.593172078 0.626512328	0.201396	0.000192	0.002196	91.06512294 94.38579987
1234	WBGene00013227 WBGene00013228	Y56A3A.6 Y56A3A.7	hypothetical protein	0.826512328	0.200839			94.38579987 522.8509871
1236	WBGene00013266	Y57A10A.26	hypothetical protein	0.905783821	0.179508	2.43E-08	2.89E-06	309.5411367
1237	WBGene00013253 WBGene00044258	Y57A10A.8	hypothetical protein	-0.303893291 0.480483536				788.9926691 379.5379052
	WBGene00044258 WBGene00012385	Y5/G11C.51 Y5F2A.4	hypothetical protein hypothetical protein	0.480483536				379.5379052
1240	WBGene00013406	Y63D3A.7	hypothetical protein	0.423264967	0.244635	0.005227	0.027302	879.2664417
	WBGene00013418	Y65A5A.1 Y65B4A.6	hypothetical protein	0.566458185 0.40581847			0.000651	212.2357775 2660.03026
1242	WBGene00022029	10004A.0	hypothetical protein	0.40381647	J.130/46	0.00306	0.018083	2000.03020

	ENSEMBLE GeneID	SYMBOL	GENENAME	log2FoldChange	IfcSE	pvalue	padj	baseMean
1243	WBGene00022031	Y65B4A.8	hypothetical protein	0.599878229	0.196608	0.000136	0.001709	431.0124137
	WBGene00022033	Y65B4BL.1	hypothetical protein	0.899477292		0.003765	0.021203	172.3710077
1245	WBGene00013422	Y66A7A.2	Ribonuclease P/MRP protein subunit POP5	-0.348958509	0.105305	0.000122	0.001568	465.2322634
1246	WBGene00013445		hypothetical protein	0.690955639	0.14208	7.77E-08	6.73E-06	436.6582765
	WBGene00013448	Y66D12A.24	hypothetical protein	0.420427063	0.170507	0.001154	0.00873	126.9572679
1248	WBGene00013433	Y66D12A.7	Glutamyl-tRNA(GIn) amidotransferase subunit C, mitochondrial	0.335848745	0.214888	0.010348	0.046057	140.8335319
	WBGene00022046	Y66H1A.4	Probable H/ACA ribonucleoprotein complex subunit 1-like protein	0.382246986	0.174968			2230.892543
	WBGene00022075	Y69A2AR.3	hypothetical protein	0.425478136	0.70042			845.1509828
	WBGene00022100	Y69A2AR.31	hypothetical protein	0.817027218	0.224371			67.01264319
	WBGene00013481	Y69H2.3	hypothetical protein	0.540165858	0.263936	0.002077	0.013556	983.7019089
	WBGene00044894	Y71F9AR.4	hypothetical protein	0.430402044	0.216851	0.003232	0.01882	149.6016441
	WBGene00022125	Y71F9B.1	hypothetical protein	0.602837083	0.2169	0.000298	0.003069	114.551759
	WBGene00022155		hypothetical protein		0.645049	0.010027	0.044941	19.57219202
	WBGene00022158		hypothetical protein	0.422758409	0.201658	0.002681	0.016394	96.6363896 98.86277876
	WBGene00022180		hypothetical protein	0.502226812	0.571424	0.008956		
	WBGene00022203	Y73B3A.1	hypothetical protein	0.383996873		0.010225		991.4046486
	WBGene00022250 WBGene00022274	Y73B6BL.29 Y73E7A.8	tRNA pseudouridine synthase hypothetical protein	-0.328854258 0.829870166	0.094636 0.64643	7.70E-05 0.004353		446.9453653 47.94461434
	WBGene00013550		hypothetical protein	-0.32074293				1059.552159
	WBGene00013543	Y75B8A.6	hypothetical protein	0.775622454				200 3528735
	WBGene00013544	Y75B8A.7	U3 small nucleolar ribonucleoprotein protein MPP10	0.353215966				813.5833002
	WBGene00022298		hypothetical protein	0.598475709				52.32263367
	WBGene00022307		hypothetical protein	0.547450453	0.206847			218.4128713
1266	WBGene00013580	Y79H2A.3	hypothetical protein	0.571110651	0.179242	9.38E-05	0.001297	683.2907024
	WBGene00012420	Y7A9D.1	hypothetical protein	0.984625174	0.245663	2.92E-06		242.2635593
1268	WBGene00022348	Y82E9BR.16	hypothetical protein	0.533426027	0.138138	8.62E-06	0.000222	925.3911574
1269	WBGene00022349	Y82E9BR.17	hypothetical protein	0.318408085	0.110012	0.000572	0.005105	646.5498804
	WBGene00022367	Y92H12BM.1	hypothetical protein	0.434408773	0.150245	0.000334	0.003337	198.0994562
	WBGene00022376	Y94H6A.3	hypothetical protein		0.228218			737.4058829
	WBGene00022379	Y94H6A.7	hypothetical protein	0.346697529	0.229231	0.010304		221.0706988
	WBGene00022383	Y95B8A.2	hypothetical protein	0.984348103				68.28453363
	WBGene00045434	Y95D11A.3	hypothetical protein	-0.374362347	0.072703	3.57E-08	4.02E-06	1529.191507
	WBGene00022398	Y97E10AR.3	hypothetical protein	-0.355288076	0.067037	1.73E-08	2.22E-06	1683.984249
	WBGene00022399		hypothetical protein	-0.416594791	0.098025	2.31E-06	8.31E-05	1043.168584
	WBGene00021186	Y9D1A.1	hypothetical protein	1.227005254	0.7385			780.6879203
	WBGene00021187 WBGene00022127	Y9D1A.2	pseudo	1.323038727 0.41140838	0.473506			26.25705503
		yop-1	Receptor expression-enhancing protein					3225.359791
	WBGene00006970 WBGene00022519	zag-1 ZC123.4	Zinc finger E-box-binding homeobox protein zag-1 hypothetical protein	1.102506227 0.386808127	0.31103	1.79E-05 0.00695		77.04184167 89.41070146
	WBGene00022532	ZC125.4 ZC155.4	hypothetical protein	-0.301635707				3567.155467
	WBGene00013859	ZC155.4 ZC247.1	hypothetical protein	0.313737011	0.109143			543.1008245
	WBGene00022586	ZC308.4	hypothetical protein	-0.30111651	0.064218	3.84E-07		4764.699464
	WBGene00021047	zfp-3	Zinc Finger Protein	0 756167044	0 277622	0.000295		310 4919343
	WBGene00021305	zig-11	2 (Zwei) IG domain protein	0.305163529	0.187563	0.011443		1726.807674
	WBGene00006985	zig-8	Zwei lg domain protein zig-8	0.423562964	0.401043	0.010834		60.68322982
	WBGene00021082	zip-11	bZIP transcription factor family	0.359778908	0.248926	0.010373		151.3319147
	WBGene00012330	zip-3	bZIP transcription factor family	0.311699196	0.159591	0.006214	0.031201	342.8737696
1290	WBGene00017755	zip-8	bZIP transcription factor 8	0.424753368	0.151607	0.000457	0.004292	1612.338291
1291	WBGene00006494	zipt-7.2	Zinc transporter zipt-7.2	0.468413259	0.103497	5.67E-07	2.97E-05	1214.313758
	WBGene00014205	ZK1058.5	Methyltransferase-like protein	-0.422939853	0.09138	4.00E-07		630.6723417
	WBGene00014213	ZK1073.1	hypothetical protein	0.333199923	0.161577	0.004365		557.3052602
	WBGene00014226	ZK1098.11	hypothetical protein	-0.408685625	0.166058	0.001189		442.5409744
	WBGene00014227	ZK1128.1	Protein arginine methyltransferase NDUFAF7 homolog, mitochondrial	-0.368344075	0.071242	2.64E-08	3.07E-06	1085.453187
	WBGene00022881	ZK1248.11	hypothetical protein	-0.318509859	0.06683	3.28E-07		1590.106054
	WBGene00022885	ZK1248.19	hypothetical protein	-0.420934166	0.101366			335.0433198
	WBGene00013934	ZK131.11	hypothetical protein	0.411749971	0.13905			233.1863485
	WBGene00022679	ZK180.5	hypothetical protein	1.91166451	0.5789			157.8361447
	WBGene00013967 WBGene00022704	ZK287.7 ZK353.9	hypothetical protein PITH domain-containing protein ZK353.9	-0.317491314 -0.341790812				776.9359152 1381.519884
	WBGene00022704 WBGene00022712	ZK355.2	hypothetical protein	0.671061492		4.002-07		218 706083
	WBGene00014018	ZK632.11	hypothetical protein	-0.373041475	0.219090	7.12E-10	1.79E-07	2058.431712
	WBGene00014013	ZK632.11 ZK632.4	Probable mannose-6-phosphate isomerase	-0.316418601	0.055101	1.53E-09	3.12E-07	3922 172236
	WBGene00044762	ZK688.11	hypothetical protein	-0.31302994	0.086213	4.74E-05	0.000802	932.0914454
	WBGene00022803	ZK688.9	TIP41-like protein	-0.324443158	0.066418		1 28E-05	1185 529042
	WBGene00014074	ZK757.2	hypothetical protein		0.395325	0.004246		36 3571044
	WBGene00014086	ZK809.3	hypothetical protein	0.32506192	0.151042	0.003621	0.020592	2856.625526
	WBGene00022649	ZK84.1	hypothetical protein	1.10898911	0.592512	0.001694		35.88032026
	WBGene00014118	ZK858.5	TM2 domain-containing protein ZK858.5	-0.344214125	0.08709			817.4891885
	WBGene00014152	ZK930.2	hypothetical protein	-0.384775392	0.155898	0.001309		207.4749117
	WBGene00022835	ZK973.9	hypothetical protein	0.527784337	0.177749	0.000204		997.9640183
	WBGene00013683	zoo-1	ZO-1 (Zonula Occludens tight junctional protein) Ortholog	0.508545674		4.80E-05		410.8105224
	WBGene00012988	ztf-22	Zinc finger putative Transcription Factor family		0.209154	0.001054		246.6398035
1315	WBGene00013438	ztf-29	Zinc finger putative Transcription Factor family	0.844408753	0.239495	2.09E-05	0.000431	355.7237603
	WBGene00013966	ztf-9	Zinc finger putative Transcription Factor family	-0.301479818	0.097035			472.8847577
1317	WBGene00006999	zyx-1	Zyxin	0.35866357	0.120281	0.000347	0.003436	1180.308149
						-		

WB variant	ENSEMBLE gene ID	SYMBOL	GENENAME	log2FoldChange	pvalue	padj
Cuticle morphology	WBGene00015547	ain-1	ALG-1 INteracting protein	0.433179041	1.05E-06	
Cuticle morphology	WBGene00000106	alg-2	Protein argonaute	0.344356241	0.001318	
Cuticle morphology	WBGene00021922	atg-3	Autophagy-related protein 3	0.692818768	0.000174	
Cuticle morphology	WBGene00000608 WBGene00000616	col-19 col-39	Cuticle collagen 19 Cuticle collagen 39	0.633057464 1.431443142	0.000171	0.002017 0.000173
Cuticle morphology Cuticle morphology	WBGene00000656	col-80	Putative cuticle collagen 80	0.802776789	0.001942	
Cuticle morphology	WBGene00003400	dapk-1	Death-associated protein kinase dapk-1	0.590438009	1.66E-07	1.23E-05
Cuticle morphology	WBGene00001076	dpy-17	DumPY: shorter than wild-type	1.227347056	8.07E-05	0.001161
Cuticle morphology	WBGene00001077	dpy-18	Prolyl 4-hydroxylase subunit alpha-1	0.325474514	7.06E-06	0.00019
Cuticle morphology	WBGene00001065	dpy-3	DumPY: shorter than wild-type	2.068235176		1.02E-07
Cuticle morphology	WBGene00001069	dpy-7	Cuticle collagen dpy-7	1.111370763	0.000102	
Cuticle morphology	WBGene00001186	egl-18	hypothetical protein	0.470112338		0.001172
Cuticle morphology	WBGene00001215	ego-2	Enhancer of Glp-One (glp-1)	0.476444685	0.001358	
Cuticle morphology Cuticle morphology	WBGene00001340 WBGene00018772	etr-1 F53G12.4	ELAV-Type RNA binding-protein family hypothetical protein	0.316415315 0.476662974	0.00162	0.011345
Cuticle morphology Cuticle morphology	WBGene00016173	fust-1	FUS/TLS RNA binding protein homolog	1.129774391		0.000551
Cuticle morphology	WBGene00001707	grh-1	GRainyHead (Drosophila transcription factor) homolog	0.51561556	0.008152	0.03836
Cuticle morphology	WBGene00018572	lin-42	Period protein homolog lin-42	0.7474291	5.05E-05	0.00084
Cuticle morphology	WBGene00003242	mig-6	Papilin	0.608807877	2.29E-07	1.62E-05
Cuticle morphology	WBGene00015646	mlt-10	hypothetical protein	0.533646855	0.0006	0.005286
Cuticle morphology	WBGene00003623	nhr-25	Nuclear hormone receptor family member nhr-25	0.444516087	0.000205	0.002303
Cuticle morphology	WBGene00004751	sea-2	Signal Element on Autosome	0.525290796		0.000976
Cuticle morphology	WBGene00004888	smo-1	Small ubiquitin-related modifier	0.539949384	0.007417	
Cuticle morphology	WBGene00004952	spd-1	hypothetical protein	0.460204197	0.000995	0.007801
Cuticle morphology	WBGene00005018	sqt-3	Cuticle collagen 1	1.271241572		0.006063
Cuticle morphology	WBGene00006793	unc-59	hypothetical protein	-0.300058639	1.15E-08	1.52E-06
Cuticle morphology Cuticle morphology	WBGene00022046 WBGene00006970	Y66H1A.4	Probable H/ACA ribonucleoprotein complex subunit 1-like protein Zinc finger E-box-binding homeobox protein zag-1	0.382246986 1.102506227	0.002629 1.79E-05	0.016175
DNA repair	WBGene00006970 WBGene00011201	zag-1 nth-1	Zinc finger E-box-binding homeobox protein zag-1 Endonuclease III homolog	-0.36061458	1.79E-05 8.06E-05	0.00038
DNA repair	WBGene00017696	polk-1	DNA polymerase kappa	-0.350690825	2.31E-08	2.8E-06
DNA repair	WBGene00019767	rpa-2	Replication Protein A homolog	0.345458087		0.024387
DNA repair	WBGene00006786	unc-51	Serine/threonine-protein kinase unc-51	0.736863794	2.52E-07	1.75E-05
Energy expenditure	WBGene00000371	cox-5B	Cytochrome OXidase assembly protein	0.426891424	0.003349	0.019342
Energy expenditure	WBGene00009245	rict-1	hypothetical protein	0.352634524	1.88E-05	0.000396
Energy expenditure	WBGene00015391	sdha-1	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	0.371626372	0.000181	0.00211
Energy expenditure	WBGene00009353	sdhd-1	Putative succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial	0.302278216	0.009856	
Energy expenditure	WBGene00020181	T02H6.11	hypothetical protein	0.60407595	0.000219	
Genotoxicity induced apoptosis	WBGene00001170	egl-1	Programmed cell death activator egl-1	1.372562445	2.56E-11	1.64E-08
Genotoxicity induced apoptosis	WBGene00002042 WBGene00012484	hus-1 car-1	human HUS1 related Cytokinesis, Apoptosis, RNA-associated	-0.469388317 0.326062253	4.57E-11	2.25E-08 0.031116
Germcell response to Ionizing Radiation Germcell response to Ionizing Radiation	WBGene000012484 WBGene00000498	chk-1	Serine/threonine-protein kinase chk-1	0.647028743		0.000603
Germcell response to Ionizing Radiation	WBGene00010325	exos-3	EXOSome (multiexonuclease complex) component	-0.317099004	1.1E-06	4.8E-05
Germcell response to Ionizing Radiation	WBGene00013095	ing-3	Inhibitor of growth protein	0.337792918	0.00056	
Germcell response to Ionizing Radiation	WBGene00004298	rad-54	hypothetical protein	-0.328706982	3.83E-06	0.000121
Germcell response to Ionizing Radiation	WBGene00010923	rle-1	Regulation of longevity by E3 ubiquitin-protein ligase	0.316099119	6.99E-05	0.001052
Germcell response to Ionizing Radiation	WBGene00022046	Y66H1A.4	Probable H/ACA ribonucleoprotein complex subunit 1-like protein	0.382246986	0.002629	0.016175
Lipid metabolism	WBGene00016507	abhd-5.2	Abhydrolase domain-containing protein abhd-5.2	-0.385250492		0.001576
Lipid metabolism	WBGene00020366	acdh-10	Probable medium-chain specific acyl-CoA dehydrogenase 10, mitochondrial	0.333466049	8.04E-05	0.00116
Lipid metabolism	WBGene00008565	acox-1.2	Acyl-coenzyme A oxidase	0.355092148	7.23E-06	0.000193
Lipid metabolism	WBGene00021922	atg-3	Autophagy-related protein 3	0.692818768 0.30452198	0.000174	
Lipid metabolism Lipid metabolism	WBGene00000231 WBGene00015011	atx-2 B0041.8	Ataxin-2 homolog hypothetical protein	-0.331712248	0.011162 6.35E-09	
Lipid metabolism	WBGene00012713	bckd-1A	2-oxoisovalerate dehydrogenase subunit alpha	0.418074938	0.000535	0.004851
Lipid metabolism	WBGene00000691	col-117	COLlagen	1.801621387	4.93E-10	1.38E-07
Lipid metabolism	WBGene00000594	col-117	COLlagen	1.061249334	0.000167	
Lipid metabolism	WBGene00000693	col-119	COLlagen	0.745140994	0.001685	0.011644
Lipid metabolism	WBGene00000699	col-125	COLlagen	1.205242415	0.00287	0.017272
Lipid metabolism	WBGene00000371	cox-5B	Cytochrome OXidase assembly protein	0.426891424	0.003349	0.019342
Lipid metabolism	WBGene00009161	cox-7C	Cytochrome OXidase assembly protein	0.881349024	0.003559	0.02029
Lipid metabolism	WBGene00000830	ctl-1	Catalase-2	0.521888802	0.000571	
Lipid metabolism	WBGene00000901	daf-5	hypothetical protein	0.592706516		4.53E-05
Lipid metabolism	WBGene00008549	din-1 dur 1	Daf-12-interacting protein 1	0.315527612	0.000887	0.007174
Lipid metabolism Lipid metabolism	WBGene00001113 WBGene00012768	dur-1 eef-1B.2	Dauer Up-Regulated	0.360129802 0.430991285	0.001418	0.010229 0.011247
Lipid metabolism Lipid metabolism	WBGene00012768 WBGene00008578	eet-18.2 F08G2.7	Probable elongation factor 1-beta/1-delta 2 hypothetical protein	0.430991285		0.011247 0.001024
Lipid metabolism	WBGene00017416	F13B6.1	hypothetical protein	0.537554892	0.008511	
Lipid metabolism	WBGene00008743	F13D12.9	hypothetical protein	0.568674176	0.004566	0.024634
Lipid metabolism	WBGene00001397	fat-5	Delta(9)-fatty-acid desaturase fat-5	0.71441255	5.39E-07	2.88E-05
Lipid metabolism	WBGene00019207	fgt-1	Facilitated glucose transporter protein 1	0.374377906	0.000301	0.003085
Lipid metabolism	WBGene00001460	flp-17	FMRF-Like Peptide	-0.376965751		0.012618
Lipid metabolism	WBGene00020160	igcm-3	ImmunoGlobulin-like Cell adhesion Molecule family	0.338163663		0.001063
Lipid metabolism	WBGene00012148	inos-1	INOsitol-3-phosphate Synthase	0.839229395	7.05E-06	0.00019
Lipid metabolism	WBGene00002184	kel-1	KELch-repeat containing protein	0.48264592	0.003312	0.019191
Lipid metabolism	WBGene00002977	lev-10	hypothetical protein	0.467643019		
Lipid metabolism	WBGene00002990 WBGene00022642	lin-1	hypothetical protein	0.648274911	0.00011	0.00145
Lipid metabolism Lipid metabolism	WBGene00022642 WBGene00003064	lipl-5 lpd-8	Lipase LiPid Depleted	0.357195708	0.001333 7.09E-08	0.009764 6.32E-06
Lipid metabolism	WBGene00022610	Itah-1.2	LeukoTriene A4 Hydrolase homolog	0.385876168	0.000118	0.001529
Lipid metabolism	WBGene00003119	mac-1	Protein mac-1	0.791460194	1.02E-06	
Lipid metabolism	WBGene00009306	maph-1.1	Microtubule-associated protein homolog maph-1.1	0.770301052	1.55E-07	1.2E-05
Lipid metabolism	WBGene00009113	maph-1.2	Microtubule-Associated Protein Homolog	0.384520699		
Lipid metabolism	WBGene00007966	maph-1.3	Microtubule-Associated Protein Homolog	0.591172343		
Lipid metabolism	WBGene00003623	nhr-25	Nuclear hormone receptor family member nhr-25	0.444516087		
Lipid metabolism	WBGene00003749	nlp-11	Neuropeptide-like peptide 11	-0.432273295	0.000597	
Lipid metabolism	WBGene00003750	nlp-12	Neuropeptide-Like Protein	1.058044817	0.000505	
Lipid metabolism	WBGene00009176	nmat-2	Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 2	-0.302789978		0.011008
Lipid metabolism	WBGene00003825	ntl-2	NOT-Like (yeast CCR4/NOT complex component)	0.39027511		0.004819
Lipid metabolism	WBGene00004013	pha-4	Defective pharyngeal development protein 4	0.368272564		0.021098
Lipid metabolism	WBGene00004076	pod-2	hypothetical protein	0.660141809		1.03E-05
Lipid metabolism Lipid metabolism	WBGene00004154 WBGene00011253	pqn-72	Prion-like-(Q/N-rich)-domain-bearing protein	0.768111316		
Lipid metabolism Lipid metabolism	WBGene00011253 WBGene00004271	R11H6.5 rab-7	hypothetical protein RAB family	-0.40670309 0.310503908		5.22E-06 0.027295
Lipid metabolism Lipid metabolism	WBGene00004271 WBGene00009245	rab-/ rict-1	RAB family hypothetical protein	0.310503908		0.027295
Lipid metabolism Lipid metabolism	WBGene00009245 WBGene00004472	rict-1 rps-3	hypothetical protein 40S ribosomal protein S3	0.352634524 0.343782316		
Lipid metabolism	WBGene00015391	sdha-1	Succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial	0.371626372		
Lipid metabolism	WBGene00019300	swt-1	Sugar transporter SWEET1	-0.704903581	5.58E-07	2.94E-05

WB variant	ENSEMBLE gene ID	SYMBOL	GENENAME	log2FoldChange	pvalue	padj
Lipid metabolism	WBGene00022783	tomm-7	Mitochondrial import receptor subunit TOM7 homolog	-0.429544654	0.001486	0.010624
Lipid metabolism	WBGene00006796	unc-62	Homeobox protein unc-62	0.501547291	8.47E-06	0.00022
Lipid metabolism	WBGene00012369	W09G3.6	hypothetical protein	0.346854391	0.000527	
Mitochondrial content	WBGene00009245	rict-1	hypothetical protein	0.352634524	1.88E-05	
Mitochondrial content Mitochondrial metabolism	WBGene00006786 WBGene00012354	unc-51 cox-4	Serine/threonine-protein kinase unc-51 Cytochrome OXidase assembly protein	0.736863794 0.514435837	2.52E-07 0.001373	1.75E-05
Mitochondrial metabolism	WBGene00020511	immt-1	MICOS complex subunit MIC60-1	0.375589245	0.000179	0.002094
Mitochondrial metabolism	WBGene00002280	let-2	Collagen alpha-2(IV) chain	0.66279107	2.24E-05	0.000454
Mitochondrial metabolism	WBGene00016539	madd-2	hypothetical protein	0.426998303	0.000682	
Mitochondrial metabolism Mitochondrial metabolism	WBGene00021677 WBGene00009245	pgs-1 rict-1	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase hypothetical protein	-0.364817651 0.352634524	2.86E-06 1.88E-05	
Mitochondrial metabolism	WBGene00008262	ril-1	RNAi-Induced Longevity	0.50881635	0.000853	
Mitochondrial metabolism	WBGene00015391	sdha-1	Succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial	0.371626372	0.000181	0.00211
Mitochondrial metabolism	WBGene00006787	unc-52	Basement membrane proteoglycan	0.63287148	5.53E-08	5.22E-06
Mitochondrial respiratory chain subunit	WBGene00010960	ATP6	ATP synthase FO subunit 6	-0.432902342	6.49E-05	0.001
Mitochondrial respiratory chain subunit Mitochondrial respiratory chain subunit	WBGene00010964 WBGene00010965	COX1 COX2	cytochrome c oxidase subunit I cytochrome c oxidase subunit II	-0.564287741 -0.591370434	7.97E-10 4.22E-09	1.86E-07 6.72E-07
Mitochondrial respiratory chain subunit	WBGene00010962	COX3	cytochrome c oxidase subunit III	-0.392635368		0.000171
Mitochondrial respiratory chain subunit	WBGene00010959	ND1	NADH dehydrogenase subunit 1	-0.390223041	0.000114	0.001489
Mitochondrial respiratory chain subunit	WBGene00010961	ND2	NADH dehydrogenase subunit 2	-0.5554557	0.000325	
Mitochondrial respiratory chain subunit	WBGene00010966 WBGene00010963	ND3	NADH dehydrogenase subunit 3	-0.670390104	0.000155	0.00188
Mitochondrial respiratory chain subunit Mitochondrial respiratory chain subunit	WBGene00010963 WBGene00010967	ND4 ND5	NADH dehydrogenase subunit 4 NADH dehydrogenase subunit 5	-0.412938897 -0.445125282	0.000547	0.004935
N2 oxidative stressed	WBGene00000149	apl-1	Amyloid-beta-like protein	0.41887973	5.82E-05	
N2 oxidative stressed	WBGene00000170	aqp-2	AQuaPorin or aquaglyceroporin related	0.931834793	3.06E-07	
N2 oxidative stressed	WBGene00020275	atp-4	ATP synthase subunit	0.360239329	0.009967	
N2 oxidative stressed	WBGene00007144	B0334.4	hypothetical protein	-0.303459196	2.92E-07	1.96E-05
N2 oxidative stressed N2 oxidative stressed	WBGene00007449 WBGene00016274	C08F8.9 C30G12.2	hypothetical protein hypothetical protein	0.950080739 0.982717359	0.001796 5.24E-15	
N2 oxidative stressed N2 oxidative stressed	WBGene00016274 WBGene00016493	C30G12.2 C37A2.7	hypothetical protein 60S acidic ribosomal protein P2	1.142912694	5.24E-15 0.001328	
N2 oxidative stressed	WBGene00016494	C37A2.8	hypothetical protein	-0.436475052	1.73E-07	1.28E-05
N2 oxidative stressed	WBGene00020391	cct-7	Chaperonin Containing TCP-1	0.619496598	2E-05	0.000416
N2 oxidative stressed	WBGene00000472	cey-1	C. Elegans Y-box	0.430481728	2.71E-05	
N2 oxidative stressed	WBGene00000475	cey-4	C. Elegans Y-box	0.863667658	0.000217	0.00241
N2 oxidative stressed N2 oxidative stressed	WBGene00000678 WBGene00000681	col-104 col-107	COLlagen COLlagen	1.167653644	0.000334	0.02266
N2 oxidative stressed	WBGene00000683	col-107	COLlagen	0.857804454	0.004674	0.025023
N2 oxidative stressed	WBGene00000704	col-130	COLlagen	1.389667138	0.000206	0.00231
N2 oxidative stressed	WBGene00000728	col-155	Putative cuticle collagen 155	0.745088271	0.000104	
N2 oxidative stressed	WBGene00000739	col-166	COLlagen	1.304997162	5.94E-08	
N2 oxidative stressed N2 oxidative stressed	WBGene00000740 WBGene00000625	col-167 col-48	COLlagen COLlagen	1.200948359 1.365118076	0.003423 6.74E-06	
N2 oxidative stressed	WBGene00000653	col-77	COLlagen	1.003842472		0.005155
N2 oxidative stressed	WBGene00000657	col-81	COLlagen	1.035489211	0.000335	0.003341
N2 oxidative stressed	WBGene00000670	col-95	COLlagen	0.400486733	0.006414	0.031965
N2 oxidative stressed	WBGene00010723	cpg-7	Chondroitin proteoglycan 7	0.592513718	0.000734	
N2 oxidative stressed	WBGene00019357 WBGene00000776	cpg-8	Chondroitin proteoglycan 8	0.984170332 0.623346133	0.000299 4.11E-05	
N2 oxidative stressed N2 oxidative stressed	WBGene00000928	cpl-1 dao-2	CathePsin L family Dauer or Aging adult Overexpression	0.608670964	4.11E-05 0.000581	
N2 oxidative stressed	WBGene00000941	ddp-1	Mitochondrial import inner membrane translocase subunit Tim8	0.692232561	0.005602	
N2 oxidative stressed	WBGene00001000	dim-1	Disorganized muscle protein 1	0.454243506	3.62E-07	2.21E-05
N2 oxidative stressed	WBGene00001235	elb-1	ELongin B	0.836479786	0.000187	0.002155
N2 oxidative stressed	WBGene00001236	elc-1	ELongin C	0.860968489	7.61E-08	
N2 oxidative stressed N2 oxidative stressed	WBGene00008973 WBGene00044666	F20D1.1 F33G12.7	hypothetical protein hypothetical protein	0.659805063	5.35E-06 0.001815	
N2 oxidative stressed	WBGene00009659	F43G6.7	hypothetical protein	1.525170003	1.45E-05	0.000322
N2 oxidative stressed	WBGene00009688	F44E5.1	hypothetical protein	0.727707334	0.004587	0.024703
N2 oxidative stressed	WBGene00009982	F53F1.4	hypothetical protein	1.205855838	1.06E-08	
N2 oxidative stressed	WBGene00019061	F58F12.1	ATP synthase subunit delta, mitochondrial	0.489714951	0.008527	
N2 oxidative stressed N2 oxidative stressed	WBGene00001423 WBGene00001430	fib-1 fkb-5	rRNA 2'-O-methyltransferase fibrillarin Peptidylprolyl isomerase	0.572167905 0.388162624	1.97E-05 0.00017	0.000411
N2 oxidative stressed	WBGene00001725	grl-16	GRound-Like (grd related)	1.42038032	2.55E-06	8.93E-05
N2 oxidative stressed	WBGene00001713	grl-4	GRound-Like (grd related)	0.686393356	2.02E-07	1.44E-05
N2 oxidative stressed	WBGene00001922	his-48	Probable histone H2B 4	1.007813834	0.000885	
N2 oxidative stressed	WBGene00001942	his-68	Histone H2A	0.4043148	0.008151	0.03836
N2 oxidative stressed N2 oxidative stressed	WBGene00001877 WBGene00001881	his-68 his-68	Histone H2A Histone H2A	1.671209005 1.370385549	1.58E-06	6.21E-05 0.000476
N2 oxidative stressed	WBGene00001935	his-68	Histone H2A	1.228924648		5.31E-05
N2 oxidative stressed	WBGene00001921	his-68	Histone H2A	1.208132037	0.002536	
N2 oxidative stressed	WBGene00002000	hrp-2	human HnRNP A1 homolog	0.445298839	1.11E-05	
N2 oxidative stressed N2 oxidative stressed	WBGene00002007	hsp-3	Heat shock 70 kDa protein C	0.407981414		0.000372
N2 oxidative stressed N2 oxidative stressed	WBGene00002065 WBGene00002280	iff-2 let-2	Eukaryotic translation initiation factor 5A-2 Collagen alpha-2(IV) chain	0.724049881 0.66279107	9.03E-07 2.24E-05	4.12E-05
N2 oxidative stressed	WBGene00002280	lev-11	Tropomyosin	0.695674207	5.79E-06	
N2 oxidative stressed	WBGene00003025	lin-40	hypothetical protein	1.01466607	5.93E-08	5.41E-06
N2 oxidative stressed	WBGene00003893	ost-1	SPARC	0.460955034	1.41E-07	1.1E-05
N2 oxidative stressed	WBGene00011059	R06C1.4	hypothetical protein	0.756334354		5.54E-05
N2 oxidative stressed	WBGene00011289	R102.2	hypothetical protein	0.632039703		
N2 oxidative stressed N2 oxidative stressed	WBGene00004277 WBGene00004300	rab-18 ram-2	Ras-related protein Rab-18 hypothetical protein	0.420797343	5.91E-06 0.001401	
N2 oxidative stressed	WBGene00004432	rpl-20	60S ribosomal protein L18a	0.395424077	0.003647	0.020692
N2 oxidative stressed	WBGene00004440	rpl-26	60S ribosomal protein L26	1.188202017	0.00071	0.006055
N2 oxidative stressed	WBGene00004419	rpl-7A	60S ribosomal protein L7a	0.414067374	0.011169	
N2 oxidative stressed	WBGene00004481	rps-12	40S ribosomal protein S12	0.988589689		
N2 oxidative stressed N2 oxidative stressed	WBGene00004495 WBGene00004499	rps-26 rps-30	40S ribosomal protein S26 40S ribosomal protein S30	0.871550327 0.343944573	0.00112	0.00853
N2 oxidative stressed N2 oxidative stressed	WBGene00004499 WBGene00004700	rps-30 rsp-3	Probable splicing factor, arginine/serine-rich 3	0.343944573		
N2 oxidative stressed	WBGene00009353	sdhd-1	Putative succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial	0.302278216		
N2 oxidative stressed	WBGene00021335	spp-23	SaPosin-like Protein family	1.570349759	7.54E-07	3.61E-05
N2 oxidative stressed	WBGene00006366	sym-1	hypothetical protein	0.473844291		
N2 oxidative stressed	WBGene00020181 WBGene00006587	T02H6.11	hypothetical protein TropoNin T	0.60407595	0.000219	
N2 oxidative stressed N2 oxidative stressed	WBGene00006587 WBGene00022783	tnt-2 tomm-7	IropoNin I Mitochondrial import receptor subunit TOM7 homolog	-0.429544654	0.005873	
N2 oxidative stressed	WBGene00022122	trap-1	TRanslocon-Associated Protein	0.64953203		0.010624
N2 oxidative stressed	WBGene00020216	trap-2	Translocon-associated protein subunit beta	0.583203373	0.00011	0.001449
N2 oxidative stressed	WBGene00006436	ttn-1	Titin homolog	0.483249059		0.001259
N2 oxidative stressed	WBGene00006715	ubc-20	UBiquitin Conjugating enzyme	0.37373648	0.001885	U.012618

WB variant	ENSEMBLE gene ID		GENENAME	log2FoldChange	pvalue	padj
N2 oxidative stressed	WBGene00006754	unc-15	Paramyosin	0.548774481	9.43E-05	0.0013
N2 oxidative stressed	WBGene00006789	unc-54	Myosin-4	0.992504488		0.001022
N2 oxidative stressed	WBGene00006912	vha-3	V-type proton ATPase 16 kDa proteolipid subunit 2/3	0.385599258	0.000355	0.00348
N2 oxidative stressed N2 oxidative stressed	WBGene00006924 WBGene00044431	vig-1 W03G9.8	VIG (Drosophila Vasa Intronic Gene) ortholog hypothetical protein	0.466191105	0.000464	
N2 oxidative stressed	WBGene00021883	Y54G2A.18	hypothetical protein	0.842891382		
N2 oxidative stressed	WBGene00013406	Y63D3A.7	hypothetical protein	0.423264967	0.005227	
N2 oxidative stressed	WBGene00022029	Y65B4A.6	hypothetical protein	0.40581847	0.00306	
N2 oxidative stressed	WBGene00022075 WBGene00013859	Y69A2AR.3	hypothetical protein	0.425478136	0.01086	
N2 oxidative stressed N2 oxidative stressed	WBGene00013859 WBGene00022679	ZC247.1 ZK180.5	hypothetical protein hypothetical protein	0.313737011		0.005224 0.000633
Organism response to Ionizing Radiation	WBGene000022879 WBGene00000498	chk-1	Serine/threonine-protein kinase chk-1	0.647028743		0.000603
Organism response to Ionizing Radiation	WBGene00001250	elt-2	Transcription factor elt-2	0.378992143	0.001919	
Organism response to Ionizing Radiation	WBGene00010325	exos-3	EXOSome (multiexonuclease complex) component	-0.317099004	1.1E-06	4.8E-05
Organism response to Ionizing Radiation	WBGene00017984	F32D1.5	GMP reductase	0.397116442		0.004693
Organism response to Ionizing Radiation	WBGene00002042 WBGene00013095	hus-1	human HUS1 related	-0.469388317 0.337792918	4.57E-11 0.00056	2.25E-08 0.005022
Organism response to Ionizing Radiation Organism response to Ionizing Radiation	WBGene00003025	ing-3 lin-40	Inhibitor of growth protein hypothetical protein	1.01466607	5.93E-08	
Organism response to Ionizing Radiation	WBGene00003515	myo-3	Myosin-3	0.332304713	0.002408	
Organism response to Ionizing Radiation	WBGene00019767	rpa-2	Replication Protein A homolog	0.345458087	0.004511	0.024387
Organism response to Ionizing Radiation	WBGene00006587	tnt-2	TropoNin T	0.539477773		0.029813
Organism response to Ionizing Radiation	WBGene00011559	umps-1 Y48A6B.3	Orotidine 5'-phosphate decarboxylase Putative H/ACA ribonucleoprotein complex subunit 2-like protein	0.388000408 1.172148283		
Organism response to Ionizing Radiation Organism response to Ionizing Radiation	WBGene00012964 WBGene00022046	Y48A6B.3 Y66H1A.4	Probable H/ACA ribonucleoprotein complex subunit 2-like protein Probable H/ACA ribonucleoprotein complex subunit 1-like protein	0.382246986	9.05E-08 0.002629	7.45E-06 0.016175
Oxidative stress	WBGene00012928	aakb-2	AMP-Activated Kinase Beta subunit	0.704067441	7.13E-07	3.48E-05
Oxidative stress	WBGene00000830	ctl-1	Catalase-2	0.521888802	0.000571	0.005097
Oxidative stress	WBGene00001768	gst-20	Glutathione S-Transferase	0.619246674	1.04E-05	
Oxidative stress	WBGene00004930	sod-1	Superoxide dismutase [Cu-Zn]	0.32510875	0.001109	
Oxidative stress Oxidative stress	WBGene00014028 WBGene00007100	trxr-2 asps-1	Probable glutathione reductase 2 ASPScr1 (ASPSCR1) homolog	-0.30833009 -0.355639313	0.002304 2.73E-08	0.014605 3.16E-06
Oxidative stress Oxidative stress	WBGene00017926	asps-1 cox-6C	Cytochrome OXidase assembly protein	0.507203885		0.038869
Oxidative stress	WBGene00000776	cpl-1	CathePsin L family	0.623346133		0.000723
Oxidative stress	WBGene00001170	egl-1	Programmed cell death activator egl-1	1.372562445	2.56E-11	
Oxidative stress	WBGene00001186	egl-18	hypothetical protein	0.470112338	8.25E-05	0.001172
Oxidative stress Oxidative stress	WBGene00001253 WBGene00017416	elt-6 F13B6.1	Erythroid-Like Transcription factor family hypothetical protein	0.498529235 0.537554892		
Oxidative stress	WBGene00003242	mig-6	Papilin	0.608807877	2.29E-07	1.62E-05
Oxidative stress	WBGene00012361	mrpl-12	Mitochondrial Ribosomal Protein, Large	0.39636145	0.003697	0.020929
Oxidative stress	WBGene00011201	nth-1	Endonuclease III homolog	-0.36061458	8.06E-05	
Oxidative stress	WBGene00003931	pat-4	Integrin-linked protein kinase homolog pat-4	0.333291408		0.004812
Oxidative stress Oxidative stress	WBGene00004013 WBGene00044305	pha-4	Defective pharyngeal development protein 4	0.368272564	0.00374 5.58E-08	0.021098 5.22E-06
Oxidative stress Oxidative stress	WBGene00012124	rad-8 T28D6.4	Reticulon-4-interacting protein 1, mitochondrial hypothetical protein	-0.316062552 0.72196596	0.000354	0.003478
Oxidative stress	WBGene00007099	trx-2	Probable thioredoxin-2	-0.332690419	4.82E-08	4.87E-06
Oxidative stress	WBGene00022180	Y71H2AM.15	hypothetical protein	0.502226812	0.008956	0.041316
Oxidative stress	WBGene00014086	ZK809.3	hypothetical protein	0.32506192		0.020592
Programmed cell death Programmed cell death	WBGene00000066	act-4	Actin-4	0.716588298	9.45E-06	
Programmed cell death Programmed cell death	WBGene00000067 WBGene00000123	act-5 ama-1	ACTin DNA-directed RNA polymerase II subunit RPB1	0.606783569 0.339749104	9.25E-07 4.23E-05	4.19E-05 0.000741
Programmed cell death	WBGene00021922	atg-3	Autophagy-related protein 3	0.692818768		
Programmed cell death	WBGene00020706	atg-9	Autophagy-related protein 9	0.474106118		0.0055
Programmed cell death	WBGene00010419	atp-1	ATP synthase subunit alpha, mitochondrial	0.518834935		0.003775
Programmed cell death	WBGene00020275	atp-4	ATP synthase subunit	0.360239329	0.009967	0.044719
Programmed cell death Programmed cell death	WBGene00015156 WBGene00008346	B0361.2 C56A3.8	CWF19-like protein 2 homolog hypothetical protein	-0.362814874 -0.339151781	1.22E-09 9.88E-06	2.61E-07 0.000247
Programmed cell death	WBGene00012484	car-1	Cytokinesis, Apoptosis, RNA-associated	0.326062253	0.00619	
Programmed cell death	WBGene00020391	cct-7	Chaperonin Containing TCP-1	0.619496598	2E-05	
Programmed cell death	WBGene00000426	ced-12	Cell death abnormality protein 12	-0.318630367	4.22E-07	2.47E-05
Programmed cell death	WBGene00000455	ceh-34	Homeobox protein ceh-34	0.556967819		
Programmed cell death Programmed cell death	WBGene00000469 WBGene00000498	ces-2 chk-1	Cell death specification protein 2	0.456395534		0.020229 0.000603
Programmed cell death	WBGene00000776	cpl-1	Serine/threonine-protein kinase chk-1 CathePsin L family	0.647028743 0.623346133		0.000723
Programmed cell death	WBGene00003400	dapk-1	Death-associated protein kinase dapk-1	0.590438009	1.66E-07	1.23E-05
Programmed cell death	WBGene00001168	eef-1A.1	Elongation factor 1-alpha	0.362980287	0.00651	0.032319
Programmed cell death	WBGene00001170	egl-1	Programmed cell death activator egl-1	1.372562445		1.64E-08
Programmed cell death Programmed cell death	WBGene00001232 WBGene00001340	eif-3.I etr-1	Eukaryotic translation initiation factor 3 subunit I ELAV-Type RNA binding-protein family	0.445179671 0.316415315	0.000541 0.00162	
Programmed cell death	WBGene00010325	etr-1 exos-3	ELAV-Type KNA binding-protein family EXOSome (multiexonuclease complex) component	-0.317099004	1.1E-06	4.8E-05
Programmed cell death	WBGene00001377	eya-1	Eyes absent homolog 1	0.652554362	4.29E-09	
Programmed cell death	WBGene00007703	gbf-1	hypothetical protein	0.422709852		0.000259
Programmed cell death	WBGene00021697	gcn-1	GCN (yeast General Control Nondrepressible) homolog	0.472838373	3.42E-07	
Programmed cell death	WBGene00001867	him-8	High Incidence of Males (increased X chromosome loss)	-0.36375949	6.67E-07	
Programmed cell death Programmed cell death	WBGene00001898 WBGene00001942	his-24 his-68	Histone H1.1 Histone H2A	1.272969384 0.4043148	0.000191	0.002182
Programmed cell death	WBGene00001942 WBGene00001877	his-3	Histone H2A Histone H2A	1.671209005	1.58E-06	6.21E-05
Programmed cell death	WBGene00001881	his-7	Histone H2A	1.370385549		0.000476
Programmed cell death	WBGene00001935	his-61	Histone H2A	1.228924648	1.27E-06	5.31E-05
Programmed cell death	WBGene00001921	his-47	Histone H2A	1.208132037		0.015726
Programmed cell death	WBGene00002000	hrp-2 bur 1	human HnRNP A1 homolog	0.445298839		0.000265 2.25E-08
Programmed cell death Programmed cell death	WBGene00002042 WBGene00013095	hus-1 ing-3	human HUS1 related Inhibitor of growth protein	-0.469388317 0.337792918		2.25E-08 0.005022
Programmed cell death	WBGene00002179	jph-1	JunctoPHilin	0.469818039		
Programmed cell death	WBGene00003102	mab-5	Homeobox protein mab-5	0.686321291	0.000752	0.006328
Programmed cell death	WBGene00013096	mcd-1	Modifier of cell death	0.567337655		
Programmed cell death	WBGene00003156	mcm-4	DNA replication licensing factor mcm-4	0.396521982		
Programmed cell death	WBGene00003588 WBGene00003589	nex-1	Annexin Annexin	0.561220173		
Programmed cell death Programmed cell death	WBGene00003589 WBGene00003597	nex-2 nhl-1	Annexin RING finger protein nhl-1	0.376062347 0.329042014		
Programmed cell death	WBGene00003597 WBGene00003623	nni-1 nhr-25	Nuclear hormone receptor family member nhr-25	0.329042014		
Programmed cell death	WBGene00018636	oef-1	Occyte Excluded Factor	-0.30722045	4.32E-08	4.53E-06
Programmed cell death	WBGene00003947	pbs-1	Proteasome subunit beta type	0.616289295	0.000524	0.004778
Programmed cell death	WBGene00003948	pbs-2	Proteasome subunit beta type	0.528384252		
Programmed cell death	WBGene00003951	pbs-5	Proteasome subunit pbs-5	0.600722619		
Programmed cell death	WBGene00008641	pch-2	Putative pachytene checkpoint protein 2 Proliferating cell puckase antigen	-0.369836912		
Programmed cell death	WBGene00003955	pcn-1	Proliferating cell nuclear antigen	0.60735647		
Programmed cell death	WBGene00004075	pod-1	hypothetical protein	0.676934959	2.73F-05	0.00053

Programmed cell death	WBGene00004271	rab-7	RAB family	0.310503908	0.005222	0.027295
WB variant	ENSEMBLE gene ID	SYMBOL	GENENAME	log2FoldChange	pvalue	padj
Programmed cell death	WBGene00004298	rad-54	hypothetical protein	-0.328706982	3.83E-06	0.000121
Programmed cell death	WBGene00004387	rnp-4	RNA-binding protein 8A	0.362085964	0.005709	0.029214
Programmed cell death	WBGene00018819	rog-1	Ras activating factor in development Of Germline	0.312511426	0.008335	0.039007
Programmed cell death	WBGene00021845	rpb-7	RNA Polymerase II (B) subunit	0.842437022	1.54E-06	6.11E-05
Programmed cell death	WBGene00004424	rpl-12	60S ribosomal protein L12	0.36665943	0.00666	0.032834
Programmed cell death	WBGene00004425	rpl-13	60S ribosomal protein L13	0.815882076	0.002786	0.016855
Programmed cell death	WBGene00004430	rpl-18	60S ribosomal protein L18	0.875926254	0.004458	0.024169
Programmed cell death	WBGene00004431	rpl-19	60S ribosomal protein L19	0.517314248	0.006353	0.031724
Programmed cell death	WBGene00004432	rpl-20	60S ribosomal protein L18a	0.395424077	0.003647	0.020692
Programmed cell death	WBGene00004440	rpl-26	60S ribosomal protein L26	1.188202017	0.00071	0.006055
Programmed cell death	WBGene00004479	rps-10	Ribosomal Protein, Small subunit	0.367326615	0.005466	0.028237
Programmed cell death	WBGene00004489	rps-20	Ribosomal Protein, Small subunit	0.762972918		0.005823
Programmed cell death	WBGene00004495	rps-26	405 ribosomal protein S26	0.871550327	0.00112	0.00853
Programmed cell death	WBGene00004472	rps-3	40S ribosomal protein S3	0.343782316	0.008776	0.040663
Programmed cell death	WBGene00004475	rps-6	40S ribosomal protein S6	0.610424505		0.030646
Programmed cell death	WBGene00004478	rps-9	405 ribosomal protein 59	0.798247224		0.009564
Programmed cell death	WBGene00011935	scrm-1	Phospholipid scramblase	0.45706567	0.000651	
Programmed cell death	WBGene00011887	set-17	SET (trithorax/polycomb) domain containing	-0.329240024		0.000278
Programmed cell death	WBGene00004927	snx-1	Sorting NeXin	0.743688461		
Programmed cell death	WBGene00020181	T02H6.11	hypothetical protein	0.60407595		0.002424
Programmed cell death	WBGene00007217	tads-1	Temporal Asymmetry between Division of Sister cells	-0.347020823		8.89E-09
		tfg-1				
Programmed cell death Programmed cell death	WBGene00006565 WBGene00009186	trg-1 trcs-1	human TFG related TRansport of membrane to Cell Surface	1.107064641		0.001855
	WBGene00009186 WBGene00006725	ubl-1		0.801769512		0.018025
Programmed cell death			Ubiquitin-like protein 1			
Programmed cell death	WBGene00006786	unc-51	Serine/threonine-protein kinase unc-51	0.736863794		1.75E-05
Programmed cell death	WBGene00006793	unc-59	hypothetical protein	-0.300058639		1.52E-06
Programmed cell death	WBGene00006796	unc-62	Homeobox protein unc-62	0.501547291	8.47E-06	0.00022
Programmed cell death	WBGene00016944	uri-1	URI (Unconventional prefoldin RPB5 Interactor) homolog	-0.309233741	5.24E-09	
Programmed cell death	WBGene00006869	vab-2	hypothetical protein	0.321389762		
Programmed cell death	WBGene00006959	xbp-1	X-box Binding Protein homolog	0.31333804	0.005241	0.02735
Programmed cell death	WBGene00021269	Y23H5A.2	hypothetical protein	1.247190218		0.001263
Programmed cell death	WBGene00021912	Y55B1BR.2	hypothetical protein	0.334811497		0.036211
Programmed cell death	WBGene00022046	Y66H1A.4	Probable H/ACA ribonucleoprotein complex subunit 1-like protein	0.382246986		
Programmed cell death	WBGene00013859	ZC247.1	hypothetical protein	0.313737011		
Programmed cell death	WBGene00014227	ZK1128.1	Protein arginine methyltransferase NDUFAF7 homolog, mitochondrial	-0.368344075		3.07E-06
Protein degradation	WBGene00001148	eat-20	Abnormal pharyngeal pumping eat-20	0.327822187		0.006169
Protein degradation	WBGene00001170	egl-1	Programmed cell death activator egl-1	1.372562445		1.64E-08
Protein degradation	WBGene00001196	egl-30	hypothetical protein	0.304911046	0.000787	0.00656
Protein degradation	WBGene00002280	let-2	Collagen alpha-2(IV) chain	0.66279107	2.24E-05	0.000454
Protein degradation	WBGene00002977	lev-10	hypothetical protein	0.467643019	0.000135	0.001696
Protein degradation	WBGene00009306	maph-1.1	Microtubule-associated protein homolog maph-1.1	0.770301052	1.55E-07	1.2E-05
Protein degradation	WBGene00003495	mup-2	Troponin T	1.124220966	3.02E-09	5.17E-07
Protein degradation	WBGene00003931	pat-4	Integrin-linked protein kinase homolog pat-4	0.333291408	0.000529	0.004812
Protein degradation	WBGene00005018	sqt-3	Cuticle collagen 1	1.271241572	0.000711	0.006063
Protein degradation	WBGene00006771	tln-1	TaLiN	0.995249273	6.23E-12	7.99E-09
Protein degradation	WBGene00006786	unc-51	Serine/threonine-protein kinase unc-51	0.736863794	2.52E-07	1.75E-05
Protein degradation	WBGene00006787	unc-52	Basement membrane proteoglycan	0.63287148	5.53E-08	5.22E-06
Protein degradation	WBGene00006793	unc-59	hypothetical protein	-0.300058639	1.15E-08	1.52E-06
Protein degradation	WBGene00006796	unc-62	Homeobox protein unc-62	0.501547291	8.47E-06	0.00022
Protein degradation	WBGene00006876	vab-10	hypothetical protein	0.542297719	6.92E-07	
Protein degradation	WBGene00006959	xbp-1	X-box Binding Protein homolog	0.31333804	0.005241	0.02735
-						
Protein degradation	WBGene00006999	zyx-1	Zyxin	0.35866357	v.000347	v.UU3436

Paper III

1	Development of droplet digital PCR method for the assessment
2	of mitochondrial DNA copy number variation in response to
3	ionizing radiation in the nematode Caenorhabditis elegans
4	
5	Erica Maremonti ^{1*} , Dag Anders Brede ¹ , Ann-Karin Olsen ^{1,2} , Dag M. Eide ^{1,2} , Einar S. Berg ²
6	
7	¹ Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences
8	and Natural Resource Management (MINA) Norwegian University of Life Sciences
9	(NMBU), 1432 Ås, Norway
10	² Norwegian Institute of Public Health, Division of Disease, Lovisenberggata 8, 0456
11	Oslo, Norway
12	
13	
14	
15	
16	
16 17	

19 Abstract

20 The physiological generation of reactive oxygen species due to mitochondrial oxidative 21 phosphorylation can be significantly enhanced under exposure to ionizing radiation. 22 leading to oxidative stress and damage of biomolecules. Mitochondria are considered vulnerable targets to the effects of ionizing radiation and particularly mtDNA damage 23 has shown to be more extensive and to persist longer than nuclear DNA damage. 24 Mitochondrial DNA copy number variation has therefore been proposed as a marker for 25 mitochondrial dysfunction following exposure to ionizing radiation. In the current 26 27 study, we report the development of a duplex droplet digital PCR method for the accurate quantification of the mt/nDNA ratio in the model organism *Caenorhabditis* 28 *elegans.* The effect of chronic exposure to gamma radiation was investigated at doses 29 ranging from 0.03 to 72 Gy. For this purpose, five mitochondrial targets and two nuclear 30 31 reference genes were amplified pairwise (one mitochondrial and one nuclear target per PCR reaction) in duplex PCR format by both ddPCR and standard qPCR. In all the duplex 32 33 experiments performed, ddPCR but not qPCR, showed a significant $(1.6 \pm 0.1 \text{-fold})$ 34 increase in the mtDNA copy number when nematodes were exposed to high doses (≥ 24 35 Gy) of ionizing gamma radiation. Thus ddPCR, by measuring absolute rather than relative copies of selected targets, provided with more precise measurements compared 36 to gPCR and was a sensitive method with respect to copy number variation assessment. 37 Results from the ddPCR assay also showed that chronic exposure of *C. elegans* to ionizing 38 39 radiation affected the mtDNA copy number with a Hill type dose-dependent increase and predicted a dose threshold of effect at 10.3 ± 1 Gy. This strongly suggests that 40 chronic exposure to ionizing radiation affects mtDNA, by inducing genotoxic response 41 and effects on mtDNA replication, with potential as marker for mitochondrial 42 dysfunction. 43

44 1. Introduction

The direct deposition of high energy onto nucleic acids by high doses of ionizing radiation can induce a broad range of genetic alterations, from single base lesion/mutation, single-strand or double-strand breaks (SSB, DSB), to complex DNA lesions such as chromosomal damage/aberration and even chromosome loss (Lomax et al., 2013). In contrast, upon exposure to low doses of ionizing radiation, most of the genotoxicity is due to the indirect effect exerted by the production of Reactive Oxygen Species (ROS) and by the consequent oxidative insult to DNA (Azzam et al., 2012).

The mitochondrion represents, in a healthy cell, the primary source for endogenous 52 ROS, since 1-5% of the oxygen, consumed via the mitochondrial Electron Transport 53 Chain (ETC) for the production of ATP, via oxidation of NADH and FADH, inadvertently 54 55 ends up as oxygen radicals (Cadenas and Davies, 2000). Following oxidative stress, 56 damage to the mitochondrial DNA (mtDNA) has been shown to be more extensive and 57 persists longer than nuclear DNA damage (Yakes and Van Houten, 1997). In addition to 58 endogenous ROS production caused by the physiological electron leakage in the ETC, ionizing radiation exposure can induce excess of free radicals through water radiolysis 59 which can cause improper assembly and functioning of ETC and ATP synthase 60 machineries (Dayal et al., 2009, Spitz et al., 2004, Kam and Banati, 2013). Moreover, due 61 62 to the close proximity to the ETC, the lack of DNA-protective histones (Mandavilli et al., 2002), the higher density of coding sequences (Evdokimovsky et al., 2011) and fewer 63 DNA repair systems (Sawyer and Van Houten, 1999), the mitochondrial DNA (mtDNA) 64 represents a more vulnerable target for low dose radiation-induced genotoxicity than 65 its nuclear counterpart (Malakhova et al., 2005). However, the mitochondrial function 66 67 may be unaffected even if some mitochondrial genome copies are damaged or truncated.

In such cases, the genotoxic damage may be compensated by the remaining intact 68 69 mtDNAs, although adverse effects arise if the proportion of damaged genomes causes a deficiency of protein products required for proper oxidative phosphorylation and 70 efficient ATP production (Bai and Wong, 2005, Montier et al., 2009). Mitochondrial DNA 71 is therefore considered a susceptible target of ionizing radiation (Kam and Banati, 72 2013). The ratio of mtDNA to nDNA can be used as an estimate for the number of 73 74 mitochondrial genomes per cell, or mtDNA copy number (Phillips et al., 2014). An increase in the mtDNA copy number has been reported both *in vitro* and *in vivo* after 75 exposure to jonizing radiation of mammalian systems (Nugent et al., 2010, Malakhova 76 et al., 2005, Kam and Banati, 2013). This increase is believed to be a compensatory 77 78 mechanism (Okunieff et al., 2008) or an adaptive response of mitochondria to maintain 79 function post-irradiation (Nugent et al., 2010, Rogounovitch et al., 2002). Changes in the mtDNA content may thus serve as a readout to measure radiation response for 80 81 mitochondrial dysfunction (Malik and Czajka, 2013).

One widely adopted method for measuring the mt/nDNA ratio is based on a quantitative 82 PCR (qPCR) assay (Bratic et al., 2010, Polyak et al., 2012, Haroon et al., 2018). This 83 advantageously enables analysis over an extremely wide dynamic range from single 84 molecule input copy number of target DNA, up to very high concentrations of DNA (Basu, 85 2017). The aPCR technique can provide measurement of mtDNA copy number based on 86 the comparison between a standard curve and the amplification of a small 87 mitochondrial and a small nuclear target (usually ≤ 200 bp). However, qPCR provides 88 89 only semi-quantitative or relative quantification analysis, since the quantification is based on interpolation of a sample result against a standard curve (Evdokimovsky et al., 90 2011, Gahan et al., 2001, Côté et al., 2011). This method, although widely adopted and 91 cost efficient, presents some limitations and the determination of mtDNA copy number 92

93 has shown to be influenced by DNA extraction procedures (Guo et al., 2009). 94 Furthermore, erroneous results may also occur, in quantitative real-time PCR assays (Côté et al., 2011), due to preferential amplification of one of the selected targets, well-95 to-well variability and PCR inhibitors leading to different amplification efficiencies of 96 the selected targets (Malik and Czajka, 2013). These limitations are bypassed in 97 multiplex digital PCR (dPCR) assays, where target DNA molecules are fractionated into 98 99 multiple partitions, each containing a PCR reaction, at a level where there are some partitions that have no DNA template and others that have one or more DNA template 100 copies present (Baker, 2012). After amplification to the terminal plateau phase of PCR. 101 reactions containing one or more DNA templates yield positive end-points, whereas 102 103 those without DNA template remain negative (Hindson et al., 2011). Based on Poisson 104 distribution, this technique allows for absolute quantification of number of target DNA 105 molecules and thus represents an improved accurate method to quantify the mtDNA 106 copy number (Memon et al., 2017, Basu, 2017).

Therefore, the aim of the current study was to optimize a method based on duplex droplet digital PCR (ddPCR) for the quantification of mtDNA copy number relative to nDNA. The established method was employed to evaluate the effects on mtDNA copy number variation (CNV) in response to genotoxic stress, by using *Caenorhabditis elegans* as a model organism chronically exposed to low and high doses of ionizing gamma radiation.

113

114

116 2. Materials and methods

117 2.1Nematode culturing and irradiation

118

Wild-type *C. elegans* N2 (var. Bristol) were grown in 6 cm Ø Petri dishes under dark conditions at 20 °C in nematode growth medium (NGM) and fed with *Escherichia coli* strain OP50 according to a standard protocol (Lewis and Fleming, 1995). Agesynchronous worm populations were initiated from eggs following alkaline hypochlorite treatment of gravid adults as described by Stiernagle (1999).

For the low-dose exposure, synchronized L1 stage N2 cultures on NGM agar seeded with OP50 were gamma irradiated with a ⁶⁰Co source (maximum permissible activity 400 GBq) at dose-rates ranging from 0.4 to 100 mGy·hr⁻¹ at the Figaro facility (Norwegian University of Life Sciences, Norway) (Lind et al., 2019) for 72 hours (**Table S.2**). Three biological replicates per dose-rate (~1000 nematodes per replicate) were placed vertically facing the gamma source, non-irradiated nematodes were placed in the control zone, next to the source, in order to maintain the same exposure condition.

For the high-dose exposure, synchronized cultures (L1 stage, in triplicates, ~1000 nematodes per replicate) in NGM plus OP50 were irradiated at ~1 Gy·hr⁻¹ for a total of 24, 48 or 72 hours (**Table S.2**) and all treatment were sampled after 72 hours of development from L1 stage, when nematodes reached the adult stage.

After the irradiation, worm populations were sieved and rinsed by passing 3x 10 mL M9
solution through a cell-strainer (30 µm Ø mashes) in order to remove the bacterial cells.
Before snap-freezing the samples in liquid nitrogen, nematodes were treated with EDTA
(2 mM), in order to preserve the DNA integrity during storing conditions (-80 °C).

2.2Total DNA extraction

140

Snap-frozen aliquots of nematodes (approximately 1000 individuals per sample) were 141 142 thawed and disrupted by using ATL buffer (Qiagen, Germany) and beads beating (0.1-0.5 mm Ø) in a FastPrep homogenizer (MP Biomedicals, 20 m/s per 10 seconds). 143 Isolation of total DNA was performed by using the DNeasy Blood and Tissue Kit (Oiagen, 144 Germany), according to the manufacturer's instructions with some modifications. 145 Briefly, prior to precipitate the DNA onto the columns, the nematodes' lysate was 146 subjected to RNase A (10 μ g/ μ l) treatment (1 hour at 37 °C) followed by incubation in 147 water bath for 2 hours at 56 °C with Proteinase K (2 mg/ml). 148

DNA quantification and purity were assessed by using NanoDrop ND-1000 MicroVolume UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).
DNA concentrations were further validated by using Qubit fluorometer measurements
(Thermo Fisher scientific).

In order to optimize the droplet formation and the performance of ddPCR analysis
(Basu, 2017), DNA samples were sonicated for 10 minutes in a water bath equipped with
an ultrasonic probe (Sonic Vibra Cell Ultrasonic processor, VC 130, 130 W, Sonic &
Materials Inc., Newton, CT, USA) and diluted to a final concentration of 0.5 ng/μl.

157

158

2.3 PCR primers and TaqMan probes design

161

The *C. elegans* mtDNA NC_001328 was obtained from the National Centre for Biotechnology Information (NCBI) and it was used as reference sequence for the design of the five mitochondrial PCR targets. As nuclear PCR reference targets, we selected the actin-4 (*act-4*) gene (NC_003284.9), which is a member of the multi-copy actin family, together with the single-copy glucose-6-phosphate isomerase (*gpi-1*) gene (NC_003279.8).

The PCR primers and TaqMan probes were designed by use of Oligo[®] Primer Analysis 168 169 Software (Rychlik, 1995). The in silico analysis of each set of mtDNA and nDNA primer 170 pairs with their corresponding TaqMan probes was first done in singleplex- and then in duplex PCR format to select oligonucleotides with nearly the same thermodynamic 171 properties and without undesired DNA secondary structures, or dimer formation and in 172 order to achieve the most robust and sensitive duplex PCR amplification. The five-173 174 mtDNA targets were distributed across the mitochondrial genome but did intentionally 175 not include the common deletion *uaDf5* (Fig. 1). Their corresponding genes encoded the 176 small subunit rRNA (s-rRNA), subunits I and III of cytochrome c oxidase (COX1 and COX3), subunit 5 of NADH dehydrogenase (ND5), and the junction between tRNA for 177 valine and subunit 6 of NADH dehydrogenase (tRNA-Val/ND6). The sequences and 178 amplicon lengths for each selected PCR primer and TaqMan probe are listed in Table 1. 179 180 The specificity of the primers was also analyzed by the NCBI Primer-BLAST analysis (Ye et al., 2012). Hereby, only the primers/probe set for the nDNA reference target act-4 181

182 seemed able to produce two additional positive amplicons, when limits for the number

of allowed primer and probe mismatches (less than 3) and for the amplicon length (lessthan 0,5 kb) were taken into account.

The mtDNA TaqMan probes were synthesized with a 6FAM/BHQ-1 reporter/quencher whereas the nDNA probes had HEX/BHQ-1 combination. All primers and probes were obtained from Sigma-Aldrich (Oslo, Norway).

188

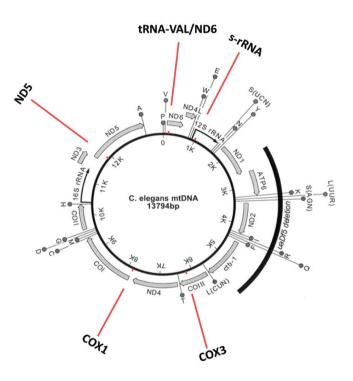


Figure 1. Gene map of the *C. elegans* mtDNA, comprising twelve proteins encoding genes (thick grey arrows), two rRNAs genes (black arrows), and 22 tRNAs genes (circles labeled with one-letter amino acid code). The positions of the putative uaDf5 deletion region is indicated by the thick black mark outside the circle. Red marks denote positions of the five target amplicons used for the ddPCR and qPCR duplex assay performed in this study. Figure is adapted from Lemire, B. Mitochondrial genetics (September 14, 2005), WormBook, ed. The *C. elegans* Research Community, WormBook,

- 198 Table 1. Primers and TaqMan probes sequences for amplification of mitochondrial and nuclear target
- 199 genes selected for the quantification of the ratio mt/nDNA via duplex ddPCR and qPCR assays.

Name		Sequence 5' \rightarrow 3'	Amplicon length (bp)	NCBI Ref. seq. NC_001328
Mitochondrial				
tRNA-Val/ND6	Up	CTTACAATGATGGGGTTT	105	87 - 192
	Low	AACTTCTTTTTATAGGGTCAA		
	TaqMan	TCCTACTTAAAACAGCTAAAACAAA		
s-rRNA	Up	TATCGCTTGTAAAATACTTGT	86	1008 - 1194
	Low	TTCTCTAACCAGGTACTAATC		
	TaqMan	TCCAGAATAATCGGCTAGACTTGTT		
COX3	Up	GCAGACGGAGTATTTGGAAGG	149	6224 - 6373
	Low	GCAAATTCCAACCCCAGATG		
	TaqMan	TGCTAAGAAGAAACCACCACACAAGACA		
COX1	Up	TGGCAGTTTGATTAGAGAG	184	7876 - 8060
	Low	AAAATAGCATGACGTGTAATAA		
	TaqMan	CTGAATTATACAACTGTCCATTCCT		
ND5	Up	TGTTAATTTTCGTAGGTAGA	169	11935 - 12104
	Low	CCTAGACGATTAGTTAATGC		
	TaqMan	TATTGCACCCCTACATCTATCTCA		
Genomic				
act	Up	GAAGCCCAGTCCAAGAGAG	107	
	Low	TTGTAGAAGGTGTGATGCCAG		
	TaqMan	TGAGCACGGAATCGTCACCAACT		
gpi-1	Up	GTAGTCTAATGAATTAAATTTACAG	75	
31	Low	TCTTTCCTTTCATTAGTGCCTC	10	
	TaqMan	TCTCGCCAACTTCCTCGCTCAAA		
	- aquian			

200

201 2.4 Initial PCR optimization

202

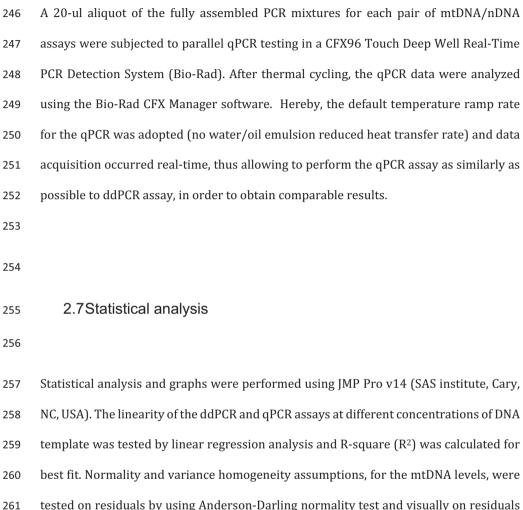
The composition of the reaction mixture for ddPCR is very similar to a qPCR mixture except that the water-oil emulsion with nL droplets requires additional stabilizing chemicals (Baker, 2012). Accordingly, the DNA amplification and fluorescent signal 206 generation for both methods occur by the same principles. Under identical reaction 207 conditions, a head-to-head comparison of the two PCR formats could be enabled by 208 separating a fully assembled ddPCR reaction mixture into two ddPCR/qPCR aliquots 209 with subsequent amplification and signal detection in respective instrument platforms.

210 Initially, by using qPCR, different concentrations of each primer pair and relative TagMan probes were tested with a DNA sample obtained from nematodes at 72 hours 211 development from L1 stage (1 ng/25 ul reaction mixture) at different annealing 212 temperatures in reaction mixtures based on the 2x ddPCR Supermix for Probes (No 213 214 dUTP, Bio-Rad). The reaction conditions that gave the most efficient amplification in singleplex format were also used in duplex qPCR with co-amplification of one nDNA and 215 one mtDNA target. The results of these experiments demonstrated a feasible 216 compromise between the individual primer/probe concentrations/annealing 217 218 temperature for universal reaction conditions.

In the optimized duplex qPCR and ddPCR assay, the concentration of each primer and 219 220 TaqMan probe was set to 200 nM and 50 nM, respectively. The COX1 was the only exception with 100 nM of TaqMan probe. Moreover, the thermal cycling protocol used 221 for DNA amplification was performed as follows: initial activation of the enzyme at 95°C 222 for 10 minutes, 40 cycles of a two-step protocol with DNA denaturation at 95°C for 15 223 seconds followed by combined annealing/extension at 52°C for 75 seconds. The 224 225 temperature ramp rate between the two cycling stages was adjusted slower for ddPCR (2°C per second) than qPCR, where it was applied the default rapid ramp rate for the 226 CFX qPCR instrument (Bio-Rad). 227

228

230 2.5 Droplet digital PCR


231

In the ddPCR assay, the fully assembled reaction mixture was dispersed into nL droplets 232 233 in a water-oil emulsion by using a microfluidic cartridge and the QC200 Droplet 234 Generator (Bio-Rad). The water-oil emulsion of the sample was then carefully 235 transferred to a rigid PCR plate, sealed with pierceable foil in a PX1 PCR plate sealer (Bio-Rad), and subjected to thermal cycling in a PCR machine (Section 2.4, Eppendorf 236 237 Mastercycler, Oslo, Norway). Subsequently, the PCR plate was transferred to the QX200 238 Droplet Reader (Bio-Rad) which automatically counts the mtDNA and nDNA positive/negative droplets. Analysis of ddPCR data with Poisson statistics was done by 239 using the QuantSoft software from the QX200 system (Bio-Rad) (Hindson et al., 2011, 240 241 Memon et al., 2017).

242

2.6 Real-time qPCR analysis

245

261 tested on residuals by using Anderson-Daring normality test and visually on residuals
262 vs. fitted value plot, respectively. MtDNA levels were normally distributed, therefore
263 significant difference between different exposure groups were calculated using one-way
264 analysis of variance (ANOVA). When significant, the Tukey pair-wise comparisons
265 method was applied to identify differences between specific groups.

266 The ratios mt/nDNA for both reference genes were analysed with all replicates 267 simultaneously. A linear model was applied to study the influence of the reference gene copy number (multi-copy act or single-copy *gpi-1*) on the mtDNA CNV at different 268 irradiation doses. A regression of ratio on log transformed doses was done separately 269 for the reference genes and split into high dose range (24 to 72 Gy) and low dose range 270 (0.03 to 7.2 Gy). The ratio of the intercept (*api-1*)/intercept (*act*) was used as correction 271 272 factor to multiply *act*-values at high and low doses. Substituting Ratio with Log10(Ratio) revealed that log transformation of the dependent variable would reduce the high slopes 273 observed with higher ratios. 274

Because the whole dose range of exposure from zero to 72 Gy showed two distinct levels of effect at 7.2 Gy and 24 Gy, a threshold model was estimated by curve fitting, where the Akaike information criterion (AIC) was used to select between logistic models with different parametrization. The Logistic 4P Hill model was adopted as it showed the best fit, with similar values for slope and inflection point when the ratios were calculated using both reference genes (*act* and *gpi-1*).

281

282

3. Results and discussion

284

The mitochondrial genomes encode genes with essential functions to central metabolism (Anderson et al., 1981). It thus follows that loss or mutation of mtDNA invariably affects energy production and leads to mitochondrial dysfunction, which can be devastating to the organism (Haroon et al., 2018). It has been shown that 289 mitochondrial DNA is highly susceptible to genotoxic stress, including exposure to 290 ionizing radiation (Azzam et al., 2012, Kam and Banati, 2013). Radiation induced mitochondrial dysfunction leads to excessive ROS formation, oxidative damage effects. 291 and induction of genomic instability (Spitz et al., 2004). Conventional long amplicon 292 qPCR based methods permit relative quantification of damage both in mitochondrial 293 and nuclear DNA, by using a small amplicon as reference for total copy number (Yakes 294 295 and Van Houten, 1997, Phillips et al., 2014). Moreover, by assuming that the damage in the small reference amplicon is negligible, PCR product yield indicates changes in the 296 mtDNA copy number (Hunter et al., 2010). Changes in the ratio mt/nDNA have been 297 proposed as a potential biomarker for mitochondrial dysfunction (Malik and Czajka, 298 299 2013).

In the current study, we therefore aimed to investigate the effect of chronic exposure to ionizing radiation on the mtDNA copy number in the model organism *C. elegans*. We developed and validated a ddPCR based method to facilitate accurate and robust determination of mtDNA copy number relative to nDNA reference genes.

304

305

306 3.1 Reference (nDNA) and target (mtDNA) genes

307

In order to assess variations of the mtDNA copy number, five mtDNA (COX1, COX3, ND5, s-rRNA and tRNA-val/ND6) targets and two nDNA reference genes (*gpi-1, act*) were selected (**Fig. 1**) and corresponding primer pairs and TaqMan probes were designed (**Table 1**). The suitability of each amplicon was investigated by performing qPCR and ddPCR simplex experiments with temperature gradient, primers and probes serial
dilutions (data not shown) and serial dilutions of template DNA (Fig. 2; ddPCR).

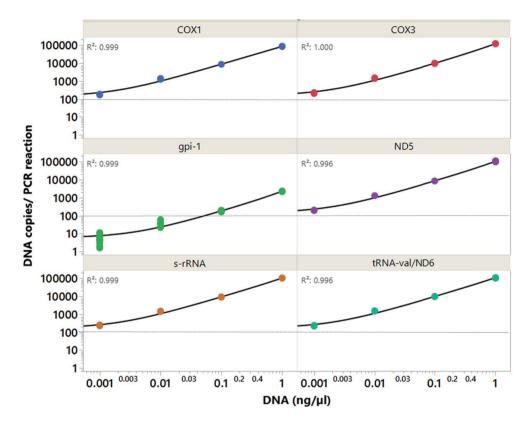
In order to exclude mitochondrial targets with potential duplicates on the nuclear genome, and in order to ensure specificity of the selected targets, we performed a NCBI nucleotide/primer BLAST[®] analysis on the *C. elegans* refseq genome (Ye et al., 2012).

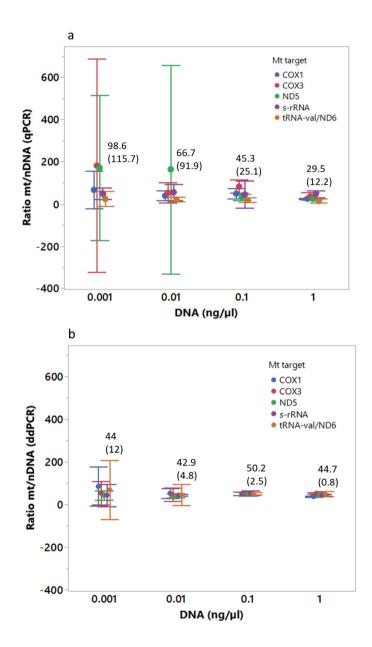
The specificity of the primer pairs was validated by performing duplex assay 317 318 experiments with both the qPCR and ddPCR methods, using serial dilutions of DNA template, extracted from nematodes at 72 hours development from L1 stage. The duplex 319 320 assay from ddPCR results showed linearity for all mitochondrial targets as well as for 321 the reference genomic target *qpi-1*, (Linear Regression Analysis, *p*-value <0.0001) (Fig. 322 2). The number of DNA copies, from each PCR amplicon, measured as a function of input DNA (ng/ μ l) showed a high correlation (R²=0.99). This demonstrates that the assay was 323 stable and exhibit a wide dynamic range for all five selected mitochondrial targets as 324 well as for the nDNA reference gene (*qpi-1*), and thus suitable for the mtDNA copy 325 326 number quantification.

327

When the same experiment was performed by using standard quantitative PCR duplex assay, linearity ($R^2 > 0.94$) was also observed for all the mitochondrial targets and for the reference gene *gpi-1* (**Fig. S.1**). However, variability between the selected target genes was found in the amplification efficiency values E_x (%) (**Fig. S.2, Table S.1**). This indicated lower performance of qPCR compared to ddPCR, likely due to competition between primers in the amplification reactions, which resulted in different amplification efficiency between the selected targets, as well as for the nDNA target, when this was measured in a duplex assay with a mitochondrial target gene (Fig. S.1,

S2).




Fig. 2. DNA copies per PCR reaction (20 μl) measured at different concentrations of input DNA (ng/μl)
with ddPCR duplex assay, by using five mitochondrial targets (COX1, COX3, ND5, s-rRNA, tRNA-val/ND6)
and *gpi-1* as nDNA reference gene. Linear regression analysis shows equal correlation (R² ≥0.99) for all
mitochondrial targets and for the nDNA reference gene *gpi-1*. Horizontal lines indicate the 100 DNA
copies/PCR reaction cut off for the genomic target suggested for the optimal quantification of the ratio
mt/nDNA (Droplet Digital PCR Application guide).

346 3.2 Optimization of DNA template concentration for measuring the ratio 347 mt/nDNA with ddPCR duplex assay

348

349 As previously reported by Malik et al. (2011), bias can be introduced into a qPCR reaction due to suboptimal DNA concentrations. In ddPCR also, it is particularly 350 important to identify the optimal DNA concentration range for the assessment of ratio 351 mt/nDNA, considering that mtDNA copie number is known to be significantly higher 352 than the number of nDNA copies in the same sample, and that these numbers vary 353 between species or tissues (Memon et al., 2017). Therefore, quantification of the 354 mt/nDNA ratio with both qPCR and ddPCR methodologies was obtained from the serial 355 dilution experiments discussed in Section 3.1. The mean and 95% Confidence Interval 356 357 (CI) values showed that the ddPCR assay provided more consistent results with lower variation (\sim 46±4 mt/nDNA) compared to the conventional method based on qPCR, 358 even when the DNA concentration was as low as $0.01 \text{ ng/}\mu\text{l}$ (Fig. 3, Table 2, and Fig. 359 **S.3**). However, in order to measure the Copy Number Variation (CNV) with ddPCR and 360 361 to optimize the ratio measurements, the manufacturer recommends a minimal 362 concentration of nuclear target of 100 copies per PCR reaction (Droplet Digital PCR Application guide) (horizontal lines in Fig. 2). In line with this recommendation, the 363 statistical analysis showed a significantly higher variance for template concentrations 364 $(<0.1 \text{ ng/}\mu\text{L})$ containing < 100 copies of nDNA. Therefore, based on this criterion and 365 on the low variation shown in the mt/nDNA ratios (95% Confidence Intervals in Table 366 367 2, Fig. 3 and Fig. S.3), the optimal concentration of template DNA for reliable quantification and optimal partitioning for both mt/nDNA targets was identified 368 between 0.1 and 1 ng/ μ l of DNA. For these reasons, 0.5 ng/ μ l was the concentration 369

- adopted in this study to measure mtDNA CNV induced by exposure to ionizing gamma
- 371 radiation.

- Figure 3. mt/nDNA ratios measured with (a) qPCR and (b) ddPCR assays, by using different
 concentrations of DNA template (ng/μl) with five mitochondrial target genes and *gpi-1* as nDNA reference
 gene. Error bars indicate the measurement range. Data labels indicate Mean and 95% Confidence Interval.
- 376
- **Table 2.** Mt/nDNA ratios (Mean ± 95% CI) measured per each of the five mitochondrial target genes with
- 378 duplex ddPCR and qPCR assays performed simultaneously at different concentrations of DNA template
- 379 $(ng/\mu l)$ by using *gpi-1* as nuclear reference gene.

mt/nDNA ratio					
Mitochondrial	Method		DNA input (ng/µl)		
target	Wiethou	0.001	0.01	0.1	1
	ddPCR	35 ± 21	43 ± 12	53 ± 5	44 ± 2
s-rRNA	qPCR	49.8 ± 10.9	55.6 ± 15.7	45.1 ± 25.9	47.4 ± 6.5
COX1	ddPCR	70 ± 60	52 ± 14	50 ± 5	37 ± 1.3
	qPCR	67 ± 35.7	39.2 ± 9.5	48.8 ± 9.9	25.1 ± 1.5
сохз	ddPCR	44 ± 29	43 ± 10	51 ± 5	53 ± 2
	qPCR	181.6 ± 203	52.9 ± 19.2	82.4 ± 12.7	35.8 ± 7.2
ND5	ddPCR	41 ± 26	41 ± 11	48 ± 5	46 ± 1.7
	qPCR	171.2 ± 138.4	164.1 ± 198.7	31.5 ± 6.3	24.5 ± 2.3
tRNA-val/ND6	ddPCR	44 ± 27	38 ± 8	50 ± 5	48 ± 1.7
	qPCR	23.7 ± 14.3	21.1 ± 4.5	18.9 ± 4.3	14.9 ± 3.4

381

382 3.3 Comparison between nDNA reference genes act and gpi-1

383

Among the uncertainties related to the quantification of mt/nDNA ratio with the methodology based on qPCR, the selection of proper genomic reference genes has shown to be critical (Malik and Czajka, 2013). Therefore, in order to test the accuracy of the ddPCR assay in this matter, and to assess whether the specificity of the nDNA 388 target would influence the quantification of the mtDNA CNV, we compared two nDNA 389 reference genes. In particular, the *qpi-1* target was selected as single copy reference, while the *act* target was designed to amplify three individual targets. By using the NCBI 390 391 primer BLAST[®], we were able to design primer pairs and TaqMan probe that were specific to *act-4*, *act-3* and *act-1* genes. Particularly, this analysis in combination with 392 the ddPCR results indicated that while *gpi-1* showed affinity only for one target on 393 394 Chromosome I, both primers and the TaqMan probe for *act-4* showed affinity for *act-4* on Chromosome X and for two orthologue genes on Chromosome V (*act-1* and *act-3*). 395 Where act-4 showed 100% identity for both primers set and TaoMan probe (amplicon 396 length 108 bp), while act-1 and act-3 showed 98% identity with two mismatches on the 397 398 total PCR product and 1 mismatch contained in the TaqMan sequence (Supporting 399 material).

400 As expected, when performing the ddPCR assay for the quantification of the mtDNA copy 401 number, the mt/nDNA ratio was \sim 3 times lower for the nDNA reference target *act*, compared to the *api-1* target gene, as indicated by the slope value (=3) in the equation 402 presented in Fig. 4. Furthermore, to check robustness and consistency between single 403 404 versus multi copy nDNA amplicon, ddPCR analysis were performed in C. elegans populations subjected to a high-level genotoxic stress. This showed a significant 405 406 linearity ($R^2=0.83$) and similar dose-dependent increases for both *gpi-1* and *act* targets, 407 in the mt/nDNA ratio measured after chronic exposure to high doses of ionizing gamma radiation (>24 Gy) (Fig. 4). 408

409

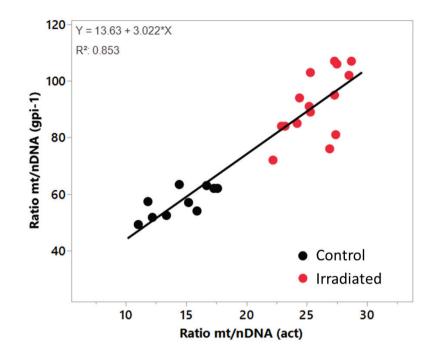


Figure 4. Linear correlation between mtDNA CNV assed by using the nuclear targets *gpi-1* and *act-4* (*act*) as reference genes for the measurement of the mt/nDNA-ratio using the duplex ddPCR assay with five mitochondrial target genes. Dots indicate the average of three replicates from five mtTarget genes with both nDNA reference genes *act* (x-axis) or *gpi-1* (y-axis) measured in DNA extracted from nematodes chronically exposed to high doses (24, 48 and 72 Gy) of ionizing gamma radiation.

422 3.4 ddPCR in comparison to qPCR methodology

423

474 In order to test the accuracy of the ddPCR method for the quantification of the mtDNA copy number, we compared the optimized ddPCR assay with a standard qPCR method 425 426 analysis. For this purpose, we collected samples of total DNA extracted from nematodes exposed to high dose ranges of ionizing gamma radiation (24, 48 and 72 Gy), plus a 427 428 control group of non-irradiated nematodes. The mt/nDNA ratio was measured by performing two independent duplex experiments, one for each of the two nDNA 429 reference genes (gpi-1 and act), which were measured with each of the five 430 mitochondrial target genes (Section 3.1, Table 1). The ddPCR and qPCR assays were 431 performed using aliquots of the same reaction mixtures to minimise variation not 432 433 associated with the two methods (Sections 2.3, 2.4).

434 In line with Memon et al. (2017), our results from the standard qPCR assay showed less accuracy, as indicated by the large variation within the same exposure group compared 435 to results from the ddPCR assay (95% CI in brackets from the data labels, Fig. 5.a-b). 436 We observed a significant dose-dependent increase (ANOVA and Tuckey post hoc, p-437 438 value < 0.05) in the mt/nDNA-ratio using the ddPCR assay with both nDNA reference 439 genes in all the irradiated groups compared to the control group (**Fig. 5.a-b**). In contrast, under similar experimental conditions using qPCR, due to large intra-variability, no 440 significant differences were detected (ANOVA, *p*-value > 0.05). 441

Particularly, ~1.5±0.1 and ~1.6±0.1-fold increases in the mt/nDNA ratio was observed
in irradiated nematodes, with ddPCR analysis, when *gpi-1* and *act* were used as nuclear
reference genes respectively. This was accompanied by a consistent dose-response
increases of the mtDNA copy number, for both nDNA targets. Therefore, both *gpi-1* and

act were considered suitable reference nuclear genes for the quantification of mtDNAcopy number in the ddPCR assay.

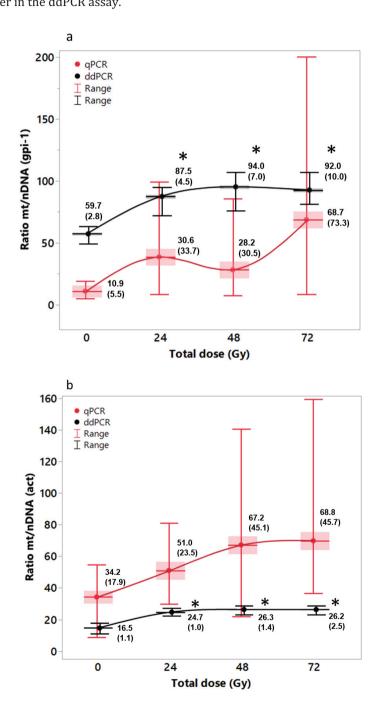


Figure 5. Comparison between duplex qPCR (red) and ddPCR (black) assay, for the quantification of
mt/nDNA-ratios, measured in DNA extracted from nematodes exposed to high dose ranges of ionizing
gamma radiation (24 to 72 Gy, dose-rate ~1 Gy·hr⁻¹). Results are from two independent experiments using
two different targets as nuclear reference genes, *gpi-1* (a) and *act* (b). Data labels indicate mean and 95%
Confidence Interval.

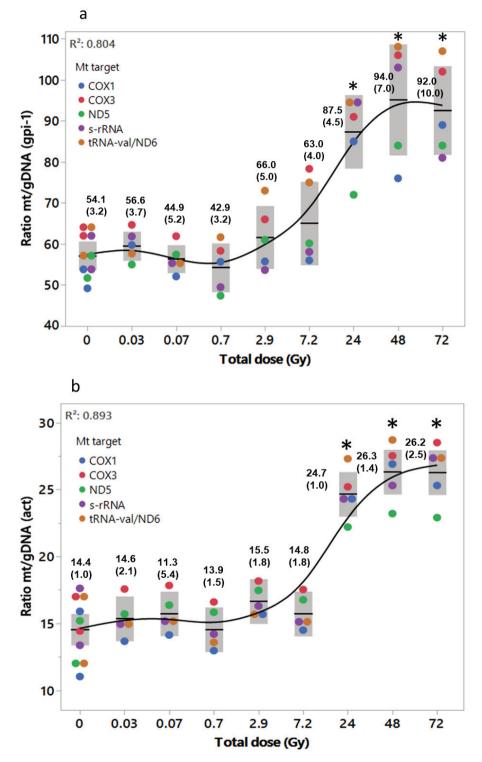
453

454

455 3.5 Evaluating the effects of chronic exposure to ionizing gamma
456 radiation on mtDNA copy number in *C. elegans*

457

Previously we have shown that chronic exposure to gamma radiation induced life stagedependent reprotoxicity via increased germ cell apoptosis, impaired sperm meiosis and adverse effects on sperm production in the nematode *C. elegans* (Maremonti et al., 2019a). These effects were accompanied by increased levels of ROS production that affected cellular redox balance despite antioxidant defence response. Gene expression analysis indicated a comprehensive effect related to mitochondrial functions, including reduced expression of the mitochondrial ETC (Maremonti et al., 2019b).


This indicated that mitochondria have a prominent role in *C. elegans* response to chronic ionizing radiation exposure. To investigate whether i) the observed effects were related to compromised integrity of the mitochondrial genome, or ii) *C. elegans* would respond to genotoxic stress by increasing the mtDNA copy number to maintain mitochondrial function, we measured effects on the mtDNA copy number in nematodes exposed to gamma radiation doses ranging from 0.03 to 72 Gy, administered chronically duringlarval development.

The ddPCR based mitochondrial CNV analyses showed consistent, accurate and precise 472 473 results for all the mitochondrial and the nuclear targets adopted, including the multi-474 copy reference gene act (Section 3.2, Fig. 4). We observed only a small variation between the different mtTargets (1-4 copies for *act* and 5-10 copies for *api-1*, in control 475 groups), which may be attributed to the mtDNA-replication mode in *C. elegans* via 476 Rolling Circle Replication mechanism which generates concatemeric mtGenomes (Lewis 477 et al., 2015). Moreover, a consistent level of variation was detected in all the irradiated 478 479 groups, indicating that none of the selected targets were prone to hyper-variability or 480 were particularly susceptible to deletion.

The mt/nDNA-ratios increased in a dose-dependent manner (p-value < 0.0001, Logistic 481 4P Hill model) following gamma radiation (Fig. 6.a-b). However, a significant increase 482 of mtDNA copy number was only evident for dose-rates as high as ~ 1 Gy·hr⁻¹ provided 483 484 for an extended period of time (24 to 72 hours). A threshold dose of effect was identified by using the Logistic 4P Hill model at 10.3 ± 1 Gy, which is a dose ~2.4-fold higher than 485 the one required for the manifestation of reprotoxic effects (Maremonti et al., 2019a). 486 Thus, despite the significant effect exerted on the regulation of mitochondrial genes 487 (Maremonti et al., 2019b), essential for the proper assembly of the oxidative 488 489 phosphorylation system, dose-rates of gamma radiation below 100 mGy·hr⁻¹ did not significantly affect mtDNA copy numbers. Moreover, this may be related to adaptive 490 response, where mtDNA disease can be rescued by multiple molecular mechanisms 491 492 (Haroon et al., 2018).

493 Changes in the mtDNA content have been previously adopted as a measure for radiation-494 induced mitochondrial dysfunction (Malik and Czajka, 2013, Nugent et al., 2010, Malakhova et al., 2005), which suggests that the *C. elegans* mitochondrial function is 495 significantly compromised at doses ≥ 24 Gy (~1 Gy·hr⁻¹). Previous studies have 496 proposed that if depletion of mtDNA copies falls below a critical threshold, this will 497 trigger replication by up-regulating the mitochondrial replication machinery (Montier 498 499 et al., 2009). Conversely, according to the same model by Montier et al. (2009), if the mtDNA copy number increases above a certain threshold this triggers mtDNA 500 degradation. Control of the mtDNA copy number is considered an important aspect of 501 mitochondrial genetics and biogenesis, therefore essential for normal cellular function. 502 503 For instance, reduction in the mtDNA copy number causes an imbalance in the number 504 of proteins derived from the nuclear and mitochondrial genome. This imbalance has 505 shown to induce further proteotoxic stress, by preventing proteins from finding their 506 natural binding partner inside the mitochondrion (Haroon et al., 2018). Based on the 507 threshold model and on aforementioned observations, in our study, nematodes exposed 508 to relatively low doses of ionizing gamma radiation (up to 7.2 Gy) showed the ability to maintain a stable mtGenome content. In contrast, high-dose exposure led to induction 509 of a \sim 1.5-fold significant increase in mtDNA copy number, suggesting a compensatory 510 511 effect induced by mtDNA deletion due to excessive production of ROS and radiationinduced DNA damage, as previously reported by Bai and Wong (2005). 512

This scenario is consistent with the *C. elegans* ability to tolerate 1 kGy without mortality (Krisko et al., 2012), or loss of cell viability in post-mitotic tissues (Johnson and Hartman, 1988). This may imply a remarkable ability to maintain mitochondrial functions as well and could indicate that the increased copy number is part of the intrinsic radioresistance of *C. elegans*.

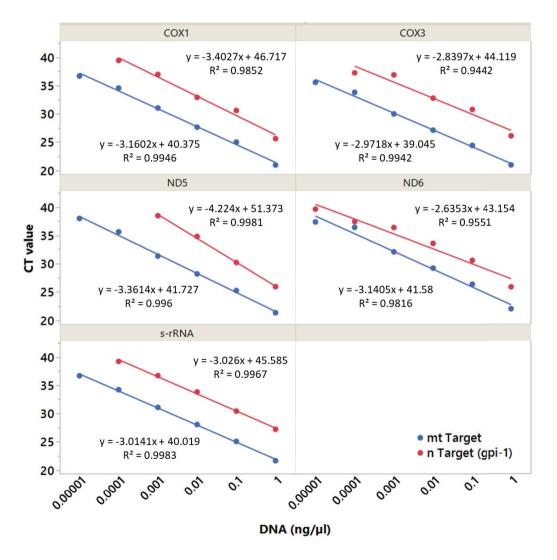
519	Figure 6. mt/nDNA ratio measured with duplex ddPCR assay on nematodes exposed to low and high
520	dose-rates of ionizing gamma radiation, ranging from 0.4 to 100 mGy·hr ⁻¹ (up to 7.2 Gy) or ~1 Gy·hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy·hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1 Gy) or ~1 Gy) or ~1 Gy/hr ⁻¹ (24 Gy) or ~1
521	to 72 Gy), by using five mitochondrial targets and two nuclear (gpi-1 and act) reference genes. Data labels
522	indicate Mean and 95% Confidence Interval.

525 Conclusions

The current study presents a new ddPCR duplex method for the absolute quantification of mtDNA copy number. Based on the mt/nDNA ratio, the ddPCR method facilitates a simple and robust means of quantification that overcomes the known uncertainties related to qPCR measurements. The results consistently showed increased mtDNA copy number in response to chronic exposure to ionizing gamma radiation in the nematode C. elegans, demonstrating the high accuracy and sensitivity of the ddPCR assay. This method represents a novel tool for the assessment of effects on mitochondrial function, and indicates that genotoxic stress triggers dose-dependent effects on mtDNA copy number in *C. elegans*.

540 References

- ANDERSON, S., BANKIER, A. T., BARRELL, B. G., DE BRUIJN, M. H., COULSON, A. R., DROUIN, J.,
 EPERON, I. C., NIERLICH, D. P., ROE, B. A. & SANGER, F. J. N. 1981. Sequence and organization
 of the human mitochondrial genome. 290, 457.
- AZZAM, E. I., JAY-GERIN, J.-P. & PAIN, D. 2012. Ionizing radiation-induced metabolic oxidative stress
 and prolonged cell injury. *Cancer letters*, 327, 48-60.
- BAI, R.-K. & WONG, L.-J. C. 2005. Simultaneous detection and quantification of mitochondrial DNA
 deletion (s), depletion, and over-replication in patients with mitochondrial disease. *The Journal of Molecular Diagnostics*, 7, 613-622.
- 549 BAKER, M. 2012. Digital PCR hits its stride. *Nature Methods*, 9, 541-544.
- BASU, A. S. 2017. Digital assays part I: partitioning statistics and digital PCR. SLAS TECHNOLOGY:
 Translating Life Sciences Innovation, 22, 369-386.
- BRATIC, I., HENCH, J. & TRIFUNOVIC, A. 2010. Caenorhabditis elegans as a model system for mtDNA
 replication defects. *Methods*, 51, 437-443.
- CADENAS, E. & DAVIES, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, and
 aging11This article is dedicated to the memory of our dear friend, colleague, and mentor
 Lars Ernster (1920–1998), in gratitude for all he gave to us. *Free Radical Biology and Medicine*, 29, 222-230.
- CÔTÉ, H. C. F., GERSCHENSON, M., WALKER, U. A., MIRO, O., GARRABOU, G., HAMMOND, E.,
 VILLARROYA, J., GIRALT, M., VILLARROYA, F., CINQUE, P., GARCIA-ARUMI, E., ANDREU, A. L.,
 PINTI, M. & COSSARIZZA, A. 2011. Quality assessment of human mitochondrial DNA
 quantification: MITONAUTS, an international multicentre survey. *Mitochondrion*, 11, 520527.
- DAYAL, D., MARTIN, S. M., OWENS, K. M., AYKIN-BURNS, N., ZHU, Y., BOOMINATHAN, A., PAIN, D.,
 LIMOLI, C. L., GOSWAMI, P. C., DOMANN, F. E. & SPITZ, D. R. 2009. Mitochondrial Complex II
 Dysfunction Can Contribute Significantly to Genomic Instability after Exposure to Ionizing
 Radiation. *Radiation Research*, 172, 737-745, 9.
- 567 EVDOKIMOVSKY, E. V., USHAKOVA, T. E., KUDRIAVTCEV, A. A. & GAZIEV, A. I. 2011. Alteration of
 568 mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice
 569 after irradiation at lethal dose. *Radiation and Environmental Biophysics*, 50, 181-188.
- GAHAN, M. E., MILLER, F., LEWIN, S. R., CHERRY, C. L., HOY, J. F., MIJCH, A., ROSENFELDT, F. &
 WESSELINGH, S. L. 2001. Quantification of mitochondrial DNA in peripheral blood mononuclear cells and subcutaneous fat using real-time polymerase chain reaction. *Journal* of *Clinical Virology*, 22, 241-247.
- 574 GUO, W., JIANG, L., BHASIN, S., KHAN, S. M. & SWERDLOW, R. H. 2009. DNA extraction procedures
 575 meaningfully influence qPCR-based mtDNA copy number determination. *Mitochondrion*, 9,
 576 261-265.
- 577 HAROON, S., LI, A., WEINERT, J. L., FRITSCH, C., ERICSON, N. G., ALEXANDER-FLOYD, J., BRAECKMAN,
 578 B. P., HAYNES, C. M., BIELAS, J. H., GIDALEVITZ, T. & VERMULST, M. 2018. Multiple Molecular
 579 Mechanisms Rescue mtDNA Disease in C. elegans. *Cell Reports*, 22, 3115-3125.
- HINDSON, B. J., NESS, K. D., MASQUELIER, D. A., BELGRADER, P., HEREDIA, N. J., MAKAREWICZ, A. J.,
 BRIGHT, I. J., LUCERO, M. Y., HIDDESSEN, A. L. & LEGLER, T. C. 2011. High-throughput droplet
 digital PCR system for absolute quantitation of DNA copy number. *Analytical chemistry*, 83,
 8604-8610.
- HUNTER, S. E., JUNG, D., DI GIULIO, R. T. & MEYER, J. N. 2010. The QPCR assay for analysis of
 mitochondrial DNA damage, repair, and relative copy number. *Methods*, 51, 444-451.
- JOHNSON, T. E. & HARTMAN, P. S. 1988. Radiation Effects on Life Span in Caenorhabditis Elegans.
 Journal of Gerontology, 43, B137-B141.
- KAM, W. W.-Y. & BANATI, R. B. 2013. Effects of ionizing radiation on mitochondria. *Free Radical Biology Medicine*, 65, 607-619.


- KRISKO, A., LEROY, M., RADMAN, M. & MESELSON, M. 2012. Extreme anti-oxidant protection against
 ionizing radiation in bdelloid rotifers. *Proc Natl Acad Sci U S A*, 109, 2354-7.
- 592 LEWIS, J. A. & FLEMING, J. T. 1995. Basic culture methods. *Methods in cell biology*, 48, 3-29.
- LEWIS, S. C., JOERS, P., WILLCOX, S., GRIFFITH, J. D., JACOBS, H. T. & HYMAN, B. C. 2015. A Rolling
 Circle Replication Mechanism Produces Multimeric Lariats of Mitochondrial DNA in
 Caenorhabditis elegans. *PLOS Genetics*, 11, e1004985.
- LIND, O. C., OUGHTON, D. H. & SALBU, B. 2019. The NMBU FIGARO low dose irradiation facility.
 International journal of radiation biology, 95, 76-81.
- LOMAX, M. E., FOLKES, L. K. & O'NEILL, P. 2013. Biological Consequences of Radiation-induced DNA
 Damage: Relevance to Radiotherapy. *Clinical Oncology*, 25, 578-585.
- MALAKHOVA, L., BEZLEPKIN, V. G., ANTIPOVA, V., USHAKOVA, T., FOMENKO, L., SIROTA, N. &
 GAZIEV, A. I. 2005. The increase in mitochondrial DNA copy number in the tissues of γ irradiated mice. *Cellular Molecular Biology Letters*, 10, 721.
- MALIK, A. N. & CZAJKA, A. 2013. Is mitochondrial DNA content a potential biomarker of mitochondrial
 dysfunction? *Mitochondrion*, 13, 481-492.
- MALIK, A. N., SHAHNI, R., RODRIGUEZ-DE-LEDESMA, A., LAFTAH, A. & CUNNINGHAM, P. 2011.
 Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time
 quantitative PCR without co-amplification of pseudogenes and dilution bias. *Biochemical and biophysical research communications*, 412, 1-7.
- MANDAVILLI, B. S., SANTOS, J. H. & VAN HOUTEN, B. 2002. Mitochondrial DNA repair and aging.
 Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 509, 127-151.
- MAREMONTI, E., EIDE, D. M., OUGHTON, D. H., SALBU, B., GRAMMES, F., KASSAYE, Y. A., GUÉDON,
 R., LECOMTE-PRADINE, C. & BREDE, D. A. 2019a. Gamma radiation induces life stage dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis.
 Science of The Total Environment, 133835.
- MAREMONTI, E., EIDE, D. M., ROSSBACH, L., SALBU, B., LIND, O. C. & BREDE, D. A. 2019b. In vivo
 assessment of ROS production and oxidative stress effects induced by chronic exposure to
 gamma radiation in *C. elegans*. Submitted manuscript (September 2019).
- MEMON, A. A., ZÖLLER, B., HEDELIUS, A., WANG, X., STENMAN, E., SUNDQUIST, J. & SUNDQUIST, K.
 2017. Quantification of mitochondrial DNA copy number in suspected cancer patients by a
 well optimized ddPCR method. *Biomolecular Detection and Quantification*, 13, 32-39.
- MONTIER, L. L. C., DENG, J. J. & BAI, Y. 2009. Number matters: control of mammalian mitochondrial
 DNA copy number. *Journal of genetics and genomics*, 36, 125-131.
- NUGENT, S., MOTHERSILL, C. E., SEYMOUR, C., MCCLEAN, B., LYNG, F. M. & MURPHY, J. E. J. 2010.
 Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors. *International Journal of Radiation Biology*, 86, 829-841.
- OKUNIEFF, P., SWARTS, S., KENG, P., SUN, W., WANG, W., KIM, J., YANG, S., ZHANG, H., LIU, C. &
 WILLIAMS, J. P. 2008. Antioxidants reduce consequences of radiation exposure. *Oxygen Transport to Tissue XXIX*. Springer.
- PHILLIPS, N. R., SPROUSE, M. L. & ROBY, R. K. 2014. Simultaneous quantification of mitochondrial
 DNA copy number and deletion ratio: a multiplex real-time PCR assay. *Sci Rep*, 4, 3887.
- POLYAK, E., ZHANG, Z. & FALK, M. J. 2012. Molecular profiling of mitochondrial dysfunction in
 Caenorhabditis elegans. *Mitochondrial Disorders*. Springer.
- ROGOUNOVITCH, T. I., SAENKO, V. A., SHIMIZU-YOSHIDA, Y., ABROSIMOV, A. Y., LUSHNIKOV, E. F.,
 ROUMIANTSEV, P. O., OHTSURU, A., NAMBA, H., TSYB, A. F. & YAMASHITA, S. 2002. Large
 deletions in mitochondrial DNA in radiation-associated human thyroid tumors. *Cancer Research*, 62, 7031-7041.
- RYCHLIK, W. 1995. Selection of primers for polymerase chain reaction. *Molecular Biotechnology*, 3,
 129-134.
- SAWYER, D. E. & VAN HOUTEN, B. 1999. Repair of DNA damage in mitochondria. *Mutation Research/DNA Repair*, 434, 161-176.

- SPITZ, D. R., AZZAM, E. I., LI, J. J. & GIUS, D. 2004. Metabolic oxidation/reduction reactions and
 cellular responses to ionizing radiation: a unifying concept in stress response biology. *Cancer* and Metastasis Reviews, 23, 311-322.
- 644 STIERNAGLE, T. 1999. Maintenance of C. elegans. *Wormbook*, 2, 51-67.
- YAKES, F. M. & VAN HOUTEN, B. 1997. Mitochondrial DNA damage is more extensive and persists
 longer than nuclear DNA damage in human cells following oxidative stress. *Proceedings of the National Academy of Sciences*, 94, 514-519.
- YE, J., COULOURIS, G., ZARETSKAYA, I., CUTCUTACHE, I., ROZEN, S. & MADDEN, T. L. 2012. Primer BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC bioinformatics*, 13, 134.

652

654 Supporting material

Development of droplet digital PCR method for the assessment
 of mitochondrial DNA copy number variation in response to
 ionizing radiation in the nematode *Caenorhabditis elegans*

- Figure S.1. CT values measured at different concentrations of DNA template (ng/µl) with qPCR duplex
 assay using five mitochondrial targets (COX1, COX3, ND5, s-rRNA, tRNA-val/ND6) and *gpi-1* as nuclear
 reference gene.

Table S.1. Amplification efficiency (Ex (%)) calculated for each mitochondrial target and for the nuclear
reference gene *gpi-1*, from a linear regression analysis based on a duplex qPCR experiment performed

665 with a serial dilution of DNA template (Fig. S.1).

		mtTarget	gpi-1
	Slope	-3.01	-3.03
s-rRNA	E _x (%)	108.7	108.0
	R ²	0.99	0.99
	Slope	-3.16	-3.40
COX1	E _x (%)	100.1	88.0
	R ²	0.99	0.98
	Slope	-2.97	-2.84
COX3	E _x (%)	111.4	120.6
	R ²	0.99	0.94
	Slope	-3.36	-4.22
ND5	E _x (%)	89.9	59.8
	R ²	0.99	0.99
	Slope	-3.14	-2.64
tRNA-val/ND6	E _x (%)	101.2	137.6
	R ²	0.98	0.95

- - -

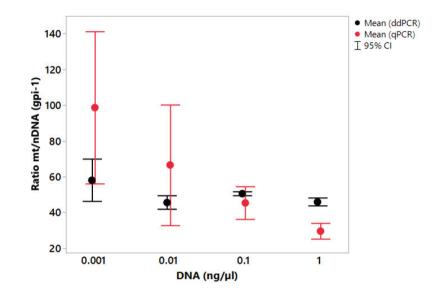


Figure S.3 Comparison between qPCR and ddPCR for the quantification of mt/nDNA ratios, measured as
average of five mitochondrial targets and a nuclear reference gene (*gpi-1*) at different concentrations of
DNA template (ng/µl) (from three biological replicates and three technical replicates per concentration).

Table S.2. Dose-rates and total doses of exposure employed for the low and high dose-range chronic
gamma irradiation of *C. elegans*. Exposure to low dose-rage was performed from L1 stage, similarly to
exposure to high dose-range for 72 hours. Exposure for 24 and 48 hours was performed at ~L2/L3 and
L4 stages, respectively.

Total Dose (Gy)				
	Exposure time (hours)			
Dose-rate (mGy/hr)	24	48	72	
0	-	-	0	
0.43	-	-	0.03	
1.1	-	-	0.08	
10.8	-	-	0.78	
40.8	-	-	2.94	
99.9	-	-	7.19	
1000	24.0	48.0	72.0	

ISBN: 978-82-575-1674-1 ISSN: 1894-6402

Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås, Norway +47 67 23 00 00 www.nmbu.no