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Abstract

Alzheimer’s Disease (AD) is the most common cause of dementia in the world. It
is a disorder that causes brain cells to degenerate and eventually dies, which causes
a continuous decline in memory, cognitive abilities and social skills. As the disease
develops, a person’s ability to function and carry out daily tasks will eventually
be impossible. There are currently no treatments that cure AD, making people
affected by this disease dependent on others for assistance.

Detecting AD in the early stages will help slow down the disease’s development
and improve life quality for people affected. Early initiatives will allow patients
to live with fewer health problems for a more extended period by changing their
lifestyle.

This Master’s thesis explored the usefulness of applying machine learning meth-
ods and data analytics to detect important risk factors for AD. Methods such as
Partial Least Squares (PLS), Principal Component Analysis (PCA), feature im-
portance permutation, and Sequential and Orthogonalized PLS (SO-PLS) were
utilized to find relevant features and their importance. The measurement for AD
was cerebrospinal fluid amyloid-beta (CSF betaA) in the spinal fluid and was used
as the target with the supervised method used in this thesis.

The model developed to detect risk factors for AD accomplished an explained
variance of 22.89 %. Important factors from the model were the Apolipoprotein
E4 / E4, aggregated white matter hyperintensities (WMHs), aggregated lesion in
the brain and lesion at the second layer in the parietal lobe.

Evaluating the results indicates that the model encountered insufficient data and
block separation, which generated a poor performing model. The results indicate
that no definitive risk factors can be identified as to what causes AD. The methods
and the data still have a potential for improvement and further work.
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Sammendrag

Alzheimers sykdom (AD) er den vanligste årsaken til demens i verden. Det er en
lidelse som gjør at hjerneceller degenererer og til slutt dør, noe som fører til en
kontinuerlig fall i hukommelse, kognitive evner og sosiale ferdigheter. Etter hvert
som sykdommen utvikler seg, vil en persons evne til å fungere og utføre daglige
oppgaver til slutt være umulig. Det er ingen behandlinger som kurerer AD, noe
som gjør at folk som er rammet av sykdommen er avhengige av andre for hjelp.

Ved å oppdage AD i tidlig stadium kan man bidra til å bremse utviklingen av syk-
dommen og forbedre livskvaliteten for de berørte. Tidlige tiltak vil gi pasienter en
mulighet til å leve med mindre helseplager i en lengre periode ved livsstilsendringer.

Denne masteroppgaven utforsket nytten av å anvende maskinlæringsmetoder og
dataanalyse til å oppdage viktige risikofaktorer for AD. Metoder som Partial Least
Squares (PLS), Principal Component Analysis (PCA), feature importance per-
mutation, og Sequential and Orthogonalized PLS (SO-PLS) ble brukt for å finne
relevante funksjoner og deres betydning. Målingen av AD var cerebrospinalvæske
amyloid-beta (CSF betaA) i ryggmargsvæsken.

Modellen som ble utviklet for å oppdage risikofaktorer oppn̊adde en forklart varians
p̊a 22,89 %. Viktige risikofaktorer utarbeidet fra modellen var Apolipoprotein E4 /
E4, aggregert hvit substans hyperintensiteter (WMH), aggregerte lesjoner i hjernen
og lesjon ved det andre laget av parietallappen.

En evaluering av resultatene indikerer at modellen hadde utilfredsstillende data og
en svak blokkinndeling, noe som førte til en svak modell. Utfallet av resultatene
indikerer at ingen definitive risikofaktorer kan identifiseres for hva som for̊arsaker
AD. Metodene brukt og innhentet data har fremdeles et potensial for forbedring
og videre arbeid.
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Chapter 1

Introduction

1.1 Background

Dementia is a significant cause of disability among older adults worldwide. It
affects the memory, cognitive abilities and behaviour, and will eventually affect
one’s daily activities. The effects of dementia is a significant cause of disability
and dependency among older adults worldwide, which leads to severe impact on
peoples families, career and communities alongside the individuals [1]. The root
cause of dementia is not known, but several risk factors are known, such as ageing,
inactivity, obesity, harmful use of alcohol, tobacco use and diabetes. However,
there is no assurance that preventing these known factors will have an effect on
every individual [2].

Figure 1.1: The figure shows a comparison of a healthy brain and a brain with severe
Alzheimer’s Disease [3].
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Dementia is a collective term for several diseases; the most common one is Alzheimer’s
disease (AD). This disease affects about 3 percent of people over 65 years of age
and about 12-15 percent of people over 80 years of age. AD starts in the brain sev-
eral years before detecting any form of symptoms or signs. Because of this gradual
development, it is hard to identify the disease in the early stages [4]. The risk
factor of age plays an essential role in developing AD, as the distribution shows in
Figure 1.2, high age, or more precise, the brain’s age increases the probability of
AD or developing AD [5].

Figure 1.2: Age distribution of AD with sex-specific incidences per 1000 person years
[5], which indicates that age is significant for developing AD.

Some clinical criteria for dementia syndrome and AD must be fulfilled to determine
if a patient has AD. The criteria for AD are characterized by amyloid plaques and
loss of neurons in the brain [6]. The criteria for dementia syndrome [7], according
to ICD-10 (10th revision of the International Statistical Classification of Diseases
and Related Health Problems) is as follows;

1. Significantly worse memory than before in life, especially for events in the
recent past.

2. At least one other cognitive function decreased related to previous ones, such
as logical reasoning and linguistic communication ability.
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3. Reduced ability to function in daily life.

4. Changed behaviour, such as more passive, effortless or annoyed.

5. Symptoms described in 1 to 4 must be persisted for at least six months.

6. Still remain normal consciousness.

One of the most significant risk factors for AD is genetics, more precisely the ApoE-
ε4 allele. Apolipoprotein E (ApoE) regulates lipid homeostasis by moderating fatty
acid and lipid transport from one cell type to another [8]. The ApoE-ε4 allele
has been involved in several diseases, including AD, such as HIV [9] and much
recently COVID-19 [10]. The frequency of this allele compared to the two other
polymorphic alleles, ε2 and ε3, is 13.7% compared to 8.4% and 77.9%, respectively.
However, the frequency of the ε4 allele is significantly increased for patients with
AD [8]. Some studies also show that synergies with ε4 allele and other vascular
diseases [8][11][12].

To determine that a patient is developing AD or has AD, measurements of the
accumulation of the protein fragment beta-amyloid (betaA) plaques outside neur-
ons and measurements of the accumulation of tau inside the neurons are two
essential changes in the brain for the decision-making [4][6]. Since these values
are usually difficult to measure, because of the complexity of measurements in
the brain, other methods must be used. Such methods are cognitive tests, such
as mini-mental status evaluation (MMSE), Alzheimer’s Questionnaire (AQ) [13],
trail making test A (TMT-A) and trail making test B (TMT-B) [14]. These tests
support medical experts in the diagnosis of AD and other diseases.

For the actual measurement of betaA in the brain, some other method must be
used. Cerebrospinal fluid (CSF) betaA are used as a biomarker for AD [15]. CSF
betaA is measured in the spinal fluid and are negative correlated with betaA.
Low accumulation of CSF betaA in the spinal fluid indicates high accumulation if
betaA in the brain.

1.2 Problem statement

Except for some known modifiable risk factors of AD [16], there exist no other
documented modifiable risk factors for AD. The etiological risk factors, other than
ageing and genetic proneness, remain to be determined [17]. There exist, therefore,
limited information about the cause and prevention of AD.
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Machine learning and data analysis have, in recent years, been used in the research
of AD and other types of dementia. These fields have opened up a new way
of analyzing complicated and large datasets, with the purpose of assisting and
improving medical experts in their assessment. Such large datasets make it possible
to study a larger amount of factors that may contribute to better understand AD in
a systematic manner. This thesis aims to use principal component analysis (PCA)
[18], partial least squares (PLS), and the multi-block regression method, sequential
and orthogonalized partial least square (SO-PLS) [19] to determine which factors
or variables improve the assessment of patients with AD.

The thesis will focus on the accumulation of CSF beta-amyloid as the measurement
of AD, where data and variables are provided from Computational Radiology and
Artificial Intelligence (CRAI) seated in Oslo University Hospital. The thesis tries
to find and understand features or risk factors that indicates high values of beta-
amyloid.

1.3 Previous work

SO-PLS has been mainly used in the chemometrics field. In this thesis, SO-PLS
will be used as a multiblock method to analyse heterogeneous data from various
sources to better understand AD and different levels of beta-amyloid. The SO-
PLS method can be beneficiary for the analysis because it takes different sources
or measurements into account when applying the model.

Relevant information and background of SO-PLS regression are explained in ”Path
modelling by sequential PLS regression”[20] and ”SO-PLS as an exploratory tool
for path modelling” [21]. These papers explains the methodology or path modelling
and the proper usage of SO-PLS.

Recent studies that apply SO-PLS, such as ”SO-PLS as an alternative approach
for handling multi-dimensionality in modelling different aspects of consumer ex-
pectations” [22], has also been studied for this thesis.

1.4 Structure of thesis

This thesis starts with the theory behind machine learning, more specifically, the
theory behind PCA and PLS in chapter 2. In chapter 3, the datasets are studied
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and prepared, and chapter 4 the methodology of SO-PLS is described. Chapter 5
covers the results, which are discussed in detail in chapter 6. The results of this
thesis are summarised in chapter 7.
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Chapter 2

Theory

Machine learning is a subset of artificial intelligence (AI), as shown in Figure 2.1,
which uses some statistical models to perform a task that predicts the outcome
by recognizing patterns and dependencies. Machine learning builds models that
predict the outcome by analyzing data that would else be tedious and difficult for
humans to do [23]. Such a process can be useful for understanding the behaviour
and properties of a known system.

Figure 2.1: The figure shows the placement of machine learning compared to artificial
intelligence and deep learning.
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There are three paradigms of machine learning; supervised learning, unsupervised
learning, and reinforced learning. Supervised learning is using labelled data to
train a model that predicts the future outcome of unlabelled data. Such learn-
ing models can be separated into two classes that are, classification models and
regression models. In classification, models are trained to classify a given set of
classes, or categories, to assign new data points to given groups. The model is
built based on given data points that are fitted based on a decision boundary
which assign the data points to their given category. Regression models, such as
Partial Least Square (PLS) regression, use continuous response values to assign
rather than given classes or categories [23].

Unsupervised learning methods analyses a data set without a response variable.
The goal is to showcase the underlying structure or distribution of the data set
for understanding more about the data and its underlying systematic variation
[23]. Such analyzing models is Principal Component Analysis (PCA), which finds
components that describe systematic variation in the data.

Figure 2.2: The figure shows a classification model model, Perceptron, with the Iris
data set [24]. It contains two classes, V ersicolor and Setosa, and a decision boundary
that separates the classes.

2.1 Least Squares

Least-squares is a method for performing linear regression. There exist two cat-
egories where least-square problems commence; ordinary least-squares (OLS) and
nonlinear least squares. This thesis will investigate a closed-form solution where
the ordinary least-squares is applicable, linearity is maintained. OLS minimizes
the sum of square of the residuals, which leads to the estimated value of the un-
known parameters α and β [25], where α are the bias and β is the regression
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coefficient.

Figure 2.3: The figure shows a simple linear regression model, where the goal is to
minimize the sum squared of the residuals. The parameters α and β are the estimated
values, α̂ and β̂, shown in formula 2.4. The error illustrated in the figure indicates one
single error, εi, shown in formula 2.1 and 2.2. source:[25][26].

Suppose the data consists of k observations, yk and xk, where y and x represent
the response and the variables, respectively. Which is represented in formula 2.1
and as vector form in formula 2.2, where β is a {k × 1} vector and εi is the error
term.

yi = α + β1xi1 + β2xi2 + · · ·+ βpxip + εi (2.1)

yi = α + xTi β + εi (2.2)

As mentioned for OLS, the goal is to minimize the sum of squared of the residuals
(SSR). This means that the estimated values for α and β, α̂ and β̂, obligate to
provide the lowest value for SSR [25]. SSR is calculated in formula 2.3, where b is
a estimated value for the parameter β̂ and a is a estimated value for the parameter
α̂. The value of b and a that minimizes SSR denotes the value for α̂ and β̂.

SSR(a, b) =
k∑

i=1

(yi − xTi b− a)2 (2.3)

9



Furthermore, calculating formula 2.3 for α and β, separately, gives us the solution
to the OLS model that minimizes the squared errors, shown in formula 2.4 and
visualized in Figure 2.3.

y = α̂ + β̂x (2.4)

2.2 Partial Least Square Regression (PLSR)

2.2.1 Background

Partial Least Squares Regression (PLSR) was developed by Wold et al. [27] and is
a method for the linear modelling of the relation between the variables X and the
response Y [28], that can be used for both univariate and multivariate regression.
The PLSR-algorithm tries to find the components that maximize the covariance
between the response and explanatory variables with the intention to capture most
of the information in X that is useful for predicting Y while reducing the dimension
of the model [29].

PLS is a latent-variable based method, which means that the model’s primary goal
is to describe the observed variables in terms of the latent variables. It constructs
a new set of variables (latent variables) from the linear combination of predictor
variables, X. This goal is achieved and explained by projecting the variables X
and the response Y into a new space matrix. However, different PLS algorithms
may achieve their goal differently.

10



Figure 2.4: An overview and a geometric representation of PLS regression in 3 di-
mensions. The figure shows two principals components calculated with PLS and the
direction in the plane that best defines the correlation between the response, Y , and the
variables, X. source:[26].

There exist different variants of PLS that has its origin from Wold’s work [30]. The
original work from Wold can be divided into two modes; A and B. Wold’s method
includes three key parts; it is a class of algorithms that contains arbitrary number of
blocks of indicators with their latent variables, an arbitrary linear relation between
the latent variables, and the computation that are separated into modes. The
difference in the modes are the computation that are interpreted differently [31].
Furthermore, several other mode-A algorithms have been developed, such as PLS-
SVD, PLS1 and PLS2, shown in figure 2.5.
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Figure 2.5: An overview of PLS algorithms originated from the original work of Wold
[30][31]. The original work of Wold is Wold’s Two-Block Mode A PLS (PLS-W2A) and
Canonical Correlation Analysis (CCA). Even though mode A has mainly been associated
with PLS, the CCA belongs to the class of PLS [31].

Furthermore, it can be shown that results from multi-block PLS methods can be
calculated from two-block PLS methods if the same scaling of variables is applied
[32]. This thesis will concentrate on multi-block PLS methods, rather than two-
block PLS. Such methods, widely used in chemometrics [31], are uniresponse PLS
(PLS1) and multiresponse PLS (PLS2). The difference between PLS1 and PLS2 is
the response variable. PLS1 only considers one single response column at a time,
while PLS2 requires multiple response columns.

2.2.2 General model

The general underlying model for multi-block or multivariate PLS is shown in
formula 2.5 and formula 2.6, where X is a matrix of predictor variables with N
observations and K variables (N ×K), and Y is a matrix response variable with
N observations and M variables (N ×M).

X = TP T + E, E ∼ N (µ, σ2) (2.5)
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Y = UQT + F, F ∼ N (µ, σ2) (2.6)

T is aN×l matrix projection ofX (the X-scores), and U is aN×l matrix projection
of Y (the Y-scores). P and Q are K × l and M × l orthogonal loading matrices,
respectively. Furthermore, matrices E and F are the error terms, assumed to be
independent and identically distributed normal variables [33].

The goal of the PLS explained through formula 2.5 and formula 2.6 is to maximize
the covariance between T and U while minimizing the norm of F [33]. The solution
to the mentioned issue is to find the optimum number of principal components,
shown in figure 2.4, that gives the lowest value of Root Mean Squared Error of
Predictions (RMSEP). This is achieved by empirically determine the RMSEP by
cross-validation, which will be further elaborated in chapter 2.4.2. RMSEP is
defined in formula 2.7 and visualized in a RMSEP plot in figure 2.6. In addition to
RMSEP, the Predictive Error Sum of Squares (PRESS) is also used in achieving
the optimal number of components.

RMSEP =

√
PRESS

N
=

√√√√ N∑
i=1

(yi − ŷi)2
N

(2.7)

Where N is the number of predicted observations, and ŷi is predicted values of
the variable yi. RMSEP and PRESS is useful metrics for estimating performance
because large errors will be enhanced. This is because significant errors have a more
substantial impact on the score than small ones, which leads to the certainty that
the lower the RMSEP value, the higher the predictive ability of the model. The
disadvantage of RMSEP is the high number of calculations needed to obtain the
RMSEP value necessary for achieving the right amount of principal components.
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Figure 2.6: A plot of RMSEP calculations with the best model shown as the optimal
number of components. It should be noted that number of components is a discrete
variable.

2.2.3 Prediction

The prediction of new response values is managed differently depending on PLS
variant. The focus in this thesis will be on uniresponse PLS and multiresponse
PLS.

For PLS1 the computation of the estimated values, β̂, with k principal components
can be written as [34];

β̂ = Ŵ (P̂ T Ŵ )−1q̂ (2.8)

Where Ŵ is the loading weights, Ŵ = [ŵ1...ŵk], for each principal component
scaled to length 1. P̂ is the estimated X-loadings for each principal component,
P̂ = [p̂1...p̂k], and q̂ = [q̂1...q̂k] is the estimated Y -loadings. The estimated X-
loadings and Y-loadings is derived from formula 2.9 and formula 2.10 respectively.
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p̂k =
XT

k−1 t̂k

t̂Tk t̂k
(2.9)

q̂k =
yTk−1 t̂k

t̂Tk t̂k
(2.10)

Where t̂ represent the estimated scores, t̂ = Xk−1ŵk. The estimated loadings
weights can further be written as ŵk = XT

k−1yk−1.

For the multiresponse PLS2, we interpret y and q as matrices rather than vectors.
Instead of using yk−1, the new vector ûk is introduced. The following three steps
are repeated until the estimated scores t̂k converges [21]:

1. Calculate the loadings weights, ŵk = X t
k−1ûk, and scale the weights to length

1.

2. Estimate the scores, X-loadings and Y -loadings the same as for uniresponse
PLS.

3. Check if the scores, t̂k, has converged. If not, estimate the new vector ûk =
Yk−1 q̂k(q̂tkq̂k)−1.

When t̂k converges, the same procedure for estimating β as for uniresponse follows,
the formula 2.8 is used.

2.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is an unsupervised method that provides a
dimensionality reduction from the original dataset. Unsupervised methods have
some benefits, such as not requiring or relying on a response dataset for analyzing
the data. PCA is used as a tool in exploratory data analysis as a technique to
find the main characteristics in the data. This could be useful for finding hidden
structures in a complex and large dataset, and to perform feature extraction and
feature elimination.
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The main goal of PCA is to project high-dimensional data space onto a two-
dimensional data space in such a way that features of the dataset will be separable
and visible. By projecting the data with its principal components, shown in Figure
2.7, will satisfy the main goal of PCA.

Figure 2.7: An overview and a geometric representation of PCA of a multivariate
Gaussian distribution displayed in 2 dimensions. The vectors shown are the eigenvectors
of the covariance matrix, the principal components.

PCA is accomplished by doing the following steps:

1. Calculate the data correlation matrix from the original dataset.

2. Carry out an eigenvalue decomposition on the correlation matrix.

The correlation matrix is found by calculating the correlation coefficient between
each variable in the dataset, X. Formula 2.13 shows the equation for calculating
the correlation coefficient between two arbitrary variables in X, Xi and Xj. Where
corr and cov indicate correlation and covariance, respectively.

ρXi,Xj
= corr(Xi, Xj) =

cov(Xi, Xj)

σXi
σXj

=
E[(Xi − µXi

)(Xj − µXj
)]

σXi
σXj

(2.11)
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σX is the standard deviation, and µX is the expected value, while E is the expected
value operator. By calculating the correlation coefficient between each variable, it
is possible to construct a correlation matrix. This is shown in formula 2.12, where
n indicates the total number of variables.

corr(X) =


1 ρX1,X2 · · · ρX1,Xn

ρX2,X1 1 · · · ρX2,Xn

...
...

. . .
...

ρX1,Xn ρXn,X2 · · · ρXn,Xn

 (2.12)

Since the correlation between Xi and Xj is the same as the correlation between
Xj and Xi, the correlation matrix is a [n× n] symmetric matrix.

The next and final step of PCA is the eigenvalue decomposition of the correla-
tion matrix. For simplification, the correlation matrix will hereafter be denoted
as X rather than corr(X). By decomposing the correlation matrix into its eigen-
vectors and eigenvalues, and sorting it in decreasing order, the final step of PCA is
completed. The first eigenvector, in the eigenvector matrix, will then be the first
principal component (PC), and the second eigenvector will be the second PC and
so on. Formula 2.13 shows a decomposition of a matrix X into two matrices V
and U .

X = U ∗ V T (2.13)

Where V and U are referred to as loadings matrix and scores matrix, respectively.
Loadings matrix can be understood as the weight of each variable when calculating
the PCs; thus, a loadings plot showcases the variables with the given number of
PCs as axis, shown in Figure 2.8. The scores matrix contains the original data
rotated in a coordinate system with the given PCs as axis, shown in Figure 2.8.
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Figure 2.8: Loading plot (left plot) and score plot (right plot) of the Iris dataset [24]
after performing PCA.

2.4 Model validation

The quality of a dataset is determined by how well it represent its intended use.
Moreover, a dataset is considered of high quality if it satisfies the requirement of
its intended usage and provides consistency. To ensure that a dataset is providing
consistency throughout the analysis, some procedures must be followed. This
section will discuss some practices that provide such data quality.

2.4.1 Test set

Standard practice for data analysis is splitting the data into two sets; training
set and test set, as shown in Figure 2.9. The training set is used in the training
the model, while the test set is used for validation and checking for consistency in
the model. The test set’s purpose is to verify the model’s purpose when exposed
to new data. This is a key criteria for indicating a good predicting model.

However, a model is considered overfitted when it has a good performance on the
training set, but a poor performance on the test set. An overfitted model is usually
detected by the test set when there is a poor performance on the test set, while
the overall performance is adequate. We seek to find a well performing model that
has similar performance on the test set and the training set.
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Figure 2.9: The original dataset split into a training set and a test set.

The size of the test set depends on the dataset available. The distribution of the
samples is vital for a well-distributed test set and training set. A dataset that
represents a real-world case and is sufficiently large will have a training set and
test set that gives a decent model.

2.4.2 Cross-Validation (CV)

Cross-validation (CV) is a model validation technique for evaluating how well the
model will generalize when exposed to a new independent dataset. The training
set is usually divided into a new training set and a validation set, where the model
performs the analysis on the training set and then validates or tests the result in
the validation set.

K-fold cross-validation is a CV method that divides the training set randomly
into K equally sized samples. Of the K subsamples, one single sample is used as
the validation data, while K-1 samples are used as training data. This process is
repeated K times with each sample used as the validation set once. An example
of this is shown in Figure 2.10. The result of the models in Figure 2.10 can be
averaged into one single estimate.
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Figure 2.10: A K-fold cross-validation with the training dataset is split into new
training sets and test sets. In this figure, k equals 4.

2.5 Classification methods

This subsection gives a brief explanation of different machine learning classification
methods used in the computation of feature importance process (section 2.6) in
this paper. In general, classification techniques are a supervised machine learning
process used in the prediction of groups or, more specifically, classes from new
observations. These classification problems and classes can be binary problems,
such as decisions rated as success or failure, or if a patient has Alzheimer’s disease
or not. Other classification problems, called multi-class classifiers, are divided
into more classes. An example is problems where the classification method tries
to predict different age groups from some pre-defined data. These age groups or
classes can be divided into decades, such as people in the ages of 0 to 9 is one class
and so on. This thesis will further empathize with binary classification problems.

Before explaining different classification methods, some basic understanding of
machine learning algorithms for classification and terminology needs to be estab-
lished. The figure 2.11 shows the neural network perceptron, with input values,
weights, net input function, activation function, output and error values.

The inputs that are shown in figure 2.11 refers to the data used in the training of
the model. Each row in the dataset is represented as a vector [x1, x2, ..., xm] where
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Figure 2.11: An illustration of a standard neural network algorithm with input values,
weights, net input function, activation function, output and error values.

m is the number of columns in the dataset. These vectors are used to train the
given model and later on update the weights. The weights could be of several
layers, but for simplification there is one layer, as shown in figure 2.11. The weights
are values that are associated with each input value which tells the importance of
each input value. If an arbitrary weight contains a high value, the input values
associated with it are of high importance and is a key feature to the final model.
Figure 2.11 does not show the bias which is exclusive to each weight layer. The
bias can be referred to as the y-intercept for a linear model (see section 2.1).

The net input function, also referred to as the summation function, is the
summation of weight with its given input shown in Formula 2.14, where bi is the
bias from each layer.

sum =
m∑
i=1

(wi ∗ xi) + bi (2.14)

The activation function, which is also shown in figure 2.11, transform the net
input. The function decide how each input should be weighted. If the activation
function is a linear function, such as y = x, then each input is weighted equally to
the error and to the output.

The error term, along with the cost function, is used to update the weights. The
updating of weights applies after each row or sample of data is iterated through
the neural network, and is shown in Formula 2.15 and 2.16.

wi := wi + ∆wi (2.15)

∆wi = η(y(j) − ŷ(j))x(j)i (2.16)
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Where i is each weight and j is each training sample. y and ŷ represent the true
class label and the estimated class label respectively. The differentiation between
the true class label and the estimated is known as the error. The learning rate, η,
determines how much the updating should affect the initial weights.

Finally the output from the classification model could either be the output from
the activation function or it could binary classified through a threshold function.
A threshold function is shown in Formula 2.17, where input values bigger than zero
gives an output one and otherwise minus one.

T (z) =

{
1 if z ≥ 0

−1 otherwise
(2.17)

2.5.1 Logistic Regression

Logistic regression is indeed a classification algorithm, which predicts the probab-
ilities of each class. It is named after the logistic function (logit-function) which is
shown in Formula 2.18. This function is explained as the logarithm of the odds,
where p is the probability of the positive events or the preferred outcome [23].

logit(p) = log(
p

1− p
) (2.18)

The actual interest in this function is to predict the probability of each sample
belonging to a particular class, which can be expressed by the inverse of the logit
function, shown in Formula 2.19. This function is known as the logistic sigmoid
function [23].

φ(z) =
1

1− e−z
(2.19)

Formula 2.19 shows the activation function φ(z) for the logistic regression model.
This activation function is also shown in figure 2.12. The mentioned activation
function defines logistic regression and is unique for this model.
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Figure 2.12: An illustration of the sigmoid function, also mentioned in Formula 2.19,
with z as the x-axis and activation φ(z) as the y-axis.

2.5.2 Support Vector Machine (SVM)

Support vector networks [35] or support vector machines (SVMs) are both used
in classification and regression analysis and is a linear classifier. A linear classifier
labels data into classes based on a linear combination of the input values given to
the model. SVM models use multiple hyperplanes to achieve a separation between
different classes. The amount of features, k, given to the model shows how many
hyperplanes are needed for the model, which are k− 1. SVM are therefore a good
application for classifying linear separable data.

The objective of SVMs is to maximize the margin between the separating hyper-
plane and the closest classified data points. In some perspective, the objective
for other models, such as the linear regression, is to minimize the error between
predicted values and true values. The margin and SVM are shown in figure 2.13.
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Figure 2.13: The figure illustrates SVM with its margin. SVM calculates the margin of
the closest points to the hyperplane. In this illustration, the data is represented by two
vectors x1 and x2, and b and ~w represent the intercept and margin vector respectively.
The vector ~w can also be explained as the normal vector to the hyperplane. source: [36]

2.5.3 Decision Tree

Decision trees are used in machine learning as a predictive classification model.
In general, decision trees is a tool used to map possible outcomes in a tree-like
manner. Such tree are shown in figure 2.14 where two decisions or choices are
shown.

Decision trees can be interpreted as a model that tries to break down the dataset
by asking a series of questions. When applying this classifier, the splitting of the
data is applied in such a manner that it maximizes the information gain (IG).
The information gain is the measured objective that we base the construction of
the tree upon.
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Figure 2.14: A simple example of a decision tree where the labels or features, sex and
height, are displayed.

2.5.4 Random Forest

Random forest classifier can be regarded as an ensemble of decision trees. It is an
average over multiple decision trees, to build a more robust and generalized model.
It can be summarized in four steps [23]:

1. Construct a random sample, n.

2. Construct a decision tree from the samples and for each node; select, k
random features and split the node which gives the highest information gain.

3. Repeat step 1 and 2 k times.

4. Accumulate the prediction of the trees and assign class labels by majority
vote.

Majority voting is assigning a class label to a given sample based on that it received
the majority of the votes from the predictive models. In this case the class is assign
to the sample if that given class label received more than 50 percent of the votes
from the decision trees.

25



2.5.5 K-Nearest Neighbors (KNN)

K-nearest neighbors classifier is a supervised leaning method which uses clustering
to classify. It can be summarized in three steps [23]:

1. Decide upon a number of k clusters and a distance metric.

2. Find the k number of nearest neighbors of a samples that is being classified.

3. Assign class labels by majority voting.

A new sample is assigned a class label based on the k closest samples by majority
voting. Finding the right number of clusters to apply is key for a good performing
KNN classifier.

2.6 Feature Importance

By computing feature importance, one can identify what impact a feature has on
the model and, furthermore, filter out features that are redundant. This process
result in dimension reduction and reduce the complexity of the dataset. There
exist many types of feature importance methods, this thesis focus on permutation
feature importance. Permutation feature importance simply consist of permuting
the labels multiple times and compute the performance of the model by removing
one feature at a time to find its importance.
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Chapter 3

Materials

This section will elaborate more thoroughly on the structure of the dataset, and
the composition of blocks (also discussed in chapter 4.3). The dataset is provided
by Computational Radiology and Artificial Intelligence (CRAI), seated in Oslo
University Hospital. The dataset contains 3873 patients with 1807 different meas-
urements, which has been assembled from 2013 to 2020 from several hospitals in
Norway.

3.1 Data collection

As mentioned, data from several hospitals were used for the collection of data. Dif-
ferent scanners for measurements of magnetic resonance imaging (MRI) images of
the brain were used in different hospitals. These scanners are mostly from Siemens
Healthineers such as Siemens Magnetom Prisma, Siemens Magnetom Avanto and
Siemens Magnetom Skyra. Other scanners were provided from Philips, such as
Philips Ingenia, Philips Intera and Philips Achieva. All scanners are considered to
give the same results throughout this study.

Part of the data was also collected over the phone and through doctor appoint-
ments. Surveys were conducted over the phone, both for collecting new informa-
tion and updating already existing information. Clinical data, such as blood tests
and concentration of CSF beta-amyloid (betaA), was collected through doctor
appointments.
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3.2 Information on datasets

The number of patients used for the analysis is 172, and the number of original
features is 113 from the main dataset. Some of these features were one-hot encoded,
which will be elaborated in chapter 4.2. These features were divided into five
blocks, which will be explained in this section. The features are divided and
ordered after their relevance and similarity to each other.

3.2.1 Block A: background information

The first block consist of two features shown in table 3.1. These features have
information about patients before any tests or other information are extracted.

Table 3.1: The table shows the first block used in the analysis. It contains categorical
features of patients’ background information.

Feature name Feature explanation Data type

recruit
Where the patient is recruited from, such as ad-
vertisement.

Categorical

subj group
Which group a patient belongs to, such as control
group or cognitive symptom group.

Categorical

3.2.2 Block B: cognitive and personal information

The second block contains information about patients’ cognitive abilities through
tests and personal information related to health and family relations. There are 16
features in this block, which is explained in table 3.2. The tests in this block are
related to the ability to process and memorize words, which are used to determine
if a patient is developing or having dementia or some cognitive impairment.
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Table 3.2: The features in the second block. The block contains personal information
and cognitive tests results.

Feature name Feature explanation Data type

gender male or female Categorical

smok Smoker, no smoker or previous smoker Categorical

cohab cohabitation status Categorical

marital marital status Categorical

edu years education years Continuous

cowat total Controlled Oral Word Association Test Continuous

age The patient’s age Continuous

cerad recall
Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) word list recall [37]

Continuous

cerad recog
Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) word list recognition [37]

Continuous

cerad learning
Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) word list memory [37]

Continuous

gds score comp Geriatric depression scale (gds) categorized Categorical

3.2.3 Block C: blood tests and cognitive tests

The third block, shown in table 3.3 contains cognitive tests used for cognitive
assessment, such as the second block. In addition, this block contains blood test
values and the Apolipoprotein E (APO-E) genotype mentioned in chapter 1.1.
The tests in this block are standard tests used in the medical field to determine if
a patient is developing or have dementia or a mild cognitive impairment. They are
also used to determine other cognitive function impairment such as brain damage
and the cognitive fitness for operating a vehicle.
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Table 3.3: The third block, with features related to cognitive test results, blood test
values and the Apolipoprotein E (APO-E) genotype.

Feature name Feature explanation Data type

bl apoe Apolipoprotein E alleles Categorical

clock score Clock test used in the assessment of dementia Continuous

bp recum sys
Systolic blood pressure when the patient is lying
down

Continuous

bp recum dias
Diastolic blood pressure when the patient is lying
down

Continuous

bp 1m sys
Systolic blood pressure after 1 minute when the
patient is sitting

Continuous

bp 1m dias
Diastolic blood pressure after 1 minute when the
patient is sitting

Continuous

bp 3m sys
Systolic blood pressure after 3 minutes when the
patient is sitting

Continuous

bp 3m dias
Diastolic blood pressure after 3 minutes when the
patient is sitting

Continuous

mor ci Mother with cognitive impairment Categorical

mor dem Mother with dementia Categorical

far ci Father with cognitive impairment Categorical

far dem Father with dementia Categorical

bmi Body Mass index (BMI) value Continuous

tmta sec Trail making test A (TMT-A) measured in seconds Continuous

tmtb sec Trail making test B (TMT-B) measured in seconds Continuous

mmse total
Mini Mental Status Evaluation (MMSE) total
score

Continuous

hyperchol Hypercholesterolemia, also called high cholesterol Continuous
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3.2.4 Block D: lesion and white matter hyperintensity

The fourth block, shown in table 3.4, consist of lesion and white matter hyperin-
tensity. This is a proxy for small vessel diseases in the brain. The ”LES” features
are divided into regions and layers. The four layers L1, L2, L3 and L4 are the
division of the area between the cerebral cortex and the ventricles. The regions
are cerebral lobes (FOPT), which are frontal lobe (F), occipital lobe (O), parietal
lobe (P) and temporal lobe (T).

Table 3.4: The fourth block, with features of lesion (LES) and white matter hyperin-
tensity (WMH).

Feature names

Les FPOT rV WMHo rV

LesP1 LesP2

LesP3 LesP4

LesO1 LesO2

LesO3 LesO4

LesF1 LesF2

LesF3 LesF4

LesT1 LesT2

LesT3 LesT4

PSMD

3.2.5 Block E: MR images of subcortical brain structures

The fifth and the last block contains volume measurements of subcortical brain
structures with correction for intracranial volume and mean thickness of cortex
areas from MR images. The features are shown in table 3.5 and table 3.6.
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Table 3.5: The table shows thickness measurements in the given area of the cortex.

Feature names

bankssts thickness caudalanteriorcingulate thickness

caudalmiddlefrontal thickness cuneus thickness

entorhinal thickness fusiform thickness

inferiorparietal thickness inferiortemporal thickness

isthmuscingulate thickness lateraloccipital thickness

lateralorbitofrontal thickness lingual thickness

medialorbitofrontal thickness middletemporal thickness

parahippocampal thickness paracentral thickness

parsopercularis thickness parsorbitalis thickness

parstriangularis thickness pericalcarine thickness

postcentral thickness posteriorcingulate thickness

precentral thickness precentral thickness

precuneus thickness rostralanteriorcingulate thickness

rostralmiddlefrontal thickness superiorfrontal thickness

superiorparietal thickness superiortemporal thickness

supramarginal thickness frontalpole thickness

temporalpole thickness transversetemporal thickness

insula thickness MeanThickness thickness
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Table 3.6: The table shows volume measurements of subcortical brain structures with
a correction for estimated intracranial volume.

Feature names

LateralVentricle rV InfLatVent rV

CerebellumWhiteMatter rV CerebellumCortex rV

ThalamusProper rV Caudate rV

Putamen rV Pallidum rV

Hippocampus rV Amygdala rV

Accumbensarea rV T1 Hippocampal tail rV

T1 subiculum rV T1 CA1 rV

T1 hippocampalfissure rV T1 presubiculum rV

T1 parasubiculum rV T1 molecular layer HP rV

T1 GCMLDG rV T1 CA3 rV

T1 CA4 rV T1 fimbria rV

T1 HATA rV T1 Whole hippocampus rV

Midbrain rV Medulla rV

SCP rV Whole brainstem rV

AD sig surf weighted
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Chapter 4

Methods

This chapter discusses the methodology and is divided into three sections; data
preprocessing, data selection, and the primary analysis model; Sequential and
Orthogonalised Partial Least Squares (SO-PLS). The summary of the method and
the general workflow are shown in Figure 4.1.

Figure 4.1: A summary of the workflow conducted, where PC is an abbreviation for
principal component.

4.1 Software

This study used Python version 3.6.6 combined with Jupyter Notebook version
6.0.3 on the Anaconda platform with Hoggorm package [38] version 0.13.3 and
Numpy [39] version 1.18.1. Other packages used are Scikit-learn [40] version 0.22.1,
Pandas [41] version 1.0.0, HoggormPlot [38] version 0.13.2 and MLxtend [42] ver-
sion 0.17.1.
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4.2 Data preprocessing

The dataset was relatively prepared but had missing values. The preprocessing
consisted of removing features with a high amount of missing values and standard-
izing the dataset. Features that were included in the analysis and were categorical,
was transformed to one-hot numeric values.

4.3 Sequential and Orthogonalised Partial Least

Squares (SO-PLS)

This section introduces Sequential and Orthogonalised Partial Least Squares (SO-
PLS) regression, the main analytical regression method used in this study. SO-
PLS is a supervised multi-block analytic model, which belongs to the area of
component-based models such as PCA and PLS. There are some clear distinguish-
able differences between mentioned methods and SO-PLS, which is shown in table
4.1.

SO-PLS is an explorative technique that benefits from orthogonalization between
multiple data blocks, which also manage to maintain the reliability of each data
block and the overall variation to the dataset [19]. Uniquely for SO-PLS, data
blocks with independent features are being added sequentially to the model to
further explain the variance of the common response data [20]. Such a method
gives a structured approach to complex datasets and may provide a better chance
to accurately model the given phenomena [19].

Table 4.1: Overview of the component based methods PCA, PLS, SO-PLS and Multiple
factor analysis (MFA). The table shows the difference between them in the number of
predictor blocks or datasets, and the learning method (supervised and unsupervised).

One data block Multiple data blocks

Unsupervised
learning

PCA MFA

supervised
learning

PLS SO-PLS

The SO-PLS tries to divide the global datasets into blocks of variables that be-
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long together in such way that it benefits the overall model by finding components
that are optimal to each block. This is done by grouping features that explains
the common part of the response variable or features that comes from the same
sources into the same block. By doing this, we are taking into account the dif-
ferent complexities in different blocks which makes it possible to explain both the
global variance and the block variance. Sequential modeling of the blocks can give
us information about how much new information each block contributes to the
understanding of the response we are trying to model.

4.3.1 Basic model of SO-PLS

The method will be discussed by using three X-blocks as input variables and Y
as response variables, shown in formula 4.1. Where B, C and D denotes matrices
containing parameters that are estimated, and E is a matrix containing errors or
noise.

Y = X1B +X2C +X3D + E (4.1)

The method is based on first fitting X1 to Y , and then on fitting the estimated
residuals to X2 after orthogonalization with respect to the extracted PLS compon-
ents of X1 for the first model. This is interpreted as that the only new information
added to explain the variance in the response data from X2 is the orthogonal-
ized part of X2. Which means already explained variance from X1 will not been
considered in the model [20].

The space spanned byX1 andX2 is the same as the space spanned byX1 andXorth
2 ,

hence no loss of information in the process [20]. Where Xorth
2 is X2 orthogonalized

with respect to X1.

The SO-PLS method follows 5 steps [20];

1. Perform a simple PLS regression to fit X1 to Y . Compute the X1-scores, T1,
and the loadings for X1 and Y , called P1 and Q1 respectively.

2. Compute the predictive model T1Q
T
1 and the residuals, E = Y − T1QT

1 .

3. Orthogonalize X2 with the scores and the principal components T1 from step
1, and compute the orthogonalized X2, X

orth
2 .
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4. Fit the residuals from step 2 to Xorth
2 by using PLS regression, and compute

new scores and loadings, T orth
2 , P orth

2 and Qorth
2 . Compute the predictive

model T orth
2 (Qorth

2 )T .

5. Compute the final model, Ŷ = T1Q1 + T orth
2 (Qorth

2 )T .

The steps above apply for models with two blocks. Models with more than two
blocks have to repeat the steps 3 to 5 with the residuals, scores and loadings from
the previous estimated model.

4.3.2 Selection of components for each block

The SO-PLS procedure require selection of principal components of each block
before handling the final model. The selection of components of each block is
done sequentially by choosing the amount of components that gives the lowest
root mean squares error of prediction (RMSEP). The combination of component
is shown through a RMSEP-plot based on a cross validation (CV), also known as
Maage plot. An example of such a plot is shown in Figure 4.2.

Figure 4.2: RMSEP plot showing 3 blocks with different combination of principal
components, where the numbering order represent principal components from each block
accordingly.

For choosing components for a new block, the components from previous blocks are
kept constant. In Figure 4.2, the components from the first and second block are
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one. With the assistance of the RMSEP plot, we decide the number of components
to use from the third block; in Figure 4.2, we choose two components. The final
model is then one component from the first and second block and two components
from the third block. The procedure is explained in the steps below;

1. Perform PLS on the first block, and construct and visualize the RMSEP for
each components. Choose the amount of components that gives the lowest
RMSEP value.

2. Perform SO-PLS with the first and second block, and construct a RMSEP
plot. Keep the amount of components from the first block the same and
choose the amount of components for the second that gives the lowest RM-
SEP value.

3. Repeat step 2 for the next blocks potentially.

4.4 Data selection

The methods for selection of the final dataset will be elaborated in this section,
for explanation of the dataset see chapter 3.

4.4.1 Organising features in blocks

The organisation of feature in different blocks was based mainly on source or origin.
Some example of source or origin for this dataset is, among others, MRI, blood
test and cognitive tests, and methodology is questions through phone calls and
cognitive tests.

To verify that the blocks did not have a high correlation to each other, the RV -
coefficients were calculated. The RV -coefficient measures the closeness of two
vectors that are each represented in a matrix. By examine the RV -coefficients,
further changes to the blocks can be made.

The order of the blocks in the model is also important for the analysis. The block
order was decided after each block’s data accessibility and origin. The blocks
was sorted in a chronological order, where the first block consist of background
information, second block of cognitive and personal information, third block of
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blood tests and cognitive tests, fourth block of lesions in the brain, and fifth block
of volume measurements from subcortical brain structures.

4.4.2 Feature selection and data cleaning

The number of patients was determined after missing values in the selected fea-
tures. All patients with missing values, such as NaN (not a number) and the values
showing -999, were removed from the dataset. This decision was made after find-
ing the right amount of features in the given block. Features that had a significant
percentage of missing values was calculated to decide the importance of the feature
empirically.

PCA loadings were used for each block and for the whole dataset to find features
that explained most variance. These features were also chosen empirically and
included in the model. PCA was performed several times with different blocks
and features in an explorative manner.

Feature importance permutation from the MLxtend package was used on each
block separately to decide some features importance to the analysis. The response
value was simplified to a binary value where values between 600 and 800 were
removed. In other words, feature importance permutation was performed on a
binary classification problem to decide which features to remove from the model.
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Chapter 5

Results

This chapter will review the general outcome of the analysis completed, and a
more detailed review will be covered in chapter 6. Section 5.1 will showcase the
assessment of features and analysis methods used for the selection of features,
and the reasoning of the placement of features in different blocks. The process of
establishing the final model will be reviewed in section 5.2. Model performance
and the outcome of the model will be reviewed in section 5.3.

5.1 Data preparation and pre-analysis

The selection of features is based on some analytical methods and different sources.
The methods used were PCA, PLS, and feature importance on each block indi-
vidually to estimate the explained variance in the block and evaluate if the features
in each block give a sufficient value of the response’s explained variance. In this
section, the results from PLS, PCA and feature importance will be reviewed. The
next subsections present the analysis done on each block separately.

Partial least square regression and principal component analysis was conducted
before the main analysis of SO-PLS. The results are shown individually in the
sections below. Visualization of each methods was conducted such as correlation
loadings plots, loadings plots and plots of explained variance of the given block
and the response.

Feature importance permutation was also performed for each block. The results of
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these permutation was tested against PLS to find the combination of features that
gave the highest validated explained variance. Due to too many plots constructed
from PLS, PCA and feature importance permutation, many of these will not be
visualized. A summary of PCA and PLS are showcased in table 5.1 and table
5.2. From the tables mentioned, 3 components was set as the maximum number
of components.

Table 5.1: The table shows a summary of the blocks explained variance extracted from
the PLSR. These values shows the cumulative explained variance with given number
of blocks for both calibrated and validated data. X represent the block data, while Y
represent the response vector. The results were set to maximal 3 components.

Block
Calibrated
exp. var.
of X

Validated
exp. var.
of X

Calibrated
exp. var.
of Y

Validated
exp. var.
of Y

#components

A 45.92%. 45.05% 7.28% 5.73% 3

B 31.45% 30.16% 18.42% 14.69% 3

C 30.82% 29.95% 17.60% 13.38% 3

D 72.72% 69.41% 14.39% 4.20% 3

E 64.85% 64.24% 25.55& 16.83% 3
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Table 5.2: The table shows a summary of the blocks explained variance extracted from
the PCA. These values shows the cumulative explained variance with given number of
blocks for both calibrated and validated data, X. The results were set to maximal 3
components.

Block
Calibrated exp. var. of
X

Validated exp. var. of
X

#components

A 51.79%. 50.68% 3

B 41.65% 40.48% 3

C 50.93% 49.78% 3

D 74.51% 77.61% 3

E 62.58% 62.13% 3

5.1.1 PLS

PLS was conducted on each block, because of the sheer number of plots, this section
will showcase the result of PLSR of block B. The figures 5.1, 5.2 and 5.3 shows
the correlation loadings plot, explained variance and prediction plot respectively.
PLS was done to detect the explained variance, thus the information in each block
separately. It was also done for outlier detection, both for features and values in
each block. These outliers would later on examined to find drift, or mistakes, in
the data or to find important information.
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Figure 5.1: Correlation loadings plot of the response in blue and categorized features
from block B in red. The horizontal axis shows the first principal component and the
vertical axis shows the second principal component. The sum of component 1 and
component 2 explains 17%+4.5% of the variance in X, and explains 13.7%+4.3% of the
variance in the response (csf abeta42). The inner circle in the plot is the 50% threshold
for the explained variance. Features inside of this circle has an explained variance of
50% or lower. The outer circle represents 100% explained variance. Some features, such
as cowat total and cerad recall, are between 50% and 100% explained variance.
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(a) (b)

Figure 5.2: Explained variance plot of block B, (a), and of the response, (b). The
horizontal axis represent number of principal components computed by a PLS regression,
and the vertical axis represent percentage of explained variance, both calibrated and
validated.

Figure 5.3: Prediction plot of block B. The horizontal axis shows the real values, while
the vertical axis shows the predicted values based on two components.
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5.1.2 PCA

Just as PLS, PCA was conducted on each block, this section will showcase the
result of PCA of block E. The figures 5.4, 5.5 and 5.6 shows the correlation loadings
plot, the explained variance and the scores plot respectively. PCA was applied to
examine and detect the information and the variance in each block. Such as with
PLS, PCA was conducted to find outliers for better understanding of important
aspect of the data, and to remove faulty data.

Figure 5.4: Correlation loadings plot of the categorized features from block E. The
horizontal axis shows the first principal component and the vertical axis shows the second
principal component. Most of the features are clustered together, which makes them
correlated to each other. The figure shows two clusters with correlated features.
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Figure 5.5: Explained variance plot of block E. The horizontal axis represent number
of principal components constructed by PCA, and the vertical axis represent percentage
of explained variance.

Figure 5.6: Scores plot of block E. The first component is the horizontal axis and the
second component is the vertical axis. Component 1 and component 2 explains 34.6%
and 20.6% of the total variance of block E respectively, that is more than half of the
variance is explained by two principal components.
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5.1.3 Feature importance permutation

Feature importance permutation was the last part of the preprocessing and pre-
analysis process. Each block was tested against 5 machine learning models; sup-
port vector machine, logistic regression, decision tree, random forest and K-nearest
neighbor (see section 2.5). The response value was transformed to a binary re-
sponse value, where values between 600 and 800 of the response value (beta-
amyloid) was removed. The feature importance method was then conducted for
each block.

Figure 5.7: Decision tree feature importance permutation of block C with categorized
features. The features are represented by index number shown in the horizontal axis.

Figure 5.7 shows the outcome of one feature importance permutation for block
C. Models that gave an accuracy score above 70% were tested separately in PLS
to find which combination of feature that gave the highest validated explained
variance. Features that had a score between 0.001 and -0.001 in the feature per-
mutation was removed from the dataset. The final result is shown in table 5.3.
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Table 5.3: The table shows the result of the feature importance permutation that
was conducted as the final part of pre-analysis. The model shown are the model that
computed the highest validated explained variance with PLS.

Block model
Validated exp. var. of
Y

#components

A SVC 5.78% 3

B Decision tree 15.68% 3

C Decision tree 12.48% 3

D Random forest 6.43% 1

E Logistic regression 16.43% 3

5.1.4 Block selection

The reason for the block order and feature selected is based on several factors. First
and foremost, the block order was determined after the complexity and accessibility
of the data mining process; data from block A is easier to gather and access than
data from Block E. The first measurements medical experts perform on a patient
are gathered in the first blocks, as measurements get more complicated and difficult
to provide. The feature of these measurement gets moved to a later block. By
the mentioned reasoning, the separation of data blocks was done after where in
the process the measurement was obtained, hence the origin or the source of the
measurement.

Block features internal relevance to each other was also an important factor where
features were similar and difficult to separate. There was a trial and error process,
in some degree, where blocks of some similarities were altered several times to
maximize explained variance tested with PLS and PCA. The features were also
selected in consultation with medical experts with the domain knowledge, that is
the providers of the dataset.
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5.2 Final SO-PLS model

The creation of the final model is conducted through principal component selection
for each block according to the method of SO-PLS, explained in chapter 4. The
final model with the principal components is [1, 2, 2, 3, 0], where the values
represent principal components of the each block in alphabetically order. The
component selected are shown in RMSEP plots below. The same patients across
blocks are used for SO-PLS, thus the number of patients used for SO-PLS is 172.

The selection of the number of components is dependent on the previous selected
components from the previous block, e.g. the component selected from block A
are fixed when selecting components from block B. The figures below shows the
RMSEP plot of each block and the final selection of principal components.

Figure 5.8: RMSEP plot of block A, where relevant number of components are marked
in blue and number of components selected are marked in green. The number of com-
ponents selected are 1.
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Figure 5.9: RMSEP plot of block B combined with block A, where relevant number
of components are marked in blue and number of components selected are marked in
green. The number of components with the lowest RMSEP are selected, from block B
that is 2 components.

Figure 5.10: RMSEP plot of block C combined with block A and B, where relev-
ant number of components are marked in blue and number of components selected are
marked in green. The number of components with the lowest RMSEP are selected, from
block C that is 2 components.
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Figure 5.11: RMSEP plot of block D combined with block A, B and C, where relev-
ant number of components are marked in blue and number of components selected are
marked in green. The number of component selected from block D are 3.
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Figure 5.12: RMSEP plot of block E combined with block A, B, C and D, where
relevant number of components are marked in blue and number of components selected
are marked in green. The number of components with the lowest RMSEP are selected,
from block E that is 0 components. To avoid overfitting the final model, selecting zero
components is the preferred choice.
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5.3 Model performance

The final model’s performance and outcome are shown in Figure 5.13, 5.14 and
5.15. The validated explained variance of the response was 22.89 percent, the
calibrated is 36.54 percent. Each block’s contribution to the explained variance
are shown in table 5.4.

Table 5.4: The table shows the explained variance contribution from each block.

Block Calibrated exp. var. Validated exp. var

A 5.76 %. 2.52 %

B 14.95 % 10.22 %

C 7.47 % 2.90 %

D 8.36 % 7.25 %

E 0 % 0 %

Total 36.54 % 22.89 %
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Figure 5.13: The figure shows a correlation loadings plot of the data features and
response. The features from same block are categorized with the same color. The axis
represent the first and second principal component, and their contribution in parenthesis.
Block 0 represent the first block added to the model, block 1 represent the second block
and so on. The features closest to the response, csf abeta40, are the features that are
highest correlated with the response. Features that are outside the inner circle have an
explained variance above 50%. Such features are WHMo rV and bl apoe E4/E4 shown
in the lower left panel of the plot.
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Figure 5.14: The figure shows a scores plot of the data values with the first and second
principal component as the axis.

Figure 5.15: The plot shows the calibrated and the validated explained variance accu-
mulated after each block is added to the model. Block 0 represent the first block, block
A and so on. The plot shows that there is a high amount of explained variance that the
model do not explain.
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Chapter 6

Discussion

6.1 Dataset

Alzheimer’s is a progressive disease where symptoms worsen over several years.
These symptoms are difficult to detect in the early stages, making the data col-
lection and data mining process difficult for medical experts. This dataset is no
exception from that, as for now, there exist some dominant and clear risk factors,
and the dataset utilized in this thesis found weak links between known risk factors
and AD. This section discusses the data used and its weaknesses.

6.1.1 Features

There are 3873 patients with 1807 different measurements in the dataset; only a
few of these features were used. There may be important features not used for the
final SO-PLS model, which is a cause of limited knowledge in the existing dataset
and the medical field. Finding important features from the original dataset is
difficult because of the sheer number of missing values of various features, which
do not apply to the methods used. The number of patients also significantly drops
when removing patients with a large amount of missing values.

By including more features to the methods that do not necessary correlate with
AD significantly, the methods may have a bigger change to find hidden patterns
that contributes to the assessment of AD. In contrast, including more features
may also lead to overfitting the model, since there is a chance that some features
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will introduce noise in the datasets and not contribute to the improvement of the
model. Adding more features should still have been conducted to find new risk
factors of AD since there is insufficient amount of information from features in the
existing model. The information that is absent in the model may exist in other
features or measurements.

6.1.2 Response variable

The final model is an univariate regression problem, with the response variable
measuring the accumulation of CSF beta-amyloid in the spinal fluid. The meas-
urement of tau mentioned in chapter 1.1 was also part of the original dataset. Tau
could also be used for the analysis as a second response variable and tested with
various models and analysis. The reason tau was not used is because of the high
correlation with beta-amyloid. There was no new information added when tau
was included, and the model was not improved. Tau may still be an important
variable due to its importance in deciding the degree of a patient’s dementia.

The dataset consists of patients that have been tested for AD through several
stages. These patients that went through these assessments have a higher probab-
ility of having AD than the rest of the population pool. There is, therefore, a lack
of patients that shows little to none sign of AD. Adding data of healthy people to
the datasets and finding patterns that are unique to AD patients may be easier,
making it easier to differentiate between healthy and AD patients. Furthermore,
the features of importance would be more detectable and easier to identify.

6.1.3 Block selections

The order of blocks and the grouping of features in the respective blocks are
important when designing a good model. The selection of blocks and features was
based on dominant features from previous studies, their relation to each other, and
the block’s order. The block selection and order were explorative through regular
PLS and PCA models and highly influenced by the features’ origin. The blocks’
division and order were designed by medical experts with strong domain knowledge
in the datasets provided. Furthermore, the block division could have been based
on a stronger knowledge in medical practices and, more specifically, in Alzheimer’s
disease and the main datasets with the SO-PLS method in consideration.

A clearer view of the method’s advantages and applicability with insight to the
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datasets’ internal differences from a top-down approach, rather than a bottom-up
approach, where features got selected and placed in their respective block may
cause a better separation of the block. Instead of selecting features first and
placing them in their respective block, one could define each block’s property
and find features that fit a block’s description. This would cause a better block
separation and make it easier to search for specific features for a block.

6.2 The final model and performance

The outcomes from PLS showed validated explained variances of the response to
be up to 20% for each block, which individually is not very robust models. The
expectation for further analysis using SO-PLS was that all blocks together might
explain more of the variance of the response than each block individually. This
was partly the case since each block, excluding block E, contributed to a higher
explained variance. however, this was not as much as expected. The reason for
the low explained variance is overlapping information of the blocks. If each block
contained unique information of the response, the total explained variance of the
response for the SO-PLS model would have been much higher.

Block E was not used for the SO-PLS method despite having the highest percentage
of explained variance from PLS. This shows that block E’s explained variance is
explained by the other blocks in the dataset, thus making block E redundant.
Block E still holds information about the response, but since the block’s order was
preset before the analysis, the block became unnecessary.

Such as explained earlier, the final model may also suffer from insufficient data
and poor block separation. The model may experience the ”garbage in, garbage
out” concept, where the data consist of a large amount of noise and useless inform-
ation and therefore gives a poor model. Since both the data and its separation is
fundamental for a better model, this may be the case in this model. There is also
a possibility that the dataset does not contain relevant features that explain the
variance in the response that the information available is not enough to explain
the variance in the response. There may be a need for new features that have not
been included at all.

Another drawback with the final model is the amount of patients. Since SO-
PLS requires the same patients to exist in all blocks, patients not included in all
blocks are removed from their respective blocks. The final model ends up with
172 patients across all blocks, which may be an insufficient amount for the overall
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model. More data may give more patients to the final model, or more information
on already existing patients to reduce missing values may also contribute to a
better model.

The features WMHo rV, bl apoe E4/E4, LesP2 and Les FPOT rV had an ex-
plained variance above 50% in the final model (see Figure 5.13). The high ex-
plained variance from these features indicates a negative correlation between the
response and the features mentioned above, indicating that high beta-amyloid (low
CSF betaA) gives high values for the given features. As mentioned in Chapter 1.1,
high values of beta-amyloid (betaA) gives low values of CSF betaA (csf abeta42)
in the spinal fluid.

The feature bl apoe E4/E4 is the ApoE-ε4 allele mentioned in Chapter 1.1. This
allele frequency is much higher for patients with AD, which agrees with Figure
5.13. LesP2 is the lesion in the second layer of the parietal lobe. LesP2 also
show a negative correlation with the response value, which is shown in Figure
5.13. The parietal lobe has been proven to be involved in the early stages of
AD and mild cognitive impairment [43], and are, therefore, another important
feature in this model. The same reasoning also applies for WMHo rV [44] and
Les FPOT rV [45], where Les FPOT rV is an aggregated variable of lesion FPOT
with corrections for intracranial volume and WMHo rV is areas of low-intensity
white matter calculated from histograms from MRI.

In consideration of the correlation loadings plot shown in Figure 5.13, the first
component (PC1) explains 100% of the total variance making the second compon-
ent (PC2) equal to 0% explained variance. The figure shows by equal distribution
of features along both axis while, in theory, it should be a wider span across PC1.
By closer examination of the scores plot in Figure 5.14, there is a similar distribu-
tion. The difference is shown in the magnitude of the axis in the scores plot; there
is a much larger span in PC1 than in PC2.

High age has been shown to give a higher probability of developing AD. The feature
age gave an explained variance under 50% in the loadings correlation plot shown
in Figure 5.13. The reason for this may be the distribution of the patients, which
is shown in Figure 6.1. There exist no patients under the age of 40, which gives
age a lower effect on the model. Since the main goal is the find risk factors and
features that contribute to AD, the early effects of patients are eliminated since
no patients under the age of 40 are included. To find early effects of AD, one may
consider adding a younger age group to the dataset.

By examine age and csf abeta42 more thoroughly, it shows a decline in csf abeta42
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Figure 6.1: Distribution plot of the feature age from 1518 patients of the general
dataset.

as the patients’ age gets higher. A simple illustration of this trend is shown in
Figure 6.2. The age appears to be more important than shown in the final model.
By including more data, age shows a more significant difference across age groups.
This may be the cause of insufficient data since the SO-PLS used 172 patients
across all blocks. More patients across a wider age range may show the importance
of age and other features.

SO-PLS is a linear model, which means that features that behave in a non-linear
matter may not affect the final model. One may introduce features’ non-linearity
by producing squares of features, either with itself or pairwise with other features.
Figure 6.2 shows some tendency to a non-linear variable, making the feature’s
importance to the model lower than its true contribution. Because of the time
limit, these changes were not implemented.
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Figure 6.2: Bar plot of the feature age with csf abeta42 from 1518 patients of the
general dataset. The plot shows the mean of csf abeta42 for each age group.

6.3 The aim of this thesis

The aim of this thesis was to apply PCA, PLS, and SO-PLS to determine which
factors or variables improve the assessment of a patient with AD. There were few
known modifiable risk factors of AD, and this thesis amplifies this known state.
The validated explained variance of the response for SO-PLS is 22.89%, which is
not sufficient for determining significant features and risk factors. However, there
are still some noticeable tendencies.

The goal was to determine features and risk factors for AD; this does not ne-
cessarily indicate measuring the response, csf abeta42, for concluding if a patient
has AD. For determining if patients have AD, some clinical criteria must be ful-
filled. As explained in Chapter 1.1, these criteria are often carried out and checked
by medical experts in the field, and from those assessments made a decision if a
patient has AD or other cognitive diseases. The current response value may, there-
fore, not be a precise representation for deciding if a patient has AD. Additional
measurements, such as MRI scans may be an alternative approach to get a more
exact response value.
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6.4 Further work

SO-PLS is not a widely applied method in medical science and has the potential
for further work in the medical field. One of the benefits of SO-PLS in the medical
field is utilizing the distribution in the scores plot and correlation loadings plot
to get a better insight into the patient pool. By examining the scores plot, it is
possible to see which patients are similar and which one differs. For doctors to
utilize this means to diagnose and tailor the patients’ treatment across hospitals
and treatment centers. It is a tool that can assist doctors when, in doubt, by
comparing similar patients in the scores plot. This also may be beneficial when
other dementia patients are included in the dataset to make it easier to separate
similar diseases. There is also a possibility to apply the scores plot alongside
the correlation loadings plot to examine which features affect the patients the
most. Finding important features and how those features affect the variance for a
particular patient will give a better insight into the patients.

Alzheimer’s disease is yet to be fully explained, and thus are difficult to predict
and to analyze. As big data and machine learning become more applicable in
various fields, data sharing, data mining, and cooperation become necessary to
construct sufficient datasets. With the help of progresses in the medical field,
such initiatives will change the outlook of Alzheimer’s disease. Initiatives such as
Alzheimer’s Disease Data Initiative (ADDI) will accelerate the progress towards a
breakthrough in Alzheimer’s disease.

For further analysis, it should be taken into consideration that some assessments
may be outdated and not beneficial to use. Such features may be memory assess-
ment that uses analog clocks, such as clock score used in block C. The mentioned
feature may be difficult for a younger population as analog clocks become unused.
More importantly, is to use new features and assessments that add new informa-
tion to the data and that do not include redundant or similar assessments. Digital
tools and assessments, such as puzzles and other mind games, may contribute to
new hidden information.
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Chapter 7

Conclusion

The overall goal was to find important risk factors and features to get a deeper
understanding of why some develop AD. Mainly the methods PCA, PLS and SO-
PLS in conjunction with feature importance, was applied to detect important
features. The final model, SO-PLS, gave an explained variance of the response
of 22.89%, which means that 22.89% of variance is explained by the given model.
From the model’s outcome, the features WMHo rV, bl apoe E4/E4, LesP2 and
Les FPOT rV had a negative correlation with the response, csf abeta42, thus pos-
itive correlated with beta-amyloid in the brain. The mentioned features had an
explained variance between 50% and 100%, and are therefore considered important
features.

The methodology, SO-PLS, did not reach its full potential in this thesis because of
poor performance and the lack of sufficient data and good block separation. The
model still has the potential to be tested with AD data, and in general, with clinical
and medical data. The SO-PLS model showed some promising features, but the
low explained variance makes these results highly questionable and concludes that
no decisive factors can be given to what causes AD.

A larger dataset may contribute to a better final model for further work and should
be considered when utilizing the given dataset. Several other features that were
not utilized in the blocks may explain other components of AD and should be
considered for further work. The separation of data into data blocks should be
fully understandable and reasonable, and other reasoning used in this thesis should
be explored.
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[26] S. Wold, M. Sjöström and L. Eriksson, ‘Pls-regression: A basic tool of chem-
ometrics’, Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2,
pp. 109–130, 2001, PLS Methods, issn: 0169-7439. doi: https : / / doi .
org/10.1016/S0169-7439(01)00155-1. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0169743901001551.
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