INFLUENCE OF THE ANIMAL FEED BINDERS ON OPTIMAL NUTRITIONAL AND PHYSICAL QUALITIES OF THE ANIMAL FEED PELLETS AND FEED PRODUCTION CAPACITY- A LITERATURE REVIEW
INFLUENCE OF THE ANIMAL FEED BINDERS ON OPTIMAL NUTRITIONAL AND PHYSICAL QUALITIES OF THE ANIMAL FEED PELLETS AND FEED PRODUCTION CAPACITY - A LITERATURE REVIEW

Department of Animal and Aquacultural Sciences

Faculty of Biosciences

Master thesis 2020
30ECTS

Olatomiwa AYoola
Master of Science in Feed Manufacturing Technology
Submission date: August 17th, 2020
Acknowledgement

To God Almighty be the glory for sustaining me throughout this journey.

I sincerely express my gratitude to my supervisor Dr. Dejan Dragan Miladinovic for his support and guidance in writing this thesis. Many thanks to my study advisor, Stine Telneset for being helpful during this period.

I would like to thank my husband, Damilola Bello for his understanding and support. I appreciate my parents for believing in me. I am grateful to Mr. and Mrs. Soneye for their love and their moral support. To my amazing siblings and friends, you are the best gift to me. I love you all.

Olatomiwa Ayoola
17th August, 2020
Abstract

Binders are binding/firming agents that develop solid bridges through chemical reaction to make strong interparticle bonding. They are used to strengthen pellets, improve pellets integrity, durability and stability, reduce nutrient leaching and prevent fragmentation and abrasion of pellets during handling, transportation and storage. Binders like lignosulfonate, bentonite and sepiolite enhance pellet strength and durability by acting as a filler to fill in pore spaces between particles. Some have adhesive forces that help to glue and consolidate particles. Binders such as starch and protein improve pellet strength and durability through chemical reaction by changing the nature of feed mix after undergoing heat, moisture and heat treatment during the pelleting process. Besides improving physical pellet properties, some binders can enhance animal’s growth and digestibility. Supplementing binders in feed are distinct for different animal species diets. Therefore, selection of binder in feed is based on its suitability for a specific animal species.

Key words: Binders, Durability, Stability, Lignosulfonate, Bentonite, Sepiolite, Agar, Pelleting.
Table of Contents

Acknowledgement ..i

Abstract ...ii

Table of contents ...iii

List of tables ...v

List of figures ...vi

Abbreviations ..vii

1.0 INTRODUCTION ..1

2.0 LITERATURE REVIEW ...3

2.1 Pelleting process ...3
 2.1.1 Grinding ...3
 2.1.2 Steam conditioning ...3
 2.1.3 Pelleting ...4
 2.1.4 Cooling and Drying ..4

2.2 Factors affecting pellet quality ..5
 2.2.1 Particle size ...6
 2.2.2 Feed formulation ...6
 2.2.3 Steam conditioning ..7
 2.2.4 Moisture addition ...7
 2.2.5 Die size ...7
List of tables

Table 1: Names of binder manufacturers, type of binder produced and the inclusion level……..11
Table 2: Benefits of binders for different species……..40
List of figures

Figure 1: Binder loading in liquid bridge structure ...8
Figure 2: Structure of a Lignosulfonate molecule ...18
Figure 3: Chemical structure of Agar ...22
Figure 4: Chemical structure of Guar gum...25
Figure 5: Chemical structure of Alginate..27
Figure 6: Chemical structure of Pectin..29
Figure 7: Chemical structure of Carrageenan...30
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaLS</td>
<td>Calcium lignosulfonate</td>
</tr>
<tr>
<td>PPQ</td>
<td>Physical pellet quality</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>DMR</td>
<td>Dry Matter Retention</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>ms-1</td>
<td>Metre per second</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>l/d</td>
<td>length to diameter</td>
</tr>
<tr>
<td>PDI</td>
<td>Pellet Durability Index</td>
</tr>
<tr>
<td>HM</td>
<td>High methoxyl</td>
</tr>
<tr>
<td>LM</td>
<td>Low methoxyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fig</td>
<td>Figure</td>
</tr>
<tr>
<td>hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethylcellulose</td>
</tr>
<tr>
<td>Ca2+</td>
<td>Calcium</td>
</tr>
<tr>
<td>AME</td>
<td>Apparent Metabolizable Energy</td>
</tr>
<tr>
<td>CP</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>CU</td>
<td>Copper</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Feed production involves controlled processes to produce high-quality feed for stimulating and enhancing animal functionality. Hence, the animal feed industry is continually searching for strategies to improve feed processing techniques in order to produce quality and economical feed. A major feed processing technique that needs consistent improvement is pelleting.

Pelleting is a thermal process used in producing animal feed. The purpose of pelleting is to maintain homogeneity by agglomeration/compaction of feed particles through mechanical and thermal process (Thomas and Van der Poel, 1996; Abdollahi et al., 2013). Compaction of particles is stimulated through mechanical forces and bonding forces between interparticle. Compaction starts by rearranging particles at low pressure followed by elastic and plastic deformation of particles when pressure is increased. This leads to particles interlocking, which results in the densification of biomass, i.e. pellet (Tabil, 1998). Compaction of feed particles materials into pellets minimize costs and challenges faced with ground feed during handling, transportation, and storage (Kaliyan and Morey, 2009).

The advantages of pelleting include high bulk density, better flow properties, reduction in generating dust and fines (Thomas and Van der Poel, 1996). Pellet with bad qualities easily disintegrates causing feed wastage and increasing production cost thus, it is essential to produce pellets with excellent qualities. Factors such as steam conditioning, conditioner residence time/temperature, type of feed ingredients, feed formulation, influence the production of high quality and stable pellets (Lim and Cuzon, 1994; Thomas and Van der Poel, 1996; Tabil, 1998; Briggs et al., 1999). Controlling these factors during manufacturing processes produce pellets with superior pellet quality (Tabil, 1998).

Sometimes, putting these processing factors in place are insufficient to manufacture high pellet quality; therefore, the inclusion of binding agent is employed. Binders are binding/firming agents that develop solid bridges through chemical reaction to make strong interparticle bonding (Paolucci et al., 2012). Solid bridges are formed by high pressure through diffusion, chemical
reaction, crystallization, hardening of binders after cooling and solidification of melted particles after cooling /drying (Thomas and Van der Poel, 1996; Tabil and Sokhansanj, 1996; Kaliyan and Morey, 2009).

Binders are used to strengthen pellets, improve pellets integrity, durability and stability. They also reduce nutrient leaching and prevent fragmentation and abrasion of pellets during handling, transportation and storage (Acar, 1991; Penafiorida and Golez, 1996; Tumuluru et al., 2016; Attar et al., 2018).

Lim and Cuzon (1994) classified binders as natural, modified or synthetic. Natural binders such as starch and protein increase the nutritional value of feed and are naturally found in feed ingredients (Paolucci et al., 2012). Synthetic binders, on the other hand, are produced artificially and do not necessarily improve the nutritional value of feed examples include Urea-formaldehyde, Na or Ca bentonite. Modified binders include polysaccharides like carboxymethylcellulose (CMC), alginate, agar, carrageenan, guar gum (galactomannan), gelatin, pectin and lignosulfonate (Lim and Cuzon, 1994). Modified binder like gelatin provide nutritional value in animal feed (Paolucci et al., 2012).

Binders like lignosulfonate, bentonite and sepiolite enhance pellet strength and durability by acting as a filler to fill in pore spaces between particles (Yalcin et al., 2017a; Ouyang et al., 2006). Some like have adhesive forces that help to glue and consolidate particles. Binders like starch and protein improve pellet strength and durability through chemical reaction by changing the nature of feed mix after undergoing heat, moisture and heat treatment during the pelleting process (Lim and Cuzon, 1994).

In conclusion, acceptability of binders in feed production is hinged on its binding capacity, inclusion level, interference with growth and digestibility, availability and cost.

The purpose of this review is to discuss the effect and benefits of various pellet binders on pellet quality. Ways to maximize these benefits to produce the best pellet quality will be analysed.
2.0 LITERATURE REVIEW

2.1 Pelleting process

The pelleting process involves several phases in manufacturing animal feed. It starts with receiving the raw materials, grinding or particle size reduction, proportioning or batching, mixing, heating or thermal treatment (or pellet shaping), packaging, storing and ends with loading (Abdollahi et al., 2013).

2.1.1 Grinding

After receiving raw materials, they are ground to smaller particles either by hammer or roller mill before mixing. Grinding is done mainly for cereal grain. The purpose of grinding is to increase surface area for nutrient digestibility, improve homogeneity and facilitate further processing (Behnke, 1996). Afterwards, the ground feed ingredients are proportioned and mixed with other feed ingredients to blend the nutrients uniformly. They are further subjected to thermal treatment by steam conditioning in the conditioner.

2.1.2 Steam conditioning

Steam conditioning is the most crucial factor in pelleting. It is a thermomechanical process that involves adding heat and steam to mixed feed ingredient under constant shear or pressure (Svihus, 2018). The aim of conditioning is to pre heat and moisten the feed mix into a state that will facilitate further processing. The addition of moisture using steam improves pellet quality(Skoch et al., 1981). Steam has the ability to provide proper balance of heat and moisture needed for optimization of conditioning process(Svihus, 2018) The quality of conditioning process depends on the mix particle size, steam quality and quantity, initial moisture and temperature content of the
mix, and the retention time in the conditioner for the interaction of feed and mash (Yasothia, 2018; Svihus 2018). Steam quality is the amount of steam in the vapor phase. High quality steam has more energy to increase feed mash temperature than low quality steam (Gilpin et al., 2002) For ideal conditioning, dry saturated steam is used as it contains less moisture and maximizes the relationship between feed temperature and moisture percentage (Kenny and Rollins, 2007). According to Kenny and Rollins (2007), dry saturated steam increases mash temperature by 16°C for every 1% added moisture. During conditioning, a temperature of 75-80°C is usually attained (Svihus, 2018) an conditioning process occurs between 20-25s (Kaliyan and Morey, 2009) . Steam conditioning aids the release and activation of natural binders, natural lubricants and artificial binders in feed as a result, pellet quality is improved(Kaliyan and Morey, 2009). Steam alters starch and protein structure resulting in starch gelatinization and protein plasticization. Both starch gelatinization and protein plasticization contributes to feed particles binding property thereby, promoting production of quality pellets (Behnke, 1994)

2.1.3 Pelleting

Following steam conditioning is pelleting. Pelleting is the most common processing method to shape feeds. Pellet is a cylinder of feed with varying length and width produced by pressing the feed through a thick metal plate containing hole called die (Svihus, 2018). Conditioned feed flows into the pellet chamber and is forced through the die. The pressure exerted by the rolls in the pellet chamber combined with the temperature will result in chemical changes that will cause the feed particles to glue together called pellets(Svihus, 2018).

2.1.4 Cooling and Drying

Pellets come out of the pellet mill die with a temperature from 80 to 90°C and 15–17% moisture. This is unsuitable for storage thus, the pellets need to be cooled or dried to 8°C temperature and 10–12 % moisture content (Abdollahi et al., 2013). Cooling is achieved by passing a stream of air through a bed of hot pellets in a vertical or horizontal cooler. Cooling occurs by the evaporation of water from excess moisture and by contact with the air. The warmer the air the more moisture
will be evaporated from the pellets. The residence time of pellet in the cooler should be taken into consideration to avoid redundant pellets. Cooling for too long time is detrimental to the pellets as the pellets may become too hard and lose its nutritional value (California pellet mill, 2012). However, the time is relative depending on the warmness of the steam of air passed through the pellet.

Lastly, pellets are packaged, stored and transported to various locations.

2.2 Factors affecting pellet quality

Pellets undergo stress and pressure during production and post-production process such as handling, transportation and storage (Thomas and Van der Poel, 1996); It causes pellet disintegration (generation of dust and fines), fragmentation and abrasion. To optimize pellet production, it is imperative to produce good physical quality pellets with high nutritional value that can withstand stress and the rigors of handling, transportation and storage (Briggs et al., 1999; Kaliyan and Morey, 2009). Pellet quality includes the nutritional and physical quality. Pellet nutritional quality is evaluated by how pellet improve growth, digestibility and health of animals while pellet physical quality (PPQ) is evaluated by how hard or durable a pellet is. It includes hardness and durability. However, it varies according to animal species. For birds, pellets physical properties such as durability and hardness are necessary for enhancing their performance (Thomas and Van der Poel, 1996; Abdollahi et al., 2013). Aquatic animals mostly require additional pellet characteristics such as flowability, sinking velocity/floatability, water absorption capacity and water stability (Kaliyan and Morey, 2009, Abdollahi, 2011; Khater et al., 2014). The three main parameters used in measuring PPQ are:

Hardness: is the maximum force required to resist/withstand crushing without cracking or breaking (Kaliyan and Morey, 2009). Kahl device can be used in measuring hardness (Thomas and Van der Poel, 1996).

Durability: is the ability of pellets to remain intact after subjection to load and force during transportation, handling and storage (Thomas and Van der Poel, 1996). The tumbling can,
Holmen tester, and Ligno tester can be used for measuring durability (Kaliyan and Morey, 2009). It measures the amount of intact pellets remaining after subjection to loads and pressure.

Water stability: is the ability of pellets to retain its physical integrity when immersed in water for a specific time (Obaldo *et al*., 2002). High water stability means minimum disintegration and nutrient leaching.

Factors such as steam conditioning, conditioner residence time/temperature, type of feed ingredients, feed composition and formulation, influence the production of high quality and stable pellets. Also, pelleting equipment, die geometry, die speed, rate of production affects pellet quality (Lim and Cuzon, 1994; Thomas and Van der Poel, 1996; Tabil and Sokhansanj, 1996; Briggs *et al*., 1999). Additionally, post-production conditions such as cooling, drying and storage conditions affect the strength and durability of pellets (Kaliyan and Morey, 2009). Controlling these factors during manufacturing processes increase production efficiency and pellet quality (Tabil and Sokhansanj, 1996).

2.2.1 Particle size

Fine and medium particle size grinds increase pellet durability due to high reactive surface area (Tabil and Sokhansanj,1996). Reducing particle size increases particle surface area; Due to the large surface area, fine particles are able to absorb more moisture than large particle therefore they experience better conditioning (Kaliyan and Morey, 2009). Franke and Rey (2006) suggested using 0.5–0.7 mm particle size for good pellet durability. Particles ground larger than 1-1.5mm may be unsuitable for pellet production (Franke and Rey, 2006).

2.2.2 Feed formulation

Different ingredients have distinct characteristics that affect feed processing. These characteristics influence the amount of moisture, pressure or heat to be applied to produce during processing. Fiber has stiff and elastic characteristics that makes bonding between particles difficult (Thomas *et al*. 1998). Inclusion of fat/oil in feed negatively affects pellet durability (Angulo *et al*., 1996; Cavalcanti, 2004). Fat increases lubrication between the feed particles and the pellet die-wall. As
a result, die friction and pressure is decrease thereby reducing pellet durability (Kaliyan and Morey, 2009). A study by Briggs et al. (1999) suggested that using more than 5.6% of oil content prior to pelleting does not affect pellet quality depending on the amount of protein and conditioner residence time. Briggs et al. (1999) further explained that increasing the protein content increased the pellet durability but increasing the oil content above 5.6 % decreased pellet quality. This is congruent with Cavalcanti and Behnke (2005) report about the negative impact of fat on pellet durability, probably based on reduced compression forces and increased flowability of compacted materials within the die hole. Also, the influence of protein on pellet quality depends on the source of the protein and properties of protein and heat denaturation (Cavalcanti and Behnke, 2005).

2.2.3 Steam conditioning

Steam conditioning increased feed production rate by 64% and increased pellet durability index (PDI) by 26%. Steam also decreased energy usage in the pelleting machine (Skoch et al. 1981). Abdollahi (2011) reported improved pellet durability and hardness through steam conditioning. Steam conditioning at a specific temperature(50-70°C) and moisture content causes starch gelatinization and protein denaturation thereby improving pellet quality (Abdollahi et al., 2012). To achieve optimum pelleting, Tabil and Sokhansanj (1996) suggested using a conditioning temperature less than 92°C and 1.5 to 2.5% of moisture

2.2.4 Moisture addition

Pellet durability can also be improved by moisture addition as suggested by (Abdollahi et al., 2013). Moisture addition during mixing and conditioning aids pellet binding by Van der Waal’s forces (Tabil and Sokhansanj, 1996). Water causes recrystallization between interparticle molecules by penetrating the surface particles of soluble material. As a result, pellet durability is improved. Abdollahi et al. (2012) observed increased PDI from 56.5% to 67.2% when 2.4% moisture was added to feed conditioned at 60 °C.

2.2.5 Die size

7
Increase in the length to diameter (l/d) increases pellet durability. The larger the die length to diameter (l/d) ratio, the better the pellet durability (Heffner and Pfost, 1973). Increasing die l/d ratio from 5 to 9 increased the durability of alfalfa pellets from 50 to 80% (Hill and Pulkinen, 1988). Smaller die with 6.1mm diameter produced pellets with better durability compared to large die with 7.5mm diameter (Tabil and Sokhansanj, 1996). However, smaller die are unable to handle diets with moisture content above 10%. According to Thomas et al. (1997) die speed depends on the pellet size. Thomas et al. (1997) recommended high die speed (about 10 ms\(^{-1}\)) for small pellets with 3–6-mm diameter, and low die speed (about 6–7ms\(^{-1}\)) for large pellets.

Controlling these parameters are sometimes inadequate to produce pellets with the best properties. Thus, binding agents are introduced.

2.3 Binders

Binders are binding/firming agents used for improving pellet quality (Tiamuyi and Solomon, 2012). They are used to strengthen pellets, improve pellets integrity, durability and stability. Also, binders prevent pellets fragmentation and abrasion during handling, transportation and to reduce the specific energy consumption during processing (Acar et al., 1991; Penaflorida and Golez, 1996; Tumuluru et al., 2016; Attar et al., 2018).

Binders can either be liquid, e.g. molasses (Thomas and Van der Poel, 1996) or solid that forms bridges to make strong interparticle bonding (Paolucci et al., 2012). Solid bridges are formed by high pressure through diffusion, chemical reaction, crystallization, hardening of binders after cooling and solidification of melted particles after cooling /drying (Thomas and Van der Poel, 1996; Tabil and Sokhansanj, 1996; Kaliyan and Morey, 2009).
Different binders have distinct properties that qualify their usage in producing feed for various animal species. Generally, its viscous properties enable their usage in feed production. Binders are usually added in powder form or as liquids. When added, its ability to disperse and react with other raw material is paramount. Dispersion of a binder depends on binder viscosity and applied shear rate during processing. High shear rate and low viscosity result in a homogenous dispersion while high viscosity and low shear rate result in a heterogeneous mixture (Mort, 2005).

Conventionally, applying binders in liquid form requires using a spray. A typical example of the spraying mechanism is top-spray (Pusapati and Rao, 2014). Top spray as the name implies is termed according to the position of the spray gun. Using top spray fluids helps to prevent segregation of fines, improve flow and contribute to homogeneous distribution of all components (Pusapati and Rao, 2014). In a top-spray fluid, the spray coverage relative to the mass in the mixer should be taken into consideration for homogenous dispersion. Effective binder coverage entails proper mixing and low contact angle between the binder and other ingredients. The distribution of binders on the surface of other ingredients determines the reaction rates as reactions occur at the surface interface between the binder and other ingredients (Mort, 2005). Binders act as a filler by filling in the pore space between particles or function as an adhesive consolidating or gluing materials by reducing pore spaces (DeSilva and Anderson, 1995).

Figure 1: Binder loading in liquid bridge structure (Mort, 2005)

Lim and Cuzon (1994) classified binders as natural, modified and synthetic. Natural binders such as starch and protein increase the nutritional value of feed and are naturally found in feed ingredient
Modified binders include polysaccharides like carboxymethyl cellulose (CMC), alginate, and lignosulfonate. Synthetic binders, on the other hand, are produced artificially and do not necessarily improve the nutritional value of feed examples include Urea-formaldehyde, Na or Ca bentonite (Lim and Cuzon 1994).

Binders like lignosulfonate, bentonite and sepiolite enhance pellet strength and durability by acting as a filler to fill in pore spaces between particles (Ouyang et al., 2006; Yalcin et al., 2017a). Some have adhesive forces that help to glue and consolidate particles. Binders like starch and protein improve pellet strength and durability through chemical reaction by changing the nature of feed mix after undergoing heat, moisture and heat treatment during the pelleting process (Lim and Cuzon, 1994).

Pellet quality is enhanced by binders through binding mechanisms and forces that bond the particles together. The binding forces are classified as (i) solid bridges are formed by high pressure through diffusion, chemical reaction, crystallization, hardening of binders, e.g. molasses after cooling, solidification of melted particles after cooling /drying (ii) Intermolecular attractive forces (hydrogen bridges, and van der Waals’ forces, electrostatic, and magnetic forces) between solid particles (iii) Interlocking bonds caused by folding and plying of fibers and bulky materials during compression, (iv) adhesive and cohesive forces between particles caused by the presence of viscous binders, and (v) interfacial and capillary forces due to the presence of liquids (Thomas and Van der Poel, 1996; Tabil and Sokhansanj, 1996; Kaliyan and Morey, 2009).

Selection of binders are based on their binding properties and how they affect the nutritional properties of feed. Fundamentally, for proper optimization and activation of pellet binder, steam conditioning is vital to provide heat and moisture. (Kaliyan and Morey, 2009).

2.4. Feed binder market
Binders are used to reduce pellet fines and dust so as to prevent wastage. To reduce production cost, cost, binders are added to pelleting process to prevent this loses. According to marketsandmarkets.com(2020), by the end of 2020, the estimated value for global feed binder market is expected to be USD 4.5 billion and it is predicted to increase annually by 3% to USD 5.1 billion by 2025. Feed producers are more apprised of the benefits of binders; based on this, their usage is expected to rise. Guar gum, corn starch, agar, carrageenan, and gelatin are effective binders but are very costly to include in the feed. Lignosulfonate and clay are less expensive and can be included at low concentrations. Lignosulfonate seems to be the fastest growing binder in the market and the poultry sector is also projected to dominate the market. The rise in the global poultry production has contributed to its growth in the feed binder market. Globally, based on the demand for feed binders, the Asia pacific region is projected to increase the market growth (marketsandmarkets.com, 2020). Table 1 comprises names of binder manufacturers, the type of binder produced and the inclusion level as seen on the companies’ websites.

<table>
<thead>
<tr>
<th>Product</th>
<th>Binder/Inclusion level</th>
<th>Company/Manufacturer</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PellTech®</td>
<td>Lignin/ 0.25- 0.75%</td>
<td>Borregaard</td>
<td>www.borregaard.com</td>
</tr>
<tr>
<td>Ameri-Bond 2X®</td>
<td>Lignosulphonate/0.5%</td>
<td>Borregaard</td>
<td>www.borregaard.com</td>
</tr>
<tr>
<td>LignoBond DD®</td>
<td>Lignosulphonate/0.5-1.0%</td>
<td>Borregaard</td>
<td>www.borregaard.com</td>
</tr>
<tr>
<td>NOVAXAN™</td>
<td>Xanthan Gum</td>
<td>ADM (Archer Daniels Midland Company)</td>
<td>www.adm.com</td>
</tr>
<tr>
<td>Protamylasse™</td>
<td>Starch and Sugar</td>
<td>Avebe</td>
<td>www.avebe.com</td>
</tr>
<tr>
<td>VEGIGEL®</td>
<td>Agar</td>
<td>Gelita</td>
<td>www.gelita.com</td>
</tr>
<tr>
<td>Pro-Bind plus</td>
<td>Gelatine/ 0.25% - 0.5%</td>
<td>Darling Ingredients (Sonac)</td>
<td>www.sonac.biz</td>
</tr>
<tr>
<td>KELFLO®</td>
<td>Carrageenan</td>
<td>CP Kelco Inc.</td>
<td>www.cpkelco.com</td>
</tr>
<tr>
<td>GENU®</td>
<td>Pectin</td>
<td>CP Kelco Inc.</td>
<td>www.cpkelco.com</td>
</tr>
</tbody>
</table>
Table 1: Names of binder manufacturers, the type of binder produced and the inclusion level

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>KELFLO®</td>
<td>Xanthan Gum</td>
<td>CP Kelco Inc</td>
<td>www.cpkelco.com</td>
</tr>
<tr>
<td>Pell-Tuff®</td>
<td>Lignosulfonate/0.2-0.5%</td>
<td>Cra-vac Industries INC</td>
<td>cravac.com</td>
</tr>
<tr>
<td>Protein Plus®</td>
<td>Gelatine</td>
<td>Cra-vac Industries INC</td>
<td>cravac.com</td>
</tr>
<tr>
<td>Sepifeed®</td>
<td>Sepiolite/1.0-2.0%</td>
<td>Sepiolsa</td>
<td>www.sepiolsa.com</td>
</tr>
<tr>
<td>Akucell® Cellulose Gum</td>
<td>Carboxymethylcellulose</td>
<td>Nouryon</td>
<td>www.nouryon.com</td>
</tr>
<tr>
<td>WALOCEL™ CRT</td>
<td>Sodium Carboxymethylcellulose/1.0-2.0%</td>
<td>Dupont</td>
<td>www.dupont.com</td>
</tr>
<tr>
<td>Hydrocolloids</td>
<td>Carrageenan, Pectin, Xanthan gum</td>
<td>Cargill</td>
<td>www.cargill.com</td>
</tr>
</tbody>
</table>

2.5 Types of binders

2.5.1 Starch

Starch acts as a binding agent in feed processing (Wood, 1987; Thomas et al., 1998). Starch granules consist of branched (amylopectin) and unbranched (amylose) molecular structure joined by hydrogen bonding (Svihus et al., 2005). Upon heating at above 80°C in the presence of adequate water, the physicochemical properties of starch are altered, thereby influencing starch functionality (Collado and Corke, 2003; Svihus et al., 2005). The alteration of the physicochemical properties of starch in the presence of heat and adequate moisture under high-shear and high-pressure conditions is termed Gelatinization. Gelatinization reaction leads to the formation of starch cross-linking with the other biomass components (Tumuluru et al., 2016). The ability of starch to form gel is the basis of its use as a binding agent.

At a specific temperature 55-70°C (Christianson et al., 1981) during heating in the presence of moisture, the kinetic energy gained by the starch molecules causes the breakdown of the intermolecular hydrogen bonding of the starch granule. The granule swells rapidly with time as a
result of solvation of the amorphous regions, loss of the crystalline order and water diffusion inside the granular structure. Starch paste is formed during swelling of the granules when there is continuous leaching out of the linear amylose molecules. Cooling of the starch paste will result in a strong gel when it thickens due to the formation of hydrogen bonds (Whistler and Daniel, 2000; Collado and Corke, 2003). Due to their unique properties of forming gel, starch is widely applied as thickeners, stabilizers and texture enhancers in the food industry (Tabil et al., 1997; Collado and Corke, 2003). Apart from improving the feed nutritional value, starch acts as natural binders and are vital in producing quality pellets in the feed industry (Kannadhason et al., 2009; Tiamuyi and Solomon, 2012).

Tiamuyi and Solomon (2012) reported that using starch as a binder, increased pellet durability values due to the gelatinization of starch. Starch from various sources has different functional properties. It is therefore essential to understand how various starch sources affect pellet qualities. Researchers (Wood, 1987; Dominy et al., 2004; Solomon et al., 2011), have demonstrated that wheat possesses excellent binding properties for manufacturing pellets with good physical quality. Generally, wheat flour is an excellent natural binder (Dominy et al., 2004). Perhaps, it may be due to their low crude fibre level and gluten protein (Solomon et al., 2011, Tiamuyi and Solomon 2012). Tiamuyi and Solomon (2012), screened various grain cereals by testing their influence on pellet physical properties. It was discovered that diets made with wheat starch produce the best pellet quality with minimum dust and high water stability. Pellets produced from wheat starch exhibited superior pellet quality, water stability and pellet disintegration compared to other grain starches.

Compared with other grain cereals like rice starch, guinea-corn starch, wheat starch and maize starch, pellets produced with millet starch had bad qualities due to its weak binding properties (Tiamuyi and Solomon, 2012). However, Solomon et al. (2011) observed that combining millet starch with yeast (Saccharomyces cerevisae) can increase pellet floatability for 30 mins when immersed in water. Also, tapioca flour can be used as a binding agent in producing pellets with water stability of less than 8hrs. Ali (1988), reported that utilizing 28.5% level of tapioca flour as a binder in prawn feed pellets improved water stability due to its binding capacity.
Using cassava and corn starch have also shown to moderately increase pellet durability and enhance water stability for 50 mins when immersed in water (Solomon et al., 2011). The binding effect of cassava starch have also been reported in the production of pharmaceutical tablets (Chitedze et al., 2012). A study by Orire et al. (2010) found that using 5% level yam starch as binder for fish feed minimize dust level, improved pellet qualities and water stability. He observed that inclusion level at 20% yields less dust but did not increase the pellet quality. Probably, due to high levels of starching the pellets agglutinate as a result of over binding (Orire et al., 2010).

Finally, Tiamuyi and Solomon (2012) stated the benefits of using starch as binders which include affordability and availability in various plant sources, thereby reducing feed cost thus, contributing to pellet nutritional content.

2.5.2 Protein

Protein is a macromolecule consisting of linear chains of amino acids arranged in a three dimensional shape. It is made up of primary, secondary, tertiary and quaternary level of structure (Pollock, 2007). Protein will plasticize under heat and act as a binder thereby improving pellet durability (Winowiski, 1988; Briggs et al., 1999). During feed pelleting, protein undergoes denaturation that weakens its chemical bonds and as a result forms complex bonds/protein network due to the high temperature, moisture and pressure (Wood, 1987; Thomas et al. 1998; Hayta and Alpaslan, 2001). Heating feedstuffs alters protein structure and may cause destruction of three-dimensional structure of proteins, leading to new covalent-bond formations such as disulfide bridges (Svihus and Zimonja, 2011). Denaturation process starts through reversible breakage of hydrogen and van der Waal bonds followed by irreversible changes due to formation of covalent-bond formations such as disulfide bridge (Weijers and Van’t Riet 1992). Denaturation of proteins during processing induces the binding functionality of protein (Svihus and Zimonja, 2011).

The degree of protein denaturation is affected by heat, temperature, moisture content, residence time and pH. The functional properties of protein are also affected by these factors (Thomas et al.,
Heat processing is vital by destroying heat-labile anti nutritional substances, thus improving digestibility of both protein sources. However, excess heat can be detrimental as they cause destruction or alteration of amino acids and reduce amino acid availability/ protein nutritional quality (Papadopoulos, 1989). Thermal damage of proteins is avoided by controlling time, temperature, moisture content while processing.

Protein is widely used in the food and beverage industry due to their properties such as water holding capacity, solubility, gelation, cohesion, and binding abilities (Briggs et al., 1999). Proteins play a significant role in pellet binding because it exerts adhesive forces useful in binding feed particulates (Thomas et al., 1998; Moradi et al., 2019).

Sørensen (2012) observed that proteins in native or undenatured state have better binding properties than heated or denatured proteins when used in feed formulations. Native proteins have a higher solubility than denatured proteins, and solubility of main feed constituents appears to be an important factor for the quality of the final product. Heat treated proteins are already unfolded and form less soluble aggregates (Sørensen, 2012).

Formulations containing raw soya protein and pre-gelatinized tapioca starch exhibited superior pellet durability whereas, and those containing denatured soya protein and native tapioca starch have inferior pellet durability. Pellets prepared from native starch and denatured soya-bean meal had low durability and hardness due to their low binding capacity. It means that formulations containing raw protein irrespective of the presence pre-gelatinized starch are harder than those containing denatured protein (Wood, 1987).

Wheat is recognized as a raw material which exhibits good binding properties for manufacturing pellets with good physical quality. These binding properties are due to the hydration and presence of the gluten (Wood, 1987). According to McKee (1988), wheat gluten enhances water pellet stability. The biochemical and rheological properties of most wheat products are determined by gluten protein (Hayta and Alpaslan, 2001). The use of wheat gluten(10g/kg) and wheat 200g/kg
are beneficial for increasing physical pellet quality, while improving the performance of broilers such as improved weight gain. 20g/kg wheat gluten inclusion resulted in greater pellet durability index and pellet hardness in both starter and finisher diets but the weight gain and feed intake (FI) were not affected. High inclusion rate of wheat gluten (20 g/kg) may have accounted for lack of influence on weight gain FI and feed per gain, probably due to pellet agglutination (Argüello-Guevara and Molina-Poveda, 2013; Moradi et al., 2019).

Wheat gluten-based diets decreased pellet water stability when compared to guar gum and PolyMethylCarbamide (PMC). However, increasing pelleting temperature from 70-90⁰C increases pellet water stability by 1.5%. It was suggested that increasing pelleting temperature reduces leaching and disintegration of wheat gluten-based pellets diets. Probably, increase in temperature leads to more starch gelatinization and also enhanced formation of ingredient-binder matrix (Ali et al., 2010).

Combining wheat gluten with other binders may enhance its binding properties to improve water stability. Pellet diets produced with 50g/kg of wheat gluten and alginate maintained water stability after 3hrs immersion in water. It prevented high levels of dry matter loss after 60min water immersion. Thus, diets produced with 50g/kg of wheat gluten and sodium alginate showed superior water stability, water absorption rate (Ali et al., 2010) and low disintegration after 3h water immersion (Argüello-Guevara and Molina-Poveda, 2013). Also, adding defatted soy to diets enhanced the physical quality by increasing hardness and durability (Søresen et al., 2009).

Generally, increasing protein content increased the pellet durability (Briggs et al., 1999).

2.5.3 Lignosulfonates

Lignin is a highly branched aromatic biopolymer extracted from the cell walls of wood where it contains up to 30%. It is the world’s second most abundant organic molecule (Flatt and Schober, 2012; Macfarlane et al., 2014). It makes cell walls rigid and gives resistance to wood, preventing it from bending due to external forces. Due to their adhesive properties, lignin molecules have strong binding activity which are negatively affected by very high moisture content (Tumuluru et al., 2016).
Lignosulfonates are lignin products obtained as by-product from sulfite pulping of wood (Acar et al., 1991; Tabil et al., 1997; Flatt and Schober, 2012; Macfarlane et al., 2014). They are sulfonate salts containing magnesium, calcium, sodium made from lignin of sulfite pulp-mill liquors at different pH levels (Tabil et al., 1997; Aro and Fatehi, 2017). Lignosulfonates are commercially available as sodium and calcium (Elumalai and Pan, 2011; Calvo-flores et al., 2015). Sodium lignosulfonates usually have a lower viscosity compared to calcium lignosulfonates; this is because sodium has a stronger electrokinetic repulsive force which increases repulsion thereby reducing viscosity (Madad et al., 2011). Sulfonation of lignin causes the bonds between lignin-lignin and lignin-polysaccharides to break thus, reducing the molecular weight of the lignin. Due to this process, lignosulfonates are anionically charged and are water soluble (Flatt and Schober, 2012; Aro and Fatehi, 2017). Lignosulfonates anion charge exert electrostatic repulsion thereby, enhancing its application as plasticizers or water reducers to improve concrete quality (Huang et al., 2018).

Lignosulfonates are highly branched macromolecules composed of propylphenol side chains connected irregularly by ether or C–C bonds attached to aromatic rings (Fig. 2) (Flatt and Schober, 2012). During pelleting process, the application of pressure increase interparticle contact thus, promoting interparticle attraction between close particles through weak van der Waals forces (Rumpf, 1962). Particle deformation caused by the application of pressure results in smaller particles filling the voids between larger particles, this may contribute to mechanical interlocking between close particles (Strydom et al., 2018). Thus, improving pellet durability.

Due to their unique properties, lignosulfonates have a vast range of applications and are used as binders, emulsifiers and dispersants in the feed and construction industry. (Macfarlane et al., 2014; Aro and Fatehi, 2017). They are non-hazardous; thus, lignosulfonates are suitable for use as binders in animal feed (Acar et al., 1991; Macfarlane et al., 2014).
Lignosulfonate is often used as binder in pelleting animal feeds. Inclusion of calcium lignosulfonate (CaLS) in broiler’s diet increased pellet durability index (Corey et al., 2014). Also, Acar et al. (1991), investigated the effects of CaLS on pellet quality and observed improved durability when CaLS was used as a binder. 0.5% CaLS enhanced pellet quality with different levels of fat and have shown to increase the physical pellet quality with high levels (3%) of Soybean oil compared to (1.5%) low levels of oil (Abadi et al., 2019). In addition, Corey et al. (2014), demonstrated that pellets manufactured with 0.5% CaLS and diet containing 3% mixer added fat optimized digesta viscosity, improved pellet quality and true amino acid digestibility. However, when CaLS was used with diets containing calcium fat powder it showed no significant improvement in the physical quality of the feed pellet (Abadi et al., 2019). Broilers fed diets manufactured with CaLS increased feed consumption and live weight gain (Corey et al., 2014; Acar et al., 1991). CaLS inclusion to broilers diet increased feed conversion ratio (Acar et al., 1991). Conversely, Corey et al. (2014) reported decreased feed conversion ration when CaLS inclusive diets were fed to the birds. The difference is probably due to variable feed formulation used in manufacturing the bird's diets.
Overall, CaLS independently reduced energy use of the pellet mill when used in the extruder (Corey et al., 2014).

2.5.4 Clay minerals

Clays are naturally occurring fine-grained minerals containing hydrous aluminium phyllosilicates that imparts plasticity when wet and harden upon drying (Guggenheim and Martin, 1995). Clays like bentonite and sepiolite are used as binders in producing animal feed (Tabil, 1998).

2.5.4a Bentonite

Bentonite is an aluminium phyllosilicate clay principally composed of montmorillonite as the mineral constituent (Tabil et al., 1997; Moosavi, 2017). Also, bentonite is a smectite clay minerals, which contributes greatly to the properties of bentonites, especially swelling (Xie et al., 2004). Bentonites have excellent rheological and absorbent properties. In addition, bentonite has excellent plasticity and lubricity, high dry bonding strength, high shear and compressive strength, good impermeability and low compressibility property. Their high swelling capacity contributes to its ability to form gel-like masses in the presence of moisture (Al-Ani and Sarapää, 2008). Bentonite expands when water is added due to hydration/ adsorption of interlayer cations (Na\(^+\) and Ca\(^{2+}\)) (Reisch, 2000). After expanding, they disperse in water and form a thin adsorption layer to coat the surface of particles like a gel contributing to its effectiveness as a binder (Kawatra and Ripke, 2001). Bentonite acts a filler and reduce porous space in feed pellets (Thomas et al., 1998). Based on these unique properties, bentonite is used as a binder in iron ore and feed industry (Christidis and Scott, 1996).

Inclusion of sodium bentonite in feed formulation improves Pellet Durability Index (PDI) and pellet hardness. (Moradi et al., 2019). A study by Attar et al. (2018) showed that 2-min steam conditioning of a diet containing 15 g/kg sodium bentonite increased PDI and hardness. Diets containing 15 g/kg processed sodium bentonite (PSB) and conditioned for 2 minutes significantly
increased PDI and hardness. Abdollahi (2011) observed improved pellet durability and hardness through steam conditioning. According to Attar et al. (2018), the moisture quantity and time in the conditioner may have increased starch gelatinization thereby ameliorating pellet quality. The ability of sodium bentonite to improve pellet hardness depends on the inclusion rate, pellet diameter and length (Moradi et al., 2019). Based on this, Moradi et al. (2019), suggested that increasing pellet lengths and dosage of sodium bentonite to 20 g/kg sufficiently prevent how high amount of oil negatively influence pellet hardness.

Hence, using high quantities of oil in commercial feed production requires a higher inclusion rate of bentonite to improve pellet quality (Attar et al., 2018). Also, adding 2% of bentonite to diets containing high levels of fat is ineffective to alter PDI but with low levels of fat (1.5 %), it improved pellet quality (Abadi et al., 2019). Pellet durability was not affected by addition of bentonite to formulations which contained 0 or 9% added fat, but it improved pellet durability at fat inclusion levels of 3% and 6% (Salmon, 1985).

2.5.4b Sepiolite/Palygorskite

Sepiolite is a hydrated magnesium silicate (Si12Mg8O30(OH)4(OH)4) belonging to the group of phyllosilicates (Parisini et al., 1999; Ouhida et al., 2000; Yalçına et al., 2017). Structurally, sepiolite are made of two parallel layers of silicon tetrahedra connected with a layer of magnesium octahedra. Both palygorskite and sepiolite are hydrated magnesium aluminium silicates. Sepiolite has higher magnesium content than palygorskite and has a slightly larger unit cell size. Palygorskite and sepiolite are both thin elongate chain type structures. The elongate structures are immobile and non-swelling when dissolved in water resulting in formation of a random network capable of trapping liquid and providing excellent thickening, suspending, and gelling properties (Al-Ani and Sarapää, 2008). These clays are stable at high temperatures, unaffected by electrolytes thereby retaining their viscosity Both palygorskite and sepiolite are used as a binder for pelleted animal feed (Al-Ani and Sarapää, 2008). Naturally, both palygorskite (Al-Ani and Sarapää, 2008) and sepiolite are a feed additive used as a binder or lubricant (Parisini et al., 1999; Yalçına et al., 2017) as a result of its physical and chemical properties (Ouhida et al., 2000).
Incorporation of sepiolite as a pellet binder in rabbit and broiler feeds increases pellet durability. Sepiolite is used as a pellet binder to improve durability, especially in high fat diets (Angulo et al., 1995). Adding sepiolite to broilers starter diet with 25g/kg of added fat improves pellet durability. Although, inclusion to diets containing high levels of fat (50g/kg) did not minimize the negative influence of fat pellet quality. Using a higher amount of sepiolite with diets containing high levels of fat reduced the negative effect of fat on pellet quality (Angulo et al., 1996). 20 g/kg of sepiolite products can be used to produce feeds for all animal species as it helps in feed component hydrolysis (Parisini et al., 1999).

2.5.5 Agar

Agar is a hydrocolloid composing two galactose-based polymers, agarose and agaropectin (Fig. 3) (Stringer, 2005; Carballeira and Sinisterra, 2009). Agarose has the greatest gelling capacity compared to agaropectin. Primarily, agar is obtained from the cell wall of red algae Gelidium and Gracilaria as an amorphous and translucent product (Fabbrocini et al., 2012) consisting repeating units of l-galactose and 3,6-anhydro-l-galactose with low degrees of sulfonic groups. (Carballeira and Sinisterra, 2009). It is insoluble in cold water but solubilizes in hot water at 40°C and forms gel at a temperature lower than its melting point (~38°C). (Stringer, 2005; Carballeira and Sinisterra, 2009; Fabbrocini et al., 2012). Dissolving agar powder in boiling water and then cooled to room temperature, forms a reversible elastic and turbid gel network (Labropoulos et al., 2001).
Due to its unique properties as a clarifying, thickening and gelling agent, it is applied in the feed, food, pharmaceutical and cosmetic industry. Agar is used as a food/feed binder due to its structure, rheological behavior and stability.

Agar as a food binder in algae-based diets generates firm pellets. Fabbrocini et al. (2012) found that pellets containing 3% agar maintained water stability up to six days without affecting nutrient absorption in the sea urchins. Agar is recommended as a binder where the water stability of the feed pellets is required beyond 8 hours (Ali, 1988). Fabbrocini et al. (2012) study indicated that agar limited nutrient leaching in algae-based diets for sea urchins. This is attributed to its insoluble property.

In contrast, when Argüello-Guevara and Molina-Poveda (2013) evaluated the effect of six different binding agents (agar, sodium alginate, cassava starch, gelatin, wheat gluten and kelp meal in 30g/kg and 50g/kg concentration. Agar diets presented more disintegration and decreased water stability at both concentration. Also, agar performed poorly with pellet stability and durability when compared to Carrageenan and CMC (Ruscoe et al., 2005).

The discrepancies in these studies might be as a result of different factors in manufacturing the pellets and feed formulations.
Carboxymethylcellulose (CMC) is an anionic, water soluble, cellulose derivatives with carboxymethyl groups. Structurally, the carboxymethyl groups connected to hydroxyl groups of the glucopyranose monomers forms the cellulose polymer (Paolucci et al., 2012).

CMC hydrates rapidly due to its ability to absorb water (Thomas et al., 1998). Its ability to dissolve in water at any temperature depends on the polymerization rate, substitution rate and how evenly the substitution is distributed. Hence, increase in the rate of polymerization and decrease in the substitution rate and uniformity enhances water solubility of CMC (Ergun et al., 2016) The rate of polymerization, concentration, ionic strength and pH affects viscosity of CMC (Paolucci et al., 2012; Ergun et al., 2016). Thus, as polymerization rate increases, the viscosity increases with increase in concentration.

Also, at high concentration, CMC forms a thermoreversible gel. In addition, increasing ionic strength and decreasing pH causes viscosity to reduce (Paolucci et al., 2012). CMC is an organic binder used in the iron ore, food and feed industry (Ergun et al., 2016; Van der Merwe and Garbers-Craig, 2017). Using attenuated total reflectance infrared spectra (ATR-FTIR) and light microscopy (LM) to analyze the binding mechanism of CMC, it was observed that compaction of particulates develops ionic attraction or electrostatic forces between the CMC and particulates leading to high cohesion strength of the pellets (Thomas et al., 1998; Si et al., 2016). When CMC is dissolved in water, hydrogen bonds are formed due to the reaction between electric dipole from water molecule and OH groups on the CMC. Also, strong bonds are formed at the interface of the solid particles and CMC. Electrostatic bond, hydrogen bond and the strong bond increases inter-particle bonding. As a result, pellets with better product quality are produced (Si et al., 2016).

Adding CMC solution to compression process of cotton stalks and wheat straw significantly increases pellet quality. However, when it was added to rape straw it decreased the pellet quality probably because rape straw contains lots of extractives (Si et al., 2016). These extractives contain
40-45% oil (Von Der Haar et al., 2014) that have high amount of long fatty acid chain which prevents binder viscous effects. It might also be due to the oleo-phobic properties of CMC which reduces the adhesive force and van der Waals force between particles resulting in low bonding effect and leading to weak pellet quality. It is therefore not advisable for CMC to be used as a binder for pelleting materials rich in extractives (Si et al., 2016).

Ruscoe et al. (2005) observed that Shrimp diets bound with carrageenan and CMC retained significantly more dry matter than diets bound with agar and gelatin. Thereby, supporting that diets containing CMC solution improves pellet quality and prevents nutrient leaching.

2.5.7 Guar gum

Guar gum is a water soluble macromolecule obtained from the endosperm of guar beans seed (Cyamopsis tetragonobbus). Guar gum is a galactomannan polysaccharide consisting of ~~,4-D-mannose with galactose side chain (Fig. 4). Guar gum can hydrate in cold or hot water and the hydroxyl (-OH) groups forms a strong hydrogen bond liable for its viscous property even at low concentration. (Storebakken,1985; Paolucci et al., 2012). The presence of the hydroxyl group is responsible for the hydrogen bonding activity (Mudgil et al., 2004). Substituting the hydroxyl groups in guar gum with hydroxypropyl may prevent intermolecular arrangement thus, hydrogen bonds stability is decreased (Cheng and Prud’homme, 2002). Viscosity and hydration rate of guar gum is affected by temperature, pH, particle size, concentration (Mudgil et al., 2014). Hydration rate reduces when dissolved salt and other binding agent(sucrose) is present in guar gum solution (Bemiller and Whistler, 1993). Based on its non-ionic and uncharged behaviour, guar gum solution is stable over a wide range of pH(1.0-10.5). Higher temperature gives better viscosity. For maximum viscosities, Mudgil et al. (2014) suggested using temperature range of 25-40 °C. Due to its viscous nature, it is beneficial as a thickener and stabilizer in the feed, food, pharmaceutical and cosmetics industry.
Guar gum as a binder in processing shrimp feed pellets showed average values of stability (Ali et al., 2005; Ali et al., 2010). Dominy et al. (2004) observed guar gum inefficacy to produce pellets with good water stability. However, increasing pelleting temperature reduces leaching and disintegration of pellets leading to a 9% decrease in water turbidity of pellets made with guar gum (Ali et al., 2005; Ali et al., 2010). Hence, water stability of guar gum bound diets maybe increased by increasing pelleting temperature. Caltagirone et al., (1992) also suggested increasing guar gum concentration to improve its stability. When used in a pellet mill for processing shrimp feed pellets, guar gum is able to absorb high moisture content which is suitable for feed processing and contributes to better pellet quality. (Ali et al., 2005; Ali et al., 2010). The water stability of guar-gum bound diets can also be increased by combining guar gum with starch. Guar gum combined with various starch sources showed good water stability and reduced leaching and disintegration. The viscous property of gums increases starch granule swelling during gelatinization thereby improving starch viscosity. For instance, wheat starch viscosity increases by adding low content of polysaccharide gums (Christianson et al., 1981). Also, using 2% guar gum with maida flour/wheat flour in feed production immensely improves water stability of pellets. However, utilizing more than 2% level of guar gum in feed had no effect on water stability. (Ali et al., 2005).
2.5.8 Gelatin

Gelatin is a protein obtained by partial hydrolysis of collagen. Collagen is a protein component derived from the bone, skin, tendon and connective tissue of animals (Pope, 1992). Two types of gelatin are classified based on the manufacturing process. They are known as Type A gelatin with isoelectric point at pH 8–9 extracted from acidic hydrolysis of pork skin. On the other hand, Type B gelatin with isoelectric point at pH 4–5 is extracted from alkaline hydrolysis of bones and animal skin (Paolucci et al., 2012; Gómez-Guillén et al., 2011). Type A improves the blend viscoelasticity while Type B increases the gel strength. The viscosity of gelatin depends on the type of gelatin, concentration, temperature, and time.

Gelatin is a digestible protein composed of amino acids (except tryptophan) and it is soluble in water (Gómez-Guillén et al., 2011; Paolucci et al., 2012). Gelatin is solubilized by soaking in cold water and stirring under heat until it reaches 35°C, it is then allowed to cool after heating. This interaction leads to the formation of gel (Djagny et al., 2001). Due to exposed polar regions, gelatin in aqueous food process promotes the formation of hydrogen bond with water. As gelatin binds with water, it swells and absorbs water. It can then be dispersed in hot water and with other ingredients. High concentration of gelatin increases the rate of gelation, thereby increasing the gel strength (McWilliams, 2001).

The gel strength, viscosity, setting behaviour and melting point of gelatin depend on their molecular weight distribution and the amino acid composition, the imino acids (proline and hydroxyproline). The imino acids are essential in the renaturation of gelatin crystals during gelling. As a result, high gel strength and melting point of gelatin is attributed to high levels of amino acids (Johnston-Banks, 1990).

Gelatin is a hydrocolloid used as an emulsifier, foaming, gelling, thickening or stabilizing agent. Based on these properties, gelatin is used in the food industry and pharmaceuticals. Its application in the feed industry is majorly because of its gel forming ability. (Gómez-Guillén et al., 2011; Paolucci et al., 2012).
Eric De Muylder et al. (2008) recognized that gelatin-based binders are a good alternative to gluten and urea formaldehyde in producing stable pellets. Also, a combination of gelatin with tapioca starch produces hard pellets with good pellet quality properties (Eric de Muylder et al. 2008). Using high levels of gelatin in feed production is ineffective and results in pellets with poor quality. Therefore, carefully selecting the right amount for feed formulation is important (Ali, 1988).

2.5.9 Alginate

Alginate is salt of alginic acid obtained from the cell wall of brown seaweed. It is available as a matrix of calcium, magnesium, and sodium salt (Sharmeen et al., 2019; Pereira and Cotas, 2020). Alginate is an anionic polymer linked with 1,4 D-mannuronic and L-guluronic acid (Fig. 5) (Storebrakken, 1985; Lee and Mooney, 2012).

![Figure 5: Chemical structure of alginate (Shahidi and Rahman, 2018)]

The presence of bipolar ions, -OH and -COOH groups of the molecules contribute to its ability to form gels and are responsible for its unique properties. Also, alginate has a high water absorption rate (Storebakken, 1985; Tariverdian et al., 2019). Alginate exhibit high viscosity at low concentration. The viscosity of alginate is affected by molecular weight, concentration, temperature, pH and calcium ion (McHugh, 1987). The presence of Ca$^{2+}$ in alginate solution increases viscosity. Gel formation is achieved by ionic cross linking with cation or with acid precipitation. Alginate reacts with many di- and trivalent cations such as Ca$^{2+}$ to form gels (Ching et al., 2017). Alginate is used as gelling agents, thickeners and stabilizers in the food, pharmaceutical, and cosmetic industries (Pereira and Cotas, 2020).
By investigating the effect of 50g/kg sodium alginate and 50g/kg wheat gluten or kelp meal independently on the quality of shrimp feed pellet, sodium alginate showed the best water stability performance, water absorption and protein leaching after 180-min immersion (Argüello-Guevara and Molina-Poveda, 2013). It also retained 88% of dry matter (DM) after 60 min of immersion and 83% of DM after 180 min immersion in water. Thus, it has the ability to maintain pellet integrity for a long period of time (Argüello-Guevara and Molina-Poveda, 2013). In agreement, Ali (1988) suggested using sodium alginate to produce pellets with water stability beyond 8 hrs.

Ruscoe et al. (2005) tested how various binders and moisture content affect pellet stability of freshwater crayfish diet. It was observed that pelleted alginate diet was significantly more stable than the pelleted carrageenan diet in both moist and dry feed. However, pelleted dry alginate diets were more stable than pelleted moist alginate diets. Generally, dried diets containing (10% moisture) retained more dry matter than moist diets containing (50% moisture). It is possible that the drying causes more gelatinization of starches resulting in better binding properties. Additionally, moisture present in a moist diet allows fast re-hydration while re-hydration occurs slowly in a dry diet due to less moisture hence increases dry matter retention (DMR). Alginate showed good binding properties compared to carrageenan when used to produce fresh crayfish feed (Ruscoe et al., 2005).

Compared with polysaccharides like pectin and chitosan, alginate binders performed poorly in freshwater crayfish diets. The diet water stability was analyzed using low angle laser light scattering technique to monitor the diameter of released particles within 24 hrs of water immersion. Alginate based diets released particles with a small diameter causing them to disintegrate more than other binder-based diets (Volpe et al., 2012). It is probably because other binders used in this experiment had high binding properties when used in crayfish feed compared to Alginate.

2.6.0 Pectin
It is a natural polymer of D- galacturonic acid that contains methyl ester groups and occur as structural materials in plants (Fig. 6). Pectin is a complex polysaccharides present in most plant pectins (Rollin and De Vries, 1990). Classification of pectin is based on the degree of esterification(Gawkowska et al., 2018). High-methoxyl (HM) pectins have over 50% of their carboxyl groups esterified with methanol while esterification of carboxyl groups in low-methoxyl (LM) pectins is between 5- 50% (May, 1990; Baron et al., 2016). Viscosity and gelling ability of pectin is influenced by source and method of extraction (Gawkowska et al., 2018). In HM pectin, the reaction of hydrogen bonds and hydrophobic interactions between pectin molecules in the presence of sugars and acids result in the formation of thermo irreversible gel formation. In LM pectin, gel is formed when Ca2+ ions create ionic linkage between two different carboxyl group thus forming thermo-reversible gel (Thakur et al.,1997). Commercial pectin is obtained from citrus peel or from apple pomace due to the good gelling properties of pectin from this source (Rollin and De Vries, 1990; Thakur et al.,1997).
The properties of pectin to form gel is influenced by the degree of esterification/methylation, pH, presence of other solutes, molecular size, number and arrangement of side chains, and molecule charge density (Thakur et al., 1997). It is able to form gel in the presence of Ca2+, sugar or acids at low pH values and gel strength depends on Ca2+ concentration, temperature and acidity (Paolucci et al., 2012; Thakur et al., 1997). The viscosity of pectin solutions and gel formation depend on their solubility (Gawkowska et al., 2018). Pectin solubility increases when the degree of methylation increases but decreases when polymer size increases (Sila et al., 2009). High concentration increased viscosity but viscosity decreased when temperature increased. High pectin concentration may reduce intermolecular distances and increase intermolecular interactions such as hydrogen bonding. As temperature increases the molecules kinetic energy of molecules increases as a result, intermolecular distances also increase and viscosity declines (Kar and Arslan, 1999). Its application in the food and feed industry is based on the gelling property. Producing pellets with pectin by cold extrusion improves pellet water stability and acts as energy source to enhance growth rates and weight gain in farmed crayfish (Volpe et al., 2012). Thus, pectin can be employed for producing good quality pellets mainly for crayfish feed.

2.6.1 Carrageenan

Carrageenan is a group of sulfated galactan derived from red seaweeds extracted by water or aqueous alkali. It contains 15 to 40% ester-sulfate and it’s formed by galactose and 3,6-anhydrogalactose copolymers and are alternately connected by α-1,3 and β-1,4-glycosidic linkage (Fig. 7) (Therkelsen, 1993; Necas and Bartosikova, 2013).
Figure 7: Chemical structure of carrageenan (Shahidi and Rahman, 2018)

Carrageenan is classified into various types such as kappa, iota, lambda. The physical properties of these carrageenans are based on its solubility in potassium chloride. Kappa and iota carrageenans are able to form gel in the presence of potassium or calcium ions while lambda carrageenan is not capable (Stanley, 2011). Commercially, carrageenan is chiefly available as sodium potassium and calcium salts (Therkelsen, 1993; Paolucci et al., 2012).

Carrageenan is a hydrocolloid that is water soluble and has a gelling and viscous property. It contains 15 to 40% ester sulphate content (Therkelsen, 1993; Paolucci et al., 2012). The gel strength depends on the amount of ester sulfate. High content of ester sulfate reduces its solubility and temperature as a result, gel strength is reduced. Also, viscosity is increased by high concentration and reduced by temperature (Paolucci et al., 2012; Necas and Bartosikova, 2013). At high temperatures and low pH below its functionality is reduced. Application of carrageenan depends mainly on their rheological properties (Therkelsen, 1993).

Ruscoe et al. (2005) observed that shrimp diets bound with carrageenan increased dry matter retention than diets bound with agar and gelatin. Also, carrageenan acts as a binder and an energy source when used in shrimp diet thereby improving water stability and the shrimp growth. Compared with binders like CMC, carrageenan produced pellets with the best quality property.

3.0 Effect of binders on growth and digestibility
Understanding how binders affect animal growth and digestibility is important in formulating feed. Low concentration may affect the physical pellet quality while high concentration may cause a reduction in diet/nutrient digestibility.

3.0.1 Poultry

Poultry birds need quality pellets that contribute to nutrient availability to improve growth and digestibility. Hence, binders that hinder nutrient availability may be detrimental to poultry growth and digestibility. Therefore, it is necessary to know how binders work in a broiler's diet to influence growth and digestibility.

Acar et al. (1991) investigated the effect of CaLS bound pellets on broilers diets and found that CaLS does not affect the Crude Protein(CP), Apparent Metabolizable Energy (AME) and amino acid content of the diet. On the other hand, augmenting broiler diets with 1 or 2 g/kg of montmorillonite (a bentonite mineral) loaded with Copper (Cu) promotes broilers growth performance through ion exchange with Cu2+. Additionally, it enhanced intestinal morphology and increases enzyme activities in intestinal mucosa and digesta. Sepiolite reduces digesta viscosity and increases digesta retention time thereby, promoting enzymes activity (Ouhida et al., 2000). Consequently, increasing digestion and absorption feed nutrients in broilers, as a result, feed efficiency and broilers body weight are improved (Ma and Guo, 2008).

Conditioning time and pellet binder may contribute to nutrient availability for villi development thereby, improving nutrient absorption. As a result, broilers growth performance is enhanced (Attar et al., 2018). Based on Attar et al. (2018) study, 2 min conditioning of 7.5 or 15 g/kg sodium bentonite bound diet, improved nutrient retention of broilers and influenced broilers growth performance. In addition, adding 2% sepiolite into broiler diets improved growth performances and feed efficiency (Ayed et al., 2011).

3.0.2 Farmed aquatic organisms

Addition of binder aids pellet quality, stability and retains nutrients for easy ingestion. Nutrients accessibility by farmed aquatic organisms is key to improving growth and digestibility. Some
binders promote nutrient accessibility because there is a balance between water absorption and nutrient retention. Binders that have moderate water absorption level will soften pellets (Argüello-Guevara and Molina-Poveda, 2013) for easy access to nutrients without much nutrient leaching. Other binders may hinder nutrient accessibility because they form very hard pellets that retain nutrients through gel matrix formation (Dominy et al., 2004). Hence, it is essential to know how binder influences growth and digestibility of different aquatic organisms.

Pectin fed crayfish exhibited high enzyme (amylase) activity in the intestine resulting in better weight gain and growth rate of crayfish. In farmed crayfish (*Cherax albidus*), pectin facilitated growth improvement by acting as a supplementary energy source (Volpe et al., 2012).

Alginate seems to improve growth performance in sea bass larvae (*Dicentrarchus labrax*) (Person Le Ruyet et al., 1993) and farmed crayfish (*Cherax albidus*) (Volpe et al., 2008; Coccia et al., 2010). However, octopus fed with 1% alginate-bound diet showed negative effects on their growth and weight. This is because digestion of alginate is limited in octopus due to lack of amylase enzyme (Aguila et al., 2007) that helps with digestion and nutrient absorption of diets (Rosas et al., 2008). Moreover, alginate has shown to reduce growth and digestibility in barramundi (*Lates calciﬁer*) (Partridge & Southgate, 1999), lobster juveniles (Simon, 2009) and shrimp diets (Argüello-Guevara and Molina-Poveda, 2013). According to Argüello-Guevara and Molina-Poveda (2013) alginate bound diets prevent loss of amino acids and other attractants in the diet that might decrease feed intake especially for shrimp that are chemoreceptors. In agreement, Morales et al. (1993) observed that using sodium alginate as binders in rainbow trout diet did not influence feed intake.

In a similar phenomenon, alginate and guar gum reduce the feed intake and apparent digestibility of crude protein and lipid in rainbow trout (Storebakken, 1985). Guar gum is able to retain essential nutrients in diets due to gel matrix formation (Dominy et al., 2004). This sometimes makes it difficult for the fish to access essential nutrients in the diet thereby reducing digestibility.

To improve growth and digestibility, we can combine alginate and guar gum with other binders like wheat gluten. Independently, wheat gluten can improve growth and digestibility (Argüello-Guevara and Molina-Poveda, 2013) because it increases the nutritional value of diets. For
instance, using 50g/kg of sodium alginate and wheat gluten in the shrimp diet increased feed conversion ratio thereby enhancing growth rate and digestibility (Argüello-Guevara and Molina-Poveda, 2013). In the same way, combining guar gum, wheat gluten and vegetable wax resulted in better feed conversion ratio, weight gain, growth rate thus improving shrimp performance (Dominy et al., 2004).

In lobster juveniles (*Jasus edwardsii*), gelatine enhanced digestibility at 7-8% inclusion level (Simon, 2009) by promoting nutrient absorption (Rosas et al., 2008). Although agar decreased diets digestibility in lobster juveniles (Simon, 2009), it significantly increased weight in juvenile shrimp (*Palaemonetes varians* and *Palaemon elegans*) (Palma et al., 2008) and growth in farmed crayfish (Volpe et al., 2008; Coccia et al., 2010). Using CMC as binders enhanced digestibility in lobster juveniles (*Jasus edwardsii*) (Simon, 2009). On the contrary, in fingerling Japanese flounder, CMC inclusive diets resulted in inferior weight gain, feed efficiency, protein digestibility, protein and energy retention compared to diets containing starch or wheat gluten. CMC increased diets viscosity and decreased proteolytic enzymes' activities leading to poor growth performance (Yamamoto and Akiyama, 1995).

Overall, adding clay minerals (silica, cellulose or a natural zeolite) in European sea bass juveniles diets does not influence protein digestibility, growth and feed ingestion (Dias et al., 1998).

4.0 Discussion

Various binders have different effects on growth and digestibility of different animal species. They also have limited inclusion levels for optimal pellet quality and functions in different species. For instance, exceeding or limiting the optimal inclusion level could affect digestibility in crab feed. High amount of binders could increase pellet hardness to an extent that it is difficult for the crab to access the pellet nutrients thus decreasing digestibility. Crab’s feed made with 10% bread flour increased the level of crude protein digestibility while that of crude fat was reduced (Catacutan, 2017). As explained by Catacutan (2017), it’s possible that 10% bread flour is not sufficient enough to bind the crude fat sources compared with protein sources, thus leading to leaching of fat components in the feed. Also, Orire et al. (2010) found that using 5%
level Yam starch as a binder for fish feed minimized dust level, improved pellet qualities, water stability and hardness. It was observed that inclusion level at 20% yields less dust but did not increase the pellet quality. Probably, high levels of starching the pellets agglutinate as a result of overbinding (Orire et al., 2010). Consequently, knowing the binder type and inclusion level appropriate for different animal species is paramount in selecting binders.

Natural binders like wheat flour add nutritional value to diets but it is required in high levels (200g/kg) to give adequate pellet quality and stability. Nonetheless, while pellets produced might have moderate hardness and durability, its stability is usually low compared to other types of binder. Hence, it is essential to add a modified or synthetic binder to a natural binder when used to produce pellets with high stability.

4.1 Lignosulfonate

In turkey/poultry diet, incorporating 0.5 % lignosulfonate binder improved pellet quality (Abadi et al., 2019) and enhanced amino acid digestibility from 4-7%. A possible explanation is that adding lignosulfonate as pellet binder in diet had no effect on conditioner electrical energy usage but reduced pellet mill electrical energy use and hot pellet temperature (Wamsley and Moritz, 2013; Corey et al., 2014; Miladinovic and Salas, 2014). Generally, high conditioning temperature is not necessary to activate lignosulfonate binding potential (Cecilia, 2008). Based on this, heat-labile nutrients can be preserved.

Furthermore, 0.5 % lignosulfonate inclusion into diets made with finely ground barley decreased power consumption but increased power consumption for coarse ground barley. Nonetheless, at a higher inclusion level of 0.65%, the power consumption for both particle sizes increased (Miladinovic and Salas, 2014). Lignosulfonate(LS) affinity for water and ability to dissolve readily (Cecilia, 2008) causes it to bind with water molecules thus reducing water activity, this reduces the lubricating effect of the bound-water molecules thereby increasing power consumption. To minimize power consumption, more water contents can be added (Miladinovic and Salas, 2014). Calcium Lignosulfonate (CaLS) improves pellet quality by acting as a filler of feed particles pores. It becomes liquid during steam conditioning and hardens upon drying. As a result, pellet quality is ameliorated. Another reason is that CaLS functions as a dispersing agent.
and maintains feed particles' rheological properties during pellet extrusion (Ouyang et al., 2006). Lignosulfonate also reduces fats' negative impact on pellet quality (Cecilia, 2008; Abadi et al., 2019).

4.2 Clay minerals

In the cattle feed diet, adding 1-1.5% sepiolite as a binder improved physical pellet quality. It improves pellet durability and lowers energy consumption in dairy cattle feed and fattening cattle feed. At 1.5% inclusion level, sepiolite increased moisture content after conditioning and improved the feed’s lubricating effect thus, reducing energy consumption. Although, the moisture content is relative to the amount of sepiolite added (Yalcin et al., 2019). Incorporating sepiolite reduces pellet production time in fattening cattle feed production. But the pellet production time was the same in dairy cattle feed. Perhaps, the ingredients and chemical composition of diets contribute to the difference in production time (Yalcin et al., 2017b). In addition, incorporating 1% sepiolite in broiler starter diets reduced pellet production time and enhanced pellet durability index (Galán, 1996; Durna et al., 2016; Yalcin et al., 2018). However, in layers diets, the pellet production time was not affected but energy consumption was decreased (Yalcin et al., 2018). It is probably because the broiler diet and layers diet have different feed formulation and chemical composition. Sepiolite improves pellet durability by acting as a filler and decreasing the porous space in the pelleted feed (Yalcin et al., 2017a). In addition, it is essential in improving pellet quality with high fat and fiber levels (Angulo et al., 1995).

Similarly, pellets made with 1% palygorskite (a clay mineral with similar physical properties to sepiolite) improved pellet quality and growth performance of broilers (Pappas et al., 2010; Zhang et al., 2017). Sepiolite and palygorskite absorb polar liquid and form gel during the pelleting process thus, improving pellet quality. The improvement in pellet quality is caused by the increase of solid-solid bonding interaction (Pappas et al., 2010; Zhang et al., 2017; Yalcin et al., 2017a). Bentonite also gave better pellet quality (Moradi et al., 2019) and decreased pellet press energy consumption by acting as a lubricant in the die hole (Thomas et al., 1998). The quantity of bentonite and sepiolite used in producing pellets is usually relative to the quantity of oil in the diets (Attar et
A 2% inclusion level of bentonite is recommended in producing broilers feed (Moradi et al., 2019).
Overall, clay minerals have sorptive and rheological properties enabling improvement in pellet quality (Galan, 1996; Liu, 2007; Zhang et al., 2017).

4.3 Agar

Polysaccharides such as agar, alginate, pectin, gelatin, carrageenan and guar gum are suitable as a binder for aquaculture diet. They form hydrogels and have the ability to entrap nutrients in a three-dimensional network thus, improving feed hardness and stability (Paolucci et al., 2015; Volpe et al., 2015). Agar-bound diets with 2% concentration have high stability in water, low water absorption and nutrient leaching rate (Paolucci et al., 2015). Fabbrocini et al. (2012) found that pellets containing 3% agar maintained water stability up to six days without affecting nutrient absorption in the sea urchins. Agar is recommended as a binder where the water stability of the feed pellets is required beyond 8 hours (Ali, 1988). Fabbrocini et al. (2012) indicated that agar limited nutrient leaching in algae-based diets for sea urchins. Due to their gelling properties, three-dimensional networks are obtained that are strongly agglutinated thus, absorption of water and nutrient leaching is minimized (Paolucci et al., 2015). This property might also limit digestibility when fed with agar bound diets. Simon (2009) observed that algal carbohydrates (i.e., agar and alginate) decreased diets digestibility in lobster juveniles. Also, Ruscoe et al. (2005) and Argüello-Guevara and Molina-Poveda (2013) observed that agar-based diets produce pellets with high disintegration level compared to other binding agents like carrageenan, CMC, alginate and gelatin.

4.4 Pectin

Coccia et al. (2010) noted that the presence of polysaccharides in crayfish diets ameliorated crayfish growth. Coccia et al. (2010) studied the effects of four polysaccharides (alginate, agar, chitosan and pectin) as binders in producing pellets for crayfish. It was observed that pectin and chitosan bound pellets showed the greatest stability in water up to 24hrs. Volpe et al. (2008), also affirmed that pectin added at 2.5 % concentration is a good binder for producing feed pellets for
crayfish. In producing feed pellets with superb water-stable qualities for crayfish, pectin performed absolutely well compared to agar and alginate (Volpe et al., 2008). Thus, pectin is a binder recommended for manufacturing feed pellets for both adult and juvenile crayfish Cherax albidus, due to its gelling capacity and ability to boost growth and weight gain in crayfish (Volpe et al., 2008; Coccia et al., 2010; Volpe et al., 2012). Pectin bound pellets of 0.5% concentration showed strong binding capacity due to the smooth and regular distribution of nutrients inside the polymer (Volpe et al., 2015). Pellets from low esterification of apple pectin have great water stability and low nutrient leaching during 24 h of water immersion. Based on this, it has the capacity to promote crayfish growth when used as dietary ingredients (Volpe et al., 2015). Pectin is also used to promote pig’s nutrition and health due to its prebiotic, antimicrobial and antiviral property (Wiese, 2019).

4.5 Gelatin

Gelatin-based binders make firm pellets and also improve pellets nutritional value because they contain protein and are easily digestible. At 3% and 5% concentration, gelatin produces stable feeds that are intact after 216 h immersion in seawater (Pearce et al., 2002). Gelatin at 4% concentration also created stable urchin feed after 48 h immersion in seawater (Caltagirone et al., 1992). However at concentrations below 3%, feed stability may decline but it is still suitable to use (Partridge and Southgate, 1999; Pearce et al., 2002). Stability of feed made with gelatin can be affected by concentration in the feed, source, purity level, and water temperature used in making the feed (Pearce et al., 2002). At 2% concentration, gelatin-based diet enhanced nutrient absorption, amino acid catabolism and promoted enzyme activity thereby increasing Octopus growth (Rosas et al., 2008). Compared to carrageenan based diets, gelatin-based diet also enhanced growth and survival rate in fish (Liu et al., 2008). Using gelatin as binders enhanced apparent digestibility in lobster juveniles (Simon, 2009). In barramundi larvae, 2-3% gelatin is very effective for producing a firm micro bound diet (Partridge and Southgate, 1999). Although, Rosas et al. (2008) suggested 5 to 7% of gelatin is suitable for use in formulating diet for Octopus maya. Ali (1988) however noted that using high levels of gelatin in feed production is ineffective.
and results in pellets with poor quality. Therefore, carefully selecting the right amount for feed formulation is important.

4.6 Guar gum

Guar gum produced pellets with moderate water stability when applied as binders in shrimp feeds (Ali et al., 2010). Water stability of guar gum pellets can be increased by increasing the temperature and concentration. At 2.5% concentration, the growth rate and feed conversion of fish fed guar gum-bound diets were better compared to the control due to feed consistency. Large concentrations may decrease both growth and feed conversion (Storebakken, 1985). Storebakken, (1985) observed that both alginate and guar gum reduce the feed intake and apparent digestibility of crude protein and lipid in rainbow trout. Guar gum forms gel matrix that retains essential nutrients; this sometimes makes it difficult for the fish to access essential nutrients in the diet thereby reducing digestibility (Morris et al., 1981; Dominy et al., 2004).

4.7 Carrageenan

5 % carrageenan bound diet improved water stability after 60 min immersion in water. Fish fed with carrageenan-wheat flour diet gave better growth rate and feed efficiency. Carrageenan-bound diet is able to enhance water stability even with high lipid contents. (Hashim and Saat, 1992). Also, carrageenan bound diet improved water stability and shrimp growth (Ruscoe et al., 2005). Carrageenan at 2–3% inclusion is a suitable binder in weaning diets for Barramundi larvae, Lates calcarifer (Partridge and Southgate, 1999). Although carrageenan is suitable for producing stable feeds, Liu et al. (2008) observed poor growth and survival rate when fish (postlarval tongue sole) were fed with carrageenan bound diets. Similarly, European sea bass and white sturgeon larvae experienced deteriorated growth when fed with carrageenan bound diet (Person Le Ruyet et al., 1993; Gawlicka et al., 1996). The poor growth and survival rate is probably because the polymer matrix formed during gelat minimizes the use of nutrients in carrageenan bound diet.
4.8 **Alginate**

Alginate is also a suitable binder in producing aquaculture feed. According to Pearce *et al.* (2002) sodium alginate is more effective at higher concentration. Akiyama *et al.* (1997) showed that using 30% concentration of sodium alginate in sea urchin feed ameliorated its growth rate. Conversely, fish fed with 2% sodium alginate bound feed improved growth and survival rate compared with carrageenan, CMS, and gelatin (Liu *et al*., 2008). Also, shrimp fed 5% sodium alginate bound diet showed the best water stability performance, water absorption and protein leaching after 180-min immersion (Argüello-Guevara and Molina-Poveda, 2013). Besides, in postlarval tongue sole diet, 2% sodium alginate bound feed had better stability. However, for crayfish diets, compared to binding agents like pectin and chitosan, alginate disintegrated faster when submerged in water. Although, Pearce *et al.* (2002) suggested using high concentrations of sodium alginate, nonetheless, usage may depend on the animal species.

4.9 **Carboxymethylcellulose**

2% sodium carboxymethylcellulose bound diet improved the stability but did not enhance the growth and survival rate of postlarval tongue sole. (Liu *et al*., 2008). Similarly, in fingerling Japanese flounder, CMC inclusive diets resulted in inferior weight gain, feed efficiency, protein digestibility, protein and energy retention. The reason is that CMC increases diets viscosity and decreased proteolytic enzymes' activities leading to poor growth performance (Yamamoto and Akiyama, 1995). However, using CMC as binders enhanced apparent digestibility in lobster juveniles (Simon, 2009) and improved pellet quality in shrimp feed (Ruscoe *et al.*, 2005).

Finally, combination of binders have shown to improve pellet water stability, growth and digestibility. Independently, some binders like guar gum may hinder growth and digestibility in some animals. A combination with other binders can improve the ability of guar gum to positively affect growth and digestibility. Won *et al.* (2018) reported that a mixture of 10% of dietary guar gum and 5% xanthan gum and 5% carrageenan may improve growth in juvenile sea cucumber. Also, pellets produced with wheat flour and 2% of guar gum improved water stability due to the presence of gluten which improves their binding properties (Ali *et al.*, 2005). Catacutan (2017)
observed that combination of glutinous rice starch (7%), carrageenan (3%),
carboxymethylcellulose (CMC) (3%) and a synthetic binder(1%) improved pellet water stability
in mud crabs diet. 5% inclusion level of carrageenan bound diet increased the apparent
digestibility coefficient of Crude Protein and crude fat. Also, the combination of carrageenan and
CMC increased Crude protein digestibility (Catacutan, 2017).

Table 2: summarizes the benefits of binders for different species

<table>
<thead>
<tr>
<th>Binders</th>
<th>Inclusion level(%)</th>
<th>Species</th>
<th>Effect on Growth</th>
<th>Effect on Digestibility</th>
<th>Effect on Stability</th>
<th>Effect on PPQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignosulfonate</td>
<td>0.5%</td>
<td>Poultry</td>
<td>-</td>
<td>Positive</td>
<td>-</td>
<td>Positive (Corey et al., 2014)</td>
</tr>
<tr>
<td>Sepiolite</td>
<td>1-1.5%</td>
<td>Poultry</td>
<td>Positive (Ayed et al., 2008; Attar et al., 2018)</td>
<td>Positive (Attar et al., 2018)</td>
<td>-</td>
<td>Positive (Angulo et al., 1995; Angulo et al., 1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentonite</td>
<td>1.5-2%</td>
<td>Poultry</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Positive (Moradi et al., 2019; Abdollahi et al., 2011)</td>
</tr>
<tr>
<td>Medium</td>
<td>Concentration</td>
<td>Species</td>
<td>Reference</td>
<td>Result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar</td>
<td>2-3%</td>
<td>Sea Urchins</td>
<td>(Fabbrocini et al., 2012)</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar</td>
<td></td>
<td>Lobster juveniles</td>
<td>Negative (Simon, 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar</td>
<td></td>
<td>Crayfish</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Volpe et al., 2008; Coccia et al., 2010).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectin</td>
<td>0.5 - 2.5%</td>
<td>Crayfish</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Volpe et al., 2008; Coccia et al., 2010; Volpe et al., 2012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td>2-5%</td>
<td>Lobster juveniles</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Simon, 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td></td>
<td>Octopus (Rosas et al., 2008)</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postlarval tongue sole.</td>
<td>(Liu et al., 2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guar gum</td>
<td>2- 2.5%</td>
<td>Rainbow trout (Storebakken, 1985)</td>
<td>-</td>
<td>Negative (Rainbow trout)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Carrageenan</td>
<td>2-5%</td>
<td>Shrimp (Ali et al., 2010)</td>
<td>-</td>
<td>-</td>
<td>Average (Shrimp) -</td>
<td></td>
</tr>
<tr>
<td>Carrageenan</td>
<td>2-5%</td>
<td>Shrimp (Ruscoe et al., 2005)</td>
<td>Positive</td>
<td>-</td>
<td>Positive -</td>
<td></td>
</tr>
<tr>
<td>Carrageenan</td>
<td>2-5%</td>
<td>European sea bass, White sturgeon larvae (Person Le Ruyet et al., 1993; Gawlicka et al., 1996)</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postlarval tongue sole. (Liu et al., 2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td></td>
<td>Sea bass larvae (Dicentrarchus labrax) (Person</td>
<td>Positive</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td>Crayfish (Ruscoe et al., 2005)</td>
<td>-</td>
<td>-</td>
<td>Positive</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td>Barramundi (Lates calciifer) (Partridge & Southgate, 1999), Lobster juveniles (Simon, 2009), Octopus (Rosas et al., 2008)</td>
<td>Negative</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td>Postlarval tongue sole. (Liu et al., 2008)</td>
<td>Positive</td>
<td>-</td>
<td>Positive</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td>Rainbow trout (Storebakken, 1985)</td>
<td>-</td>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>Shrimp (Ruscoe et al., 2005)</td>
<td>-</td>
<td>-</td>
<td>Positive</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>Lobster juveniles (Simon, 2009)</td>
<td>Positive</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>Fingerling Japanese flounder, (Yamamoto and Akiyama, 1995)</td>
<td>Negative</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboxymethylcellulose</td>
<td>2% Postlarval tongue sole (Liu et al., 2008).</td>
<td>Negative</td>
<td>-</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Benefits of binders for different species

*PPQ: Physical pellet quality, -: no data to support this

5.0 CONCLUSION

Pellets with binders have better quality than pellets without binders. Binders influence pellet quality due to their viscous properties. Besides improving physical pellet properties, some binders can enhance animal’s growth and digestibility. Supplementing binders in feed are distinct for different animal species diets. Therefore, selection of binder in feed is based on its suitability for specific animal species.
There are limited articles or old articles on some animal species like tilapia and rainbow trout. Based on this, more research has to be carried out to ascertain the binder suitable for these fish.
REFRENCES

Carballeira J.D, Sinisterra J.V, in Encyclopedia of Microbiology (Third Edition), 2009
Entrapment in Thermogels: Agar or Agarose

Christianson, D.D., Hodge, J.E., Osborne, D. and Detroy, R.W., 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum.

Franke M, Rey A. Pelleting quality. *World Grain 2006 May:*78–9

marketandmarket.com (2020). Feed Binders Market by Type (Lignosulfonates, Plant Gums & Starches, Gelatin & Other Hydrocolloids, Clay, Molasses, and Others), Livestock (Poultry, Cattle, Swine, Aquatic Animals, Dogs & Cats, and Others), Region - Global Forecast to 2025

www.marketsandmarkets.com

Miladinovic D, Salas C., 2014 Influence of various enzymes and lignosulphonate on power consumption during pelleting process and physical quality of pelleted products. Annual transactions of the Nordic Rheology Society.

Pereira, L. and Cotas, J 2020 Alginates - A General Overview DOI: 10.5772/intechopen.88381

ADM (Archer Daniels Midland Company). www.adm.com

Borregaard, P.O Box 162, N-1701 Sarpsborg, Norway. www.borregaard.com

Cargill, www.cargill.com

CP Kelco Inc. Cumberland Center II 3100 Cumberland BoulevardSuite 600Atlanta, GA 30339 www.cpkelco.com

CRA-VAC INDUSTRIES INC. 307 – 658 DANFORTH AVE. TORONTO, ONTARIO CANADA M4J 5B9. cravac.com

Darling Ingredients (Sonac) www.sonac.biz

DuPont de Nemours, Inc., www.dupont.com

Gelita. www.gelita.com

Nouryon, Haaksbergweg 88 (De Oliphant)1101BZ, Amsterdam, The Netherlands www.nouryon.com

Sepiolsa www.sepiolsa.com