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Abstract
Previous work has shown that when projects are non-marginal, it creates an interdepend-
ence among projects. This implies that policies to manage catastrophes should not be eval-
uated in isolation but in conjunction with each other. As long as relative risk aversion is 
sufficiently high, the benefits of averting one catastrophe depend positively on the back-
ground risk created by other catastrophes. This specific bias makes it possible to create 
upper and lower boundaries on the willingness to pay to manage catastrophes and the opti-
mal policy. These boundaries can be used to make inferences on which catastrophes should 
be averted and not, and in which order. The upper and lower boundaries depend only on the 
individual catastrophe’s benefit-cost ratio and the coefficient of risk aversion, which both 
are easy to identify using standard economic frameworks.

Keywords Multiple catastrophes · Policy measure dependencies · Cost benefit analysis

JEL Classification D61 · Q51 · Q54

1 Introduction

Society is facing multiple catastrophic threats, but resources to manage them are limited. How 
do we decide which catastrophes to manage, and in which order? The standard economic tool 
for evaluating projects is cost-benefit analysis (CBA), but if the net benefits of a project are 
large compared to aggregated consumption, then CBA can cause biased results (Dasgupta 
et  al. 1972). Martin and Pindyck (2015) argue that because catastrophes are non-marginal 
events, policies to avert them should not be evaluated in isolation. They find that the problem 
can only be approximated by standard CBA if the total benefits and individual costs are suf-
ficiently small. In Martin and Pindyck (2015), the interdependence between projects occurs 
because the benefit of averting one catastrophe depends positively on the background risk cre-
ated by the existence of other catastrophes. Background risk decreases future consumption, 
which in return increases expected future marginal utility, and therefore also the benefits of 
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managing or even averting catastrophes. The benefits of a project to manage one catastrophe, 
therefore, depends on whether or not projects to manage other catastrophes are carried out.

Martin and Pindyck (2015) is not the only study that notes the potential bias of CBA. 
Hoehn and Randall (1989) show how standard CBA is systematically biased when the num-
ber of projects is large. The economy’s capacity provides an upper bound on net benefits that 
are only evident when projects are evaluated together or sequentially, whereas the standard 
measure of net benefits are unbounded. Thus, when the number of projects is large, net ben-
efits are overestimated. Dietz and Hepburn (2013) examine the conditions of when CBA can 
lead to biased results when evaluating large projects. They show that using CBA to evaluate 
non-marginal climate and energy projects can result in sub-optimal solutions, and find that the 
source of the error is the elasticity of marginal utility. Furthermore, Tsur and Zemel (2017) 
study intertemporal policies for managing multiple catastrophes where efforts to alleviate a 
catastrophe can be smoothed out over time. In their study they find that background risk can 
both increase and decrease the benefits of averting a catastrophe.

The direction of the bias caused by background risk in the Martin and Pindyck (2015) 
framework is specific, making it possible to create upper and lower boundaries on willingness 
to pay and the optimal scaling of all policy measures. The optimal scaling is increasing in the 
level of background risk. The lower boundary is defined as the optimal policy in the absence 
of background risk and requires no information about the other potential catastrophes. The 
upper boundary is equivalent to the optimal policy in the presence of background risk when 
the policy measure is evaluated in isolation.

This paper aims to illustrate how these boundaries can be used to make inferences on which 
catastrophes should be averted, and in which order. The goal of the new decision criterion is 
to provide correct qualitative guidance for decision-makers. The benefit-cost ratio of the indi-
vidual catastrophe is the key determinant in the decision criterion. Thus, evaluating policy 
measures in isolation can provide the social planner with enough information to decide which 
catastrophes should be averted. The decision criterion proposed in this paper can replicate the 
numerical examples in Martin and Pindyck (2015) using less information and a method that 
requires less computational skill.

2  Consumption, Welfare and Willingness to Pay

The framework builds on Martin (2008, 2013), which extends the lognormal consumption-
based asset-pricing model to allow for the combination of general independent and identically 
distributed (i.i.d) consumption growth and power utility. In continuous time this allows log 
consumption to follow a Lévy process. Martin and Pindyck (2015) use this result to explore 
policy interdependencies caused by background risk arising from catastrophes, and to derive 
decision rules for which catastrophes to avert.

Assume society is facing N > 1 catastrophes. If catastrophe i occurs, it causes a permanent 
drop in log consumption (ct) equal to the random amount �i. I normalize consumption, such 
that at t = 0 , C0 = 1. Log consumption follows a Poisson process,

where t is the time subscript and g is the growth rate of the economy. Qi(t) is the Poisson 
counting process for catastrophe i with known mean arrival rate �i. Preferences are 

(1)ct = logCt = gt −

N∑
i=1

Qi(t)∑
t=1

�i,t
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represented using a constant relative risk aversion (CRRA) utility function, U(C) =
C1−�

1−�
 , 

where � is the rate of relative risk aversion. Unless noted otherwise, in the rest of the paper 
I assume that 𝜂 > 1.1 The choice of utility function and its implication on the paper’s pri-
mary results are discussed in section five.

The expected present value of welfare is given by the expression

where � is the rate of time preference. I follow Martin (2008, 2013) and Martin and Pin-
dyck (2015), and introduce a cumulant generating function (CGF). The cumulant generat-
ing function describes the probability distribution in a useful and compact way, and helps 
find �

(
Ct

)1−�
. The CGF in time t is defined as

Because consumption is a Poisson process, the one period CGF is linearly scalable in t, 
such that �t(1 − �) = �(1 − �)t . Using the law of iterated expectations, the CGF for time t 
is

The expected present value of welfare is then

For all i catastrophes there exists a policy measure that can reduce the likelihood of the 
catastrophe occurring. To make a clear distinction between introducing multiple policy 
measures in isolation and introducing a set of policy measures simultaneously, I introduce 
two different policy impact vectors. The single impact policy vector only contains the scal-
ing of policy measure i, pi, and the multiple impact policy vector, � , represents the scaling 
of all policy measures.

The mean arrival rate of catastrophe i is a non-increasing and convex function of pi , 
Λi(pi) , where Λi(pi) ∈ [0, �i]. The CGF in time t is then

Welfare in the presence of policy measure i is derived by replacing �N(1 − �) with 
�N
pi
(1 − �) in Eq.  (4). The willingness to pay for pi is the value wN

i
(pi) that solves 

�(W) = �(W|pi),

(2)�(W) = ∫
∞

0

e−�t
�
(
Ct

)1−�
1 − �

dt

�N
t
(1 − �) ≡ log�ect(1−�) ≡ log�C

(1−�)
t

(3)�N(1 − �)t =

{
g(1 − �) +

N∑
i=1

�i(Ee
−(1−�)�i − 1)

}
t

(4)�(W) = ∫
∞

0

e−�t
�
(
Ct

)1−�
1 − �

dt =
1

1 − �

1

� − �N(1 − �)

�N
pi
(1 − �)t =

{
g(1 − �) +

N−1∑
j=1,j≠i

�j(Ee
−(1−�)�j − 1) + Λi(pi)(Ee

−(1−�)�i − 1)

}
t

1 This is in line with the literature, which suggest values of � to generally be in the range [1, 4] (Atkinson 
1970; Johansson-Stenman et al. 2002)
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The willingness to pay for the isolated effect of policy pi in the presence of N − 1 other 
catastrophes is

The willingness to pay, wN
i
(pi), is non-decreasing and concave in pi.2 If all i catastrophes 

are equal, the willingness to pay is increasing in the number of other catastrophes. When 
all catastrophes are equal, 

∑N−1

j=1,j≠i �j(Ee−(1−�)�j − 1) = (N − 1)�j(Ee
−(1−�)�j − 1) . Since 

(N − 1)𝜆j(Ee
−(1−𝜂)𝜙j − 1) > 0 , the willingness to pay is increasing in the number of other 

catastrophes. The more catastrophes lurking in the background, the higher is the willing-
ness to pay for policy measure i. Since the willingness to pay for policy measure i in isola-
tion positively depends on the existence of all other catastrophes, the willingness to pay is 
bounded below by the willingness to pay for policy measure i when no other catastrophes 
exist 

(
w1(pi)

)
 . Thus, w1

i
(pi) ≤ wN

i
(pi) . The less catastrophes that lurk in the background, 

or the less catastrophic the catastrophes are, the lower is background risk and the willing-
ness to pay to manage catastrophe i. If the social planner introduces a policy to reduce the 
likelihood of catastrophe j, this will decrease the willingness to pay to manage catastrophe 
i. Martin and Pindyck (2015) argue that because of this interdependence, policies to avert 
catastrophes should not be evaluated in isolation unless the total benefits of averting the 
catastrophes are sufficiently small. The relationship between wN

i
(pi) and w1

i
(pi) is

where �i is used to denote the level of background risk arising from catastrophe i, such that 
�i(Ee

−(1−�)�i − 1) = Φi and Λi(pi)(Ee
−(1−�)�i − 1) = Φ̃i.

Let 1 × N be a multiple impact policy vector,

which contains the scaling of all N policy measures. The willingness to pay for pol-
icy pi , wN

i
(�) , now depends whole policy vector � . Since Λi(pi) is non-increasing and 

Λi(pi) ∈ [0, �i], the willingness to pay for policy measure i is bounded both below and 
above,

Given that 𝜂 > 1 , the optimal policy p∗
i
 will similarly be bounded above and below. The 

next section will show how these boundaries can be used to sequentially decide which 
catastrophes should be averted or not.

1

1 − �

1

� − �N(1 − �)
=

1

1 − �

(
1 − wN

i
(pi)

)1−�
� − �N

pi
(1 − �)

(5)wN
i
(pi) = 1 −

(
� − �N

pi
(1 − �)

� − �N(1 − �)

) 1

1−�

(6)
��

1 − wN
i
(pi)

�1−�
− 1

�
=

�
� − g(1 − �) − Φ̃i

���
1 − w1

i
(pi)

�1−�
− 1

�

� − g(1 − �) − Φ̃i −
∑N−1

j=1,j≠i Φj

�
1 − w1

i
(pi)

�1−�

� = (p1,… , pi,… , ps,… , pN)

w1
i
(pi) ≤ wN

i
(�) ≤ wN

i
(pi)

2 Proof see "Appendix A’’.
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3  Optimal Policy

The willingness to pay determines the benefits of managing the catastrophe. The benefit of 
averting catastrophe i, setting pi = 1 , is BN

i
=
(
1 − wN

i

)1−�
− 1 , where wN

i
= wN

i
(1) . BN

i
 is 

the percentage loss of utility when consumption is reduced by wN
i
 percentage. The cost of 

introducing policy measure i is a permanent tax on consumption, Ti(pi) . For simplicity 
assume that both the tax and the mean arrival rate are linear in pi , such that Ti(pi) = �ipi and 
Λi(pi) = �i(1 − pi) . The parameter �i can be interpreted as the cost effectiveness of the policy. 
If the social planner focuses on catastrophe i only, she chooses a policy scaling pi that solves

Let pN
i

 be the optimal scaling of policy measure i in isolation when N − 1 other potential 
catastrophes is lurking in the background. Solving (7) and using the definition of BN

i
 from 

above, the optimal scaling of policy measure pi in isolation is,

For proof see "Appendix C’’. It is optimal to partially alleviate catastrophe i if B
N
i

𝜏i
> 𝜂 − 1 , 

and society should avert catastrophe i if B
N
i

𝜏i
> 𝜂

(
1 + BN

i

)
− 1 . If there is no background 

risk, then the optimal scaling of policy measure i in isolation is p1
i
=

1

�

{
(1−�)

B1
i

+
1

�i

}
 , where 

B1
i
 is the benefit of averting catastrophe i when there are no other catastrophes present. 

Given the boundaries on willingness to pay derived earlier, we know that B1
i
< BN

i
 , and 

therefore p1
i
< pN

i
.

Two factors determine the size of pN
i
 and p1

i
. The first is the rate of relative risk aversion � . 

The second, and most interesting, is the benefit-cost ratio, B
N
i

�i
 . The larger the benefit-cost ratio 

is, the larger is pN
i
 . Note that the lower boundary, p1

i
, only depends on the characteristics of 

catastrophe i, and require no information about other potential catastrophes.
Because of the interdependence caused by background risk the social planner should not 

be solving (7) repeatedly for all i = 1,… ,N. Instead, she should choose a policy vector � that 
solves the problem

When evaluating all policy measures in conjunction with each other, solving for pi as a 
function of all other policies, 𝐩�̄� , gives the following optimal policy response function

where BN
i

 is the benefit of averting catastrophe i in isolation (as before). For proof see 
"Appendix D’’. The optimal policy scaling of policy measure i in isolation 

(
pN
i

)
 is the main 

determinant in the policy response function. The presence of other policies decrease the 

(7)max
pi

V =

{
1

(1 − �)

(
1 − �ipi

)1−�
� − �N

pi
(1 − �)

}
s.t. pi ∈ [0, 1]

(8)pN
i
=

1

�

{
(1 − �)

BN
i

+
1

�i

}

(9)max
�

V =

�
1

(1 − �)

∏N

i

�
1 − �ipi

�1−�
� − �N

�
(1 − �)

�
s.t. pi ∈ [0, 1]

(10)pN
i
(𝐩�̄�) = pN

i
+

1

�

(
N∑

j=1,j≠i
pj

[
(1 − �)

BN
j

BN
i

])
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optimal scaling of policy i. The higher the benefit-cost ratio of i is, the larger is pN
i

 and 
the more robust is the optimal scaling of policy i to the presence of other projects. The 
last term also shows that the larger the benefits of policy i are, the less sensitive p∗

i
 is to 

the presence of other policies. However, this also implies that p∗
j
 would be relatively more 

sensitive to pi.
The last term in (10) is negative, (1 − 𝜂)

BN
j

BN
i

< 0 for all combination of i and j. Therefore, 

pL
i
= pN

i
+

1

�

∑N−1

j=1,j≠i
�
(1 − �)

BN
j

BN
i

�
 provides a lower boundary for pN

i
(𝐩�̄�) . Such that,

Note that since pN
i
= p1

i
−

1

�

∑N−1

j=1,j≠i
�
(1 − �)

BN
j

BN
i

�
 , thus pL

i
= p1

i
 and

The optimal policy is bounded below by the optimal policy in isolation when there is no 
background risk and bounded above by the optimal policy in isolation. Note that pN

i
 is a 

linear and increasing function of the level of background risk,3 and that when background 
risk is zero pN

i
= p1

i
 . Increasing background risk, increases the distance between pN

i
and p1

i
 . 

From these results, I make three propositions. Propositions  1 and  2 formulate two gen-
eral rules for choosing which projects to undertake and which not to undertake, and how 
to scale them. Proposition  1 makes it possible for the social planner to edit the optimal 
set without any knowledge of the characteristics of the other catastrophes. Proposition 2 
requires knowledge of the background risk, but allows the social planner to edit the optimal 
set further using a straightforward decision rule. Proposition 3 provides guidance on which 
of the catastrophes that should be averted first if the social planner chooses sequentially. 
Propositions 1 and 2 follow from the results in Martin and Pindyck (2015), but Proposi-
tion 3 does not.

Proposition 1 If it is optimal to avert (p1
i
≥ 1) or manage (p1

i
> 0) catastrophe i in the 

absence of all other catastrophes, then it is optimal to avert (p∗
i
≥ 1) or manage (p∗

i
> 0) 

the catastrophe in the presence of any subset of catastrophes.

Proposition 2 If it is optimal to do nothing to manage catastrophe i in the presence of all 
catastrophes (pN

i
≤ 0) , then it is optimal to do nothing to manage catastrophe in the pres-

ence of any subset of catastrophes (p∗
i
≤ 0).

Solving (9) requires us to solve a set of N equations, and require the knowledge of the 
benefit and cost of all catastrophes. The main goal of Propositions 1–2 is to show how we 
can make inferences on the optimal policy without evaluating the full set of N. Proposition 
3 provides the social planner with guidance on sequential choice.

Proposition 3 Catastrophe i dominates catastrophe j if the upper and lower policy bound-
ary of catastrophe i is larger than the upper and lower policy boundary of catastrophe j. If 

pL
i
≤ pN

i
(𝐩�̄�) ≤ pN

i
,

p1
i
≤ p∗

i
≤ pN

i
,

3 

.

�pN
i

�
∑

j Φj

= −
1

�

(1 − �)

� − g(1 − �)

1 + B1

i

B1

i

≥ 0
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it is optimal to avert catastrophe i,  and catastrophe i dominates all other catastrophes, it is 
optimal to avert catastrophe i first.

Proof Since pN
i
(𝐩�̄�) is linear in all pj , and the same is true for pN

j
(𝐩𝐣) , if pN

i
> pN

j
 and 

p1
i
> p1

j
 , then pN

i
(𝐩�̄�) > pN

j
(𝐩𝐣). Thus, if catastrophe i dominates j in the upper and lower 

boundary, it always dominates j.   ◻

Proposition 3 states that in some cases, it is possible to decide which catastrophe is the 
most serious, avert that, and then decide whether to avert the other catastrophes. The three 
propositions simplify the policy decision-making by allowing the policy decision maker to 
make choices concerning the optimal policy without solving a complex optimization prob-
lem that requires a lot of information. The propositions are intuitively easy to understand 
and rely only on the benefit-cost ratio and knowledge of the curvature of the utility func-
tion. Finding B

0
i

�i
 require no knowledge of any of the other catastrophes, but finding B

N
i

�N
i

 
requires knowledge of the degree of background risk present.

The major shortcoming of this method proposed is that there may exist catastrophes that 
fall in between Propositions 1 and 2. These catastrophes are characterized by the following: 
When evaluated in isolation, it is optimal to avert catastrophe i 

(
pN
i
≥ 1

)
 , while it is optimal 

to do nothing 
(
p1
i
≤ 0

)
 when there is no background risk. The problem can be solved by 

using the information available to update the boundaries. As long as the optimal policy for 
one or more catastrophes can be derived using the upper or lower boundary, that informa-
tion can be used to create new upper boundaries for the other catastrophes by updating the 
level of background risk.

4  Example

In order to make the example similar to the work of Martin and Pindyck (2015), I use 
the same parameter values and functional forms. zi = e−�i is distributed according to 
the Power distribution with parameter 𝛽i > 0 , such that b(zi) = �iz

�i−1

i
 with 0 ≤ zi ≤ 1. 

Note that, given the functional form of the utility function, it is necessary that 𝛽i > 𝜂 − 1 
for all i to ensure that 𝛿 − 𝜅N(1 − 𝜂) > 0 . The growth rate is g = 0.02 and the rate of 
time preference is � = 0.02 . The individual parameter values for the catastrophes are 
given in Table  1. The intuition behind each of the parameter values differ and a full 

Table 1  Parameter values 
(Martin and Pindyck 2015) and 
optimal policya

a As given by (9) and Martin and Pindyck (2015)

Catastrophe �i �i �i Optimal policya

� = 2 � = 4

Mega-virus 0.02 5 0.02 1 1
Climate 0.004 4 0.04 0 1
Nuclear terrorism 0.04 17 0.03 1 1
Bioterrorism 0.04 32 0.03 1 0
Floods 0.17 100 0.02 1 1
Storms 0.14 100 0.02 1 0
Earthquakes 0.03 100 0.01 0 0
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discussion of each one can be found in Martin and Pindyck (2015). The intention behind 
the numerical example is not to provide guidance on which of these catastrophes society 
should avert, but illustrate how the criterion can be applied in practice. Because of large 
uncertainties surrounding the parameter values, the estimates and results in the example 
should be viewed as illustrative. It is also important to note that this framework is appro-
priate when analyzing consumption disasters, and not deadly catastrophes. The damage 
and the likelihood of a mega-virus, floods, storms, and earthquakes are roughly based 
on historical occurrences. The β parameter for each of the catastrophes are calculated 
using the average drop in gross domestic product (GDP) the catastrophe have caused. 
For floods, storms, and earthquakes, the average drop is calculated to be approximately 
1%. For climate change, the authors focus on catastrophic scenarios and assume that 
catastrophic climate change will cause a 20% drop in GDP. They further assume that 
the likelihood of a catastrophic climate event occurring in the next 50–60 years is 29%, 
which implies λ = 0.004 . There are especially large uncertainties surrounding the value 
� . For example, the cost of preventing floods and storms is high because fully avoid all 
impact of such events involves costly measures such as the reallocation of homes and 
other infrastructure. The authors assume that the cost of preventing floods and storms is 
2%, while for earthquakes, it is only 1% because many buildings in vulnerable areas are 
already earthquake-proof.

The numerical example in Martin and Pindyck (2015) builds on a discrete model where 
pi is either zero or one, while the extension introduced in this paper allows for pi ∈ [0, 1] . 
Still, the continuous model in this paper and the discrete model in their paper provide the 
same results.

Figures 1 and 2 show the upper and lower policy boundaries before editing (upper fig-
ure) and after policy boundaries have been updated once (lower figure) for two different 
levels of risk aversion. In the initial stage, when risk aversion is low ( � = 2 ) , the social 
planner should avert the following catastrophes: mega-virus, nuclear terrorism, floods, bio-
terrorism, and storms. This result is derived using only Proposition 1, which requires no 
knowledge about the background risk level. Looking at the policy intervals, we see that 
the mega-virus catastrophe dominates all other catastrophes. If society only can avert one 
catastrophe, the social planner should focus on averting the mega-virus catastrophe. The 
second catastrophe the social planner should avert is floods, storms, and finally nuclear ter-
rorism and bioterrorism. How good of an approximation evaluating in isolation is, depends 
on the absolute distance between the boundaries. Evaluating the policy measure to manage 
the mega-virus catastrophe in isolation is a good approximation, for earthquakes, it is not. 
For earthquakes, the distance between the upper and lower boundary is large, and it is not 
possible to make inferences on whether or not the catastrophe should be averted in the ini-
tial stage. Using the knowledge that these five catastrophes should be averted, I update the 
upper boundaries once by removing the background risk initially caused by the five catas-
trophes. The new boundaries make it easier to see that society should not avert the climate 
catastrophe or earthquakes.

When risk aversion is high (� = 4) , the initial stage provides the social planner with 
information that it is optimal to avert the mega-virus catastrophe, climate catastrophe, 
nuclear terrorism and floods. Initially no catastrophe dominates. Using this information, 
the boundaries are updated once. In the second stage, we see that bioterrorism, earthquakes 
and storms should not be averted. The second editing stage shows that the mega-virus 
catastrophe again dominates all the other catastrophes. For both levels of risk aversion, the 
proposed criteria replicate the results in Martin and Pindyck (2015) and the results from 
solving (9).
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The strategy of updating boundaries using the information that is available in the initial 
stage depends on there being any information available in the initial stage. There has to be 
one or more catastrophes that can be edited in or out of the optimal set using Propositions 1 
or 2. Also, the strategy of updating boundaries, compared to solving a set of simultaneous 
equations, only makes sense if it is less complex and time-consuming. Figure 3 illustrates 
for which combinations of willingness to pay in isolation and tax, Proposition 1 suggest 
that the social planner should avert the catastrophe or do something to manage the catastro-
phe, and for which combinations Proposition 2 suggest the social planner should do noth-
ing, given two levels of risk aversion and background risk.

Background risk is given as the sum of �i(Ee−(1−�)�i − 1) , 
∑N

i=1
Φi , suggested by the 

seven catastrophes in Martin and Pindyck (2015). The sum is used to find the upper bound-
ary pN

i
 using (6). When risk aversion is low background risk is 0.0136 and when risk aver-

sion is high background risk is 0.0652.
There is a large set of willingness to pay in isolation and tax combinations that allow the 

social planner to use Propositions 1 and 2 to make inferences on what the optimal policy 
may be. When risk aversion is low 90% of the combinations allow us to make inferences 

Fig. 1  Upper and lower policy 
boundaries when risk aversion 
is low ( � = 2 ) in the initial stage 
(upper figure) and after policy 
boundaries have been updated 
once (lower figure)
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on the optimal policy scaling using Propositions 1 and 2, while when risk aversion is high 
this number drops to 76%. Note that even in the area “do something” it is possible to make 
inferences about the size of p∗

i
 since it is bounded below by p1

i
. If pi = 0.5 , then the social 

planner knows that 0.5 ≤ p∗
i
≤ 1 . From Fig. 3 we also see that when willingness to pay and 

tax is low it is more likely that the conclusion will be avert or do nothing, but as the will-
ingness to pay and the tax increases (even if the ratio remains the same), it is more likely 
that we will get an interior solution (do something). If p1

i
≤ 0 and pN

i
≥ 0 , it is not pos-

sible to use Propositions 1 and 2 to make inferences on what the optimal policy is. Thus, 
whenever

the criterion proposed in this paper will yield inconclusive results. The larger the cost and 
the higher the background risk, the less likely it is that the criteria will provide any quali-
tative guidance on the optimal policy. Still, as seen in Fig.  3, for most combinations of 

(11)
B1
i

�i
≤ � − 1 ≤ BN

i

�i

Fig. 2  Upper and lower policy 
boundaries when risk aversion 
is low ( � = 4 ) in the initial stage 
(upper figure) and after policy 
boundaries have been updated 
once (lower figure)
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willingness to pay and tax, the criteria proposed in this paper provide the policy decision 
maker with qualitative advice.

5  Welfare Framework and Effect of Background Risk

The Martin and Pindyck (2015) paper builds on Martin (2008, 2013), which extends the 
lognormal consumption-based asset-pricing model to allow for the combination of gen-
eral i.i.d. consumption growth and power utility. Thus, the power utility assumption carries 
over both into Martin and Pindyck (2015), and the follow-up paper by Tsur and Zemel 
(2017) which study intertemporal policies for managing multiple catastrophes. The use of 
constant relative risk aversion preferences is common in the economic literature on cata-
strophic risk. For example, Barro (2009) uses power utility in his work on asset pricing 
puzzles and the welfare cost of disasters. Similarly, Bretschger and Vinogradova (2017) use 
constant relative risk aversion utility in their analyses of optimal policy response to envi-
ronmental disasters. Moreover, Dietz and Hepburn (2013) also assumes power utility when 
they investigate at the error of using conventional CBA to evaluate non-marginal climate 
and energy projects.

Fig. 3  Optimal policy as determined by Propositions 1 and 2 for two levels of risk aversion and background 
risk
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However, the application of expected utility is sensitive to assumptions about the shape 
of the probability distribution and the utility function. The combination of a probability 
distribution with heavy tails and power utility implies infinite expected utility and infinite 
expected marginal utility (Geweke 2001; Weitzman 2009). In the presence of heavy tailed 
risk, the constant relative risk aversion utility function may not be the most appropriate 
choice (Millner 2013). As an alternative Ikefuji et  al. (2013) suggests Pareto utility as a 
more appropriate choice of utility function in the face of catastrophic risk. However, no 
analytical solution exist for Martin and Pindyck (2015) model with Pareto utility.

The background risk in this paper is mean changing. Increases in background risk 
reduce expected future consumption because a catastrophic event reduces the growth rate. 
How the benefits of averting one catastrophe, and thus also the optimal policy scaling, 
are affected by an increase in background risk depends on two conflicting mechanisms. 
The presence of other catastrophes reduces expected future consumption. Thus if catas-
trophe i occurs, it would cause a smaller absolute drop in consumption than if there were 
no other catastrophic threats. This reduces the benefit of policy i. However, the reduction 
in expected future consumption raise future expected marginal utility. This effect raises 
the benefit of policy i, because the loss in welfare caused by catastrophe i is greater when 
total consumption is low (Martin and Pindyck 2015). Which of the two effects that dom-
inate depend on the curvature of the utility function. The latter dominates if the coeffi-
cient of relative risk aversion is sufficiently large. Thus, the direction of the bias caused by 
background risk in the Martin and Pindyck (2015) framework is specific, and is tied to the 
choice of utility function and the coefficient of constant relative risk aversion.

To illustrate this, assume that the net welfare of policy pi in the presence of background 
risk � can be approximated using a first-order Taylor expansion W(pi|�) ≈ W(0) + pi

�W

�pi
 . 

The effect of increases in background risk on the welfare changes of policy pi is then given 
by

where C̃ is the expected level of consumption society can enjoy under policy pi . C̃ is given 
by (3) and the cost of pi , so C̃ = exp

{
g + 𝜆i(1 − pi)(Ee

−𝜙i − 1) − Φ
}
(1 − 𝜏ipi) . Note that 

𝜕C̃

𝜕𝜙
< 0. Following the common assumption that welfare is an increasing and concave func-

tion of consumption, and assuming that it is optimal to do to do something pi > 0, increases 
in background risk increase the net welfare of policy pi if

where R(C̃) = −C
𝜕2W

𝜕C̃2
∕
𝜕W

𝜕C̃
. For proof see "Appendix E’’. R(C̃) is the Arrow–Pratt measure 

of relative risk aversion, also referred to as the coefficient of relative risk aversion.
For any functional form of W(.) that satisfies (12), the optimal scaling of policy 

i is increasing in the level of background risk. For constant relative risk aversion utility 
R(C̃) = 𝜂 , so as pointed out in Martin and Pindyck (2015), (12) holds whenever 1 < 𝜂 . 
Exponential utility has the functional form U(C) =

(
1 − exp(−aC̃)

)
∕C̃ when ever a ≠ 0 , 

where a is a constant that represents the degree of risk preference. The coefficient of rela-
tive risk aversion for the exponential utility function is R(C̃) = aC̃ , so (12) holds when-
ever there is sufficiently risk averse preferences. Pareto utility has the functional form 
U(C̃) = 1 − 1∕

(
1 + C̃∕𝜁

)k where 𝜁 > 0 and k > 0 . The parameters � and k jointly charac-
terize the shape of the utility function. The two parameter form provides the flexibility to 

𝜕

𝜕𝛷

(
𝜕W

𝜕pi

)
=

𝜕W

𝜕C̃

𝜕2C̃

𝜕pi𝜕𝛷
+

𝜕2W

𝜕C̃2

𝜕C̃

𝜕𝛷

𝜕C̃

𝜕pi

(12)1 < R(C̃)
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calibrate k so that the Pareto utility function matches power-like behavior for values of C̃ 
that are far from zero, while at the same time adjusting � such that the degrees of absolute 
risk aversion do not increase too rapidly for inputs close to zero (Ikefuji et al. 2013). For 
Pareto utility R(C̃) = C̃(k + 𝜁 )∕(C̃ + 𝜁 ) which holds whenever 𝜁∕C̃ < k + 𝜁 − 1 . Thus, it 
holds as long as k is sufficiently large.

Since we do not know when, or if a catastrophe will occur, nor how large the damage 
will be, both risk and uncertainty are central in the modeling of catastrophes. Ambiguity 
aversion is a preference for known risk over the unknown risk, and there exist multiple nor-
mative models of decision-making under uncertainty that allows for ambiguity aversion. 
In expected utility, the decreasing marginal value of consumption and attitudes towards 
risk are not separable. Since the bias exist because the presence of catastrophes decreases 
expected consumption, it is the first and not the latter that determines the direction of the 
bias. Thus, in a non-expected utility model where attitudes towards outcomes are repre-
sented using a utility function, the direction of the bias will still depend on the curvature 
of the utility function. However, other preferences such as ambiguity aversion may affect 
the size of the bias. Two common models of decision-making under uncertainty that allows 
for ambiguity aversion is maximin expected utility (Gilboa and Schmeidler 1989) and the 
smooth ambiguity model (Klibanoff et al. 2005). The maximin expected utility (Gilboa and 
Schmeidler 1989) approach first identifies the worst expected outcome and then evaluate 
policies based on these worst-case scenarios. This focus on bad distributions is essentially 
an increase in background risk. For the smooth ambiguity model (Klibanoff et al. 2005), 
where the decision-maker assigns a subjective weight to each distribution and then com-
bine these evaluations into a single value, it is the subjective weights that will determine 
the size of the bias.

The criterion holds for consumption disasters, however, some of the catastrophes soci-
ety is facing may be of a different nature. If one or more of the catastrophes pose an exis-
tential threat to humanity, the conclusions in this paper will change. If one or more of the 
catastrophes poses a threat of extinction, then the presence of such catastrophes will reduce 
expected future marginal utility, even when (12) holds.

6  Conclusion and Policy Advice

Previous research shows that evaluating policy measures to manage catastrophes in isola-
tion of each other can cause biased results, which makes conventional CBA unsuitable. 
This paper aims to explore further if and when standard CBA can provide correct qualita-
tive guidance. Because of the specific nature of the dependency between policies that arise 
in the presence of background risk, it is still possible to use the benefit-cost ratio to make 
inferences about the optimal policy. This is done by approximating the optimal policy by 
deriving upper and lower policy boundaries. As long as the relative rate of risk aversion is 
above one, the lower boundary is the optimal policy in isolation when no other catastrophes 
are present. The upper boundary is the optimal policy in the presence of background risk 
when the policy measure is evaluated in isolation. The magnitudes of the upper and lower 
boundaries depend only on the individual catastrophe’s benefit-cost ratio and the level of 
risk aversion. To find the lower policy boundary the social planner does not need any infor-
mation about other potential catastrophes. The upper policy boundary requires information 
about background risk, but neither boundary requires information on the other catastro-
phes benefit-cost ratios. This makes the policy boundaries easy to find using a standard 
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economic framework. The policy decision maker can use these boundaries to make infer-
ences on which catastrophes should and should not be included in the optimal policy set. 
Avert or partially alleviate catastrophes if the lower boundary is positive and do not avert 
the catastrophe if the upper boundary is negative or zero. Moreover, the boundaries can 
help with sequential choice and reveal both which catastrophes that should be managed, 
and in what order.

Based on the results in this paper, I formulate three points of advice for policy decision 
makers. 

1. Any project that passes the cost-benefit test is welfare enhancing.
2. The less background risk there is, the better is the approximation using standard cost-

benefit analysis.
3. A project to manage catastrophes that has a large benefits and a large benefit-cost ratio 

is less sensitive to other policy alleviation than a project with small benefits and a small 
benefit-cost ratio.
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Appendix

Appendix A: Proof that wN
i
(pi) is non‑decreasing and concave in pi when 3i

(
pi
)
 

is non‑increasing and convex in pi.

Assuming that 𝜂 > 1, given that

the first order derivative of wN
i
(pi) with respect to pi is

Note that 
𝛿−𝜅N

pi
(1−𝜂)
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� − �N(1 − �)
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Let Ω =
1

1−�

(
�−�N

pi
(1−�)

�−�N (1−�)

) 1

1−�
−1

(Ee−(1−�)�i − 1)
1

�−�N (1−�)
, then the the second order deriva-

tive of wN
i
(pi) with respect to pi is

Since 1

1−𝜂
< 0 , 

(
𝛿−𝜅N

pi
(1−𝜂)

𝛿−𝜅N (1−𝜂)

) 1

1−𝜂
−1

> 0 and (Ee−(1−𝜂)𝜙i − 1)
1

𝛿−𝜅N (1−𝜂)
> 0 we have that Ω < 0 . 

Thus,

if

Since −
(

�

1−�

)
1

�−�N
pi
(1−�)

��i(pi)
�pi

≤ 0 this is always true when �
2�i(pi)
�p2

i

≥ 0 .

Appendix B: Proof that w1

i
(pi) ≤ wN

i
(�) ≤ wN

i
(pi)

Proof that wN
i
(�) ≤ wN

i
(pi)

wN
i
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i
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i
(�)
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Thus, 
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Since all denominators and numerators are positive, this is the same as

which can be simplified to

which is always true since �j ≥ Λj

(
pj
)
 for all j.

Proof that w1

i
(pi) ≤ wN

i
(�)
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i
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which is always true because (Ee−(1−𝜂)𝜙j − 1) > 0.

Appendix C: Proof of Eq. (8)

Solve

The first derivative of V with respect to pi is

such that

if

Solving for pi,

Note that BN
i
=
(
1 − wN

i

)1−�
− 1 , where wN

i
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i
(1) and

such that
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Appendix D: Proof of Eq. (10)

Solve

The first derivative of V with respect to pi is

where 
��N

�
(1−�)

�pi
= �i(Ee

−(1−�)�i − 1) . Thus, �V
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= 0 whenever

Solving for pi,
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Appendix E: Proof of equation (12)

Note that the chain rule states that 𝜕W
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which is the same as

From C̃ = exp
{
g + 𝜆i(1 − pi)(Ee

−𝜙i − 1) − Φ
}
(1 − 𝜏ipi)

Thus, C̃
𝜕2 C̃

𝜕pi𝜕Φ

𝜕C̃

𝜕Φ

𝜕C̃

𝜕pi

= 1
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