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2. Summary 

2.1. Contextual 

In efforts of explaining biological system behavior, a common mean has been to use 

mathematical models.  To model intricate biological systems does often require complex, 

non-linear and high-dimensional differential equation systems. This is especially the case in 

computational neuroscience, where models of the human brain and nervous system is at 

center for the mathematical models and theoretical analysis. The human brain consists of 100 

billion neurons and 100 trillion synaptic connections, and the electrical activity in these 

neural networks (interconnected neurons) is determined by a wide range of factors [1] , thus 

modelling of such networks require a large number of parameters and state variables. In turn, 

highly complex models result in increased computational costs. 

 

Existing techniques for parameter estimation and sensitivity analysis is often more suitable 

for low dimensional output space and does typically focus on one output variable at the time. 

Statistical representation of models is an increasingly explored technique for prediction of 

input-output relations. Statistical emulations (also called metamodels) has shown ability to 

act as a parameter reduction technique, and thus reducing the computational costs. In addition 

to improving computational efficiency, it has also shown beneficial for serving as a basis for 

sensitivity analysis (the study of how the system input variations influence the output).  

2.2. Goals 

The aim of this paper is to explore the possibilities in using metamodelling on data generated 

by realistic deterministic dynamic models of complex biological systems, and to implement a 

specific strategy that has proven useful in other studies [2]. As a part of this, it is also a sub 

goal to contribute to the development of a robust metamodelling methodology capable of 

producing accurate predictive mappings which allows for extensive automation. This can 

then also serve as a tool for exploring of dataset by other scientists. 

The content of this study can be summarized to contain an overview of some benefits of 

metamodelling, and a reflection upon modelling strategies for cultivating interdisciplinary 

understanding and collaboration across scientific fields. It will introduce a framework for 

applying regression methods to non-linear data. Specifically, a reasonably new regression 

method called Hierarchical Cluster based Partial Least Squares Regression (HC-PLSR) [2] is 

implemented and demonstrated. The hypothesis herein, is whether a strategy of local 
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modelling (by separating data using clustering techniques) can account for non-linearities in 

the dataset, that a single regression (PLSR) model cannot. The HC-PLSR method has proven 

useful in other cases by improving performance due to local modelling strategies, and this has 

been demonstrated on different kinds of datasets. Thus, it was of interest to contribute to the 

exploration of this methodology by using a dataset generated from model simulation of a 

neuroscientific neural network design described by Brunel [3].  

2.3. Summary of results 

After this project, resulting content of the work consists of; 1) a framework for implementing 

and simulation of Brunel’s Model A [3] with parameters sampled from the AI-space 

(Asynchronous Irregular firing), 2) a single, global PLSR model implemented for 

performance comparing, 3) Implementation of HC-PLSR model variations for exploration of 

method performance on non-linear data. When inspecting the resulting dataset prepared for 

modeling experimentation, the relations between regressors (X) and responses (Y) was 

indeed non-linear, but not what could be described strong non-linearities.  

The HC-PLSR local modelling did not outperform the PLSR regression method in all cases, 

however, it did have a general higher prediction accuracy (R2, MSE and MAE) when 

compared to a linear PLSR model. This was especially apparent when no interaction/higher 

order terms were included. This might indicate that the HC-PLSR does account for non-

linearities in the data, but when the data is not strongly non-linear, it might be sufficient to 

use a polynomial PLSR model (by adding higher order terms and cross terms). 

The work process has also demonstrated the need for a modular and generalized framework, 

because the HC-PLSR method can be optimized and tuned by a number of regression model 

parameters. Thus, a resulting framework (using python programming language) is shared [4], 

containing different model variations/combinations, with the purpose of making 

metamodelling accessible by utilizing a modular strategy.   
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3. Introduction 

3.1. Motivation 

Working with modelling of complex systems occur in several fields of sciences. Data 

generated from deterministic modelling, which describes realistic biological systems, are 

often characterized by a large range of attributes, properties and relationships. Advanced 

modelling in biology and neuroscience (to mention some fields) can consist of 

computationally demanding simulations. Such dynamic models with intricate properties can 

be difficult to assess, and a tool to facilitate the understanding/descriptions of such 

representations might give insight to important characteristics (for sensitivity analysis etc.). 

Metamodelling can meet both these challenges; firstly, by using a metamodel generated 

mapping for model reduction, and also as a technique to produce accurate predictive 

mappings explaining the input-output relationship of models.  

Metamodelling has a wide range of use and can be helpful for many different fields. Despite 

the fact that metamodels have been developed for various different fields and sciences 

already, it is lacking a standardized methodology that can encourage and motivate for cross 

disciplinary work and collaboration. Collaboration is especially useful in areas like modelling 

and mathematical analysis of complex systems, because the methods and theory behind is 

often quite similar even though the data might differ. The motivation for this study is to 

utilize cross disciplinary model work, data scientific methods for metamodelling and 

neuroscience models for simulation of the data to regress.  

There has been some work done already that aims for standardizing the modelling of 

different data, for example the Surrogate Modelling Toolbox (SMT). As the name implies it 

is an (open-source python) package consisting of libraries for surrogate modelling methods. 

The focus in SMT, however, is mainly on derivatives and the use of gradient-based 

optimization. Even so, the ideas of standardizing and generalizing is fitting well with the 

viewpoints in this paper, and the developed tools herein will follow the same basic principles.  

 

The same modelling strategies can be applied to different types of data, so a “cookbook”-

approach for modelling data can provide an efficient tool for scientists, disregarding the type 

of dataset at hand. Another advantage of this is that a lot of cumbersome work due to 

implementation and the “trial and error”-way of working (for model optimizing) might be 

reduced. If there exist a framework that takes input data of a given structure and produces 

(regression) prediction results of from a selection of metamodel architectures, it can pinpoint 
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the direction of further work and model improvement. This can be used as a convenient tactic 

of getting more acquainted with the dataset at hand, and also provide a time-efficient 

approach to the testing of model design that almost always is required. The “trial and error” 

way is a widely used approach when creating models in data science, even if the dataset is 

quite well known in advance. It is hard to know beforehand exactly what strategy in the 

model design that will yield the best results, and modelling experience is very important. 

Scientists with less experience in modelling might still (also) benefit from the metamodelling 

results, and a standardized methodology will grant valuable information. The work for 

increasing model performance can be time consuming and inefficient, so can a framework be 

designed to help with this challenge? 

 

3.2. Background for the study 

Deterministic dynamic models of complex biological systems contain large numbers 

parameters and relationship attributes, often connected using (non-linear) differential 

equations. This model can be described using a metamodel; a statistical approximation, that 

effectively maps variations in input parameters to variation in the resulting output state 

variables (for the entire feature space). The input-output relations of realistic dynamic models 

can be extremely complex, and the use of metamodels can be helpful in regards of 

representing these complex/high dimensional models. It has also been useful in handling 

some of the challenges high-dimensional models brings, by increasing speed of numerical 

solvers and serve as a tool for automated model simplification. Metamodels can also serve as 

a basis for sensitivity analysis (the study of how the system input variations influence the 

output) [2] .  

 

Computational neuroscience and computational biology are both evolving and fast-growing 

fields but making use of metamodelling is currently not a widely used approach here. Still it 

can be expected [2] that metamodel generated mappings can become useful as model 

reduction techniques for speeding up simulations, for performing global high-dimensional 

sensitivity analysis for several purposes, and for comparing high-dimensional prediction 

spaces of competing models etc. Input parameters and initial conditions can also be predicted 

from the model, providing opportunities for identifications of relevant parameter ranges [2]. 

However, for any of these tasks to be fully solved, there is a need for defining a methodology 
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that can quantify prediction accuracies and yield indications of modelling robustness. 

Additionally, extensive work and automation of the practice (and existing tools) is expected 

and the approach must take this into account and facilitate future work. There is a need for 

substantial development to make modelling strategies generally applicable in several fields 

(e.g. in biology and neuroscience), and to be feasible for applications by creating open-source 

and accessible tools.   

 

Regression based analysis is a widely used technique, and mild nonlinearities can to some 

degree be modelled using polynomial regression (square and interaction terms). However, a 

robust modelling methodology must be capable of handling data with strong nonlinearities, in 

particular non-monotone input-output relationships. A candidate approach for this [2] is the 

HC-PLSR, which makes use of locally linear or locally polynomial regression modelling of 

selected subspaces of the original complex model. It has proven to be a successful strategy to 

split complex data into blocks for local modelling, which implies that non-linear and non-

monotone response surfaces can be modelled locally by designated polynomial models. The 

HC-PLSR does also handle linear dependencies between regressors and the inter correlations 

between the responses, by using Partial Least Squares Regression (PLSR) instead of Ordinary 

Least Squares Regression (OLS) for the local modelling. PLSR maximizes the explained 

covariance between the regressors (X) and the responses (Y), and it also makes use of the 

intercorrelations between the response variables for model stabilization [2]. Consequently, it 

does not depend on linearly independent regressor variables. PLS Regression is a way of 

compressing data into its most relevant subspace (spanned by the estimated latent variables, 

also called principal components (PCs)), and hence provides a versatile means for data 

compression by reducing the rank of both regressors (X) and responses (Y). This can also be 

used to identify important features in a complex system. It should also be noted that if the 

rank of the data is not reduced (i.e. all PLS components are included in the regression model) 

the PLSR model is equivalent to OLS.  

The suitability of PLSR is emphasized when considering the importance of maintaining 

interpretability. Campbell [5] have shown that metamodels based on subspaces found by 

PLSR (compared to Legendre polynomials and PCA), gave the simplest and most predictive 

basis for sensitivity analysis for a set of computational models. As mentioned by Tøndel et al. 

[2], the suitability of PLSR for interpretation of complex biological systems and the use of 

PLSR in sensitivity analysis is demonstrated in [6]. This in turn was the motivation behind 
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the new technique of local modelling, by forming the method of HC-PLSR, and is 

followingly the method to be further tested and explored in this paper.  

 

To investigate and test the performance of the HC-PLSR method of modelling, it was 

desirable to use a different kind of dataset than the ones already tested. This resulted in a 

dataset generated from a simulation tool, NEST (see section 5.3.1), which generates data 

based on spiking patterns from neurons in a neural network. The neural network design is 

described in detail by Brunel [3] and was developed for investigating spiking behavior in 

neural networks (excitatory and inhibitory neurons interconnected in a larger network of 

cells). The network is explored and commented to yield spiking patterns with different 

tendencies/behavior. These so-called “states” of spiking behavior might generate non-

linearities in resulting datasets, which might be better modelled using a HC-PLSR approach. 

In this paper however, only one state/ form of spiking behavior (and the required parameter 

interval for generating this state) was included, the “Asynchronous Irregular firing” - state 

(AI-state). To expand the parameter space after the model has shown useful is a more natural 

way of developing the model; if the model cannot account for non-linearities in a subspace of 

the parameter space, then the performance based on the whole range might not be expected to 

be very good. 

 

As mentioned above, strongly non-linear data can be hard to model well. There is a need for a 

methodology to tackle this, as well as to simplify computationally demanding simulations 

(i.e. make them more time and resource efficient). When there exists little or no prior 

knowledge of the data, it should still be possible to create sufficiently performing models, but 

this requires a standardized framework. The models could also in this case be used for getting 

a comprehension on how the data looks like (if no or relatively simple/non-monotone non-

linearities are present in the data, the HC-PLSR would not outperform the PLSR model, and 

the utilization of the hierarchical approach would be unnecessary). It is also ideal if a model 

can perform/predict within a specified margin of error, that is defined by the model if 

necessary. All of the reasons mentioned above founded the motive for creating the modelling 

framework and testing paradigm in this paper. In summary it is aimed at resulting in a 

methodology that: 

- Handles strong non-linearities 

- Does not require pre-existing knowledge about the data 

- Automizes the modelling process in a time and resource efficient way 



 12 

- Can provide information about the structure of the given dataset 

- Facilitates interdisciplinary work, and encourages collaboration on modelling theory 

(experimentation) 

- Eases and assists the inclusion of domain knowledge into the model architecture 

(dataset specific) 

- Offer modelling results where interpretability is not completely lost due to complexity 

- Exploits modularity such that the use of only parts of the architecture is possible if 

desired 

  

4. Theory  

This section is meant to provide the necessary knowledge needed to create a common 

understanding/intuition of some relevant concepts that are used in creation of this project. It 

is split up into 2 parts; model related theory, optimization specific. 

4.1. Model 
4.1.1. Meta modelling 

A metamodel (commonly called a surrogate model or an emulation model) is a model of 

models. The idea behind this concept is that a complex mathematical model can be 

substituted by a simpler model, in order to reduce computational costs and complexity. This 

is achieved when the input data (X) and the output (Y) of a simulation experiment (varying 

the input parameters) is used for calibration. The metamodel then learns to represent 

variations in the output data and map these changes to variations in the input data. The ideal 

surrogate model/metamodel will replace a complex model as accurate as possible.  

In classical metamodelling, the outputs (from simulations) can be predicted based on 

simulation inputs, whereas in inverse metamodelling, it is the inputs that are predicted based 

on output data from the simulations. See Figure 1 - Inverse and Classical Metamodelling 

illustration for visualization.  

These two metamodelling variations can in turn, alone or combined, be used to 

explain/describe behavior of the original model (used to run the simulations).  

Different strategies (machine learning techniques, supervised and unsupervised) are used in 

construction of metamodels, completely depending on the purpose of development of the 

model. In this project, a strategy called HC-PLSR [2] is implemented and tested.  
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Figure 1 - Inverse and Classical Metamodelling illustration 

Metamodelling of a deterministic dynamic model is a statistical approximation to the 

mapping of a number of parameters to a range of state variables. It can be exploited as a 

shortcut around heavy/expensive computations, and it is also (and maybe especially) relevant 

if one is more interested in summaries and descriptions of the resulting simulations rather 

than the exact simulation results in itself. For example: there might be of more interest to find 

state descriptive measures/tendencies (e.g. Regular Synchronized firing or Irregular 

Asynchrone firing behavior [3]) of the spiking behavior of a network, rather than the exact 

spike train for all neurons in the network (for all parameter combinations). To obtain a cheap 

way for accessing an estimate/indication of the behavior of the network, based on input 

parameters, without always computing simulation results can be of interest for many reasons. 

(e.g. in sensitivity analysis, further modelling in one particular parameter subspace etc.). It is 

important to emphasize that modelling often has a purpose/goal, and the field using the model 

results and or functionality will better assess and determine what can be described as 

acceptable results and predictive performance error.  

 

Meta modelling is creating a model that predicts expensive (time, computational power, 

money) response variables from cheap (easily accessible) features. To run a simulation like 
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the one described in 6.1.1 for many hundred or even thousands of times, is a computationally 

expensive process, and if possible, it is very convenient to be able to predict how the output 

of such simulations would result in. The simulation might also create a lot of information that 

is not strictly necessary for a given research purpose, (i.e. the exact spiking times for every 

neuron for every simulations) when one might only interested in state describing measures 

(like correlations, covariances and other statistical measures, see section target features) of 

such spike trains. To use a lot of resources computing information that will go to waste 

should be avoided. Thus, to be able to predict the measures mentioned would be of great 

benefit.  

 

4.1.2. HC-PLSR 

HC-PLSR is an extension of the PLSR method and was proposed by Tøndel et. Al [2]. The 

HC-PLSR modelling pipeline consists of splitting the parameter space into regions where 

local PLSR models are created for each subspace. This method can reveal different behavior 

of the model for individual subspaces. The HC-PLSR approach has shown [2] useful for 

emulating models with complex non-linear characteristics, and the method can be adjusted to 

suite the complexity of the dynamic model behavior in a flexible way. 

 

Existing metamodelling work does often [2] use OLS, that requires linearly independent 

input parameters (See section 4.1.5  PLSR regression ). OLS regression-based modelling is 

primarily focused on modelling single output and cannot handle multicollinearity in the data 

parameters. The requirements for using OLS are not always met, and other techniques 

involving Deep Learning (ANN) exists. However, deep learning removes some of the 

interpretability, and this is when HC-PLSR can serve as a solution. HC-PLSR modelling uses 

(multivariate) PLSR regression for modelling local subspaces on the parameter space. In this 

way, it utilizes the intercorrelations between the output variables, and due to the 

clustering/separation of feature space into subspaces, it can also model highly non-linear and 

non-monotone input-output relations, which characterize many biological systems.  

 

The implementation of metamodel exploration explained in section 6.6 Metamodelling 

Procedures, was created with the intention to explore the performance of HC-PLSR method 

[2]; a way of creating local regression models for each part of the nonlinear relationship 

between regressors and predictors (features and target). Implementations of the HC-PLSR 
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was based on an initial global (second order) PLSR using all observations from the training 

(or calibration) set, to identify a preliminary (global) model (source K). Next, a clustering of 

the output from the global model (X-/Y-scores of the PLSR model) was used to split the 

original observations into subsets where local polynomial regression models were 

hypothetically more likely to improve prediction results [2]. Finally, local PLSR models were 

created and calibrated individually for each of the clusters (with some exploration with 

regards to cluster restrictions). A 10-fold cross validation was also used here, to find the 

optimal number of principal components to include in the model. For an overview of the 

model pipeline, see Figure 2 - Illustration of the HC-PLSR approach from [2] [2] below. 

 

 

Figure 2 - Illustration of the HC-PLSR approach from [2] 
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4.1.3. Artificial neurons 

The cells that work as building blocks in the nervous system are called neurons. These 

specialized cells handle communication by electrical and chemical signaling between each 

other. There are two kinds of neurons; sensory and motor neurons. The sensory neurons carry 

information from the sensory receptors to the brain for interpretation and processing, and the 

motor neurons carry signaling from the brain to the muscle cells in the body. The neurons 

stop reproducing at birth, but the connections between them, the synapses, continue to 

develop and form throughout life.   

 

The neuron is constructed as a cell body, dendrites and an axon (see Figure 3 - Components 

of the neuron from [7]). The cell body contains the cytoplasm and nucleus and is surrounded 

by a cell membrane to protect the cell. Dendrites are connected to (and surrounding) the cell 

body and act as receivers of signals that are transmitted from other cells and into the cell 

body. The axon extends from the cell body and ends up in axon terminals to form the end 

point of the neuron. This is where the Action Potential (AP, further described in [8]), initiated 

in the cell body, travels along before it reaches the contact point where the current cell is 

connected to other neurons. These connection points are called synapses and are the junction 

gaps between the axon terminal of one presynaptic neuron, and a dendrite of a postsynaptic 

neuron. There exists both electrical synapses, where ions flow across the gap, and chemical 

synapses where chemical signals, neurotransmitters, are released into the synapses to flow 

across. The receiver cell of the synaptic connection can either be less or more likely to fire an 

action potential after transmitting of the signal. This is the difference between excitatory and 

inhibitory synapses; the excitatory post synaptic potential is depolarizing, and the inhibitory 

post synaptic potential is repolarizing the cell body. In effect of this, signals from an 

excitatory synapse makes the receiving neuron more “likely” to fire an AP, and contrary 

makes is less likely to fire an AP if signals are from an inhibitory synapse. The post synaptic 

neuron summarizes the inputs from the excitatory and inhibitory synapses, and then 

“decides” (based on voltage change and the respective firing threshold) whether to fire an 

action potential or not.  

It is important to remember that one axon can be connected to several neurons’ dendrites, and 

a neurons’ dendrites can receive signaling from several other neurons (and their respective 

axon terminals). This forms the basis of a neural network, further described in the section 

4.1.4 Neural networks.  The human brain and the nervous system are constructed by an 
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interconnected network of neurons. Thus, exploring its behavior (read: how signaling 

progresses and transmits throughout the network) and characteristics might be beneficial for 

the medical understanding of different diseases, conditions and behavioral patterns [9]. 

 

 
Figure 3 - Components of the neuron from [7] 

 

Signaling in and between neurons can be of both chemical and electrical type. The signal is 

initiated in the cell body as a reaction to the received signals via dendrites. It then continues 

down along the axon to the axon terminals, in the form of an action potential. An action 

potential is essentially an electrical signal, which is initiated in the cell body by a rapid 

voltage change (polarization and depolarization) across the membrane.  Figure 4 - The Action 

Potential from [10] illustrates the development of the (voltage) potential across the 

membrane.  
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Figure 4 - The Action Potential from [10] 

 

Before an action potential it is initiated, the cell body has a resting potential of around -65 

mV. This means that the cell body is negatively charged, with reference to the outside of the 

cell membrane, and the charge is maintained (thus, resting) by controlling and positioning 

electrically charged ions. The resting membrane potential is maintained by pumps and 

channels in the membrane, and forces such as electrical drift and diffusion keeping a balance 

in the ion flow and net currents [1]. In the case of an action potential, the cell body signals for 

the membrane pumps and channels to allow for positively charged ions to enter the soma 

(cell body) and lets the negatively charged ions out. This causes a rise of charge in the soma, 

and when this reaches a certain threshold (approx. -55mV), an action potential is released. 

The firing of an action potential then propagates down the axon, which can be described as an 

electrical signal being sent down the axon. One important aspect here, is that the cell will 

either fire an action potential, or it will not. This means that there is no such thing as partially 

firing of an action potential, and the only thing deciding this is whether the soma reaches the 

threshold value. As a result of this, a cell will always fire with full strength, and the signal is 

also carried down the axon with full intensity. After an action potential has been fired off by 

the cell, there is a short (ms) refractory period inside the neuron. During this phase, a new 

action potential cannot form. The refractory period can be described as the process where 

channels and pumps in the membrane closes, and eventually causes the cell potential to reach 
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its resting potential again. When resting potential is reobtained, a new AP can potentially 

again be formed, sending new electrical signals down the length of the neuron’s axon.  

The construction and processes of a neuron for simulations can be quite complicated, and it 

can be desirable to make simplifications. Many reasons can be mentioned (see [8]) for why it 

can be appropriate to make simplifications; 

• They are useful for incorporating into bigger networks (see section 4.1.3), because 

they are computationally cheaper, and can in turn be easier to analyze mathematically 

(depending on the simplified model used).  

• The number of variables can be reduced while retaining many important and relevant 

properties of the neuron. 

• When trying to understand the behavior of a network of neurons, simplified neuron 

models can be used to model the essential behavior of a neuron’s mechanisms. This 

allows for faster simulations, less demanding computations and mathematical 

interpretability and analysis of the network. An example of this is if the “integrate-

and-fire”-neuron simplification model (see next section) is used, consisting of two 

main components; a differential equation to describe the membrane potential, and a 

threshold for spike firing.  

 

There are aspects to consider when deciding what type of neuron simplifications to use, and 

this is discussed further in [8]. A famously known and old neuron model is the “integrate and 

fire” neuron model (IF-model), where no variables of the neuron remains other than the 

membrane/cell potential. In order to produce spikes (APs), a spike-generating mechanism is 

also added to the model. Despite the biological complexity of generating an action potential, 

predicting the initiation of one is quite straight forward, and this is what the IF-model utilizes. 

As already mentioned, the membrane potential reaches the threshold potential, a spike is 

triggered and neurotransmitters are being released from the presynaptic terminal, to signal 

other neurons. The If model tries to capture the concepts where the membrane is being 

charged by flow of ion currents, then discharged again after the threshold potential is reached 

and an AP is being fired.  This mechanism has an RC-circuit equivalent for conceptualizing, 

see [8]. The IF-model describes this using separated (not coupled) differential equations, i.e. 

it is faster to simulate and is thus very useful when handling larger network simulations. One 

of the most important applications of the IF neuron, is for understanding the variability of 

neuronal firing patterns. Patterns and “states” of neurons interconnected in a neural network 
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is explored and described by Brunel [3]. Important questions in computational neuroscience 

include the descriptions of input-output relations of connected neurons, and to better 

understand this relationship (and the variabilities of them), IF-models have played an 

important role. Especially in network simulations.  

4.1.4. Neural networks 

A neural network can be defined as a set of interconnected neurons, that communicates using 

action potentials (AP) via synapses. Biological neural networks hold many unanswered 

questions and is widely studied for exploration of behavioral and chemical analysis to 

mention some. 

In order to explore and understand more of the human body and processes therein, 

simulations and modelling of different processes serve as an important tool. Complex events 

and behavior can be difficult to model, and it is therefore a current culture for “modelling 

what you can measure”. This means that results from models are not yet useful if not 

comparable with real measurements that can confirm that the model 

behaves accurately. This means that there is a constant need for cooperation between the 

computational and experimental fields. One of the more famous studies on neural networks 

and computational neuroscience is Brunel’s [3] work. In one of the published articles of this 

work [3], two different kinds of model designs were implemented to explore spiking 

tendencies within the network. The Brunel model [3] uses simple leaky IF-models in a 

network of randomly interconnected neurons, to explore the dynamics of the spiking patterns.  

Model A is used in this paper’s implementation and is more elaborated in [8], but below is a 

summarized description.  

 

The network neurons are connected using both excitatory and inhibitory synapses and are 

thus consisting of three neuron populations; Excitatory Neurons NE, inhibitory neurons NI, 

and a population of independent neurons representing external activity input Next. This 

population of identical neurons (Next) are represented by an independent Poisson process with 

firing frequency Vext (from outside the network). The model is composed of N neurons, 

where the number relation between excitatory and inhibitory neurons is NE / NI = 4, thus 

there are four times as many excitatory neurons. The network is sparsely connected, meaning 

that each neuron is connected to (with a given probability) C randomly chosen other cells in 

the network.  

Depolarization of the neurons (i in 0, 1,..., I, …, N) in the network follow the equation 
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Equation 1 

 

Where Ii(t) is the synaptic currents arriving at the soma, i.e. the sum of all contributions of the 

spikes arriving at different synapses. These spike contributions are in Brunel (2000) [1] 

modelled as delta functions 

 

Equation 2 

 

Here, the first sum is a sum of different synapses, with postsynaptic potential amplitude Jij. 

The second sum is the sum of all spikes arriving at the synapse J arriving at time tjk + D 

where D is the transmission delay. Brunel’s model has the same postsynaptic potential 

amplitude at each amplitude, J = J > 0 for excitatory synapses, and -g*J for the inhibitory. 

The external synapses are activated by a Poissonian spike train, (elaborated in [8]). 

When the neuron reaches the threshold potential, an action potential is fired. After the 

repolarization phase, the neuron has a refractory period trp, during which the potential is 

insensitive to stimulation. 

 

The Brunel model was developed for exploring global and local spiking in neural networks. 

The findings of Brunel states that networks of neurons can be found to collectively spike with 

different tendencies/behavior, referred to as states. The paper continues to describe these 

network states, affected by oscillations and frequencies of spike times, visualized in Figure 5 

- Illustration of network states, (figure 8 from [3] ). The paper continues to illustrate global 

and local states, that depend on the given input parameters for the simulation. The network 

design (model A) from Brunel’s paper was implemented and confirmed to reproduce the 

results of Brunel’s exploration of network characteristics in [3]. Simulation and network 

design were achieved using NEST Simulation tool (section 5.3.1) and resulting plots from 

these simulations can be explored/verified in [8]. NEST is a simulation framework that 

allows for network design and exploration of neuronal activity. A description of this tool is 

found in 5.3.1 NEST – Network simulation tool.  
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Figure 5 - Illustration of network states, (figure 8 from [3] ) 
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4.1.5. PLSR regression  

In data Science and Machine Learning, supervised learning methods are divided into 2 main 

categories; classification and regression. Classification is where the Machine Learning 

algorithm predicts discrete outputs (samples are classified), and regression methods predicts 

continuous output, hence this can also in some cases be called Continuous Supervised 

Learning.  

 

Regression can be univariate and multivariate; univariate regression modelling involves the 

analysis of a single variable. In Multivariate Regression, the target Y consists of several 

dimensions. Multivariate regression is a method for correlating one data matrix X, of 

predictor variables (features), to the information in a second data matrix, Y, of response 

variables (targets). Partial Least Square Regression (PLSR) is a way to do multivariate 

regression where intercorrelations between the Y-variables are utilized for model 

stabilization and is used in this model design (see section 6.1 Overall metamodelling 

pipeline).  

 

The motivation for using PLS instead of OLS is that with bigger data it is harder to exclude 

the possibility of features being correlated. When using ordinary OLS, the calculation of the 

regression coefficients includes a matrix inversion, and this process becomes unstable with 

highly correlated features. This again will lead to regression coefficients that does not 

represent the individual variables “effect” on the response. The PLSR method handles this by 

decomposing the feature space to a subspace with orthogonal components, and with 

orthogonal components it is easier to separate the individual effect of features on the response 

(Y). Thus, the PLSR allows for the predictor variables to be highly correlated or even 

colinear. PLSR constructs new predictor variables (principal components) as linear 

combinations of the original predictor variables, similar to the method of Principal 

Component Regression (PCR). The difference from PCR, however, is the way the 

components are constructed. PCR creates components by assessing the variability in the 

predictor variables without considering the response variables. On the other hand, PLSR 

takes the response variables into account when creating the components, and thus are able to 

fit the response with fewer components.  One might say that PLSR is sort of a PCR for X and 

Y. In PCA, what is optimized is the eigenvalues, but for PLSR what is maximized is the 



 24 

covariance. It should also be mentioned that PLSR can be used to detect outliers in the 

relationship between X and y. 

 

The core of PLSR is the idea that if U (the scores of Y) can be predicted, then Y can be 

calculated. And U can be predicted by using the scores of X. PLSR maximizes the covariance 

between the components through the scores of X and Y, such that the 1st component of X has 

the highest covariance with the first component of Y.  

  

To predict using new data, the X scores are calculated by  

Xscores = Xnew * Xloadings 

Then Y scores are calculated by  

Yscores = Xscores * R 

where R is the relationship matrix (between X scores and Yscores) containing the inner relation 

regression coefficients on the diagonal. The prediction of Y is then calculated as  

Ypredicted = Yscores * Yloadings 

If one is just interested in the prediction of Y, one can collect the computations into one 

operation by using  

Ypredicted = Xnew * B 

where B is the regression coefficients of the PLSR model.  

B = Xscores * R * Yloadings 

  

For many models, the creation of new features (i.e. feature combinations such as cross terms 

of higher order terms) may improve performance. This can be the case for linear models 

especially, because by adding non-linear terms, new knowledge is added to the linear model 

(see section 4.2.2 Feature Engineering). One other advantage of PLSR is that many such non-

linear combination of features may be added, and the resulting model will only use the first n 

components of the PLSR model. It can be difficult to know in advance what type of new 

features that will improve the model, so it saves time if one can use the PLSR as a way of 

performing dimensionality reduction/feature selection (see section 4.2.3 Feature selection). 

 

For optimizing the PLSR model, the Mean Squared Error (MSE) of the validation data is 

calculated for different numbers of components to include in the final model. If all 

components are kept, this is the equivalent to OLS. PLSR is a linear regression model (see 
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section 4.1.9 Linear vs non-linear models), and adding non-linear feature combinations to the 

predictor variables (see section 5.3.2 Featuretools (Deep Feature Synthesis)) can make the 

PLSR modelling account for non-linearities in the dataset. The nonlinearity accounted for by 

the resulting polynomial PLSR model (including e.g. cross and higher order terms between 

features) is introduced by the new polynomial features.  

  

4.1.6. Clustering methods 

Clustering is an important technique for extracting useful information from various high 

dimensional datasets and is a useful data analysis tool [11]. 

Data analysis is commonly used in modern science research, for example in communication 

science, computer science and biology science [12] to mention some. Clustering plays a 

significant role in data analysis [12]. It can be used to discover hidden patterns in data, by 

grouping together similar objects and separating dissimilar objects. There are several defined 

measures of similarity, and a common example of this is the Euclidian distance measure 

(calculated in the feature space). The clustering of data is a way to organize data into 

categories, so that the similarity inside the cluster is maximized and dissimilarity from 

datapoints outside the cluster is maximized. 

Clustering is an unsupervised learning method and is a common technique for statistical data 

analysis used in many fields [13]. But why is clustering relevant in metamodelling? 

Clustering deals with data structure partitioning and can serve as a basis for further learning 

and understanding of the data. 

Each clustering method make assumptions about the data points to constitute their 

similarities, and every strategy can result in different clusters. It is therefore important to not 

ignore the characteristics of each algorithm’s strengths and weaknesses.  

  

Measuring cluster algorithm performance is an important consideration regarding Machine 

Learning and modelling. Since clustering is an unsupervised learning technique, the 

evaluation of models is less straight forward than for supervised learning where the labels for 

every training sample is present. However, there are a few techniques for assessing and 

giving some insight to how the clusters change depending on what cluster method is used. It 

is still not possible to measure the validity of the model (because no labels exist), but the 

techniques can rather serve as a comparative analysis between different models. One method 

is assessing if the internal measures of the training data are similar to the measures in the test 
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data. Another technique is Silhouette Analysis, which can be used to explore the separation 

of the different clusters as illustrated in Figure 6 - Illustration of Silhouette Analysis concept, 

from [14] . This might serve as a tool to assess parameters of the cluster method visually [15]. 

 

 

Figure 6 - Illustration of Silhouette Analysis concept, from [14] 

 

4.1.7. K-Means Clustering 

K-Means is probably the most well-known clustering algorithm. It has the advantage of being 

quite fast, as the computations involved mainly is calculating the distances between points 

and cluster centers. When using K-Means, the number of clusters needs to be predefined, 

which is not necessarily a trivial case. Since the clustering method can contribute to the 

discovery of hidden patterns in the data, the predefinition of clusters might limit that 
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exploration of hidden knowledge. Some of the insight the clustering method could have 

provided can be lost when the method cannot freely create as many clusters as is required.  

K-Means initializes the cluster centers randomly, and thus may yield different clustering 

results on different runs (if not a seed is set). One should note this lack of consistency and be 

aware that results might change [13], so it might be beneficial to test several seeds for a 

consistency check. 

  

Pseudocode of K-Means Clustering: 

• Select the number of classes and randomly initialize their respective center points. 

• Compute the distance between datapoints and all cluster centers.  

• Classify the datapoint to the closest cluster center 

• Recompute the cluster center by calculating the mean of all points in the cluster. 

• Repeat the steps above until 1) the cluster centers do not change much, or 2) has 

reached the maximum number of iterations. 

  

4.1.8. Fuzzy C-Means Clustering 

Clustering can be divided into two subgroups; hard and soft clustering. Hard clustering is 

about grouping data points in such a way that a data point can only belong to one cluster each 

(like K-Means Clustering). Soft clustering allows for data points to exist in multiple clusters. 

As a further development of the idea that a sample can exist in several clusters, Fuzzy C-

Means returns the probabilities for a sample belonging to each of the clusters. The label for a 

sample belonging to a cluster is no longer a discrete value {0,1}, but is changed to a 

continuous variable interval [0,1].  

4.1.9. Linear vs non-linear models 

OLS regression is a Machine Learning technique that allows for associating one or more 

explanatory variables with a dependent variable (response). All Machine Learning models try 

to approximate the function, f (x), that accurately describes the relationship between the 

dependent and the independent variable, and in Linear Regression it is assumed that this f (x) 

is linear. The objective is then to approximate the coefficients, that is the intercept and the 

slope.  

 



 28 

The term "linearity" refers to the linear relationship between two or more variables. If drawn 

in a two-dimensional space, the relationship would be a straight line, as illustrated in Figure 7 

- Linear relationship illustration. 

 
Figure 7 - Linear relationship illustration 

 

The linear relationship (the regression line) is the line that fits the given datapoints the best 

(see 4.2.1 Measures of model performance). The job of the Regression Algorithm is to fit 

multiple lines to the datapoints, and then returning the line that results in the least error. This 

concept of regressing linear relationship between features, can be extended to cases where 

there are more than two variables, which is called multiple linear regression. A regression 

model involving multiple variables can now be represented can be explained as moving from  

y = mx + b 

to  

y = b0 + m1b1 + m2b2 + m3b3 + ... ... mnbn 

This is the equation of a hyperplane (since its more that 3 dimensions).  

 

In the case of multivariate regression, we have more than one response variable, and the 

model finds the most optimal coefficients for all the attributes (intercepts and coefficients = 

intercepts and slope steepness). PLSR generates one model for all Y-variables at once 

through scores and loadings, instead of generating separate models (relationship 

explanations) for each response variable. 
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4.1.10. Collinearity vs Interaction terms 

This section it means to provide an intuitive understanding on the differences between feature 

collinearity and interaction terms, since multivariate PLSR models allows for collinear 

features, and the model performance is increased when cross- and interaction terms is added 

to the feature space.   

 

Collinearity between X1 and X2 means that X1 is linearly correlated to X2, that is,  

X1 ≈a + bX2 

It should be noted that the response, Y, is not considered when assessing collinearity. 

Suppose the regression model is  

Y = β0 + β1 X1 + β2 X2 + ε 

When collinearity exists between X1 and X2, the model can be written:  

Y = β0 + β1 (aX2 +b) + β2 X2 + ε 

which in turn reduces to  

Y = γ0 + γ1X2 + ε. 

 

Interaction terms are included in the model when the effects of X1 and X2 on the response are 

not additive (mark that the response, Y, is considered). To illustrate what is meant by “effects 

are not additive”, consider the following:  

If the “effect” of X1 on Y is not “independent” of X2, but is affected by the variable X2, a 

typical solution is assuming that the coefficient of X1 , β1, is linearly correlated to X2. In other 

words,  

β1=a X2+b 

Supposing that the regression model  

Y = β0 + β1 X1 + β0 X2 + ε 

and that that β1 is linearly dependent on X2, the original model can be written as: 

 

Y = β0 + β1 X1 + β2 X2 + ε 

= β0 + (a X2+b) X1 + β2 X2 + ε 

= β0 + bX1 + β2 X2 +a X1 X2 + ε 

= γ0 + γ1X1 + γ2X2 + γ3 X1 X2 + ε 
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By this it is clear that collinearity and interaction terms affect the original model in different 

ways.  

 

If X3 is denoted as  

X3= X1 X2 

the above regression model with interaction terms is just a new model with one new variable, 

X3, added. It is not always clear whether introducing X3= X1 X2 will cause the model to 

overfit. However, if there really exists an interaction between features, and this interaction is 

not included in the model, it will naturally underfit. On the other hand, the model might be 

overfitted if interaction terms are added where interaction between the features does not exist. 

However, there the risk of overfitting arises as long as new features are introduced to the 

model. It is therefore always important to include model validation techniques to ensure 

model performance on unseen data.  

 

It is also interesting to note that the interpretation of the model is affected by the interaction 

terms. To exemplify this: if explaining  

Y = β0 + β1 X1 + β2 X2 + ε 

one may say that if X2 is fixed, as X1 increases by one unit, Y increases by β1 units.  

But if explaining  

Y = β 0 + β 1X1 + β 2X2 + β 3 X1 X2 + ε 

one could rather say that if X2 is fixed, as X1 increases by one unit, Y increases by β 1+ β 3 X2 

units. This shows that the unit contribution of X1 to Y is a function of X2, namely 

“interaction”.  

4.1.11. Latin Hypercube Sampling 

The Latin Hypercube Sampling (LHS) is a semi random sampling procedure that is especially 

suitable for use in high-dimensional data. This is mainly because it separates into several 

hypercubes (more than 3 dimensions), and samples randomly within each hypercube. A 

detailed elaboration on the LHS can be found in the original paper [16]. 

The use of LHS experimental design is especially convenient when performing multiple 

automated simulations for parameter exploration, since variables are sampled from uniform 

distributions and ensures that the ensemble of parameters is representative of the natural 

variability of the systems input parameters.  
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The LHS is based on the Latin Square design, where a single sample exists in each row and 

column (in 2D space). A hypercube is a cube with more than 3 dimensions, and LHS is 

extended to allow for sampling of multi-dimensional feature spaces and hyperplanes. The key 

to LHS is stratification of the input probability distributions [17]. Stratification involves 

division of the cumulative curve (see Figure 8 - Sampling step in Latin hypercube sampling 

(LHS), from [18]) into even intervals on the cumulative probability scale.  

 

 
Figure 8 - Sampling step in Latin hypercube sampling (LHS), from [18] 

 

 

A sample will then be taken randomly from every interval of the input distribution, as 

illustrated in Figure 9 and Figure 10 below. This method forces representation of values in all 

intervals (stratifications), and consequently forces recreation of the input probability 

distribution. In short; the space to be sampled from is divided into N equal partitions, and 

then choosing a random datapoint in each partition. The technique being used during LHS is 

“sampling without replacement”. 
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Figure 9 – Two-dimensional random sampling of a uniform Random LHS with 5 samples  

 

 
Figure 10 - Latin Hypercube Sampling Concept from [19] 

 

4.2. Optimization 
4.2.1. Measures of model performance 

The coefficient of determination, R2, is a regression score metric used as a measure of 

prediction accuracy. The best possible score is 1.0, and depending on how it is calculated, it 

can return negative values or 0 as the lowest score. In this project, the R2 is calculated using: 

 

Where ŷ and y are the predicted and true output values, respectively. ỹ is calculated as the 

mean of the true output values. When using this general form of calculating the coefficient of 

determination, it follows that it can have negative values. A constant model that always 

predicts the expected value of y, disregarding the input feature would get an R2 score of 0.0. 
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R2 can be considered a measure of explanatory power, (not necessarily model fit). High 

values indicate that the regression model has statistically significant explanatory power. The 

measure can also be viewed as the percentage of the response variable variation that is 

explained by a linear model, and 1) 0 % indicates that the model explains none of the 

variability of the response data arounds its mean and 2) 100 % indicates that the model 

explains all the variability of the response data around its mean. 

However, while R-squared provides an estimate of the strength of the relationship between 

your model and the response variable, it does not provide a formal hypothesis test for this 

relationship. The F-test of overall significance determines whether this relationship is 

statistically significant. Low R2  values are not always bad, and high R2 values are not always 

good [20], but when comparing models and features included, one could use the R2 score as 

an indicator of whether the models worsens or improves (increased value of R2).  

 

Mean Squared Error (MSE) is a common quality measure an estimator. It measures the 

average of the squares of the prediction errors (see equation XX). Here ỹ being the predicted 

values, and y being the vectors of true values. 

 

The best regression model in this project is the one that minimizes the function SSE while 

also optimizing the coefficient of determination, R2. 

In general, a model fits the data well if the differences between the observed values and the 

models predicted values are small and unbiased. Before one looks at the statistical measures 

for goodness-of-fit, the residual plots should be inspected [21]. Residual plots can reveal 

unwanted residual patterns that might indicate biased results more effectively than numbers.  

 

4.2.2. Feature engineering 

Feature engineering is a significant part in creation of intelligent systems. As illustrated in 

Figure 11, the engineering/creation of new features is an essential part of model development. 

Even though there exist good methodologies for (automated) machine learning, each problem 

is domain specific and will improve performance if given better features (suited to the 

https://blog.minitab.com/blog/adventures-in-statistics/what-is-the-f-test-of-overall-significance-in-regression-analysis
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problem task). It is a chance for introducing human/domain knowledge into a model, to make 

the model more robust and thus perform better on unseen data.  

 

 
Figure 11 - Model development pipeline, the role of Feature Engineering from [22] 

 

Feature engineering is improving the model by adding new features to the dataset, containing 

information that is expected to introduce new and relevant knowledge to the problem to be 

solved. For an extensive elaboration on practical feature engineering, see [23] 

4.2.3. Feature selection 

Feature selection is the process of reducing the number of input variables when developing a 

predictive model. It is desirable to reduce the number of features in a model, mainly for 

computational costs, but in some cases, it might also improve predictive performance. The 

goal is to reduce the number of features such that the remaining ones are the most relevant for 

prediction of the target variables. Some predictive modelling methods include a large number 

of variable inputs. This can slow down the development and training process, and also 

require larger system memory capacities. Feature selection can also be related to 

dimensionality reduction techniques since both methods result in fewer components for the 

model to be trained on, and thus increasing the computational efficiency. The difference here, 

however, is that dimensionality reduction is disregarding the features not considered relevant 

for the predictive mapping, whereas dimensionality reduction is creating a projection of the 

input data, resulting in entirely new input features.  
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5. Materials 

This section contains information about the working environment setup and necessary 

packages for implementations of the models described in Chapter 6 Methods. It will also 

include a brief description of why these libraries were chosen. Full access to all files and 

implementation (including test scripts) can be found in the open GitHub repository [4]. 

5.1.  Working environment 

Some issues were encountered regarding packages and integration of NEST (see 5.3.1) and 

PyPet (see 5.3.5), that was discovered when attempting to hierarchically store simulation 

output/results in Pandas DataFrames handled by PyPet. 

To resolve these issues in the environment setup, it was necessary to make some minor 

changes in the source code of the PyPet package. It issue was related to mishandling of data 

structures when using Pandas Dataframes from the NEST simulation output and followingly 

store it in the trajectory (hierarchical structure).  

A change to one of the source files was necessary: 

 

In the following file: “lib/python3.6/site-packages/pypet/storageservice.py 

The following lines but be inactivated by commenting them out or deleting them: 

 

Table 1 - Solving issue with package integration, Lines to inactivate 

Line number 4186 4201 4202 

 

After installing the packages/ libraries above and commenting out the lines mentioned, the 

environment is setup and ready. 

 

PyPet requirements: 

Pytables >= 3.1.1 

Pandas >= 0.23.0 

HDF5 >=1.8.9 

Numpy >= 1.13.0 



 36 

5.2.  Modules in project 

A complete list of project requirements can be found in the Appendix. An overview can be 

seen in table below: 

Table 2 - Overview of important project modules 

1 pandas==1.0.1 

2 matplotlib==3.1.3 

3 scikit_fuzzy==0.4.2 

4 numpy==1.18.1 

5 featuretools==0.16.0 

6 scikit_learn==0.23.2 

7 matplotlib==3.1.3 

8 pypet==0.4.3 

9 neo==0.8.0 

10 smt==0.3.4 

11 elephant==0.6.4 

12 quantities==0.12.4 

13 nest==1.3.0 

 

5.3. Description of packages (external) 
5.3.1. NEST – Network simulation tool 

NEST [24] is a simulation tool that allows for exploration and understanding of biologically 

realistic neural networks. It is a high-performance neuronal network simulator that is used for 

diverse applications in computational neuroscience. Some key features include built-in 

methods for creating neurons, connecting them and assessing activities using measuring 

tools. NEST offers a selection of 50 different neuron models, 10 synapse models, and has 

minimal dependencies (only requires a C++ compiler). The implementation of NEST in this 

project is based on the work done in [8], where a part of the goal was to verify that the 

implementation could reproduce results described in Brunel’s [3] paper on exploration of 

network states. 

The network design specifications described in Brunel’s model A are also used here, except 

the parameters tuned within the given parameter space (belonging to the AI-state) to create a 

dataset for further exploration of the metamodelling processes described in section 6.5 
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Metamodelling procedures. For an overview of parameters used in the NEST network 

simulation, see section 6.2.1 Simulations using NEST. Running a simulation using these 

parameters and specifications results in an overview of recorded spikes from a given number 

of neurons in the network. These spike-patterns serves as a basis for the creation of statistical 

measures used as targets/responses (Y) in the modelling procedure. 

5.3.2. Featuretools (Deep Feature Synthesis)  

Feature engineering can be crucial in many machine learning projects but can be difficult and 

time consuming if one is not deeply familiar with the data and domain. Featuretools [25] is a 

tool for automated feature engineering (see section 4.2.2 “Feature engineering”), by using 

Deep Feature Synthesis (DFS) on the given data. It can also handle temporal and relational 

datasets, and thus transforms it into feature matrices for machine learning. This allows for an 

automated process of creating new features, which is generalized and fits all datasets with 

equal structures (samples as rows and features as columns). It comes with a range of different 

options for aggregation of existing regressors, but one can easily create and add tailored 

functions, called primitives, (for example if adding domain knowledge-based criteria and 

filters) if necessary.  

 

The features created by DFS are produced based on Feature Primitives, the building blocks of 

Featuretools. They define the individual computations that are applied to the raw data given 

as input to creates new features, and they are separated into two types; aggregations and 

transformations. The transformations (used in section 6.4.1 Transforming Features) are 

applied to columns in a table/dataset, whereas aggregations are applied across multiple tables 

with a defined relationship (parent/child relationship defined).  

By breaking common feature engineering calculations into their primitive components, one is 

able to capture underlying structures of the features that human creates when doing feature 

engineering “manually”. Thus, by using this automated feature calculations/engineering one 

can include domain knowledge (see section 4.2.2 Feature engineering) into the model, 

without extensive work.  

Featuretools provides a range of created primitives to choose from, but custom primitives are 

easily created and added if necessary. For an example on how to implement this, see 

Appendix F, where DFS is used for applying feature engineering to the dataset. 
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5.3.3. Scikit Learn – PLSR Regression 

Scikit Learn [26] provides a class for PLSRegression; PLS2 for block regression and PLS1 in 

case of one-dimensional response. This class implements1 the NIPALS2 algorithm, and the 

method scales the input data (Model Parameter ‘Scale’ = True by default). In this model 

design (see section 6.6 Metamodelling Procedures), the global and local modelling is done 

using SkLearn PLSRegression.  

5.3.4. SkFuzz – Fuzzy clustering and prediction 

The SciKit-Fuzzy [27] library is a fuzzy logic toolbox for SciPy3, written in python 

programming language. The fuzzy logic principles work by assigning (cluster) membership 

values to all samples in a multidimensional dataset. The membership value for a sample is 

calculated based on the similaritiy with each cluster center, and all samples has a sum of 

100% cluster belonging in total. This is a soft clustering technique more elaborated in section 

4.1.7 “Fuzzy C Clustering”. The module creates cluster centers using training data in the 

skfuzzy.cmeans()-method, and followingly predicts cluster belongings to new and unseen 

data by skfuzzy.cmeans_predict(). The Fuzzy Partition Coefficient (FPC) is defined on the 

range [0,1], and describes the separability between the clusters, i.e. how cleanly the data is 

being described by a certain model. When FPC is maximized, the data is optimally described 

by the fuzzy clustering algorithm. To illustrate the FPC coefficient, see Figure 12 - 

Illustration of FPC from [27] below, where one clearly sees how the coefficient is at its 

highest when the clusters are separated as expected. 

 

 

1 https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/cross_decomposition/_pls.py#L266 

 

2 https://cran.r-project.org/web/packages/nipals/vignettes/nipals_algorithm.html 

 

3 https://www.scipy.org/ 
 

https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/cross_decomposition/_pls.py#L266
https://cran.r-project.org/web/packages/nipals/vignettes/nipals_algorithm.html
https://www.scipy.org/
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Figure 12 - Illustration of FPC from [27] 

 

5.3.5. PyPet – Hierarchical organization of work 

 

PyPet [28] is a python parameter exploration toolkit that provides a functional framework 

that manages exploration of a defined parameter space by running numerical simulations and 

storing the resulting data in a hierarchical manner. PyPet creates a trajectory containing all 

the data, and stores it as a hierarchical HDF5 file, which is easily accessible to read and 

navigate in using an HDF-file reader 

It also organizes the resulting data (simulation outputs) together with the corresponding 

input-parameters, so that one easily can have full access to historical runs and parameters 

used. In addition to this, supplementary information can also easily be added to the hierarchy, 

such as extra summaries, calculations, statistical measures, textual descriptions and notes. It 

also allows for adding upcoming (new) simulations and parameter inputs, thus is a 

convenient tool if continuing work is to be done on the project.  

 

Running an experiment in PyPet happens in an “Environment”, that works as the logic 

controller for filling parameters and results in the correct manner. The advantage here is that 
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the environment takes care of issues like logging (useful in cases of interrupted experiments), 

multiprocessing logistics, memory capacities, and other logistic matters. It also provides a 

direct integration with Git, offering a convenient way of storing backups and work progress. 

For explanation of the use of PyPet Trajectories in this project see Appendix H. 

 

5.3.6. Latin Hypercube Sampling from SMT  

 

The Latin Hypercube Sampling (LHS) [29] is a widely used method to generate controlled 

random samples [30], and is a way of generating random samples from a defined parameter 

space. The SMT (Surrogate Modelling Toolbox) has a library for sampling methods, and 

herein is the LHS method implementation. Five criteria for the construction of LHS are 

implemented in SMT4 : 

1. Center the points within the sampling intervals 

2. Maximize the minimum distance between points and place the point in 

a randomized location within its interval 

3. Maximize the minimum distance between points and center the point 

within its interval 

4. Minimize the maximum correlation coefficient 

5. Optimize the design using the Enhanced Stochastic Evolutionary 

algorithm (ESE) 

5.3.7. Elephant – Adding Statistics 

Elephant (Electrophysiology Analysis Toolkit) [31] is a library for analysis of 

electrophysiological data. It offers generic analysis functions for spike train data and time 

series recordings from electrodes (such as Local Field Potentials, LFP, of intracellular 

voltages). It is used in this project because it provides a consistent analysis framework that is 

built in a modular and manageable way. It is specialized in handling spike trains, the 

foundation of the data generated in section (data generation). 

 

 

4 https://smt.readthedocs.io/en/latest/_src_docs/sampling_methods/lhs.html 

 

https://smt.readthedocs.io/en/latest/_src_docs/sampling_methods/lhs.html
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5.4. Implementation design choices 

It is hard to know in advance exactly what constellation of modelling options that will result 

in the better performance results. Some sort of “trial and error”-way of working is often 

required, but to reduce the amount of tedious and cumbersome work is always to be 

preferred. It was therefore, as mentioned, a sub goal to structure the implementation in such a 

hierarchical way, so that a “general” model produces the benchmark for the dataset and the 

following options of architectures could be used strategically on the search for better 

performing model variations. Sometimes, the best of a few model options might pinpoint 

direction of which type of modelling strategy that works for the given dataset, and one can 

start tune and prune the better performing model to be further improved. The benchmark 

model (the main model) is the root of a tree with many branches representing options for 

model variations to test.  

This can be a good way of creating modelling architectures, that encourages for different 

fields to also use and explore the possibilities of modelling without having to be a Data 

Scientist (or similar). To create standard methodologies that can be used by many scientists 

interested in modelling, without knowing exactly how to explore the infinite varieties of 

modelling strategies that can be applied, invites to cross-disciplinary projects and facilitates 

collaboration across fields of sciences.  

 

  

6. Methods 

6.1.  Overall metamodelling pipeline 

When data was formed and available by preprocessing and preparation, the strategy (of HC-

PLSR [2])  was to model this data using a global model, then clustering the resulting model 

output (scores) into smaller segments, and followingly creating local regression models for 

each clustered batch of data. 

The hypothesis is that this way of clustering the data will account for some of the non-

linearity in the data, that one single regression model cannot capture alone. Several ways of 

combining different clustering methods and regression models was tested (further described 

in section 6.6). In general, the PLSR was used as a regression method, because it removes the 

issue of multicollinearity in the data, and also gives the option of modelling using only some 

of the principal components. Clustering is introduced as an attempt of handling non-
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linearities in the data that one PLSR model cannot account for alone. Two different clustering 

methods were tested, the K-Means (see section 4.1.7) and the Fuzzy C Means (see section 

4.1.8). Clustering was intended to pick up patterns from the scores created by a global PLSR 

model, and thus labelling and grouping together samples with more in common. Local PLSR 

models for each cluster was then created, based on the belonging samples.  

Predictions were made by projecting new samples onto the new feature space defines by the 

PC’s of the global model, and then a) predicting using the local PLSR model belonging to the 

cluster the sample was labeled with b) calculate a weighted sum of all prediction made by the 

local models, where the Fuzzy-C cluster probability serves as weights for the regression 

coefficients.   

 

6.2. Data generation implementation. (network creation, simulation, storing) 

  

The dataset is generated by using NEST (see section 5.3.1 NEST – Network simulation tool) 

for simulation of a neural network as described by Brunel [3] (mentioned in section 4.1.4 

Neural networks). The simulation output results are one spike pattern/spike train for each 

recorded neuron, thus creating a matrix of all (recorded) neurons and their spikes at any given 

time (see Figure 5 for example). These spiking patterns (spike trains)  form the basis for 

creation of response variables (see section 6.4.2 Adding statistics /spike train summaries 

using elephant), by calculating statistical measures described in section. 

The characteristics of the spike trains change when varying the simulation input parameters 

g, j, eta and D [3].Thus, in order to simulate different outcomes and tendencies in the spike 

patterns, the parameter space was sampled randomly using LHS (see 4.1.11 Latin Hypercube 

Sampling from SMT). The four parameters were varied within the parameter ranges 

belonging to the AI-state of network activity. The AI-region of network behavior is the most 

common state to be measured in the cortex, and it was therefore decided to begin the model 

exploring on this parameter region. When a model created on this parameter range is 

sufficiently good, one might include wider parameter ranges for incorporating different 

network tendencies to the model. 

6.2.1. Simulations using NEST 

The network (Model A) described by Brunel was simulated and tested to verify that the input 

settings and the simulation outputs were consistent with the resulting states described in [3]. 
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The tool used for creating and running the network simulation was, as mentioned previously, 

the NEST simulation toolbox. Description of how to implement and test the network design 

and simulation can be found in [8]. Parameter and variable settings are specified in the table 

below (see Table 3), and the script for creation of the network is included in Appendix K. 

Parameters marked with [*] are default values from Brunel (Model A) [3].  

 

Table 3 – Table of parameters for simulation of Brunel Network Model  

Symbol Value Explanation 

dt 0.1 Simulation resolution in NEST, and bin size for 

histogram plots 

simtime 1100 ms Duration of the experiment simulation in [ms] 

simlation Cutoff 100 ms  

D Interval [1.0, 2.5] Transmission delay, axonal propagation as a 

time delay. Represents Synapse delay between 

neurons, in [ms] 

J Interval [0.05, 0.4] EPSP (Excitatory post synaptic potential) 

amplitude. Synapse weight between neurons. 

eta Interval [1.5, 3.0] η = 𝜈ext/𝜈thr 

g Interval [4.5, 6.0] Relative strength of inhibitory synapses. 

Inhibitory synaptic strength, relative to 

excitatory synaptic strength. 

V_ext  Frequency of external input 

Epsilon [*] 0.1 Connection probability. Excitatory Neurons * 

epsilon = number of synapses per neuron 

Order 2500 Defining relation between excitatory and 

inhibitory neurons. Relative number of neurons 

in network.  

N_rec 50 Number of neuron to be recorded durng 

simulation  

Num_threads 10 Number of cores used for processing. 

Simulation in threads for parallelizing. 

print_report True Simulation variable, if set True; prints progress 

as output throughout simulation. 
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input_stop False If > 0, stops input signals after the given ms has 

passed 

Ne [*] 10 000 Number of excitatory neurons 

Ni [*] 2 500 Number of inhibitory neurons 

Ce [*] 1 000 Number of excitatory connections per neuron 

Ci [*] 250 Number of inhibitory connections per neuron 

 

6.2.2. Sampled feature space 

As previously mentioned, the varied simulation inputs were parameters g, j, eta and D (see 

section network desc), and the intervals sampled from is seen in Table 3 above. In order not 

to introduce bias in the model by introducing imbalanced data, the parameters were sampled 

evenly using the LHS sampling method (see 4.1.11 Latin Hypercube Sampling) with 500 

sampling points (see script in appendix L). This also results in being able to ignore the 

possibility for outliers, since the data was created from deterministic modelling where 

features (the parameters) has been selected and created intentionally.  

  

6.3. Data Handling 

To attain the dataset, it was required to run several simulations. All simulation runs were 

using different combinations of parameters. It was a priority to handle this part of the 

modelling process in a functional way that transfers well across simulation tools, parameters 

to tune etc. This because new universal methodologies for creating models can widen the 

reach of use of such modelling methods and make it more accessible for other scientists to 

benefit from its advantages.   

 

Accessing data via natural naming and grouping the data into meaningful categories and 

support for many different data formats are some of the most attractive features for this type 

of data generation and modelling. Therefore, the PyPet parameter exploration toolkit was a 

convenient tool for creating and storing the resulting data. Data formats that PyPet supports 

include python natives, lists, tuples, dictionaries, Numpy arrays and matrices, Scipy sparse 

matrices, Pandas Series, DataFrames and Panels (and BRIAN2 quantities and monitors). All 

of the mentioned datatypes happen to be used in this project, and PyPet allows/aims for it all 
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to be seamlessly combined into a convenient workflow. After simulation results were stored 

(together with the corresponding simulation parameters), the calculation of additional 

statistics (correlation of variation, covariance matrices, correlation matrices and fanofactor, 

see section 6.3.2) were inserted to a Pandas DataFrame and saved with the corresponding 

simulation run. The dataset used for further modelling where extracted from the trajectory as 

a simple csv-file. Using a dataset from a csv-file for modelling is the norm in Data Science, 

and thus was chosen as a natural choice for data flow for generalization purposes. The dataset 

(csv format) contains 500 simulations (rows), 4 simulation parameters (features, predictors) 

[g, j, eta, D] and 4 response variables (targets, Y), thus a 500*8-matrix. Both the trajectory 

file (HDF5 format), the resulting csv-file and the scripts for generating them can be found in 

the open project Github repository [4] and in the Appendix.  

  

6.4. Data preprocessing 
6.4.1. Transforming Features 

As a part of comparing performance of different modelling strategies, an option to improve 

modelling performance for linear regression models is to include interaction terms and higher 

order terms to the regressors (X). See a discussion of collinearity and interaction terms 

section (4.1.10). This was done using the Python library Featuretools and the functionality 

Deep Feature Synthesis (see section5.3.2). To continue the work in a direction that 

generalizes well, a selection of common aggregations was used when creating the additional 

terms. Primitives included in this model were: 

[add_numeric, multiply_numeric, logarithm, square_root, squared, cube]. The name Deep 

Feature Synthesis comes from the methods ability to stack these primitives to in turn generate 

more complex features (example multiply ( log(a) + log(b)) ). Each time primitives are 

stacked, the “depth” of a feature is increased. This is controlled by the max_depth  parameter, 

and it controls the maximum dept of the features returned by DFS. For some experimentation 

in the modelling process, some of the new features were excluded, but the widest set of new 

features was created using max_depth=1:  

Original features:  

['g', 'eta', 'J', 'D'] 
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DFS features (new features, cross terms):  

['g', 'eta', 'J', 'D', 'eta + J', 'D + g', 'D + eta', 'D + J', 'g + J', 

       'eta + g', 'eta * J', 'D * g', 'D * eta', 'D * J', 'g * J', 'eta * g', 

       'LOG(eta)', 'LOG(J)', 'LOG(g)', 'LOG(D)', 'SQUARE_ROOT(eta)', 

       'SQUARE_ROOT(J)', 'SQUARE_ROOT(g)', 'SQUARE_ROOT(D)', 'SQUARE(eta)', 

       'SQUARE(J)', 'SQUARE(g)', 'SQUARE(D)', 'CUBE(eta)', 'CUBE(J)', 

       'CUBE(g)', 'CUBE(D)'] 

 

The implementation of DFS and transformation of features is added in Appendix F and also 

available in the open project Github-repository [4]. 

  

6.4.2. Adding statistics /spike train summaries using elephant 

When creating this metamodel, it has been an angle of approach to try to map the network 

spiking tendencies by (only) assessing the input parameters, and their resulting spiking state 

measures. Elephant (5.3.7), is an open source generic tool that provides analytic functions for 

spike train data and time series recordings, as well as statistics especially for spike trains.  

A variety of different descriptive measurements/summaries of the spike patterns were 

computed, using this package (Appendix M + E ). 

Statistics used as targets for this modelling were summaries like:  

Table 4 - Creating of Statistical measures overview 

Type Shape Comment 

Fanofactor 50x1 list  

Coefficient of Variation [CV] 50x1 list  

Coefficient of Correlation 

[CCorr] 

50x50 matrix Calculated the mean of 

the triangular matrix, 

thus a summary of the 

matrix becomes a 50x1-

shaped list 

Coefficient of Covariance 

[CCov] 

50x50 matrix Calculated the mean of 

the triangular matrix, 

thus a summary of the 

matrix becomes a 50x1-

shaped list 
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6.4.3. Standardizing/scaling 

The idea of scaling is to make the models more robust to analysis on feature spaces. Some 

algorithms, like PCA and KNN, are sensitive to the metric spaces, will be more weighted 

towards features with higher numbers (i.e. towards 5000g instead of 5 kg, even though they 

represent the same), and this is where scaling becomes handy. Scaling does not affect the 

significance of features; in contrast it improves analysis of data.  

In this project, the standard scaling was done on the input data before creating PLSR-model 

(by using the internal scaler from Scikit Learn), and on the input data before creation of 

clusters (i.e. on the scores from the global PLSR model, see section 6.6  “Metamodelling 

Procedures”) 

6.5. Data inspection  

The data is a result of deterministic modelling, and therefore; outliers and missing values are 

not present in the dataset. Below is the dataset visualized in two figures, firstly the original X 

and Y, and in the second figure, the first 15 scores are plotted against each other (Xscores vs. 

Yscores). As seen, the cov_mean variable is fairly close to zero and might not contribute with 

much in the modelling. However, it was decided to be included, as it is expected to change 

characteristics when the parameter ranges are altered to contain values corresponding to the 

other network states (synchronous regular states [3]). 
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Figure 13 - Data inspection, X vs Y 

 

Figure 14 - Data inspection, X_scores vs Y_scores 
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6.6. Metamodelling Procedures 

  

Two objectives were explicitly prioritized when designing the implementation and 

framework for this model. Firstly, it was a goal to implement a method that allows for 

different varieties of data, with equal structure (n samples * k features). In addition to this, 

the performance of models varies a lot when the dataset/type of data is altered. Therefore, as 

a second quality of this project was to prepare for exploration of different architecture-types 

/meta modelling design, to easily explore what type of structure design that optimized 

performance for the given dataset at hand.  

  

Optimization of a metamodel is not a defined concept, since it is highly dependent on the 

type of data the model is used on. Thus, a selection of tested strategies and some further 

development on these ideas were selected. When that is stated, a list of recommendations for 

further exploration has been formed (section 0   
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Further work) that is especially suitable for low effort implementations (since already 

considered in creation of this project). 

 

- Optimization techniques for the metamodel was in this project, the exploration of; 

- different number of added features (cross and higher order terms)  

- different clustering/classifier methods for clustering the scores 

- Clustering on X scores vs clustering on y scores 

- “Weighted Sum Prediction” vs. “Best Cluster Prediction” 

- Parameter tuning for the clustering methods 

- Outlier restrictions for cluster models and local models 

 

Both the global and local PLSR models contains the optimal number of principal 

components, and this was determined based on the lowest MSE of the predictions of the 

response matrix Y, calculated by using cross-validation. A 10-fold cross-validation was used, 

where data was split randomly into ten segments. Then, 10 PLSR models were then created 

based on 9/10 segments and prediction was made by using the last segment.  

The clustering method splits up the output space defined by the global model, i.e. clustering 

is then done on the scores from the fitted PLSR model. The original samples are then labeled 

according to the cluster belonging, and for each of the cluster labels, a local PLSR model is 

created (based on the samples for that cluster label). See figure below for illustration. 

 

Figure 15 - Illustration of 3 PCs with cluster labels (colored green, yellow and pink) 

 

Clustering of the scores were consequently always done on the first 3 components. The PLSR 

methods from Scikit Learn has a build in scaler that standardizes the data before fitting the 

model and turning this of worsens the resulting prediction. Thus, it was left “on”.  
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Standardization of input data for the PLSR models improved modelling performance, 

standard scaling of the PCs before clustering did also improve prediction accuracy.  

This was implemented by 1) using the built in scaler (default=True) from SkLearn’s 

PLSRegression method, and 2) using SkLearn’s StandardScaler() for scaling the principal 

components before training the clustering algorithm. It should be noted that scaling for the 

PLS models happens after the DFS creates new transformed features, thus the new features 

are created on original regressors (X) and not on the scaled ones like done in [2]. 

 

In an attempt of improving performance, a plan to optimize the models was outlined. The 

approach resulted in a “modelling variations”-scheme, where the main steps of the HC-PLSR 

has tuning options defined in Table 5 - Model Variations for all steps in the meta model 

pipeline. 

All these model variations were compared to the performance of a single PLSR, and the 

result is described in an overview table (section 7.3) 

 

 

 

Table 5 - Model Variations for all steps in the meta model pipeline 

Step 1 Step 2 Step 3 Step 4  

Global model Clustering  Local models Prediction Comments 

Original features Algorithm  Weighted sum  

Added cross 

combinations and 

higher order 

terms 

Outlier restrictions Added cross 

combinations and 

higher order 

terms 

Best cluster 

prediction 

 

 scores to cluster Limit of 

minimum number 

of samples I a 

local model 

Weighted sum  

  Limit (lower 

threshold) of 

cluster belonging 

(if soft 

clustering) 

The N most 

relevant clusters 

form a weighted 

sum prediction 
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Assessing and tuning of the model combinations described above were carried out in a 

standardized way. The hyperparameters tuned for each model variations are described in 

Table 6 - Hyperparameter tuning overview . The procedure of tuning was equal for all meta 

model variations, and the best performing hyperparameter combination were noted as the 

result in Table 11 - Model options and best performing model result. 

 

Table 6 - Hyperparameter tuning overview 

Global model Clustering Local models Comments 

CV Fuzzy C Means: 

Fuzzifier  

CV  

Number of principal 

components 

Number of clusters Number of Components  

Test size for dataset HDBScan: 

Distance 

Minimum number of 

samples in cluster 

Outliers excluded from 

local modelling 

 

 

  

  

7. Results 

This section describes the resulting model architecture and performance of a selection of the 

tested model variants. The metamodelling descriptions are in turn split into 3 different 

varieties with interesting resulting performances. In general, clustering on X-scores of the 

global PLSR model yielded the better results for “weighted sum” prediction and for the “best 

cluster” prediction. However, it looks like clustering of the Y-scores were able to 

split/separate the datapoints into more “natural”-looking clusters This is illustrated below;  
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Figure 16 - Visualization of clustering on the Y_scores 

 

Figure 17 - Visualization of clustering of the X_scores 

 

 

A variation of the metamodel architecture was tested (Called Version 2), where the global 

model is trained on the original features, and the local models are polynomial (added 

interaction terms). This variation gave the best improvement in prediction accuracy, 

compared to the signle PLSR model for comparison.  

Since clustering on the Yscores requires the global model to predict the target before it is 

transformed to the new feature space (spanned by the PCs), two global models were created; 

one polynomial for high prediction accuracy, and a second based on the original features that 



 54 

is used for the projection of the datapoints before clustering. This gave a slight improvement 

in the prediction results. 

7.1. Data preparation 

Feature engineering as described in 6.4 Data preprocessing, resulted in the following feature 

transformations (cross and higher order terms):  

 

Original features:  

['g', 'eta', 'J', 'D'] 

 

DFS features (new features, cross terms):  

['g', 'eta', 'J', 'D', 'eta + J', 'D + g', 'D + eta', 'D + J', 'g + J', 

       'eta + g', 'eta * J', 'D * g', 'D * eta', 'D * J', 'g * J', 'eta * g', 

       'LOG(eta)', 'LOG(J)', 'LOG(g)', 'LOG(D)', 'SQUARE_ROOT(eta)', 

       'SQUARE_ROOT(J)', 'SQUARE_ROOT(g)', 'SQUARE_ROOT(D)', 'SQUARE(eta)', 

       'SQUARE(J)', 'SQUARE(g)', 'SQUARE(D)', 'CUBE(eta)', 'CUBE(J)', 

       'CUBE(g)', 'CUBE(D)'] 

 

This is a result of max_depth=1  in the DFS tool. The new dataset (with the transformed 

features) were then the input of the PLSR-optimizer function (see Appendix D), where the 

optimal number of PCs where included in the resulting PLSR models (used for creation of 

both global and local PLSR models). 

 

In creation of response variables (Y variables), statistical calculations of the spike train 

matrices (NEST simulation results, section5.3.1) were created as described in (section 6.1.1 

and 6.3.2). This resulted in a 4-dimensional response surface consisting of the measures: 

fanofactor, coefficient of variation, coefficient of correlation, coefficient of covariance.  

Since coefficient of variation, coefficient of correlation and coefficient of covariance are 

calculations for each neuron, a summary (mean, median and maximum value) were tested. 

The final dataset however, used mean as a statistical summary. When using median and 

maximum value, predictive performance for the methods dropped drastically.  
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7.2. Combined Model Variations 

Here are some of the resulting model variations outlined and explained. For a complete 

overview, all model variations (and the resulting best performing version) that were tested are 

included in Table 11 - Model options and best performing model result.  The “split” 

represents the train-test-split coefficient, indicating the relative (percent) amount of the total 

dataset used for testing. (e.g. split=0.2 indicated that 20 percent of the dataset was used as 

“unseen data” for model performance assessment). 

7.2.1. PLSR original terms 

Model created for comparison. No features added. 

Split 0.3 

R2 = 0.885 

MSE = 0.07 

MAE = 0.037 

 

Split 0.4 

R2 = 0.879 

MSE = 0.009 

MAE = 0.040 

 

7.2.2. PLSR Polynomial 

Model created for comparison. New features from DFS (see section) added. 

Split 0.3 

R2 = 0.914 

MSE = 0.004 

MAE = 0.028 

 

 

Figure 18 - PLSR optimizer function of optimal number of components 
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7.2.3. Variation a 

HC-PLSR model variation (a) (Appendix A), where the clustering model is created on Y-

scores from the global PLSR model. The PLSR models (both global and local) are including 

the transformed terms and components included in the models are chosen based on the 

optimize-function in script Appendix D.  

Model specifications are stated in the table Error! Reference source not found..   

 

Table 7 - model specifications for HC-PLSR variation (a) 

Split 0.3 

Number of clusters 3 

Fuzzifier coefficient 8 

Scores Y scores 

 

In the following 3 figures, the clustering performance and the overall model performance is 

illustrated.  

 

Figure 19 – Clustering result on Scores, for variation (a) 
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Figure 20 - Clustering results on original data, for variation (a) 

 

Figure 21 - Y_predicted vs Y_true plot, predictions from each cluster in different color. For variation (a) 
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Figure 22 - Performance of model variation (a) 

 

 

 

 

 

 

7.2.4. Variation b 

HC-PLSR model variation (b) (Appendix A), where the clustering model is created on X-

scores from the global PLSR model. The PLSR models (both global and local) are including 

the transformed terms and components included in the models are chosen based on the 

optimize-function in script Appendix D.  

Model specifications are stated in the table Error! Reference source not found..   

 

Table 8 - model specifications for HC-PLSR variation (b) 

Split 0.3 

Number of clusters 3 

Fuzzifier coefficient 1.1 

Scores X scores 
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In the following 3 figures, the clustering performance and the overall model performance is 

illustrated.  

 

 

 

Figure 23 - Clustering result on Scores, for variation (b) 

 

Figure 24- Clustering results on original data, for variation (b) 
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Figure 25 - Clustering Prediction method on scores, for variation (b) 

 

Figure 26 - Y_predicted vs Y_true plot, predictions from each cluster in different color, for variation (b) 
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Figure 27 - Performance of model variation (b) 
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7.2.5. Variation c 

HC-PLSR model variation (c) as Version 2 (Appendix B), where the clustering model is 

created on X-scores from the global PLSR model. The global PLSR is created on original 

features, whereas the local PLSR models include the transformed terms. The number of 

components included in the PLSR models are chosen based on the optimize-function in script 

Appendix D.  

Model specifications are stated in the table Error! Reference source not found..   

 

Table 9- model specifications for HC-PLSR variation (c) 

Split 0.3 

Number of clusters 3 

Fuzzifier coefficient 5 

Scores X scores 

 

In the following 3 figures, the clustering performance and the overall model performance is 

illustrated.  

 

 

Figure 28 - Clustering result on Scores, for variation (c) 
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Figure 29 - Clustering results on original data, for variation (c) 

 

Figure 30 - Y_predicted vs Y_true plot, predictions from each cluster in different color, for variation (c) 
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Figure 31 - Performance of model variation (c) 
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7.2.6. Variation d 

HC-PLSR model variation (d) as Version 2 (Appendix B), where the clustering model is 

created on Y-scores from the global PLSR model. The global PLSR is created on original 

features, whereas the local PLSR models include the transformed terms. The number of 

components included in the PLSR models are chosen based on the optimize-function in script 

Appendix D.  

Model specifications are stated in the table Error! Reference source not found..   

 

Table 10  - model specifications for HC-PLSR variation (d) 

Split 0.4 

Number of clusters 3 

Fuzzifier coefficient 2 

Scores Y scores 

 

In the following 3 figures, the clustering performance and the overall model performance is 

illustrated.  

 

 

Figure 32 - Clustering result on Scores, for variation (d) 
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Figure 33 - Clustering results on original data, for variation (d) 

 

 

Figure 34 - Y_predicted vs Y_true plot, predictions from each cluster in different color, for variation (d) 
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Figure 35 - Performance of model variation (d) 

 

  



 68 

7.3. Overview of performance results 
7.3.1. Total overview of model variations 

Performance marked in green is exceeding the performance of the comparing model (PLSR). 

Version 1 models (V1) uses same variation of linear/non-linear on the global and local 

models, whereas Version 2 models (V2) uses linear PLSR model as a global model, and non-

linear local modelling.  

Table 11 - Model options and best performing model result 

ID Features in 

global PLSR 

Score

s used 

in 

Clust

ering  

Clustering 

Algorithm 

Features in 

Local PLSR 

Result Version Notes 

00 Original  -     Split 0.3 

R2 = 0.885 

MSE = 0.07 

MAE = 0.037 

 

Split 0.4 

R2 = 0.879 

MSE = 0.009 

MAE = 0.040  

  Linear PLSR model for 

comparison, with 

optimal number of 

principal components 

included in the model 

Ch. 8.2.1 

01 Polynomial -     Split 0.3 

R2 = 0.914 

MSE = 0.004 

MAE = 0.028 

  

  Non-linear PLSR model 

for comparison, with 

optimal number of 

principal components 

included in the model 

Ch. 8.2.2 

02 Original  X Fuzzy C Original  Split 0.3 

 

Weighted sum: 

R2 = 0.889 

MSE = 0.006 

MAE = 0.036 

 

Best cluster: 
R2 = 0.897 

MSE = 0.006 

MAE = 0.036 

  

V1 
 

03 Original Y Fuzzy C Original  Split 0.4 

 

Weighted sum: 

R2 = 0.859 

MSE = 0.009 

MAE = 0.039 
 

V1 
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Best cluster: 
R2 = 0.896 

MSE = 0.005 

MAE = 0.029 

  

04 Polynomial X Fuzzy C Polynomial  Split 0.3 

 

Weighted sum: 
R2 = 0.922 

MSE = 0.004 

MAE = 0.025 

 

Best cluster: 
R2 = 0.921 

MSE = 0.004 

MAE = 0.026 

  

V1 
 

05 Polynomial Y Fuzzy C Polynomial   Split 0.3 

 

Weighted sum: 

R2 = 0.854 

MSE = 0.010 

MAE = 0.046 

 

Best cluster: 
R2 = 0.902 

MSE = 0.005 

MAE = 0.031  

V1 
 

06 Original X Fuzzy C Polynomial  Split 0.3 

 

Weighted sum: 

R2 = 0.871 

MSE = 0.010 

MAE = 0.043 

 

Best cluster: 

R2 = 0.927 

MSE = 0.004 

MAE = 0.024 

 

V2  

07 Original Y Fuzzy C Polynomial  Split 0.4 

 

Weighted sum: 
R2 = 0.913 

MSE = 0.005 

MAE = 0.030 

 

Best cluster: 

R2 = 0.914 

MSE = 0.005 

MAE = 0.027 

V2  
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7.3.2. FCP Inspection 

Fuzzy Partition Coefficient (FPC) for X scores using original:  

 

Figure 36 - Clustering on X_scores, Fuzzifier = 2 

 

Figure 37 - Clustering on X_scores, Fuzzifier = 1.1 
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7.3.3. Number of clusters and fuzzifier inspection 

Below are plots visualizing the model performance and how it is influenced by the fuzzifier-

coefficient (clustering method parameter) and the number of clusters included in the model. 

 

Figure 38 - R2 Performance, Cluster and Fuzzifier inspection, Model "Version 2" 
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Figure 39 - R2 Performance, Cluster and Fuzzifier inspection, Model "Version 1" using polynomial PLSR 
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Figure 40 - R2 Performance, Cluster and Fuzzifier inspection, Model "Version 1", PLSR without cross/interaction terms 
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8. Discussion 

The high prediction accuracy achieved by using a single polynomial PLSR, can reveal that 

only soft non-linearities exists in the behavior of the system. However, the increase in 

performance when clustering the subspace into regions, using HC-PLSR, might expose that 

abruptions of the subspace exists, that needs to be considered by a non-linear modelling 

technique. When comparing the HC-PLSR to a single PLSR model it is clear that the 

emulation capacities of the local linear modelling approach can account for a wider range of 

non-linearities, and thus result in greater prediction abilities.  

 

Regarding the clusters influence prediction accuracy, two main aspects stand relevant for 

discussion. Firstly, the difference between clustering on X-scores and Y-scores. It is visually 

apparent that the clustering on Y-scores is managing the grouping of more “naturally” 

looking clusters. The space spanned from the first three X-components contains evenly 

distributed sample points, and the clustering method splits the subspace into smaller regions 

(rather than to extract new information about the data by exposing natural clustering 

patterns). If this is the case, there might exist more computationally effective ways of 

dividing the subspace into smaller regions. One could then debate the reasons for why the 

clustering on the Y-scores did not outperform the x-score clustering. One theory may be that 

the projections of new samples (for prediction using the HC-PLSR) when clustering on the y-

scores are transformed by the PLSR model, after the target has been predicted from the same 

model. This means that prediction inaccuracies from the PLSR model is transferred when 

later projected onto the new feature space and labeled to the existing clusters, thus yield 

suboptimal results. In order to use the Y-scores as a basis for the clustering, the separation of 

the observations needs to be quite distinct [2], since the Y-scores contain some prediction 

error that may disrupt the classification when the clusters are not distinctly separated. 

 

There were also some differences in the performance when considering the “Best cluster 

Prediction” versus the “Weighted sum Prediction”. The former used only the local model 

prediction from the most probable cluster for each sample, whereas the latter used the cluster 

belonging probabilities for all clusters as weights for the regression coefficient. Effectively 

the prediction was calculated as a weighted sum by utilizing the soft cluster belonging. These 

two different prediction methods gave slightly different performance results depending on 

what model combination was used. In [2] it is stated that the first approach performs better on 
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data with very distinct clusters, whereas the weighted sum of the local clusters probably will 

give better results on more continuous data. The performance of the prediction methods 

depend on how the cluster-algorithm separates the data into clusters, and this might explain 

the fluctuations in how the predictions options performed, even though this dataset is of a 

more continuous characteristic, where the clusters are not entirely separable. It is therefore 

hard to conclude on an optimal prediction strategy, whereas both should be included for 

comparison. However, if the “Best cluster” prediction method result in higher performance, it 

might be indicating that a fuzzy clustering method is unnecessary. This might also be 

explored by adjusting the fuzzifier-coefficient of the Fuzzy C Clustering algorithm. If a 

stronger separation of the fuzzy clusters improve performance, this may also indicate that an 

optional cluster method is favored. The Fuzzy C clustering is a fairly computationally 

demanding method compared to other “simpler” clustering techniques (e.g. K-nearest or K-

Means clustering). One could also try to use the fuzzy-prediction method on clusters that 

were created as a result of hard clustering techniques, such as the two mentioned above. This 

will increase the computational efficiency, which is especially relevant if the dataset is 

relatively big and the fuzzy-prediction (“weighted sum”- prediction) accuracy is not 

outperforming the “best cluster” - prediction.   

 

The HC-PLSR model structure can be altered in many ways while still applying the main 

concepts of locally linear modelling techniques. Both the clustering method (with all its 

parameter and optimization methods) and the local modelling present options for model 

architecture exploring. Examples of this might be outlier restrictions (for clustering and for 

creation of local models), or restrictions on amount of explained variance accounted for by 

the principal components. As a solution to the many modelling options for the HC-PLSR, a 

framework for testing several variations was the strategy when implementing the model 

design. The difference in performance depending on architectural designs, might be a usable 

and efficient tool for learning about the structures of the given dataset. As presented in [2], 

one of the strengths of HC-PLSR metamodelling lies in its ability to improve the analytical 

insights of the model being emulated. When little or no prior knowledge of the model 

behavior exists, is serves as a powerful tool for attaining knowledge about the system 

behavior that is not possible by a global model generalizing the entire dataset.  

 

The predictive performance of a polynomial PLSR model is quite good and might indicate 

that the level on non-linearity in the given dataset is handled sufficiently well compared to an 
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HC-PLSR model. However, if no new cross- and higher order terms are added to the models, 

the HC-PLSR outperforms the PLSR by a greater margin. From this it is clear that the 

clustering is able to handle non-linearities in the data, and determining “how much better” it 

performs, is a matter of the degree of non-linearity in the data. 

The new model strategy called “Version 2” in “Results”, did result in the most improved 

prediction accuracy of all tested variants in this project. This might imply that the clustering 

of scores from a global model built on the original features (without interaction terms), is 

able to represent relevant non-linear structures in the data that diminishes when adding 

polynomial features.  

 

The statistical summaries/measurements were used to represent the model output, were 

chosen based on general knowledge of relevant statistical aspects of spike-train 

characteristics. The coefficient of covariance was close to zero for almost all simulation runs, 

however it was included in the model because it is expected to change if the input parameter 

ranges is altered to include values from different states of the network. In addition to this, the 

statistical package “Elephant” does contain several other measurements, such as wave-to-

noise-ratio or other descriptive values, that could uncover new knowledge about the neural 

network behavior that characterizes the defined states. This aspect highlights the need for 

interdisciplinary collaboration; by including more domain knowledge to the modelling, the 

prediction performance and interpretability can be optimized. Examples of this could be 

considering the choice of what simulation input parameters considered relevant, or defining 

the parameter regions to sample from, and by creating meaningful response parameters.  
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9. Further work 

A focus for this implementation has been on generalizing the method to facilitate the 

exploring of what model is more efficient for the dataset at hand. It is clear that the clustering 

method and the resulting subspaces is of high importance for the HC-PLSR performance. The 

fuzzy clustering implemented herein, is computationally demanding for large sample sizes. A 

way to increase the computational efficiency of the HC-PLSR is to look for an alternative to 

Fuzzy-C Clustering method and it could also be interesting to see if there exists some 

relationship between the structure of the samples plotted on the principle components from 

the PLSR-model and the optimal cluster method for the given dataset. 

 

Other suggestions for future work include: 

 

- Use parameters regions that include different network states for the modelling 

- Standardize a framework for easily altering as exploring model parameters such as: 

different clustering technique, different cluster prediction technique, number of 

components to cluster on, number of cluster centers, different distance measures, 

outlier restrictions, ways of including domain knowledge, prediction using the most 

probable clusters. This could look like the GridSearchCV from Sklearn, where the 

function would return the optimal parameter combination.  

- Generalize for many types of data as a “plug and play” for inspection, would 

contribute largely for future work on the area. 

- Use agglomerative Hierarchical clustering or HDBScan to inspect for cluster patterns 

before fuzzy (since K-Means and Fuzzy-C tends to create round clusters, and the 

density-based methods might pick up the anomalous patterns) 

- Automize detection of best number of clusters, by measuring cluster performance. 

(using silhouette plots or "is the internal measures similar for the training and the test 

data?") 

- Include criteria for explained variance of the latent variables included in the model 

- Add framework with unit tests to verify code quality  
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10. Conclusion 

This study is an exploration of the local multivariate modelling method called HC-PLSR. It 

also contains (model) implementations to examine the performance using a dataset generated 

from deterministic modelling of a Neural Network simulation (first described by Brunel [3]).  

 

The main objective was to explore the possibilities of creating metamodels of Brunel’s 

Neural Network model with good prediction accuracy. This may then be used to gain better 

insights and understanding of neural networks and their workings. In this context it was of 

interest to investigate how non-linear/non-monotone this system is by comparing PLSR (with 

and without higher order terms) and HC-PLSR, that accounts for different types of non-

linearities. 

 

One observes that when the global and local PLSR models are without polynomial terms 

(trained only using original features without added interaction terms), the HC-PLSR does 

indeed account for some non-linear relationships in the dataset that a single PLSR-model 

cannot. However, when added cross- and higher order terms to the features the HC-PLSR 

outperforms the polynomial PLSR model (for comparison) by a slighter margin. Another 

interesting result occurred from a new variant of the HC-PLSR modelling being tested. Here 

the global PLSR was without polynomial terms while the local PLSR-models were 

polynomial (added interaction and higher order terms). This variant of the model (called 

Version 2 in “Results”) yielded the best predictive performance of all tested models and 

model combinations. These results indicate that the use of HC-PLSR modelling is an 

effective method for emulating non-linear mathematical models. Division of the parameter 

spaces into subspaces is the core idea of HC-PLSR and changing what the clustering method 

results in can impact the modelling performance a lot. Thus, continuing to explore the 

different clustering strategies seems like an effective approach for further optimization of the 

HC-PLSR.  

A second aim of this study was to contribute to a methodology that invites for 

interdisciplinary understanding and collaboration. The framework for implementations of the 

models tested in this project is created on a modular basis and focuses on model exploration 

and development by facilitating testing of new modelling strategies. Important parts of model 

assembling of the HC-PLSR is safeguarded against implementation errors, by using tools and 

packages from external developers. In addition, the use of this model exploration technique 
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does not require prior knowledge of the system/model output or of the structure of the given 

dataset; a favored feature when different scientific fields cooperate on development of a 

model strategy.   
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13. Appendix 

 

Implementations included here are for adding information to the descriptive explanations in 

this paper. However, many more files of local modules tested were necessary, so ensure that 

all parts of the workflow worked individually before creating a model pipeline structured 

script. All of these tests and implementation blocks are available on the Open GitHub page, 

to simplify the continuing on this project or taking parts of it to use in new projects. 

 

Appendix  Filename comment 

A Meta_compressed_v1.py Version 1 (main) 

implementation of HC-PLSR 

B Meta_compressed_v2.py Version 2, optional variant of 

HC-PLSR 

C Fuzzy_cluster.py Handles the creation of 

clusters and prediction of 

cluster labels (Fuzzy C 

Clustering implementation) 

D Optimize_PLSR.py Finding optimal number of 

components in the PLSR 

model (minimizing MSE) 

E Split_data.py Splitting data into training and 

test sets (randomly shuffled) 

F Dfs.py Adding cross and higher order 

terms using Featuretools Deep 

Feature Synthesis 

G Performance.py Calculating and printing 

performance of model 

H Run_exploration_simulation_NEST_pypet_LHS.py Running a test exploration 

simulation  

I Create_csv_wSats_from_hdf5.py Creating the CSV-file 

containing X and Y 

J Brunel_delta_ml.py NEST [24] version of 

Brunel’s model implemented 
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K Brunel_delta.py Altered implementation of 

Brunel’s model A. Based on 

Brunel_delta_ml.py 

L Run_NEST_using_pypet_LHS.py Running main exploration 

simulation 

M Add_statistics_summaries.py Adding statistical summaries 

of the spike trains 

N Requirements.txt Module/environment 

requirements 

 

  

  



  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 13:29:21 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
from optimise_PLSR import optimise_pls_cv
from split_data import get_splitted_data
random.seed(100)
np.random.seed(100)
from sklearn.cross_decomposition import PLSRegression

df = pd.read_csv("data_500_params_stats_v5.csv")

def create_local_plsr_models(traindata_wLabels):
        
    unique_clusters = np.unique(traindata_wLabels['label'])
    print("uniq",unique_clusters)
    # collect datapoints belonging to each cluster in separate datasets
    data_split_by_clusters={}
    
    for i in unique_clusters:
        data_split_by_clusters["cluster{}".format(i)] = traindata_wLabels.loc[traindata_wLabels['label'] == i]
        
    #split to X and y for each cluster
    X_y_in_cl={}
    
    for i in unique_clusters:
        X_y_in_cl["X{}".format(i)] = \
        data_split_by_clusters["cluster{}".format(i)][features] 
        X_y_in_cl["y{}".format(i)] = \
        data_split_by_clusters["cluster{}".format(i)][targets]
        
        
    pls_models_dct={}
    for i in unique_clusters:
        Xn = X_y_in_cl["X{}".format(i)]
        max_ncomps = len(Xn.columns)
        #Xn = scaler_pls.transform(Xn)
        yn = X_y_in_cl["y{}".format(i)]
        print(i,"",Xn.shape)
        pls_models_dct["plsmod{}".format(i)] = optimise_pls_cv(Xn, yn, max_ncomps, plot_components=True, title='PLSR for cluster {}'.format(i))
        #pls_models_dct["plsmod{}".format(i)] = PLSRegression(n_components=3, scale=True).fit(Xn, yn)
    return pls_models_dct

def create_best_localmodel_prediction_col(testdata_wLabels):
    
    ## Adding the prediction from the best results in as "best_cl_" to data_w_labels
    
    m = pd.DataFrame([])
    
    for i in uniquie_clusters:
        best_cl_data = testdata_wLabels.loc[testdata_wLabels['label']==i]
        
        best_cl_preds = best_cl_data[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),

                                     "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i) ]].copy()
        
        best_cl_preds.columns = ['best_cl_fano', 'best_cl_cv', 'best_cl_corr', 'best_cl_cov']
        
        m=m.append(best_cl_preds)
            
    
    testdata_wLabels = testdata_wLabels.join(m)
    
    return testdata_wLabels
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def calculate_weighted_sum(testdata_wLabels):
    
    ## Create Weighted sums    
        
    weighted_sum_fano = 0
    weighted_sum_cv = 0
    weighted_sum_corr = 0 
    weighted_sum_cov = 0
    
    for i in uniquie_clusters:
        weighted_sum_fano += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_fano_{}".format(i)])
        weighted_sum_cv += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cv_mean_{}".format(i)])
        weighted_sum_corr += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_corr_mean_{}".format(i)])
        weighted_sum_cov += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cov_mean_{}".format(i)])
    
    testdata_wLabels['sum_pred_fano'] = weighted_sum_fano
    testdata_wLabels['sum_pred_cv'] = weighted_sum_cv
    testdata_wLabels['sum_pred_corr'] = weighted_sum_corr
    testdata_wLabels['sum_pred_cov'] = weighted_sum_cov

    return  testdata_wLabels
# =======================================================================================================

split = 0.2                 #Train-test split to use
seed = 10                   #random seed    
ncenters = 3                #number of cluster centers to use in HC-PLSR
f = 2                       #Fuzzyfier component
components_to_cluster = 3   #Number of Principal Components to peform clustering on
score = 'x'                 #Cluster on the X-Scores
#score = 'y'                #Cluster on the Y-Scores

# =======================================================================================================

X_train, y_train, X_test, y_test, data = get_splitted_data(df, split)

targets = ['cv_mean','fanofactor', 'corr_mean', 'cov_mean']
#y_train = data_train[targets]

# =======================================================================================================

from dfs import get_DFS

X_train_dfs, X_test_dfs = get_DFS(X_train, X_test)

#Assign DFS versions to X_train/test
X_train = X_train_dfs.copy()
X_test = X_test_dfs.copy()

features = X_train.columns  #column names to all features / regressors

# Global model
plsmod_full_dfs = optimise_pls_cv(X_train, y_train, len(X_train.columns), plot_components=True)

#Extracting the x_scores from the global plsrmodel to cluster
pls_x_scores = pd.DataFrame(plsmod_full_dfs.x_scores_) 
pls_y_scores = pd.DataFrame(plsmod_full_dfs.y_scores_)

# =======================================================================================================

from fuzzy_cluster import fuzzy_cluster, fuzzy_prediction

if score == 'y':
    pls_scores = pls_y_scores
else:
    pls_scores = pls_x_scores
    
traindata_wLabels, scaler_cluster, cntr =  fuzzy_cluster(pls_scores, X_train, y_train, components_to_cluster, ncenters, f, seed)
uniquie_clusters = np.unique(traindata_wLabels['label'])  
# =======================================================================================================
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pls_models_dct = create_local_plsr_models(traindata_wLabels)

# =======================================================================================================
#Plotting original data for structure inspections after labeling

import seaborn as sns; #sns.set(style="ticks", color_codes=True)

p = sns.pairplot(traindata_wLabels, x_vars=['g', 'eta', 'J', 'D'], 
             y_vars = ['fanofactor','cv_mean','corr_mean', 'cov_mean'], hue="label", palette="Set2") # hue="cluster", 

# ------------------------------------------------------------------------------------
## test data 

"""X_test_sc = scaler_pls.transform(X_test)
X_test_sc = pd.DataFrame(X_test_sc, columns = features )"""

#prediction  using global PLSR-model
y_pred_glob = plsmod_full_dfs.predict(X_test)

#Projecting/transforming X-data onto components from PLSR
transf_X, transf_y = plsmod_full_dfs.transform(X_test, y_pred_glob)

if score == 'y':
    df_transf = pd.DataFrame(transf_y.copy())
else: 
    df_transf = pd.DataFrame(transf_X.copy())
    
testdata_wLabels = fuzzy_prediction(df_transf, X_test, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy_prediction TEST")

p = sns.pairplot(testdata_wLabels, x_vars=['g', 'eta', 'J', 'D'], 
             y_vars = ['fanofactor','cv_mean','corr_mean', 'cov_mean'], hue="label", palette="Set2") # hue="cluster", 

# =======================================================================================================

## predict using local plsr model and sum up using weights

#For all local models: Predict sample
# calculate weighted sum based on clusterbelonging and pred value from all local plsr models

for i in uniquie_clusters: #or for local_plsmodel in pls_model_dct:
    #split data belonging to certain cluster into x and y
    X = testdata_wLabels[features]
    y_pred_loc = pls_models_dct["plsmod{}".format(i)].predict(X)  

    
    predicted_colnames = ["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i), 
                          "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]
    
    predicted_df = pd.DataFrame(y_pred_loc, columns = predicted_colnames)
    testdata_wLabels = testdata_wLabels.join(predicted_df)

# =======================================================================================================
    
testdata_wLabels = calculate_weighted_sum(testdata_wLabels)

testdata_wLabels = create_best_localmodel_prediction_col(testdata_wLabels)

# =======================================================================================================
# PRINT PERFORMANCE

# -------- Global PLSR model performance on test

from performance import performance_data
performance_data( y_pred_glob, y_test, title="---- Global model ")

# -------- Local PLSR models performance

# split datapoint into groups based on clusterbelonging
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# check performance from only that cluster
plt.figure(figsize=(20,10))

for i in uniquie_clusters:
    clusterdata = testdata_wLabels[testdata_wLabels['label']==i]
    y_pred = clusterdata[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
                          "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]]
    y_true = clusterdata[targets]
    
    #inspect local prediction accuracy
    for p in range(len(y_true.columns)):
        x=y_true[y_true.columns[p]]
        y=y_pred[y_pred.columns[p]]

        plt.subplot(2, 2, p+1)
        plt.scatter(x, y)
        plt.title(y_true.columns[p])

    if y_pred.empty: #If no samples was predicted with local model
        print("--- None in cluster {}".format(i))
        continue

    # Calculate r2 score & mean squared error for local models
    title=("--- Cluster {}").format(i)
    performance_data(y_pred, y_true, title)

# --------  Calculating MSE and R2 for weighted sum

y_pred = testdata_wLabels[['sum_pred_fano','sum_pred_cv',

                       'sum_pred_corr', 'sum_pred_cov']]  
y_true = testdata_wLabels[targets]

performance_data(y_pred, y_true, title="--- Weighted sum: ")

# --------  Calculating MSE and R2 for Best_cluster_prediction

y_pred2 = testdata_wLabels[['best_cl_fano', 'best_cl_cv', 
                       'best_cl_corr', 'best_cl_cov']]  
y_true2 = testdata_wLabels[targets]

performance_data(y_pred2, y_true2, title="--- Best_cluster_prediction: ")

# =======================================================================================================
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 13:29:21 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
from optimise_PLSR import optimise_pls_cv
from split_data import get_splitted_data
from performance import performance_data
random.seed(100)
np.random.seed(100)

df = pd.read_csv("data_500_params_stats_v5.csv")

def create_local_plsr_models(traindata_wLabels):
        
    uniquie_clusters = np.unique(traindata_wLabels['label'])
    
    # collect datapoints belonging to each cluster in separate datasets
    data_split_by_clusters={}
    
    for i in uniquie_clusters:
        data_split_by_clusters["cluster{}".format(i)] = traindata_wLabels.loc[traindata_wLabels['label'] == i]
        
    #split to X and y for each cluster
    X_y_in_cl={}
    
    for i in uniquie_clusters:
        X_y_in_cl["X{}".format(i)] = \
        data_split_by_clusters["cluster{}".format(i)][features] 
        X_y_in_cl["y{}".format(i)] = \
        data_split_by_clusters["cluster{}".format(i)][targets]
        
        
    pls_models_dct={}
    for i in uniquie_clusters:
        Xn = X_y_in_cl["X{}".format(i)]
        max_ncomps = len(Xn.columns)
        #Xn = scaler_pls.transform(Xn)
        yn = X_y_in_cl["y{}".format(i)]
        
        pls_models_dct["plsmod{}".format(i)] = optimise_pls_cv(Xn, yn, max_ncomps, plot_components=True, title='PLSR for cluster {}'.format(i))

    return pls_models_dct

def create_best_localmodel_prediction_col(testdata_wLabels):
    
    ## Adding the prediction from the best results in as "best_cl_" to data_w_labels
    
    m = pd.DataFrame([])
    
    for i in uniquie_clusters:
        best_cl_data = testdata_wLabels.loc[testdata_wLabels['label']==i]
        
        best_cl_preds = best_cl_data[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
                                     "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i) ]].copy()
        
        best_cl_preds.columns = ['best_cl_fano', 'best_cl_cv', 'best_cl_corr', 'best_cl_cov']
        
        m=m.append(best_cl_preds)
            
    
    testdata_wLabels = testdata_wLabels.join(m)
    
    return testdata_wLabels
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def calculate_weighted_sum(testdata_wLabels):
    
    ## Create Weighted sums    
        
    weighted_sum_fano = 0
    weighted_sum_cv = 0
    weighted_sum_corr = 0 
    weighted_sum_cov = 0
    
    for i in uniquie_clusters:
        weighted_sum_fano += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_fano_{}".format(i)])
        weighted_sum_cv += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cv_mean_{}".format(i)])
        weighted_sum_corr += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_corr_mean_{}".format(i)])
        weighted_sum_cov += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cov_mean_{}".format(i)])
    
    testdata_wLabels['sum_pred_fano'] = weighted_sum_fano
    testdata_wLabels['sum_pred_cv'] = weighted_sum_cv
    testdata_wLabels['sum_pred_corr'] = weighted_sum_corr
    testdata_wLabels['sum_pred_cov'] = weighted_sum_cov

    return  testdata_wLabels
# =======================================================================================================

split = 0.2                 #Train-test split to use
seed = 10                   #random seed    
ncenters = 3                #number of cluster centers to use in HC-PLSR
f = 2                       #Fuzzyfier component
components_to_cluster = 3   #Number of Principal Components to peform clustering on
score = 'x'                 #Cluster on the X-Scores
#score = 'y'                #Cluster on the Y-Scores

# =======================================================================================================

X_train, y_train, X_test, y_test, data = get_splitted_data(df, split)

targets = ['cv_mean','fanofactor', 'corr_mean', 'cov_mean']
#y_train = data_train[targets]

# =======================================================================================================

from dfs import get_DFS

X_train_dfs, X_test_dfs = get_DFS(X_train, X_test)

#Assign DFS versions to X_train/test
X_train = X_train_dfs.copy()
X_test = X_test_dfs.copy()

original_features = ['g', 'eta', 'J', 'D']
features = X_train.columns

# Global model
plsmod_full_dfs = optimise_pls_cv(X_train, y_train, len(X_train.columns), plot_components=True)

plsmod_original_features = optimise_pls_cv(X_train[original_features], y_train, len(original_features), plot_components=True)

#Extracting the x_scores from the global plsrmodel to cluster
#pls_x_scores = pd.DataFrame(plsmod_full_dfs.x_scores_) 
#pls_y_scores = pd.DataFrame(plsmod_full_dfs.y_scores_)

pls_x_scores = pd.DataFrame(plsmod_original_features.x_scores_) 
pls_y_scores = pd.DataFrame(plsmod_original_features.y_scores_)

# =======================================================================================================

from fuzzy_cluster import fuzzy_cluster, fuzzy_prediction

if score == 'y':
    pls_scores = pls_y_scores
else:
    pls_scores = pls_x_scores
    
traindata_wLabels, scaler_cluster, cntr =  fuzzy_cluster(pls_scores, X_train.copy(), y_train, components_to_cluster, ncenters, f, seed)
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traindata_wLabels, scaler_cluster, cntr =  fuzzy_cluster(pls_scores, X_train.copy(), y_train, components_to_cluster, ncenters, f, seed)
uniquie_clusters = np.unique(traindata_wLabels['label'])
# =======================================================================================================

pls_models_dct = create_local_plsr_models(traindata_wLabels)

# =======================================================================================================
#Plotting original data for structure inspections after labeling

import seaborn as sns; #sns.set(style="ticks", color_codes=True)

p = sns.pairplot(traindata_wLabels, x_vars=['g', 'eta', 'J', 'D'], 
             y_vars = ['fanofactor','cv_mean','corr_mean', 'cov_mean'], hue="label", palette="Set2") # hue="cluster", 

# ------------------------------------------------------------------------------------
## test data 

"""X_test_sc = scaler_pls.transform(X_test)
X_test_sc = pd.DataFrame(X_test_sc, columns = features )"""

#prediction  using global PLSR-model
y_pred_glob = plsmod_full_dfs.predict(X_test)
y_pred_small = plsmod_original_features.predict(X_test[original_features])
performance_data( y_pred_small, y_test, title="---- original data plsr model ")

#Projecting/transforming X-data onto components from PLSR
#transf_X, transf_y = plsmod_full_dfs.transform(X_test, y_pred_glob
#transf_X, transf_y = plsmod_original_features.transform(X_test[original_features], y_pred_glob)
transf_X, transf_y = plsmod_original_features.transform(X_test[original_features], y_pred_small)

if score == 'y':
    df_transf = pd.DataFrame(transf_y.copy())
else: 
    df_transf = pd.DataFrame(transf_X.copy())
    
testdata_wLabels = fuzzy_prediction(df_transf, X_test, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy_prediction TEST")

# =======================================================================================================

## predict using local plsr model and sum up using weights

#For all local models: Predict sample
# calculate weighted sum based on clusterbelonging and pred value from all local plsr models

for i in uniquie_clusters: #or for local_plsmodel in pls_model_dct:
    #split data belonging to certain cluster into x and y
    X = testdata_wLabels[features]
    y_pred_loc = pls_models_dct["plsmod{}".format(i)].predict(X)  

    
    predicted_colnames = ["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i), 
                          "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]
    
    predicted_df = pd.DataFrame(y_pred_loc, columns = predicted_colnames)
    testdata_wLabels = testdata_wLabels.join(predicted_df)

# =======================================================================================================
    
testdata_wLabels = calculate_weighted_sum(testdata_wLabels)

testdata_wLabels = create_best_localmodel_prediction_col(testdata_wLabels)

# =======================================================================================================
# PRINT PERFORMANCE

# -------- Global PLSR model performance on test

from performance import performance_data
performance_data( y_pred_glob, y_test, title="---- Global model ")

#Local PLSR models performance
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# split datapoint into groups based on clusterbelonging
# check performance from only that cluster
plt.figure(figsize=(20,10))

for i in uniquie_clusters:
    clusterdata = testdata_wLabels[testdata_wLabels['label']==i]
    y_pred = clusterdata[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
                          "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]]
    y_true = clusterdata[targets]
    
    #inspect local prediction accuracy
    for p in range(len(y_true.columns)):
        x=y_true[y_true.columns[p]]
        y=y_pred[y_pred.columns[p]]

        plt.subplot(2, 2, p+1)
        plt.scatter(x, y)
        plt.title(y_true.columns[p])

    if y_pred.empty: #If no samples was predicted with local model
        print("--- None in cluster {}".format(i))
        continue

    # Calculate r2 score & mean squared error for local models
    title=("--- Cluster {}").format(i)
    performance_data(y_pred, y_true, title)

# --------  Calculating MSE and R2 for weighted sum

y_pred = testdata_wLabels[['sum_pred_fano','sum_pred_cv',
                       'sum_pred_corr', 'sum_pred_cov']]  
y_true = testdata_wLabels[targets]

performance_data(y_pred, y_true, title="--- Weighted sum: ")

# --------  Calculating MSE and R2 for Best_cluster_prediction

y_pred2 = testdata_wLabels[['best_cl_fano', 'best_cl_cv', 
                       'best_cl_corr', 'best_cl_cov']]  
y_true2 = testdata_wLabels[targets]

performance_data(y_pred2, y_true2, title="--- Best_cluster_prediction: ")

# =======================================================================================================

import pkg_resources
installed_packages = pkg_resources.working_set
installed_packages_list = sorted(["%s==%s" % (i.key, i.version)
   for i in installed_packages])
print(installed_packages_list)
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 16:37:34 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import skfuzzy as fuzz
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler 
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt

def fuzzy_cluster(pls_scores, data_wLabels, y_train, components_to_cluster,ncenters, f, seed,  title="fuzzy_Clustering results"):

    ### FUZZY C MEANS CLUSTERING

    # Cluster on scores
    pls_scores = pd.DataFrame(pls_scores.copy())
    length = len(pls_scores.columns)
    columns = ['sc{}'.format(i) for i in range(length)]
    pls_scores.columns = columns
    
    #components_to_cluster = 3# =length
    to_cluster = columns[:components_to_cluster]
    
    cluster_data_train = pls_scores[to_cluster] #pls_y_scores
    colnames=cluster_data_train.columns
    scaler_cluster = StandardScaler()
    cluster_data_train = scaler_cluster.fit_transform(cluster_data_train)
    cluster_data_train = pd.DataFrame(cluster_data_train, columns=colnames)
    
    #2. Inspect for optimal number of clusters? based on fcp
    
    error=0.005
    maxiter=1000

    fpcs=[]
    
    for i in range(2,15):
        _, _, _, _, _, _, fpc = fuzz.cluster.cmeans(
            cluster_data_train.T, i, f, error=error, maxiter=maxiter, init=None)
        fpcs.append(fpc)
        
        plt.title("FCP for #Clusters")
        #plt.plot(fcp)
    fig2, ax2 = plt.subplots()
    ax2.plot(np.r_[2:len(fpcs)+2], fpcs)
    ax2.set_xlabel("Number of centers")
    ax2.set_ylabel("Fuzzy partition coefficient")

    #3. create fuzzy C model with given number of clusters
    
    cntr, u_orig, _, _, _, _, _ = fuzz.cluster.cmeans(
        cluster_data_train.T, ncenters, f, error=error, maxiter=maxiter, init=None, seed=seed)
    
    #Inspect cluster belongings
    cluster_membership = np.argmax(u_orig, axis=0)
    u_df=pd.DataFrame(u_orig)    
    weights_df = u_df.T

    weights_df = weights_df.join(pd.DataFrame(cluster_membership, columns = ['label']))
    print("weights")
    print(weights_df)
    
    # Add weights to training data (scores matrix that were clustered)
    labeled_scores = cluster_data_train.copy()
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    labeled_scores = cluster_data_train.copy()
    labeled_scores = labeled_scores.join(weights_df)
    
    ## -- plot clusters from training fuzzy C
    
    # ------- Plot
    plt.figure(figsize=(20,10))
    ax2 = plt.axes(projection='3d')
    
    markers = ['^', 'o', 'P', 'D', 's', 'd', 'X', '>']
    colors = ['darkgreen', 'plum', 'goldenrod','skyblue', 'mediumblue', 'limegreen', 'orangered', 'black']
    
    # Data for three-dimensional scattered points
    for label in (np.unique(labeled_scores['label'])):
        df = labeled_scores.loc[labeled_scores['label']==label].copy()

        xdata = df['sc2'] #0
        ydata = df['sc1'] #1
        zdata = df['sc0'] #2
        
        ax2.scatter3D(xdata, ydata, zdata, c=colors[label], marker = markers[label])
        
    ax2.set_xlabel('PC2')
    ax2.set_ylabel('PC1')
    ax2.set_zlabel('PC0')
    
    plt.title(title)
    plt.show()
    
    
    # for fuzzy C Means (Labeling)
    data_wLabels = data_wLabels.reset_index()
    data_wLabels = data_wLabels.join(weights_df)
    data_wLabels = pd.concat([data_wLabels,y_train.reset_index()], axis=1, sort=False)
                                        
    return data_wLabels.copy(), scaler_cluster, cntr

def fuzzy_prediction(pls_scores, data_wLabels, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy_prediction"):
    
        
    ### FUZZY C MEANS CLUSTERING 
    
    #4. Predict new cluster membership with `cmeans_predict` as well as
    # `cntr` from the 4-cluster model
    
    length = len(pls_scores.columns)
    columns = ['sc{}'.format(i) for i in range(length)]
    pls_scores.columns = columns
    to_cluster = columns[:components_to_cluster]

    
    cluster_data_test = pls_scores[to_cluster] 
    cluster_data_test = scaler_cluster.transform(cluster_data_test)
    cluster_data_test = pd.DataFrame(cluster_data_test, columns = to_cluster) 
    
    
    # ------ use old model, label predicted data and plot clustered scores
    u, u0, d, jm, p, fpc = fuzz.cluster.cmeans_predict(
        cluster_data_test.T, cntr, f, error=0.005, maxiter=1000, seed=seed)

    
    #Inspect cluster belongings
    u_df=pd.DataFrame(u)
    cluster_membership = np.argmax(u, axis=0)

    weights_df = pd.DataFrame(u_df.T)
    weights_df = weights_df.join(pd.DataFrame(cluster_membership, columns = ['label']))

    labeled_scores = cluster_data_test.copy()
    labeled_scores = labeled_scores.join(weights_df)
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    labeled_scores = labeled_scores.join(weights_df)
    
    # ------- Plot
    plt.figure(figsize=(20,10))
    ax2 = plt.axes(projection='3d')
    
    markers = ['^', 'o', 'P', 'D', 's', 'd', 'X', '>']
    colors = ['darkgreen', 'plum', 'goldenrod','skyblue', 'mediumblue', 'limegreen', 'orangered', 'black']
    
    # Data for three-dimensional scattered points
    # df.loc[df[‘Color’] == ‘Green’]
    for label in (np.unique(labeled_scores['label'])):
        df = labeled_scores.loc[labeled_scores['label']==label].copy()
        print("df.shape", df.shape)
    
        xdata = df['sc2'] #0
        ydata = df['sc1'] #1
        zdata = df['sc0'] #2
        
        ax2.scatter3D(xdata, ydata, zdata, c=colors[label], marker = markers[label], label="cluster{}".format(label))
        
    ax2.set_xlabel('PC2')
    ax2.set_ylabel('PC1')
    ax2.set_zlabel('PC0')
    
    plt.title(title)
    plt.show()

    #Adding labels and clusterweights to testdata (original, not projected)
    data_wLabels = data_wLabels.reset_index()
    data_wLabels = data_wLabels.join(weights_df)
    data_wLabels = pd.concat([data_wLabels,y_test.reset_index()], axis=1, sort=False)

    return data_wLabels.copy()
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 27 22:50:47 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

from sys import stdout
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error, r2_score
import warnings

def optimise_pls_cv(X, y, n_comp, scale=True, plot_components=False, to_be_minimized='mse', title = "PLS"): 
    '''Run PLS including a variable number of components, up to n_comp,
       and calculate MSE '''
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        
        mse = []
        component = np.arange(1, n_comp)  #if n_comp then OLS
        for i in component:
            pls = PLSRegression(n_components=i, scale=scale);
            # Cross-validation
            y_cv = cross_val_predict(pls, X, y, cv=10) #10
            mse.append(mean_squared_error(y, y_cv))
        
        # Calculate and print the position of minimum in MSE
        msemin = np.argmin(mse)
        print("Suggested number of components (MSE): ", msemin+1)
        
        if to_be_minimized == 'mse':
            minimise = mse
            arg_min=msemin
            
        stdout.write("\n")
        if plot_components is True:
            with plt.style.context(('ggplot')):
                plt.plot(component, np.array(minimise), '-v', color = 'blue', mfc='blue')
                plt.plot(component[arg_min], np.array(minimise)[arg_min], 'P', ms=10, mfc='red')
                plt.xlabel('Number of PLS components')
                plt.ylabel('MSE')
                plt.title(title)
                plt.xlim(left=-1)
            plt.show()
        
        # Define PLS object with optimal number of components
        pls_opt = PLSRegression(n_components=arg_min+1, scale=scale)
        
        # Fit to the entire dataset
        pls_opt.fit(X, y);
        y_c = pls_opt.predict(X)
        
        # Cross-validation
        y_cv = cross_val_predict(pls_opt, X, y, cv=10)
        
        # Calculate scores for calibration and cross-validation
        score_c = r2_score(y, y_c)
        score_cv = r2_score(y, y_cv)
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        # Calculate mean squared error for calibration and cross validation
        mse_c = mean_squared_error(y, y_c)
        mse_cv = mean_squared_error(y, y_cv)
        print('R2 calib: %5.3f'  % score_c)
        print('R2 CV: %5.3f'  % score_cv)
        print('MSE calib: %5.3f' % mse_c)
        print('MSE CV: %5.3f' % mse_cv)

    return pls_opt
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 27 22:53:32 2020

@author: anja.stene
"""

import pandas as pd
import statistics
import re
import numpy as np
import random
random.seed(100)
np.random.seed(100)

from sklearn.model_selection import train_test_split

def get_splitted_data(df, split):
    
    
    
    ## -- Adding CV_mean to Y dataset
    cv_list = df['cv_list']
    cov_mean_list = df['cov_sparsematrix_mean_cols']
    corr_mean_list1 = df['corr_sparsematrix_mean_cols']
    corr_mean_list = corr_mean_list1
    print(corr_mean_list[1])
    
    #Extracting all floats in list. could not use split() because first and last element has a "[" or a "]" included
    cv_list = [re.findall(r"[-+]?\d*\.\d+|\d+", i) for i in cv_list]
    cov_mean_list = [re.findall(r"[-+]?\d*\.\d+|\d+", i) for i in cov_mean_list]
    corr_mean_list = [re.findall(r"[-+]?\d*\.\d+|\d+", i) for i in corr_mean_list]
    #re.findall(r'[\d\.\d]+', cv_list0) #Less robust?
    
    #Converting all elements in list to float, before calculating mean, by double list comprehension
    cv_list = [[float(i) for i in p] for p in cv_list]
    cov_mean_list = [[float(i) for i in p] for p in cov_mean_list]
    corr_mean_list = [[float(i) for i in p] for p in corr_mean_list]
    
    #Computing the mean for each spike train, across all neurons, for all 500 simulations
    cv_mean_list=[statistics.mean(i) for i in cv_list]
    #cov_meanofmean_list=[max(i) for i in cov_mean_list]
    #corr_meanofmean_list=[max(i) for i in corr_mean_list]
    cov_meanofmean_list=[statistics.mean(i) for i in cov_mean_list]
    corr_meanofmean_list=[statistics.mean(i) for i in corr_mean_list]

    #Adding the list of mean cv coefficients to the dataframe used for modelling
    df['cv_mean'] = cv_mean_list 
    df['cov_mean'] = cov_meanofmean_list
    df['corr_mean'] = corr_meanofmean_list

    data=df[['g', 'eta', 'J', 'D', 'fanofactor', 'cv_mean','corr_mean', 'cov_mean']]

    
    targets = ['fanofactor','cv_mean','corr_mean', 'cov_mean']
    y = data[targets]
    X = data[['g', 'eta', 'J', 'D']]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split, random_state=42, shuffle=True)
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    X_train = pd.DataFrame(X_train)
    X_test = pd.DataFrame(X_test)
    y_train = pd.DataFrame(y_train)
    y_test = pd.DataFrame(y_test)
    
    return X_train, y_train, X_test, y_test, data

#if __name__ == "__main__":
#    print(get_splitted_data)
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 27 22:58:45 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import featuretools as ft
from featuretools.primitives import make_trans_primitive
from featuretools.variable_types import Numeric
import numpy as np
from sklearn.preprocessing import StandardScaler 
import pandas as pd

def get_DFS(X_train, X_test):

    
    features=X_train.columns
    
    scaler=StandardScaler(with_mean=False)
    X_train_sc = scaler.fit_transform(X_train)
    X_test_sc = scaler.transform(X_test)
    
    X_train = pd.DataFrame(X_train_sc, columns=features)
    X_test = pd.DataFrame(X_test_sc, columns=features)

    
    # Create two new functions for our two new primitives
    def Log(column):
        return np.log(column)
    def Square_Root(column):
        return np.sqrt(column)
    def Square(column):
        return np.square(column)
    def Cube(column):
        return np.power(column, 3) 
    
    
    # Create the primitives
    log_prim = make_trans_primitive(
        function=Log, input_types=[Numeric], return_type=Numeric)
    square_root_prim = make_trans_primitive(
        function=Square_Root, input_types=[Numeric], return_type=Numeric)
    square = make_trans_primitive(
        function=Square, input_types=[Numeric], return_type=Numeric)
    cube = make_trans_primitive(
        function=Cube, input_types=[Numeric], return_type=Numeric)
    
    trans_primitives=['add_numeric', 'multiply_numeric']
    trans_primitives.append(log_prim)
    trans_primitives.append(square_root_prim)
    trans_primitives.append(square)
    trans_primitives.append(cube)
    
        
    # Make an entityset and add the entity
    es = ft.EntitySet(id = 'v1')
    es.entity_from_dataframe(entity_id = 'e1', dataframe = X_train, 
                             make_index = True, index = 'index')
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    # Run deep feature synthesis with transformation primitives
    X_train_dfs, feature_defs = ft.dfs(entityset = es, target_entity = 'e1',
                                          trans_primitives = trans_primitives, max_depth=1)

    ## --- DFS for Test data
    # Make an entityset and add the entity
    es2 = ft.EntitySet(id = 'v2')
    es2.entity_from_dataframe(entity_id = 'e1', dataframe = X_test, 
                             make_index = True, index = 'index')
    
    # Run deep feature synthesis with transformation primitives
    #X_test_dfs, feature_defs = ft.dfs(entityset = es2, target_entity = 'e1',
    #                                      trans_primitives = trans_primitives, max_depth=1)

    X_test_dfs2 = ft.calculate_feature_matrix(features = feature_defs, entityset=es2)
    X_test_dfs = X_test_dfs2
    
    print("PRINTING", X_test['g'][0], X_test_dfs['g'][0])
    
    return X_train_dfs, X_test_dfs
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 30 12:07:44 2020

@author: anja.stene
"""

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import pandas as pd

def performance_data(y_pred, y_true, title='performance'):

    y_pred = pd.DataFrame(y_pred)
    y_true = pd.DataFrame(y_true)
    
    score_glob = r2_score(y_true, y_pred)
    mse_glob = mean_squared_error(y_true, y_pred)
    mae_glob = mean_absolute_error(y_true, y_pred)

    print("===================================== ")
    print(title)
    print('R2 glob: %5.3f'  % score_glob)
    print('MSE glob: %5.3f' % mse_glob)
    print('MAE glob: %5.3f' % mae_glob)
    print(" ")
    
    
    return
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i`�DX7n�//nT�`�K2i2`U^M2m`QMX.^- RX8- +QKK2Mi4^/2H�v- bvM�Tb2@/2H�v #2ir22Mɚ
↪→M2m`QMb BM Kb^V

i`�DX7n�//nT�`�K2i2`U^M2m`QMX;^- 8Xy- +QKK2Mi4^AM?B#BiQ`v bvM�TiB+ bi`2M;i?ɚ
↪→`2H�iBp2 iQ 2t+Bi�iQ`v^V

i`�DX7n�//nT�`�K2i2`U^M2m`QMX2i�^- kXy- +QKK2Mi4^o 2ti f o i?`^V
i`�DX7n�//nT�`�K2i2`U^M2m`QMX2TbBHQM^- yXR- +QKK2Mi4^1t+Bi�iQ`v L2m`QMb  ɚ

↪→2TbBHQM 4 M` Q7 bvM�Tb2b T2` M2m`QM^V
i`�DX7n�//nT�`�K2i2`U^M2m`QMXQ`/2`^- k8yy- +QKK2Mi4^_2H�iBp2 MmK#2` Q7ɚ

↪→M2m`QMb BM M2irQ`F^V
i`�DX7n�//nT�`�K2i2`U^M2m`QMXC^- yXR- +QKK2Mi4^avM�Tb2 r2B;?i #2ir22Mɚ

↪→M2m`QMb^V
i`�DX7n�//nT�`�K2i2`U^M2m`QMXLn`2+^- 8y- +QKK2Mi4^LmK#2` Q7 M2m`QMb iQɚ

↪→`2+Q`/ /m`BM; bBKmH�iBQM^V
i`�DX7n�//nT�`�K2i2`U^bBKmH�iBQMXMmKni?`2�/b^- Ry- +QKK2Mi4^bBKmH�iBQM BMɚ

↪→i?`2�/b 7Q` T�`�HH2HBxBM;^V
i`�DX7n�//nT�`�K2i2`U^bBKmH�iBQMXT`BMin`2TQ`i^- h`m2- +QKK2Mi4^T`BMi QmiTmiɚ

↪→/m`BM; bBKmH�iBQM^V
i`�DX7n�//nT�`�K2i2`U^bBKmH�iBQMXbiQTnBMTmi^- 6�Hb2- +QKK2Mi4^aiQT M2irQ`Fɚ

↪→BMTmi BM bBKmH�iBQM �7i2` t Kb^V
i`�DX7n�//nT�`�K2i2`U^bBKmH�iBQMXMmKnb�KTHBM;nTQBMib^- 8yy- +QKK2Mi4^LmK#2`ɚ

↪→Q7 b�KTHBM; TQBMib BM G�iBM >vT2`+m#2 a�KTHBM; J2i?Q/^V
i`�DX7n�//nT�`�K2i2`U^bBKmH�iBQMX+miQ77^- Ryy- +QKK2Mi4^*miQ77 7B`bi t Kbɚ

↪→iQ �pQB/ i`�MbB2Mi 2772+ib- BM Kb^V
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/27 �//n2tTHQ`�iBQMUi`�DV,
]]]1tTHQ`2b /B772`2Mi p�Hm2b Q7 ;- 2i�- C �M/ . X]]]

T`BMiU^�//BM; 2tTHQ`�iBQM Q7 ;- 2i�- C �M/ .^V
;np�Hb- 2i�np�Hb- Cnp�Hb- .np�Hb 4 ;2inH?bnb�KTHBM;nTQBMibUi`�DX

↪→MmKnb�KTHBM;nTQBMibV
2tTHQ`2n/B+i 4 &^M2m`QMX;^, ;np�Hb-

^M2m`QMX2i�^, 2i�np�Hb-
^M2m`QMXC^, Cnp�Hb-
^M2m`QMX.^, .np�Hb
'

i`�DX7n2tTHQ`2U2tTHQ`2n/B+iV

(8), O *`2�i2 �M 2MpB`QMK2Mi i?�i ?�M/H2b `mMMBM;
7BH2M�K2 4 QbXT�i?XDQBMU^?/78^-^#B;;2binb2inmT/�i2/X?/78^V

2Mp 4 1MpB`QMK2MiU7BH2M�K2 4 7BH2M�K2-
Qp2`r`Bi2n7BH2 4 h`m2V

i`�D 4 2MpXi`�D

J�BMS`Q+2bb TvT2iXbiQ`�;2b2`pB+2X>.68aiQ`�;2a2`pB+2 AL6P A rBHH mb2 i?2 ?/78
7BH2 <?/78f#B;;2binb2inmT/�i2/X?/78<X
J�BMS`Q+2bb TvT2iX2MpB`QMK2MiX1MpB`QMK2Mi AL6P 1MpB`QMK2Mi BMBiB�HBx2/X

(e), O �// T�`�K2i2`b
�//nT�`�K2i2`bUi`�DV

O G2i^b 2tTHQ`2
�//n2tTHQ`�iBQMUi`�DV

�//BM; S�`�K2i2`b
�//BM; 2tTHQ`�iBQM Q7 ;- 2i�- C �M/ .
U8yy- 9V
(8X8jj8 8XN8j8 9Xe898 8XNN88 8X99N8 8XyRd8 8XeRd8 8Xkjy8 9X3k88 8XyR98
8XedR8 8XNj88 9X3dN8 9XNjN8 9Xdky8 8X9eR8 8XR9j8 9Xd998 8Xkyy8 8XdN98
8Xd3k8 8X3kd8 8XdNd8 8X8eN8 9X38k8 8X9Nd8 9XeNy8 8X3NN8 8XN8e8 9Xde88
8XRRe8 8Xe8j8 9XNjj8 8XdRj8 9XNee8 8X93k8 9X3yd8 8XekN8 8XNkN8 8X9ed8
9Xeee8 8XRdy8 9X3338 9X3de8 9Xeey8 8Xy3y8 8Xj8j8 9XdRR8 8X9N98 8XNek8
8XN3N8 8Xjdd8 9XNd88 8Xkye8 8Xddj8 9X39N8 9X3NR8 9Xek98 8X9888 9XejN8
9XNkR8 9XNNe8 8X3Nj8 8Xjky8 8XNke8 8XRk38 8Xk3d8 8XykN8 8Xkk98 8Xe3j8
8XN3y8 8X3jN8 8Xkej8 9X3Re8 8X3898 8XRyR8 8XdjR8 8X8988 9X3eR8 8XRNR8
8XRe98 8XeN88 8X98k8 9X8dy8 9X3kk8 8X8k98 9XN938 8Xkd88 8X8Ny8 8Xdj98
8X8je8 8XNdd8 8XRjR8 8XRRy8 8XRde8 8XNyk8 8Xekj8 8XdNR8 8X9838 8XNy88
8X3938 8XR9e8 8X3Ny8 8XkNy8 8Xj9R8 9X39j8 8Xk938 8Xe8N8 8X9338 8XR9y8
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8Xy3j8 8X3d88 9XNey8 8X33R8 9XdkN8 9X3N98 9XeR38 9Xe8d8 9XeyN8 8XNy38
8X8R88 8Xjy38 8X99y8 9Xdkj8 8XjN38 9XN8R8 9XeNN8 8X8jy8 9XN9k8 9Xd9R8
8Xy9d8 8Xd9N8 8XNe38 8X3yj8 9X3dj8 9XNye8 8X3Ne8 9Xeyy8 8Xk3R8 8XeR98
8X3k98 8XkNe8 8XNky8 8Xjj38 8XydR8 8Xjd98 9X8kk8 8Xy8y8 8XR388 8X89k8
8Xe3e8 9X3388 8XRNd8 9Xe938 8X9kk8 8XjRR8 8Xy998 8Xedd8 8Xd8k8 8X8ey8
9X8Rj8 8XkR88 9X8k88 8Xeyk8 9X3y98 8Xyd98 8Xjjk8 8XNR98 8Xyky8 8XRyd8
8XkRk8 8Xkdk8 9X89e8 8X3yy8 9XddR8 9X89y8 9Xdd98 8X3Rk8 8XR338 8Xydd8
9X8N98 9Xd8j8 9X3jR8 8Xk9k8 9Xd8y8 9X8888 8X88d8 8XjN88 8X9NR8 9XNdk8
8X8yj8 8X8Nj8 8Xey88 8Xyy88 8X39k8 8Xj8y8 8Xyjk8 8X8Ne8 8Xk988 8X9Re8
9X3888 8X3dk8 8X9de8 9Xd8e8 9XNR38 9Xe398 9XdN38 8X3jy8 8X99e8 8X99j8
9Xejy8 9Xdjk8 9X8jR8 8XjdR8 9XN898 9X3k38 8Xkjj8 9Xeje8 8Xde98 8XkjN8
8XjNk8 9XdRd8 8X9388 8XRy98 8Xddy8 8Xj3j8 9XN3d8 8X9yd8 8XRRj8 8Xee88
9X3Ry8 8Xy3N8 9Xed38 9X8jd8 9XNyj8 8Xed98 8XNN38 8Xkje8 8Xkee8 9XeRk8
8Xdyd8 8XddN8 8X8R38 9XNeN8 8Xdjd8 9Xdke8 8XR888 8Xjy88 8Xj3e8 8Xe998
9Xdek8 8X33d8 8XdyR8 9X8eR8 8X9dj8 8Xd388 8Xe8y8 8Xj998 9X89N8 8Xk398
8XR838 8X3yN8 8X88R8 9Xdj38 8XkR38 9Xejj8 9XdR98 8X3R88 8Xejk8 8X3ey8
8Xkyj8 8X8898 9XNk98 8X8jN8 8Xd888 8Xj8N8 8X3ej8 9X33k8 9XNNj8 8X8yy8
8Xjek8 9XN8d8 9X8NR8 9Xddd8 9X8Nd8 8Xk898 9XNRk8 8Xye88 8Xd9j8 9X39y8
8Xjj88 9XeNj8 8XRdN8 9XN398 8XNNk8 8XkNN8 8X9Ry8 8X83R8 9Xeyj8 8X9k88
9X8y98 8X9j98 9X8388 8X38d8 8Xeek8 9XNjy8 9Xe8R8 8XR9N8 9XNkd8 8Xyke8
8Xkey8 8XNdR8 8XRj98 8X3398 9Xd9d8 9X3RN8 8Xyj38 9Xd8N8 8Xy8e8 8XNRR8
9Xekd8 9Xdj88 9X8RN8 8Xd9e8 8X8NN8 9X88k8 8Xe3N8 8XRed8 8XeNk8 8X8ye8
8XRjd8 8X3ee8 9XNNy8 9XNyN8 8X3eN8 9X8Ry8 8XRN98 8Xk8d8 9X8dN8 8Xe9R8
8Xe8e8 8XeN38 8X8Rk8 9XekR8 9X8e98 8XjR98 8Xeke8 8XjkN8 8XNd98 8X8398
9Xdy38 8X9jd8 9Xdyk8 9XdNk8 9X3838 9XdN88 8Xjkj8 8XjRd8 9Xe3d8 9X3j98
8XNjk8 9X83k8 8Xk8R8 8Xee38 9Xd3y8 9X8j98 8XkeN8 9X8838 9X8yd8 8Xkkd8
8XyN88 8Xyy38 9XNje8 8X9k38 9XeNe8 9XeR88 8Xy8j8 9X8ed8 8Xkd38 8Xdk88
9XNR88 8Xj3N8 8XNRd8 8X3d38 8XdeR8 9X39e8 9X3dy8 9X3Rj8 8Xye38 8XRdj8
8Xje88 8X3kR8 8Xej38 8XdRe8 9XNej8 8XyN38 8X9yR8 8X3R38 8Xd9y8 8X9y98
9Xe988 8XN998 8Xy3e8 8XReR8 9XN3R8 9X3jd8 8Xej88 8Xj8e8 9Xde38 8Xded8
9Xeej8 8XN9d8 9Xd3N8 9XeeN8 8Xy9R8 8Xey38 8Xje38 8Xyyk8 8X3ye8 8Xjyk8
8XN8y8 8X3jj8 8XNkj8 9X8k38 8XRk88 9Xedk8 8X8938 8XNj38 8Xj9d8 8Xd838
8Xdkk8 8XRkk8 9X89j8 9X8yR8 8X8kd8 8Xykj8 9X3ed8 8Xyek8 9Xeye8 8XkyN8
8Xjke8 9Xe3R8 8X9Rj8 8Xe3y8 8XyNk8 8Xdy98 8XN3e8 8X8yN8 8XN9R8 8Xeky8
8X8ee8 9Xd3j8 8X8d88 8X9RN8 9X8de8 8X83d8 8XRRN8 8XdRN8 8X3je8 9X3yR8
8XdRy8 8XNe88 8X8kR8 8X9e98 9X3e98 8Xyj88 8X8ej8 9Xd3e8 8XN8N8 9XNNN8
9XNyy8 8XyRR8 8X38R8 8Xj3y8 9XNd38 8XkkR8 9X8dj8 9X3Nd8 8X8dk8 8Xdde8
9Xed88 9XN988 8Xe9d8 8Xd338 9Xe9k8 8XeRR8 8Xy8N8 8X9dy8 8X9jR8 8XR8k8
8X8d38 8Xdk38 8XN3j8 8X3988 8XkNj8 9X8Re8 8XR3k8 9X8338 8X9dN8 9Xdy88)
(kXNj88 RX8k88 kXkdk8 kXye88 kXjN38 RXNRk8 kX8jj8 RXedk8 RXejj8 kXNd98
kX9eR8 kXN8e8 RX8Re8 kXy3j8 kXkjj8 kXjy88 kX8jy8 kXej38 kXNe38 RXd8N8
RXdd98 kXeN88 kXN3y8 kXNRR8 kXdj98 RXN8R8 kXjek8 kXy9R8 kX3yy8 kXNN88
kX9dy8 RX8N98 kXyj88 kX99y8 RXekd8 RXN398 RX8k38 kX3jy8 kX3d38 RX3de8
RXNd38 kXdkk8 RXd3j8 kXRyR8 kX3Rk8 kX8d88 kXk3d8 kXRk88 kXRRe8 RXNyj8
kX3R38 kX3dk8 kXe3j8 kXj8j8 kX38R8 RXd8e8 kXyek8 kXRyd8 kXjj38 kXydR8
RXNkd8 kXyN38 kXded8 kXj998 RXed38 kXejk8 kXkd88 RXN3R8 kXdRy8 kXjke8
kXNek8 kX3Ny8 kXdjd8 RX89j8 kXedd8 kX3d88 RX3dy8 kXNRd8 kXRRj8 RXNNe8
kXyjk8 kXedR8 kXy8j8 RX8dN8 kX3ey8 kX8Nj8 kXd9y8 kX93k8 kXyj38 kXdRj8
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kX3Nj8 kX8yj8 kX9N98 kXNyk8 kXje88 kXeke8 kXyRd8 kXRdj8 RXdkj8 kXy8y8
kX9338 kXRjR8 RX8jd8 RX8j98 RXeye8 kXNke8 kXd838 kXk8d8 RXdy88 kXkRk8
kX9Rj8 kX9RN8 RXe8d8 kX3jN8 kX99j8 kX83d8 RX8yd8 kXye38 kX8398 kXNky8
kXNR98 kX8ey8 RX8NR8 kXd388 RXNey8 RXd9d8 kX9ed8 kXR3k8 kX3eN8 RXeNN8
kXeRR8 kXjjk8 kXjkN8 RX3eR8 RXek98 kXe8N8 RXe988 kXje38 kXeR98 kX8jN8
kX9kk8 kXy9d8 RX8y98 kXNdd8 RX8dj8 kX38d8 RXdj38 RX8de8 RXe938 RX8e98
kX3jj8 RXdjk8 kXNy38 kXey88 RX3NR8 RXdN38 kX3988 kXeyk8 kXjj88 RX8yR8
kX8NN8 kXeRd8 kXj3y8 kXeky8 RX3Ry8 RX38k8 kXe9d8 kXR838 kX9dN8 RXdke8
kXdyd8 kXk938 kXy998 kXkjy8 RXeR88 kX9Re8 RXNje8 RX8eR8 kXkkR8 kXee38
kXe3N8 kXkkd8 kXk988 kX8dk8 kXddN8 kXjky8 RXejN8 kXNNk8 kXyke8 RXdNk8
kXRj98 RX3Nd8 kXRjd8 kX99N8 kXeN38 kXykN8 kXey38 kXdNd8 RX39j8 kXReR8
RXd3e8 kXkeN8 kX9e98 kX3938 RX3ed8 RXNej8 RXN9k8 RXdRd8 kX8kR8 RXNkR8
RX3jd8 kXe3e8 RX3kk8 kXy3N8 kXyyk8 kXkyj8 kXe9R8 kX8938 kX3kd8 kXdde8
kXjRd8 kXRdN8 kX8yN8 kXk9k8 RXeyj8 RX8888 RX3e98 kXj8e8 RXde38 RXNk98
kX9838 kXekj8 RXeee8 kXd888 RXeje8 kXkej8 kX8eN8 kXdk38 kXyNk8 RX3dj8
kX8Ny8 kXkjN8 RXNjj8 kXN3j8 RXdy38 kXk8R8 kXk898 RXNyN8 kX8ye8 kX88d8
RXe3R8 kX8yy8 kXNkj8 kX9de8 kXNkN8 RXeNy8 RX3yR8 kX3je8 kXj8y8 kXydd8
kX8R38 kXN3e8 RX3Rj8 RXeej8 RX3RN8 RXeyy8 kXRNd8 RXNye8 RXdj88 kXdk88
RXeNe8 RXNeN8 kXe8e8 kX9888 RX3Re8 RXd3y8 RXNNN8 kXR888 kXyR98 RXNyy8
kXRRy8 kX9Nd8 RX89N8 RXekR8 kXRe98 kXkyy8 RXdkN8 RXeeN8 kX99e8 RX3j98
kXjN88 kXekN8 kXd8k8 RXN3d8 RXe3d8 kX8988 kXyky8 kXNdR8 kX9388 kX3898
kXyRR8 RX8Nd8 kXe998 RXNNj8 kXd338 kXkyN8 RXN898 kX88R8 kX8kd8 RX88k8
kX8R88 kX3398 RXe8R8 kXk3R8 RXNd88 kXRde8 kXykj8 kXRN98 kX3k98 kXR338
kXjd98 kXe3y8 RXNR88 kXy8N8 RX8Rj8 kX3ye8 RX3dN8 kXkye8 RXdky8 kX33d8
kX89k8 kX8Rk8 kXkNN8 kX8Ne8 kXde98 RX8jR8 RXNNy8 kXkje8 kXNjk8 RX8338
RXeNj8 kXkey8 RXde88 kXdy98 kXjRR8 kX9yR8 kXN9d8 kXR8k8 kXk398 RXejy8
kXy3y8 RX8kk8 kXd9e8 RXdN88 RX3888 RXeey8 kXddy8 RX3338 kXd3k8 RXddR8
kXddj8 kXR388 kXeNk8 kXkNj8 RX89e8 kXRRN8 kXNy88 kXkNe8 kXkd38 RX8838
kXN8y8 kX9j98 RXeRk8 RXed88 RXN8d8 kX3yj8 kXed98 kXRkk8 RXd3N8 kXdjR8
RX8dy8 kXyy88 kXj9d8 kX98k8 kX9k38 RXe9k8 kX9Ry8 kX39k8 kXd9N8 kXdeR8
kXN8N8 kXy3e8 RXNjN8 kX8ee8 kXee88 kX9jd8 RX3388 kXkNy8 kX3ej8 kX9NR8
kX8d38 kXyd98 kXRed8 kXRNR8 kX9jR8 RX3k38 RXe398 kX8k98 kXdyR8 kXdNR8
RX39N8 kX8898 kXR9N8 kXj8N8 kXjNk8 kXej88 kX8je8 kXNe88 kXj3N8 RXe898
RX39e8 kX9k88 kX83R8 kXRdy8 kXyN88 kXR9e8 RX3N98 kXjyk8 kXRk38 RX89y8
RX8Ry8 RX3jR8 RXNjy8 kXkR38 RXN938 kX9yd8 RX3y98 RX83k8 kX3ee8 kX3yN8
kXjy38 kXj3e8 kXR9j8 RXeR38 RXd8y8 kXN9R8 RXd998 kXdRN8 kXjR98 kX3R88
kXN8j8 kX3Ne8 kXy8e8 kXeek8 RX3k88 RXd8j8 kX8ej8 kXdN98 RX33k8 kX9y98
kXjdR8 kX3kR8 RX3838 kX9dj8 kXkR88 RXdek8 RXdyk8 RXdR98 kXjkj8 RX8ed8
kXN998 RXddd8 RXNR38 kX3NN8 kXN3N8 kXkee8 RXN988 kXNN38 RXdRR8 kXj9R8
RX3yd8 RX39y8 kXdRe8 RXeyN8 kXRy98 kXe8j8 RXNee8 kXNj38 RXd9R8 RXNdk8
kXkk98 RX8RN8 RX8388 kX33R8 kXyy38 kXe8y8 kXd9j8 kXjdd8 kXR9y8 kXj3j8)
(yXjRdd8 yXy38j8 yXRjNN8 yXR3eR8 yXjNRN8 yXyN838 yXjyjd8 yXjejN8 yXRje98
yXyNRe8 yXj9yR8 yXRN3y8 yXRjy38 yXkNRR8 yXRRe38 yXjek88 yXj3yy8 yXj3R98
yXjey98 yXkNN88 yXkyNN8 yXjkjj8 yXj3k38 yXjk3N8 yXjjk98 yXjk9d8 yXje8j8
yXjydk8 yXk8Rk8 yXy8j38 yXjjjR8 yXR3Ne8 yXydj98 yXjjj38 yXjN9y8 yXj98y8
yXjy998 yXjdyN8 yXk8RN8 yXyd3j8 yXR9de8 yXy88N8 yXy8ee8 yXyNyN8 yXR9j98
yXjky88 yXy3N88 yXkNjk8 yXy3338 yXyNNj8 yXyeje8 yXjRN38 yXjdNj8 yXk8y88
yXkN8j8 yXRRke8 yXkde98 yXyNdN8 yXRe8R8 yXkd388 yXjRR98 yXk99N8 yXydkd8
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yXRdyd8 yXjy838 yXky8y8 yXRk8N8 yXR8338 yXkRRj8 yXk9j88 yXjRdy8 yXk99k8
yXj3dd8 yXkRkd8 yXRkN98 yXRjdR8 yXR9ye8 yXk89d8 yXyNjd8 yXR3e38 yXjke38
yXj98d8 yXkdNN8 yXjj988 yXkykk8 yXjdjy8 yXydye8 yXkjjy8 yXjkRk8 yXRk3y8
yXy8N98 yXkdNk8 yXR8N88 yXjkNe8 yXR8R38 yXye8y8 yXRRjj8 yXRR9d8 yXjde88
yXR33N8 yXkeN98 yXj8Rj8 yXRdej8 yXjyjy8 yXk8Ne8 yXkjyk8 yXkjdN8 yXjk9y8
yXkyR88 yXkked8 yXRkjR8 yXjy8R8 yXkkRR8 yXjRj88 yXRyNR8 yXkydR8 yXRNee8
yXkdyR8 yXydky8 yXjj3y8 yXRdR98 yXyee98 yXkyyR8 yXkNR38 yXk9yy8 yXRj9j8
yXjN3N8 yXRjNk8 yXje9e8 yXkk9e8 yXjddk8 yXkk338 yXk9yd8 yXRyR98 yXk89y8
yXj8ek8 yXj3NR8 yXjjN98 yXRkee8 yXkeyj8 yXkjNj8 yXyN3e8 yXRdNR8 yXy8k98
yXyeNk8 yXjdjd8 yXk3eN8 yXRejd8 yXjd3e8 yXk3de8 yXkdR88 yXkd8y8 yXke3y8
yXRRd88 yXRR898 yXRN3d8 yXRNdj8 yXjN3k8 yXj8Ny8 yXRjR88 yXk9dy8 yXjye88
yXjk898 yXj99j8 yXyNkj8 yXjjdj8 yXkRj98 yXyNjy8 yXjjee8 yXR8jk8 yXy3y98
yXReNj8 yXje3R8 yXjj8N8 yXkj3e8 yXydNd8 yXj3398 yXRd9k8 yXkej38 yXy8dj8
yXk3ek8 yXy39e8 yXR9Nd8 yXRkRy8 yXkjdk8 yXRNN98 yXR3Rk8 yXjeey8 yXjyyN8
yXj83j8 yXR39y8 yXR33k8 yXRRy88 yXjdRe8 yXj8ye8 yXkedj8 yXy33R8 yXj8j98
yXj3kR8 yXR83R8 yXRyj88 yXRydy8 yXk33j8 yXyeNN8 yXyed38 yXydRj8 yXR8k88
yXRd9N8 yXy3jk8 yXyd938 yXRRNe8 yXj8Nd8 yXR3RN8 yXk3kd8 yXje338 yXye9j8
yXkR3j8 yXk9kR8 yXj8kd8 yXkN3R8 yXke8N8 yXyNyk8 yXRydd8 yXRj388 yXky9j8
yXk98e8 yXjj3d8 yXj9388 yXRjje8 yXR9888 yXk83N8 yXkRNy8 yXR8y98 yXjNeR8
yXkN338 yXkeee8 yXy3d98 yXjkeR8 yXydde8 yXk9ej8 yXy3RR8 yXjRk38 yXkNjN8
yXR3ke8 yXk3938 yXkk8j8 yXR3898 yXkeRy8 yXk8898 yXk3Rj8 yXkNd98 yXkRek8
yXj9d38 yXjNNe8 yXRkdj8 yXRN8k8 yXRNj38 yXkjRe8 yXjRkR8 yXkd9j8 yXkyje8
yXRN988 yXj39k8 yXRe998 yXRNjR8 yXkdy38 yXjNe38 yXyNdk8 yXjjyj8 yXjN9d8
yXj89R8 yXkNey8 yXRjkN8 yXRd398 yXR9kd8 yXye8d8 yXj3dy8 yXkkR38 yXR9ky8
yXkek98 yXyN8R8 yXjkRN8 yXkdje8 yXkkd98 yXRRRk8 yXjddN8 yXk9dd8 yXkeRd8
yXR3y88 yXkddR8 yXRjd38 yXk9R98 yXkkk88 yXkkN88 yXyNe88 yXRjkk8 yXk9k38
yXR8ey8 yXk3j98 yXydNy8 yXk3ye8 yXjd8R8 yXRy398 yXRyN38 yXy83d8 yXkjkj8
yXyedR8 yXRRRN8 yXRe838 yXyN998 yXye388 yXk9398 yXjRNR8 yXRNyj8 yXj9R88
yXj9kN8 yXyeyR8 yXydeN8 yXkky98 yXR8jN8 yXkRky8 yXRkk98 yXj39N8 yXRdN38
yXy3ed8 yXjR8e8 yXk8e38 yXkkjN8 yXk8jj8 yXRdkR8 yXRR9y8 yXk3Nd8 yXjR398
yXjydN8 yXyeR88 yXRk3d8 yXR9eN8 yXRykR8 yXj3yd8 yXRNRy8 yXj3N38 yXkj838
yXRy9N8 yXR9ek8 yXkd8d8 yXy3jN8 yXkRNd8 yXRddy8 yXReyN8 yXR88j8 yXj8de8
yXy3R38 yXjdkj8 yXj9e98 yXR3d88 yXjeRR8 yXy8988 yXk39R8 yXkje88 yXk8ke8
yXkdkk8 yXR9Rj8 yXjejk8 yXyd888 yXkjjd8 yXRyyd8 yXk8eR8 yXjeed8 yXky388
yXjkke8 yXk9NR8 yXRjyR8 yXkyNk8 yXky8d8 yXRd8e8 yXRR3N8 yXRedk8 yXk3888
yXRkj38 yXke988 yXR8d98 yXk3Ny8 yXjRyd8 yXReyk8 yXkj8R8 yXkR9R8 yXjyNj8
yXkR938 yXke8k8 yXk3ky8 yXjjRd8 yXRyk38 yXRyej8 yXjyRe8 yXyd9R8 yXRy8e8
yXRe3e8 yXke3d8 yXj3j88 yXj8eN8 yXy8yj8 yXRyyy8 yXj9je8 yXkNed8 yXR9Ny8
yXRdyy8 yXkykN8 yXjRej8 yXj8888 yXR8ed8 yXj9Nk8 yXkR888 yXRejy8 yXjk3k8
yXyekk8 yXy83y8 yXRk988 yXjNke8 yXj38e8 yXjd838 yXkyy38 yXy8Rd8 yXkejR8
yXRk8k8 yXk9N38 yXjkd88 yXy88k8 yXjjRy8 yXkRye8 yXkj998 yXRdk38 yXkyd38
yXjy3e8 yXy8Ry8 yXkkey8 yXRN8N8 yXRekj8 yXjeR38 yXjyyk8 yXkye98 yXkkjk8
yXj9y38 yXRkyj8 yXj9kk8 yXR39d8 yXjNRk8 yXjRyy8 yXRReR8 yXyey38 yXR9938
yXRj8y8 yXRy9k8 yXkN9e8 yXjR9k8 yXjykj8 yXjed98 yXR3jj8 yXRkRd8 yXRee88
yXRNRd8 yXkRde8 yXjj8k8 yXR99R8 yXj9dR8 yXydek8 yXkNy98 yXRNk98 yXRj8d8
yXjNd88 yXjeN88 yXjN898 yXkk3R8 yXRddd8 yXk8d88 yXj3ej8 yXR8RR8 yXk83k8
yXkdd38 yXkdkN8 yXR89e8 yXy8jR8 yXkNk88 yXjNjj8 yXReRe8 yXRR3k8 yXjdyk8
yXy3k88 yXj9NN8 yXjNy88 yXj8938 yXjR9N8 yXR93j8 yXy3ey8 yXkReN8 yXRdj88
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yXkjyN8 yXj8ky8 yXRedN8 yXjd998 yXyekN8)
(kXjR88 kXyjy8 RXd988 RX88N8 RXykk8 kXjye8 kXR3N8 RXR9k8 kXy988 kXyRk8
kXy8R8 RXeNd8 RXN3k8 RXe9j8 RXkRR8 kXjyN8 RX8N38 kXj3d8 kXj398 RXeNR8
RX3kj8 RX9jN8 kXyeN8 RXk3e8 RXy9e8 kXy3d8 RXR8d8 RX3jk8 RXdR88 RX9jj8
RXd938 kX9j88 RXRjN8 RXjeR8 kX9N38 kXRj88 RX8Rd8 RX3ek8 kXRy38 RXNk88
kXjeN8 RXjNd8 RXj888 RXNNd8 RXke38 RX99k8 RXk3y8 RXd898 kXk9N8 kXjjj8
RXede8 RXjk38 RXkky8 kXRN88 RX3998 RXyNd8 RXy8k8 RXjNR8 RXNjd8 RXy838
RX38N8 RXNRy8 RX8Nk8 RXe338 RXd8d8 kXj938 kX93y8 kXjey8 RX3e38 kXRN38
RXkR98 RXje98 RX9ey8 RXeN98 RXNdy8 RX83j8 RX8kN8 kXjd88 RXRyN8 RX8e38
RX3Nk8 RXyRj8 RX9kd8 RXNyd8 RX9398 RXdjN8 RXek88 kXRe38 RXNed8 RX8kj8
RXRd88 RXj338 RXy9j8 kXkNR8 RXRee8 RXRje8 RXkj38 kXRek8 kXked8 RXdk98
kXkde8 RXRdk8 RXRjy8 kXRRd8 RX9Ne8 RXyNR8 kXR3j8 RXy9y8 kXkRN8 kXy938
RXdee8 RXy888 RX9ee8 RXNN98 RX3e88 kX9e38 kXjjN8 RXNy98 kXj8d8 kX9yk8
kXRky8 RX88y8 kX9y88 RX3R98 kX9kj8 kX9998 kXjkd8 RX9ej8 RXjN98 RX93R8
RXj388 RXj3k8 RXdd88 RX98d8 RXN338 kXjej8 RXe888 RXdR38 kXk338 kXyje8
RXNNR8 RXRjj8 RXRkd8 RXedN8 RXy3k8 kX93N8 RXe3k8 kXj898 RX38y8 RXdRk8
RXeeR8 kXjje8 kXkdj8 kXRy88 RX8jk8 RX9dk8 kXy3R8 RXk998 RX8ky8 kX93j8
RXdeN8 kXyej8 RXjdj8 kXR3y8 RXkke8 kXkeR8 RXN9y8 RXNdj8 kX9ek8 RXRyy8
RXkN38 RX38e8 RXjyR8 RXd8R8 kX9ky8 RXjyd8 RXk3j8 kX9dd8 kXR8N8 RXNeR8
RXRej8 RXdyj8 kXRRR8 RXyyd8 RXNRj8 RXkRd8 RXR988 kX9ke8 RX3dR8 kXyk98
kXyNj8 RX9988 RX33e8 kXy898 kX9e88 RX9eN8 kXyR38 RXNkk8 kXjR38 kX9R98
RXdkd8 RXkyk8 RX3y88 RXye98 RX9d38 RXdNy8 kXyyy8 RXjRe8 RX93d8 kXkRe8
kX9N88 RX83y8 kXRdR8 RX3Rd8 kXRdd8 kXkjR8 RXN888 RXe9y8 kXjRk8 RXRNe8
RXRR38 RX8e88 RXej98 RXR8R8 kXyyN8 kXyd88 RXyRy8 kXR9d8 RX83N8 RXRNN8
kX9j38 kXk838 kXk3k8 RXyjd8 RX9yj8 RXejd8 kXR9R8 kXyye8 RX9d88 RXekk8
kXkjd8 RXR938 RX9ye8 RX3j88 kXkj98 RXRyj8 RXyjR8 RXjde8 kX9dR8 RXk9d8
RXN9j8 kXRkj8 kXR8y8 kX98y8 RXjRy8 kXk888 RXyyR8 kX9Nk8 RXky88 RXydy8
RXj9j8 kXR3e8 RXNj98 kXR998 RXNRN8 RXee98 RXyy98 RXjkk8 kX9d98 RXjy98
kXkkk8 RX3N38 RX89R8 kXk388 RX8dR8 RX9Ny8 kXkyd8 kXk9y8 RXjjR8 kXRjk8
kXj988 RXNk38 RX39R8 RX8y38 RXReN8 RXdNe8 RXdkR8 RXdje8 RXey98 kXyNy8
kXRj38 RXk8j8 RX9je8 RXe9e8 kXykR8 RX8RR8 RXk8N8 RXkek8 RXyRN8 RX8j88
RXe838 RX9R38 kXyd38 RXdNj8 RXjdy8 kX98N8 RXk8y8 kXyNe8 RX98R8 RX88j8
RXke88 RX3yk8 kXk9e8 kXRke8 RXd9k8 kX98e8 kX98j8 kXjyy8 RX38j8 kXRd98
RXj9N8 RXkN88 kXkdN8 kXjkR8 kXRkN8 RXRey8 RXjjd8 RXeRj8 kXkyR8 RX8dd8
RX39d8 kXjdk8 kXj8R8 RXj9y8 RX3ky8 kXyee8 RX33y8 RXk9R8 RXy338 RX33j8
RXyj98 RXNjR8 kX99R8 RXRNj8 RXkkN8 kXyNN8 RX8998 RX8y88 RX9jy8 RX8j38
RXRk98 RXeyR8 RXN9N8 kXjk98 RXjed8 RXedj8 RXky38 RXRkR8 RX9938 RX8R98
RX9Rk8 kXydk8 RXyN98 RXdjy8 RXeRe8 kXkN98 RXdey8 RXNyR8 kXyR88 RXeRy8
kXjNe8 RXyRe8 kXkRj8 kXjjy8 RXj838 kXky98 kXjd38 RXN8k8 kX9RR8 RXjk88
RX8ke8 RXR898 kXjee8 kXjNN8 RXd398 RXdej8 RXkdR8 RXek38 RX3dd8 RXy388
kXyjN8 RXjRN8 RX9898 RXkkj8 RXyk88 RX3j38 RX3RR8 RX83e8 kXkNd8 RX3N88
kXRe88 kX93e8 kXk9j8 kXjNy8 kXykd8 RXRNy8 kX9Rd8 RXRd38 RXyk38 RX3y38
RXkNk8 RX3ke8 RXR3R8 kXj9k8 RX33N8 RX8d98 RXdye8 kXkk88 RXk8e8 kXR8e8
RXNde8 RXj8k8 RXdjj8 RXeRN8 kXy398 kXRR98 kX9kN8 RX8N88 RXkj88 RX9kR8
kXke98 kXjyj8 RXe388 RX88e8 RXN838 kXkdy8 RXe9N8 RXejR8 RXyed8 kXRyk8
RXkjk8 RXNdN8 RX9R88 RXNe98 kXk8k8 RXNRe8 kXy9k8 RXjRj8 RXjj98 RXjdN8
RXyeR8 kXj3R8 kX9jk8 RX3d98 RXyde8 RXj9e8 kXyjj8 kXkRy8 RXkd98 RXdyN8
RXN9e8 RX9Nj8 RXd3R8 RXRye8 kXjNj8 RXddk8 RXdyy8 RX9NN8 kXyey8 RX9yN8
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RXd3d8 RX8ek8 RX89d8 RX9yy8 kXyyj8 RXydN8 RXydj8 RXRRk8 RXy9N8 RXe8k8
RXdd38 kXkk38 RXeed8 RXdNN8 RXk3N8 RXRR88 RXkdd8 RXN388 RXR3d8 RX3kN8
RX9k98 kXRNk8 RXR398 kXR8j8 kX9y38 kXy8d8 RXeyd8 RX8yk8 RXedy8 kX99d8)

(d), O _mM vQm` r`�TTBM; 7mM+iBQM BMbi2�/ Q7 vQm` bBKmH�iQ`
2MpX`mMUKvnTvT2inr`�TT2`V
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create_csv_wStats_from_hdf5

August 10, 2020

0.0.1 Add statistical measures of the spike trains, create a csv of the resulting data
of regressors and responses.

Create a csv file containing the data from simulations relevant for model training (i.e. exluding the
spiketrains)

Workflow: * import modules * load trajectory for the correct file * run through dataset to pick up
values * store everything in a pandas df * export df to csv

[13]: import os

[14]: # Create an environment that handles running

# using the same filename as for runinng the simulation
filename = os.path.join('hdf5','biggest_set_updated.hdf5')

# Reload the stored data from above.
# Do not need an environment for that, just a trajectory
from pypet.trajectory import Trajectory

# Create a new trajectory and pass it the path and name of the HDF5 file.

del traj
# Disable logging and close all log-files
env.disable_logging()
del env

traj = Trajectory(filename=filename)

# Load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

[15]: #ADJUSTING THE CORR_COEF AND COV_COEF TO DATAFRAMES
import pandas as pd

df = pd.DataFrame({'g': [], 'eta': [], 'J': [], 'D': []})

for run_name in traj.f_get_run_names():
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traj.f_set_crun(run_name)
g=traj.g
eta=traj.eta
D=traj.D
J=traj.J
cv_list=traj.results.crun.cv_list
fanofactor=traj.results.crun.fanofactor
corr_coef=pd.DataFrame(traj.results.crun.corr_coef)
cov_coef=pd.DataFrame(traj.results.crun.cov_coef)

if run_name == "run_00000000":
print(type(cv_list))

typelist = [type(g), type(eta), type(J), type(D), type(cv_list),
type(fanofactor), type(corr_coef), type(cov_coef)]

df = df.append({'g': g, 'eta': eta, 'J': J, 'D': D, 'cv_list': cv_list,␣
↪→'fanofactor': fanofactor,

'corr_coef': corr_coef, 'cov_coef': cov_coef},␣
↪→ignore_index=True)

# Reset your trajectory to the default settings, to release its belief to
# be the last run:
traj.f_restore_default()

<class 'list'>

[16]: df

[16]: g eta J D \
0 5.5335 2.9355 0.31775 2.3155
1 5.9535 1.5255 0.08535 2.0305
2 4.6545 2.2725 0.13995 1.7455
3 5.9955 2.0655 0.18615 1.5595
4 5.4495 2.3985 0.39195 1.0225
.. … … … …
495 4.5165 2.6505 0.23095 2.0575
496 5.1825 2.7435 0.35205 1.6075
497 4.5885 2.3775 0.16795 1.5025
498 5.4795 2.1405 0.37445 1.6705
499 4.7055 2.3835 0.06295 2.4475

corr_coef \
0 0 1 2 3 …
1 0 1 2 3 …
2 0 1 2 3 …
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3 0 1 2 3 …
4 0 1 2 3 …
.. …
495 0 1 2 3 …
496 0 1 2 3 …
497 0 1 2 3 …
498 0 1 2 3 …
499 0 1 2 3 …

cov_coef \
0 0 1 2 …
1 0 1 2 …
2 0 1 2 …
3 0 1 2 …
4 0 1 2 …
.. …
495 0 1 2 …
496 0 1 2 …
497 0 1 2 …
498 0 1 2 …
499 0 1 2 …

cv_list fanofactor
0 [0.8994818646428511, 0.8833214891550989, 0.728… 0.682474
1 [0.25165910206812425, 0.3926207436303479, 0.14… 0.080781
2 [0.20762749796857238, 0.21467588525256862, 0.2… 0.043621
3 [0.40877302892258993, 0.4463324448200583, 0.66… 0.234228
4 [0.6672862464314624, 0.9885214444992486, 0.956… 1.054967
.. … …
495 [0.3763781161989031, 0.45302429910672376, 0.38… 0.175074
496 [0.8478812817357193, 0.8386207340778052, 0.889… 0.873585
497 [0.2535824426631328, 0.24068543901411885, 0.24… 0.088251
498 [0.9498606846375839, 0.8073126445427456, 1.041… 0.655409
499 [0.0647609406282632, 0.07939149021435067, 0.08… 0.013249

[500 rows x 8 columns]

[17]: import numpy as np

corr_sparsematrix_mean_cols = []
cov_sparsematrix_mean_cols = []

for i in range(500):
corr = df['corr_coef'][i]
c2 = corr.copy()
c2.values[np.tril_indices_from(c2)] = np.nan
corr_sparse_mean = c2.mean().round(4)
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corr_sparsematrix_mean_cols.append(corr_sparse_mean.tolist())

cov = df['cov_coef'][i]
c2 = cov.copy()
c2.values[np.tril_indices_from(c2)] = np.nan
cov_sparse_mean = c2.mean().round(4)
cov_sparsematrix_mean_cols.append(cov_sparse_mean.tolist())

df['cov_sparsematrix_mean_cols'] = cov_sparsematrix_mean_cols
df['corr_sparsematrix_mean_cols'] = corr_sparsematrix_mean_cols

df.to_csv('data_500_params_stats_v5.csv')

[32]: #Print example of sparse matrix
listo = df['corr_sparsematrix_mean_cols'][40]
mean=pd.DataFrame(listo).mean()
print(listo)

[nan, -0.0041, 0.4979, 0.3306, 0.4979, 0.5983, 0.3306, 0.4262, 0.4979, 0.5537,
0.5983, 0.361, 0.4142, 0.5365, 0.5697, 0.3975, 0.4352, 0.4684, 0.4979, 0.4715,
0.4979, 0.5218, 0.4523, 0.4761, 0.4979, 0.518, 0.5365, 0.4421, 0.4621, 0.4806,
0.4979, 0.5141, 0.4665, 0.5131, 0.5266, 0.5408, 0.4423, 0.4573, 0.5242, 0.5364,
0.4478, 0.5345, 0.5456, 0.4396, 0.4524, 0.4646, 0.5196, 0.5299, 0.5397, 0.4468]

[12]: df

[12]: g eta J D \
0 3.8815 2.5760 2.5760 2.0635
1 3.9895 2.5056 2.5056 1.3255
2 3.7505 2.2176 2.2176 1.6165
3 3.8205 1.1936 1.1936 1.2655
4 3.7455 2.8960 2.8960 1.1665
.. … … … …
495 3.9605 1.8016 1.8016 1.4935
496 3.9205 2.3776 2.3776 2.3635
497 3.8105 1.7696 1.7696 1.5595
498 3.5765 3.2864 3.2864 1.6315
499 3.9035 3.1904 3.1904 2.2225

corr_coef \
0 [[1.0, 0.08769903861511744, 0.0784531101735543…
1 [[1.0, 0.01728911707080802, 0.0328569510763425…
2 [[1.0, 0.2480000894941341, 0.2386142184490019,…
3 [[1.0, 0.30912913506069245, 0.2901624570175456…
4 [[1.0, 0.6359804817245023, 0.3999531350309014,…
.. …
495 [[1.0, 0.03662724949678573, 0.1005310046419901…
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496 [[1.0, 0.08716013215270216, 0.1196789682146686…
497 [[1.0, 0.14534771774327976, 0.0878020691827465…
498 [[1.0, -0.004277305918350799, -0.0042773059183…
499 [[1.0, 0.1988573568773955, 0.19913232796808136…

cov_coef \
0 [[0.0040922434832052195, 0.0003561073695711283…
1 [[0.0016155779928577862, 3.275980194861276e-05…
2 [[0.0040922434832052195, 0.0010193388534937094…
3 [[0.003253014614182443, 0.0009985970120389525,…
4 [[0.003920904322270698, 0.002493618619673402, …
.. …
495 [[0.0019326317016105103, 5.24863449171852e-05,…
496 [[0.003550969141041778, 0.00031418731905827243…
497 [[0.0039389428333646, 0.0005751320879776593, 0…
498 [[0.004236482811000761, -1.8139999619831253e-0…
499 [[0.003929923660463029, 0.0007930652262128003,…

cv_list fanofactor
0 [0.11955736909306632, 0.1421869977753263, 0.13… 0.019662
1 [4.150413981426069, 2.7431881025313944, 4.1881… 18.849440
2 [0.09357560331217467, 0.07995183704465272, 0.0… 0.008727
3 [0.1796574806985018, 0.18612593963940413, 0.17… 0.045734
4 [0.06651385216671868, 0.06797297812237542, 0.0… 0.002517
.. … …
495 [2.5284775395765395, 3.792132359368514, 3.0715… 11.909103
496 [0.6181448695096702, 0.593012056537501, 0.3060… 1.014082
497 [0.15317431647710103, 0.14271864634470188, 0.1… 0.019435
498 [0.02210814800649538, 0.022097086912079546, 0… 0.000464
499 [0.18577443915723346, 0.12260881688165026, 0.1… 0.040708

[500 rows x 8 columns]
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-

def sim_brunel_delta(dt=0.1,
                     simtime=10.0,
                     delay=1.5,
                     g=5.0,
                     eta=2.0,
                     epsilon=0.1,
                     order=2500,
                     J=0.1,
                     N_rec=50,
                     num_threads=1,
                     print_report=True,
                     input_stop=False, 
                     cutoff=0):

    # the following code is based on brunel-delta-nest.py
    # which is part of NEST.
    #
    # Copyright (C) 2004 The NEST Initiative
    # NEST is free software: you can redistribute it and/or modify
    # it under the terms of the GNU General Public License as published by
    # the Free Software Foundation, either version 2 of the License, or
    # (at your option) any later version.
    #
    # NEST is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with NEST.  If not, see <http://www.gnu.org/licenses/>.

    # This version uses NEST's Connect functions.

    # Link Quickref: https://www.nest-simulator.org/quickref/

    import nest
    import nest.raster_plot
    import time
    from numpy import exp

    nest.ResetKernel()
    startbuild = time.time()

    # Parameters for asynchronous irregular firing
    NE = 4 * order          #=10000 in simulation
    NI = 1 * order          #=2500 in simulation
    N_neurons = NE + NI

    CE = int(epsilon * NE)  # number of excitatory synapses per neuron
    CI = int(epsilon * NI)  # number of inhibitory synapses per neuron
    C_tot = int(CI + CE)  # total number of synapses per neuron
    cutoff = cutoff           # Cutoff to avoid transient effects, in ms

    # Initialize the parameters of the integrate and fire neuron
    tauMem = 20.0
    theta = 20.0

    J_ex = J
    J_in = -g * J_ex

    nu_th = theta / (J * CE * tauMem)
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    nu_ex = eta * nu_th
    p_rate = 1000.0 * nu_ex * CE

    if not print_report:
        nest.set_verbosity('M_WARNING')

    nest.SetKernelStatus({"resolution": dt, "print_time": True,
                          "local_num_threads": num_threads,
                          'overwrite_files': True})

    print("Building network")

    neuron_params = {"C_m": 1.0,
                     "tau_m": tauMem,
                     "t_ref": 2.0,
                     "E_L": 0.0,
                     "V_reset": 0.0,
                     "V_m": 0.0,
                     "V_th": theta}

    nest.SetDefaults("iaf_psc_delta", neuron_params)

    nodes_ex = nest.Create("iaf_psc_delta", NE)
    nodes_in = nest.Create("iaf_psc_delta", NI)

    # Stop input after x = input_stop ms if input_stop is not 0
    # https://www.nest-simulator.org/helpindex/cc/poisson_generator.html
    if input_stop:
        params = {"rate": p_rate, "stop": input_stop}
    else:
        params = {"rate": p_rate}

    nest.SetDefaults("poisson_generator", params)
    noise = nest.Create("poisson_generator")

    espikes = nest.Create("spike_detector")
    ispikes = nest.Create("spike_detector")

    nest.SetStatus(espikes, [{"label": "brunel-py-ex",
                              "withtime": True,
                              "withgid": True,
                              "to_file": False}])

    nest.SetStatus(ispikes, [{"label": "brunel-py-in",
                              "withtime": True,
                              "withgid": True,
                              "to_file": False}])

    print("Connecting devices")

    nest.CopyModel("static_synapse", "excitatory", {"weight": J_ex, "delay": delay})
    nest.CopyModel("static_synapse", "inhibitory", {"weight": J_in, "delay": delay})

    nest.Connect(noise, nodes_ex, syn_spec="excitatory")
    nest.Connect(noise, nodes_in, syn_spec="excitatory")

    nest.Connect(nodes_ex[:N_rec], espikes, syn_spec="excitatory")
    nest.Connect(nodes_in[:N_rec], ispikes, syn_spec="excitatory")

    print("Connecting network")

    # We now iterate over all neuron IDs, and connect the neuron to
    # the sources from our array. The first loop connects the excitatory neurons
    # and the second loop the inhibitory neurons.

    print("Excitatory connections")
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    conn_params_ex = {'rule': 'fixed_indegree', 'indegree': CE}
    nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory")

    print("Inhibitory connections")

    conn_params_in = {'rule': 'fixed_indegree', 'indegree': CI}
    nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory")

    endbuild = time.time()

    print("Simulating")

    nest.Simulate(simtime)

    endsimulate = time.time()

    events_ex = nest.GetStatus(espikes, "n_events")[0]
    rate_ex = events_ex / simtime * 1000.0 / N_rec
    events_in = nest.GetStatus(ispikes, "n_events")[0]
    rate_in = events_in / simtime * 1000.0 / N_rec

    num_synapses = nest.GetDefaults("excitatory")["num_connections"] + \
                   nest.GetDefaults("inhibitory")["num_connections"]

    build_time = endbuild - startbuild
    sim_time = endsimulate - endbuild

    print("Brunel network simulation (Python)")
    print("Number of neurons : {0}".format(N_neurons))
    print("Number of synapses: {0}".format(num_synapses))
    print("       Exitatory  : {0}".format(int(CE * N_neurons) + N_neurons))
    print("       Inhibitory : {0}".format(int(CI * N_neurons)))
    print("Excitatory rate   : %.2f Hz" % rate_ex)
    print("Inhibitory rate   : %.2f Hz" % rate_in)
    print("Building time     : %.2f s" % build_time)
    print("Simulation time   : %.2f s" % sim_time)
    print("Cutoff first ms   : %.2f " % cutoff)

    #nest.raster_plot.from_device(espikes, hist=True)

    # The function shall return a tuple consisting of the excitatory and
    # inhibitory spikes recorded, as Pandas data frames:
    import pandas as pd

    exc_spikes = nest.GetStatus(espikes, 'events')[0]
    inh_spikes = nest.GetStatus(ispikes, 'events')[0]

    
    # Excitatory spike trains
    # Makes sure the spiketrain is added even if there are no results
    # to get a regular result
    #cutoff = 100
    events_E = exc_spikes
    nodes_E = nodes_ex
    spiketrains = []
    
    for sender in nodes_E[:N_rec]:
        spiketrain = events_E["times"][events_E["senders"] == sender]
        spiketrain = spiketrain[spiketrain > cutoff] - cutoff
        spiketrains.append(spiketrain)

    #Creating pandas df of spikeevents
    df_e = pd.DataFrame(exc_spikes)
    df_i = pd.DataFrame(inh_spikes)
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    #adding spike-type info to dataframe
    df_e['excitatory'] = 1
    df_i['inhibitory']= 1
    
    #Appending dataframes to one big dataframe
    df=df_e.append(df_i, sort=False, ignore_index=True)
     
    
    return df, spiketrains

    #return exc_spikes, inh_spikes
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

def sim_brunel_delta(dt=0.1,
                     simtime=10.0,
                     delay=1.5,
                     g=5.0,
                     eta=2.0,
                     epsilon=0.1,
                     order=2500,
                     J=0.1,
                     N_rec=50,
                     num_threads=1,
                     print_report=True,
                     input_stop=False, 
                     cutoff=0):

    # the following code is based on brunel-delta-nest.py
    # which is part of NEST.
    #
    # Copyright (C) 2004 The NEST Initiative
    # NEST is free software: you can redistribute it and/or modify
    # it under the terms of the GNU General Public License as published by
    # the Free Software Foundation, either version 2 of the License, or
    # (at your option) any later version.
    #
    # NEST is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with NEST.  If not, see <http://www.gnu.org/licenses/>.

    # This version uses NEST's Connect functions.

    # Link Quickref: https://www.nest-simulator.org/quickref/

    import nest
    import nest.raster_plot
    import time
    from numpy import exp

    nest.ResetKernel()
    startbuild = time.time()

    # Parameters for asynchronous irregular firing
    NE = 4 * order          #=10000 in simulation
    NI = 1 * order          #=2500 in simulation
    N_neurons = NE + NI

    CE = int(epsilon * NE)  # number of excitatory synapses per neuron
    CI = int(epsilon * NI)  # number of inhibitory synapses per neuron
    C_tot = int(CI + CE)  # total number of synapses per neuron
    cutoff = cutoff           # Cutoff to avoid transient effects, in ms

    # Initialize the parameters of the integrate and fire neuron
    tauMem = 20.0
    theta = 20.0
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    J_ex = J
    J_in = -g * J_ex

    nu_th = theta / (J * CE * tauMem)
    nu_ex = eta * nu_th
    p_rate = 1000.0 * nu_ex * CE

    if not print_report:
        nest.set_verbosity('M_WARNING')

    nest.SetKernelStatus({"resolution": dt, "print_time": True,
                          "local_num_threads": num_threads,
                          'overwrite_files': True})

    print("Building network")

    neuron_params = {"C_m": 1.0,
                     "tau_m": tauMem,
                     "t_ref": 2.0,
                     "E_L": 0.0,
                     "V_reset": 0.0,
                     "V_m": 0.0,
                     "V_th": theta}

    nest.SetDefaults("iaf_psc_delta", neuron_params)

    nodes_ex = nest.Create("iaf_psc_delta", NE)
    nodes_in = nest.Create("iaf_psc_delta", NI)

    # Stop input after x = input_stop ms if input_stop is not 0
    # https://www.nest-simulator.org/helpindex/cc/poisson_generator.html
    if input_stop:
        params = {"rate": p_rate, "stop": input_stop}
    else:
        params = {"rate": p_rate}

    nest.SetDefaults("poisson_generator", params)
    noise = nest.Create("poisson_generator")

    espikes = nest.Create("spike_detector")
    ispikes = nest.Create("spike_detector")

    nest.SetStatus(espikes, [{"label": "brunel-py-ex",
                              "withtime": True,
                              "withgid": True,
                              "to_file": False}])

    nest.SetStatus(ispikes, [{"label": "brunel-py-in",
                              "withtime": True,
                              "withgid": True,
                              "to_file": False}])

    print("Connecting devices")

    nest.CopyModel("static_synapse", "excitatory", {"weight": J_ex, "delay": delay})
    nest.CopyModel("static_synapse", "inhibitory", {"weight": J_in, "delay": delay})

    nest.Connect(noise, nodes_ex, syn_spec="excitatory")
    nest.Connect(noise, nodes_in, syn_spec="excitatory")

    nest.Connect(nodes_ex[:N_rec], espikes, syn_spec="excitatory")
    nest.Connect(nodes_in[:N_rec], ispikes, syn_spec="excitatory")

    print("Connecting network")
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    # We now iterate over all neuron IDs, and connect the neuron to
    # the sources from our array. The first loop connects the excitatory neurons
    # and the second loop the inhibitory neurons.

    print("Excitatory connections")

    conn_params_ex = {'rule': 'fixed_indegree', 'indegree': CE}
    nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory")

    print("Inhibitory connections")

    conn_params_in = {'rule': 'fixed_indegree', 'indegree': CI}
    nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory")

    endbuild = time.time()

    print("Simulating")

    nest.Simulate(simtime)

    endsimulate = time.time()

    events_ex = nest.GetStatus(espikes, "n_events")[0]
    rate_ex = events_ex / simtime * 1000.0 / N_rec
    events_in = nest.GetStatus(ispikes, "n_events")[0]
    rate_in = events_in / simtime * 1000.0 / N_rec

    num_synapses = nest.GetDefaults("excitatory")["num_connections"] + \
                   nest.GetDefaults("inhibitory")["num_connections"]

    build_time = endbuild - startbuild
    sim_time = endsimulate - endbuild

    print("Brunel network simulation (Python)")
    print("Number of neurons : {0}".format(N_neurons))
    print("Number of synapses: {0}".format(num_synapses))
    print("       Exitatory  : {0}".format(int(CE * N_neurons) + N_neurons))
    print("       Inhibitory : {0}".format(int(CI * N_neurons)))
    print("Excitatory rate   : %.2f Hz" % rate_ex)
    print("Inhibitory rate   : %.2f Hz" % rate_in)
    print("Building time     : %.2f s" % build_time)
    print("Simulation time   : %.2f s" % sim_time)
    print("Cutoff first ms   : %.2f " % cutoff)

    #nest.raster_plot.from_device(espikes, hist=True)

    # The function shall return a tuple consisting of the excitatory and
    # inhibitory spikes recorded, as Pandas data frames:
    import pandas as pd

    exc_spikes = nest.GetStatus(espikes, 'events')[0]
    inh_spikes = nest.GetStatus(ispikes, 'events')[0]

    
    # Excitatory spike trains
    # Makes sure the spiketrain is added even if there are no results
    # to get a regular result
    #cutoff = 100
    events_E = exc_spikes
    nodes_E = nodes_ex
    spiketrains = []
    
    for sender in nodes_E[:N_rec]:
        spiketrain = events_E["times"][events_E["senders"] == sender]
        spiketrain = spiketrain[spiketrain > cutoff] - cutoff
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        spiketrains.append(spiketrain)

    
    
    
    return pd.DataFrame(exc_spikes), pd.DataFrame(inh_spikes), spiketrains

    #return exc_spikes, inh_spikes
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import numpy as np
from smt.sampling_methods import LHS
from pypet import Environment
import pandas as pd
import os # To allow file paths working under Windows and Linux
from brunel_delta_ml import sim_brunel_delta
from neo.core import SpikeTrain
from quantities import Hz, s, ms
from elephant.statistics import isi, cv, fanofactor
from elephant.spike_train_correlation import corrcoef, covariance
from elephant.conversion import BinnedSpikeTrain

def get_lhs_sampling_points(num_sampling_points):
    
    g_space = [4.5, 6.0] # up to 5
    eta_space = [1.5, 3.0]
    J_space = [0.05, 0.4]
    D_space = [1.0, 2.5]  
    
    xlimits = np.array([g_space, eta_space, J_space, D_space])
    sampling = LHS(xlimits=xlimits)

    x = sampling(num_sampling_points)

    print(x.shape)
    print(x[:, 0])
    print(x[:, 1])
    print(x[:, 2])
    print(x[:, 3])
    
    return x[:, 0].tolist(), x[:, 1].tolist(), x[:, 2].tolist(), x[:, 3].tolist()

def get_statistics(spiketrains, t_stop):
    
    cv_list = [cv(isi(spiketrain)) for spiketrain in spiketrains]
    isi_list = [isi(spiketrain) for spiketrain in spiketrains]
    fano_factor = fanofactor(spiketrains)

    spiketrain_list = [SpikeTrain(spiketrain*s, t_stop=t_stop) for spiketrain in spiketrains]
    binned_sts=BinnedSpikeTrain(spiketrain_list, binsize=10*ms) # binsize = simulation resolution?

    corr_coef = corrcoef(binned_sts, binary=False)
    cov_coef = covariance(binned_sts, binary=False)
    
    return cv_list, isi_list, fano_factor, corr_coef, cov_coef

def run_simulation(g, eta, D, J, simtime, cutoff):

    df, spiketrains = sim_brunel_delta(g=g, 
                                eta=eta, 
                                J=J, 
                                delay=D,

                                simtime=simtime,
                                cutoff=cutoff)
    return df, spiketrains

def my_pypet_wrapper(traj):
    
    df, spiketrains = run_simulation(traj.g, traj.eta, traj.D, traj.J, traj.simtime, traj.cutoff)
    cv_list, isi_list, fanofactor, corr_coef, cov_coef = get_statistics(spiketrains, traj.simtime)
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    traj.f_add_result('$set.$.sim_res_df', df, comment='Result from simulation i pandas dataframe`')
    traj.f_add_result('$set.$.cv_list', cv_list, comment='CV, Contains coefficient of variation for every spiketrain')
    #traj.f_add_result('$set.$.isi_list', isi_list, comment='List of interspikeintervals for all spiketrains')
    traj.f_add_result('$set.$.fanofactor', fanofactor, comment='fanofactor f = var(v) / mean(v) where v is a list of the interspike interval variability')
    traj.f_add_result('$set.$.corr_coef', corr_coef, comment='CC, Coefficient of correlation matrix, sparse')
    traj.f_add_result('$set.$.cov_coef', cov_coef, comment='CCov, Coefficient of covariance')
    
def add_parameters(traj):
    """Adds all parameters to `traj`
    The parameters to be explored are also added here with 
    default value that is equal to function defaults in brunel_delta.py.
    """
    print('Adding Parameters')
    
    traj.f_add_parameter('simulation.dt', 0.1, comment='Simulation Resolution in NEST')
    traj.f_add_parameter('simulation.simtime', 1100.0, comment='Duration of the experiment simulation in ms')
    traj.f_add_parameter('neuron.D', 1.5, comment='delay, synapse-delay between neurons in ms')
    traj.f_add_parameter('neuron.g', 5.0, comment='Inhibitory synaptic strength relative to excitatory')
    traj.f_add_parameter('neuron.eta', 2.0, comment='V ext / V thr')
    traj.f_add_parameter('neuron.epsilon', 0.1, comment='Excitatory Neurons * epsilon = nr of synapses per neuron')
    traj.f_add_parameter('neuron.order', 2500, comment='Relative number of neurons in network')
    traj.f_add_parameter('neuron.J', 0.1, comment='Synapse weight between neurons')
    traj.f_add_parameter('neuron.N_rec', 50, comment='Number of neurons to record during simulation')
    traj.f_add_parameter('simulation.num_threads', 10, comment='simulation in threads for parallelizing')
    traj.f_add_parameter('simulation.print_report', True, comment='print output during simulation')
    traj.f_add_parameter('simulation.stop_input', False, comment='Stop network input in simulation after x ms')
    traj.f_add_parameter('simulation.num_sampling_points', 500, comment='Number of sampling points in Latin Hypercube Sampling Method')
    traj.f_add_parameter('simulation.cutoff', 100, comment='Cutoff first x ms to avoid transient effects, in ms')

    
def add_exploration(traj):
    """Explores different values of  g, eta, J and D ."""

    print('Adding exploration of g, eta, J and D')
    g_vals, eta_vals, J_vals, D_vals = get_lhs_sampling_points(traj.num_sampling_points)
    explore_dict = {'neuron.g': g_vals,
                    'neuron.eta': eta_vals,
                    'neuron.J': J_vals,
                    'neuron.D': D_vals  
                   }

    traj.f_explore(explore_dict)

# Create an environment that handles running
filename = os.path.join('hdf5','biggest_set_updated.hdf5') #'thisfile.hdf5'

env = Environment(filename = filename, 
                  overwrite_file = True) 
traj = env.traj

# Add parameters
add_parameters(traj)

# Let's explore
add_exploration(traj)

# Run your wrapping function instead of your simulator
env.run(my_pypet_wrapper)
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene@nmbu.no
"""

import os

# Create an environment that handles running

# using the same filename as for runinng the simulation

filename = os.path.join('hdf5','biggest_set_updated.hdf5') #'thisfile.hdf5'

# reload the stored data from above.
# need an environment for that, just a trajectory.
from pypet.trajectory import Trajectory

# So, first let's create a new trajectory and pass it the path and name of the HDF5 file.
# Yet, to be very clear let's delete all the old stuff.
#del traj
# Before deleting the environment let's disable logging and close all log-files
#env.disable_logging()
#del env

traj = Trajectory(filename=filename)

# Now we want to load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

# ADJUSTING THE CORR_COEF AND COV_COEF TO DATAFRAMES
import pandas as pd
 
df = pd.DataFrame({'g': [], 'eta': [], 'J': [], 'D': []})

for run_name in traj.f_get_run_names():
    traj.f_set_crun(run_name)
    g=traj.g
    eta=traj.eta
    D=traj.D
    J=traj.J
    cv_list=traj.results.crun.cv_list
    fanofactor=traj.results.crun.fanofactor
    corr_coef=pd.DataFrame(traj.results.crun.corr_coef)
    cov_coef=pd.DataFrame(traj.results.crun.cov_coef)
    
    if run_name == "run_00000000":
        print(type(cv_list)) 
        
        
    typelist = [type(g), type(eta), type(J), type(D), type(cv_list), 
                 type(fanofactor), type(corr_coef), type(cov_coef)]
    #df = df.append({'g': g, 'eta': eta, 'J': J, 'D': D}, ignore_index=True)
    df = df.append({'g': g, 'eta': eta, 'J': J, 'D': D, 'cv_list': cv_list, 'fanofactor': fanofactor, 
                    'corr_coef': corr_coef, 'cov_coef': cov_coef}, ignore_index=True)
    
# Don't forget to reset your trajectory to the default settings, to release its belief to
# be the last run:
traj.f_restore_default()
#df.to_csv('data_500_params_stats_v5.csv')
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#df['corr_coef'][0].mean()

import numpy as np

corr_sparsematrix_mean_cols = []
cov_sparsematrix_mean_cols = []

for i in range(500):
    corr = df['corr_coef'][i]
    c2 = corr.copy()
    c2.values[np.tril_indices_from(c2)] = np.nan
    corr_sparse_mean = c2.mean().round(4)
    corr_sparsematrix_mean_cols.append(corr_sparse_mean.tolist())

    cov = df['cov_coef'][i]
    c2 = cov.copy()
    c2.values[np.tril_indices_from(c2)] = np.nan
    cov_sparse_mean = c2.mean().round(4)
    cov_sparsematrix_mean_cols.append(cov_sparse_mean.tolist())
    
df['cov_sparsematrix_mean_cols'] = cov_sparsematrix_mean_cols
df['corr_sparsematrix_mean_cols'] = corr_sparsematrix_mean_cols

df.to_csv('data_500_params_stats_v5.csv')

import pandas as pd
 
df = pd.DataFrame({'g': [], 'eta': [], 'J': [], 'D': []})

for run_name in traj.f_get_run_names():
    traj.f_set_crun(run_name)
    g=traj.g
    eta=traj.eta
    D=traj.D
    J=traj.J
    cv_list=traj.results.crun.cv_list
    fanofactor=traj.results.crun.fanofactor
    corr_coef=traj.results.crun.corr_coef
    cov_coef=traj.results.crun.cov_coef
    
    typelist = [type(g), type(eta), type(J), type(D), type(cv_list), 
                 type(fanofactor), type(corr_coef), type(cov_coef)]
    #df = df.append({'g': g, 'eta': eta, 'J': J, 'D': D}, ignore_index=True)
    df = df.append({'g': g, 'eta': eta, 'J': J, 'D': D, 'cv_list': cv_list, 'fanofactor': fanofactor, 
                    'corr_coef': corr_coef, 'cov_coef': cov_coef}, ignore_index=True)
    
# Don't forget to reset your trajectory to the default settings, to release its belief to
# be the last run:
traj.f_restore_default()

Appendix M        add_statistics_summaries.py



Appendix N    requirements.txt    

matplotlib==3.1.3
numpy==1.18.1
pypet==0.4.3
neo==0.8.0
smt==0.3.4
elephant==0.6.4
quantities==0.12.4
pandas==1.0.1
nest==1.3.0
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