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Abstract 

The colonocytes are the most abundant cell type in the colonic epithelium and function both 

as a barrier and a mediator between the human body and the components in the gut lumen, 

such as the microbiota and its metabolites. In particular, the gut microbiota produces the short 

chain fatty acids (SCFA): acetate, propionate and butyrate, with butyrate being the 

colonocytes preferred energy source. Branched chain fatty acids (BCFA) are major 

constituents of vernix caseosa and human milk, and are therefore consumed by the fetus and 

the infant. The aim of this study was to investigate the effects these two groups of fatty acids 

have on colonocytes. 

Caco-2 cells were used as a colonocyte model and the cells were treated with either 4 mM 

SCFA or 40 PM BCFA. RNA-sequencing was used to identify genes and pathways 

influenced by the fatty acids. Butyrate showed most effect on the gene expression, and the 

associated pathways were related to regulation of the cell cycle. Propionate was the second 

most influential treatment on the gene expression and shared some of the effects observed 

with butyrate. The mitochondrial activity of the cells was assessed by measuring gene 

expression and respiration. Both SCFA and BCFA had impact on mitochondrial activity, but 

the effects differed between the groups. The results from butyrate-treated cells indicated a 

shift from glycolysis to E-oxidation, while 15-methylhexadecanoic acid seemed to increase 

the cells respiratory capacity. The concentration of BCFA was measured in the fecal samples 

from 176 infants at 12 months of age in the PreventADALL cohort. The most abundant fatty 

acid measured was 12-methyltetradecanoic acid, and 14-methylhexadecanoic acid was the 

least abundant.  

In conclusion, the results of this study suggest that butyrate is the fatty acid that have most 

impact on the cells but also that propionate may play an important role in the infant gut, 

particularly when butyrate concentrations are low. The observed effects of the BCFAs also 

demonstrate that these fatty acids should be considered when deciphering the infant 

development. However, the study was limited to investigating fatty acids individually and at 

a single concentration. Further work is therefore needed to elucidate the biologic function of 

the fatty acids in the infant gut. 
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Sammendrag 

Kolonocyttene er den mest utbredte celletypen i epitelet i tykktarmen og fungerer både som 

en barriere og et bindeledd mellom kroppen og innholdet i tarmen, som mikrobiotaen og 

metabolittene den produserer. Mikrobiotaen produserer spesielt de kortkjedede fettsyrene 

eddiksyre, propionsyre og smørsyre, hvorav smørsyre er den foretrukne energikilden til 

kolonocyttene. Forgrenede fettsyrer utgjør en stor andel av vernix caseosa og morsmelk, og 

konsumeres derfor av både foster og spedbarn. Formålet med denne studien var å undersøke 

effekten kortkjedede og forgrenede fettsyrer har på kolonocyttene. 

Caco-2-celler ble brukt som en modell for kolonocytter og ble behandlet med 4 mM SCFA 

eller 40 PM BCFA. RNA-sekvensering ble brukt til å identifisere gener og reaksjonsveier 

som påvirkes av fettsyrene. Smørsyre førte til mest effekt på genuttrykket, og reaksjonsveiene 

som ble identifisert var involvert i reguleringen av cellesyklus. Propionsyre var den 

behandlingen med nest mest påvirkningskraft, og den hadde noen av de samme effektene som 

ble observert med smørsyre. Den mitokondrielle aktiviteten i cellene ble vurdert ved å måle 

genuttrykk og respirasjon. Både kortkjedede og forgrenede fettsyrer påvirket den 

mitokondrielle aktiviteten, men med ulikt utfall. Cellene som ble behandlet med smørsyre ga 

resultater som indikerte en overgang fra glykolyse til E-oksidasjon, mens 15-

metylheksadekansyre viste tegn til å øke cellenes respirasjons-kapasitet. Konsentrasjonen av 

forgrenede fettsyrer ble malt i avføringsprøver fra 176 spedbarn på 12 måneder i 

PreventADALL-kohorten. Fettsyren med høyest median-konsentrasjon var 12-

metyltetradekansyre, og 14-metylheksadekansyre hadde lavest median-konsentrasjon.  

Oppsummert, viser resultatene fra denne studien at smørsyre er den fettsyren som har størst 

påvirkning på cellene, men at propionsyre også kan spille en viktig rolle i tarmen hos 

spedbarn, spesielt når konsentrasjonen av smørsyre er lav. Effektene av de forgrenede 

fettsyrene understreker også at disse bør inkluderes i utredningen av spedbarns utvikling. 

Begrensninger ved studien var at fettsyrene kun ble undersøkt enkeltvis og bare ved en 

konsentrasjon. Videre arbeid er derfor nødvendig for å beskrive funksjonen disse fettsyrene 

har i tarmen hos spedbarn. 
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1 Introduction 
It has become increasingly apparent that the human body is not a desolate island but a 

densely populated metropolis of microorganisms, collectively called the microbiota. The 

gastrointestinal (GI) tract consist of a surface of 250-400 m2 of the human body that 

constantly interact with organisms and components from the environment (Thursby & Juge, 

2017). In particular, the colon provides an environment that is well suited for microorganisms 

because of the availability of nutrients, long transit time and close to neutral pH (Flint et al., 

2012b). This part of the GI tract harbors inhabitants from all of the three taxonomic domains; 

Bacteria, Archaea and Eucarya.  

 

The microbiota has been co-evolving with their hosts over millions of years, leading to the 

complex symbiosis experienced today. This relationship proves to be of significant 

importance to the host health. The commensal bacteria provide functions such as protecting 

against pathogens, providing energy for host cells and shaping the human immune system 

(Kamada et al., 2013; Milani et al., 2017). The colonization of the infant gut is a process of 

ecological succession and the composition of microorganisms changes drastically during the 

first years of life (Lozupone et al., 2012). The process is influenced by factors such as mode 

of delivery, feeding and administration of pharmaceuticals such as antibiotics (Milani et al., 

2017). An adult-like microbiota starts to develop as the infant is introduced to solid foods and 

stabilizes around the age of 2,5 to 3 years. The process is characterized by a shift from 

facultative to obligate anaerobes, as the anaerobic environment typical for the healthy adult 

gut is established (Albenberg et al., 2014; Friedman et al., 2018).  

 

The exact composition of bacterial species in the adult gut varies between healthy individuals 

(Lozupone et al., 2012). However, the functional diversity in the gut is smaller between 

individuals than the phylogenetic diversity (Abubucker et al., 2012). Turnbaugh et al. (2009) 

suggest that there is a collection of shared microbial genes that provide functions that are 

important for the host. This means that even though different bacterial species make up the 

microbiota in different individuals, similar bacterial proteins and metabolites are present 

(Thursby & Juge, 2017). 

 

By turning of available substrates into metabolites, the microbiota has a substantial effect on 

the host. The nutrients that reach the colon are in particular complex carbohydrates such as 
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dietary fibers and resistant starch that the human enzymes are unable to process (Ferreyra et 

al., 2014). This also includes human milk oligosaccharides (HMOs) in infants fed with 

breastmilk, that are important nutrition for the microbiota as they are not digested or absorbed 

by the infant (Milani et al., 2017). Together with some remaining simple carbohydrates and 

mucin produced by the secretory epithelial cells in the gut, these serve as sustenance for the 

gut microbiota (Chassard & Lacroix, 2013). Collectively, the microbiota yields a diverse 

arsenal of enzymes to tackle these substrates and produce fatty acids, amino acids and 

vitamins that are absorbed and metabolized by the human cells (Flint et al., 2012a; Hill, 

1997).  

 

1.1 Gut epithelial cells 
The intestinal epithelial cells (IEC) function as a barrier between the ecosystem in the lumen 

and the rest of the human body. Neighboring cells are connected to each other by junctions, 

creating a continuous layer (Peterson & Artis, 2014). The IEC secrete mucin and 

antimicrobial peptides, but also absorb substances from the lumen (Correa-Oliveira et al., 

2016). The cells are involved in the tolerance and immune reactions towards the bacteria in 

the lumen through production of cytokines (Peterson & Artis, 2014).   

 
Multipotent stem cells reside in the crypts of the colon and differentiate into absorptive 

colonocytes, or secretory cells such as enteroendocrine cells, goblet cells, and tuft cells (Noah 

et al., 2011). Colonocytes are the most abundant of the colonic epithelial cells and as they 

mature, they migrate up the crypt-lumen axis. The differentiation process is accompanied by 

a metabolic shift from glycolysis to β-oxidation (Duszka et al., 2017; Lefebvre et al., 1999). 

This leads to higher oxygen consumption and is therefore important for maintaining the 

anaerobic conditions in the lumen (Litvak et al., 2017). The mature colonocytes perform a 

range of important functions, such as electrolyte exchange, detoxification and synthesis of 

mucin, lipids and structural proteins (Ahmad et al., 2000).  

 

1.2 Short chain fatty acids 
Of the microbial metabolites in the gut, the SCFAs are of particular interest. Obligate 

anaerobic bacteria in the gut specialize in metabolizing complex carbohydrates into short 

chain fatty acids (SCFA) (Litvak et al., 2018). A broad diversity of bacteria, dominated by 
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SCFA producers, is associated with a balanced and homeostatic microbiota (Byndloss et al., 

2017). The SCFA butyrate is the colonocytes preferred source of energy (Roediger, 1980). 

SCFAs are characterized by having less than six carbons and the most abundant SCFAs 

produced by bacteria in the colon, are acetic acid, propionic acid and butyric acid (Rios-

Covian et al., 2016). The measured proportions between acetate, propionate and butyrate 

vary, but have a mean molar ratio of 60:20:20 in adults (Hamer et al., 2008). The infant gut is 

predominated by acetate and propionate, butyrate being almost absent at the beginning of life, 

but SCFA proportions and total amount vary with breast-feeding status (Bridgman et al., 

2017). The relative proportions of the different SCFAs change a lot during the first year and 

the butyrate concentration increases with age (Norin et al., 2004).  

 

While most of the butyrate is used by the colonocytes upon absorption, acetate and 

propionate reach the circulation and are transported to other parts of the body (Macfarlane & 

Macfarlane, 2007). Acetate is utilized by the brain, heart and peripheral tissues, and interact 

with the body’s handling of fat and lipids by increasing satiety and browning of white adipose 

tissue (Lavelle & Sokol, 2020). Propionate is metabolized by the liver and can be processed 

to obtain glucose through gluconeogenesis (Bergman, 1990).  

 

The presence of SCFA protects against pathogenic microorganisms by lowering the pH and 

increasing production of antimicrobial peptides (Correa-Oliveira et al., 2016). In addition to 

this, butyrate stimulates mucin production and lowers the bacterial adhesion in the gut (Jung 

et al., 2015). The activation of AMP-activated protein kinase (AMPK) and stabilization of the 

hypoxia-inducible factor (HIF) by butyrate leads to reassembly of tight junctions and 

enhanced tissue barrier (Kelly et al., 2015; Peng et al., 2009). Absence of butyrate can induce 

apoptosis in the colonocytes and leads to deterioration of the mucosa (Orchel et al., 2005). 

SCFA is associated with positive effects on the immune responses such as protection from 

colitis and colitis-induced cancer (Lavelle & Sokol, 2020).  

 

The mechanisms through which the SCFA influence the host cells are by activation of G-

protein-coupled receptors (GPCRs) and inhibition of histone deacetylases (HDACs) (den 

Besten et al., 2015; Miao et al., 2016). The GPCRs activated by SCFA are important in 

regulation of immunity and may be central in development of tolerance by inducing 

regulatory T-cell (Treg) production (Smith et al., 2013; Sun et al., 2017). When HDACs are 

inhibited, the histones that participate in the packing of DNA into chromatin remain 
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acetylated (Miao et al., 2016; van der Knaap & Verrijzer, 2016). The acetylation neutralizes 

the positive charge of histone tails, weakening the bond to the negatively charged DNA (Li & 

Reinberg, 2011). A looser packing of the chromatin leaves the DNA more available for 

transcription. This mechanism influence the expression of a number of genes and has 

antiproliferative effect on cancer cells (Davie, 2003).  

 

1.3 Branched chain fatty acids 
Branched chain fatty acids (BCFA) are fatty acids that are reported at low levels in internal 

tissues of humans, but are suspected to be of nutritional importance in infants due to its rich 

presence in vernix caseosa and human milk (Ran-Ressler et al., 2013). These fatty acids carry 

one or more methyl branches, usually near the end of the carbon chain (Ran-Ressler et al., 

2013). If the methyl group is situated on the penultimate carbon, the fatty acid is called iso-

BCFA. Similarly, a methyl group on the antepenultimate carbon creates an anteiso-BCFA.  

 

BCFA are significant components of membranes in bacteria, and similar to unsaturated fatty 

acids, they are used to control membrane fluidity (Kaneda, 1991; Siliakus et al., 2017). 

However, because they are saturated, they do not react with oxygen (Dingess et al., 2017). 

BCFA are produced from the branched chain amino acids valine, leucine and isoleucine 

which are essential amino acids that the human body is unable to produce. Bacteria produce 

both the relevant amino acids and branched fatty acids. Kaneda (1991) lists species from 56 

genera where BCFA constitutes more than 20 % of the total cellular fatty acids. The 

percentage is particularly high in Bacilli and Lactobacilli species, as well as some 

Bifidobacteria strains which all can inhabit the gut (Ran-Ressler et al., 2014).  

 

The vernix caseosa that surrounds normal term infants at birth has an abundance of BCFA 

(Ran-Ressler et al., 2013). The vernix is suspended in the amniotic fluid and is swallowed by 

the fetus nearing term birth. There is a difference in the estimated amount of BCFA 

swallowed by the fetus and the measured amount of BCFA in meconium, which indicates 

that the BCFA is absorbed and metabolized by the fetal gut. Increased risk for necrotizing 

enterocolitis (NEC) in premature infants is assumed to be related to lack of BCFA due to less 

vernix ingestion (Ran-Ressler et al., 2011). Most non-vegan adults consume food containing 

BCFA such as dairy and meat products, as well as some fermented foods (Ran-Ressler et al., 

2014). The seven major BCFA in food are iso-14:0, iso-15:0, anteiso-15:0, iso-16:0, iso-17:0, 
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anteiso-17:0, iso-18:0 (Hauff & Vetter, 2010). Dingess et al. (2017) report that half of the 

BCFA in dairy products from cow is anteiso-15:0 and anteiso-17:0. BCFA is also present in 

human milk, but the contribution to this by endogenous production versus supply from the 

diet or the microbiota have not been elucidated (Dingess et al., 2017). Research on groups of 

mothers that consume little BCFA containing food suggest that the fatty acids in the breast 

milk may, at least to some degree, come from the maternal microbiota (Dingess et al., 2017).  

 

Despite its low concentrations in adult tissue, the presence of BCFA in the body have been 

associated with effects on human health and metabolism, such as having anti-inflammatory 

effects (Yan et al., 2017). A link has also been suggested between obesity and lower BCFA 

concentrations in serum and adipose tissue, and BCFA is suggested to have positive influence 

on insulin sensitivity (Taormina et al., 2020). Little is known about mechanisms behind the 

observed effects of BCFA on the human health.  

 

1.4 Mitochondrial metabolism 
The human body obtains energy from proteins, lipids and carbohydrates (Da Poian et al., 

2010). The most important energy carrier in the body is adenosine triphosphate (ATP), where 

energy is stored in the bonds between phosphate groups (Dunn & Grider, 2020). The majority 

of ATP is produced in the mitochondria, by the process of oxidative phosphorylation. 

Different reactions deliver reducing power to the electron transport chain (ETC) in the form 

of the molecules NADH and FADH2. If the terminal electron acceptor oxygen is unavailable, 

some ATP can be produced through fermentation, but the full potential of the nutrient will 

not be realized, as the end product is lactate instead of the completely oxidized CO2 

(Mathews et al., 2013). 

 

Glucose is broken down to pyruvate by the process of glycolysis in the cytosol, and some 

ATP and NADH are generated. In the mitochondrial matrix, the pyruvate molecule is 

decarboxylated by pyruvate dehydrogenase (PDH) into Acetyl-CoA that enter the 

tricarboxylic acid (TCA) cycle. This process reduces nicotinamide adenine dinucleotide 

(NAD+) and flavin adenine dinucleotide (FAD) to respectively NADH and FADH2, 

producing some ATP and releasing CO2 (Mathews et al., 2013). Fatty acids are transported 

across both the mitochondrial membranes and broken down, two carbons at the time, in the β-

oxidation process (Ma et al., 2018). Each round of oxidation produces FADH2, NADH and 



 6 

Acetyl-CoA. Nutrient availability influence the metabolic state of the cell through 

transcription factors and remodeling of chromatin structure which regulate the expression of 

metabolic enzymes (van der Knaap & Verrijzer, 2016). 

 

The reducing equivalents produced in the TCA cycle and β-oxidation contribute to ATP 

production by the ETC as illustrated by figure 1.1. NADH is re-oxidized to NAD+ by NADH 

dehydrogenase (complex I) and FADH2 is re-oxidized by succinate dehydrogenase (complex 

II) or electron transferring flavoprotein-ubiquinone oxidoreductase (ETF:QO) (Nicholls & 

Ferguson, 2002). Electrons from these oxidations are transferred to ubiquinone (Q) and 

protons are pumped into the intermembrane space, creating a proton gradient across the inner 

membrane of the mitochondrion. Electrons are transferred to the final electron acceptor 

oxygen by cytochrome c oxidase (complex IV), reducing O2 to H2O. The ATP-synthase 

(complex V) transports protons back into the matrix, using the proton gradient as the driving 

force to produce ATP (Acín-Pérez et al., 2008).  The consumption of oxygen is therefore 

tightly linked to the production of ATP.  

 

Complex I and ubiquinone-cytochrome c reductase (complex III) in the ETC produce reactive 

oxygen species (ROS) that can damage the deoxyribonucleic acid (DNA) (Turrens, 1997). 

The mitochondrial DNA encode several components of ETC, and the metabolic activity is 

affected if ROS damage is not efficiently repaired. The main repair mechanisms for DNA 

damage in the mitochondria is base excision repair (BER), initiated by glycosylases such as 

8-oxoguanine glycosylase (OGG1) that detect one of the most common DNA damages (Van 

Houten et al., 2018). BER genes are up-regulated in response to increased oxidative damage 

to the DNA (Rusyn et al., 2004).  
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Figure 1.1 The electron transport chain and ATP synthase (complex V) situated in the inner mitochondrial membrane, and 

how it is supplied by reduced electron carriers by the TCA cycle and β-oxidation. Figure made by inspiration from Mathews 

et al. (2013) and Scialo et al. (2017). 

 
1.5 Methods involved to assess cell responses 
Cells have a complex system for adapting to changes in their environment. Proteins are the 

main performers of cellular functions and the amount of different proteins are for the most 

part regulated by how many mRNAs are transcribed from the genome. The use of cell models 

provides a simplified system for studying effects of different treatments. Gene expression 

measurements give an overview of the processes in the cell and can say something about 

which pathways are involved in the adaptation to a treatment. To elucidate how the sum of 

pathways manifests in cellular activities, techniques focused at the functions performed by 

the cells are better suited. Respirometry is a method used to estimate the cells mitochondrial 

activity. 

 

1.5.1 Colonocyte Model  
Caco-2 is a colorectal cancer cell line that grow in a monolayer and can differentiate 

according to cell density (Pignata et al., 1994). Levy et al. (1995) have described three states 

of differentiation in vitro for the Caco-2 cells; At subconfluence, the cells are homogenously 
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undifferentiated. Up to 20 days of postconfluence, the cells are heterogeneously differentiated 

with varying morphology of the cells and development of a brush border. At 30 days 

postconfluence, the cells reach a state of homogenous polarization and differentiation. The 

differentiation leads to columnar absorptive cells (Zweibaum, 1991). The Caco-2 cells have a 

closest resemblance to colonocytes immediately after confluence and the resemblance to the 

small-intestinal enterocyte increase after this point (Engle et al., 1998).  

 

1.5.2 Gene expression 
Measurements of the gene expression of a cell sample is done by quantifying the amount of 

RNA transcribed from different genes. This requires the RNA to be isolated from the cells 

and turned into complementary DNA (cDNA). By designing primers targeting specific genes, 

gene expression of known GOIs can be measured using qPCR. RNA-seq is a method that 

enables assessment of the complete transcriptome of the sample. 

 

RNA extraction 

The nucleic acids can be extracted from cell samples by  wide range of different methods, 

depending on the start material and the downstream applications (Ali et al., 2017). Some of 

the issues the extraction process needs to handle is to get sufficient amount of nucleic acids, 

and to avoid contaminations of other cellular components or reagents that may interfere with 

downstream applications. The sample also has to be free of nucleases as these degrade the 

nucleic acids. The ribonucleic acid (RNA) is particularly unstable, partly due to the 

abundance of RNases present in the environment (Tan & Yiap, 2009).  

 

To access the nucleic acids, the cell membranes needs to be destroyed. This is done by 

chemical, enzymatical or mechanical disruption (Burden, 2012). A method to separate the 

desired nucleic acid from the other cellular components, is by solid phase extraction where 

the nucleic acids bind to the solid phase such as columns with silica membrane, or magnetic 

beads under the right conditions. Numerous kits for nucleic acid extraction are available. 

They are specifically developed for a certain cell type and the nucleic acid of interest. 

 

Gene expression analysis using quantitative PCR (qPCR) 

The polymerase chain reaction (PCR) makes it possible to amplify a specific DNA fragment 

from a sample of DNA (Garibyan & Avashia, 2013). This is done by repeated cycles of 
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denaturation, annealing and elongation that leads to exponential increase of the target 

sequence. The end-point amount of PCR product is however not a reliable estimate of the 

input amount of the fragment. This is because the rate of amplification will decrease when the 

reaction runs out of one of the reaction components, and the amount of amplicons in an 

experiment will usually reach a plateau of about the same level (Kubista et al., 2006). By 

using fluorophores that bind non-specifically to dsDNA, the amount of DNA can be 

measured in real-time during the process. This method is called quantitative PCR (qPCR). 

When the number of dsDNA strands in the solution increase, the dye will bind to them and 

emit a fluorescent signal that increase proportionally with the dsDNA molecules. The amount 

of the targeted DNA originally in the sample can be estimated by evaluating the number of 

cycles needed to reach a certain threshold level of fluorescent signal (Kubista et al., 2006). A 

higher amount of template at the starting point will require fewer cycles to reach the 

threshold. By transforming isolated RNA to cDNA, this technology can be used to measure 

the expression level of genes in a sample. 

 

Gene expression can be quantified by qPCR in an absolute or relative manner. Absolute 

quantification is dependent on having a dilution series of a sample with a known number of 

transcripts of the gene of interest (GOI) (Boulter et al., 2016). Relative quantification can be 

done by comparing the gene expression of a GOI to that of a reference gene in the same 

sample (Arya et al., 2005). This is usually a housekeeping gene that shows constant 

expression under different conditions. The gene of the glycolytic enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is one of the genes that have commonly been used. A 

gene is valid as reference in an experiment if amplification efficiencies and abundance of 

GOI are approximately the same as reference, and the reference is equally expressed between 

different treatments (Boulter et al., 2016).  

 

RNA-sequencing 

While PCR-based methods provide a cost- and labor effective way to measure gene 

expression of a limited number of GOIs, the sequencing technology has opened a new world 

of possibilities when it comes to examining cellular processes. RNA-sequencing enables 

studies of the whole transcriptome, and the discovery of any gene showing differential 

expression between samples. The resulting information can also be used in a pathway 

analysis to reveal relevant processes. The development from sanger sequencing to next 
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generation sequencing has also made this a less time-consuming and more affordable 

alternative. 

 

There are multiple species of RNA in human cells, but for gene expression studies, mainly 

the messenger RNA (mRNA) is of interest. mRNA make up less than 5% of the total RNA, 

while ribosomal RNA (rRNA) make up more than 80% (Westermann et al., 2012). If the 

library is prepared from the total collection of RNA, most of the reads will map to a few 

rRNA genes, resulting in a low coverage for the remaining, less abundant genes, such as the 

protein coding ones (Sims et al., 2014). To obtain a higher sensitivity for mRNA, the samples 

can be processed by either polyA+ selection or rRNA depletion in the library preparation 

(Zhao et al., 2018). The polyA+ selection method targets the polyadenylated tail of 

eukaryotic mRNA to isolate these from total RNA, also excluding non-polyA+ RNAs that 

have important functions (Zhao et al., 2014). This method lead to poor results on degraded 

RNA, as it only captures the part of the RNA with the polyA+ tail (Zhao et al., 2014). The 

rRNA depletion method uses hybridization capture to remove the rRNA molecules. This 

strategy results in libraries including more of the transcriptomic diversity, but has lower 

coverage of the exons as more reads map to intronic or intergenic regions (Zhao et al., 2018). 

 

RNA is processed into a cDNA library, which is sequenced by Illumina or a similar high-

throughput system. Sequencing produces reads from random positions on the RNA. Gene 

expression is measured by mapping the reads to a reference genome and counting the number 

of reads mapped to each gene (Finotello & Di Camillo, 2015), or more accurately each 

transcript variant, as eukaryotic cells rely on alternative splicing of genes to produce RNA 

(Black, 2003).  

 

1.5.3 Respirometry 
Oxygen is crucial as the terminal electron acceptor in oxidative phosphorylation and 

measuring the consumption of oxygen can give insight into the metabolic function of the 

cells. An oxygraph can be used to measure O2 concentration in a sample of cells. The 

oxygraph-2K consist of two sample chambers, each equipped with a stirrer and a Clark 

electrode. The electrode consists of a platinum cathode covered by an oxygen-permeable 

membrane and a reference Ag/AgCl anode. The amperometric sensor measures the change in 

current between the cathode and the anode, when voltage is applied. The current is linearly 
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proportional to the number of O2 molecules reduced at the cathode (Mendelson, 2012). The 

computer software reports the measured O2-concentration as well as the change in 

concentration per time unit (O2 flux).  

 

Use of inhibitors and substrates to profile respiration capacity 

Different inhibitors and substrates of the ETC complexes can be added to a cell sample while 

measuring the oxygen consumption rate to gain insight into the mitochondrial function of the 

sample (Brand & Nicholls, 2011). Figure 1.2 shows how bioenergetic profiling can be 

performed. 

 

 

 
Figure 1.2 Bioenergetic profiling using respirometry. The addition of different inhibitors or substrates to a cell dispersion 

while measuring the concentration of oxygen leads to a change in the rate of oxygen consumption by the cells. This is used 

as a measure for the levels of basal, maximal, ATP-linked and succinate-dependent respiration. Figure adapted from Hill et 

al. (2012) 

The basal respiration is the cells consumption of oxygen in an uninfluenced state. To reveal 

how much of the basal respiration that is used to generate ATP, oligomycin is added. 

Oligomycin is an antibiotic that binds to and inhibits ATP synthase, preventing protons from 

reentering the matrix of the mitochondria (Lee & O´Brien, 2010). In this state, the presence 

of ADP no longer stimulates an increase in respiration (Djafarzadeh & Jakob, 2017). In the 
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intact mitochondrion, the activity of the I to IV complexes is dependent on the activity of the 

last complex, the ATP synthase. If the protons are not pumped back into the matrix, the 

concentration will eventually be too high to energetically favor transporting protons into the 

intermembrane space, and the electron transport stops (Mathews et al., 2013). The remaining 

mitochondrial oxygen consumption is related to heat production due to proton leak (Gnaiger, 

2019). 

 

Carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP) is a protonophore that 

increase the proton permeability of the inner membrane of the mitochondrion (Djafarzadeh & 

Jakob, 2017). It is added by titration to uncouple the respiration from the production of ATP. 

The protons are no longer required to go through complex V to reenter matrix, which means 

that the cells will continue to pump out protons and consume oxygen. Addition of FCCP 

therefore reveals the maximum respirational capacity of the cells.  

 

Rotenone is a naturally occurring pesticide produced by several plant species (Betarbet & 

Greenamyre, 2008). It blocks the transfer of electrons between complex I and ubiquinone. 

This inhibits the activity of the ETC and reveals how much of the cells oxygen consumption 

that is not caused by the mitochondrial respiration, but by non-mitochondrial enzymes (Jang 

et al., 2016).  

 

Succinate is a substrate for the enzyme succinate dehydrogenase which is both a part of the 

TCA cycle and the ETC, where it is a component of complex II (Bezawork-Geleta et al., 

2017; Tretter et al., 2016). Succinate cannot be transported across the cell membrane 

(Ehinger et al., 2016), but a membrane-permeable form of succinate can be used in 

respirometry of intact cells. Complex II contain a flavoprotein subunit and similarly to 

ETF:QO  deliver electrons to coenzyme Q. Measuring the respiration through complex II 

therefore also gives an estimate of the capacity for β-oxidation.  

 

The ATP-linked respiration is represented by the difference between the non-phosphorylating 

respiration and the basal respiration. This is an estimate of how much of the respiration is 

dedicated to production of ATP which the cell may use for energy consuming activities. The 

spare respiratory capacity says something about the cells potential to increase the respiration 

if needed and is represented by the difference between the basal respiration and the maximal 

respiration (Jang et al., 2016).   
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1.6 Aim of thesis 
Microbiota is known to have important impact on the host and much of the effects have been 

attributed to the metabolites produced by bacteria. Colonocytes are the hosts closest 

connection to the microbiota and they absorb SCFA and BCFA from the lumen. Colonocytes 

use the SCFA butyrate as the primary energy source, but there is a lack of knowledge 

regarding how the colonocytes respond to SCFA and BCFA.  

 

Therefore, the main aim of this thesis was to measure the effect of physiologic concentrations 

of these fatty acids on a colonocyte model. To achieve this, the following sub-goals were 

included: 

• Establish a colonocyte model.  

• Investigate the effects of SCFA and BCFA on mitochondrial function in colonocytes.  

• Identify cellular pathways influenced by the fatty acids. 

• Determine concentrations of BCFA in the feces of 12-month-old infants from the 

PreventADALL (Prevent Atopic Diseases and Allergy) cohort. 
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2 Materials and methods 
Work flow 

The main part of this thesis consisted of an in vitro study of the effect of fatty acids on a gut 

epithelium cell model. The cells were treated with three SCFA and four BCFA at 

concentrations simulating the physiologic conditions in the gut lumen. The physiologic 

relevance of the concentrations of BCFA used to treat the cells were verified by measuring 

the concentrations in fecal samples from infants in the PreventADALL cohort. Figure 2.1 

provides an overview of the performed experiments. 

 
Figure 2.1 An overview of the experimental procedures involved in the thesis. Caco-2 cells were used to assess the effects of 

SCFA and BCFA on gene expression and the cellular respiration. The treatment concentrations for BCFA were verified by 

measuring the in vivo concentrations in fecal samples from the PreventADALL cohort.  

* The sequencing was performed by Norwegian Sequencing Centre (Oslo). 

** The GC was performed by Vitas (Oslo). 
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2.1 Cell culture 

2.1.1 Maintenance of cell culture 
The medium used were Dulbecco’s modified Eagle’s essential medium (DMEM) (Sigma-

Aldrich, Norway) containing 25 mM (4500g/ml) glucose, added 10 % fetal bovine serum 

(FBS) and 1 % penicillin/streptomycin. The cultures were maintained in an incubator at 37 

qC and 5 % CO2. The medium was changed three times a week and the cultures were 

passaged at sub-confluence, two times a week. 

 

2.1.2 Detachment of cells from plate surface 
Each time the cultures were split or harvested, the cells were released by addition of trypsin. 

The medium was removed carefully, and the cells were rinsed with the same amount of PBS 

before trypsin was added. For handling T25, T75 or T175 cultures, 0,5, 1 and 3 ml of trypsin 

were used respectively. The cells were incubated at 37 qC with trypsin for 5 min and then 

collected in DMEM. 

 

For harvesting cells from plates, 1 ml of trypsin was used. The cells were incubated with 

trypsin for 5 minutes and collected in DMEM. For further DNA and RNA analysis, the cell 

suspension was transferred to Eppendorf tubes, centrifuged and depleted of medium. The cell 

pellets were stored at -80 qC.  

 

2.1.3 Estimation of cell number 
To measure the number of cells in the cell dispersion, Countess Automated Cell Counter 

(Invitrogen, USA) was used. 20 Pl of tryphan blue was mixed with 20 Pl of cell dispersion 

and 14 Pl of the mixture was added to each chamber of a cell counting slide. A mean of the 

cell count readings of the two chambers was calculated and used as an estimate for the cell 

number. 

 

2.2 Cell characterization 
The Caco-2 cells were grown until 70 % confluence. Plates were prepared with DMEM and 

3,0*105 cells were added to each plate. The cultures were incubated at 37 qC and cells from 

two plates were harvested every 24 hours, for a total of 6 days. The cells were counted and 

analyzed by respirometry. 
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2.3 Fatty acid-treatment 
Caco-2 cells were treated with either acetate, propionate, butyrate, 12-methyltetradecanoic 

acid (12-MTD) (anteiso-15:0), 13-methyltetradecanoic acid (13-MTD) (iso-15:0), 14-

methylhexadecanoic acid (14-MHD) (anteiso-17:0) or 15-methylhexadecanoic acid (15-

MHD) (iso-17:0) for 24 hours. Approximately 6,0*105 cells were added to each plate and 

grown in DMEM for four days before analysis and harvesting. The third day, the medium 

was removed and fresh medium containing fatty acids was added. The cells were treated for 

24 hours before harvest and analysis. 

 
The three types of SCFA were each dissolved in dH2O to 10mg/ml and sterile filtered 

through a 0,2 Pm filter. The fatty acid solution was added to DMEM to a concentration of 4 

mM. 25 mg of BCFA were dissolved in 1 ml of DMSO and added to DMEM to a 

concentration of 40 PM. The medium was then sterile filtered, using a 0,2 Pm filter. 

 

2.4 Cell respiration 
The respiration of suspended cell cultures was measured using a high-resolution Oxygraph-

2K (Oroboros Instruments, Austria). The chambers held a temperature of 37 qC with stirring 

of 750 rpm. The data from the Oxygraph-2K was sampled every 2 seconds and recorded with 

the Datlab 7 software (Oroboros Instruments, Austria). Before each experiment was started 

the system was calibrated at air saturation by stirring media in the presence of air in the 

chambers until a stable signal was reached.  

 

Cell samples suspended in medium, were initially left in the chambers to stabilize. Then 

oligomycin (2,5 PM) was added to identify the ADP-independent respiration. To measure the 

maximum ETC respiration, FCCP (1M) was added as a titration 1 Pl at the time until no 

further increase in respiration could be detected. Rotenone (1mM) was added to inhibit the 

ETC and measure the oxygen consumption by other processes in the cells. A final addition of 

5 Pl succinate (cell permeable succinate prodrug) was performed to measure the succinate-

dependent respiration. 
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2.5 Gene expression 

2.5.1 RNA extraction 
RNA was extracted from cell pellets using the MagMax™-96 Total RNA isolation kit 

(ThermoFisher Scientific, USA). To prevent degradation of RNA in the cell pellets, 

lysis/binding solution was added immediately after removal from -80 qC freezer. A 

guanidinium thiocyanate-based lysis buffer is used in the kit, to disrupt the cell membranes 

and inactivates nucleases. The samples were thawed at room temperature for 5 minutes, then 

the cell pellets were dispersed in lysis/binding solution by pipetting up and down. Magnetic 

beads that bind RNA, allowed contaminants to be removed in the presence of a magnet. DNA 

was removed by treating the nucleic acids with DNase. RNA was eluted from the beads in 

low salt elution buffer. 

 

2.5.2 DNase treatment 
An additional DNase treatment was employed to remove any further DNA contamination in 

the RNA sample. This was performed using the TURBO DNA-free™ Kit (ThermoFisher 

Scientific, USA). 5 Pl TURBO DNase buffer, 1 Pl TURBO DNase and 50 Pl RNA sample 

were incubated for 30 minutes at 37 qC. Then 5 Pl DNase Inactivation Reagent was added 

and after 5 minutes of incubation at room temperature, the tube was centrifuged for 2 minutes 

at 10 000 x g. The supernatant containing the RNA was added to a fresh tube and stored at -

80 qC and used for all further RNA analyses. 

 

2.5.3 RNA quantification and qualification 
The yield of RNA from the cell pellets was quantified using Qubit® RNA HS Assay Kit 

(Invitrogen, USA). The kit contains a dye that bind specifically to RNA and emits 

fluorescence that can be measured by the Qubit Fluorometer (Invitrogen, USA). The 

manufacturer’s protocol was followed, using 2 Pl sample and 198 Pl Qubit® working 

solution. 

 

The quality of the RNA samples was assessed by gel electrophoresis on an agarose gel 

containing 2 % agarose (Invitrogen, USA) and 1x tris-acetate EDTA (TAE) buffer with 

4Pl/100ml PeqGreen (Peqlab, Germany). 1 Pl Gel Loading Dye (New England BioLabs, 

USA) was added to 5 Pl of RNA, and 5 Pl of the mix was applied to the gel. In the first well 
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4 Pl of 1kb ladder (Solis Biodyne, Estonia) was applied and the gel electrophoresis was run at 

80 V and 400 mA for 40 minutes. Only samples with low degree of degradation were used 

for further analyses. 

 

2.5.4 cDNA synthesis 
cDNA was synthesized from the DNase treated RNA sample using the FIREScript RT cDNA 

Synthesis Mix (Solis BioDyne, Estonia). The reaction mix contained 1x RT Reaction Premix 

with Random Primers, 1,5 Pl FIREScript Enzyme mix, 15,5 Pl nuclease free water and 1 Pl 

template RNA, to the total volume of 20 Pl. The synthesis was performed on the 2720 

Thermal Cycler (Applied Biosystems, USA) with primer annealing at 25 qC for 5 minutes, 

reverse transcription at 50 qC for 30 minutes and enzyme inactivation at 85 qC for 5 minutes. 

 

2.5.5 qPCR 
The gene expression of selected genes was measured using qPCR. Information about the 

primers used to target each gene is listed in table 2.1. The GOIs are either encoding proteins 

involved in the functions of mitochondria or the repair of DNA. 

 
Table 2.1 Primer pairs used to measure gene expression with qPCR.  

Target gene Forward sequence (5´- 3´) Reverse sequence (5´- 3´) 

GAPDH 

(reference 

gene) 

CCACATCGCTCAGACACCAT GCGCCCAATACGACCAAAT 

NDUFA9 ATTCCCCTTGCCGCTTTTTG ATGTGCATCCGCTCCACTTT 

SDHB GCAGCAGTATCTGCAGTCCA CGTAGAGCCCGTCCAGTTTC 

MT-ND2 GCCCTAGAAATAAACATGCTA GGGCTATTCCTAGTTTTATT 

MT-ND6 CAACCAGTAACTACTACTAA ACTTTAATAGTGTAGGAAGC 

CYCS CATGGCCCCTCCCATCTACA ATCTTGAGCCCCATGCGTTT 

NEIL1 GCTGACCCTGAGCCAGAAGAT CCCCAACTGGACCACTTCCT 

NEIL2 ACCTGTGACATCCTGTCTGAGA

AGT 

TAATGATGTTCCCTAGCCCTGAG

A 

OGG1 CGAGCCATCCTGGAAGAACAG ACATATGGACATCCACGGGCAC 
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To evaluate the amplification efficiencies of each primer pair, a two-fold serial dilution of 

cDNA was prepared, starting at 1:5 dilution. The other cDNA samples were diluted 1:5. 

 

cDNA was added to a master mix containing HOT FIREPol® EvaGreen® qPCR supermix 

(Solis Biodyne, Estonia), forward and reverse primer. The reaction mix was run on CFX96 

Touch™ Real-Time PCR Detection System (Bio-Rad, USA), starting with 95 qC for 15 min, 

followed by 40 cycles of 94 qC for 10 sec and 60 qC for 60 sec. At the end of the program, a 

melting curve was added, starting at 95 qC for 15 sec and then moving from 60 qC to 94 qC 

by an increase of 0,5 qC/cycle. 

 

2.6 RNA-sequencing  
From the non-degraded RNA samples with corresponding respiration data 21 samples were 

chosen for RNA sequencing. Duplicate libraries were prepared from two of the samples and a 

negative control was included. 127 ng of each library was pooled together and sequenced by 

Norwegian Sequencing Centre (Oslo) using the Illumina NovaSeq 6000 instrument. 

 

2.6.1 Library preparation 

To remove rRNA from the samples, the NEBNext£ rRNA Depletion Kit NEB #E6350L 

(New England Biolabs, USA) was used. The effect of the rRNA depletion was evaluated by 

running qPCR with 18S primers and GAPDH primers before and after depletion. The 18S 

qPCR was performed by adding cDNA to a master mix containing HOT FIREPol® 

EvaGreen® qPCR supermix (Solis Biodyne, Estonia), forward and reverse primer. The 

reaction mix was run on CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, 

USA), starting with 95 qC for 15 min, followed by 40 cycles of 95 qC for 30 sec, 59 qC for 30 

sec and 72 qC for 45 sec. The GAPDH qPCR was performed as described above (chapter 

2.5.5). 

 

Library preparation was performed with NEBNext£ Ultra¥ II RNA Library Prep Kit for 

Illumina� NEB #E7775S (New England Biolabs, USA). The kit instruction manual was 

followed, with some minor exceptions. The 2720 Thermal Cycler (Applied Biosystems, 

USA) were used for the majority of incubations, but the instrument only permitted a lid 

temperature of 103 qC. For incubations at temperatures ≤ 37 qC a heating block was used. 
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The amount of input RNA was approximately 400 ng and 9 cycles were used in the PCR 

enrichment step. 

 

2.6.2 Library normalization and validation 
The individual RNA-seq libraries were quantified using qubit. Then equimolar concentrations 

of the libraries were pooled together to obtain approximately the same sequencing depth for 

all samples. The pooled library was also quantified using qubit, but a more accurate 

quantification was performed by Norwegian Sequencing Centre to ensure optimal density of 

clusters on the flow cell. An assessment of the distribution of fragment lengths was done by 

gel electrophoresis to ensure a majority of fragments with sizes that give efficient 

amplification on the flow cell (Bronner et al., 2014). The gel was prepared as described in 

chapter 2.5.3 and the samples were run at 90 V and 400 mA for 45 minutes.   

 

2.7 In vivo concentrations of branched chain fatty acids 
The luminal SCFA concentrations have been determined by others, by autopsy and by 

measuring in fecal samples (Cummings et al., 1987; Norin et al., 2004; Topping & Clifton, 

2001). On the other hand, there is not much information about BCFA concentrations 

(Taormina et al., 2020). Based on the estimated intake of BCFA, the luminal concentrations 

were assumed to be in the PM order of magnitude (Dingess et al., 2017; Ran-Ressler et al., 

2013). To verify this assumption, the BCFA concentrations were measured in fecal samples, 

provided by the preventADALL study. The study is registered at clinicaltrial.gov with the 

identifier NCT02449850 and is approved by the Regional Ethical Committees for Medical 

and Health Research Ethics (REK) in South-Eastern Norway (2014/518) and the Regional 

Ethical Trial Committee of Stockholm (2015/4:3). 

 

Samples from infants aged 12 months were retrieved from the PreventADALL biobank. The 

fecal samples were thawed on ice and approximately 50 mg of each sample were weighed 

accurately into gas chromatography (GC) vials. Further sample preparation and GC analysis 

was performed by Vitas AS (Oslo). 
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2.8 Data analysis 

2.8.1 Relative quantification of qPCR gene expression 
The real-time qPCR data was analyzed using the software Bio-Rad CFX Maestro 1.1, version 

4.1.2433.1219 (Bio-Rad, USA) and the gene expression of the GOIs in the groups of fatty 

acid-treated samples relative to the control group was calculated using the 2-''Ct method 

(Livak & Schmittgen, 2001). This will hereafter be referred to as the 2-''Cq method.  

 

Equation 1 was employed to normalize the Cq values of GOIs to the value of the reference 

gene within the same sample. This was done to correct for the variation in Cq values that was 

not related to the expression level, but rather the difference in cDNA concentration. 

 

'𝐶𝑞 = 𝐶𝑞,𝑔𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝐶𝑞,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒 (1) 

 

The 'Cq values were averaged within each treatment group and normalized to the average of 

the untreated control samples using equation 2.  

 

''𝐶𝑞 = '𝐶𝑞,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − '𝐶𝑞,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (2) 

 

The resulting ''Cq value reflected the difference in PCR cycles between the given treatment 

and control for each GOI. As the Cq is inversely proportional to the log transcript number, the 

relative change in gene expression was obtained by transforming to 2-''Cq.  

 

2.8.2 Gene expression using RNA-sequencing 
The RNA-seq data was analyzed using the CLC Genomics Workbench 20.0.4. (QIAGEN, 

Denmark) software. The reads were trimmed based on quality and adapters were removed by 

automatic read-through trimming. Default parameters of match score = 1, mismatch cost = 2, 

gap cost = 3 and maximum number of hits for read =10 were used to map the reads to the 

human reference genome (GRCh38). The mapping tool handled multimapping reads with the 

Expectation Maximation (EM) estimation algorithm and calculated the gene expression levels 

as Transcripts per Million (TPM) as shown in equation 3 (Wagner et al., 2012). 
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𝑇𝑃𝑀 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑟𝑒𝑎𝑑𝑠 ∗ 𝑚𝑒𝑎𝑛 𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) ∗ 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑙𝑒𝑛𝑔𝑡ℎ (3) 

 

TPM is an alternative to the previously popular Reads Per Kilobase of transcript per Million 

(RPKM). TPM considers the length of the transcript, correcting for the differences in number 

of reads between long and short transcripts, that does not depend on expression level. It also 

corrects for variations in library size or sequencing depth by including the total number of 

unique transcripts detected in the sample. Even though the TPMs are calculated for each 

sample individually, this method is more appropriate for comparing expression levels 

between samples than RPKM. This is because the sum of TPMs is the same in each sample 

while the sum of RPKMs varies between samples. 

 

The variation in expression patterns of the samples were visualized using the PCA for RNA-

Seq tool. The CLC Genomics Workbench tool Differential Expression for RNA-Seq was 

used to reveal genes with significant difference in expression between treated and untreated 

samples.  

These tools employed a different normalization approach. The read counts are assumed to 

follow the negative binomial distribution and Trimmed Mean of M values (TMM) 

normalization was used (QIAGEN, 2020). This normalization method assumes that most 

genes are not differentially expressed (DE) to calculate effective library sizes that allow 

comparison of samples with different sequencing depths (Robinson & Oshlack, 2010). 

Counts per million mapped reads (CPM) values of expression levels were calculated as 

shown in equation 4.  

 

𝐶𝑃𝑀 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑟𝑒𝑎𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) (4) 

 

The CPM formula does not normalize for transcript length, but this is irrelevant as it is used 

to compare the same transcript between samples. Gaussian cross-sample normalization was 

finally performed to give a distribution where the mean is zero and the standard deviation is 

one. 
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2.8.3 Pathway analysis 
Gene symbols corresponding to the RefSeq IDs of the significant DE transcript variants were 

retrieved with the g:Profiler g:Convert tool (Raudvere et al., 2019). The lists of DE genes for 

each treatment were then submitted to the Reactome Analysis Data webtool. Reactome 

performs an over-representation analysis, to determine if the gene list contains more 

components of a particular pathway in the database than is expected by chance (Fabregat et 

al., 2017).  

 

2.8.4 Statistical analysis 

T-test 

The statistical significance of gene expression measured by qPCR was determined with a 

two-sample T-test in Microsoft Excel. The test was performed with 'Cq values for the 

samples with each treatment against the controls. These values are normally distributed, and 

the test was used to determine if the mean within each treatment were equal to the mean of 

the controls. A 5% significance level was used. 

 

Principal component analysis (PCA) 

Normalized log CPM values for all samples were z-score normalized to distribute the 

expression levels for each gene around zero and used in a principle component analysis 

(PCA). This method is based on the positioning of samples in a multidimensional space 

spanned by all the detected genes. The PCA reduces the dimensionality of the data into 

principal components that explain most of the variation between the samples (Wold, 1987). 

These principal components were used to assess if the variation in gene expression between 

samples could be explained by some of the fatty acid treatments.  

 

Differential gene expression 

The Differential Expression for RNA-Seq tool fit a Generalized Linear Model (GLM) to the 

normalized log CPM data. The statistical significance was assessed by a Wald test that 

determines if the treatment coefficient in the model are non-zero (QIAGEN, 2020).  
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Multiple hypothesis testing 

The probability scores of the differential expression and pathway analyses were false 

discovery rate (FDR) corrected for multiple hypothesis testing by the Benjamini-Hochberg 

procedure. The p-value of a single hypothesis test is the probability that the null hypothesis is 

falsely rejected, a so-called type I error (Banerjee et al., 2009). When multiple hypotheses are 

tested at once, there is an increasing probability that this error occurs. The Benjamini-

Hochberg procedure therefore calculates FDR-adjusted p-values, which are more strict 

(Benjamini & Hochberg, 1995). The significance level of the adjusted p-values was set to 

5%.  

 

Correlation analysis 

The quality of the RNA-seq analysis was assessed using a Pearson correlation analysis. This 

was performed by a pairwise plotting of TPM values between the untreated biological 

replicates. The same method was used to compare the GOI expression levels from qPCR and 

RNA-seq. The samples TPM values were plotted against 'Cq for each gene. 
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3 Results 
 
3.1 Establishment of in vitro system 
To characterize the growth and respiration of the cell model, 3,0*105 cells were added to 12 

plates and grown for up to 6 days. Every 24 hours, the cells were harvested from two plates to 

count the number of cells. Figure 3.1 shows the estimates of the total cell numbers on each 

plate, as well as a graph showing the average of each time point. 

 

  
Figure 3.1 Number of Caco-2 cells on plates after different growth durations. Each plate had a diameter of 10 cm and 

contained 3,0*105 cells at 0 hours. The blue dots represent the cell number estimates and the number of hours of incubation 

for each plate, with two parallels grown for the same time. The grey line shows the average estimates at each time point. 

The cells showed a slow growth rate the first 96 hours, when the cell density on the plate was 

low. Then the cell numbers increased rapidly from approximately 1,5 million to above 4 

million between 96 and 120 hours. After 120 hours the growth rate decreased, and the cell 

number reached a maximum of about 4,5 million cells.  

 

Bioenergetic profiling was performed on the cell cultures every 24 hours, starting 48 hours 

after plating. Only one parallel was measured at 72 hours. Figure 3.2 shows four different 

respiratory states of the samples at the five time points of measurement.  
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Figure 3.2 Respirometry measurements for the cell cultures at different durations of growth. The panels show the levels of 

oxygen flux related to ATP-linked respiration (A), spare respiratory capacity (B), non-mitochondrial respiration (C) and 

succinate-dependent respiration (D). The blue dots show the oxygen flux for each sample, while the grey line represent the 

average number of cells in the samples, at the given time. 

At the first three time points (48-96 hours), the succinate-dependent respiration, ATP-linked 

respiration and spare respiratory capacity was higher than at the last two time points (120 and 

144 hours). There was also more variation between the parallels, as well as between each 

time point at lower cell density. 

 

The characterization was done to find the best time/cell number to analyze cell cultures. 

Based on these results, it was decided to analyze the cell cultures shortly after reaching a cell 

number of approximately 4 million. 

 

3.2 Gene expression using RNA-seq 
From the extracted RNA samples with corresponding respiration measurements, a subset was 

prepared for RNA-seq. The samples were selected depending on RNA quality, assessed by 
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gel electrophoresis and the gel pictures are presented in appendix A. The prepared libraries 

were pooled and sequenced on the Illumina NovaSeq 6000 system by Norwegian Sequencing 

Centre (Oslo). Using the CLC Genomics Workbench software, the reads were mapped to the 

human reference genome (GRCh38) and gene expression was calculated as log CPM values. 

Figure 3.3 shows a plot of the PCA based on the gene expression levels of all sequenced 

samples.  

 

 
Figure 3.3 PCA plot based on gene expression of treated samples and controls. From PCA for RNA-Seq tool in CLC 

Genomics Workbench. The propionate-treated samples are marked with a green circle and the butyrate-treated samples are 

marked with a blue circle. The percentage of the variation explained by each principal component is stated in the axis titles. 

The plot shows that the butyrate-treated samples are separated from the rest. The propionate-

treated samples are also grouped together. They are closest to the majority of the samples but 

move towards the butyrate-treated along the first principal component. Principal component 1 

explains 9,2 % of the variation and is the component that separates the propionate-treated and 

butyrate-treated samples from the rest. 

 

Differentially expressed transcript variants 
The genes were tested for differential expression between the treatments and controls. The 

BCFA-treated cells revealed 1 DE transcript variants for 12-MTD, 2 for 13-MTD and 1 for 

14-MHD. Figure 3.4 shows a Venn diagram of the DE transcript variants for the SCFA-

treatments. The complete list of DE transcript variants for all treatments can be found in 

appendix D. For the butyrate-treated cells, 202 variants were up-regulated and 141 down-

regulated. For the propionate-treated cells 12 variants were up-regulated and 7 down-

regulated. For acetate-treated cells 2 transcripts were up-regulated and 2 were down-

regulated. 
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Figure 3.4 Venn diagram of DE transcript variants between SCFA-treated cells and controls. Each circle represents the 

number of DE variants with the given treatment, compared to control samples. The total number is indicated in parenthesis, 

while the exclusive and shared numbers are inside the circles. The figure is generated by the Create Venn Diagram tool in 

CLC Genomics Workbench. 

The Venn diagram shows a decreasing number of DE transcript variants for cells treated with 

butyrate, propionate and acetate respectively. The number of DE transcript variants with 

butyrate-treatment exceeds by far the other treatments and the majority of DE variants for 

propionate-treated cells are shared with the butyrate-treated cells.  

 

Pathways associated with the differentially expressed genes 
The RefSeq IDs of the DE transcript variants were translated to gene names with the 

g:Convert tool. Not all IDs could be assigned, and some were variants of the same gene. This 

resulted in 308 genes for the butyrate-treated cells and 18 genes for propionate-treated 

samples. The lists of differentially expressed genes were tested for pathway 

overrepresentation using the Reactome Analysis Data webtool. 99 identifiers for butyrate-

treatment and 1 for propionate-treatment could not be found in any of the pathways in the 

database. 59 significant pathways were identified for butyrate-treatment, but none for 

propionate-treatment. The chosen significance level was FDR-adjusted p-value < 0,05. Table 

3.1 shows the pathways for butyrate-treated cells. The top 20 pathways for propionate-

treatment is presented in appendix E. 

 

1
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Table 3.1 Pathways with significant (FDR-adjusted p-value < 0,05) overrepresentation of differentially expressed genes in 

butyrate-treated cells. The pathways were identified using the Reactome Analysis Data webtool. 

PATHWAY NAME ENTITIES 
FDR 

Prefoldin mediated transfer of substrate to CCT/TriC 1,84E-04 
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 5,90E-04 
Cellular responses to external stimuli 5,90E-04 
Formation of tubulin folding intermediates by CCT/TriC 5,90E-04 
Cellular responses to stress 5,90E-04 
RHO GTPases activate IQGAPs 1,49E-03 
Selective autophagy 1,49E-03 
Recycling pathway of L1 3,89E-03 
Apoptosis induced DNA fragmentation 4,37E-03 
Microtubule-dependent trafficking of connexons from Golgi to the plasma 
membrane 

4,37E-03 

Nuclear Envelope (NE) Reassembly 4,37E-03 
Transport of connexons to the plasma membrane 4,66E-03 
Aggrephagy 4,68E-03 
Attenuation phase 4,68E-03 
Post-chaperonin tubulin folding pathway 5,88E-03 
Gap junction trafficking 7,60E-03 
Mitotic G1 phase and G1/S transition 7,60E-03 
Formation of Senescence-Associated Heterochromatin Foci (SAHF) 7,60E-03 
Chaperonin-mediated protein folding 7,60E-03 
Signal regulatory protein family interactions 8,98E-03 
RUNX3 regulates WNT signaling 9,85E-03 
Gap junction trafficking and regulation 9,85E-03 
Hedgehog 'off' state 9,85E-03 
Protein folding 9,85E-03 
HSF1-dependent transactivation 1,23E-02 
RHO GTPases Activate Formins 1,35E-02 
G1/S Transition 1,37E-02 
Regulation of HSF1-mediated heat shock response 1,46E-02 
Post NMDA receptor activation events 1,47E-02 
Activation of AMPK downstream of NMDARs 1,47E-02 
Interleukin-4 and Interleukin-13 signaling 1,47E-02 
HSP90 chaperone cycle for steroid hormone receptors (SHR) 1,55E-02 
Insulin-like Growth Factor-2 mRNA Binding Proteins 
(IGF2BPs/IMPs/VICKZs) bind RNA 

1,69E-02 

The role of GTSE1 in G2/M progression after G2 checkpoint 1,86E-02 
Cell Cycle, Mitotic 1,86E-02 
TFAP2 (AP-2) family regulates transcription of cell cycle factors 1,86E-02 
Transcriptional activation of p53 responsive genes   1,86E-02 
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Transcriptional activation of cell cycle inhibitor p21  1,86E-02 
Mitotic Anaphase 1,93E-02 
Mitotic Metaphase and Anaphase 1,95E-02 
Sealing of the nuclear envelope (NE) by ESCRT-III 2,19E-02 
Signaling by Hedgehog 2,50E-02 
FOXO-mediated transcription of cell cycle genes 2,53E-02 
Intraflagellar transport 2,60E-02 
Gap junction assembly 2,60E-02 
Macroautophagy 2,60E-02 
FOXO-mediated transcription 2,61E-02 
Cell Cycle 2,99E-02 
HSF1 activation 3,04E-02 
Estrogen-dependent nuclear events downstream of ESR-membrane signaling 3,05E-02 
Activation of NMDA receptors and postsynaptic events 3,09E-02 
RUNX3 regulates CDKN1A transcription 3,11E-02 
Cellular response to heat stress 3,11E-02 
Translocation of SLC2A4 (GLUT4) to the plasma membrane 3,59E-02 
COPI-independent Golgi-to-ER retrograde traffic 4,11E-02 
EML4 and NUDC in mitotic spindle formation 4,29E-02 
TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 4,66E-02 
Autophagy 4,66E-02 
Assembly and cell surface presentation of NMDA receptors 4,75E-02 

 

The butyrate-treated cells had differentially expressed genes related to pathways for a range 

of different cellular functions, such as regulation of cell cycle, signaling and stress response. 

Although none of the identified pathways in cells with propionate-treatment were significant, 

some of the top pathways could be found among the significant pathways in butyrate-treated 

cells.  

 

3.3 Gene expression by qPCR 
A set of primers for eight GOIs and a reference gene (GAPDH) was selected to assess the 

function of the mitochondria with the different treatments. Due to technical difficulties with 

respirometry measurements, the experiment had to be repeated for SCFA treatments. This 

resulted in more replicates that could be analyzed by qPCR. The number of replicates were 

less than three for the BCFA treatments because the RNA quality was too poor in some of the 

samples to be analyzed with qPCR or RNA-seq. Gene expression measured with qPCR, 

estimated using the 2-''Cq method is presented in figure 3.5. A 2-''Cq value of 1 is equivalent 
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to the mean expression level of control samples. The statistical significance between treated 

and un-treated samples for each gene was assessed using two-sample t-test on the 'Cq values.  

 

Because this method depends on equal amplification between each GOI and the reference 

gene, the amplification efficiencies were determined using a 2-fold dilution series of cDNA. 

The efficiencies of each primer pair in the two experiment rounds are presented in appendix 

B, together with R2 values of the plotted Cq of the dilutions.  
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Propionate-treatment lead to a significant up-regulation of NEIL2. Cells treated with butyrate 

showed a significant down-regulation of NDUFA9, CYCS and NEIL1. For the BCFA, only 

13-MTD lead to a significant change: NEIL2 and SDHB were both up-regulated. However, 

this was based on two replicates with large variation. Although the regulation was not 

significant for 14-MHD or 15-MHD, both of these BCFA had very similar replicates that 

indicated some up-regulation for all genes.  

 

The qPCR results were compared with RNA-seq results by mapping reads to the full 

sequences of the GOIs. Correlations between qPCR and RNA-seq were assessed by the R2-

value of a plot between log TPM and log 2-''Cq values. The correlation between GAPDH-

normalized qPCR results and RNA-seq results gave a R2 of 0,88. Scatter plots of all TPM-

values between control-samples gave R2-values between 0,46 and 0,60. All R2-values are 

shown in appendix C.  

 

3.4 Respiration 
Bioenergetic profiling by respirometry was done on the cell cultures after a 24-hour treatment 

period. The measurements were normalized by the number of cells in each sample. The 

estimated levels of ATP-linked respiration, spare respiratory capacity, non-mitochondrial 

respiration and succinate-dependent respiration are presented in figure 3.6 for three replicates 

of each treatment. One group of control samples was only added dH2O and analyzed together 

with the SCFA-treated samples, while the other group was added DMSO and analyzed with 

the BCFA-treated samples. The results were assessed with a two-sample t-test, but none of 

the treatments were significantly different from the controls. 
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Figure 3.6 Respiration of untreated cells and cells treated with SCFA or BCFA, measured with Oxygraph-2K. The panels 

show the levels of oxygen flux related to ATP-linked respiration (A), spare respiratory capacity (B), non-mitochondrial 

respiration (C) and succinate-dependent respiration (D). The colors of the dots indicate which samples were analyzed on the 

same day.  
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Butyrate-treatment led to slightly higher average oxygen consumption linked to ATP-

production and higher succinate-dependent respiration. All of the BCFA, in particular 15-

MHD showed increased spare respiratory capacity compared to the corresponding group of 

control samples. 

 

3.5 Verification of BCFA concentrations 
BCFA concentrations were measured by GC in 174 of the fecal samples from infants at 12 

months of age. Two samples were lost during the preparation and could not be measured. The 

limit of quantification (LOQ) was 0,005 mg fatty acid/g feces. Table 3.2 shows the median 

concentration, as well as the 2,5 % and 97,5 % quantiles of the four BCFA of interest in this 

study. The molar concentration was calculated based on a fecal density of 1,06 g/ml (Penn et 

al., 2018). The median and quantiles of all the detected fatty acids in the samples can be 

found in appendix F. 

 
Table 3.2 Median and quantiles for in vivo concentrations (PM) of the fatty acids of interest in 174 samples from infants in 

the PreventADALL cohort. The concentrations were determined by GC, performed by Vitas (Oslo). 

FATTY ACID MEDIAN 2,5 % QUANTILE 97,5 % QUANTILE 

12-MTD 540,5 67,8 2093,3 

13-MTD 176,2 39,4 619,2 

14-MHD 65,0 23,5 354,6 

15-MHD 96,0 36,1 375,0 

 

The four BCFA that were used as a treatment in this study, were present in the fecal samples 

at median concentrations from 65,0 to 540,5 P0. 12-MTD was most abundant in the samples 

of the four, and 14-MHD the least abundant. 
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4 Discussion 
 
4.1 Differentially expressed genes and associated pathways with 

fatty acid treatments 

4.1.1 Effect on gene expression by butyrate and propionate 
The large number of DE genes by butyrate-treatment (figure 3.4) supports that this fatty acid 

is not only important as a source of energy, but also have the power to impact other processes 

in the cell. Acetate is the second most activated SCFA by the colonocytes (Roediger, 1982), 

but the number of DE genes is higher with propionate-treatment. An overlap between DE 

genes induced by butyrate and propionate points toward these fatty acids inducing some of 

the same mechanisms in the cells. This may be due to the ability of SCFAs to inhibit HDACs 

(Boffa et al., 1978). Butyrate is the most potent inhibitor, while propionate has shown more 

moderate effects (Hinnebusch et al., 2002). This would also explain why butyrate shows 

greater effect on gene expression than other fatty acids. At the pathway level, there is also an 

overlap between butyrate- and propionate-treated cells. The number of DE genes with 

propionate-treatment was too low to get significant results in pathway analysis (appendix E, 

table E.1) but the most significant pathways by butyrate-treatment include some of the DE 

genes shared with propionate (table 3.1) Together, these results suggest that propionate may 

be of importance in infants, before they are colonized by butyrate producing bacteria.  

 

4.1.2 Impact on the cell cycle regulation by butyrate-treatment 
The pathways significantly influenced by butyrate-treatment are associated with different cell 

functions. Some of them are regulation of cell cycle and signal transduction. The influence by 

butyrate on cell cycle regulation has also been observed by others (Archer et al., 1998; Litvak 

et al., 1998). The pathway analysis shows that butyrate inhibits the transition between G1 and 

S phases of the mitosis. This is characterized by the observed up-regulation of CDKN1A and 

CCN1, and down-regulation of MYC and CCND genes. AMPK activation and suppression of 

Wnt signaling are both potential contributors to this effect, but it might also be a result of 

cross-talk between the mechanisms, as AMPK has been shown to suppress Wnt signaling  

(Park et al., 2019). Butyrate has been shown to activate AMPK  in Caco-2 cells (Peng et al., 

2009), which promotes cell cycle arrest by inducing p53  transcription factor which target 

CDKN1A  (p21) (Kim et al., 2016). AMPK is an energy sensor that is activated when the 
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levels of ATP in the cell is low to suppress anabolism and increase catabolism (Carling, 

2004). However, the activation can also be induced to promote apoptosis without energy 

depletion (Patel et al., 2015). This makes AMPK important in the regulation of autophagy 

(Kim et al., 2016).  

 

The suppression of Wnt signaling inhibits transcription of CCND1 and MYC, which in turn 

lead to up-regulation of p21(CDKN1A) (Pinto et al., 2003). MYC is an oncogene and 

overactive Wnt signaling have been shown to up-regulate this gene in colorectal cancer 

(Rennoll & Yochum, 2015). Activity of Wnt is required for cell differentiation and induce 

mitochondrial biogenesis (Fu et al., 2019; Noah et al., 2011). Both aspects are important in 

the development of new colonocytes from stem cells but would hinder the renewal of the 

epithelium if active in mature colonocytes. Suppression of Wnt signaling by butyrate may 

therefore be an important function to maintain the epithelial homeostasis. 

 

The pathway analysis provides only a limited insight into the cellular processes, and exactly 

how the pathways are influenced by butyrate is still not clear. However, the gene expression 

patterns point towards butyrate inducing cell cycle arrest in the Caco-2 cells, which could be 

part of its anti-cancer effect. If the fatty acid lead to a similar expression patterns in healthy 

colonocytes, this supports the hypothesis that butyrate is involved in the epithelial 

homeostasis.  

 

4.1.3 Activation of cellular responses to stress 
Another function associated with the DE genes is cellular stress response. Some of the genes 

involved in this are tubulin genes, which are up-regulated with both butyrate-and propionate-

treatment. Tubulin expression is subject to autoregulation where unassembled subunits lead 

to less stable mRNA and therefore less translation of tubulin polypeptides (Gay et al., 1989). 

The tubulin mRNA is therefore not degraded when the tubulin heterodimers are stabilized 

through acetylation. The ability of butyrate to inhibit HDAC has mostly been associated with 

gene activation through histone acetylation. However, HDAC can also deacetylate non-

histone proteins, such as P53 and JUN transcription factors, as well as tubulin (Zhang et al., 

2003). Donohoe et al. (2012) show that tubulin can be acetylated by butyrate. The increased 

levels of tubulin-mRNA with butyrate-treatment is probably due to decreased degradation of 

mRNA, and not higher levels of transcription.  



 38 

 

Together with other DE genes, the tubulin genes are involved in pathways associated with 

protein folding, aggrephagy, signal transduction and gap junction trafficking. Tubulin 

proteins are the constituents of microtubules, which have several functions in the cell. 

Microtubules make up the cytoskeleton in the cell, the mitotic spindles in mitosis and they 

also mediate the transport of proteins and organelles that is required in stress response (Parker 

et al., 2014). Microtubule associated proteins (MAPs) that increase the stability of 

microtubules (Cooper, 2000) are also up-regulated with butyrate-treatment in this study. As 

the cells show signs of cell cycle arrest, the increased tubulins levels are most likely a sign of 

activation of the cells stress response system. Heat shock proteins (HSP) is a group of 

proteins involved in the response to different types of stress, such as oxidative stress 

(Kurashova et al., 2019). Genes encoding HSP70 were up-regulated by butyrate. This protein 

has previously been found to inhibit the pro-inflammatory cytokine IL-8 in Caco-2 cells 

(Malago et al., 2005). This could therefore be part of the mechanism behind the anti-

inflammatory properties of butyrate that are important for the colonic health. 

 

4.2 The influence on mitochondrial activity by fatty acids 

4.2.1 A shift in respiration with butyrate-treatment 
All three SCFAs can be utilized as sources of energy by colonocytes (Clausen & Mortensen, 

1995). The increase in ATP-linked respiration by butyrate-treated cells (figure 3.6) seems 

contradictory to the down-regulation of ETC genes (figure 3.5) in the same cells. However, 

the increase in succinate-dependent respiration points towards a shift in the mitochondrial 

activity towards β-oxidation. This would also explain lower expression of components in 

complex I, as this part of the ETC would be less active. The oxidation of fatty acids leads to a 

higher oxygen consumption per molecule of ATP produced, which entails a higher ROS 

production (Litvak et al., 2018). These compounds cause oxidative damage of the DNA, but 

also functions as signal molecules involved in regulation of metabolism and cell proliferation 

(Zhang et al., 2016). A sign of the increased ROS production in these samples is the up-

regulation of NEIL2, which is involved in transcription-coupled BER (Banerjee et al., 2011). 

Of the three investigated genes involved in DNA repair, this was the only one with increased 

expression. NEIL1 is also a BER enzyme, but functions primarily in prereplicative repair 

during S-phase (Hegde et al., 2013). As butyrate inhibit the cells G1/S transition this might 

explain why the NEIL1 gene was not up-regulated. The expression of DNA repair genes is 
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only an indication of the levels of DNA-damage and does not reveal how efficiently the 

damage is repaired. Further efforts should therefore be made to estimate the levels of DNA-

damage. 

 

Why butyrate-treatment lead to significant down-regulation of CYCS is not clear. When 

situated in the mitochondrial inner membrane, cytochrome c has the ability to eliminate O2- 

and H2O2 (Zhao et al., 2003)). Increased expression of cytochrome c precedes its release into 

the cytosol, which is associated with apoptosis (Liu et al., 1996; Sanchez-Alcazar et al., 

2001). As butyrate is known to induce apoptosis, an up-regulation of CYCS would therefore 

rather be expected (Fung et al., 2012).  

 

4.2.2 The effect on respiration by propionate-treatment 
Propionate show some of the same effects on respiration as butyrate, but to a lesser extent. 

The slight increase in succinate-dependent respiration may indicate that this treatment also 

induces β-oxidation. These results suggest some increase in β-oxidation induced by 

propionate, but the unchanged expression of complex I genes indicate that the ATP-

production in the cells still rely on the activity of the TCA cycle. As propionate is a precursor 

for glucose in gluconeogenesis, it would be interesting to see if the observed effects persist 

with lower concentrations of glucose in the medium, or if this would lead to more β-

oxidation.  

 

The increase in spare respiratory capacity by propionate-treatment was not observed in 

butyrate-treated cells. This property signifies increased abilities to overcome stress, such as 

oxidative stress (Hill et al., 2009). A mechanism to maintain the energy production during 

oxidative stress is mitochondrial biogenesis (Wenz, 2013). However, this would also be 

accompanied by up-regulation of ETC enzymes and no significant changes were observed in 

the gene expression of ETC complexes with this treatment. Another mechanism that can 

increase the spare respiratory capacity is the activation of antioxidant systems that eliminate 

ROS (Yamamoto et al., 2016). Similar to butyrate-treated samples, gene expression 

measurements show significant increase in NEIL2 expression. 
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4.2.3 Indications of increased mitochondrial activity by BCFA-treatment  
For the BCFA-treatments, less than three replicates could be included in the gene expression 

analysis for each treatment. The samples treated with 12-MTD and 13-MTD showed large 

variation in expression of GOI between the replicates. To determine if the observed changes 

in gene expression are significant, the experiments should be repeated with larger number of 

replicates. Within the 14-MHD and 15-MHD groups, the variation was lower. This 

strengthens the indication of up-regulation by the treatments, even though the observed effect 

was small. A higher treatment concentration could be used to determine if these fatty acids 

have a significant influence on the cells. The increased spare respiratory capacity together 

with the overall up-regulation of ETC-genes for the two 17-carbon fatty acids suggest that 

these may induce mitochondrial biogenesis. This could also explain the increase in ATP-

linked respiration by 15-MHD-treatment but should be investigated further by estimating the 

number of mitochondria.  

 

4.3 The use of Caco-2 cells as a colonocyte model  

4.3.1 Respirometry measurements at different cell densities 
In this study, Caco-2 cells were used as a model for the colonocytes in the gut epithelium. 

Previous research has shown that at confluence, these cells share characteristics with 

colonocytes (Engle et al., 1998). The continuous monolayer, formed by the cells at sufficient 

cell density, resembles the physiologic condition in the gut epithelium and treatments were 

absorbed from the apical side of the cell, which is the one facing the lumen. However, when 

the respiration was measured, the cells were had to be dispersed in the medium, rendering all 

cell surfaces exposed to the substrates. This may have led to higher oxygen consumption and 

an altered production of metabolites by the cells (Roediger, 1982).  

 

At low cell density, the cells showed high levels of oxygen consumption and the respiration 

rate changed rapidly (figure 3.2). This could introduce a high level of background noise if the 

cells were analyzed in this phase. Reaching a sufficient cell density, the cells entered a phase 

where growth rate increased drastically (figure 3.1). Analyzing cells in this phase would 

make it difficult to obtain samples with similar number of cells. During the last phase, both 

the growth and the respiration stabilized. However, if the cells were left too long in this 

phase, they would begin to differentiate, which would lead to more heterogenous cells and 

less resemblance to colonocytes.  
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The aim was to analyze the cells in the narrow window between rapid growth and 

differentiation. The counting technique that was used depended on cells being separated from 

each other and dispersed evenly in the medium to give a reliable estimate. The cells were 

however difficult to disperse, which could have led to pairs or clusters of cells being counted 

as one. The method that was used to count the cells is also known to give a variable result 

(Cadena-Herrera et al., 2015). This may explain some of the observed variation in cell 

numbers and could have an impact on the accuracy of the respiration measurements, as the 

cell numbers were used for normalization of the results.  

 

4.3.2 Cell model limitations  
The Caco-2 cell line are derived from an adenocarcinoma and one of the main traits of cancer 

cells is a metabolic reprogramming, called the Warburg effect. Proliferating cells, such as 

cancer cells have a higher requirement for reduced carbon and nitrogen and will therefore 

prioritize creating anabolic precursors rather than maximizing ATP production (Bencze et al., 

2020). This means that instead of coupling glycolysis to the TCA cycle, these cells convert 

pyruvate to lactate (Pavlova & Thompson, 2016). As part of the aim of this study was to 

examine the respiration and metabolic activity of the cells, this may be of consequence to the 

results. Due to the Warburg effect, butyrate is also hypothesized to be utilized to a lesser 

degree in cancer cells (Donohoe et al., 2012). The fatty acid might therefore accumulate in 

the nucleus, where it acts as an HDAC inhibitor and influences the regulation of gene 

expression. It is therefore not certain that the fatty acids have the same effects in healthy cells 

as observed in the cell model. However, the Caco-2 cells express many of the same proteins 

as normal colonocytes, has been extensively studied and has the benefit of reproducibility 

(Lea, 2015).  

 

In the human body, the colonocytes are part of a tissue, consisting of different cell types 

(Allaire et al., 2018). The cells are influenced by substances secreted by nearby cells, such as 

hormones cytokines and chemokines, as well as by signals from the nervous system 

(Kagnoff, 2014; Walsh & Zemper, 2019). Being a part of the epithelium, the colonocytes also 

interact with the components of the gut lumen. Investigating the colonocytes in isolation, will 

therefore not give a completely realistic impression of how the cells function in the body. 
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Still, it can provide valuable information as it enables studying the cell type in a way that can 

easily be controlled. 

 

4.4 Methodological considerations of gene expression quantification 
Measuring the levels of RNA can say something about the processes in the cells. Both qPCR 

and RNA-seq methods entail some challenges when it comes to quantifying gene expression. 

RNA is in general difficult to work with because it degrades easily, and the different extracts 

may be of varying quality (Bustin et al., 2005). Ideally, the quality of the samples would be 

controlled using a bioanalyzer to obtain exact measurements of degradation. Using gel 

electrophoresis to evaluate the quality is not as exact, but highly degraded samples could be 

identified and excluded. Due to the poor quality of the RNA isolated from some of the 

samples, this meant that some treatments had a low number of replicates in the gene 

expression part of the study.  

 

Both of the gene expression methods are also dependent on cDNA-synthesis, of which the 

efficiency may vary. The efficiency of the RNA to cDNA conversion is dependent on 

template abundance (Bustin et al., 2005). The extracts had some variations in RNA 

concentrations but, all reactions were performed within the range of the kit. The cDNA for 

qPCR was synthesized using random primers, which attach to multiple sites at each transcript 

and lead to more than one cDNA per original mRNA, and the majority of cDNA will be from 

rRNA (Bustin et al., 2005). The cDNA for RNA-seq was also synthesized with random 

primers, but in this work flow, the samples were first depleted of rRNA. 

 

4.4.1 RNA-seq as a high-throughput method for gene expression screening 
RNA-seq is an expensive method and has a comprehensive process of library preparation, 

which meant that fewer samples were included than with qPCR. The large number of steps in 

preparation of the libraries, with several rounds of PCR entail a higher risk of introducing 

variation differences between samples. The samples also had to be handled few at the time, to 

ensure consistent handling within each batch. Replicates of the same treatments were split 

between batches to minimize the impact of small variations between batches.  

 

A common issue with RNA-seq is that there are differences in sequencing depth between the 

samples. Normalization techniques, such as RPKM and TPM have been developed in an 
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attempt to correct for this, but they are not optimal (Abrams et al., 2019). There is also a 

problem analyzing reads from very long or very short transcripts, called sample-specific gene 

length bias which is not corrected for by the traditional normalization methods (Mandelboum 

et al., 2019). Another aspect of importance with the method is that different isoforms of genes 

are included, not all of which lead to functional or even complete transcripts. In qPCR, the 

primers are designed to match areas of the genes that are important for enzyme function and 

this method may therefore provide a more relevant estimate of the expression, when they are 

used to predict functional effects in the cells. 

 

Some deviation is expected between the biological replicates because of the inherent 

variation between cell samples (Bustin et al., 2005), but the correlations between the TPM 

values of control samples were very low in this study (appendix C, table C.1). The controls 

were from different experiment days, which meant that they were at different passages of the 

cell culture. The BCFA treatments contained fatty acids dissolved in DMSO. The controls 

that were used in this part of the experiment were also added DMSO, which is toxic at high 

concentrations, but can also influence cellular processes at lower concentrations (Verheijen et 

al., 2019). There was however no change in correlation between the two control groups or 

different passages. The technical replicates showed higher correlations than the biological 

replicates (appendix C, table C.2), but these also had considerable variations in TPM. This 

implies that the RNA-seq method introduces variation between samples that does not only 

reflect the biological difference. The correlation analyses showed that not all of the same 

genes were detected in all samples, which could signify that the problems are due to low 

coverage. rRNA depletion was performed to increase the coverage and sensitivity of mRNA, 

but some rRNA still remained. Degradation of RNA can also impact the gene expression 

estimates, leading to a shift in relative expression between genes within samples of different 

quality due to non-uniform degradation (Gallego Romero et al., 2014). Highly degraded 

samples were excluded from the gene expression part of the experiment, but a lower degree 

of degradation could not be ruled out by gel electrophoresis. 

 

Even though the RNA-seq results uncovered some technical issues, this is not assumed to 

significantly influence the credibility of the differential expression analysis. The variation 

between the controls entail that the gene expression for treated samples would have to be 

even more dissimilar to be regarded as differentially expressed in the statistical analysis. This 

could however have resulted in some DE genes not being detected. 
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4.4.2 qPCR relative quantification by endogenous control 
The relative quantification method by qPCR depends on the stable expression of a reference 

gene to which the expression of GOIs are compared to within each sample. This removes 

some of the variability that has to do with RNA concentration and cDNA conversion between 

samples. This normalization method is widely debated as the house-keeping genes that are 

commonly used as reference genes are not necessarily equally expressed in different samples, 

depending on the experiment conditions (Kozera & Rapacz, 2013). The accurate 

quantification with this method also requires primers with maximum amplification efficiency, 

that are equal for both the GOIs and the reference (Bustin et al., 2005; Livak & Schmittgen, 

2001). The efficiencies were close to 100 % for all primers, but NEIL1 and NEIL2 showed 

some deviating R2 values in the first round (appendix B, table B.1). This may have led to 

some inaccuracies in the gene expression estimates of these genes in some of the samples. 

 

The gene used as an endogenous control in this study, GAPDH, has been shown to have 

stable expression in Caco-2 cells (Piana et al., 2008). However, the Cq-values of GAPDH 

showed larger variability between samples than some of the GOIs. The variation also seemed 

unrelated to cell number and input concentration of RNA. There were large variations in 

relative expression between some of the replicates that corresponded to the most extreme Cq-

values of GAPDH. The expression of GAPDH gene varied between samples in RNA-seq as 

well but did not correspond with the variation in qPCR. This is probably due to the 

insensitivity of the RNA-seq method. However, the correlation between expression levels of 

GOIs in RNA-seq and qPCR was higher with the reference gene normalization than without.  

 

The treatments used in the experiments are hypothesized to influence the metabolism of the 

cells, and GAPDH encodes an enzyme involved in glycolysis. This may be an explanation of 

the observed variation and suggests that this gene may be inappropriate as a reference gene 

with this kind of treatment. The qPCR-results with GAPDH normalization is used to assess 

gene expression of GOIs in this thesis as the qPCR method is assumed to be more sensitive 

than RNA-seq. Further work should include evaluation of different reference genes and the 

inclusion of more than one reference to get more robust gene expression estimates.  
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4.5 Physiologic relevance of fatty acid concentrations used in 

treatment of Caco-2 cells 
For practical reasons, concentrations of fatty acids are mostly measured in feces, but as the 

fatty acids are absorbed by the colonocytes, this makes it complicated to infer the physiologic 

concentrations in the gut, and to simulate these in vitro. It has been reported that only 5 % of 

the SCFA produced by bacteria in the gut, reach the feces (Rechkemmer et al., 1988) and 

measurements in different parts of the gut, done by autopsy of sudden-death victims showed 

a decrease in SCFA concentrations along the colon (Cummings et al., 1987). This point 

towards the concentrations being underestimated by fecal measurements. But on the other 

hand the mucus layer between the IEC and the luminal contents are suggested to lower the 

concentration experienced by the colonocytes (Donohoe et al., 2012).  

 

In this thesis, the fatty acids were investigated in isolation. The concentrations used were 

intended to simulate the concentrations of individual fatty acids. This gives an indication of 

the contribution of each fatty acid, but not how they work when combined, as they are in the 

human gut.  

 

4.5.1 SCFA treatment concentrations 
In this study, the same concentrations were used of all SCFA, although this is not the case in 

the gut. Acetate concentrations are considerably higher than other SCFA and the propionate 

concentration is higher than butyrate in the infant gut (Norin et al., 2004). Butyrate 

concentrations from 11 to 25 mM have been reported in the adult gut (Hamer et al., 2008). In 

infants, one study reports fecal concentrations increasing from about 0,2 to 13 mM during the 

first year (Norin et al., 2004). Based on these measurements, the treatment concentration used 

in this study is closest to the fecal concentrations between 6 and 12 months for butyrate, 

while lower than concentrations at 1 month for propionate. Because the proportions of fatty 

acids, especially the important butyrate change a lot during the first year of life, several 

concentrations should be examined to obtain a better understanding of their influence on the 

infant gut development. It would be particularly interesting to see if the expression of more 

genes is significantly influenced with a higher propionate or acetate concentrations.  
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4.5.2 In vivo BCFA concentrations in the infant gut 
Ran-Ressler et al. (2008) have shown that most of the BCFAs in the vernix caseosa, ingested 

by the fetus, are absorbed and not secreted in meconium. If the main supply of BCFAs is 

through the diet, the concentrations are expected to decrease along the intestine, as the fatty 

acids are absorbed by the epithelium. This would lead to a lower concentration of BCFA in 

the feces compared to the physiologic concentrations in the lumen. As the microbiota 

develops, it will likely contribute by both consumption and production of BCFAs, but it is 

difficult to say how this influences the luminal concentration. The treatment concentrations of 

BCFA used in this study was within the range measured in the feces of 12-month-old 

children, but the majority of samples contained higher concentrations. Together, these results 

imply that the observed effects are of relevance to the physiologic conditions in the gut, but 

also that the physiologic effects may be more prominent. The in vivo concentrations were 

only measured at an age where most infants have been introduced to solid food, but as 

BCFAs are ingested before birth and present in human milk, they may be even more 

prevalent in younger infants. To further elucidate the effects of BCFA in infants, several age 

groups should be included, and it would also be of relevance to investigate the relationship 

between BCFA and the microbiota.  
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5 Value of results and future work 
Butyrate was found to influence the mitochondrial activity and had a substantially higher 

impact on gene expression than the other SCFA at the same concentration. In correspondence 

with previous research on butyrate, the differentially expressed genes were significantly 

related to regulation of the cell cycle, which is likely associated with its role as a HDAC 

inhibitor. In the youngest infants, butyrate is barely present in the gut, while propionate is 

more prevalent. Propionate showed some similar effects as butyrate on gene expression, 

although in a smaller magnitude. Propionate also seemed to have effects on mitochondrial 

activity but did not show the same pattern as butyrate. This could be due to its role as a 

precursor for gluconeogenesis. 

 

The inclusion of only one SCFA concentration of limits the biological interpretation of the 

results in this study. Further work should focus on testing the effects of several 

concentrations and combinations of the fatty acids to provide more context around how the 

fatty acids are involved in the development of the infant intestinal epithelium.  

 

This study indicates that the BCFAs may influence the mitochondrial activity of intestinal 

epithelial cells, even at low concentrations. Some differentially expressed genes were also 

identified, which support the claim that the presence of BCFA in the gut can affect the 

colonocytes. This may be of importance to the infant development as the consumption of 

BCFA is particularly high right before birth and during breastfeeding. It is however not 

known how the microbiota influence the BCFA concentrations in the gut. Efforts should be 

made to elucidate this, as it may influence the interpretation of the effects these fatty acids 

have on colonocytes. 
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Appendix A: RNA qualification 
 

 
Figure A.1 Gel electrophoresis of first round RNA samples, together with two pilot samples (P1 and P2). The first well 
contains a 1kb ladder. 

 
Figure A.2 Gel electrophoresis of the second round of RNA samples. The first well contains a 1kb ladder. 
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Appendix B: Primer Efficiencies 
 
Table B.1 Efficiencies and R2 values for primer pairs in each of the two rounds of qPCR 
 

ROUND 1 
EFFICIENCY 

 
R2 

ROUND 2 
EFFICIENCY 

 
R2 

GAPDH 0,97 0,99 1,09 0,99 
SDHB 0,99 0,99 1,10 0,99 
NDUFA9 1,00 0,99 0,96 0,99 
MT-ND2 1,04 0,99 1,00 0,99 
MT-ND6 1,03 0,99 1,01 0,99 
CYCS 1,00 0,99 1,10 0,99 
NEIL1 0,95 0,98 0,94 0,99 
NEIL2 1,12 0,95 1,02 0,99 
OGG1 0,93 0,99 1,10 0,99 

 
  



 60 

Appendix C: Correlations between controls in RNA-seq 
 
Table C.1 R2 values for pairwise correlations of TPM values between control samples. The samples used as controls against 
SCFA-treatment are named with S, while the controls compared with BCFA-treatment are named with B. The numbers 
indicate different biological replicates. The passage number is indicated in the parenthesis. 
 

CTR-S1 (P8) CTR-S3 (P10) CTR-B1 (P12) CTR-B2 (P13) CTR-B3 (P14) 
CTR-S1 (P8) 

     

CTR-S3 (P10) 0,59 
    

CTR-B1 (P12) 0,48 0,48 
   

CTR-B2 (P13) 0,60 0,58 0,46 
  

CTR-B3 (P14) 0,59 0,58 0,48 0,58 
 

  
 
Table C.2 R2 values for correlations between technical replicates of an un-treated sample (CTR-S1) and a butyrate-treated 
sample (BU-1). 
 

R2 

CTR-S1 0,71 
BU-1 0,76 
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Appendix D: Differentially expressed transcripts/genes 
 

Table D.1 Differentially expressed transcripts in cells treated with 4 mM SCFA or 40 PM BCFA for 24 hours compared to 
the complete set of control samples (N=5). Transcripts that could not be associated with a gene by g:Convert are marked 
with “None”. The number of biological replicates (N) for each treatment is showed in parenthesis in the first column. 

TREATMENT TRANSCRIPTS 
UP-
REGULATED 

GENE 
NAME 

TRANSCRIPTS 
DOWN-
REGULATED 

GENE 
NAME 

ACETATE 
(N=3) 

NM_001127193.2 
NM_006534.4 

CNBP 
NCOA3 

XM_011538771.2 
NM_001096.3 

KMT2D 
ACLY 

PROPIONATE 
(N=3) 

NM_013390.3 
NM_031313.3 
NM_006009.4 
NM_003897.4 
NM_004419.4 
NM_003088.4 
NM_006516.4 
NM_012244.4 
NM_005562.3 
NM_005542.6 
NM_003979.4 
NM_001730.5 

CEMIP2 
ALPG 
TUBA1A 
IER3 
DUSP5 
FSCN1 
SLC2A1 
SLC7A8 
LAMC2 
INSIG1 
GPRC5A 
KLF5 

NM_006738.6 
NM_001136204.3 
NM_001291862.3 
NM_001382506.1 
NM_002140.4 
XM_006712636.3 
XR_936532.2 

AKAP13 
RCC2 
IGF2 
None 
HNRNPK 
UGGT1 
LAMA5 

BUTYRATE 
(N=3) 

NM_004055.5 
NM_002507.4 
XM_017020539.1 
NM_138420.4 
NM_001042544.1 
NM_020645.3 
NM_005909.5 
NM_001145056.2 
NM_001172896.2 
NM_173542.4 
NM_001199097.2 
NM_001008738.3 
NM_152296.5 
NM_001307936.2 
NM_181742.3 
NM_001206938.2 
NM_018084.5 
NM_007365.3 
NM_203468.3 
XM_017000085.2 
NM_153713.3 
NM_198580.3 
NM_005794.4 
NM_001166286.2 
NM_002305.4 
NM_001678.5 
NM_031313.3 

CAPN5 
NGFR 
SACS 
AHNAK2 
LTBP4 
NRIP3 
MAP1B 
SLC44A2 
CAV1 
PLBD2 
BAIAP3 
FNIP1 
ATP1A3 
SLC38A2 
ORC4 
TCAF1 
CCDC88A 
PADI2 
ENTPD2 
TXNIP 
LIX1L 
SLC27A1 
DHRS2 
RGMA 
LGALS1 
ATP1B2 
ALPG 

NM_001291862.3 
NM_001193508.1 
NM_001171136.2 
NM_001330655.2 
NM_001330292.2 
XR_923001.3 
XM_017004714.1 
NR_073007.2 
NM_001330439.1 
NM_001040458.3 
NM_005170.2 
NM_001101677.2 
XM_017001046.1 
NR_024345.1 
NM_012206.3 
XM_005245305.5 
NM_016391.8 
NM_000458.4 
NM_001040022.1 
NM_014788.4 
NM_003580.4 
XR_936532.2 
NR_146718.1 
NM_001042539.3 
NM_033260.4 
XM_024446022.1 
NM_003223.3 

IGF2 
REST 
ZBED1 
DDAH1 
MTA2 
BUB1 
ANAPC1 
CDK2AP1 
SMARCD2 
ERAP1 
ASCL2 
SOHLH1 
CACYBP 
HNF1A-AS1 
HAVCR1 
KIRREL1 
NOP16 
HNF1B 
SIRPA 
TRIM14 
NSMAF 
LAMA5 
LINC02038 
MAZ 
FOXQ1 
HAVCR1 
TFAP4 
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NM_006087.4 
NM_006009.4 
NM_020820.4 
NM_007074.4 
NM_020134.4 
NM_206901.3 
NM_004522.3 
NM_002736.3 
NM_001005404.4 
NM_020309.4 
NM_001303263.1 
XM_017009342.1 
NM_031476.4 
NM_001256213.1 
NM_000399.5 
XR_001751594.1 
NM_173798.4 
XR_939545.3 
NM_004750.5 
NM_001377486.1 
XM_005271355.3 
NM_006688.5 
XR_001750027.1 
NM_003811.4 
NM_006500.3 
XR_001750029.1 
NM_006389.5 
NM_001140.5 
NM_182705.2 
NM_000389.5 
NR_135691.1 
NM_178500.4 
NM_000093.5 
NM_001172437.2 
NM_002516.4 
NM_006336.4 
NM_001004128.2 
NM_019106.5 
NM_001313972.2 
NM_002135.4 
NM_198475.3 
NM_001166288.2 
NM_006176.3 
XM_006715960.3 
NM_001371242.2 
NM_138961.3 
NR_002819.4 
NM_004973.4 
NM_013390.3 
XM_017019247.1 

TUBB4A 
TUBA1A 
PREX1 
CORO1A 
DPYSL5 
RTN2 
KIF5C 
PRKAR2B 
YPEL2 
SLC17A7 
ATP1B2 
CYFIP2 
CRISPLD2 
ATP1A3 
EGR2 
None 
ZCCHC12 
None 
CRLF1 
GAN 
KDM4A 
C1QL1 
None 
TNFSF9 
MCAM 
None 
HYOU1 
ALOX15 
RFLNB 
CDKN1A 
LINC02204 
PHOSPHO1 
COL5A1 
PEG10 
NOVA2 
ZER1 
QSOX1 
SEPTIN3 
TXNIP 
NR4A1 
FAM171A2 
RGMA 
NRGN 
TSPAN33 
CRYBG1 
ESAM 
MALAT1 
JARID2 
CEMIP2 
NR4A1 

NM_002181.4 
NM_001145155.2 
NM_002083.4 
NM_001164758.1 
NM_001244638.2 
XM_005269037.4 
XM_017004005.1 
NM_199141.2 
NM_145177.3 
NM_002028.4 
XM_011529183.3 
NM_005504.7 
XM_017011137.1 
NM_012154.5 
NM_021021.4 
NM_002546.4 
NM_004500.4 
NM_001071.4 
NM_138408.4 
NR_046110.1 
NM_001199984.1 
NM_032822.3 
NM_021158.4 
NM_001080392.2 
NM_017671.5 
NM_175914.4 
NM_006546.4 
NM_030812.3 
NM_001235.5 
NM_033000.4 
XM_011524201.2 
NM_024098.4 
NM_014503.3 
NM_138370.3 
NM_001330247.1 
NM_001007026.2 
NM_005139.3 
NM_080833.3 
NM_004496.5 
NM_003483.6 
NM_024534.5 
NM_001039111.3 
NM_002653.5 
XM_005249581.5 
NM_003786.4 
NM_005558.4 
NM_174908.4 
NM_002940.3 
NM_003132.3 
NM_014766.5 

IHH 
NR2F2 
GPX2 
PRKAR1B 
ARID5B 
NUP107 
ITGA6 
CARM1 
DHRSX 
FNTB 
None 
BCAT1 
ZBTB2 
AGO2 
SNTB1 
TNFRSF11B 
None 
TYMS 
GTF3C6 
LINC01123 
NDUFS1 
FAM136A 
TRIB3 
DENND11 
FERMT1 
HNF4A 
IGF2BP1 
ACTL8 
SERPINH1 
GTF2I 
IGF2BP1 
CCDC86 
UTP20 
PKDCC 
HNRNPA3 
ATN1 
ANXA3 
RBBP8NL 
FOXA1 
None 
ERVMER34-
1 
TRIM71 
PITX1 
AGR2 
ABCC3 
LAD1 
CCDC50 
ABCE1 
SRM 
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NM_005953.5 
NM_006262.4 
NM_173582.6 
NM_004362.3 
NM_002970.3 
NM_000088.4 
NM_001160125.1 
NM_001079871.1 
NM_006472.6 
NM_173157.3 
NM_001024401.3 
NM_001126049.2 
NM_183376.3 
XR_001750107.1 
NM_001876.4 
NR_119376.1 
NM_001874.4 
NM_001291738.1 
NM_002373.6 
NM_021979.3 
NM_006086.4 
NR_027001.1 
XR_002958258.1 
NM_001039141.3 
NM_001632.5 
NM_004430.3 
NM_006270.5 
NR_015379.3 
NM_003088.4 
NM_006079.5 
NM_001080497.3 
NR_002774.3 
NM_014398.4 
XR_001737203.1 
NR_160936.1 
NM_005456.4 
XM_024452421.1 
NM_001958.5 
NM_004417.4 
NM_001901.4 
NR_144568.1 
NM_001831.4 
NM_004040.4 
NM_004419.4 
NM_002228.4 
NM_006317.5 
NM_001039844.3 
NR_131012.1 
NM_032409.3 
NM_000434.4 

MT2A 
PRPH 
PGM2L1 
CLGN 
SAT1 
COL1A1 
KLF6 
HAP1 
TXNIP 
NR4A1 
SBK1 
None 
ARRDC4 
DHRS2 
CPT1A 
FER1L4 
CPM 
CD24 
MAP1A 
HSPA2 
TUBB3 
GOLGA2P7 
None 
TRIOBP 
ALPP 
EGR3 
RRAS 
UCA1 
FSCN1 
CITED2 
MEGF9 
HTR7P1 
LAMP3 
ATF3 
None 
MAPK8IP1 
SAT1 
EEF1A2 
DUSP1 
None 
MALAT1 
CLU 
RHOB 
DUSP5 
JUN 
BASP1 
ACBD7 
NEAT1 
PINK1 
NEU1 

NM_007208.4 
NM_002467.6 
NM_153705.5 
NM_000384.3 
NM_014825.3 
NM_004494.3 
NM_003592.3 
XM_017006798.2 
NM_006401.3 
NM_002901.4 
XM_005251853.3 
NM_001330212.1 
NM_001759.4 
NM_001144994.2 
NM_080388.3 
NM_024662.3 
NM_020300.5 
NM_182762.4 
NM_017755.6 
NR_027700.3 
NM_000392.5 
NM_000305.3 
NM_003290.3 
NM_003315.4 
NM_006408.4 
NM_003714.2 
NM_006936.3 
NM_014874.4 
NM_033119.5 
NM_015131.3 
NM_005782.4 
NM_002586.5 
NM_005891.3 
NM_005573.4 
NM_024658.4 
NM_001284389.2 
NM_006015.6 
NM_001363661.1 
NM_018128.5 
NM_004044.7 
NM_015339.5 
XM_024452040.1 
NM_006885.4 
NR_146154.1 
NM_053056.3 
NM_006645.2 
NM_006108.4 
NM_001102371.2 
NM_022731.5 
NM_001037738.3 

SCRN1 
MRPL3 
MYC 
POGLUT3 
APOB 
URB1 
HDGF 
CUL1 
CHDH 
ANP32B 
RCN1 
ECPAS 
PSMC1 
CCND2 
C2orf72 
S100A16 
NAT10 
MGST1 
MACC1 
NSUN2 
NOP56 
ABCC2 
PON2 
TPM4 
DNAJC7 
AGR2 
STC2 
SUMO3 
MFN2 
NKD1 
WDR43 
ALYREF 
PBX2 
ACAT2 
LMNB1 
IPO4 
NOLC1 
ARID1A 
HMGB1 
TSR1 
ATIC 
ADNP 
None 
ZFHX3 
None 
CCND1 
STARD10 
SPON1 
FOXRED2 
NUCKS1 
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NM_001124.3 
NM_002070.4 
NM_006026.4 
NM_001042465.3 
NR_028272.1 
NM_033049.4 
NM_001304717.5 
NM_005252.4 
NR_027889.1 
NM_004433.5 
NM_021960.5 
NM_004907.3 
NM_006931.3 
NM_003107.3 
NM_032421.3 
NM_001040152.2 
NM_003897.4 
XM_017018028.1 
NM_001184962.2 
NM_002276.5 
NM_003468.4 
NM_178012.5 
NM_005242.6 
XM_017013892.1 
NM_001286968.2 
NM_020928.2 
NM_014423.4 
NM_002087.4 
NM_005354.6 
NM_001172438.3 
NM_012232.6 
NM_203372.3 
NM_001684.5 
NM_003255.5 
NM_004457.5 
NR_037688.3 
NM_001456.3 
NM_015161.3 
NM_005516.6 
NM_130787.3 
NM_001300.6 
NM_016185.4 
NM_000235.4 
NM_003258.5 
NM_001430.5 
NM_001614.5 
NM_020412.5 
NM_000127.3 
NM_004691.5 
NM_001360016.2 

ADM 
GNAI2 
H1-10 
PSAP 
NEAT1 
MUC13 
PTEN 
FOS 
TMEM189 
ELF3 
MCL1 
IER2 
SLC2A3 
SOX4 
CLIP2 
PEG10 
IER3 
PNPLA2 
PEG10 
KRT19 
FZD5 
TUBB2B 
F2RL1 
EPPK1 
JUND 
ZSWIM6 
AFF4 
GRN 
JUND 
PEG10 
CAVIN1 
ACSL3 
ATP2B4 
TIMP2 
ACSL3 
ACTG1 
FLNA 
ARL6IP1 
HLA-E 
AP2A1 
KLF6 
JPT1 
LIPA 
TK1 
EPAS1 
ACTG1 
CHMP1B 
EXT1 
ATP6V0D1 
G6PD 

NM_004728.4 
NM_000492.4 
NM_031266.3 
XM_017029908.1 
NM_198976.4 
NM_002157.3 
NM_015659.3 
NM_001032283.3 
NM_006325.5 
NM_007192.4 
NM_014573.3 
NM_012073.5 
NM_004134.7 
NM_002265.6 

NPM1 
DDX21 
CFTR 
HNRNPAB 
OGT 
NELFCD 
HSPE1 
RSL1D1 
TMPO 
RAN 
SUPT16H 
TMEM97 
CCT5 
HSPA9 
KPNB1 
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NM_005542.6 
NM_000405.5 
NM_003979.4 
NM_012244.4 
NM_005320.3 
NM_005345.6 
NM_022818.5 
NM_080725.3 
NM_005318.4 
NM_181697.3 
NM_001554.5 
NM_006617.2 
NM_014000.3 
NM_006471.4 
NM_001145064.3 
NM_001457.4 
NM_004736.4 
NM_002778.4 
NM_080677.3 
NM_001730.5 
NM_021814.5 
NM_001657.4 
NM_002076.4 
NM_004096.5 
NM_006835.3 

INSIG1 
GM2A 
GPRC5A 
SLC7A8 
H1-3 
HSPA1A 
MAP1LC3B 
SRXN1 
H1-0 
PRDX1 
CCN1 
NES 
VCL 
MYL12A 
CASTOR2 
FLNB 
XPR1 
PSAP 
DYNLL2 
KLF5 
ELOVL5 
AREG 
GNS 
EIF4EBP2 
CCNI 

12-MTD (N=2)   NM_001010972.2 ZYX 
13-MTD (N=1)   NM_001379.4 

NM_005245.4 
DNMT1 
FAT1 

14-MHD (N=2)   NM_004302.5 ACVR1B 
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Appendix E: Top pathways with propionate-treatment  
 

Table E.1 Top 20 pathways overrepresented by differentially genes in Caco-2 cells after treatment with 4 mM propionate for 
24 hours. 

PATHWAY NAME ENTITIES 
FDR 

Insulin-like Growth Factor-2 mRNA Binding Proteins 
(IGF2BPs/IMPs/VICKZs) bind RNA 7,37E-02 
Interleukin-4 and Interleukin-13 signaling 7,87E-02 
Laminin interactions 1,08E-01 
MET activates PTK2 signaling 1,08E-01 
MET promotes cell motility 1,40E-01 
Defective SLC2A1 causes GLUT1 deficiency syndrome 1 (GLUT1DS1) 1,40E-01 
Separation of Sister Chromatids 1,40E-01 
Signaling by Interleukins 1,40E-01 
Non-integrin membrane-ECM interactions 1,40E-01 
Transcriptional regulation of granulopoiesis 1,40E-01 
Mitotic Anaphase 1,40E-01 
The role of GTSE1 in G2/M progression after G2 checkpoint 1,40E-01 
Mitotic Metaphase and Anaphase 1,40E-01 
Signaling by MET 1,40E-01 
Metabolism of RNA 1,40E-01 
Regulation of mRNA stability by proteins that bind AU-rich elements 1,40E-01 
Lactose synthesis 1,40E-01 
Transcriptional regulation of white adipocyte differentiation 1,40E-01 
Type I hemidesmosome assembly 1,40E-01 
EML4 and NUDC in mitotic spindle formation 1,40E-01 
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Appendix F: In vivo fatty acid concentrations 
Table F.1 Median and quantiles for in vivo concentrations of BCFA in mg fatty acid/g feces of 174 samples from 12-month-
old infants in the PreventADALL cohort. The concentrations were determined by GC, performed by Vitas (Oslo). 

FATTY 
ACID 

MEDIAN 2,5 % QUANTILE 97,5 % QUANTILE 

C10 0,0149 0,0084 0,2599 
C12 0,0582 0,0154 3,0673 
C14 0,2309 0,0387 1,7813 
C14:1c9 0,0099 0,0051 0,0230 
C15 0,0694 0,0120 0,3143 
C16 4,3969 1,1531 21,4247 
C16:1c9 0,0460 0,0124 0,3453 
C18 1,7723 0,3688 8,9196 
C18:1c11 0,2188 0,0686 1,2494 
C18:1c9 2,2962 0,5701 24,3510 
C18:2n6 2,1011 0,3828 16,7373 
C18:3n3 0,1245 0,0353 16,7462 
C18:3n6 0,0374 0,0111 0,3555 
C20 0,0934 0,0274 0,4010 
C20:1n9 0,0834 0,0219 0,5612 
C20:4n6 0,0283 0,0120 0,1096 
C20:5n3 0,0137 0,0052 0,0669 
C22/C20:3n6 0,1328 0,0479 0,4047 
C22:5n3 0,0177 0,0080 0,1124 
C22:6n3 0,0155 0,0056 0,0606 
C24 0,1035 0,0426 0,2375 
C24:1n9 0,0384 0,0134 0,1376 
iso14 0,0153 0,0084 0,0769 
iso15 0,0403 0,0090 0,1416 
iso16 0,0183 0,0091 0,0970 
iso17 0,0245 0,0092 0,0957 
anteiso15 0,1236 0,0155 0,4787 
anteiso17 0,0166 0,0060 0,0905 
Unknown 1,3936 0,3469 5,2793 
Sum FA 16,1299 4,6324 92,1577 
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