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Abstract

The mapping and classification of urban areas play a crucial role in the planning of the
city and monitoring of various natural hazards that could occur in the future. It is also
necessary for evaluating large-scale changes that occur in urban areas like building and
road construction. Road edge detection is one of the key aspects of urban planning, as
it is necessary to monitor street water levels and to monitor floods and landslides. High
spatial and spectral resolution remotely sensed images called hyperspectral images are
required to classify urban areas as roads and non-roads. In this study, LiDAR data
collected from aircraft were used in combination with hyperspectral images to increase
the accuracy of the classification. Hyperspectral and LiDAR data were collected from
the Sandvika area using a hyperspectral and LiDAR sensor mounted on the aircraft.
The data collected were pre-processed and corrected atmospherically. The classification
was performed using machine learning and deep learning algorithms. Finally, the road
edges were extracted using Canny Edge Detection Algorithm.

For this analysis, the LiDAR-hyperspectral image fusion approach was used and the
fusion was pixel-wise based on hyperspectral and LiDAR data features. Hyperspectral
features were derived using the Principal Component Analysis and Normalized Differ-
ence Vegetation Index, and the LiDAR features were based on the Normalized Digital
Surface and Intensity Model. The classification models used for this study were Support
Vector Machine, Random Forest and Convolutional Neural Network. Efficiency of each
model was evaluated and optimization was performed in order to obtain the best model.
Random Forest outperformed both SVM and CNN on the data classification.

Similarly, there were two types of data; the radiance and the atmospherically corrected
data. Atmospherically corrected data is called reflectance data. The classification was
performed on both the data and the performance of the radiance data (88% f1-score)
was higher than the reflectance data. The approach demonstrated here can be widely
applied in the classification and monitoring of urban areas experiencing major change.
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Introduction

1.1 Background

Urban environments are becoming more complex due to rapid construction activities.
New roads, buildings, and various structures are being constructed and forests and
vegetation are being turned down. Therefore, to keep track of these and to identify
specific features and objects in urban environments, airborne hyperspectral imaging
is used [Grätzer, 2007]. The urban area object classification and detection has been
a popular subject for research with the advancement of hyperspectral remote sensing
technology.

Hyperspectral remote sensors generate hyperspectral 3D images containing both spatial
and spectral information by capturing digital images in hundreds of continuous narrow
spectral channels spanning from visible to infrared wavelengths. This rich hyperspec-
tral image feature has been used in a variety of applications by geographers, foresters,
environmentalists, geologists, and urban planners. Geographer uses hyperspectral im-
ages to study the natural environment of the Earth and its relation with human society
and foresters to track different kinds of trees and plants in the forest. Likewise, the
environmentalist detects landslides and other natural hazards by using hyperspectral
imaging technology [Li et al., 2017]. Urban planners use hyperspectral images to map
the city’s landscape and make decisions on building and other construction work based
on hyperspectral images.

The main concern of this study is the extraction of road boundaries from urban areas.
Detection of road edges is essential for monitoring landslides and floods. More recently,
road extraction using remote sensing technology has been used for traffic management,
urban planning, and GPS monitoring. Several studies have been done to develop a
method for extracting roads from remotely sensed images. [Wang et al., 2019] applied
Hough Transform to the hyperspectral image to isolate the road and then used NDVI to
isolate and remove vegetation such as trees and shrubs along the pavement. [Song and
Civco, 2004] has specified a two-step road extraction method where in the first step,
the image is categorized into two classes, road, and non-road, and in the second step,
the categorized road class is segmented using a region-growing technique, and finally,
thresholding is used to extract the road centerline. Another approach to road extraction
using residual learning and U-Net is explained in [Zhang et al., 2018]. The advantage
of using residual units is that it enhances the training of deep neural networks and the
skip connection within network helps the information flow and design of a network with
few parameters and therefore improves performance.
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Although high-resolution hyperspectral data has been important for classification tech-
niques, in some cases, the spatial resolution of hyperspectral data is not sufficient to
separate complex classes present in urban environments due to the presence of mixed
pixel [Bioucas-Dias et al., 2012]. The presence of mixed pixels complicates the classifi-
cation process considerably, so that data from other sources, such as LiDAR, is used to
boost the classification result. LiDAR data provides information on the elevation of the
Earth’s surface object and, in this study, multi-wavelength LiDAR data was used to add
intensity information for each LiDAR point. Thus, a combination of hyperspectral and
LiDAR data has been used in this analysis to extract the road edges [Khodadadzadeh
et al., 2015].

In this study, road edges are extracted using a fusion of hyperspectral and LiDAR data.
Supervised machine learning algorithms such as Support Vector Machine (SVM) and
Random Forest (RF) and Deep Learning models such as Convolutional Neural Net-
work (CNN) are used to classify remotely sensed images. Then, the road edges are
extracted from classified image using Canny Edge Detection algorithm. The integra-
tion of hyperspectral and LiDAR data is performed using a pixel-wise process, where
the hyperspectral derived features are combined with the LiDAR derived features. The
normalized digital surface model (nDSM) feature derived from LiDAR data provides
useful information in the spatial sense, while the hyperspectral data, abundant in spec-
tral information, provides continuous spectral signatures for each pixel which can be
used for classification purposes [Khodadadzadeh et al., 2015]. The motivation of the
analysis is based on three comparisons of the results of the classification. First, the
outcomes of the Machine Learning and Deep Learning models are compared. Likewise,
radiance and reflectance hyperspectral image classification results are contrasted. Fi-
nally, the results obtained from the classification of the fused and the individual data
are compared.

1.2 Purpose of Study

The primary purpose of this study is to extract road edges from remotely sensed images
using both hyperspectral and LiDAR data. Both machine and deep learning algorithms
are used for the classification of road and non-road pixels. Some of the analysis carried
out in this study are listed below:

• Compare the classification performance of radiance and reflectance data.

• Compare the performance of the machine learning and deep learning models.

• Compare the efficiency of road extraction with hyperspectral, LiDAR and fused
datasets.

1.3 Layout and structure

The layout of the thesis is defined as below:

Chapter 1: Introduction

• This chapter explains the previous road extraction research and our method of
doing this. It also describes the purpose of the analysis.
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Chapter 2: Theory

• The theoretical and working principles of the methods used in this analysis are
discussed in detail in this chapter.

Chapter 3: Method

• This chapter explains the process of data acquisition, data preparation, pre-
processing, extraction of features, classification and evaluation.

Chapter 4: Result and Discussion

• This chapter explores the results of the experiment and their comparison. The
results of the radiance and the reflectance data are compared. Similarly, the
output of a classification algorithm such as SVM, RF, and CNN is contrasted.
And finally, the hyperspectral, LiDAR, and fused dataset results are analyzed and
compared.

Chapter 5: Conclusion

• This chapter summarizes the results of the experiment and evaluates the accuracy
of result. It also describes additional research work that can be done to improve
the outcome.
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Theory

2.1 Remote Sensing

Remote Sensing refers to the method of monitoring and evaluation of information of
Earth surface by measuring the reflected or emitted radiation from aircraft, satellite,
or in the laboratory without making physical contact with it. Many remote sensing
systems have been developed to generate data offering a wide range of spatial, spectral,
and temporal features [Schowengerdt, 2007]. In this thesis, Electromagnetic Radiation
(EMR) extending from visible to shortwave infrared regions is used for remote sensing
of Earth surface materials.

In this study, remote sensing sensors are mounted on the aircraft. The aircraft is
operated over the study area and different materials are detected. These detected
signals are processed to produce images. The following principle is implemented, as
defined in [Rees, 2013]:

• Emission of EMR from a light source, Sun.

• Emitted EMR interact with the atmosphere until it reaches the target.

• Then the incident energy gets reflected, absorbed, scattered, and transmitted from
the ground material.

• The reflected and scattered radiation again interacts with the atmosphere on the
way back to the sensor.

• The radiation collected by the sensor is then converted to a digital image using
imaging spectroscopy for further analysis.

2.1.1 Electromagnetic Radiation

Planck’s quantum theory states that all material can absorb and emit electromagnetic
radiation only in ’chunks’ of energy, quanta E, and that these are proportional to the
frequency of that radiation E = hϑ, where h is Planck’s constant (6.62606957(29) ×
1034Js), ϑ is the frequency, and E is energy of an electromagnetic wave. According to
this theory, absorption and emission have nothing to do with the physical reality of the
radiation itself. However, Albert Einstein reinterpreted Planck’s quantum hypothesis
and used it to explain the photoelectric effect, in which shining light on certain materi-
als can eject electrons from the material. This phenomenon of illuminating the target
material with some source of energy is implemented in remote sensing. This energy is

6



Chapter 2

called Electromagnetic Radiation. EMR consists of electric, and magnetic fields and it
follows the wave theory. The magnitude of electric field varies in the direction perpen-
dicular to the direction of propagation of radiation, and magnetic field is perpendicular
to the direction of electric field as shown in figure 2.1 [Manolakis et al., 2016].

Figure 2.1: The electric and magnetic field that are perpendicular to each other and both oscillating perpendicularly in
the direction of propagation. Image modified from [Wang, 1986]

EMR is characterized by its wavelength (λ), and frequency (ϑ) and their relation is
defined as:

c = λϑ (2.1)

where c is the velocity of light (2.99792458× 108m/s). The wavelength is the distance
between wave crests as shown in figure 2.1 and frequency is the number of wave cycle
passing through a fixed point per unit time [Wang, 1986]. Based on wavelength and
frequency, EMR can be categorized from shorter wavelengths to longer wavelengths
ranges. This is shown in the figure 2.2.

Figure 2.2: Electromagnetic Spectrum. In this study, visible spectrum (400 - 700 nm), near-infrared region(700 - 1000
nm) and shortwave infrared region (1000 - 2500 nm) are used. Image from [Oh et al., 2016]

In Figure 2.2, EMR with the longest wavelength and lowest frequency are on the left
side and are related to radio and microwaves. In contrast, EMR with the shortest
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wavelength and the highest frequency, related to cosmic and X-rays, are on the right
side. Similarly, the visible spectrum occupies the center spectrum (400 - 700 nm).
Only, the visible spectrum can be perceived by the human eye when reflected from the
target. Other spectrum, that is not visible by human eyes, can be detected by remote
sensing devices and used to identify the target [Tro, 2018]. In this study, the visible and
near-infrared (VNIR) extending from 400 to 1000 nm wavelength range and shortwave
infrared (SWIR) extending from 1000 to 2500 nm wavelength range are used.

2.1.2 Interaction of EMR with atmosphere and surface mate-
rials

The EMR traveling towards the target interacts with particles and gases of Earth’s
atmosphere and undergoes scattering, transmission, and absorption as shown in figure
2.3. This scattering and absorption of EMR depend upon the radiation wavelength and
type of atmospheric particles. The EMR is absorbed by various atmospheric molecules
such as ozone (O3), water vapor (H2O) and carbon dioxide (CO2) as shown in figure
2.4 [Kerle et al., 2004].

Figure 2.3: EMR interaction in the atmosphere and at the Earth’s surface.

The transmitted EMR reaches the surface of the Earth where it interacts with the target
and is absorbed, transmitted, and reflected again. Among these, the measurement of
the reflected radiation is the area of interest for remote sensing [Joseph, 2005]. The
proportion of reflected, absorbed, and transmitted energy depends on the wavelength
and type of material.

The leaves absorb the radiation in the red and blue light and reflect the green light so
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Figure 2.4: EMR absorption by various atmospheric molecules. It can be inferred from the image that many of the
wavelengths are not useful for remote sensing of Earth’s surface. The most common ranges are between 0.4 and 2 µm,
between 3 and 4 µm and between 8 and 14 µm. Image from [Kerle et al., 2004]

that they appear green. A healthy leaf reflects more near-infrared wavelengths. The
plant’s health can be determined by assessing the reflected near-infrared wavelength.
Likewise, water appears blue when it reflects shorter-visible wavelengths and absorbs
longer visible and near-infrared wavelengths [Joseph, 2005]. This shows that surface
materials are sensitive to different wavelengths of radiation and can, therefore, be used
to differentiate different surface materials.

2.1.3 Radiance

The EMR reflected from the target undergoes various atmospheric interactions and is
finally detected by the sensor. The sensor records the energy as an array of numbers
called Digital Number (DN), representing the brightness of each area [Shippert, 2013].
The size of the area being detected by the sensor depends upon the distance between
the target and the sensor. The smallest area that can be detected by a sensor is called
a spatial resolution of that sensor [Joseph, 2005].

For any quantitative analysis, the DN values are calibrated into meaningful, quantita-
tive values called radiance. Radiance includes all reflected radiation from the surface
material, neighboring pixels, and atmosphere. So, the radiance image has the effects of
illumination, atmospheric transmission, sensor characteristic, and it varies in time due
to which unique material information cannot be obtained at different takes. Thus, the
radiance data has to be converted to reflectance data by performing atmospheric correc-
tion [Geospatials, 2013]. The reflectance image obtained after atmospheric correction
delivers more repeatable results than radiance image. The comparison of radiance and
reflectance spectrum is shown in figure 2.5.

2.1.4 Reflectance

Reflectance is the ratio of the EMR incident on the material surface to the EMR
reflected off the material surface [Manolakis, 2005]. Since the radiance data consists
of atmospheric effects, estimating the reflectance spectrum from the radiance spectrum
is an important step in most hyperspectral image analysis applications. To obtain a
reflectance spectrum, an atmospheric correction has to be done [Geospatials, 2013].
The process of atmospheric correction is discussed later in chapter 3.2.2. Figure 2.6
shows the reflectance image and radiance image of the same area.
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(a) Spectra of asphalt of radiance image (b) Spectra of asphalt of reflectance image

Figure 2.5: Asphalt spectra of (a)radiance and (b)reflectance image. The asphalt radiance spectra peak at about 500 nm
due to the effects of solar irradiance (solar spectrum peaks at about 500 nm) and atmospheric gases.

Figure 2.6: Left: Radiance Image, Right: Reflectance Image. Both images are of the same place but the radiance and
reflectance image looks different. The radiance image is a bit brighter and clear as compared to the reflectance image.
Some of the parts of the radiance image are overexposed, whereas the reflectance image is well exposed.

2.2 Hyperspectral Imaging

Hyperspectral imaging is an emerging technique that integrates conventional imaging
and optical spectroscopy. Conventional optical imaging obtain images of high spec-
tral and spatial resolution. The first two dimensions of the hyperspectral image cube
represent spatial information, and the remaining dimension represents the spectral in-
formation. The spatial dimension represents the shape and position of the hyperspectral
image, while the spectral dimension represents the number of bands [Vasefi et al., 2016].
These are acquired in such a way that each pixel of the image contains almost a con-
tinuous spectral information [Venugopal et al., 2015]. It is different from multispectral
images as multispectral images have more than one but less than 20 spectral bands,
whereas hyperspectral images have hundreds of spectral bands [Vasefi et al., 2016].

Figure 2.7: Comparison of hyperspectral and multispectral image. Left: Continuous spectra of hyperspectral image pixel.
Right: Discrete spectra of multispectral image pixel. Image from [Lu and Fei, 2014].
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Hyperspectral image datasets are composed of hundreds of spectral bands in the range
that extends beyond the visible range and contains absorption, reflectance, and fluores-
cence spectrum data for each image pixel. Such spectrum data can be used to determine
the particular spectral signature of surface materials so that they can be well separated
from each other [Shafri et al., 2012].

Hyperspectral imaging is widely researched field and has many applications in the field
of geology, medicine, urban planning, and quality assessment of different materials. In
the beginning, hyperspectral imaging was used in the field of remote sensing, where
hyperspectral images of distant surface materials were generated and analysis were
done to obtain different classification maps. [Feng and Sun, 2012] used hyperspectral
techniques like near-infrared hyperspectral imaging, fluorescence hyperspectral imag-
ing, Raman hyperspectral imaging, and their combinations for food safety surveillance.
A model was developed for differentiating varieties of commodity maize seeds using
hyperspectral imaging in visible and near-infrared region, which is shown in [Zhang
et al., 2012]. [Heiden et al., 2012] used hyperspectral imaging for the classification of
urban areas based on structure type to assess the ecological situation in the context of
urban planning.

2.3 Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is an approach of evaluating if
a land surface contains live green vegetation or not. For this, NDVI uses visible and
near-infrared bands of the electromagnetic spectrum. The NDVI algorithm subtracts
the red band from near-infrared and is divided by the sum of red and near-infrared
bands [Roderick et al., 1996].

NDV I =
NIR−RED
NIR +RED

(2.2)

NDVI has wide application in the field of remote sensing. It is used to estimate healthy
and unhealthy vegetation index, ground cover proportion, plant photosynthesis activity,
and the amount of biomass. NDVI is highly sensitive to vegetation and relatively
insensitive to soil and atmosphere [Chen et al., 2004]. Also, early stress in plants can be
detected using NDVI and hyperspectral images [Behmann et al., 2014]. Figure 2.8 shows
the comparison of the spectral signature of a healthy and an unhealthy plant.

Healthy vegetation absorbs more blue and red light energy to fuel photosynthesis and
creates chlorophyll. Plants with more chlorophyll reflect more radiation in the NIR re-
gion. [Kokaly, 2001] demonstrated spectroscopic nitrogen concentration estimates from
the reflectance spectra of dried plant samples using NDVI. [Valor and Caselles, 1996]
related the emissivity to NDVI and used it to measure the emissivity of the vegetation-
covered area and thus map the land surface emissivity.

2.4 Hyperspectral Image Cube Unfolding

A hyperspectral cube is a three-dimensional image cube. It has two spatial dimensions
and one spectral dimension. Before applying any statistical modeling to a hyperspectral
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Figure 2.8: Comparison of the spectral signature of a healthy and unhealthful plant. The healthy plant spectral signature
shown in the green line plot has more reflection in the NIR region than the unhealthy plant spectral signature shown in
the orange line plot. Modified figure from [Shilo, 2018].

image, it must be converted into two-dimensional data consisting of spatial dimensions
along rows and spectral band values along columns. This is done by unfolding the
hypercube from three dimensions to two dimensions. To unfold a hypercube, each
pixel spectrum is stacked, one at the top of the other to create a two-dimensional
matrix [Gowen, 2014]. The hyperspectral image unfolding process is shown in Figure
2.9.

Figure 2.9: Hyperspectral image cube unfolding. Each pixel spectrum is represented by different colors in three dimen-
sional image cube shown in left. To unfold, each color pixel spectra are stacked on top of one another to form a two
dimensional matrix.

2.5 Dimensionality reduction Methods

One of the challenging aspects of hyperspectral imaging is the storage and analysis of
high volume datasets. Data reduction and compression are necessary for the effective
handling of hyperspectral image data. Here compression mainly refers to the processing
of spatial domain, and the dimensionality reduction mainly refers to process of reducing
the number of spectral bands. At the same time, an important task in dimensionality
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reduction is to reduce the redundancy in spectra and spatial information without loos-
ing the valuable details and maximizing the variance of the data [Burger and Gowen,
2011]. One of the most commonly used techniques for dimension reduction is Principal
Components Analysis (PCA).

2.5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a linear transformation that is used for dimen-
sional reduction, data compression, feature extraction, data visualization, and various
multivariate data analysis [Wold et al., 1987]. PCA focuses mainly on concentrating
the spectral variance contained in broad bands of the hyperspectral image to a lower
number of principal components. Principal components are the linear combination of
original bands. The main goal of the PCA is to re-project data in the direction of
high variance and thus, after the PCA, valuable information is obtained in the first
few components and other information is discarded as noise. [Licciardi and Chanussot,
2018]. The two key terms used while evaluating PCA are eigenvalues and eigenvectors.
The eigenvalues refer to the variance among the data and eigenvectors refer to the cor-
responding principal component. Principal component with high eigenvalues has high
image information and low noise. The scree plot of eigenvalues is analysed to identify
the components that have a high variance.

Algebraically, the implementation of PCA can be shown with a dataset matrix X of
size n×p, where n is the number of rows and p is the number of columns of matrix. x1,
x2,...., xp are variables in each row. Here, the main goal is to find the linear combination
of the columns of matrix X with a maximum variance which is given by

∑p
i=1 aixi = Xa,

where a is the constant vector [Jolliffe and Cadima, 2016]. The variance of such linear
combination is given by equation 2.3 [Jolliffe and Cadima, 2016].

var(Xa) = aTSa (2.3)

where S is defined as the sample covariance matrix of the dataset. The sample covariance
matrix is computed by first computing sample mean of data variables and reprojecting
them into mean-deviation form. Sample mean (M) of the data is computed by 1

p
(x1 +

x2 + .... + xp) [Lay, 2016]. The sample mean is the center of the scatter plot 2.10a.
When the sample mean is subtracted form the data in scatter plot 2.10a, the resulting
data is in mean deviation form as shown in plot 2.10b [Lay, 2016]. The new data (B)
in mean deviation form is evaluated as;

yk = xk −M, where k = 1, 2, ...., p

B = [y1 y2 ... yp]

The sample covariance matrix (S) is computed by

S =
1

p− 1
BBT

where BT is the transpose of matrix B. In PCA, the main focus is to maximize the
variance which is equivalent to obtaining maximum value of quadratic form aTSa in
equation 2.3. This is achieved by evaluating aTSa−λ(aTa−1), where λ is the eigenvalue.
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(a) Scatter plot of data. Modified figure from [Lay, 2016]
(b) Scatter plot of data in mean-deviation form. Modified figure
from [Lay, 2016]

For unit vector aTa = 1 and differentiating aTSa−λ(aTa−1) with respect to a, equation
2.4 is obtained [Jolliffe and Cadima, 2016].

Sa = λa (2.4)

where a is the unit eigenvector, and λ is the corresponding eigenvalue of the covariance
matrix S. The first principal component is the eigenvector corresponding to the largest
eigenvalue of S, the second principal component is the eigenvector corresponding to the
second largest eigenvalue [Lay, 2016].

In order to apply PCA on the hypercube, it has to be first unfolded to two dimensional
matrix. Then PCA can be applied on the unfolded hypercube to obtain eigenvectors
and eigenvalues [A et al., 2017].

In figure 2.11, PCA is applied to the unfolded hyperspectral image to obtain a number
of principal components. Loadings and scores vectors are then obtained from principal
components [Pisapia et al., 2018].

PCA is applied by using singular value decomposition(SVD) on the data matrix [Burger
and Gowen, 2011]. It is represented as:

X = USV T (2.5)

However, for huge highly correlated datasets like hyperspectral image, this is com-
putationally inefficient. So, transformation form of this is used which is represented
as,

XT = V SV T (2.6)

The equation above is used to find the loading vectors V. Once the loading vectors V
is evaluated, score vectors T can be computed as;

XV = USV TV = US = T (2.7)

2.6 Spectral Signature

Although airborne hyperspectral images have a high spectral resolution, they have a
low spatial resolution and, with low spatial resolution, it is difficult to distinguish very
small materials in the image. In order to solve this, spectral measurements are done
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Figure 2.11: PCA on unfolded hyperspectral image (Image taken from study area)

to generate spectral signatures of various land covering materials such as vegetation,
asphalt, roofs, soil, rock, and more [Schowengerdt, 2007]. The spectral signature of
hyperspectral imaging is a graphical plot of reflectance/radiance and wavelength/wave
number. The motivation in this is that different types of material can be distinguished
based on their physical properties and chemical composition. That means every material
has a characteristic property of absorption and reflectance.As the hyperspectral image
has a wide spectral range, it is therefore possible to produce distinct spectral signatures
for different surface materials [Charles et al., 2010].

In theory, each material has a unique spectral signature that can be used to distinguish
it from the others. In practice, however, material spectra are influenced by different
factors, such as natural variation of materials, changes in atmospheric conditions and
water absorption. This means that even the same material can exhibit different spectral
properties in a different environment.

2.7 LiDAR Data

Light Detection and Ranging (LiDAR) is an optical remote sensing technique that uses
laser light to sample earth surface material to produce highly accurate three dimensional
measurements [ArcGis, 2018]. LiDAR is a widely used technology for topographical
land mapping as it helps to identify land surface elevation. The tools used for creating
LiDAR data are LiDAR sensor, laser scanner system, Global Positioning System (GPS),
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Figure 2.12: Spectral Signature of asphalt, train track, and vegetation. The spectral signature of vegetation is very
unique as compared to asphalt and train track.

and Inertial Navigation System (INS). The hyperspectral sensor is a passive sensor as it
is dependent on Sun or other light sources for creating images. In contrast, the LiDAR
sensor is an active sensor that transmits a laser beam towards the target for performing
measurements. The working of LiDAR is shown in figure 2.13. The LiDAR scanner
mounted on the aircraft, fires thousands of pulses per second towards the surface.
The pulse gets reflected from the target and is detected by the LiDAR sensor. The
time at which the laser beam was emitted and detected by the sensor after reflection
is recorded and the distance between the LiDAR sensor and the target is evaluated
as [Davis, 2012]:

Distance =
Speed of Light ∗Recorded T ime

2
(2.8)

The data collected is therefore combined with the location information obtained from
the GPS and the INS to generate the georeferenced three-dimensional coordinates (x, y,
and z) of the target. The x and y coordinates are the location, and the z coordinate is
the elevation details of the target. The GPS provides the precise location of the LiDAR
sensor, while the INS provides the precise orientation of the laser scanner. In this
process, several points from various materials are collected. Aftermath, these readings
are analyzed using a number of methods to obtain highly precise three dimensional
georeferenced coordinates points [Davis, 2012]. These points are referred to as LiDAR
point clouds.

LiDAR data have extensive applications in remote sensing. [Andersen et al., 2005]
used LiDAR point clouds to estimate three-dimensional forest structure over extensive
areas and used regression analysis to build a model for estimating forest canopy fuel
parameters using LiDAR data. Non-ground materials such as buildings and vehicles
are removed from the image to obtain a digital terrain model(DTM) that can be used
for flood modeling and landslide prediction [Zhang et al., 2003].
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Figure 2.13: Working of LiDAR. The travel time of laser beam to and from the target material is recorded which in
combination with positional information obtained from GPS and INS is used to evaluate georeferenced x,y,z coordinates
of that material. Modified figure from [Fruchart, 2011]

2.7.1 LiDAR Returns

When the laser beams are fired from the LiDAR system, they fall over various surface
material. Moreover, during their travel towards the ground surface, they get reflected
multiple times [ArcGis, 2018]. LiDAR sensor receives one or many returns of a single
laser beam. The names of those returns are first, second, third, fourth, and many
more. The first return is the most significant one so it is used to directly compare
hyperspectral and LiDAR data. It has information of surface material like treetops,
building roofs, and many more [Andersen et al., 2005].

The intermediate returns include information of other elevation materials and vegeta-
tion, while the last return has information about the bare surface of Earth. The first
return may have information of Earth’s ground surface if there is only one return of a
particular laser beam. Likewise, the last return does not always have information of
the ground material. It also has information of other materials when the laser beam
gets reflected from that material and is unable to pass through it to reach the ground
surface [Davis, 2012]. For instance, some buildings have a structure that cannot be
penetrated by the laser beam. In such a case, the last return of the beam is the roof
of the building, rather than the ground surface. Figure 2.14 shows multiple LiDAR
returns from the tree and their corresponding intensities. We can see that first return
is related to top of the tree while intermediate return corresponds to different parts of
trees, and finally, the last return corresponds to the ground surface.
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Figure 2.14: Left: LiDAR Return and Right: LiDAR return intensities. Modified figure from [ArcGis, 2018]

2.7.2 Digital Surface Model

Digital Surface Model (DSM) represents all the natural and built features on the Earth’s
surface [Khosravipour et al., 2015]. DSM obtained from LiDAR data has many appli-
cations in forest analysis like tree height measurement, monitoring forest regeneration,
biomass, and wildfire risk management [Morsdorf et al., 2004]. For all these appli-
cations, the first step is to generate the DSM from respective LiDAR point clouds.
DSM is generated by using high elevation value that is measured by using first LiDAR
return [Khosravipour et al., 2016].

2.7.3 Digital Elevation Model

Digital Elevation Model (DEM) represents the bare surface of Earth. When the non-
ground points such as built (power lines, buildings, and towers) and natural (trees and
other types of vegetation) are filtered out of the DSM, a smooth DEM is obtained.
In order to produce DEM from LiDAR data, LiDAR points must first be classified
as ground and non-ground (natural and built features) points [Irwan Hariyono and
Windiastuti, 2018]. Then non-ground points are filtered out to obtain a smooth DEM.
DEM has applications in the field of floor modelling and landslide prediction.

2.7.4 Normalized Digital Surface Model

The Normalized Digital Surface Model (nDSM) represents the distance between the
ground and the top of the target material. In other words, it calculates the true height
of topographical features on the Earth’s surface. The nDSM is evaluated by subtraction
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of DEM from the DSM [Geography, 2013].

nDSM = DSM −DEM (2.9)

2.7.5 LiDAR Intensity Model

Intensity is the ratio of reflected light to the emitted light. A LiDAR intensity model is
the measure of the strength of the reflecting laser beam that generates the LiDAR point
cloud. This intensity model relies on the material’s reflective properties, which vary for
different materials. Thus, lidar intensity values can be used for object detection and as
classification feature [Song et al., 2002].

2.8 Machine Learning Algorithm

Machine learning is a technology which enables computers to learn from experience
automatically without being programmed explicitly over time. The goal is to create
computer programs that can access data and learn on their own [Pyle and San José,
2015]. Machine learning is computer-driven programming, which means that it is based
on algorithms that can learn from computers without human intervention [Mitchell
et al., 1997]. The basic working of the machine learning algorithm is shown in figure
2.15. There are several machine learning algorithms that categorized as a supervised
and unsupervised as shown in table 2.1.

Figure 2.15: Flowchart of machine learning algorithm implementation.

Supervised machine learning algorithms are based on the use of past data learning to
predict future events. Labeled data are fed into a supervised machine learning algorithm
that learns the pattern from those data and thus generates data models for predicting
other unknown data. Labeled data are data with target values that the machine learning
algorithm is aiming to predict. Generating labeled data is one of the most challenging
tasks in any machine learning and deep learning project [Cloudfactory, 2013]. For this
study, the data is labeled pixel-wise in which each pixel of the hyperspectral image is
labeled as road, house, forest, train track, or water.
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There are certain situations in which labeled training datasets are not available to
train machine learning algorithms. For such instances, unsupervised machine learning
algorithms are used. An unsupervised machine learning algorithm explores unlabeled
datasets to identify the hidden pattern within it and then classifies it on the basis of
the pattern.

Semi-supervised machine learning algorithms are a combination of supervised and un-
supervised algorithms. It means that both labeled and unlabeled datasets are used for
learning process. A semi-supervised machine learning algorithm is used to increase the
efficiency of supervised learning using unlabeled datasets when labeled datasets are too
limited or too expensive [Zhu and Goldberg, 2009].

Table 2.1: Unsupervised and supervised machine learning algorithms.

Unsupervised Supervised

PCA
K-means

Random Forest
Decision Trees
Support Vector Machine
Logistic Regression

All of these machine learning algorithms consist of representation, evaluation, and op-
timization components. The representation component consists of a range of classifiers.
The evaluation component includes a set of core functions, and optimization involves
several parameter optimization techniques to find the most effective classifiers. Table
2.2 shows different examples of three components of the machine learning algorithm
[Domingos, 2012].

Table 2.2: Three components of machine learning algorithm [Domingos, 2012]

Representation Evaluation Optimization
Instances
K-nearest neighbour
Support Vector Machine
Hyperplanes
Naive Bayes
Logistic Regression
Decision Trees
Random Forest
Neural Network

Accuracy score
Precision and recall
Squared error
Likelihood
Cost
F1-Score
Cohen-Kappa Score

Combinational Optimization
Greedy search
Beam search
Branch-and-bound
Continuous Optimization
Gradient Descent
Linear Programming
Quadratic Programming

Although machine learning algorithms are used in many applications, there is some
limitations. One of the main problems is overfitting while running a machine learn-
ing algorithm. Overfitting is the condition in which the machine learning algorithm
generalizes well with the training data but does not generalize well with the validation
data.

2.8.1 Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm which finds the optimal hyperplane
separating the data points in multidimensional space [Gandhi, 2018]. The hyperplane
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that separates the classes is called the decision boundary. Initially SVM was configured
for binary classification [Hsu and Lin, 2002]. Multi-class classification with SVM is pos-
sible by creating and integrating multiple binary classifiers [Hsu and Lin, 2002]. Figure
2.16 shows all possible hyperplanes that separate the two classes of data. The main
objective of SVM is to maximize the perpendicular distance between the hyperplane
and the nearest data points of each class. These data points closest to the optimal
hyperplane are called Support Vectors(SV) and the perpendicular distance is called
Margin [Gandhi, 2018].

(a) All possible hyperplanes that separate two classes of data (b) Optimal hyperplane that separates the two classes of data

Figure 2.16: a) All possible hyperplanes that separate two classes of data points and b) Optimal hyperplane that separates
the two classes in such a way that the perpendicular distance between the decision boundary and the closest data points
of each class is maximum.

The number of dimensions of the hyperplane depends on the number of features in the
data. Hyperplane is just a line if the number of features is two and is a two or more
dimensional plane if the number of features is three or more [Gandhi, 2018].

In any training of the machine learning algorithm, a good choice of parameters plays
an important role. Some of the crucial parameter for adjusting and calibrating SVM
algorithms are kernel, regularization, and gamma.

Kernel

SVM works by transforming data into multidimensional space to make it more sep-
arable. The task of mapping data from the original input feature space to a multi-
dimensional space is performed with the help of the kernel. There are different types
of the kernel, and the choice depends on the nature of the dataset. Some of the most
commonly used kernels are linear, polynomial, RBF, and sigmoid [Chang and Lin,
2011].

Regularization

The regularization (C) parameter prevents the misclassification of the training data.
The margin of the hyperplane will be smaller for a large regularization value which re-
sults in a better classification of the training samples. However, with a small regulariza-
tion value, the margins are larger, resulting in higher amount of misclassification [Patel,
2018] as shown in Figure 2.17. The cost of using high regularization is expensive.
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(a) Low regularization value (b) High regularization value

Figure 2.17: a)Low regularization value corresponds to large margin and there are misclassification of data points. b)
High regularization value corresponds to small margin which results in better classification. Figure from [Patel, 2018]

2.8.2 Decision Tree Algorithm

Decision Tree is a commonly used supervised machine learning algorithm that divides
a dataset based on a particular condition. The decision tree consists of the root, the
decision and the leaf node, where the attributes in the root and the decision node ask
questions and leaves are the answer to the question and the decision rules are based on
if-else statements [Chauhan, 2019].

The decision tree classifies the data by sorting it down from root to leaf node, as shown
in Figure 2.18. It is constructed using Iterative Dichotomiser 3 (ID3) algorithm. ID3
algorithm constructs decision trees using a top-down, greedy (select best feature), and
iterative approach that follows the following steps [Sakkaf, 2019]:

• Select best attribute A as the NODE

• descendants are created for each value of NODE A

• Sort the descendants of the nodes

• STOP if perfectly classified else iterate over the new leaf nodes

2.8.3 Random Forest Algorithm

Random Forest (RF) is an ensemble learning approach in which many classifier results
are aggregated to produce a final output that has a good generalization error and is less
vulnerable to overfitting [Liaw et al., 2002]. It is a collection of decision trees in which
the outcomes of each decision tree is merged as one final result. In other words, the
decision trees are the building blocks of the RF. Decision trees have the downside of
being vulnerable to overfitting when the tree is very large. Yet this overfitting problem
is mitigated by the use of the RF algorithm [Liaw et al., 2002].

The training of RF algorithm is based on a bagging method where the combination of
learning methods increases output. The decision trees are generated using a random
collection of variables and random samples from the training dataset. The prediction
of each decision tree is estimated, and the best prediction is evaluated based on the
vote [Mutanga et al., 2012]. Figure 2.19 shows how the results of the decision tree are
combined to form the final output of the random forest.

In random forest, the only parameter to choose is the number of trees. The performance
of the random forest is better with a large number of trees at the expense of increased
computational costs [Mutanga et al., 2012].
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Figure 2.18: Decision Tree. Root Node consists of all data and can be divided into two or more sub-nodes (decision or
leaf node). Decision node is a sub-node which can be further divided into sub-nodes. Leaf node is a node that cannot be
further separated and includes prediction.

2.9 Artificial Neural Networks (ANN)

The fundamental idea behind Artificial Neural Network’s research is the theory and
paradigm of how human brains function to solve complex problems. Warren McCul-
loch and Walter Pitt researched and explained how the neural network operated back
in the 1940 [McCulloch and Pitts, 1943]. But, it was implemented after a decade. Re-
searchers and machine learning enthusiasts discontinued researching the neural network
because they were unable to find a way to train a multi-layer neural network. In 1986,
D.E. Rumelhart, G.E. Hinton, and R.J. Williams were involved in the rediscovery and
popularization of the back-propagation algorithm to train a neural network more effec-
tively [Raschka and Mirjalili, 2019]. This, in turn, revoked the interest in more research
in neural networks.

ANNs are composed of several layers of single layered neural networks. Adaptive Linear
Neuron(Adaline) is a single layered neural network whose key feature is shown in figure
2.20. This algorithm is used to perform a binary classification on a gradient descent
method. Gradient descent algorithm is used to update the weight of each epoch using
the following rule [Raschka and Mirjalili, 2019]:

w := w + δw, where w is the weight of the layer and δw = η∇J(w) (2.10)

Thus, from figure 2.20, the linear combination of the weights connecting the input to
the output is the net input(z) which is given by equation 2.11.

z =
∑
j

wjxj = wTx (2.11)

Multi-layer neural network are those composed by connecting multiple single neural
network. Figure 2.21 shows a three layer multi-layer neural network. Here all the layers

23



Chapter 2

Figure 2.19: Random Forest composed of 9 decision trees. Each decision tree predicts either 0 or 1. Six of the decision
tree predicts the result as 1 whereas three decision predicts 0. The final prediction of the random forest is formed by the
majority voting so the output prediction is 1.

are fully connected to each other. And if a multi-layer neural network has more than
one hidden layer then it is deep neural network.

The multi-layer neural network consists of two parts: forward and backward propaga-
tion. In forward propagation, data are propagated from input to output layer leaning
the features in input data. Then the output is calculated and compared with the
known value to evaluate the error. The minimization of this error is done using back-
propagation [Ho et al., 1992]. In back-propagation, the weight adjustment is done by
finding derivative for each weight in the network and thus the model is updated. This
procedure is repeated for multiple epochs to get the best prediction.

Neural network hyperparameters are the number of layers and the number of neurons.
The hyperparameter values are adjusted by cross-validation technique. Deep neural
networks are good at processing data but they suffer vanishing gradient problem which
will be discussed in later section [Raschka and Mirjalili, 2019].

2.9.1 Convolutional Neural Network (CNN)

Convolutional Neural Network is a deep learning algorithm that takes the image as
input, assigns weight and bias to different objects in the image, and thus differentiates
those objects from each other. CNN has an architecture similar to that of neuron
integration in the visual cortex of the human brain [Raschka and Mirjalili, 2019]. Images
are well classified using CNN so that it has gained popularity in the field of computer
vision. In the multi-layer perceptron, the vector features are extracted from the image
and are fully connected to the hidden layer. The spatial information of the image is
not used. However, on CNN, the input layer is connected to the feature map using
the receptive fields. Receptive fields are overlapping windows that are passed from
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Figure 2.20: Working of adaptive linear neuron algorithm. Figure from [Raschka and Mirjalili, 2019]

Figure 2.21: Multi-layer neural network with 3 layers of neurons which are input, hidden, and output layer. Figure
from [Raschka and Mirjalili, 2019]

pixels to pixels of an input image to create a feature map, and this process is called
convolution [Raschka and Mirjalili, 2019].

Unlike regular neural networks, CNN layers arrange neurons in three dimensions: width,
height, and depth. For instance, the shape of each image in this study is 931×2400×186
(width, height, depth). Here, the depth refers to the image channels. CNN consists of
three main layers; the convolutional layer, the pooling layer, and the fully connected
layer [Saha, 2018]. These three main layers are stacked to form the CNN, as shown in
figure 2.22.

Convolutional layer

Convolutional layer is the first layer of CNN, which extracts the features of the input
image. In this layer, the filters are convoluted over the pixels of the image. The region
of the image where the filter is convoluted is called the receptive field [Saha, 2018].
The depth of the filter must be the same as the depth of the input image. While the
filter is convoluted over the image, the values in the filter are multiplied by the original
pixel values of the image, and the multiplication is summarized as shown in equation
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Figure 2.22: Convolution neural network with three layers. Figure from [Raschka and Mirjalili, 2019]

2.12.

Y = X ×W =⇒ Y [i, j] =
+∞∑

k1=−∞

+∞∑
k2=−∞

X[i− k1, j − k2]w[k1, k2] (2.12)

where X is input image pixel value, W is filter value, and Y is the new image pixel
value.

The output of equation 2.12 is a single number. This process is repeated by sliding
the filter across the image, depending on the scale of the strides. The number of pixels
shifts over the input image is called strides [Raschka and Mirjalili, 2019]. When the
stride is one, the filters are convoluted by one pixel at a time. An array of numbers is
obtained at the end of the process and is used to generate a feature map shown in the
figure 2.23.

Figure 2.23: Connecting input image to feature maps using receptive fields. Figure from [Raschka and Mirjalili, 2019]

Similarly, the filter used to convolve the image does not fit the input image perfectly.
In this case, there are two options: the first alternative is to remove the portion of the
image, and the second option is to pad the image with zeros. The second option is
better, and it is called padding [Saha, 2018].

The simple implementation of convolution using equation 2.12 in a 3× 3 portion of an
image with 1 padding using 3× 3 filter is shown in figure 2.25
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Figure 2.24: Original image matrix padded with two zeros on left and right side. Here the padding size is 2.

Figure 2.25: Convolution over 3× 3 part of an image with 1 padding using 3× 3 filter. Figure from [Saha, 2018]

Pooling layer

Pooling layers reduce the dimensionality of each feature map, while retaining important
image information. It does this for higher computational efficiency and reduced over-
fitting. There are several forms of spatial pooling, such as max pooling, mean pooling,
and sum pooling [Saha, 2018].

The largest element is taken from the feature map in max pooling. Max pooling also
works as a noise suppressant that eliminates noise activation. In case of mean pooling,
the mean of all the elements of the feature map is taken. In the same way, the sum of
all the features of the feature map is taken in case of sum pooling. This is shown in
figure 2.26.

Fully Connected Layer

The fully connected layer is the end layer of the network that outputs the result.
The output of either the convolutional layer or the pooling layer is fed into the fully
connected layer, which outputs the n-dimensional vector where N is the number of
classes. [Saha, 2018] The values in the n-dimensional vector represent the probability
of a specific class. This is shown in figure 2.22.

Training Convolutional Neural Network

The training of CNN is based on the back-propagation. Back-propagation is divided
into four steps: forward pass, loss function, backward pass, and weight update. In the
forward pass, the training image is passed through the entire network, and the output
is evaluated. Since the training data consists of training labels, the loss is calculated
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Figure 2.26: Max pooling and mean pooling of the feature map

using the loss function. There are several ways to implement the loss function, and one
common method is Mean Squared Error (MSE) defined by equation 2.21

loss =
∑ 1

2(true label − output)
(2.13)

In the first few epochs of training, the loss is very high. The goal here is to reduce the
loss by reaching the point where the prediction label is the same as the training label.
This is achieved with the help of a backward pass. In the backward pass, the weight
that corresponds to most of the loss is evaluated, and the adjustment is made by taking
its derivative so that the loss decreases. After that, the weight of the filters is updated
in the opposite direction of the gradient.

2.9.2 Activation Functions

An artificial neural network calculates the weighted sum of its data, applies bias, and
determines whether or not it should be discharged [SHARMA, 2017]. This decision on
whether or not the weighted sum should be discharged, i.e, whether or not the informa-
tion should be passed on, is made with the help of the activation function. There are
generally two types of activation functions; linear and non-linear activation functions.
A linear activation function is a simple activation function where no transformation
is applied, as shown in equation 2.14 and a network consisting of a linear activation
function is easier to train. However, with the linear activation function, the complex
structure of the data can not be learned [SHARMA, 2017].

φlinear(z) = z (2.14)

Non-linear functions are those with transformation applied and can be used to learn
the complex structure of the data. Some non-linear activation functions are discussed
below:

Sigmoid Activation Function

Sigmoid activation function is a non-linear activation function that determines the
probability of whether a neuron discharge or not. This implies that the output of the
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sigmoid activation function is between 0 and 1 so that the high negative numbers are
set to zero, and the high positive number is set to one [SHARMA, 2017]. The net input
(z) is given as:

z =
∑
j

wjxj = wTx (2.15)

where w is the weight of layer and x is the input to the layer. The sigmoid activation
function for the net input is evaluated as:

φlogistic(z) =
1

1 + e−z
(2.16)

where φlogistic(z) is the sigmoid activation function for the net input z.

When the graph of the sigmoid function is plotted, it is an S-shape curve, as shown in
figure 2.27. The function shown in equation 2.16 is differentiable. This mean slope of the
sigmoid curve can be calculated. The drawback of using the sigmoid activation function
is that it suffers vanishing gradient problem in which the derivative of the function for
the net input significantly reduces as z from equation 2.15 increases [SHARMA, 2017].
This, in turn, makes learning weight very slow during the training phase.

Figure 2.27: Plot of sigmoid activation function. It is a S-shape curve which has the value between 0 and 1. As the
value of z gets smaller, the value of sigmoid function is closer to 0 and as z gets larger, the value of sigmoid function
is closer to 1.

Rectified Linear Units (ReLU)

Rectified Linear Units is a non-linear activation function used for learning complex
neural network function. It is defined as:

φ(z) = max(0, z) (2.17)

If the net input from equation 2.11 is less than 0, then the activation is 0 and 1 if the
net input is more than 0. Also, the derivative of the ReLU with respect to net input is
always equal to 1 for any value of net input [SHARMA, 2017]. This means that ReLU
prevents and rectifies the vanishing gradient problem and is appropriate for deep neural
networks. The ReLU plot is shown in 2.28

The downside to using ReLU is the dying ReLU problem. In ReLU, if the net input is
less than 0 the gradient is 0. When all input is 0 for a neuron, then the gradient in that
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Figure 2.28: Plot of ReLU activation function. The value of ReLU function is 0 if net input is less than 0 and is 1 for
all input values more than 0. As z gets larger, the value of sigmoid function is closer to 1.

area will also be 0, because of which weights will not be adjusted during training. Such
neurons would therefore avoid reacting to a variation in input [SHARMA, 2017].

Leaky ReLU

The issue of dying of ReLU is mitigated by the use of leaky ReLU. The leaky ReLU
achieves so by increasing the range of ReLU functions. When z is less than zero,
the output of the leaky ReLU is a small, non-zero, constant gradient instead of 0
gradient [SHARMA, 2017].

Softmax Activation Function

ReLU is an activation function that can only be used for hidden units, but softmax is
an activation function that can be used with the output layer. It is used to measure
the probability distribution of different classes of input data for a classification prob-
lem. The sum of the probabilities is equal to 1 [SHARMA, 2017]. The mathematical
representation of the softmax function is shown in equation 2.18.

σ(z)j =
ezj∑K
k=1 e

zk
forj = 1, ...., K (2.18)

where σ(z)j is the softmax activation function of the net input z.

2.9.3 Optimization Algorithm

In Neural Network, training is based on Back-Propagation method in which the errors
obtained from the output layer are propagated in a reverse direction to the other layers.
Such errors are used to determine the gradient of the loss function in relation to network
weights. The main goal is to find the weights of network for which the loss is minimum.
Thus, the gradient obtained is fed to the optimization algorithm that uses it to adjust
weights to minimize loss function [Li, 2017]. Adaptive Moment Estimation (Adam) is an
optimization algorithm which uses momentum and adaptive learning rates to converge
the network faster.
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2.10 Accuracy Assessment and Evaluation

Accuracy assessment and evaluation is an important task in any implementation of ma-
chine and deep learning algorithm. This is a comparison of the prediction made by the
machine and the deep learning algorithm and the true label of the input data. They are
also called metrics. There are various metrics for accessing accuracy, and the choice of
metrics determines the efficiency of a machine and a deep learning algorithm.

2.10.1 Confusion Matrix

Confusion Matrix determines the overall performance of the classification model using
a matrix in which each row represents the true class. The table of the confusion matrix
consists of prediction on the x-axis and accuracy outcome on the y-axis. The number of
accurate and incorrect predictions and their class-based count values are summarized.
The diagonal of the confusion matrix represents the samples that were correctly pre-
dicted and all other values outside the diagonal are incorrectly predicted. The confusion
matrix is shown in the figure 2.29.

Figure 2.29: Confusion Matrix
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2.10.2 Classification Accuracy Score

Classification accuracy, also referred to as accuracy is the ratio of the number of correct
predictions to the total number of predictions made. It is the most powerful statistical
metric and is misleading when there is unequal number of samples in each class [Mishra,
2018].

accuracy =
number of correct prediction

total number of prediction made
(2.19)

2.10.3 Precision

Samples that are correctly predicted fall within the True Positive and True Negative
groups, while those that are incorrectly predicted are False Positive and False Negative.
For every machine learning implementation, the aim is to minimize false positive and
false negatives. This is shown in table 2.3

Table 2.3: Table showing the actual and predicted class along with true positive, true negative, false positive and false
negative

Predicted Class
Class = Yes Class = No

Actual Class
Class = Yes True Positive False Negative
Class = No False Positive True Negative

Precision is the ratio of the number of correct positive results to the total number of
positive results predicted by the classifier. It tries to show whether or not the predicted
positive is actually correct. It helps when the cost of false positives is high.

precision =
true positives

true positives+ false positives
(2.20)

2.10.4 Recall

Th recall is the ratio of the number of correct positive findings to the total number of
all relevant samples in the class. Similarly, recall helps when the cost of false negatives
is high.

recall =
true positives

true positives+ false negatives
(2.21)

Both precision and recall must be scrutinized to fully evaluate the effectiveness of a
machine learning model. Also, while improving the precision, recall is reduced and
vice-versa.

2.10.5 F1-Score

F1-Score is the computation of the accuracy of the model using the weighted mean of
precision and recall. A good F1-Score means low false positives and low false negatives.
F1-Score values are between 0 and 1. The model is perfect when the F1-Score is 1
and the model fails when the F1-Score is 0. Equation 2.22 indicates the formula for
determining the F1-score using precision and recall.

F1− Score = 2× precision× recall
precision+ recall

(2.22)
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2.10.6 Cohen’s Kappa

When using a machine learning algorithm, there are problems with accuracy assessment
and evaluation due to a multi-class and unbalanced class. In this situation, metrics
such as classification accuracy, precision, recall do not provide a better assessment
of the performance of the classifier. So, Cohen’s kappa is used in such situation as
it can handle both multi-class and unbalanced class issues well and provide efficient
classification performance evaluation. Cohen’s kappa compares the accuracy observed
with the predicted accuracy [Vieira et al., 2010]. The Kappa score is the number
between -1, and 1 and the scores above 0.8 are considered to be good.

Cohen′sKappa(k) = 1− 1− po
1− pe

(2.23)

where po is the observed accuracy and pe is the expected accuracy.

2.10.7 Loss Function

Th loss function is a method of determining how well a particular algorithm learns the
data. The loss function is used while training the neural network. As the gap between
prediction and actual values continues to expand, the loss function also increases. Some
optimization function is then used to learn better and thus reduce the loss function.
Therefore, in any neural network training, the main aim is to reduce the loss func-
tion [Parmar, 2018]. During the evaluation of the model error, the loss function must
be chosen, and there are different types of loss function depending on the nature of the
machine learning algorithm.

Binary Cross-Entropy

Binary Cross-Entropy is a loss function that is used for a binary classification problem
where the target values are in the set 0 , 1. Cross-entropy evaluates a score that
summarizes the mean difference between the actual and the predicted probability of
a certain class. The score is reduced using various optimization functions. Binary
Cross-Entropy evaluation is shown by equation 2.24:

Dbinary(y
′, y) = −(ylog(y′) + (1− y)log(1− y′)) (2.24)

where Dbinary is the binary cross-entropy score, y is the actual target value and y′ is
the predicted target value.

Categorical Cross-Entropy

Categorical cross-entropy is used in case of multi-class classification. It is given by
equation 2.25:

Dcategorical(y
′, y) = −

k∑
i=1

yilog(y′i) (2.25)

where Dcategorical is the categorical cross-entropy score, y is the actual target value and
y′ is the predicted target value.
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2.11 Edge Detection

Edge detection is one of many essential parts of computer vision systems. Edge detec-
tion helps in efficient analysis of the image by reducing the data size and at the same
time, preserving the important information in the data. Edges are the significant local
changes in the image intensity occurring on the boundary between two different regions
in an image. The main goal of the edge detection technique is to extract the pixels in
the image at which the intensity changes sharply [Canny, 1986]. There are many edge
detection algorithm, in this study, Canny Edge Detection algorithm is used.

2.11.1 Canny Edge Detection

Canny edge detection is a method of edge detection that uses a multi-stage process to
detect edges in the image. This uses a Gaussian derivative filter to measure the strength
of the gradients. Following this, the smooth image is obtained. The possible edges are
then thinned down to 1-pixel curves by eliminating non-maximum pixels of gradient
magnitude and, eventually, edge pixels are retained using hysteresis thresholding on
the gradient magnitude [Maitra, 2019]. In the hysteresis thresholding, the pixels above
the high threshold are considered to be edges and included in the edge pixels. Those
pixels between the low and high thresholds lying on the same line as high threshold
pixels are also included in the edge pixels. Pixels with a small threshold are removed
from the edge points.

The Canny edge detection algorithm has three parameters that needs to be optimized.
These are gaussian width, low and high level of the threshold for the hysteresis thresh-
olding. The steps in this are as follows [Irwan Hariyono and Windiastuti, 2018]:

1. First, the image is smoothed using Gaussian blur to remove the noise in the image.

2. The edges are marked where the gradient of the image has magnitude.

3. The direction of the edge is calculated.

4. The local maxima are only marked as edges

5. Finally, the edges are determined using hysteresis thresholding by suppressing all
the edges that are not connected to certain edges points.

34





Method

3.1 Data Acquisition

In this study, hyperspectral and LiDAR images from multiple places are analyzed and
processed for the extraction of valuable information. Airborne hyperspectral images
and LiDAR data have been produced and processed by Terratec AS. The image data
is the property of the Municipality of Bærum with the aim of using it for different data
analysis and mapping.

Figure 3.1: This image represent the airborne hyperspectral data collection by Terratec AS. Figure from [Terratec, 2019]

Hyperspectral images were acquired in August 2019 with two HySpex sensors mounted
in a gyro frame of the aircraft. Th airplane was laid at a maximum opening angle of
16 degrees for the HySpex SWIR-384 sensor as shown in figure 3.3. The data collected
by HySpex sensors is in DN format (describe pixel values). The acquired image data
is encoded in a geospatial domain using the Band Sequential (BSQ) process. BSQ file
format stores images as a flat binary file with separate metadata that includes header
information. In BSQ format, each image band is stored as an individual file, making
it simpler to read and process [The Global Land Covering Facility, 2006]. The DN
file format is converted to the radiance data using the HySpex RAD software. The
hyperspectral image is the radiance data with 0.3 m resolution for the HySpex VNIR-
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1800 sensor and 0.7 m resolution for the HySpex SWIR-384 sensor. The data from
the HySpex VNIR-1800 sensor consists of images in the visible and near-infrared (400
- 1000 mm) spectral range, and the data from the HySpex SWIR-384 sensor consists
of images in the short-wave infrared (1000 - 2500 mm) wavelength region [Terratec,
2019].

Airborne images are geo-referenced and ortho-rectified. Georeferencing is the process
of giving the image location coordinates, and ortho-rectification is the process of elim-
inating the distortion in the image. Image georeferencing is performed using position
and timing data obtained from the Global Navigation Satellite System (GNSS). Simi-
larly, ortho-rectification of hyperspectral data is done using PARGE software based on
a 30 cm digital elevation model obtained using the Leica ALS70 laser scanner. Nearest
neighbor interpolation is used for georeferencing and location correction along with a
transformation in the WGS84 UTM32 coordinate system [Terratec, 2019].

Hyperspectral images were taken from three locations; Sandvika, Honeføss and Hamar
with a total area coverage of 37.4 km2. Information on the collection of hyperspectral
data by Terratec AS is given in table 3.1. There are a total of 14 flight line images over
the Sandvika area. Each of the flight line images covers from west to east, as shown
in figure 3.2. The corresponding mosaic version of the flight line images was created
by bilinear interpolation of the ortho-rectified flight strips. Moreover, only 8th and 9th

flight line images were used in this analysis [Terratec, 2019].

Table 3.1: Description of hyperspectral data collection by Terratec AS [Terratec, 2019]

Coverage number Stripe number Operator Date
41161 1 - 15 Magnus Nilsson 24.08.2019
41162 1 - 8 Ainar Härm 03.08.2019
41162 1 - 17 Andrei Tanasescu 28.07.2019

LiDAR data for each location is collected together with hyperspectral images. It is
recorded using the Reigl VQ-1560i laser scanner with an integrated Inertial Measure-
ment Unit (IMU) mounted on the Gyro mount, as shown in 3.3. LiDAR data varies
from hyperspectral images in that it offers dense, detailed and precise 3D coverage of
both the object and the ground surface. Also, the LiDAR sensor is an active sensor
with a maximum of three wavelengths. It provides information on the elevation of ur-
ban areas and thus distinguishes objects based on elevation information [Zhong et al.,
2017].

3.1.1 Hyperspectral Data

Hyperspectral images were collected using two HySpex sensors mounted on the gyro
frame of the aircraft.

HySpex System

Hyperspectral system consist of two sensors: HySpex VNIR-1800 sensor and HySpex
SWIR-384 sensor. These sensors are manufactured by Norsk Elektro Optikk AS, a
Norwegian company that produce airborne and ground-based hyperspectral imaging
systems. HySpex sensors detect the solar radiance reflected on Earth’s surface in a
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Figure 3.2: Data collection over coverage number 41161. This coverage number occupies the area of Sandvika. 15
flightlines images were obtained. Figure from [Terratec, 2019]

wavelength range from 400 nm to 2500 nm. The HySpex VNIR-1800 sensor captures
the image in the visible and near-infrared region from 400 nm to 1000 nm wavelength
range with 186 spectral channels, while the HySpex SWIR-384 sensor captures the
image in the short-wave infrared region from 930 nm to 2500 nm with 288 spectral
channels. During the acquisition of airborne data using HySpex sensor, both sensors
are used in combination with INS and GPS, which are the navigation device used to
geo-reference images based on the position and altitude of the camera [AS, 2019].

Both of these sensors are based on the pushbroom scanning principle, as shown in figure
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Figure 3.3: LiDAR sensor and Hyperspectral sensor setup. Figure from [Terratec, 2019]

3.4. The incoming light passes through the optics and focuses on the slit through the
focusing mirror. Then the light passes through the collimating mirror to the dispersive
element. The two focusing and collimating mirrors are aspherical mirrors that avoid
the phenomenon of spherical and chromatic aberration while at the same time reducing
stray light. The dispersive factor separates different wavelengths and focuses them on
the detector array using different lens optics, as shown in figure 3.4. Slice of a two-
dimensional hyperspectral image can be obtained from a detector array with spectral
details in one direction and a spatial one in the other direction [AS, 2019]. Only one
section of the scene is taken at a time, and the pushbroom scan is used to get a two-
dimensional spatial representation of the scene. The scan is achieved by installing the
sensor in an aircraft and capturing the images in pushbroom scanning mode as shown
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Figure 3.4: Working principle of HySpex Sensor (Pushbroom Principle). Modified figure from [AS, 2019]

in figure 3.3.

The specification of HySpex VNIR-1800 and SWIR-384 sensor is shown in table 3.2

Table 3.2: System specification of HySpex VNIR-1800 and SWIR-384 sensor [Terratec, 2019]

Specification VNIR-1800 SWIR-384
Spectral Range 400 - 1000 nm 930 - 2500 nm
Spatial pixels 1800 384
Spectral channels 186 288
FOV 17 degree 16 degree
Pixel FOV across/along 0.16/0.32 mrad 0.73/0.73 mrad
Bit resolution 16 bit 16 bit
Dynamic range 2000 7500
Noise Floor 2.4 e- 150 e-
Max speed 260 fps 400 fps

3.1.2 Software and programs

QGIS

QGIS is a professional user-friendly Open Source Geographic Information System (GIS).
The initial goal of a QGIS project was to provide a GIS data-viewer, but now it has
evolved a lot with functionality such as vector creation, classification based on machine
learning algorithms, LiDAR tools, and many more [QGIS, 2020]. QGIS supports raster
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and vector data formats along with support for other formats with the help of different
plugins. QGIS has been extensively used in this project. First and foremost, QGIS
is used to view the large hyperspectral images and clip the part of the image that
is important for further analysis. Different image processing is done using a raster
calculator. Also, vector tools are used to generate a mask from the images and thus
apply the mask to the raster [QGIS, 2020]. Similarly, large hyperspectral images are
resized and cropped using QGIS raster tools so that they can be easily accessed and
further processed using Python.

ENVI

ENVI is an image analysis software used to analyze GIS, remote sensing, and derive
useful information from images in order to make better decisions. ENVI was developed
by Harris Geospatial Solutions, Inc [Harris Geospatial Solution, 2020].The image pro-
cessing kit of ENVI consists of specialized spectral, geometric correction, radar analysis,
raster, and vector processing tools. ENVI is frequently used in this study for visualizing
and processing hyperspectral images. Also, as pixel-wise classification is used in this
study, image class labels are generated using the ENVI Region Of Interest (ROI) tool.
It is used to represent and construct spectral libraries. Similarly, VNIR and SWIR
images are also combined using ENVI [Harris Geospatial Solution, 2020].

LAStools

LAStools is a system used to process LiDAR point clouds. Since LiDAR data is used in
this project to mask different portions of hyperspectral images, LAStools is used for this
purpose. It consists of a variety of tools to display, classify, convert, filter, rasterize,
triangulate, crop, and polygonize LiDAR data [rapidlasso GmbH, 2020]. DSM and
DEM are obtained using LAStools which are then processed using the QGIS raster
calculator to obtain nDSM.

3.1.3 Programming Languages and tools

Python

Python is a programming language that consists of several packages and libraries for
reading, writing, modifying, and analyzing data. Python is user-friendly and easy to
learn and understand. It is commonly used in the area of data analysis, and machine
learning. In this study, python 3 is used for reading, visualizing, and analyzing hyper-
spectral data. It is achieved in combination with different libraries and modules. The
python scripts that are used in this study are included in the appendix ??.

Spectral Python

Spectral Python (SPy) is a free open source python module for processing hyperspectral
data which has a function for reading, visualizing, processing, and classifying hyper-
spectral images. In this project, spectral python is used for reading the ENVI header
files. Also, PCA of hyperspectral images is evaluated using spectral python.
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Pandas

Pandas is an open-source data structure and data analysis tools for Python program-
ming language. It is used for processing numpy array data, and csv files. In this
project, pandas is used to convert numpy array of hyperspectral data into a pandas
dataframe. Pandas dataframe is a two-dimensional tabular data that contains labeled
axes (rows and column). Different arithmetic and logical operations can be performed
on the dataframe using pandas.

Scikit-Learn

Scikit-learn is an open-source and easy to use machine learning library for python
programming language. It is simple and efficient tools for predictive data analysis.
Scikit-learn is used for classification, regression, clustering, dimensionality reduction,
model selection, and preprocessing of hyperspectral data. In this project, Scikit-learn
is used to implement supervised classification such as RF and SVD. Also, it is used to
implement dimensionality reduction with PCA.

Keras

Keras is a high-level Application Programming Interface (API) for performing neural
network task which is written in python and runs on top of TensorFlow, CNTK or
Theano. It has supports for both convolution neural networks, recurrent networks and
also the combination of two. One of the advantage of using Keras is that it is very fast
and can run seamlessly on CPU and GPU. In this project, Keras is used to implement
image segmentation using CNN.

3.1.4 File formats

Band Sequential

BSQ format is a popular standard image format that stores images as a flat binary file
with the header information in a separate metadata file [The Global Land Covering Fa-
cility, 2006]. In BSQ format, each line of data is immediately followed by the next line
in the same spectral band so that each image band is stored as an individual file and
the user can access and manipulate the single image band [Geospatials, 2019].

TIFF

TIFF is a widely used image format for raster images. TIFF files are often referred
to as GeoTIFF in the sense that the file contains the geographical information of the
image. Image compression can be maintained using the TIFF file format, along with
the preservation of relevant image information.

3.1.5 Shape File

Shape File is usually used to save the vector file. It is used to store geometric position,
shape, and attribute of the geographical feature of the image in the form of circles, lines,
or polygons. Severals shape files are generated in this project to mask different portions

42



Chapter 3

of the hyperspectral image. The nDSM shape file is created to mask the buildings from
the image. It is stored as .shp, .shx, .dbf, and .prj files [Archis, 2019].

3.2 Preprocessing of hyperspectral data

3.2.1 Hyperspectral data types

The data obtained from Terratec AS consist of three types of hyperspectral flight line
images. The first data, original DN dataset, is processed to radiance data, and this
radiance data is atmospherically corrected (described in chapter 3.2.2) to obtain a
reflectance data. Spectral artifacts are still present in the atmospherically corrected
data due to their high spectral resolution. To remove these artifacts, spectral polishing is
used. Spectral polishing is the process used to eliminate noise and calibration anomalies
from atmospherically corrected data in the spectral domain.

The radiometric variation algorithm is used for spectral polishing of the reflectance
image which is performed in ATCOR-4. The soil pixels are first masked using the
vegetation index (0 < NDV I < 0.33). Spectral polishing removes the spikes without
disrupting the spectral shape. The average reflectance spectrum is then measured and
smoothed over all soil pixels with a 5-channel filter, except for atmospheric water vapor
regions where linear interpolation is applied. The ratio between the filtered and the
original spectrum of soils is the spectral polishing function applied to all pixels of the
image. Figure 3.5 shows the spectra of the raw reflectance image and spectra of polished
reflectance image after the application of spectral polishing.

Figure 3.5: Left: Different spectra of atmospheric corrected reflectance image. Right: Different spectra of reflectance
image after spectra polishing

3.2.2 Atmospheric correction

Hyperspectral data obtained from Terratec AS are radiance datasets. Radiance consists
of all reflected radiation from the surface material, neighboring pixels, and the atmo-
sphere, resulting in lighting and atmospheric transmitting effects. The electromagnetic
energy reflected from the material is absorbed by the atmosphere on the way to the sen-
sor, which degrades the quality of the spectra. It also causes more uncertainty and error
because a mathematical analysis cannot be done and spectral libraries cannot be used.
The atmospheric correction must, therefore, be performed on the radiance data in order
to generate the corresponding reflectance data. Factors such as solar illumination, sen-
sor geometry, and terrain information must be considered when achieving the objective
of atmospheric correction, which is to reduce the effect of the atmosphere.
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Atmospheric correction is performed using ATCOR software and the ATCOR used
for airborne imagery is ATCOR-4 [Richter, 2018]. ATCOR-4 performs atmospheric
correction and estimates the surface reflectance. ATCOR uses the AFRL MODTRAN
code to determine the atmospheric look-up table (LUT) database and the parameters
for atmospheric correction were setup manually.

Atmospheric Parameters

Visibility and optical thickness are two parameters that are used to characterize the
atmosphere. The estimate of maximum horizontal distance that a human eye can see
a dark object in a bright sky is the visibility which is given by equation 3.1.

V IS =
1

β
ln

1

0.02
(3.1)

where β is the extinction coefficient. Similarly, the optical thickness (δ) is the product
of the coefficient of extinction (β) and the vertical length (x) of the path from the sea
level to the space given as:

δ = β × x (3.2)

For the path from sea level to space, two factors, molecules and aerosols, play an impor-
tant role in changing the optical thickness from equation 3.2 to 3.3. This means that
the optical thickness is due to the molecular scattering, aerosol, and molecular absorp-
tion [Richter and Schläpfer, 2002]. The optical thickness is unpredictable and is difficult
to eliminate during atmospheric correction, so this parameter is kept constant.

δ = δ(molecular scattering) + δ(aerosol) + δ(molecular absorption) (3.3)

Based on these measures, the important atmospheric parameters that vary in space and
time are aerosol type and water vapor. The aerosol type includes the absorption and
dispersion characteristics of the aerosol particles. The type of aerosol can be measured
from a geographical location. The aerosol types provided by ATCOR are rural, urban,
maritime, and desert [Richter, 2018].

Generally, the water vapor components are about 920 nm to 960 nm wavelength range.
But if the sensor does not have this wavelength range, as in the case of Landsat TM,
seasons (summer/winter) are used to estimate the water vapor components [Richter,
2018].

Radiation Components

Two components of radiation in the solar wavelength region are the path radiance
and the reflected radiance. Path radiance(Lpath) is a scattered photon without ground
interaction. Reflected radiation consist of two elements, one of which is reflected from a
target material pixel and the other from a neighborhood pixel [Richter, 2018]. Equation
3.4 displays the total radiance signal of L. The radiance components are shown in figure
3.6.

L = Lpath + Lpixel reflected + Lneighbour reflected (3.4)

The radiation reflected from the target material pixel is the main concern, so the mea-
surement and deletion of path and neighborhood pixel reflection is the main task of
atmospheric correction [Richter, 2018].
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Figure 3.6: Three components of radiation. L1: path radiance, L2: Pixel reflected, L3: neighbourhood of pixel reflected.
Figure from [Richter, 2018]

BRDF correction

The viewing angle and the geometry of solar illumination influence the reflectance of
the target material. This effect is called Bidirectional Reflectance Distribution Function
(BRDF). BRDF effects generally occur as across-track brightness gradients after atmo-
spheric correction is applied to hyperspectral data. These effects are strong in rough
terrain with slopes facing the Sun and other sections away from the Sun [Richter,
2018]. ATCOR provides a method for BRDF effect correction by identifying a com-
mon anisotropy correction factor using both the surface cover type characterization
and the per-pixel observation angle [Richter, 2018]. The overall process of atmospheric
correction to obtain reflectance image is shown in figure 3.7.

3.2.3 Generation of Region of Interest

The flight line images obtained from Terratec AS were huge and were computationally
inefficient to work with. Therefore, the first task was to align all the images on the
flight line and select the ROI for training, testing, and validation. To obtain ROI, flight
line images of the Sandvika region are opened on QGIS. Then, with the aid of raster
extraction by extent tool, many sections of the images are extracted and saved along
with the header file. These extracted images cover a certain portion of the flight line
images and have interesting information that meets the requirements of this study. This
is shown in figure 3.8.

3.2.4 Masking elevated objects

Airborne hyperspectral images cover large areas of land and consist of many artificial
and natural materials. As in this study, the main objective is to extract the edges
of the road in such a way that the main emphasis is on the non-elevated part of the
image. Also, the spectral signatures of various land cover materials such as roads and
rooftops are identical, making it more difficult to distinguish and identify. So, to avoid
this misclassification, the buildings are masked from the image with a mask generated
from LiDAR data. This is done in QGIS and LAStools and the process is shown in
figure 3.9.
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Figure 3.7: Atmospheric correction and generation of reflectance image using ATCOR-4 and BRDF correction. Modified
figure from [Richter and Schläpfer, 2002]

The main purpose of masking is to eliminate all items that are elevated above 1 m in
height, except vegetation. So, a mask layer is first generated using LiDAR data. Using
LAStools, DSM, and DEM are generated using the first and last return of the lidar
points. The nDSM raster is then obtained by subtracting the DEM from the DSM. As
this nDSM raster consists of vegetation such as trees so that NDVI, a raster obtained
from the hyperspectral image using equation 2.2, is subtracted from nDSM to produce
nDSM raster without vegetation. Then the mask raster for all artifacts above 1m is
obtained by the threshold. Finally, masking is performed using the hyperspectral image
and mask raster in QGIS to generate final image cube without elevated objects.

3.2.5 VNIR and SWIR image stacking

VNIR images respond more to color changes. This implies that in VNIR images, the
same objects of different colors are classified as different objects. Also, materials of
different chemical compositions with the same color are classified as the same objects in
VNIR. Likewise, the SWIR images used in this project have a very low spatial resolution,
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Figure 3.8: Lower right is training area and upper right is validation area.

which prevents a good classification of small surface materials. It was therefore decided
to combine both the VNIR and the SWIR image. This is done using the ENVI layer
stacking tool. The process flow is shown in figure 3.10

Since the VNIR image has a spatial resolution of 0.3 m and the SWIR image has a spatial
resolution of 0.7 m, the VNIR image is re-sampled using the nearest neighbor resampling
method from 0.3 m to 0.7 m. Finally, the SWIR and the re-sampled VNIR image are
combined using geospatial data of the image.

3.2.6 Training class generation

The supervised classification is used in this project for the classification of hyperspectral
images. The first step in any supervised classification is to generate labels for each pixel
of the hyperspectral image. Since each pixel in the image refers to specific material,
the pixel-wise supervised classification is enforced. For this reason, training classes are
created at the pixel level. This is done in ENVI, where polygons are created for each
image object along with their labels. Polygons are created from different sections of
the image for each class. Four classes are generated from the hyperspectral image in
this study. These classes are roads, vegetation, train tracks, and water. The pixel-wise
labeling of the study area is shown in figure 3.11.

There should be a balance in the number of pixels for each class in every supervised
classification. This means that the number of pixels in each class should be equal. Table
3.3 indicates the number of pixels in each class.

3.3 Feature Extraction

Hyperspectral images, consisting of hundreds of narrow, contiguous spectral bands with
a high spectral resolution, allow the retrieval of continuous spectral characteristic curves
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Figure 3.9: Masking hyperspectral image to remove elevated materials

Figure 3.10: VNIR and SWIR image stacking workflow

and therefore serve as a powerful tool for the classification of Earth’s surface mate-
rial [Ma et al., 2013]. Not all of the hypercube bands provide the same proportion
of information as the neighborhood bands are redundant, strongly correlated and sub-
ject to the Hughes phenomenon [Ma et al., 2013], where the precision of classification
increases gradually when the number of spectral bands increases, but declines signifi-

48



Chapter 3

Figure 3.11: Hyperspectral image with class labels

Table 3.3: Pixel count of each class

Class Pixel Count
Road 14774
Train track 15036
Vegetation 12050
Water 14837

cantly as the band number reaches a certain high value [Ma et al., 2013]. The presence of
large spectral bands, also called curse of dimensionality, significantly affects the ability
of classifiers to generalize, leading to catastrophic predictive results [Cao et al., 2016].
The objective of the feature extraction is to select certain bands or a combination of
bands from the full band of hyperspectral image to overcome the Hughes phenomenon
in the classification. Various methods for feature extraction exist and, in this study,
techniques such as PCA and NDVI are applied to the hyperspectral image to extract
important features [Uddin et al., 2017].

3.3.1 Principal Component Analysis

Neighboring bands of hyperspectral images are highly correlated and provide the same
information about the target. PCA is used to remove this correlation between bands.
PCA is an unsupervised feature extraction method that performs a linear band com-
bination so that a new set of uncorrelated bands is generated, each providing unique
information of the target object [Rodarmel and Shan, 2002].

In this analysis, PCA is implemented in python using scikit-learn package. One of the
essential tasks of implementing the PCA is to select the number of principal components
and find the components that have high variance. 50 principal components are taken
and scree plot is drawn to find the principal components that have dominant variance.
The variance of the first six principal components are shown in the figure 3.12

As shown in figure 3.12, the information content continues to decline with an increase in
the number of PCA components and only the first 3 components contain approximately
99% of the total variance. The score image of the first six principal components are
also shown in figure 3.13 - 3.15.
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Figure 3.12: Scree plot of first 6 principal components and their respective variance

Figure 3.13: Score image of left: PC1 and right: PC2

Figure 3.14: Score image of left: PC3 and right: PC4

Figure 3.15: Score image of left: PC5 and right: PC6

Similarly, from image 3.13 - 3.15, the first three components contain most of the in-
formation. Most of the details and objects are visible in the score image of the first
principal component (left figure 3.13). Vegetation is well separated and visible in the
second principal component score image (right figure 3.13) and train tracks and roads
are seen in the third principal component score image (left figure 3.14). The remaining
fourth , fifth, and sixth main components consist of some signal which can be seen in
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the figure 3.15. However, the decision was made to include only the first three princi-
pal components as classification features. PCA is used separately for VNIR, SWIR and
stacked (VNIR+SWIR) images. The number and variation of the principal components
is different for these images.

3.3.2 Normalized Difference Vegetation Index(NDVI)

NDVI algorithm is implemented in Python where the red band is subtracted from near-
infrared and is divided by the sum of the red and near-infrared bands as shown in the
equation 2.2. In this study, band 76 is chosen as a red band and band 106 is used as a
near-infrared band for the NDVI evaluation. The output of NDVI is used as a feature
for the classification procedure. The resulting image after the NDVI operation is shown
in figure 3.16

Figure 3.16: Left: Original image, Right: NDVI image showing vegetation (green color represents vegetation)

3.3.3 Normalized Digital Surface Model

In hyperspectral images, different materials have identical spectral signatures, which
make it difficult to differentiate between these materials. The nDSM derived from Li-
DAR data can be used to identify these materials. Objects such as roads and pavements,
with similar spectra but different elevations, can be identified using nDSM data.

In this project, the main objective is to extract the edge of the roads and for this, the
location of the curbs or road boundaries is crucial which can be identified using fused
version of LiDAR and hyperspectral data. So, nDSM obtained from LiDAR data is
included as one of the feature for supervised classification. The method is shown in
figure 3.17.

3.3.4 LiDAR intensity

LiDAR intensity is generated from the intensity values of the first return of the LiDAR
data in LAStools. The intensity values is different for different materials so this is used
as one of the features for classification of the target materials.

3.4 Classification based on Machine Learning Algo-

rithms

In this analysis, the hyperspectral image classification is based on a supervised machine
learning algorithm. The data values are first normalized to a standard scale without
distorting the variations in the ranges of their values. The result after normalization is
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Figure 3.17: nDSM generation by subtracting DSM from DEM derived from LiDAR point cloud.

a dataset with zero mean and unit standard deviation [Jaitley, 2018]. Mathematically,
the normalization is evaluated as follows:

X̃[:, i] =
X[:, i]− µi

σi

µi =
1

N
∗

N∑
k=1

X[k, i]

σi =

√√√√ 1

N − 1
∗

N∑
k=1

(X[k, i]− µi)2

where µ is Mean, σ is Standard Deviation, i is the number of column in the dataset,
N is total number of rows in the dataset, X is the original data value,
X̃ is the normalized data value

After the dataset is normalized, it is divided into training and test dataset using train-
test-split library of Scikit-Learn as shown in figure 3.18. The training set contains
known target value and it is used to train the model and the test set is used to test the
model’s prediction on this unknown test dataset.

3.4.1 Classification based on Support Vector Machine

SVM is a method of classification based on the statistical information of hyperspectral
images [Cortes and Vapnik, 1995]. It locates the optimal hyperplane between classes
to split them in a new high-dimensional feature space, taking into account only the
training samples that lie at the edge of the class distribution known as support vectors.
The CSV file of the hyperspectral image and corresponding class label are generated in
ENVI. The CSV files are then read in python for using pandas and further processing
is done.
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Figure 3.18: Splitting dataset into training (80%) and test (20%) set

Hyperparameter Optimization

A machine learning model is defined as a mathematical model, with a number of param-
eters to learn from the data. But there are certain parameters called hyperparameters
that can not be explicitly learned and must be identified by manually on the basis
of some hit and trial process before training begins [GeeksforGeeks, 2018]. A model
can have several hyperparameters and the main task in hyperparameter optimization
is to find the combination of the parameter which results in high performance of the
model [GeeksforGeeks, 2018]. SVM has several hyperparameters, including regular-
ization (C), kernel, and gamma. In python, tuning of hyperparameters is done using
Scikit-Learn GridSearchCV library. In GridSearchCV, the model uses many values for
each hyperparameter to train it and find the combination of the hyperparameter val-
ues which yields the best prediction. For SVM model, best performance is achieved
with C=1000, gamma=1 and rbf kernel. The validation curves for SVM using different
values of C and gamma (γ) is shown in figure 3.19.

Figure 3.19: Training and validation score of SVM for different values of hyperparameter C. In the plot, it can seen
that performance increases with the increase in regularization (C) value

Training

SVM model training is conducted using datasets from southern Sandvika area. The
model is trained with both the radiance data and the reflectance dataset separately. Also
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it is trained separately for hyperspectral data, LiDAR data, and fused (hyperspectral
+ LiDAR) data. A total of 13 SVM models were generated, 6 from SWIR, VNIR,
and stacked radiance data, 6 from SWIR, VNIR, and stacked reflectance data, and one
from LiDAR. The first 3 principal components, NDVI, LiDAR intensity, and nDSM
data were used as training features for radiance and reflectance VNIR images. Sim-
ilarly, the first 6 principal components, LiDAR intensity, and nDSM data were used
as training features for radiance and reflectance SWIR images. Likewise, the first 7
principal components, NDVI, LiDAR intensity, and nDSM data were used as training
features for the radiance and reflectance stacked image. The first 7 principal compo-
nents were selected for stacked image because they included about 99.9% of the image
total variance.

Validation and Accuracy Assessment

The SVM model performance is assessed using validation data from the northern part
of the Sandvika area. The validation dataset shows how well the training has worked. If
the performance of the training differs significantly from that of the test, this suggests
overfitting or under-fitting. The accuracy of the model is assessed and visualised using
confusion matrix, classification report, kappa, and F1 score.

3.4.2 Classification based on Random Forest

RF is a collection of decision trees where classification is based on majority voting of
the trees. The script of the classification using RF is shown in appendix A.

Hyperparameter Optimization

Similar to SVM, RF has several hyperparameters such as number of trees, depth of the
tree, number of feature and criterion. GridSearchCV function of Scikit-learn library
is used to tune the hyperparameter of RF. The best performance is achieved with
criterior = ”entropy”, max-depth = 70, max-features=”auto” and n-estimator=80. The
validation curve for RF using different values of n-estimator is shown in figure 3.20.

Also cross-validation is also run on the dataset and learning curve is plotted as shown
in figures 3.20 and 3.21 respectively. Learning curve shows the performance of model
as the training data increases and check whether the model is suffering from bias or
variance problem. It determines whether there is need to increase the training dataset
or to work on the model. In the plot 3.21, it can be inferred that the RF model is
neither suffering from bias nor variance problem.

Training

Similar to SVM, RF model is trained using datasets from southern Sandvika area.
The model is trained with both the radiance data and the reflectance dataset sepa-
rately. Also it is trained separately for hyperspectral data, LiDAR data, and fused (hy-
perspectral+Lidar) data. A total of 13 RF models were generated, 6 from SWIR, VNIR,
and stacked radiance data, 6 from SWIR, VNIR, and stacked reflectance data, and one
from LiDAR. The first 3 principal components, NDVI, LiDAR intensity, and nDSM
data were used as training features for radiance and reflectance VNIR images. Simi-
larly, the first 6 principal components, LiDAR intensity, and nDSM data were used as
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Figure 3.20: Training and validation score of SVM for different values of hyperparameter n-estimator. In the plot, it
can seen that performance remains same with the increase in n-estimator value

Figure 3.21: Training and cross-validation score of RF for different training set size.

training features for radiance and reflectance SWIR images. Likewise, the first 7 main
components, NDVI, LiDAR intensity, and nDSM data were used as training features
for the radiance and reflectance stacked image.

Validation and Accuracy Assessment

The RF model performance is assessed using validation data from the northern part of
the Sandvika area. The validation dataset shows how well the training has worked. If
the performance of the training differs significantly from that of the test, this suggests
overfitting or under-fitting. The accuracy of the model is assessed and visualised using
confusion matrix, classification report, kappa, and F1 score.
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3.5 Classification based on Deep Learning

Deep Learning (DL) models hierarchically learn the features of input data with a very
deep neural network, typically deeper than three layers. The network is configured
layer-wise first by unsupervised training, and then balanced in a supervised manner.
High-level features (objects and big shapes in the image) are learned from low-level
features (points and lines learned via the filter of convolution). DL models contribute
to gradually more abstract and complicated features at higher levels and these com-
plex features are immutable to the changes the dataset has undergone [Gogineni and
Chaturvedi, 2019].

Unlike a machine learning algorithm, DL models can find complex features in the hy-
perspectral images automatically, avoiding complicated and time-consuming feature
engineering processes [Yang et al., 2018]. CNN is one of the widely used DL architec-
ture in the field of image segmentation which considers spatial correlation among pixels.
Some of the DL architecture used in this study for hyperspectral image segmentation
are discussed in later sections.

3.5.1 CNN Models

In CNN, hyperspectral image is passed through a series of convolution layers with
filters, pooling, fully connected layers, and then apply softmax function to classify the
objects in image with probabilistic values between 0 and 1. In this study, two different
CNN architectures are used as shown in figure 3.22. The two CNN models differ in the
number of convolution layers, filer size, and number of dense layers.

In Figure 3.22, the model contains 10× 9× 9 input shape. The convolution layer with
30 filters and 3 × 3 filter kernel sizes is applied to each image window (window size is
equal to the input shape). Each filter transforms a part of the image which is defined
by kernel size using kernel filter. Additional convolution layers of different filter sizes
and kernel sizes are applied to the output of the previous layer. The output of the final
convolution layer is three-dimensional, so this output is passed through a flattened layer
to convert it into a single dimensional array. The flatten layer output is forwarded to
a dense layer with some neuron units and ReLU activation function, which sets all
activation values below zero to zero.

Dropout is used to drop a portion of the network randomly, which causes the model to
learn features in a distributed manner. This technique also enhances generalization and
minimizes overfitting. The dense output layer has neuron units equal to the number
of classes and softmax activation functions. This output layer outputs the probability
distribution for each class and the sum of those values is equal to 1. The same structure
applies to the second model.

After the layers are added to the model, loss function, score function, and optimizer
algorithm are defined. Loss function defines how poorly the model performs on the
labelled dataset by evaluating the error rate between actual labels and predicted la-
bels. Since, the dataset consists of more than two classes (categorical classification) so
”categorical crossentropy” loss function is used.

The proper choice of optimization algorithm is very important in CNN. Stochastic Gra-
dient Decent (SGD) optimization algorithm is used in this model. SGD consist of differ-
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Figure 3.22: Left: CNN model 1 with two convolution layer, Right: CNN model 2 with 3 convolution layer. The plot
shows the input and output shape in each layer.

ent hyperparameters like learning rate, decay, momentum, and nesterov. These hyper-
parameter are optimized using cross-validation until the best performance is achieved.
Similarly accuracy metric is used as a score function. The script of the classification
using CNN is shown in appendix B.

Training and validation

Before training CNN models, hyperspectral image data are processed and converted
to numpy array (.npy) format. The hyperspectral image data are split into patches
(windows) of 9 pixels size. The initial form of the dataset is three-dimensional (length×
height × bands) but after splitting the image into small patches, its shape changes to
four-dimensional (number of patches× length×height×bands). Then labelled dataset
is divided into two sets of train and test, where training comprises of 70% and test set
comprises of 30% of the dataset. In the training set, the weak classes are oversampled to
balance the dataset. Since the CNN training requires a large amount of data thus, data
augmentation is applied to the training set. The data augmentation generates a new
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version of pre-existing image patches by rotating, zooming, and flipping them.

The architecture of the CNN model is determined after processing the dataset and the
model is modified iteratively after each training based on the model’s loss and accuracy
plot. The training of the models is done in Keras. The shape of training data is
number of patches × length × height × bands. Both augmented and original training
data are used to train the CNN. Since training a DL network requires tons of data, it
requires more computer memory to load and use all data at once to train a DL network.
Thus batch processing is used to process datasets in batch instead of loading all data
at once. Computer memory can be used more effectively by batch processing. In this
study, all the training was performed on a laptop with 8 GB of memory. Also during
training, the model is saved at its best training epoch to avoid overfitting.

3.6 Road Edge Detection

After the classification map is obtained using a machine and a deep learning algo-
rithm, road edges are extracted using Canny Edge Detection. Canny Edge Detection
is implemented using python skimage package. It involves the following process:

Noise Reduction

The noise in the image is reduced by smoothing it with the Gaussian Blur filter. It
is achieved using the Gaussian Kernel Image Convolution technique. The size of the
kernel depends on it and the small kernel means the blur is less visible.

Gradient Calculation

The edge strength and direction are calculated by measuring the gradient of the image
using edge detectors such as Sobel filters. After this, the image edges are obtained.

Non-Maximum Suppression

After gradient evaluation, the obtained edges have a mixed shape, so that a non-
maximum suppression is carried out in order to thin out the edges. In this, the al-
gorithm goes through all the points in the gradient matrix and finds the pixels with the
highest value in the direction of the edge.

Double Threshold

It mainly involves the determination of three types of pixels: strong, weak and non-
relevant. High threshold is used to evaluate strong pixels and low threshold is used to
classify non-relevant pixels. All pixels with an strength between high and low threshold
are weak pixels. Hysteresis is used to transform weak pixels to strong pixels based on
the availability of a strong pixel around it.

Generally, the road edges determined using Canny Edge Detection are thin. Multiple
dilation is applied on the extracted edges to make it more thick and visible (see figure
3.23).
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Figure 3.23: Left: Classification map obtained using RF Algorithm. Right: Road Extraction using Canny Edge Detection
and Dilation.
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Results and Discussion

4.1 Data Description

Many experiments were carried out and different classification models were engineered.
The performance of these models were evaluated for radiance, reflectance, LiDAR, and
pixel level fused (hyperspectral and LiDAR) datasets. Finally, comparison of the perfor-
mance of each model was done for each type of dataset. This chapter includes the results
of data preprocessing, model architecture, model performance, and comparison.

The city of Sandvika, Norway was selected as a case study. The southern part is used
as training area and northern part of the city is used as testing area, see figure 3.8. The
area consists of artificial construction such as buildings, roads, and railways.

4.2 Experimental Results

The hyperspectral image and LiDAR data were classified using SVM, RF, and CNN
model which were trained using training dataset to achieve maximum accuracy. The
trained model was then used to classify the test data. The classification was done in
radiance, reflectance of hyperspectral data and LiDAR data separately and classification
map was obtained. The performance were evaluated using performance metrics such
as Overall Accuracy (OA), F1-score, cohen-kappa score and confusion matrix. The
radiance and reflectance hyperspectral images were classified and compared. The one
that performed better was fused with the LiDAR data and again the classification
was done and the accuracy was compared with the individual data. Also, Canny Edge
detection algorithm was used to extract the road from a classified image map. Similarly,
the effectiveness of SVM, RF, and CNN in the classification of hyperspectral images
was also compared.

4.2.1 Effects of PCA on classification

The first experiment was conducted to access the difference in overall accuracy and com-
putation time for the classification of hyperspectral data using original high-dimensional
data and reduced PCA data. The first 3 principal components are used. Performance
based on different metrics and computational time of the RF and SVM on the origi-
nal hyperspectral image and dimensional reduced dataset using PCA is evaluated and
compared in table 4.1.
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Table 4.1: Comparison of classification accuracy, training and testing time of non-PCA and PCA modified hyperspectral
image based on SVM and Random Forest

RF SVM
Without PCA With PCA Without PCA PCA

Accuracy 0.91 0.91 0.85 0.89
F1-score 0.84 0.83 0.75 0.81
Kappa Score 0.90 0.89 0.85 0.84
Training Time (seconds) 0.63 0.44 0.95 0.10
Testing Time (seconds) 5.37 2.80 73.49 3.86

From table 4.1, it can be observed that training and testing time decreases by us-
ing PCA modified hyperspectral data. This is because PCA reduces high dimensional
hyperspectral data to a few principal components and less data size means less compu-
tation time. In the case of RF, the performance is almost the same for both data, but
the precision of the classification is higher for the PCA transformed data in the case of
SVM.

4.2.2 Classification based on SVM

The classification was done in the radiance, reflectance, and LiDAR data. Both radi-
ance and reflectance data consist of SWIR and VNIR images which are classified using
SVM. First, the classification results of all the types of data using SVM, RF and CNN
were summarised and then the best results from each dataset were extracted and com-
pared with each other. Similarly, best results based on classification models were also
compared.

The available training dataset were divided into 80% training and 20% validation data.
Before splitting the data, they are normalised so that their mean is 0 and variance is 1.
Determination of regularization (C) and gamma (γ) parameters is crucial while training
SVM model. Values of these hyperparameters are determined using cross-validation.
For the reflectance dataset, the best values for the parameters C were 10 and 1000 for
the VNIR and SWIR images , respectively. γ values for VNIR and SWIR were found
to be 0.1 and 1, respectively. The influence of different parameter values on overall
accuracy and computation time of classification is shown in table 4.2. These values
were evaluated experimentally based on the available training samples.

Table 4.2: Analysis of overall classification accuracy and the computation time with different SVM parameter values.

Parameter Value Overall Accuracy [%] Computation Time [s]
SVM C = 100, γ = 1 97.4 5.68
SVM C= 10, γ = 0.1 97.9 5.43

The result of the classification of the test image using SVM based on overall accuracy
(OA), F1-score (F1), cohen-kappa score (KS), and computation time (CT) for radiance,
reflectance, LiDAR, and radiance fused data is summarised in table 4.3.

As the SWIR image had low spatial resolution, the result of its classification was less
than 50%. Therefore, the outcome of SWIR classification was excluded from table
4.3. The F1-Score achieved for individual VNIR radiance (82%) and reflectance data
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Table 4.3: Comparison of classification accuracy and computation time (CT) of different data classified using SVM

Radiance Reflectance LiDAR Radiance fused
VNIR Stacked VNIR Stacked VNIR Stacked

OA 0.84 0.51 0.91 0.58 0.65 0.84 0.77
F1 0.82 0.45 0.77 0.45 0.47 0.82 0.54
KS 0.78 0.35 0.88 0.60 0.54 0.77 0.69
CT 22.41 80.51 5.70 5.32 9.50 27.71 72.30

(77%) with the SVM classifier was better than those achieved with their respective
Stacked (SWIR + VNIR) data (below 55%) because the stacked images were obtained
by combining VNIR and SWIR images with low resolution. This experiment shows
that the classification accuracy is high when the image has better resolution. Similarly,
the result of LiDAR data classification was low compared to the result of Fused (Hy-
perspectral Image + LiDAR) data. The OA of Stacked data increased from 58 % to
77 % when LiDAR data was used in combination with it. This shows that a better
classification map is obtained when elevation-based information is used in combination
with hyperspectral images.

The output of the classification shown in figure 4.1 illustrates four land cover classes.
Through visual analysis of classification results shown in VNIR radiance images 4.1B
and 4.1D, it can be seen that SVM is unable to differentiate between water and road
classes so some of the water pixels is labeled as road class. But in case of VNIR
reflectance images 4.1F and 4.1J, there is no misclassification of water pixels. This shows
that radiance image, not atmospherically corrected, has the effect of water absorption
around 900 nm wavelength range, which leads to some pixels of water being classified
as other classes.

4.2.3 Classification based on Random Forest

In this experiment, the classification was performed on radiance, reflectance, LiDAR,
and a combination of LiDAR and hyperspectral data (fused dataset) using RF. Table
4.5 shows the OA score, the F1 score, the cohen-kappa score, and the computation time
for the classification of the different data.

Table 4.4: Analysis of overall classification accuracy and the computation time with different Random Forest parameter
values. Here ’n estimator’ is the number of tress in the forest, ’criterion’ is the function to measure the quality of split,
and ’max depth’ is the maximum depth of the tree

Parameter Value Accuracy [%] Computation
Time [s]

Random
Forest

n estimator = 50, criterion
= ’entropy’, max depth =
82

92 4.52

Random
Forest

n estimator = 70, criterion
= ’gini’, max depth = 90

93 6.23

Random
Forest

n estimator = 200, criterion
= ’gini’, max depth = 150

93 17.7

During the classification based on the RF, it is important to determine the values of
the parameters, such as the number of trees, the feature to assess the quality of the tree
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Figure 4.1: Classification results using SVM. Top: Image A is the RGB image. Left: Image B and D are classification
map of VNIR and fused radiance data, respectively. Image F, and J are classification map of VNIR and fused reflectance
data, respectively, and Image H is classification map of Lidar Data. Right: Image C, E, G, I and K shows the respective
road edges

split and the maximum depth of the tree. Table 4.4 shows a comparison of classification
accuracy and computation time with the different values of these parameters. The
best result is achieved by using 70 trees with a maximum depth of 90 and the ’gini’
criterion.

From the table 4.5, it can be seen that excellent OA is achieved for fused (VNIR +
LiDAR) data (93%). The classification result of SWIR data is also increased from 52%
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Table 4.5: Comparison of classification accuracy and computation time of different type of data classified using Random
Forest

Radiance Reflectance LiDAR Reflectance Fused
VNIR SWIR VNIR SWIR VNIR SWIR

OA 92 52 93 90 71 93 90
F1 88 28 77 73 60 78 73
KS 88 35 89 85 61 90 85
CT 8.53 1.26 4.53 53.70 8.7 4.76 4.57

to 85% when LiDAR data is combined with the original SWIR data. This shows that
LiDAR elevation and intensity data improve the accuracy of classification when used
in conjunction with hyperspectral data.

The classification output shown in figure 4.2 shows four land cover classes. Similar to
SVM, the results of the classification shown in VNIR radiance images 4.2B and 4.2D
illustrate that RF could not distinguish between water and road classes so that some
water pixels are marked as road class. Yet there is no misclassification of water pixels in
the case of VNIR reflectance images 4.2F and 4.2J. This shows that the radiance image,
which has not been atmospherically corrected, has the effect of water absorption around
900 nm wavelength range, which leads to misclassification of some pixels of water as
other classes. Similarly, for the fused (VNIR + LiDAR) image shown in figure 4.2M,
road extraction is better than for the results of the individual hyperspectral and LiDAR
datasets shown in figure 4.2C, 4.2E, 4.2G, 4.2I which have many road misclassifications.
The number of pixels well classified and labeled can be seen in the confusing matrix
shown in figure

4.2.4 Classification based on CNN

The classification was performed on radiance, reflectance, LiDAR, and combination of
LiDAR and hyperspectral data using Convolution Neural Network. Overall Accuracy
(OA), F1-score and kappa-score were used to assess the classification performance of
the model.

In the experiment, PCA was applied on the training data and reduce the spectral di-
mension for VNIR from 186 to 10. It was decided to used first ten principal components
because CNN performed low with fewer principal components. Then from the resultant
data, 9 × 9 × 10 cubes were extracted to compute spatial-spectral features. The net-
work contained two convolution layers, two dropout layers, and two dense layers. The
two convolution layers contained ten 3×3 kernels and thirty 3×3 kernels, respectively.
The network consists of one fully connected layer and one classification layer with soft-
max activation function which outputs the probabilities of classes. The architecture
of the CNN is shown in figure 3.22. The CNN was trained over 50 iterations with a
batch size of 100 samples. The results of the classification are listed on table 4.6 and
the visualisation result is shown in figure 4.3.

The CNN model obtained the best result, with an overall accuracy of 83% for VNIR re-
flectance image which is 3% higher than the fused radiance result (80%). It is clear from
figure 4.3 that the both radiance and reflectance data suffered from misclassification
problems, such as train (pink) being misclassified as road (red). Also, in classification
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Figure 4.2: Classification results with Random Forest Algorithm. Top: Image A is the RGB image. Left: Image B
and D are classification map of VNIR and fused radiance data, respectively. Image F, and H are classification map of
VNIR and fused reflectance data, respectively, and Image J and L is classification map of Lidar Data and Stack fused
data. Right: Image C, E, G, I, K and M shows the respective road edges.

map of radiance VNIR data, figure 4.3G, there are misclassification of water (yellow)
as train track (pink) pixels. However, comparatively, reflectance data achieved less
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Table 4.6: Comparison of classification accuracy of different type of data classified using CNN

Radiance Reflectance
VNIR VNIR+LiDAR VNIR SWIR Stacked VNIR + LiDAR

OA 64 80 83 77 81 79
F1 52 60 61 60 57 58
KS 54 73.4 79 73.3 83.8 67.5

misclassification overall.

Influence of different Spatial Size of the data

The CNN model was tested with different size of training samples by extracting spectral-
spatial features with different size: 5× 5×C, 7× 7×C and 9× 9×C, where C is the
number of spectral bands. The number of spectral bands is achieved by applying PCA
on the original data. CNN model was trained using each type of data and accuracy
was evaluated on the validation data. The evaluation result shown in figure 4.4 which
demonstrates that the best performance was achieved with a size of 7 × 7 × C for
extracting the spectral-spatial features. This indicates that the target pixel and adjacent
neighbor pixels belonging to the same class are covered by 7 × 7 spatial size. The
spatial-spectral feature derived using information in the neighborhood area tends to
decrease intra-class variance and thus improves the accuracy of classification. However,
the choice of large spatial size can contain noise data so that the accuracy of the
classification decreases.

4.3 Classification result comparison

In this section, the results of the classification are compared based on the type of data
and method of classification algorithm used. First, the classification results of the radi-
ance and the reflectance were compared and the dataset that performed better was used
for classification using other algorithms. Similarly, individual classification result from
hyperspectral data, LiDAR data, and fused data are compared and analysed. Lastly,
the accuracy result from SVM, RF, and CNN are compared and the best performing
model is determined.

4.3.1 Radiance and Reflectance Results

Both the radiance and reflectance hyperspectral images had separate images in SWIR
and VNIR wavelength range. So the comparison was performed based on classification
results of VNIR and SWIR data. Tables 4.3, 4.5, and 4.6 shows the comparison of clas-
sification result of VNIR and SWIR radiance and reflectance data using SVM, RF, and
CNN, respectively. It can be seen that the classification result of radiance data is better
as compared to reflectance data. The confusion matrix of the classification of radiance
and reflectance data based on RF is shown in figure 4.5 and 4.6, respectively.

Although the OA of the classification of the reflectance data is higher than that of the
radiance data, the F1-score is higher for the radiance data. It can also be seen from
the confusion matrix 4.5 that the train tracks are well classified in the radiance data as
opposed to the reflectance data. In the case of reflectance results, more than 50% of the
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Figure 4.3: Classification results with CNN. Top: Image A is the RGB image. Images B, D and F are classification
map of VNIR, SWIR and Fused reflectance data, respectively. Image H is classification map of fused (VNIR+LiDAR)
radiance data, respectively, and Images I and J are road map of VNIR and fused radiance data, respectively. Images
C, E, and G show the road edges of VNIR, SWIR and Fused reflectance data, respectively.
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Figure 4.4: Influence of different Spatial size of the data

Figure 4.5: Confusion matrix of VNIR radiance data classification based on RF

train track class is classified as a road class. This may be because many of the ground
materials had mixed pixels due to the atmospheric correction, due to which the road
and train tracks display similar spectral signature in the case of a reflectance image.
However, about 8% of the water pixels in the radiance data are classified as a train track
class which is not the case in the reflectance data (see figure 4.2C and 4.2E). This is
due to the presence of water absorption around 900 - 1000 nm wavelength of the VNIR
radiance data. As we are more concerned about the classification of roads and train
tracks, so in this case, the results of the classification of radiance data outperformed the
reflectance data. [Hoffbeck and Landgrebe, 1994] performed atmospheric correction of
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Figure 4.6: Confusion matrix of VNIR reflectance data classification based on RF

the radiance data using ATREM and log residual method and classified the transformed
data and the radiance data using Gaussian Maximum Likelihood. The average accuracy
of the classification of the reflectance data was found to be lower than that of the
radiance data. This finding is identical to the outcomes of our study. Therefore, it can
be concluded that the SVM, RF, and CNN classifications are insensitive to changes
caused by solar and atmospheric artifacts, and there is no need to attempt to correct
them.

4.3.2 Hyperspectral and LiDAR data Results

The hyperspectral data and the LiDAR data were classified separately using SVM, RF,
and CNN. The results of the classification is shown in table 4.7.

Table 4.7: Comparison of performance of RF on hyperspectral image (VNIR radiance and reflectance) with LiDAR
data.

Radiance Reflectance LiDAR
OA 92 93 71
F1 88 77 60
KS 88 89 61
CT 8.53 4.53 53.70

The classification image of the hyperspectral and the LiDAR data using RF is shown in
figure 4.7. Also, their confusion matrix is shown in figure 4.8. In the figure 4.7, different
classes are misclassified in the LiDAR classification map. The water pixels are mostly
labeled as road and train track class. The LiDAR data consist of two features: elevation
and intensity. This indicates that the two features have not been able to generalize each
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class well. Also most train track pixels are classified as road class (see right confusion
matrix 4.8) because of the similarity of road and train track elevation. However, in the
case of a hyperspectral image, the road and train tracks are well separated (see left
confusion matrix 4.8) which can be seen in figure 4.7A.

Figure 4.7: Classification map of A. Hyperspectral Image, B. LiDAR data based on RF.

Figure 4.8: Left: Confusion matrix of VNIR radiance data classification based on RF. Right: Confusion matrix of
LiDAR data classification based on RF

4.3.3 HSI and Fused data Result

In this section, the hyperspectral image is combined with the LiDAR data and thus
the classification result of the fused data is compared with the result of hyperspectral
data. Table 4.8 shows the performance comparison of RF in classifying fused and
hyperspectral data, separately.

The road edge detection is improved when LiDAR data features are included with the
hyperspectral data features (see figure 4.9). There are many misclassifications of road
when only hyperspectral data is used as shown in figure 4.9A. This shows that the
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Table 4.8: Comparison of classification accuracy and computation time of hyperspectral data and fused data using RF.

Radiance Fused Reflectance Fused
VNIR SWIR VNIR SWIR VNIR SWIR VNIR SWIR

OA 92 79 92 81 93 90 93 90
F1 88 52 88 59 77 73 79 73
KS 88.5 70 88.5 72 89 85.5 90 85.5
CT 37.93 1.26 47.64 1.33 5.16 0.81 5.82 4.55

Figure 4.9: Result comparison of hyperspectral and fused data classification map and road map.

elevation feature of the LiDAR was able to separate the roads and other classes based
on the height.

From the table 4.8, it can be seen that the OA did not change when LiDAR was
merged to the hyperspectral image. However, the F1 score changed from 77% to 79%
for VNIR reflectance results. Classification accuracy of the road class improves from
88% to 92% when LiDAR data is combined with hyperspectral data which can be seen
in the confusion matrix 4.10. Also in the case of a SWIR radiance image, the F1 score
changed from 52% to 59% when LiDAR data is combined with it. This shows that the
two features of LiDAR data, elevation and intensity, provide more detail in generalizing
classes and increase the accuracy of classification. Both the reflectance data and the
reflectance fused data performed poor when classifying the train track class. Most of
the train track pixels have been classified as road class. This is because the train track
pixels in the reflectance image consist of mixed pixels, including pixels with spectral
properties similar to that of the road. However, in case of radiance and radiance fused
image, the train track pixels were classified well which can be seen in confusion matrix
4.5.

4.3.4 SVM, RF and CNN Result

In this section, the results of SVM, RF, and CNN are compared for the different data
shown in table 4.9. RF outperformed SVM and CNN on the basis of OA, F1-score
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Figure 4.10: Left: Confusion matrix of reflectance hyperspectral data classification based on RF. Right: Confusion
matrix of reflectance hyperspectral and LiDAR fused data classification based on RF

and Kappa coefficient. CNN performed the worst of all with only 80% accuracy for the
radiance dataset. CNN’s poor performance was because it needs a lot of data to perform
better than machine learning models. There were two models of CNN and the first one,
which was less complex, performed better. This shows that the less complex deep
learning model is better suited to finding important data patterns. CNN’s accuracy for
both the reflectance and radiance data was poor when compared to the RF and SVM
result. However, the OA of CNN for radiance data (80%) was better than reflectance
data (77%). This is because CNN is dependent on extracting complex features from
the data and the reflectance data lost valuable information during the atmospheric
correction. This indicates that some of the information of the atmosphere is useful for
identifying different classes.

Table 4.9: Comparison of classification accuracy and computation time of Hyperspectral data and fused data using RF.

SVM RF CNN
Radiance Reflectance Radiance Reflectance Radiance Reflectance

OA 83 92 92 93 80 77
F1 82 77 88 79 60 57
KS 77.60 88.5 88.39 90.4 73.48 67.5
CT 27.71 5.52 47.64 5.82 450.06 321.5

The RF model is capable of generalizing classes well, and so is the SVM model. The
kappa coefficient of RF classification of radiance data is 88.4% which is about 11%
more than that of SVM and about 14% mode than that of CNN. Figure 4.11 displays
the classification map of the fused radiance data classified by SVM, RF and CNN. The
classification map obtained by the RF model (see figure 4.11B) is better than the other
two classification maps. The train track groups are not well delineated by CNN (see
figure 4.11C). It has been classified as a road class. This shows that CNN is unable to
distinguish between road and train track pixels.

The findings in [Raczko and Zagajewski, 2017] shows that ANNs outperform both SVM
and RF. This is in contrast to the findings presented in this thesis. Similarly, results
in [Sabat-Tomala et al., 2020] show that SVM is able to achieve high accuracy in one
class while RF does better in classifying another class. This is close to the outcome of
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our research where RF is able to generalize well water class.

Figure 4.11: Result comparison of SVM, RF and CNN on fused radiance dataset.
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Conclusion

Hyperspectral and LiDAR data are used in this analysis to extract road edges based
on SVM, RF, and CNN models. Both hyperspectral and LiDAR data was obtained
from the Sandvika region of Norway. The data is split into training and testing data.
The features derived from the hyperspectral image using PCA and NDVI are combined
with the LiDAR elevation and intensity features. These features are used as input to
machine and deep learning models. The RF classification result is higher than the SVM
and CNN classification results. CNN performed low as the algorithm was overfitted and
there was less data available to train the model. The F1 score and kappa coefficient of
the classification is shown in table 5.1.

The results of the experiment show that the overall accuracy of the classification im-
proved from 79% to 81% when LiDAR data is combined with SWIR hyperspectral
data. Classes have been well classified when LiDAR elevation and intensity features are
used. Similarly, the classification algorithm better classifies the radiance data than the
reflectance data. Train tracks and roads were well generalized when radiance data was
used. It indicates that some of the essential data was lost during the atmospheric cor-
rection of the radiance data, as a result of which the reflectance data can not separate
the road and train track class well. The reflectance data also consists of mixed pixels,
due to which the train pixel exhibited spectral properties similar to those of the road
class.

The SVM model, simpler than CNN, performed better than CNN in the classification
of hyperspectral and LiDAR data. It can be shown that the simpler model appears
to work better than the more complicated models. The most important aspect of
SVM is its ability to generalize well from a small number of training data. This can
achieve fair precision even with smaller samples of training data which are not possible
with CNN. However, there are drawbacks to SVM, such as the selection of main SVM
parameters such as the kernel function. Choosing a small value for the kernel width
parameter would result in overfitting, whereas the large kernel width values would result
in oversmoothing.

Table 5.1: Comparison of SVM, RF, and CNN classification result

SVM RF CNN
F1-Score 0.82 0.88 0.60
Kappa
Coefficient

0.77 0.88 0.73
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The RF model, the simplest of all models, outperformed both CNN and SVM in the
classification of hyperspectral and LiDAR data. The RF classifier is less sensitive than
other machine learning classifiers, such as SVM, to the quality of training samples and to
overfitting due to the large number of decision trees generated by the random selection
of a number of training samples. The RF classifier has been shown to be suitable for
the classification of hyperspectral data where the curse of dimensionality and closely
correlated data present major challenges. Another advantage of the RF classifier is
that it needs only two parameters to be optimized, while the SVM needs a number of
parameters to be configured.

The CNN model, the most advanced of the three models, performed poorly compared
to the other two models. It focused on capturing the small details of the images and
was only able to generalize the training data well. The validation data could not be
generalized well, so many of the classes were misclassified.

The conclusion of this study is that, the radiance data performed better than the
reflectance data and similarly the simpler model, RF, outperformed all other models in
classifying and extracting the road edges. This shows that investing time and resources
in atmospheric correction of the radiance data is not effective as the precision of the
classification of the radiance data is higher than that of the reflectance data. Similarly,
the addition of LiDAR data to hyperspectral data did not significantly change the
accuracy of the classification, so spending an enormous amount of money and time on
the acquisition of LiDAR data is not worth much.

5.1 Further Work

Many limitations were addressed during this project, including limited data size, LiDAR
and hyperspectral data fusion method and failure to extract roads under trees and
buildings. Therefore, some of the additional work that can be done to mitigate these
limitations is described in this section. The poor performance of the CNN model was
attributed to the small size of the training data so that more data from different areas of
the study area could be used to train the model. In this study, the pixel-wise fusion of
hyperspectral and LiDAR data was used and the classification performance improved
slightly. More advanced object-based hyperspectral and LiDAR data fusion can be
used to enhance classification performance. In the same way, classes can be further
divided into sub-classes, for example, the road class can be divided into pavements and
other sub-classes based on road construction materials. In addition, several validation
data from various parts of the research area can be used to evaluate the model. Other
advanced classification and segmentation algorithms can be implemented. Furthermore,
effective method can be used to extract roads under the trees using the combination of
hyperspectral and LiDAR data.
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Training and Validation with Ran-
dom Forest

1 #!/usr/bin/env python

2 # coding: utf -8

3

4

5 # Importing necessary packages and libraries

6 from spectral import *

7 import spectral.io.envi as envi

8 import pandas as pd

9 import numpy as np

10 from PIL import Image

11 import matplotlib.pyplot as plt

12 from sklearn.model_selection import train_test_split

13 from sklearn.svm import SVC

14 from sklearn.metrics import accuracy_score

15 from sklearn.preprocessing import StandardScaler

16 from sklearn.ensemble import RandomForestClassifier

17 from sklearn.model_selection import GridSearchCV

18 from sklearn.preprocessing import MinMaxScaler

19 import numpy as np

20 import matplotlib.pyplot as plt

21 from scipy import ndimage as ndi

22 from sklearn.metrics import confusion_matrix

23 from sklearn.metrics import f1_score

24 from sklearn.metrics import classification_report

25 from sklearn.metrics import cohen_kappa_score

26 from sklearn.metrics import confusion_matrix

27 import matplotlib

28 import time

29 from sklearn.metrics import plot_confusion_matrix

30 plt.rcParams.update ({’font.size’: 22})

31

32

33 # Function definition

34 # Function to load image , header file and label data

35 # returns envi image object , numpy image array and numpy labels array

36 def loadDataset(header_file , data_file , label_file):

37 image = envi.open(header_file , data_file)

38 data = image.load()

39 label_data = Image.open(label_file)

40 labels = np.array(label_data)

41 return image , data , labels
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42

43

44 # Function to apply PCA on data X

45 # returns pc reduced image as numpy array.

46 def applyPCA(X):

47 pc = principal_components(X)

48 pc_0999 = pc.reduce(fraction =0.999)

49 img_pc = pc_0999.transform(X)

50 return pc_0999 , img_pc

51

52

53 # Function apply NDVI

54 #returns ndvi value numpy array

55 def applyNDVI(X):

56 vi = ndvi(X, 76, 105)

57 data_ndvi = np.nan_to_num(vi)

58 return data_ndvi

59

60

61 # Function to combine two pandas dataframe

62 # returns concatenated dataframe

63 def concatPcaNdvi(pc , ndvi):

64 df_pca = pd.DataFrame(pc.reshape(-1, pc.shape [2]))

65 string = "PC"

66 df_pca.columns = [string + str(n) for n in range(1, pc.shape [2]+1)

]

67 df_ndvi = pd.DataFrame(ndvi.reshape(-1, 1))

68 df_ndvi.columns = ["NDVI"]

69 main_df = pd.concat ([df_pca , df_ndvi], axis=1, sort=False)

70 return main_df

71

72

73 # Function to combine two data and target value

74 # returns concatenated dataframe

75 def concatDataClass(data , target):

76 df_class = pd.DataFrame(target.reshape(-1, 1))

77 string = "Target"

78 df_class.columns = [string]

79 df = pd.concat ([data , df_class], axis=1, sort=False)

80 df_masked = df[(df[[’Target ’]] != 0).all(axis =1)]

81 X = df_masked.drop(columns =[’Target ’]).values

82 y = df_masked[’Target ’]. values

83 return df, X, y

84

85

86 # Visualize image

87 def showImage(img):

88 view = imshow(img , (76, 46, 21), stretch =((0.0 , 0.9), (0.0, 0.9),

(0.0, 0.9)), figsize =(16, 16))

89

90

91 # Function to Standarise data so that mean is 0 and standard deviation

is 1

92 # returns scaler model and scaled data.

93 def standariseData(X):

94 scaler = StandardScaler ()

95 scaler.fit(X)

96 X_scaled = scaler.transform(X)
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97 return scaler , X_scaled

98

99

100 # Function to split the data into 80% train and 20% test set

101 # return train and test data and labels

102 def splitTrainTestSet(X, y, testRatio = 0.2):

103 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size=testRatio , random_state =345,

104 stratify=y)

105 return X_train , X_test , y_train , y_test

106

107

108 # Function to optimise the parameter of classification algorithm

109 # returns the best parameters

110 def parameterOptimization(X_train , y_train):

111 n_estimators = [int(x) for x in np.linspace(start=50, stop =300,

num =5)]

112 max_features = [’auto’, ’sqrt’, ’log2’]

113 max_depth = [int(x) for x in np.linspace(start =30, stop =100, num=

5)]

114 criterion = [’gini’, ’entropy ’]

115 param_grid = {

116 ’n_estimators ’: n_estimators ,

117 ’max_features ’: max_features ,

118 ’max_depth ’ : max_depth ,

119 ’criterion ’ : criterion

120 }

121 grid = GridSearchCV(RandomForestClassifier (), param_grid , refit =

True , verbose = 3, n_jobs=-1, cv=3)

122 grid.fit(X_train , y_train)

123 return grid.best_estimator_

124

125

126 # Function to estimate the model accuracy using train and test data

127 def pretrain_model(estimator , X_train , y_train , X_test , y_test):

128 cl = estimator

129 start = time.time()

130 cl.fit(X_train , y_train)

131 stop = time.time()

132 print(f"Training time: {stop - start}s")

133 pred = cl.predict(X_test)

134 accuracy_score(y_test , pred)

135 print(f"The accuracy score: {accuracy_score(y_test , pred)}")

136

137

138 # Function to train the model with all the data

139 # reutn trained model

140 def train_model(estimator , X_scaled , y):

141 cl = estimator

142 start = time.time()

143 cl.fit(X_scaled , y)

144 stop = time.time()

145 print(f"Training time: {stop - start}s")

146 return cl

147

148

149 # Function to predict the unknown data by trained model

150 # return predicted data as numpy array.
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151 def predict_image(img , cl , scaler , dataframe):

152 for column in dataframe.columns:

153 if column == "Target":

154 dataframe = dataframe.drop(columns =[’Target ’]).values

155 X_data_scaled = scaler.transform(dataframe)

156 start = time.time()

157 y_pred = cl.predict(X_data_scaled)

158 stop = time.time()

159 print(f"Testing time:{stop -start}s")

160 predicted_hsi_mask = y_pred.reshape(img.shape [0], img.shape [1])

161 return predicted_hsi_mask

162

163

164 # Visualization Functions

165 # Visualise image with labels

166 def visualize_result(img , predicted_map):

167 view = imshow(img , (76, 46, 21), stretch =((0.0 , 0.9), (0.0, 0.9),

(0.0, 0.9)),figsize =(16, 16), classes=predicted_map)

168 view.set_display_mode(’overlay ’)

169 view.class_alpha = 1

170 view.show_data

171

172

173 # Function to Extract road edges using Canny Edge Detection

174 # return road edges

175 def extract_road_edges(road):

176 from skimage.feature import canny

177 from skimage.viewer import ImageViewer

178 from skimage import io

179 from skimage import img_as_uint

180 edges = canny(

181 image=road ,

182 sigma =5.5,

183 low_threshold =0.1,

184 high_threshold =0.3,

185 )

186 from skimage.morphology import binary_dilation

187 edge = binary_dilation(edges , selem=None , out=None)

188 edge = binary_dilation(edge , selem=None , out=None)

189 road_edges = edge.astype(int)

190 return road_edges

191

192

193 # Function to plot Scree Plot of PCA

194 def screePlot(pc , X_pca):

195 eigvals = pc.eigenvalues

196 num_vars = X_pca.shape [2]

197

198

199 fig = plt.figure(figsize =(16, 10))

200 sing_vals = np.arange(num_vars) + 1

201 plt.plot(sing_vals , eigvals , ’ro -’, linewidth =2)

202 plt.title(’Scree Plot’)

203 plt.xlabel(’Principal Component ’)

204 plt.ylabel(’Eigenvalue ’)

205 leg = plt.legend ([’Eigenvalues from SVD’], loc=’best’, borderpad

=0.3,

206 shadow=False , prop=matplotlib.font_manager.
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FontProperties(size=’small’),

207 markerscale =0.4)

208 leg.get_frame ().set_alpha (0.4)

209 leg.set_draggable(state=True)

210 plt.show()

211

212

213 # Function to evaluate performance using accuracy score , F1-score , and

cohen kappa coefficient

214 def performance_evaluation(y_val , y_pred):

215 print(f"Accuracy Score: {accuracy_score(y_val , y_pred)}")

216 target_names = [’Road’, ’Vegetation ’, ’Unclassified ’, ’Water’, ’

Train Track ’]

217 print(classification_report(y_val , y_pred , target_names=

target_names))

218 print(f"Cohen Kappa Score: {cohen_kappa_score(y_val , y_pred)}")

219

220

221 # Function to plot confusion matrix

222 def plot_confusion_matrix(cm ,

223 target_names ,

224 title=’Confusion matrix ’,

225 cmap=None ,

226 normalize=True):

227 """

228 given a sklearn confusion matrix (cm), make a nice plot

229

230 Arguments

231 ---------

232 cm: confusion matrix from sklearn.metrics.

confusion_matrix

233

234 target_names: given classification classes such as [0, 1, 2]

235 the class names , for example: [’high ’, ’medium ’, ’

low ’]

236

237 title: the text to display at the top of the matrix

238

239 cmap: the gradient of the values displayed from matplotlib

.pyplot.cm

240 see http :// matplotlib.org/examples/color/

colormaps_reference.html

241 plt.get_cmap(’jet ’) or plt.cm.Blues

242

243 normalize: If False , plot the raw numbers

244 If True , plot the proportions

245

246 Usage

247 -----

248 plot_confusion_matrix(cm = cm, #

confusion matrix created by

249 #

sklearn.metrics.confusion_matrix

250 normalize = True , # show

proportions

251 target_names = y_labels_vals , # list

of names of the classes

252 title = best_estimator_name) # title
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of graph

253

254 Citiation

255 ---------

256 http :// scikit -learn.org/stable/auto_examples/model_selection/

plot_confusion_matrix.html

257

258 """

259 import matplotlib.pyplot as plt

260 import numpy as np

261 import itertools

262

263 accuracy = np.trace(cm) / float(np.sum(cm))

264 misclass = 1 - accuracy

265

266 if cmap is None:

267 cmap = plt.get_cmap(’Blues’)

268

269 plt.figure(figsize =(16, 10))

270 plt.imshow(cm , interpolation=’nearest ’, cmap=cmap)

271 plt.title(title)

272 plt.colorbar ()

273

274 if target_names is not None:

275 tick_marks = np.arange(len(target_names))

276 plt.xticks(tick_marks , target_names , rotation =45)

277 plt.yticks(tick_marks , target_names)

278

279 if normalize:

280 cm = cm.astype(’float’) / cm.sum(axis =1)[:, np.newaxis]

281

282

283 thresh = cm.max() / 1.5 if normalize else cm.max() / 2

284 for i, j in itertools.product(range(cm.shape [0]), range(cm.shape

[1])):

285 if normalize:

286 plt.text(j, i, "{:0.4f}".format(cm[i, j]),

287 horizontalalignment="center",

288 color="white" if cm[i, j] > thresh else "black")

289 else:

290 plt.text(j, i, "{:,}".format(cm[i, j]),

291 horizontalalignment="center",

292 color="white" if cm[i, j] > thresh else "black")

293

294

295 plt.tight_layout ()

296 plt.ylim ([4.5 , -.5])

297 plt.ylabel(’True label’)

298 plt.xlabel(’Predicted label’)

299 plt.show()

300

301 # Function to plot the spectral signature of image pixels

302 def plotSpectra(a, t, v):

303 wavelength=envi.read_envi_header(’../ VNIR_carlb.hdr’)[’wavelength ’

]

304 ww = [float(i) for i in wavelength]

305 #to plot a few spectra

306 plt.figure(figsize =(15 ,10))
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307 plt.xlabel(’Wavelength [nm]’)

308 plt.ylabel(’Radiance intensity ’)

309 plt.plot(ww ,a, label= "Asphalt")

310 plt.plot(ww ,t, label = "Train Track")

311 plt.plot(ww ,v, label = "Vegetation")

312 plt.legend(prop={’size’: 20})

313 plt.show()

314

315

316

317 # Hyperspectral data

318 # Training

319 image , img , label = loadDataset(’../../ hyperImage/reflectance /09

_VNIR_ROAD_MASKED.hdr’,

320 ’../../ hyperImage/reflectance /09

_VNIR_ROAD_MASKED ’,

321 ’../../ hyperImage/reflectance/roi/class4.tif’

)

322

323

324 pc , X_pca = applyPCA(img) # Applying PCA on the image

325 screePlot(pc, X_pca) # Plotting scree plot

326 X_pca = X_pca [:,:,:3]

327 ndvi = applyNDVI(img) #Applying NDVI to image

328 main_df = concatPcaNdvi(X_pca , ndvi)

329

330

331 df , X, y = concatDataClass(main_df , label) # Concatenate dataframe

and labels

332 visualize_result(img , label)

333 scaler , X_scaled = standariseData(X) # Transform data to standard

scale

334

335 #Split data into training and test set

336 X_train , X_test , y_train , y_test = train_test_split(X_scaled , y)

337 estimator = parameterOptimization(X_train , y_train) # Hyperparameter

optimization

338

339

340 pretrain_model(estimator , X_train , y_train , X_test , y_test)

341

342 # train the model with all the training data

343 cl = train_model(estimator , X_scaled , y)

344 prediction_map = predict_image(img , cl , scaler , df)

345 visualize_result(img , prediction_map)

346 road = (prediction_map == 1).astype(int)

347 road_edges = extract_road_edges(road)

348 visualize_result(img , road_edges)

349

350

351 # Hyperspectral Validation data

352 val_image , val_img , val_label = loadDataset(’../../ hyperImage/

reflectance/vnir /08 _clippped_road.hdr’,

353 ’../../ hyperImage/

reflectance/vnir /08 _clippped_road ’,

354 ’../../ hyperImage/

reflectance/vnir/class_val_ref.tif’)

355 showImage(val_img)
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356 visualize_result(val_img , val_label)

357

358 pc, X_pca_val = applyPCA(val_img)

359 screePlot(pc , X_pca_val)

360 X_pca = X_pca_val [:,:,:3]

361 ndvi_val = applyNDVI(val_img)

362 main_df_val = concatPcaNdvi(X_pca , ndvi_val)

363

364

365 #main_df_val = pd.read_csv ( ’../../ hyperImage/csv/features/

Ref_Vnir_HSI_feature_val ’)

366 predicted_map_val = predict_image(val_img , cl, scaler , main_df_val)

367 visualize_result(val_img , predicted_map_val)

368 road = (predicted_map_val == 1).astype(int)

369 road_edges = extract_road_edges(road)

370 visualize_result(val_img , road_edges)

371

372 df_val , X, y = concatDataClass(main_df_val , val_label)

373 df_hsi_val_masked = df_val [( df_val [[’Target ’]] != 0).all(axis =1)]

374 X_val = df_hsi_val_masked.drop(columns =[’Target ’]).values

375 y_val = df_hsi_val_masked[’Target ’]. values

376 X_data_scaled_val = scaler.transform(X_val)

377 y_pred = cl.predict(X_data_scaled_val)

378

379 performance_evaluation(y_val , y_pred)

380 cm = confusion_matrix(y_val , y_pred)

381 plot_confusion_matrix(cm,

382 normalize = True ,

383 target_names = [’Road’, ’Vegetation ’, ’

Unclassified ’, ’Water’, ’Train Track’],

384 title = "Confusion Matrix , Normalized")

385

386

387 # LiDAR Data

388

389 #import lidar nDSM and intensity data

390 l_intensity_data = Image.open(’../../ hyperImage/reflectance/roi/

masked_intensity.tif’)

391 l_intensity = np.array(l_intensity_data)

392 df_intensity = pd.DataFrame(l_intensity.reshape(-1, 1))

393 string = "Lidar Intensity"

394 df_intensity.columns = [string]

395

396 l_dsm_data = Image.open(’../../ hyperImage/reflectance/roi/masked_nDSM.

tif’)

397 l_dsm = np.array(l_dsm_data)

398 df_dsm = pd.DataFrame(l_dsm.reshape(-1, 1))

399 string = "Lidar nDSM"

400 df_dsm.columns = [string]

401

402 gt_data = Image.open(’../../ hyperImage/reflectance/roi/class4.tif’)

403 gt = np.array(gt_data)

404 df_class = pd.DataFrame(gt.reshape(-1, 1))

405 df_class.columns = ["Target"]

406 df_lidar = pd.concat ([ df_intensity , df_dsm , df_class], axis=1, sort=

False)

407 df_lidar_masked = df_lidar [( df_lidar [[’Target ’]] != 0).all(axis =1)]

408 X = df_lidar_masked.drop(columns =[’Target ’]).values
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409 y = df_lidar_masked[’Target ’]. values

410

411 scaler1 , X_scaled = standariseData(X)

412 X_train , X_test , y_train , y_test = splitTrainTestSet(X_scaled , y, 0.2)

413 pretrain_model(estimator , X_train , y_train , X_test , y_test)

414 cl1 = train_model(estimator , X_scaled , y)

415

416 X_lidar_data = df_lidar.drop(columns =[’Target ’]).values

417 S_lidar_data_scaled = scaler1.transform(X_lidar_data)

418 y_pred_lidar = cl1.predict(S_lidar_data_scaled)

419 predicted_lidar_map = y_pred_lidar.reshape(l_dsm.shape[0], l_dsm.shape

[1])

420 road = (predicted_lidar_map == 1).astype(int)

421 road_edges = extract_road_edges(road)

422 visualize_result(img , predicted_lidar_map)

423 visualize_result(img , road_edges)

424

425

426 # LiDAR Validation

427 df_lidar_val = pd.read_csv(’../../ hyperImage/csv/features/

Ref_Vnir_lidar_feature_val ’)

428 X_data_scaled = scaler1.transform(df_lidar_val)

429 val_pred_full = cl1.predict(X_data_scaled)

430 predicted_lidar_map_val = val_pred_full.reshape(val_image.shape [0],

val_image.shape [1])

431

432 road = (predicted_lidar_map_val == 1).astype(int)

433 road_edges = extract_road_edges(road)

434 visualize_result(val_img , predicted_lidar_map_val)

435 visualize_result(val_img , road_edges)

436

437 df_lidar_main_val , X, y = concatDataClass(df_lidar_val , val_label)

438 df_lidar_val_masked = df_lidar_main_val [( df_lidar_main_val [[’Target ’]]

!= 0).all(axis =1)]

439 X_val = df_lidar_val_masked.drop(columns =[’Target ’]).values

440 y_val = df_lidar_val_masked[’Target ’]. values

441 X_data_scaled_val = scaler1.transform(X_val)

442 y_pred = cl1.predict(X_data_scaled_val)

443

444 performance_evaluation(y_val , y_pred)

445 cm = confusion_matrix(y_val , y_pred)

446 plot_confusion_matrix(cm,

447 normalize = True ,

448 target_names = [’Road’, ’Vegetation ’, ’

Unclassified ’, ’Water’, ’Train Track’],

449 title = "Confusion Matrix , Normalized")

450

451

452 # HSI + LiDAR (Fused Data)

453

454 df_lid_hsi = pd.concat ([main_df ,df_lidar], axis=1, sort=False)

455 df_masked = df_lid_hsi [( df_lid_hsi [[’Target ’]] != 0).all(axis =1)]

456 X = df_masked.drop(columns =[’Target ’]).values

457 y = df_masked[’Target ’]. values

458

459 scaler2 , X_scaled = standariseData(X)

460 X_train , X_test , y_train , y_test = train_test_split(X_scaled , y)

461 pretrain_model(estimator , X_train , y_train , X_test , y_test)
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462 cl2 = train_model(estimator , X_scaled , y)

463 prediction_map = predict_image(img , cl2 , scaler2 , df_lid_hsi)

464 visualize_result(img , prediction_map)

465 road = (prediction_map == 1).astype(int)

466 road_edges = extract_road_edges(road)

467 visualize_result(img , road_edges)

468

469 performance_evaluation(y_val , y_pred)

470 cm = confusion_matrix(y_val , y_pred)

471 plot_confusion_matrix(cm,

472 normalize = True ,

473 target_names = [’Road’, ’Vegetation ’, ’

Unclassified ’, ’Water’, ’Train Track’],

474 title = "Confusion Matrix , Normalized")

475

476

477 # HSI + LIDAR (Fused) Validation data

478 df_lid_hsi_val = pd.concat ([ main_df_val , df_lidar_val], axis=1, sort=

False)

479 predicted_hsi_lidar_map_val = predict_image(val_img , cl2 , scaler2 ,

df_lid_hsi_val)

480 visualize_result(val_img , predicted_hsi_lidar_map_val)

481 road = (predicted_hsi_lidar_map_val == 1).astype(int)

482 road_edges = extract_road_edges(road)

483 visualize_result(val_img , road_edges)

484

485 df_val , X, y = concatDataClass(df_lid_hsi_val , val_label)

486 df_hsi_val_masked = df_val [( df_val [[’Target ’]] != 0).all(axis =1)]

487 X_val = df_hsi_val_masked.drop(columns =[’Target ’]).values

488 y_val = df_hsi_val_masked[’Target ’]. values

489 X_data_scaled_val = scaler2.transform(X_val)

490 y_pred = cl2.predict(X_data_scaled_val)

491

492 performance_evaluation(y_val , y_pred)

493 cm = confusion_matrix(y_val , y_pred)

494 plot_confusion_matrix(cm,

495 normalize = True ,

496 target_names = [’Road’, ’Vegetation ’, ’

Unclassified ’, ’Water’, ’Train Track’],

497 title = "Confusion Matrix , Normalized")
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Training and Validation with CNN

B.1 Data Preprocessing

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # ## Importing necessary packages and libraries

5

6 # In[5]:

7

8

9 import numpy as np

10 from sklearn.decomposition import PCA

11 import scipy.io as sio

12 from sklearn.model_selection import train_test_split

13 from sklearn import preprocessing

14 import os

15 import random

16 from random import shuffle

17 from skimage.transform import rotate

18 import scipy.ndimage

19 from spectral import *

20 import spectral.io.envi as envi

21 from PIL import Image

22 import pandas as pd

23 import matplotlib.pyplot as plt

24 import matplotlib

25 from pickle import dump

26

27

28 # ## Function Definition

29

30 # In[6]:

31

32

33 # Function to load image , header file and label data

34 # returns envi numpy image array and numpy labels array

35 def loadDataset(header_file , data_file , label_file):

36 image = envi.open(header_file , data_file)

37 data = image.load()

38 label_data = Image.open(label_file)

39 labels = np.array(label_data)

40 return data , labels

41
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42 # Function to split the data into 80% train and 20% test set

43 # return train and test data and labels

44 def splitTrainTestSet(X, y, testRatio =0.10):

45 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size=testRatio , random_state =345,

46 stratify=y)

47 return X_train , X_test , y_train , y_test

48

49 # Function to oversample weak classes when the class is in unbalanced

condition

50 # return new data with balanced class

51 def oversampleWeakClasses(X, y):

52 uniqueLabels , labelCounts = np.unique(y, return_counts=True)

53 maxCount = np.max(labelCounts)

54 labelInverseRatios = maxCount / labelCounts

55 # repeat for every label and concat

56 newX = X[y == uniqueLabels [0], :, :, :]. repeat(round(

labelInverseRatios [0]), axis =0)

57 newY = y[y == uniqueLabels [0]]. repeat(round(labelInverseRatios [0])

, axis =0)

58 for label , labelInverseRatio in zip(uniqueLabels [1:],

labelInverseRatios [1:]):

59 cX = X[y== label ,:,:,:]. repeat(round(labelInverseRatio), axis

=0)

60 cY = y[y == label]. repeat(round(labelInverseRatio), axis =0)

61 newX = np.concatenate ((newX , cX))

62 newY = np.concatenate ((newY , cY))

63 np.random.seed(seed =42)

64 rand_perm = np.random.permutation(newY.shape [0])

65 newX = newX[rand_perm , :, :, :]

66 newY = newY[rand_perm]

67 return newX , newY

68

69 # Function to Standarise data so that mean is 0 and standard deviation

is 1

70 # returns scaler model and scaled data.

71 def standartizeData(X):

72 newX = np.reshape(X, (-1, X.shape [2]))

73 scaler = preprocessing.StandardScaler ().fit(newX)

74 newX = scaler.transform(newX)

75 newX = np.reshape(newX , (X.shape[0],X.shape[1],X.shape [2]))

76 return newX , scaler

77

78 # Function to apply PCA on data X

79 # returns pc reduced image as numpy array.

80 def applyPCA(X, numComponents =75):

81 newX = np.reshape(X, (-1, X.shape [2]))

82 pca = PCA(n_components=numComponents , whiten=True)

83 newX = pca.fit_transform(newX)

84 newX = np.reshape(newX , (X.shape[0],X.shape[1], numComponents))

85 return newX , pca

86

87 # Function to plot Scree Plot of PCA

88 def screePlot(pc , X_pca):

89 eigvals = pc.explained_variance_ratio_

90 num_vars = X_pca.shape [2]

91

92
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93 fig = plt.figure(figsize =(16, 10))

94 sing_vals = np.arange(num_vars) + 1

95 plt.plot(sing_vals , eigvals , ’ro -’, linewidth =2)

96 plt.title(’Scree Plot’)

97 plt.xlabel(’Principal Component ’)

98 plt.ylabel(’Eigenvalue ’)

99 leg = plt.legend ([’Eigenvalues from SVD’], loc=’best’, borderpad

=0.3,

100 shadow=False , prop=matplotlib.font_manager.

FontProperties(size=’small’),

101 markerscale =0.4)

102 leg.get_frame ().set_alpha (0.4)

103 leg.set_draggable(state=True)

104 plt.show()

105

106 # Function to pad the data with zero

107 # return new padded data

108 def padWithZeros(X, margin =2):

109 newX = np.zeros ((X.shape [0] + 2 * margin , X.shape [1] + 2* margin ,

X.shape [2]))

110 x_offset = margin

111 y_offset = margin

112 newX[x_offset:X.shape [0] + x_offset , y_offset:X.shape [1] +

y_offset , :] = X

113 return newX

114

115 # Function to split images into small patches of sizw = WindowSize

116 # return patched data and labels

117 def createPatches(X, y, windowSize =5, removeZeroLabels = True):

118 margin = int(( windowSize - 1) / 2)

119 zeroPaddedX = padWithZeros(X, margin=margin)

120 # split patches

121 patchesData = np.zeros ((X.shape [0] * X.shape [1], windowSize ,

windowSize , X.shape [2]))

122 patchesLabels = np.zeros ((X.shape [0] * X.shape [1]))

123 patchIndex = 0

124 for r in range(margin , zeroPaddedX.shape [0] - margin):

125 for c in range(margin , zeroPaddedX.shape [1] - margin):

126 patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:

c + margin + 1]

127 patchesData[patchIndex , :, :, :] = patch

128 patchesLabels[patchIndex] = y[r-margin , c-margin]

129 patchIndex = patchIndex + 1

130 if removeZeroLabels:

131 patchesData = patchesData[patchesLabels >0,:,:,:]

132 patchesLabels = patchesLabels[patchesLabels >0]

133 patchesLabels -= 1

134 return patchesData , patchesLabels

135

136 def createPatches_val(X, windowSize =5):

137 margin = int(( windowSize - 1) / 2)

138 zeroPaddedX = padWithZeros(X, margin=margin)

139 # split patches

140 patchesData = np.zeros ((X.shape [0] * X.shape [1], windowSize ,

windowSize , X.shape [2]))

141 patchIndex = 0

142 for r in range(margin , zeroPaddedX.shape [0] - margin):

143 for c in range(margin , zeroPaddedX.shape [1] - margin):
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144 patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:

c + margin + 1]

145 patchesData[patchIndex , :, :, :] = patch

146 patchIndex = patchIndex + 1

147 return patchesData

148

149 # Function for Data Augmentation

150 # return Augmented data

151 def AugmentData(X_train):

152 for i in range(int(X_train.shape [0]/2)):

153 patch = X_train[i,:,:,:]

154 num = random.randint (0,2)

155 if (num == 0):

156

157 flipped_patch = np.flipud(patch)

158 if (num == 1):

159

160 flipped_patch = np.fliplr(patch)

161 if (num == 2):

162

163 no = random.randrange ( -180 ,180 ,30)

164 flipped_patch = scipy.ndimage.interpolation.rotate(patch ,

no,axes=(1, 0),

165 reshape

=False , output=None , order=3, mode=’constant ’, cval =0.0, prefilter=

False)

166

167

168 patch2 = flipped_patch

169 X_train[i,:,:,:] = patch2

170

171 return X_train

172

173

174 # Function to save the pateches

175 def savePreprocessedData(X_Patches , y_Patches , windowSize ,

wasPCAapplied = False , numPCAComponents = 0, testRatio = 0.25):

176 if wasPCAapplied:

177 with open("training/X_Patches_" + str(windowSize) + "PCA" +

str(numPCAComponents) + "testRatio" + str(testRatio) + ".npy", ’bw’

) as outfile:

178 np.save(outfile , X_Patches)

179 with open("training/y_Patches_" + str(windowSize) + "PCA" +

str(numPCAComponents) + "testRatio" + str(testRatio) + ".npy", ’bw’

) as outfile:

180 np.save(outfile , y_Patches)

181 # with open(" validation/X_vals_Patches_" + str(windowSize) + "

PCA" + str(numPCAComponents) + "testRatio" + str(testRatio) + ".npy

", ’bw ’) as outfile:

182 # np.save(outfile , X_vals_Patches)

183 #with open(" validation/y_vals_Patches_" + str(windowSize) + "

PCA" + str(numPCAComponents) + "testRatio" + str(testRatio) + ".npy

", ’bw ’) as outfile:

184 # np.save(outfile , y_vals_Patches)

185 else:

186 with open("../ preprocessedData/XtrainWindowSize" + str(

windowSize) + ".npy", ’bw’) as outfile:

187 np.save(outfile , X_trainPatches)
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188 with open("../ preprocessedData/XtestWindowSize" + str(

windowSize) + ".npy", ’bw’) as outfile:

189 np.save(outfile , X_testPatches)

190 with open("../ preprocessedData/ytrainWindowSize" + str(

windowSize) + ".npy", ’bw’) as outfile:

191 np.save(outfile , y_trainPatches)

192 #with open ("../ preprocessedData/ytestWindowSize" + str(

windowSize) + ".npy", ’bw ’) as outfile:

193 np.save(outfile , y_testPatches)

194

195

196

197

198 # In[7]:

199

200

201 # Load the Global values (windowSize , numPCAcomponents , testRatio)

from the text file global_variables.txt

202 myFile = open(’global_variables.txt’, ’r’)

203 file = myFile.readlines ()[:]

204

205

206 for line in file:

207

208 if line [0:3] == "win":

209

210 ds = line.find(’=’)

211 windowSize = int(line[ds+1: -1] ,10)

212

213 elif line [0:3] == "num":

214

215 ds = line.find(’=’)

216 numPCAcomponents = int(line[ds+2: -1] ,10)

217

218 else:

219

220 ds = line.find(’=’)

221 testRatio = float(line[ds+1:])

222

223

224 # In[10]:

225

226

227 X, y = loadDataset(’../../ hyperImage/reflectance /09 _VNIR_ROAD_MASKED.

hdr’,

228 ’../../ hyperImage/reflectance /09

_VNIR_ROAD_MASKED ’,

229 ’../../ hyperImage/reflectance/roi/class4.tif’

)

230 X, pca = applyPCA(X, numPCAcomponents)

231

232 X, scaler = standartizeData(X)

233 X.shape

234 XPatches , yPatches = createPatches(X, y, windowSize=windowSize)

235 #X_train , X_test , y_train , y_test = splitTrainTestSet(XPatches ,

yPatches , testRatio)

236 X_train , y_train = oversampleWeakClasses(XPatches , yPatches)

237 X_train = AugmentData(X_train)
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238 savePreprocessedData(X_train , y_train , windowSize = windowSize ,

239 wasPCAapplied=True , numPCAComponents =

numPCAcomponents ,testRatio = testRatio)

240 dump(scaler , open(’scaler/scaler3.pkl’, ’wb’))

B.2 Training CNN model

1 # -*- coding: utf -8 -*-

2 """ TrainingCNN.ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1uK06Kcph -

Z9kj51HWVWU8IFlvT0UQq9A

8 """

9

10

11

12 """# Importing necessary packages and libraries """

13

14 !pip install spectral

15 import numpy as np

16 import scipy

17 import os

18 from keras.models import Sequential

19 from keras.layers import Input , Dense , Dropout , Flatten ,

BatchNormalization , Concatenate , Conv2DTranspose

20 from keras.layers import Conv2D , MaxPooling2D

21 from keras.optimizers import SGD

22 from keras import backend as K

23 import argparse

24 K.image_data_format ()

25 from keras.utils import np_utils

26 import matplotlib.pyplot as plt

27 from keras.preprocessing.image import ImageDataGenerator

28 from sklearn.model_selection import train_test_split

29 import h5py

30 from keras.models import load_model

31

32 """# Connecting to google drive """

33

34 from google.colab import drive

35 drive.mount(’/content/drive ’)

36

37 """# Load the Global values (windowSize , numPCAcomponents , testRatio)

from the text file global_variables.txt """

38

39 myFile = open(’/content/drive/My Drive/thesis/global_variables.txt’, ’

r’)

40 file = myFile.readlines ()[:]

41

42 for line in file:

43 if line [0:3] == "win":

44 ds = line.find(’=’)

45 windowSize = int(line[ds+1: -1] ,10)

46
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47 elif line [0:3] == "num":

48 ds = line.find(’=’)

49 numPCAcomponents = int(line[ds+2: -1] ,10)

50

51 else:

52 ds = line.find(’=’)

53 testRatio = float(line[ds+1:])

54

55 """# Function Definition """

56

57 def splitTrainTestSet(X, y, testRatio =0.10):

58 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size=testRatio , random_state =345,

59 stratify=y)

60 return X_train , X_test , y_train , y_test

61

62 # Loading training datasets

63 train_X = np.load("/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/spatialSize/X_Patches_" + str(windowSize) + "PCA"

+ str(numPCAcomponents) + "testRatio" + str(testRatio) + ".npy")

64 train_Y = np.load("/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/spatialSize/y_Patches_" + str(windowSize) + "PCA"

+ str(numPCAcomponents) + "testRatio" + str(testRatio) + ".npy")

65

66 #Splitting the data into train and test set

67 X_train , X_test , y_train , y_test = splitTrainTestSet(train_X , train_Y ,

testRatio)

68

69 # Reshape into (numberofsamples , channels , height , width)

70 train_X = np.reshape(train_X , (train_X.shape[0], train_X.shape[3],

train_X.shape[1], train_X.shape [2]))

71

72 # convert class labels to on-hot encoding

73 train_Y = np_utils.to_categorical(train_Y)

74

75 # Reshape into (numberofsamples , channels , height , width)

76 X_train = np.reshape(X_train , (X_train.shape[0], X_train.shape[3],

X_train.shape[1], X_train.shape [2]))

77 # convert class labels to on-hot encoding

78 y_train = np_utils.to_categorical(y_train)

79 # Reshape into (numberofsamples , channels , height , width)

80 X_test = np.reshape(X_test , (X_test.shape[0], X_test.shape[3], X_test.

shape [1], X_test.shape [2]))

81 # convert class labels to on-hot encoding

82 y_test = np_utils.to_categorical(y_test)

83

84 input_shape = train_X [0]. shape

85 C1 = 3*2

86

87 # Define the model 1

88 def model_1 ():

89 model = Sequential ()

90

91 model.add(Conv2D(C1, (3, 3), activation=’relu’, input_shape=

input_shape))

92 model.add(Conv2D (3*C1, (3, 3), activation=’relu’))

93 model.add(Dropout (0.25))

94
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95 model.add(Flatten ())

96 model.add(Dense (6* numPCAcomponents , activation=’relu’))

97 model.add(Dropout (0.5))

98 model.add(Dense(5, activation=’softmax ’))

99 sgd = SGD(lr=0.0001 , decay=1e-6, momentum =0.9, nesterov=True)

100 model.compile(loss=’categorical_crossentropy ’, optimizer=’adam’,

metrics =[’accuracy ’])

101 model.summary ()

102 return model

103

104 # Define the model 2

105 def model_2 ():

106 model = Sequential ()

107

108 model.add(Conv2D(C1, (5, 3), activation=’relu’, input_shape=

input_shape , data_format=’channels_first ’))

109 model.add(Conv2D (2*C1, (3, 3), activation=’relu’))

110 model.add(Conv2D (3*C1, (3, 3), activation=’relu’))

111 model.add(Dropout (0.25))

112

113 model.add(Flatten ())

114 model.add(Dense (6* numPCAcomponents , activation=’relu’))

115 model.add(Dropout (0.5))

116 model.add(Dense(5, activation=’softmax ’))

117 sgd = SGD(lr=0.0001 , decay=1e-6, momentum =0.9, nesterov=True)

118 model.compile(loss=’categorical_crossentropy ’, optimizer=sgd ,

metrics =[’accuracy ’])

119 model.summary ()

120 return model

121

122 # Train the model and validate with test data

123 model = model_1 ()

124 history = model.fit(X_train , y_train , batch_size =100, epochs =10,

validation_data =(X_test , y_test))

125

126 score = model.evaluate(X_test , y_test , verbose =0)

127 print(f’Test loss: {score [0]} / Test accuracy: {score [1]}’)

128

129 # Visualize history

130 # Plot history: Loss

131 plt.plot(history.history[’val_loss ’])

132 plt.title(’Validation loss history ’)

133 plt.ylabel(’Loss value’)

134 plt.xlabel(’No. epoch’)

135 plt.show()

136

137 # Model Accuracy plot

138 plt.rcParams.update ({’font.size’:22})

139 plt.figure(figsize =(15, 10))

140 plt.plot(history.history[’accuracy ’])

141 plt.plot(history.history[’val_accuracy ’])

142 plt.title(’model accuracy ’)

143 plt.ylabel(’accuracy ’)

144 plt.xlabel(’epoch’)

145 plt.legend ([’train’, ’test’], loc=’upper left’)

146 plt.show()

147

148 # summarize history for loss
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149 plt.figure(figsize =(15, 10))

150 plt.plot(history.history[’loss’])

151 plt.plot(history.history[’val_loss ’])

152 plt.title(’model loss’)

153 plt.ylabel(’loss’)

154 plt.xlabel(’epoch’)

155 plt.legend ([’train’, ’test’], loc=’upper left’)

156 plt.show()

157

158 # Train the model with all training data

159 model.fit(train_X , train_Y , batch_size =100, epochs =20)

160

161 # Save the model

162 model.save(’/content/drive/My Drive/thesis/training/my_model1_refVNIR ’

+ str(windowSize) + ’PCA’ + str(numPCAcomponents) + "testRatio" +

str(testRatio) + ’.h5’)

163

164 # Train second model and save the model

165 model1 = model_2 ()

166 history = model1.fit(train_X , train_Y , batch_size =100, epochs =10,

validation_data =(X_test , y_test))

167 model1.save(’/content/drive/My Drive/thesis/training/

my_model2_rad_VNIR1 ’ + str(windowSize) + ’PCA’ + str(

numPCAcomponents) + "testRatio" + str(testRatio) + ’.h5’)

B.3 Testing model, validation and visualization

1 # -*- coding: utf -8 -*-

2 """ Reflectance VNIR testing and Visualization.ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1

RwPXhzAM_BvPQoTvp7CiEKIYvOsa4NQb

8 """

9

10 # Commented out IPython magic to ensure Python compatibility.

11 # Import the necessary libraries

12 !pip install spectral

13 from sklearn.decomposition import PCA

14 import os

15 import scipy.io as sio

16 import numpy as np

17 from keras.models import load_model

18 from keras.utils import np_utils

19 from sklearn.metrics import classification_report , confusion_matrix ,

cohen_kappa_score

20 import itertools

21 import spectral

22 import matplotlib

23 # %matplotlib inline

24 from spectral import *

25 import spectral.io.envi as envi

26 from PIL import Image

27 import pandas as pd

28 from pickle import load
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29

30 from google.colab import drive

31 drive.mount(’/content/drive ’)

32

33 # Load the Global values (windowSize , numPCAcomponents , testRatio)

from the text file global_variables.txt

34 myFile = open(’/content/drive/My Drive/thesis/global_variables.txt’, ’

r’)

35 file = myFile.readlines ()[:]

36

37

38 for line in file:

39

40 if line [0:3] == "win":

41

42 ds = line.find(’=’)

43 windowSize = int(line[ds+1: -1] ,10)

44

45 elif line [0:3] == "num":

46

47 ds = line.find(’=’)

48 numPCAcomponents = int(line[ds+2: -1] ,10)

49

50 else:

51

52 ds = line.find(’=’)

53 testRatio = float(line[ds+1:])

54

55 def loadDataset ():

56 image = envi.open(’/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR /09 _VNIR_ROAD_MASKED.hdr’,

57 ’/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR /09 _VNIR_ROAD_MASKED ’)

58 data = image.load()

59 label_data = Image.open(’/content/drive/My Drive/thesis/Hyperimage

/Reflectance/VNIR/class4.tif’)

60 labels = np.array(label_data)

61 return data , labels

62

63

64 def reports (X_test ,y_test):

65 Y_pred = model.predict(X_test)

66 y_pred = np.argmax(Y_pred , axis =1)

67 #target_names = [’Road ’, ’Pavement ’, ’Vegetation ’, ’Train Track ’,

’Water ’

68 # ,’Train Track ’, ’Shadows ’]

69 target_names = [’Road’, ’Vegetation ’, ’Unclassified ’, ’Water’

70 ,’Train Track’]

71

72 classification = classification_report(np.argmax(y_test , axis =1),

y_pred , target_names=target_names)

73 confusion = confusion_matrix(np.argmax(y_test , axis =1), y_pred)

74 score = model.evaluate(X_test , y_test , batch_size =32)

75 kappa = cohen_kappa_score(np.argmax(y_test , axis =1), y_pred)

76 Test_Loss = score [0]*100

77 Test_accuracy = score [1]*100

78

79 return classification , confusion , Test_Loss , Test_accuracy , kappa
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80

81

82 def applyPCA(X, numPCAcomponents =75):

83 newX = np.reshape(X, (-1, X.shape [2]))

84 pca = PCA(n_components=numPCAcomponents , whiten=True)

85 newX = pca.fit_transform(newX)

86 newX = np.reshape(newX , (X.shape[0],X.shape[1], numPCAcomponents))

87 return newX , pca

88

89 def Patch(data ,height_index ,width_index):

90 #transpose_array = data.transpose ((2,0,1))

91 #print transpose_array.shape

92 height_slice = slice(height_index , height_index+PATCH_SIZE)

93 width_slice = slice(width_index , width_index+PATCH_SIZE)

94 patch = data[height_slice , width_slice , :]

95

96 return patch

97

98 def standartizeData(X, scaler):

99 newX = np.reshape(X, (-1, X.shape [2]))

100 newX = scaler.transform(newX)

101 newX = np.reshape(newX , (X.shape[0],X.shape[1],X.shape [2]))

102 return newX

103

104 def saveClassifiedData(classes):

105 with open("/content/drive/My Drive/thesis/result/radiance/VNIR/

training_map_REF_vnir"+ ".npy", ’bw’) as outfile:

106 np.save(outfile , classes)

107 def visualize_result(img , predicted_map):

108 view = imshow(img , (1, 2, 3), stretch =((0.0 , 0.9), (0.0, 0.9),

(0.0, 0.9)),figsize =(16, 16), classes=predicted_map)

109 view.set_display_mode(’overlay ’)

110 view.class_alpha = 1

111 view.show_data

112

113 def extract_road_edges(road):

114 from skimage.feature import canny

115 from skimage.viewer import ImageViewer

116 from skimage import io

117 from skimage import img_as_uint

118 edges = canny(

119 image=road ,

120 sigma =5.5,

121 low_threshold =0.1,

122 high_threshold =0.3,

123 )

124 #viewer = ImageViewer(edges)

125 #viewer.show()

126 from skimage.morphology import binary_dilation

127 edge = binary_dilation(edges , selem=None , out=None)

128 edge = binary_dilation(edge , selem=None , out=None)

129 #edge = binary_dilation(edge , selem=None , out=None)

130 road_edges = edge.astype(int)

131 return road_edges

132

133 X_test = np.load("/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/X_Patches_" + str(windowSize) + "PCA" + str(

numPCAcomponents) + "testRatio" + str(testRatio) + ".npy")
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134 y_test = np.load("/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/y_Patches_" + str(windowSize) + "PCA" + str(

numPCAcomponents) + "testRatio" + str(testRatio) + ".npy")

135 X_test = np.reshape(X_test , (X_test.shape[0], X_test.shape[3], X_test

.shape [1], X_test.shape [2]))

136 y_test = np_utils.to_categorical(y_test)

137 model = load_model(’/content/drive/My Drive/thesis/training/

my_model1_refVNIR ’ + str(windowSize) + ’PCA’ + str(numPCAcomponents

) + "testRatio" + str(testRatio) + ’.h5’)

138 scaler = load(open(’/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/spatialSize/scaler3.pkl’, ’rb’))

139 X, y = loadDataset ()

140 X,pca = applyPCA(X,numPCAcomponents)

141 height = y.shape [0]

142 width = y.shape [1]

143 PATCH_SIZE = windowSize

144 numPCAcomponents = numPCAcomponents

145 outputs = np.zeros((height ,width))

146 for i in range(height -PATCH_SIZE +1):

147 for j in range(width -PATCH_SIZE +1):

148 image_patch=Patch(X,i,j)

149 #print (image_patch.shape)

150 X_test_image = image_patch.reshape(1, image_patch.shape[2],

image_patch.shape [0], image_patch.shape [1]).astype(’float32 ’)

151 prediction = (model.predict_classes(X_test_image))

152 outputs[int(i+PATCH_SIZE /2)][int(j+PATCH_SIZE /2)] = prediction

+1

153

154 predict_images = imshow(classes = outputs.astype(int),figsize =(16 ,16)

)

155

156 classes = outputs.astype(int)

157 visualize_result(X, classes)

158

159 saveClassifiedData(classes)

160

161 val_image = envi.open(’/content/drive/My Drive/thesis/Hyperimage/

Reflectance/VNIR/validation /08 _clippped_road.hdr’, ’/content/drive/

My Drive/thesis/Hyperimage/Reflectance/VNIR/validation /08

_clippped_road ’)

162 val_img = val_image.load()

163 val_img.shape

164

165 X_val ,pca_val = applyPCA(val_img ,numPCAcomponents)

166 X_val = standartizeData(X_val , scaler)

167

168 height = X_val.shape [0]

169 width = X_val.shape [1]

170 PATCH_SIZE = windowSize

171 numPCAcomponents = numPCAcomponents

172 outputs = np.zeros((height ,width))

173 for i in range(height -PATCH_SIZE +1):

174 for j in range(width -PATCH_SIZE +1):

175 image_patch=Patch(X_val ,i,j)

176 #print (image_patch.shape)

177 X_test_image = image_patch.reshape(1, image_patch.shape[2],

image_patch.shape [0], image_patch.shape [1]).astype(’float32 ’)

178 prediction = (model.predict_classes(X_test_image))
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179 outputs[int(i+PATCH_SIZE /2)][int(j+PATCH_SIZE /2)] = prediction

+1

180

181 predict_images = imshow(classes = outputs.astype(int),figsize =(16 ,16)

)

182 classes = outputs.astype(int)

183 visualize_result(X_val , classes)

184 def saveClassifiedData(classes):

185 with open("/content/drive/My Drive/thesis/result/reflectance/VNIR/

val_map_REF_vnir11"+ ".npy", ’bw’) as outfile:

186 np.save(outfile , classes)

187 saveClassifiedData(classes)
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