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Introduction
As part of the dynamic clamp study by Tabak et al. 2011 [7], a computational model
was developed for the voltage dynamics of endocrine pituitary cells in rats. The model
captured the spontaneous activity of these cells, including the generation of Ca2+-
channel mediated spikes and pseudo-plateau bursts. As an important achievement,
the model explained the paradoxical role that big conductance K+ (BK) channels
had in prolonging spike duration and sometimes promoting burst firing in these cells
[9], contrary to what one would expect from a hyperpolarizing current. The original
model was implemented in XPP [2]. The code for the model was made available online
at https://www.math.fsu.edu/~bertram/software/pituitary/JNS_11b.ode, while the
code used in the analysis of the model outcome was not made available.

In the current paper, we have reimplemented the computational model by Tabak
et al. [7] using the Python interface for the NEURON simulator [5], a widely used
simulator for multicompartmental neurons. In addition, we have performed an un-
certainty quantification and sensitivity analysis of the model using the Uncertainpy
Python package [8], version 1.1.4 (Zenodo: 10.5281/zenodo.1473453). The model im-
plementation works with Python 2 and 3. The results in this paper were created using
Python 3.7.0 within a Docker (https://www.docker.com/) environment.

The reimplemented model reproduced the characteristic firing patterns seen in the
original publication, and we thus confirmed the original study. The sensitivity analysis
further presented a systematic overview of the model in terms of how its characteristic
response features depended on the various model parameters. Supporting the main
conclusion from the original work, the sensitivity analysis showed that the bursting
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propensity of the model was highly sensitive to the BK conductance. However, the
analysis also revealed that the bursting propensity was sensitive to additional param-
eters (conductances), and thus that BK is not the sole determinant for whether the
cell is bursty.

Methods
When reimplementing the model by Tabak et al. [7] we followed the descriptions in
the original publication, using the original implementation for verification purposes.
We also had a brief communication with the original authors to obtain details on the
analysis part of the model.

Model
The model by Tabak et al. [7] was defined by the equation:

C
dV

dt
= −(ICa + IK + IBK + ISK + Ileak + Inoise), (1)

where C is the membrane capacitance, V is the membrane potential, and IX the
current through a specific ion channel X. The model included six different currents:

• ICa – Voltage gated Ca2+ current.
• IK – Voltage gated K+ current.
• IBK – Big conductance K+ current.
• ISK – Small conductance K+ current.
• Ileak – Leak current.
• Inoise – Stochastic current representing channel noise.

A current through an ion channel X was given by the simplified relation:

IX = GXYX(V − EX), (2)

where GX denotes the maximum ion channel conductance, and EX denotes the reversal
potential of the ion species conducted by channel X. YX denotes an ion channel specific
gating function, which was unity for Ileak, an instantaneous function of V for ICa, an
instantaneous function of the cytosolic Ca2+ concentration for ISK, and a dynamic
function of V and t for the remaining ion channels IK, IBK, and IK.

The original implementation used the total membrane capacitance (units pF) and
total membrane conductances (units nS), while the NEURON simulator requires these
entities to be specified per membrane area with units µF/cm2 and S/cm2, respectively.
NEURON also requires that the membrane area is defined. To get the parameters on
the form required by NEURON we defined an arbitrary membrane area (A), and
divided the capacitance C and ion channel conductances GX by A:

gX, NEURON =
GX

A
, cNEURON =

C

A
. (3)

Combining Equation 1, 2 and 3 shows that the model is independent of the choice
of A:

C

A

dV

dt
= −

(
GX

A
YX(V − EX) + . . .

)
. (4)

The original model further included an equation for handling the intracellular Ca2+

concentration, which is relevant for the gating of SK channels:
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d[Ca]

dt
= −fc(αICa + kc[Ca]), (5)

where fc denotes the fraction of free Ca2+ in the cytoplasm, kc denotes the extrusion
rate, and the constant α converts an incoming current to a molar concentration. α
was converted to NEURON units by taking:

αNEURON = Aα. (6)

Combining Equation 3, 5 and 6 shows that this choice keeps the model independent
of the choice of A:

d[Ca]

dt
= −fc(Aα

GCa
A

(V − ECa) + kc[Ca]). (7)

We arbitrarily chose a cell body with a membrane area of π · 10−6 cm2, i.e. with a
diameter of 10 µm. We used all equations from the original publication, substituting
GX with gX, NEURON, C with cNEURON, and α with αNEURON. The parameter values
from the original publication and the converted parameter values are summarized in
Table 1. Parameters not listed in this table were kept unchanged from the original
publication. To make the discussion and results easier to compare to the original
publication, we will refer to the original conductance values through the rest of this
paper.

The noise was added by using a current clamp that injected a random current at
each time step in the simulation, as described by the original publication. Simulations
with noise were run with a fixed time step of dt = 0.01 ms, which is the same time step
used in the original publication. When performing the sensitivity analysis, the noise
amplitude was set to zero (Anoise = 0), and the simulations were run using adaptive
time steps.

We found one discrepancy between the parameters listed in the original publication
and the values found in the original source code. The maximum conductance of K+

channels (GK) was listed as 3.2 nS in the original publication, while the value used
in the original source code was 3 nS. Both values were tested and GK = 3 nS gave
results most similar to the results in the original publication. We therefore decided to
use GK = 3 nS instead of the value listed in the original publication.

Table 1: The parameter values in Tabak et al. [7] that were converted from currents and
capacitance to currents and capacitance per membrane area due to requirements by the NEURON
simulator. The original model parameter values are denoted Tabak while the parameter values in
the reimplemented model are denoted NEURON, with names as used in the model implementation.

Tabak Value Unit NEURON Value Unit
A 3.14 · 10−6 cm2

C 10 pF c 3.18 µF/cm2

GCa 2 nS g_Ca 6.37 · 10−4 S/cm2

GK 3 nS g_K 9.55 · 10−4 S/cm2

GBK 2 nS g_BK 0 S/cm2

GSK 2 nS g_SK 6.37 · 10−4 S/cm2

Gl 0.2 nS g_l 6.37 · 10−5 S/cm2

α 0.0015 µM/fC2 alpha 4.71 · 10−3 mM · cm2/µC
Anoise 4 pA noise_amplitude 0.004 nA
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Event detection
In the analysis, we ran the model for 60000 ms and discarded the first 10000 ms of the
voltage trace to eliminate the transient initial response.

The first step of the model analysis was to detect events (spikes or bursts) in the
model voltage trace. To do this, the voltage was normalized so that its minimum value
was set to 0 and its maximum was set to 1. The start of an event was specified to
be when the voltage crossed an onset threshold (defined to be 0.55), and the end of
an event to be when it next descended below another, lower termination threshold
(defined to be 0.45). An event includes the first point before it crossed the onset
threshold and the first point after it descended below the termination threshold.

The difference in onset and termination threshold was necessary to prevent random
fluctuations around the threshold (during upstroke or downstroke) to be considered
as independent events. If the voltage trace started above the onset threshold, we dis-
carded the first part of the voltage trace until we got below the termination threshold.
Similarly, if an event did not fall below the termination threshold before the simula-
tion ended, that event was discarded. Additionally, we required that events have an
amplitude of at least 10 mV. This prevents the problem where the normalization step
leads to detecting false events with an amplitude less than 1 mV in cases where the
model does not generate any events and instead exhibits small (much less than 1 mV)
fluctuations around a steady state.

We used Uncertainpy to detect events, as the described threshold-detection algo-
rithm is available to us by using the uncertainpy.Spikes object with the arguments
normalize=True, trim=False and min_amplitude = 10. Note that in Uncertainpy
the end_threshold is given relative to the onset threshold, so to get a termination
threshold = 0.45 we set end_threshold = -0.1.

An event was defined as a burst when its duration was longer than a given threshold
(60 ms). The burstiness factor was defined as the fraction of the total number of events
that were considered as bursts. All parameters used in the analysis are summarized
in Table 2.

The description of the threshold-detection algorithm for detecting events (bursts
or spikes) was incomplete in the original publication. We contacted the original au-
thors, who were helpful in describing the threshold-detection algorithm, but who did
not recall the exact numerical values of all threshold choices. The onset threshold,
termination threshold and burst-duration threshold used (Table 2) were therefore set
to the values we found to give the best agreement between our analysis outcome and
that in the original publication.

Table 2: The parameters used in the analysis of the model.

Parameter Value Unit
Simulation time 60000 ms
Discard 10000 ms
Event onset threshold 0.55
Event termination threshold 0.45
Burst threshold 60 ms
Minimum event amplitude 10 mV

Uncertainty quantification and sensitivity analysis
We used Uncertainpy to further examine the model through an uncertainty quan-
tification and sensitivity analysis. This enabled us to quantify how sensitive salient
response properties of the model is to changes in the various parameters. In the sen-
sitivity analysis, the four conductances GCa, GK, GSK, and Gl were assigned uniform
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distributions within ±50% of their original values. GBK, which had no default value
in the original model, was given a uniform distribution between 0 and 1 nS as this was
the parameter range explored in the original study. We use polynomial chaos with the
point collocation method (the default of Uncertainpy) and a polynomial order of eight.
In the sensitivity analysis, we wanted all the variance in the simulation outcome to
reflect parameter variations, and the random noise was therefore turned off by setting
Anoise = 0.

We calculated the uncertainty and sensitivity of the five features of the model:

• Event rate, which is the event firing rate (named spike_rate in Uncertainpy).
• Average event peak, which is the average event peak voltage (named

average_AP_overshoot in Uncertainpy).
• Average AHP (afterhyperpolarization) depth, which is the average minimum

voltage between events.
• Burstiness factor, the fraction of events with a duration longer than 60 ms.
• Average duration, the average duration of an event.

Some of these features are not defined for all parameter combinations (for example
average AHP depth is not defined when there are no events). The point collocation
method still gives reliable results, as long as the features are defined for a sufficiently
large fraction of the parameter combinations (in our case the lowest was ~91.5%) [1].

Some of the outcomes from the sensitivity analysis were unexpected and were
explored further by varying selected parameters and documenting how these variations
affected the average event duration and burstiness factor of the model. The parameters
varied in this additional analysis were GBK, GSK, and GK, all of which were varied
within the range used in the uncertainty analysis.

Results
We repeated all simulations and qualitatively reproduced Figure 1 and Figure 2 in
Tabak et al. [7]. The remaining results in the original publication were experimental
results, and therefore outside the scope of this reproduction. The results shown in
Figure 1 correspond well to those in Figure 1 of the original publication. The original
model and the reproduced version showed the same behavior when increasing GBK.

The results shown in Figure 2 correspond well to those in Figure 2 of the original
publication. In this figure, GBK was fixed at a given value, while the remaining
model parameters were sampled randomly (see Methods). When GBK was set to zero
(Figure 2A), most model parameterizations had a low burstiness factor (between
0 and 0.1). Oppositely, when GBK was fixed at the maximum value (Figure 2C),
most model parameterizations had a high burstiness factor (between 0.9 and 1). For
any value of GBK, the model evaluations tended to be either predominantly bursting
(i.e. most events were bursts) or predominantly spiking (few events were bursts), so
that the number of model evaluations with an intermediate burstiness factor between
0.1 and 0.9 (events changed between being bursts or not) was always low (less than
20 evaluations).

Albeit qualitatively similar, the presented results were not strictly identical to
those in the original publication. As random noise was added to the simulations,
exact replications were unattainable, and some discrepancies between the current and
the original study were expected. The largest deviations between the current analysis
and the original work were seen in Figure 1B (right panel), where the original work
found a burstiness factor of 0.34, while our analysis found a burstiness factor of 0.42,
and in Figure 2C, where the number of model evaluations with a low burstiness factor
was much higher (approximately 75) in the original work compared to what we found
in the current analysis (16). Below, we analyze whether the observed discrepancies
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Figure 1: Model predictions for the effect of various GBK conductances on burstiness. A-C Left,
membrane potential of the model. Right, distribution of event durations in the time interval from
1 to 5 s (of the 50 s simulated). The grey line indicates the threshold for what is considered a
spike and what is considered a burst, and BF denotes the burstiness factor. D The burstiness
factor increased with GBK. E The burstiness factor decreased with τBK.
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can be ascribed to noise, or if they may reveal other differences in implementation
details. We limit the analysis to only consider the above mentioned two cases.

Examining the discrepancies between the replicated and original sim-
ulations
Below, we examine whether the discrepancies between the current and original work, as
reflected in Figure 1B and Figure 2C, can be explained by (i) the random noise added
in the simulations, (ii) differences in integration methods, as reflected by the simulation
time step dt, (iii) numerical floating point errors introduced when converting from total
conductances to conductance per-unit-area by choosing a membrane area A, or if (iv)
the discrepancies may reflect unintended differences in the algorithms for the model
analysis.

We start by exploring the burstiness factor (BF) in Figure 1B, which reflects the
fraction of events that were bursts in a single simulation. As the burstiness factor varies
from simulation to simulation (due to noise), we calculated it for 100 reruns of the
model, which allowed us to calculate its mean and standard deviation (Figure 3). We
calculated the mean and standard deviations for three different values of the area (A =
π · 10−9;π · 10−6;π · 10−3) , and three values of the timestep (dt = 0.05; 0.005; 0.001),
and the obtained statistics did not vary much with these model choices. In all cases,
the burstiness factor had a mean of about 0.4 and a standard deviation of about 0.04.
The burstiness factor of 0.34 found in the original work was thus roughly a standard
deviation lower than the mean found here, and it is thus not too unlikely that the
observed discrepancies could be due to random noise (i).

Next, we explored how the results presented in Figure 2C depended on the choice
of membrane area and simulation time step. Figure 4 shows the burstiness of the
model for three values of the area (A = π · 10−9, π · 10−3, 1) and three values of the
timestep (dt = 0.05, 0.005, 0.001), changing one of them at the time. When comparing
Figure 4 to Figure 2C we see that changes in either the timestep or the area causes
very little changes in the overall results. The small variations between the different
panels in Figure 4 are thus most likely due to the random noise. In this case, neither
noise (i), integration method differences (ii), or floating point errors (iii) seem like a
likely explanation of the discrepancies between the original simulation and the current
results.

The above indicates that there might be some small differences between the current
and original implementation that are not due to noise or numerical issues (iv). We
were not able to detect the precise cause of the observed difference. We believe that
the model itself is identical in the two cases (we have compared our code with the
XPP code from the original work [7]) and that the differences are more likely to reflect
differences in the choices made in the analysis part. These could be choices regarding
event detection (such as the definition of onset and termination thresholds and burst
definition), or criteria for which simulations that were included in and discarded from
the analyses. These choices were imprecisely described in the original work, and it
is possible that we have made some minor misinterpretations, and that our criteria
deviate slightly from the original ones. In the original work, the robustness results
(Figure 2) in the original publication were calculated using custom developed software
that used CUDA to run on GPUs, and the code for performing this analysis was not
available.

Uncertainty quantification and sensitivity analysis
The uncertainty quantification and sensitivity analysis of the model is shown in Figure
5. The sensitivity was given as the total-order Sobol indices, which quantify how much
of the variance of the model each parameter (accounting for all of its interactions with
other parameters) is responsible for [6].
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Figure 2: Robustness of the burstiness of the model for three values of GBK when changing GCa,
GK, GSK, and Gl uniformly within ±50% of their original values. A For GBK → 0 nS, 67.5%
of the active models were spikers (burstiness factor < 0.3). B For GBK → 0.5 nS, 33.8% were
spikers. C For GBK → 1 nS, only 4.4% were spikers.
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The sensitivity analysis showed that the spike rate was sensitive to almost all ion
channel conductances, but most so to GK (Figure 5A). Such a role of the delayed
rectifying K+ channel in controlling the firing rate has been seen in other studies [3].

The event amplitude was mainly sensitive to GCa (Figure 5B), which is not sur-
prising given that the events are generated by ICa. However, it also had a relatively
high sensitivity to GBK, in line with what was found in the previous study [7].

The average afterhyperpolarization depth was in turn most sensitive to GCa (Figure
5C). This may seem counterintuitive, as ICa is not a hyperpolarizing current. However,
ICa is responsible for triggering all the three hyperpolarizing currents (IK, IBK and
ISK) that generate the afterhyperpolarization depth. IK and IBK are activated by the
voltage deflection caused by ICa, while ISK is activated by the Ca2+ entering through
ICa.

The burstiness factor of the model was mainly sensitive to GK and GBK (Figure
5D). The sensitivity to GBK confirms the findings in the original publication, i.e. that
BK channels promote bursting. However, the large sensitivity to GK is a novel insight
for the current study and indicates that also GK was important for determining if the
model produced bursts or spikes. This observation is tightly related to the explanation
for how BK can act as a burst promoter in the first place, which is contrary to what
one would expect from a hyperpolarizing current. The explanation, proposed by both
Tabak et al. [7] and the experimental studies they were inspired by [9], was that GBK
promoted bursting by reducing the peak amplitude of events (as reflected in Figure
5B), thereby preventing full activation of the otherwise more strongly hyperpolarizing
delayed rectifier current (IK). In this context, the sensitivity analysis simply shows
that the indirect effect on IK obtained by varying GBK was smaller than the direct
effect on IK obtained by varying GK (Figure 5D).

Surprisingly, the average event duration had a very low sensitivity to GBK (Figure
5E), and was instead most sensitive to GSK. This was unexpected since the burstiness
was highly sensitive to GBK, and a burst was defined as an event exceeding a certain
duration. An exploration of the counterintuitive relationship between Figure 5D and
E is presented below.

Parameter exploration
To explore the relationship between the results in Figure 5D and E, we examined
the effects of varying GBK, GK, and GSK on the burstiness and the average duration
of events (Figure 6). It should be noted that this figure only shows how the model
responds when changing two parameters at the time, so the higher-order interactions
included in the total-order Sobol sensitivity indices are absent.

Figure 6A shows the regions in the GBK/GK parameter plane where the model
produced regular spikes (yellow) and bursts (green). For low (< 2 nS) values of GK,
the cell was bursting regardless of the value of GBK. Hence, for low values of GK,
the burstiness of the cell was insensitive to GBK. In comparison, a sufficiently large
change in GK could switch the cell between a regular and bursty state for any (fixed)
value of GBK. These results thus fit well with the sensitivity analysis in Figure 5D,
which showed that the burstiness was more sensitive to GK than to GBK.

We next fixed GK at the default value 3 nS, and explored how it could be the case
that burstiness was sensitive to GBK but not so much to GSK, while event duration
was sensitive to GSK but not so much to GBK (Figure 6B). As the figure shows, for
GBK < 0.2 nS the cell was always regularly spiking, while for GBK > 0.8 nS, the
cell was always bursting, irregardless of the values of GSK. In comparison, changing
GBK (keeping GSK fixed) could always switch the cell between a regular and bursty
state. In equivalence with the analysis of Figure 6A, this explains why the burstiness
was less sensitive to GSK than GBK. However, although changes in GBK more often
led to changes in burstiness, the effects on the event duration was modest. That is,
for most (fixed) values of GSK >, a change in GBK could push the event duration
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Figure 6: The average duration of events while varying GBK and either A GK or B GSK. The
areas in parameter space where the average duration of the events is longer than the burstiness
factor threshold are in green, while the areas where the average duration is below this threshold
are in yellow. Areas in blue produce no events and the average duration is then set to -1 for
visualization purposes.
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from slightly below to slightly above the burst-duration threshold, but did not lead
to larger changes in burstiness. Oppositely, reducing GSK to the lower values in the
explored range resulted in burst durations of several thousands of milliseconds (as long
as GBK > 0.2 nS). Hence, while GBK was important for achieving a burst in the first
place, GSK had a much larger impact on the duration of the burst. This explains the
difference in sensitivity between the average duration and burstiness factor observed
in Figure 5D and E.

Conclusion
We were able to qualitatively reproduce all the computational results in Tabak et al.
[7]. By performing an uncertainty quantification and sensitivity analysis we confirmed
the key conclusions in the original publication using a different simulator and differ-
ent analysis methods, which provided additional insight into how different membrane
mechanisms interact to produce the characteristic response features of the model.
Overall, the reproduction effort went smoothly, with a little help from the original au-
thors in describing the threshold-detection algorithm used in the analysis of the model.
The original model now exists as a model using the Python interface for NEURON,
which hopefully makes it accessible to a wider audience. Our personal motivation for
reproducing the model by Tabak et al. was that we needed it in a computational study
where we compared the dynamical properties of pituitary cells in rats versus fish [4].
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