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2. Summary
2.1.Contextual

In efforts of explaining biological system behavior, a common mean has been to use
mathematical models. To model intricate biological systems does often require complex,
non-linear and high-dimensional differential equation systems. This is especially the case in
computational neuroscience, where models of the human brain and nervous system is at
center for the mathematical models and theoretical analysis. The human brain consists of 100
billion neurons and 100 trillion synaptic connections, and the electrical activity in these
neural networks (interconnected neurons) is determined by a wide range of factors [1] , thus
modelling of such networks require a large number of parameters and state variables. In turn,

highly complex models result in increased computational costs.

Existing techniques for parameter estimation and sensitivity analysis is often more suitable
for low dimensional output space and does typically focus on one output variable at the time.
Statistical representation of models is an increasingly explored technique for prediction of
input-output relations. Statistical emulations (also called metamodels) has shown ability to
act as a parameter reduction technique, and thus reducing the computational costs. In addition
to improving computational efficiency, it has also shown beneficial for serving as a basis for

sensitivity analysis (the study of how the system input variations influence the output).

2.2.Goals

The aim of this paper is to explore the possibilities in using metamodelling on data generated
by realistic deterministic dynamic models of complex biological systems, and to implement a
specific strategy that has proven useful in other studies [2]. As a part of this, it is also a sub
goal to contribute to the development of a robust metamodelling methodology capable of
producing accurate predictive mappings which allows for extensive automation. This can
then also serve as a tool for exploring of dataset by other scientists.

The content of this study can be summarized to contain an overview of some benefits of
metamodelling, and a reflection upon modelling strategies for cultivating interdisciplinary
understanding and collaboration across scientific fields. It will introduce a framework for
applying regression methods to non-linear data. Specifically, a reasonably new regression
method called Hierarchical Cluster based Partial Least Squares Regression (HC-PLSR) [2] is
implemented and demonstrated. The hypothesis herein, is whether a strategy of local



modelling (by separating data using clustering techniques) can account for non-linearities in
the dataset, that a single regression (PLSR) model cannot. The HC-PLSR method has proven
useful in other cases by improving performance due to local modelling strategies, and this has
been demonstrated on different kinds of datasets. Thus, it was of interest to contribute to the
exploration of this methodology by using a dataset generated from model simulation of a

neuroscientific neural network design described by Brunel [3].

2.3.Summary of results

After this project, resulting content of the work consists of; 1) a framework for implementing
and simulation of Brunel’s Model A [3] with parameters sampled from the Al-space
(Asynchronous Irregular firing), 2) a single, global PLSR model implemented for
performance comparing, 3) Implementation of HC-PLSR model variations for exploration of
method performance on non-linear data. When inspecting the resulting dataset prepared for
modeling experimentation, the relations between regressors (X) and responses (Y) was
indeed non-linear, but not what could be described strong non-linearities.

The HC-PLSR local modelling did not outperform the PLSR regression method in all cases,
however, it did have a general higher prediction accuracy (R2, MSE and MAE) when
compared to a linear PLSR model. This was especially apparent when no interaction/higher
order terms were included. This might indicate that the HC-PLSR does account for non-
linearities in the data, but when the data is not strongly non-linear, it might be sufficient to
use a polynomial PLSR model (by adding higher order terms and cross terms).

The work process has also demonstrated the need for a modular and generalized framework,
because the HC-PLSR method can be optimized and tuned by a number of regression model
parameters. Thus, a resulting framework (using python programming language) is shared [4],
containing different model variations/combinations, with the purpose of making

metamodelling accessible by utilizing a modular strategy.



3. Introduction
3.1.Motivation

Working with modelling of complex systems occur in several fields of sciences. Data
generated from deterministic modelling, which describes realistic biological systems, are
often characterized by a large range of attributes, properties and relationships. Advanced
modelling in biology and neuroscience (to mention some fields) can consist of
computationally demanding simulations. Such dynamic models with intricate properties can
be difficult to assess, and a tool to facilitate the understanding/descriptions of such
representations might give insight to important characteristics (for sensitivity analysis etc.).
Metamodelling can meet both these challenges; firstly, by using a metamodel generated
mapping for model reduction, and also as a technique to produce accurate predictive
mappings explaining the input-output relationship of models.

Metamodelling has a wide range of use and can be helpful for many different fields. Despite
the fact that metamodels have been developed for various different fields and sciences
already, it is lacking a standardized methodology that can encourage and motivate for cross
disciplinary work and collaboration. Collaboration is especially useful in areas like modelling
and mathematical analysis of complex systems, because the methods and theory behind is
often quite similar even though the data might differ. The motivation for this study is to
utilize cross disciplinary model work, data scientific methods for metamodelling and
neuroscience models for simulation of the data to regress.

There has been some work done already that aims for standardizing the modelling of
different data, for example the Surrogate Modelling Toolbox (SMT). As the name implies it
is an (open-source python) package consisting of libraries for surrogate modelling methods.
The focus in SMT, however, is mainly on derivatives and the use of gradient-based
optimization. Even so, the ideas of standardizing and generalizing is fitting well with the

viewpoints in this paper, and the developed tools herein will follow the same basic principles.

The same modelling strategies can be applied to different types of data, so a “cookbook”-
approach for modelling data can provide an efficient tool for scientists, disregarding the type
of dataset at hand. Another advantage of this is that a lot of cumbersome work due to
implementation and the “trial and error”-way of working (for model optimizing) might be
reduced. If there exist a framework that takes input data of a given structure and produces

(regression) prediction results of from a selection of metamodel architectures, it can pinpoint



the direction of further work and model improvement. This can be used as a convenient tactic
of getting more acquainted with the dataset at hand, and also provide a time-efficient
approach to the testing of model design that almost always is required. The “trial and error”
way is a widely used approach when creating models in data science, even if the dataset is
quite well known in advance. It is hard to know beforehand exactly what strategy in the
model design that will yield the best results, and modelling experience is very important.
Scientists with less experience in modelling might still (also) benefit from the metamodelling
results, and a standardized methodology will grant valuable information. The work for
increasing model performance can be time consuming and inefficient, so can a framework be

designed to help with this challenge?

3.2.Background for the study

Deterministic dynamic models of complex biological systems contain large numbers
parameters and relationship attributes, often connected using (non-linear) differential
equations. This model can be described using a metamodel; a statistical approximation, that
effectively maps variations in input parameters to variation in the resulting output state
variables (for the entire feature space). The input-output relations of realistic dynamic models
can be extremely complex, and the use of metamodels can be helpful in regards of
representing these complex/high dimensional models. It has also been useful in handling
some of the challenges high-dimensional models brings, by increasing speed of numerical
solvers and serve as a tool for automated model simplification. Metamodels can also serve as
a basis for sensitivity analysis (the study of how the system input variations influence the
output) [2] .

Computational neuroscience and computational biology are both evolving and fast-growing
fields but making use of metamodelling is currently not a widely used approach here. Still it
can be expected [2] that metamodel generated mappings can become useful as model
reduction techniques for speeding up simulations, for performing global high-dimensional
sensitivity analysis for several purposes, and for comparing high-dimensional prediction
spaces of competing models etc. Input parameters and initial conditions can also be predicted
from the model, providing opportunities for identifications of relevant parameter ranges [2].

However, for any of these tasks to be fully solved, there is a need for defining a methodology
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that can quantify prediction accuracies and yield indications of modelling robustness.
Additionally, extensive work and automation of the practice (and existing tools) is expected
and the approach must take this into account and facilitate future work. There is a need for
substantial development to make modelling strategies generally applicable in several fields
(e.g. in biology and neuroscience), and to be feasible for applications by creating open-source

and accessible tools.

Regression based analysis is a widely used technique, and mild nonlinearities can to some
degree be modelled using polynomial regression (square and interaction terms). However, a
robust modelling methodology must be capable of handling data with strong nonlinearities, in
particular non-monotone input-output relationships. A candidate approach for this [2] is the
HC-PLSR, which makes use of locally linear or locally polynomial regression modelling of
selected subspaces of the original complex model. It has proven to be a successful strategy to
split complex data into blocks for local modelling, which implies that non-linear and non-
monotone response surfaces can be modelled locally by designated polynomial models. The
HC-PLSR does also handle linear dependencies between regressors and the inter correlations
between the responses, by using Partial Least Squares Regression (PLSR) instead of Ordinary
Least Squares Regression (OLS) for the local modelling. PLSR maximizes the explained
covariance between the regressors (X) and the responses (Y), and it also makes use of the
intercorrelations between the response variables for model stabilization [2]. Consequently, it
does not depend on linearly independent regressor variables. PLS Regression is a way of
compressing data into its most relevant subspace (spanned by the estimated latent variables,
also called principal components (PCs)), and hence provides a versatile means for data
compression by reducing the rank of both regressors (X) and responses (). This can also be
used to identify important features in a complex system. It should also be noted that if the
rank of the data is not reduced (i.e. all PLS components are included in the regression model)
the PLSR model is equivalent to OLS.

The suitability of PLSR is emphasized when considering the importance of maintaining
interpretability. Campbell [5] have shown that metamodels based on subspaces found by
PLSR (compared to Legendre polynomials and PCA), gave the simplest and most predictive
basis for sensitivity analysis for a set of computational models. As mentioned by Tgndel et al.
[2], the suitability of PLSR for interpretation of complex biological systems and the use of

PLSR in sensitivity analysis is demonstrated in [6]. This in turn was the motivation behind
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the new technique of local modelling, by forming the method of HC-PLSR, and is

followingly the method to be further tested and explored in this paper.

To investigate and test the performance of the HC-PLSR method of modelling, it was
desirable to use a different kind of dataset than the ones already tested. This resulted in a
dataset generated from a simulation tool, NEST (see section 5.3.1), which generates data
based on spiking patterns from neurons in a neural network. The neural network design is
described in detail by Brunel [3] and was developed for investigating spiking behavior in
neural networks (excitatory and inhibitory neurons interconnected in a larger network of
cells). The network is explored and commented to yield spiking patterns with different
tendencies/behavior. These so-called “states” of spiking behavior might generate non-
linearities in resulting datasets, which might be better modelled using a HC-PLSR approach.
In this paper however, only one state/ form of spiking behavior (and the required parameter
interval for generating this state) was included, the “Asynchronous Irregular firing” - state
(Al-state). To expand the parameter space after the model has shown useful is a more natural
way of developing the model; if the model cannot account for non-linearities in a subspace of
the parameter space, then the performance based on the whole range might not be expected to

be very good.

As mentioned above, strongly non-linear data can be hard to model well. There is a need for a
methodology to tackle this, as well as to simplify computationally demanding simulations
(i.e. make them more time and resource efficient). When there exists little or no prior
knowledge of the data, it should still be possible to create sufficiently performing models, but
this requires a standardized framework. The models could also in this case be used for getting
a comprehension on how the data looks like (if no or relatively simple/non-monotone non-
linearities are present in the data, the HC-PLSR would not outperform the PLSR model, and
the utilization of the hierarchical approach would be unnecessary). It is also ideal if a model
can perform/predict within a specified margin of error, that is defined by the model if
necessary. All of the reasons mentioned above founded the motive for creating the modelling
framework and testing paradigm in this paper. In summary it is aimed at resulting in a
methodology that:

- Handles strong non-linearities

- Does not require pre-existing knowledge about the data

- Automizes the modelling process in a time and resource efficient way
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- Can provide information about the structure of the given dataset

- Facilitates interdisciplinary work, and encourages collaboration on modelling theory
(experimentation)

- Eases and assists the inclusion of domain knowledge into the model architecture
(dataset specific)

- Offer modelling results where interpretability is not completely lost due to complexity

- Exploits modularity such that the use of only parts of the architecture is possible if

desired

4. Theory

This section is meant to provide the necessary knowledge needed to create a common
understanding/intuition of some relevant concepts that are used in creation of this project. It

is split up into 2 parts; model related theory, optimization specific.

4.1.Model
4.1.1. Meta modelling

A metamodel (commonly called a surrogate model or an emulation model) is a model of
models. The idea behind this concept is that a complex mathematical model can be
substituted by a simpler model, in order to reduce computational costs and complexity. This
is achieved when the input data (X) and the output (Y) of a simulation experiment (varying
the input parameters) is used for calibration. The metamodel then learns to represent
variations in the output data and map these changes to variations in the input data. The ideal
surrogate model/metamodel will replace a complex model as accurate as possible.

In classical metamodelling, the outputs (from simulations) can be predicted based on
simulation inputs, whereas in inverse metamodelling, it is the inputs that are predicted based
on output data from the simulations. See Figure 1 - Inverse and Classical Metamodelling
illustration for visualization.

These two metamodelling variations can in turn, alone or combined, be used to
explain/describe behavior of the original model (used to run the simulations).

Different strategies (machine learning techniques, supervised and unsupervised) are used in
construction of metamodels, completely depending on the purpose of development of the
model. In this project, a strategy called HC-PLSR [2] is implemented and tested.
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p = - - ;\\\
\Tetabmi.d,el/
Classical Outputs = f ( Input )
Inverse Inputs = f ( Output )

Classical Outputs =f ( Input)

Inverse Inputs = f ( Output )

Figure 1 - Inverse and Classical Metamodelling illustration

Metamodelling of a deterministic dynamic model is a statistical approximation to the
mapping of a number of parameters to a range of state variables. It can be exploited as a
shortcut around heavy/expensive computations, and it is also (and maybe especially) relevant
if one is more interested in summaries and descriptions of the resulting simulations rather
than the exact simulation results in itself. For example: there might be of more interest to find
state descriptive measures/tendencies (e.g. Regular Synchronized firing or Irregular
Asynchrone firing behavior [3]) of the spiking behavior of a network, rather than the exact
spike train for all neurons in the network (for all parameter combinations). To obtain a cheap
way for accessing an estimate/indication of the behavior of the network, based on input
parameters, without always computing simulation results can be of interest for many reasons.
(e.g. in sensitivity analysis, further modelling in one particular parameter subspace etc.). It is
important to emphasize that modelling often has a purpose/goal, and the field using the model
results and or functionality will better assess and determine what can be described as

acceptable results and predictive performance error.

Meta modelling is creating a model that predicts expensive (time, computational power,
money) response variables from cheap (easily accessible) features. To run a simulation like
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the one described in 6.1.1 for many hundred or even thousands of times, is a computationally
expensive process, and if possible, it is very convenient to be able to predict how the output
of such simulations would result in. The simulation might also create a lot of information that
is not strictly necessary for a given research purpose, (i.e. the exact spiking times for every
neuron for every simulations) when one might only interested in state describing measures
(like correlations, covariances and other statistical measures, see section target features) of
such spike trains. To use a lot of resources computing information that will go to waste
should be avoided. Thus, to be able to predict the measures mentioned would be of great
benefit.

4.1.2. HC-PLSR

HC-PLSR is an extension of the PLSR method and was proposed by Tandel et. Al [2]. The
HC-PLSR modelling pipeline consists of splitting the parameter space into regions where
local PLSR models are created for each subspace. This method can reveal different behavior
of the model for individual subspaces. The HC-PLSR approach has shown [2] useful for
emulating models with complex non-linear characteristics, and the method can be adjusted to

suite the complexity of the dynamic model behavior in a flexible way.

Existing metamodelling work does often [2] use OLS, that requires linearly independent
input parameters (See section 4.1.5 PLSR regression ). OLS regression-based modelling is
primarily focused on modelling single output and cannot handle multicollinearity in the data
parameters. The requirements for using OLS are not always met, and other techniques
involving Deep Learning (ANN) exists. However, deep learning removes some of the
interpretability, and this is when HC-PLSR can serve as a solution. HC-PLSR modelling uses
(multivariate) PLSR regression for modelling local subspaces on the parameter space. In this
way, it utilizes the intercorrelations between the output variables, and due to the
clustering/separation of feature space into subspaces, it can also model highly non-linear and

non-monotone input-output relations, which characterize many biological systems.

The implementation of metamodel exploration explained in section 6.6 Metamodelling
Procedures, was created with the intention to explore the performance of HC-PLSR method
[2]; a way of creating local regression models for each part of the nonlinear relationship

between regressors and predictors (features and target). Implementations of the HC-PLSR
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was based on an initial global (second order) PLSR using all observations from the training

(or calibration) set, to identify a preliminary (global) model (source K). Next, a clustering of

the output from the global model (X-/Y-scores of the PLSR model) was used to split the

original observations into subsets where local polynomial regression models were

hypothetically more likely to improve prediction results [2]. Finally, local PLSR models were

created and calibrated individually for each of the clusters (with some exploration with

regards to cluster restrictions). A 10-fold cross validation was also used here, to find the

optimal number of principal components to include in the model. For an overview of the

model pipeline, see Figure 2 - lllustration of the HC-PLSR approach from [2] [2] below.

.
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Figure 2 lllustration of the HC-PLSR approach. The HC-PLSR “pipeline” starts with calibration of an initial global polynomial PLSR using all
observations in the calibration set. This global PLSR model provides PLS scores and loadings, which constitute the basis for separation of the
calibration set observations into groups by fuzzy C-means (FCM) clustering [44,45). Local PLSR models are then calibrated in each cluster.
Predictions of response variables for new observations (or test set observations) are done by a) selecting the local model for the most probable
cluster based on classification or by b) computing the regression coefficients as a weighted sum of the local models, where the weights are
estimated cluster membership probabilities from the classification. *See Additional file 1: Appendix 1, Eq. A4 and A6.

Figure 2 - lllustration of the HC-PLSR approach from [2]
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4.1.3. Artificial neurons

The cells that work as building blocks in the nervous system are called neurons. These
specialized cells handle communication by electrical and chemical signaling between each
other. There are two kinds of neurons; sensory and motor neurons. The sensory neurons carry
information from the sensory receptors to the brain for interpretation and processing, and the
motor neurons carry signaling from the brain to the muscle cells in the body. The neurons
stop reproducing at birth, but the connections between them, the synapses, continue to

develop and form throughout life.

The neuron is constructed as a cell body, dendrites and an axon (see Figure 3 - Components
of the neuron from [7]). The cell body contains the cytoplasm and nucleus and is surrounded
by a cell membrane to protect the cell. Dendrites are connected to (and surrounding) the cell
body and act as receivers of signals that are transmitted from other cells and into the cell
body. The axon extends from the cell body and ends up in axon terminals to form the end
point of the neuron. This is where the Action Potential (AP, further described in [8]), initiated
in the cell body, travels along before it reaches the contact point where the current cell is
connected to other neurons. These connection points are called synapses and are the junction
gaps between the axon terminal of one presynaptic neuron, and a dendrite of a postsynaptic
neuron. There exists both electrical synapses, where ions flow across the gap, and chemical
synapses where chemical signals, neurotransmitters, are released into the synapses to flow
across. The receiver cell of the synaptic connection can either be less or more likely to fire an
action potential after transmitting of the signal. This is the difference between excitatory and
inhibitory synapses; the excitatory post synaptic potential is depolarizing, and the inhibitory
post synaptic potential is repolarizing the cell body. In effect of this, signals from an
excitatory synapse makes the receiving neuron more “likely” to fire an AP, and contrary
makes is less likely to fire an AP if signals are from an inhibitory synapse. The post synaptic
neuron summarizes the inputs from the excitatory and inhibitory synapses, and then
“decides” (based on voltage change and the respective firing threshold) whether to fire an
action potential or not.

It is important to remember that one axon can be connected to several neurons’ dendrites, and
a neurons’ dendrites can receive signaling from several other neurons (and their respective
axon terminals). This forms the basis of a neural network, further described in the section

4.1.4 Neural networks. The human brain and the nervous system are constructed by an
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interconnected network of neurons. Thus, exploring its behavior (read: how signaling
progresses and transmits throughout the network) and characteristics might be beneficial for

the medical understanding of different diseases, conditions and behavioral patterns [9].

Terminal buttons
(form junctions
with other cells)

Cell body Dendrites
(soma) (receive messages )
from other cells) Dendrites
(from another
ﬂ neuron)
Axon /\

(passes messages away
from the cell body to
other neurons, muscles,
or glands)

/

Action potential

(electrical signal

traveling down Myelin sheath

the axon) (covers the axon of some
neurons and helps speed
neural impulses)

Figure 3 - Components of the neuron from [7]

Signaling in and between neurons can be of both chemical and electrical type. The signal is
initiated in the cell body as a reaction to the received signals via dendrites. It then continues
down along the axon to the axon terminals, in the form of an action potential. An action
potential is essentially an electrical signal, which is initiated in the cell body by a rapid
voltage change (polarization and depolarization) across the membrane. Figure 4 - The Action
Potential from [10] illustrates the development of the (voltage) potential across the

membrane.
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Figure 4 - The Action Potential from [10]

Before an action potential it is initiated, the cell body has a resting potential of around -65
mV. This means that the cell body is negatively charged, with reference to the outside of the
cell membrane, and the charge is maintained (thus, resting) by controlling and positioning
electrically charged ions. The resting membrane potential is maintained by pumps and
channels in the membrane, and forces such as electrical drift and diffusion keeping a balance
in the ion flow and net currents [1]. In the case of an action potential, the cell body signals for
the membrane pumps and channels to allow for positively charged ions to enter the soma
(cell body) and lets the negatively charged ions out. This causes a rise of charge in the soma,
and when this reaches a certain threshold (approx. -55mV), an action potential is released.
The firing of an action potential then propagates down the axon, which can be described as an
electrical signal being sent down the axon. One important aspect here, is that the cell will
either fire an action potential, or it will not. This means that there is no such thing as partially
firing of an action potential, and the only thing deciding this is whether the soma reaches the
threshold value. As a result of this, a cell will always fire with full strength, and the signal is
also carried down the axon with full intensity. After an action potential has been fired off by
the cell, there is a short (ms) refractory period inside the neuron. During this phase, a new
action potential cannot form. The refractory period can be described as the process where

channels and pumps in the membrane closes, and eventually causes the cell potential to reach



19

its resting potential again. When resting potential is reobtained, a new AP can potentially
again be formed, sending new electrical signals down the length of the neuron’s axon.

The construction and processes of a neuron for simulations can be quite complicated, and it
can be desirable to make simplifications. Many reasons can be mentioned (see [8]) for why it
can be appropriate to make simplifications;

e They are useful for incorporating into bigger networks (see section 4.1.3), because
they are computationally cheaper, and can in turn be easier to analyze mathematically
(depending on the simplified model used).

e The number of variables can be reduced while retaining many important and relevant
properties of the neuron.

e When trying to understand the behavior of a network of neurons, simplified neuron
models can be used to model the essential behavior of a neuron’s mechanisms. This
allows for faster simulations, less demanding computations and mathematical
interpretability and analysis of the network. An example of this is if the “integrate-
and-fire”-neuron simplification model (see next section) is used, consisting of two
main components; a differential equation to describe the membrane potential, and a

threshold for spike firing.

There are aspects to consider when deciding what type of neuron simplifications to use, and
this is discussed further in [8]. A famously known and old neuron model is the “integrate and
fire” neuron model (IF-model), where no variables of the neuron remains other than the
membrane/cell potential. In order to produce spikes (APs), a spike-generating mechanism is
also added to the model. Despite the biological complexity of generating an action potential,
predicting the initiation of one is quite straight forward, and this is what the IF-model utilizes.
As already mentioned, the membrane potential reaches the threshold potential, a spike is
triggered and neurotransmitters are being released from the presynaptic terminal, to signal
other neurons. The If model tries to capture the concepts where the membrane is being
charged by flow of ion currents, then discharged again after the threshold potential is reached
and an AP is being fired. This mechanism has an RC-circuit equivalent for conceptualizing,
see [8]. The IF-model describes this using separated (not coupled) differential equations, i.e.
it is faster to simulate and is thus very useful when handling larger network simulations. One
of the most important applications of the IF neuron, is for understanding the variability of

neuronal firing patterns. Patterns and “states” of neurons interconnected in a neural network
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is explored and described by Brunel [3]. Important questions in computational neuroscience
include the descriptions of input-output relations of connected neurons, and to better
understand this relationship (and the variabilities of them), IF-models have played an
important role. Especially in network simulations.

4.1.4. Neural networks

A neural network can be defined as a set of interconnected neurons, that communicates using
action potentials (AP) via synapses. Biological neural networks hold many unanswered
questions and is widely studied for exploration of behavioral and chemical analysis to
mention some.

In order to explore and understand more of the human body and processes therein,
simulations and modelling of different processes serve as an important tool. Complex events
and behavior can be difficult to model, and it is therefore a current culture for “modelling
what you can measure”. This means that results from models are not yet useful if not
comparable with real measurements that can confirm that the model

behaves accurately. This means that there is a constant need for cooperation between the
computational and experimental fields. One of the more famous studies on neural networks
and computational neuroscience is Brunel’s [3] work. In one of the published articles of this
work [3], two different kinds of model designs were implemented to explore spiking
tendencies within the network. The Brunel model [3] uses simple leaky IF-models in a
network of randomly interconnected neurons, to explore the dynamics of the spiking patterns.
Model A is used in this paper’s implementation and is more elaborated in [8], but below is a

summarized description.

The network neurons are connected using both excitatory and inhibitory synapses and are
thus consisting of three neuron populations; Excitatory Neurons NEg, inhibitory neurons Ni,
and a population of independent neurons representing external activity input Next. This
population of identical neurons (Next) are represented by an independent Poisson process with
firing frequency Vext (from outside the network). The model is composed of N neurons,
where the number relation between excitatory and inhibitory neurons is Ne / Ni = 4, thus
there are four times as many excitatory neurons. The network is sparsely connected, meaning
that each neuron is connected to (with a given probability) C randomly chosen other cells in
the network.

Depolarization of the neurons (iin 0, 1,..., I, ..., N) in the network follow the equation
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tVi(t) = —Vi(t) + RI; (1),

Equation 1

Where li(t) is the synaptic currents arriving at the soma, i.e. the sum of all contributions of the
spikes arriving at different synapses. These spike contributions are in Brunel (2000) [1]
modelled as delta functions
R =1 _ J; Y 8(t—1f — D),
J k

Equation 2

Here, the first sum is a sum of different synapses, with postsynaptic potential amplitude Jij.
The second sum is the sum of all spikes arriving at the synapse J arriving at time tik+ D
where D is the transmission delay. Brunel’s model has the same postsynaptic potential
amplitude at each amplitude, J = J > 0 for excitatory synapses, and -g*J for the inhibitory.
The external synapses are activated by a Poissonian spike train, (elaborated in [8]).

When the neuron reaches the threshold potential, an action potential is fired. After the
repolarization phase, the neuron has a refractory period trp, during which the potential is

insensitive to stimulation.

The Brunel model was developed for exploring global and local spiking in neural networks.
The findings of Brunel states that networks of neurons can be found to collectively spike with
different tendencies/behavior, referred to as states. The paper continues to describe these
network states, affected by oscillations and frequencies of spike times, visualized in Figure 5
- llustration of network states, (figure 8 from [3] ). The paper continues to illustrate global
and local states, that depend on the given input parameters for the simulation. The network
design (model A) from Brunel’s paper was implemented and confirmed to reproduce the
results of Brunel’s exploration of network characteristics in [3]. Simulation and network
design were achieved using NEST Simulation tool (section 5.3.1) and resulting plots from
these simulations can be explored/verified in [8]. NEST is a simulation framework that
allows for network design and exploration of neuronal activity. A description of this tool is
found in 5.3.1 NEST — Network simulation tool.
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case with its temporal average (dashed line). A: Almost fully synchronized network, neurons firing regularly at high rates (g = 3. verr/ver = 2).

Figure 5 - lllustration of network states, (figure 8 from [3])
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4.1.5. PLSR regression

In data Science and Machine Learning, supervised learning methods are divided into 2 main
categories; classification and regression. Classification is where the Machine Learning
algorithm predicts discrete outputs (samples are classified), and regression methods predicts
continuous output, hence this can also in some cases be called Continuous Supervised

Learning.

Regression can be univariate and multivariate; univariate regression modelling involves the
analysis of a single variable. In Multivariate Regression, the target Y consists of several
dimensions. Multivariate regression is a method for correlating one data matrix X, of
predictor variables (features), to the information in a second data matrix, Y, of response
variables (targets). Partial Least Square Regression (PLSR) is a way to do multivariate
regression where intercorrelations between the Y-variables are utilized for model
stabilization and is used in this model design (see section 6.1 Overall metamodelling

pipeline).

The motivation for using PLS instead of OLS is that with bigger data it is harder to exclude
the possibility of features being correlated. When using ordinary OLS, the calculation of the
regression coefficients includes a matrix inversion, and this process becomes unstable with
highly correlated features. This again will lead to regression coefficients that does not
represent the individual variables “effect” on the response. The PLSR method handles this by
decomposing the feature space to a subspace with orthogonal components, and with
orthogonal components it is easier to separate the individual effect of features on the response
(YY). Thus, the PLSR allows for the predictor variables to be highly correlated or even
colinear. PLSR constructs new predictor variables (principal components) as linear
combinations of the original predictor variables, similar to the method of Principal
Component Regression (PCR). The difference from PCR, however, is the way the
components are constructed. PCR creates components by assessing the variability in the
predictor variables without considering the response variables. On the other hand, PLSR
takes the response variables into account when creating the components, and thus are able to
fit the response with fewer components. One might say that PLSR is sort of a PCR for X and

Y. In PCA, what is optimized is the eigenvalues, but for PLSR what is maximized is the
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covariance. It should also be mentioned that PLSR can be used to detect outliers in the

relationship between X and y.

The core of PLSR is the idea that if U (the scores of Y) can be predicted, then Y can be
calculated. And U can be predicted by using the scores of X. PLSR maximizes the covariance
between the components through the scores of X and Y, such that the 1st component of X has

the highest covariance with the first component of Y.

To predict using new data, the X scores are calculated by

Kscores = Xnew * Xloadings

Then Y scores are calculated by

Y scores = Xscores * R

where R is the relationship matrix (between X scores and Y'scores) containing the inner relation
regression coefficients on the diagonal. The prediction of Y is then calculated as

Ypredicted = Yscores * Yloadings

If one is just interested in the prediction of Y, one can collect the computations into one
operation by using
Y predicted = Xnew * B
where B is the regression coefficients of the PLSR model.
B = Xscores * R * Yloadings

For many models, the creation of new features (i.e. feature combinations such as cross terms
of higher order terms) may improve performance. This can be the case for linear models
especially, because by adding non-linear terms, new knowledge is added to the linear model
(see section 4.2.2 Feature Engineering). One other advantage of PLSR is that many such non-
linear combination of features may be added, and the resulting model will only use the first n
components of the PLSR model. It can be difficult to know in advance what type of new
features that will improve the model, so it saves time if one can use the PLSR as a way of

performing dimensionality reduction/feature selection (see section 4.2.3 Feature selection).

For optimizing the PLSR model, the Mean Squared Error (MSE) of the validation data is
calculated for different numbers of components to include in the final model. If all

components are kept, this is the equivalent to OLS. PLSR is a linear regression model (see
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section 4.1.9 Linear vs non-linear models), and adding non-linear feature combinations to the
predictor variables (see section 5.3.2 Featuretools (Deep Feature Synthesis)) can make the
PLSR modelling account for non-linearities in the dataset. The nonlinearity accounted for by
the resulting polynomial PLSR model (including e.g. cross and higher order terms between

features) is introduced by the new polynomial features.

4.1.6. Clustering methods

Clustering is an important technique for extracting useful information from various high
dimensional datasets and is a useful data analysis tool [11].

Data analysis is commonly used in modern science research, for example in communication
science, computer science and biology science [12] to mention some. Clustering plays a
significant role in data analysis [12]. It can be used to discover hidden patterns in data, by
grouping together similar objects and separating dissimilar objects. There are several defined
measures of similarity, and a common example of this is the Euclidian distance measure
(calculated in the feature space). The clustering of data is a way to organize data into
categories, so that the similarity inside the cluster is maximized and dissimilarity from
datapoints outside the cluster is maximized.

Clustering is an unsupervised learning method and is a common technique for statistical data
analysis used in many fields [13]. But why is clustering relevant in metamodelling?
Clustering deals with data structure partitioning and can serve as a basis for further learning
and understanding of the data.

Each clustering method make assumptions about the data points to constitute their
similarities, and every strategy can result in different clusters. It is therefore important to not

ignore the characteristics of each algorithm’s strengths and weaknesses.

Measuring cluster algorithm performance is an important consideration regarding Machine
Learning and modelling. Since clustering is an unsupervised learning technique, the
evaluation of models is less straight forward than for supervised learning where the labels for
every training sample is present. However, there are a few techniques for assessing and
giving some insight to how the clusters change depending on what cluster method is used. It
is still not possible to measure the validity of the model (because no labels exist), but the
techniques can rather serve as a comparative analysis between different models. One method

is assessing if the internal measures of the training data are similar to the measures in the test
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data. Another technique is Silhouette Analysis, which can be used to explore the separation
of the different clusters as illustrated in Figure 6 - Illustration of Silhouette Analysis concept,

from [14] . This might serve as a tool to assess parameters of the cluster method visually [15].

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters. The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

The silhouette plot for the various clusters. The visualization of the clustered data.
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Figure 6 - lllustration of Silhouette Analysis concept, from [14]

4.1.7. K-Means Clustering

K-Means is probably the most well-known clustering algorithm. It has the advantage of being
quite fast, as the computations involved mainly is calculating the distances between points
and cluster centers. When using K-Means, the number of clusters needs to be predefined,
which is not necessarily a trivial case. Since the clustering method can contribute to the

discovery of hidden patterns in the data, the predefinition of clusters might limit that
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exploration of hidden knowledge. Some of the insight the clustering method could have
provided can be lost when the method cannot freely create as many clusters as is required.
K-Means initializes the cluster centers randomly, and thus may yield different clustering
results on different runs (if not a seed is set). One should note this lack of consistency and be
aware that results might change [13], so it might be beneficial to test several seeds for a

consistency check.

Pseudocode of K-Means Clustering:
e Select the number of classes and randomly initialize their respective center points.
e Compute the distance between datapoints and all cluster centers.
e Classify the datapoint to the closest cluster center
e Recompute the cluster center by calculating the mean of all points in the cluster.
e Repeat the steps above until 1) the cluster centers do not change much, or 2) has

reached the maximum number of iterations.

4.1.8. Fuzzy C-Means Clustering

Clustering can be divided into two subgroups; hard and soft clustering. Hard clustering is
about grouping data points in such a way that a data point can only belong to one cluster each
(like K-Means Clustering). Soft clustering allows for data points to exist in multiple clusters.
As a further development of the idea that a sample can exist in several clusters, Fuzzy C-
Means returns the probabilities for a sample belonging to each of the clusters. The label for a
sample belonging to a cluster is no longer a discrete value {0,1}, but is changed to a

continuous variable interval [0,1].

4.1.9. Linear vs non-linear models

OLS regression is a Machine Learning technique that allows for associating one or more
explanatory variables with a dependent variable (response). All Machine Learning models try
to approximate the function, f (x), that accurately describes the relationship between the
dependent and the independent variable, and in Linear Regression it is assumed that this f (x)
is linear. The objective is then to approximate the coefficients, that is the intercept and the

slope.
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The term "linearity" refers to the linear relationship between two or more variables. If drawn
in a two-dimensional space, the relationship would be a straight line, as illustrated in Figure 7

- Linear relationship illustration.

y=mx+b

y-intercept

b = slope=m

‘,[lul]',n‘

Predictor

Figure 7 - Linear relationship illustration

The linear relationship (the regression line) is the line that fits the given datapoints the best
(see 4.2.1 Measures of model performance). The job of the Regression Algorithm is to fit
multiple lines to the datapoints, and then returning the line that results in the least error. This
concept of regressing linear relationship between features, can be extended to cases where
there are more than two variables, which is called multiple linear regression. A regression
model involving multiple variables can now be represented can be explained as moving from
y=mx+b

to

y =b0 + mlbl + m2b2 + m3b3 + ... ... mnb

This is the equation of a hyperplane (since its more that 3 dimensions).

In the case of multivariate regression, we have more than one response variable, and the
model finds the most optimal coefficients for all the attributes (intercepts and coefficients =
intercepts and slope steepness). PLSR generates one model for all Y-variables at once
through scores and loadings, instead of generating separate models (relationship

explanations) for each response variable.



29

4.1.10. Collinearity vs Interaction terms

This section it means to provide an intuitive understanding on the differences between feature
collinearity and interaction terms, since multivariate PLSR models allows for collinear
features, and the model performance is increased when cross- and interaction terms is added

to the feature space.

Collinearity between X1 and X2 means that Xz is linearly correlated to Xz, that is,
X1~a+ bX2
It should be noted that the response, Y, is not considered when assessing collinearity.
Suppose the regression model is
Y=Po+P1Xes+P2X2+¢
When collinearity exists between X1 and X2, the model can be written:
Y =Po+ B1 (aX2+b) + P2 X2+ ¢
which in turn reduces to

Y =yo+yiX2+e.

Interaction terms are included in the model when the effects of X1 and X2 on the response are
not additive (mark that the response, Y, is considered). To illustrate what is meant by “effects
are not additive”, consider the following:
If the “effect” of X1 0n Y is not “independent” of X2, but is affected by the variable X2, a
typical solution is assuming that the coefficient of X1 , B1, is linearly correlated to X2. In other
words,
Bi=a Xot+b

Supposing that the regression model

Y =Po+Pr X1+ PoX2+eg

and that that B is linearly dependent on Xz, the original model can be written as:

Y=Fo+ Pt Xe+P2X2+g
=Po+ (a Xot+b) X1+ P2 X2+ ¢
=Bo+ bX1+ P2 X2 +a X1 X2+ ¢
=1yo+ X1+ 7y2X2+vy3 X1 X2+ ¢
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By this it is clear that collinearity and interaction terms affect the original model in different

ways.

If X3 is denoted as

Xs= X1 X2
the above regression model with interaction terms is just a new model with one new variable,
X3, added. It is not always clear whether introducing Xs= X1 X2 will cause the model to
overfit. However, if there really exists an interaction between features, and this interaction is
not included in the model, it will naturally underfit. On the other hand, the model might be
overfitted if interaction terms are added where interaction between the features does not exist.
However, there the risk of overfitting arises as long as new features are introduced to the
model. It is therefore always important to include model validation techniques to ensure

model performance on unseen data.

It is also interesting to note that the interpretation of the model is affected by the interaction
terms. To exemplify this: if explaining
Y=Bo+P1 Xr+P2X2+¢

one may say that if X2 is fixed, as X1 increases by one unit, Y increases by B1 units.
But if explaining

Y=Bo+P1Xr1+P2X2+ B3 X1 Xo+g
one could rather say that if Xz is fixed, as X1 increases by one unit, Y increases by p i+ 3 X2
units. This shows that the unit contribution of X1 to Y is a function of X2, namely

“Interaction”.

4.1.11. Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) is a semi random sampling procedure that is especially
suitable for use in high-dimensional data. This is mainly because it separates into several
hypercubes (more than 3 dimensions), and samples randomly within each hypercube. A
detailed elaboration on the LHS can be found in the original paper [16].

The use of LHS experimental design is especially convenient when performing multiple
automated simulations for parameter exploration, since variables are sampled from uniform
distributions and ensures that the ensemble of parameters is representative of the natural

variability of the systems input parameters.
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The LHS is based on the Latin Square design, where a single sample exists in each row and
column (in 2D space). A hypercube is a cube with more than 3 dimensions, and LHS is
extended to allow for sampling of multi-dimensional feature spaces and hyperplanes. The key
to LHS is stratification of the input probability distributions [17]. Stratification involves
division of the cumulative curve (see Figure 8 - Sampling step in Latin hypercube sampling

(LHS), from [18]) into even intervals on the cumulative probability scale.

Y kh
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_ 5 Yi=Fu(X0)
=
= n/N y
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S  (n-1)N /: A
& |
....................................... |
.......................... i
1 -
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Sample Value
Figure 8 - Sampling step in Latin hypercube sampling (LHS), from [18]

A sample will then be taken randomly from every interval of the input distribution, as
illustrated in Figure 9 and Figure 10 below. This method forces representation of values in all
intervals (stratifications), and consequently forces recreation of the input probability
distribution. In short; the space to be sampled from is divided into N equal partitions, and
then choosing a random datapoint in each partition. The technique being used during LHS is

“sampling without replacement”.



32

10

08

06

Parameter 2
.

04

02

00

00 02 04 06 08 10

Parameter 1

Figure 9 — Two-dimensional random sampling of a uniform Random LHS with 5 samples

—

\[ |/ flx)

Figure 10 - Latin Hypercube Sampling Concept from [19]

4.2.0ptimization

4.2.1. Measures of model performance

The coefficient of determination, Rz, is a regression score metric used as a measure of
prediction accuracy. The best possible score is 1.0, and depending on how it is calculated, it
can return negative values or 0 as the lowest score. In this project, the Rz is calculated using:

Yy — 1)?

R?=1-SSE/SST =1~ 2l
/ E(y —u)*

Where § and y are the predicted and true output values, respectively. § is calculated as the
mean of the true output values. When using this general form of calculating the coefficient of
determination, it follows that it can have negative values. A constant model that always

predicts the expected value of y, disregarding the input feature would get an R2 score of 0.0.
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R2 can be considered a measure of explanatory power, (not necessarily model fit). High
values indicate that the regression model has statistically significant explanatory power. The
measure can also be viewed as the percentage of the response variable variation that is
explained by a linear model, and 1) 0 % indicates that the model explains none of the
variability of the response data arounds its mean and 2) 100 % indicates that the model
explains all the variability of the response data around its mean.

However, while R-squared provides an estimate of the strength of the relationship between
your model and the response variable, it does not provide a formal hypothesis test for this
relationship. The E-test of overall significance determines whether this relationship is
statistically significant. Low Rz values are not always bad, and high Rz values are not always
good [20], but when comparing models and features included, one could use the R2 score as

an indicator of whether the models worsens or improves (increased value of R2).

Mean Squared Error (MSE) is a common quality measure an estimator. It measures the
average of the squares of the prediction errors (see equation XX). Here § being the predicted
values, and y being the vectors of true values.

MSE =+ 3 (3 - 5)°

n i=1

The best regression model in this project is the one that minimizes the function SSE while
also optimizing the coefficient of determination, Rz.
In general, a model fits the data well if the differences between the observed values and the
models predicted values are small and unbiased. Before one looks at the statistical measures
for goodness-of-fit, the residual plots should be inspected [21]. Residual plots can reveal

unwanted residual patterns that might indicate biased results more effectively than numbers.

4.2.2. Feature engineering

Feature engineering is a significant part in creation of intelligent systems. As illustrated in
Figure 11, the engineering/creation of new features is an essential part of model development.
Even though there exist good methodologies for (automated) machine learning, each problem

is domain specific and will improve performance if given better features (suited to the


https://blog.minitab.com/blog/adventures-in-statistics/what-is-the-f-test-of-overall-significance-in-regression-analysis
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problem task). It is a chance for introducing human/domain knowledge into a model, to make

the model more robust and thus perform better on unseen data.
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Figure 11 - Model development pipeline, the role of Feature Engineering from [22]

Feature engineering is improving the model by adding new features to the dataset, containing
information that is expected to introduce new and relevant knowledge to the problem to be

solved. For an extensive elaboration on practical feature engineering, see [23]

4.2.3. Feature selection

Feature selection is the process of reducing the number of input variables when developing a
predictive model. It is desirable to reduce the number of features in a model, mainly for
computational costs, but in some cases, it might also improve predictive performance. The
goal is to reduce the number of features such that the remaining ones are the most relevant for
prediction of the target variables. Some predictive modelling methods include a large number
of variable inputs. This can slow down the development and training process, and also
require larger system memory capacities. Feature selection can also be related to
dimensionality reduction techniques since both methods result in fewer components for the
model to be trained on, and thus increasing the computational efficiency. The difference here,
however, is that dimensionality reduction is disregarding the features not considered relevant
for the predictive mapping, whereas dimensionality reduction is creating a projection of the

input data, resulting in entirely new input features.
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5. Materials

This section contains information about the working environment setup and necessary
packages for implementations of the models described in Chapter 6 Methods. It will also
include a brief description of why these libraries were chosen. Full access to all files and

implementation (including test scripts) can be found in the open GitHub repository [4].

5.1. Working environment

Some issues were encountered regarding packages and integration of NEST (see 5.3.1) and
PyPet (see 5.3.5), that was discovered when attempting to hierarchically store simulation
output/results in Pandas DataFrames handled by PyPet.

To resolve these issues in the environment setup, it was necessary to make some minor
changes in the source code of the PyPet package. It issue was related to mishandling of data
structures when using Pandas Dataframes from the NEST simulation output and followingly
store it in the trajectory (hierarchical structure).

A change to one of the source files was necessary:

In the following file: “lib/python3.6/site-packages/pypet/storageservice.py

The following lines but be inactivated by commenting them out or deleting them:

Table 1 - Solving issue with package integration, Lines to inactivate

Line number 4186 4201 4202

After installing the packages/ libraries above and commenting out the lines mentioned, the

environment is setup and ready.

PyPet requirements:
Pytables >=3.1.1
Pandas >= 0.23.0
HDF5 >=1.8.9
Numpy >= 1.13.0
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5.2. Modules in project

A complete list of project requirements can be found in the Appendix. An overview can be

seen in table below:

Table 2 - Overview of important project modules

1 pandas==1.0.1

2 matplotlib==3.1.3

3 scikit_fuzzy==0.4.2
4 numpy==1.18.1

5 featuretools==0.16.0
6 scikit_learn==0.23.2
7 matplotlib==3.1.3

8 pypet==0.4.3

9 neo==0.8.0

10 smt==0.3.4

11 elephant==0.6.4

12 quantities==0.12.4
13 nest==1.3.0

5.3.Description of packages (external)

5.3.1. NEST — Network simulation tool

NEST [24] is a simulation tool that allows for exploration and understanding of biologically
realistic neural networks. It is a high-performance neuronal network simulator that is used for
diverse applications in computational neuroscience. Some key features include built-in
methods for creating neurons, connecting them and assessing activities using measuring
tools. NEST offers a selection of 50 different neuron models, 10 synapse models, and has
minimal dependencies (only requires a C++ compiler). The implementation of NEST in this
project is based on the work done in [8], where a part of the goal was to verify that the
implementation could reproduce results described in Brunel’s [3] paper on exploration of
network states.

The network design specifications described in Brunel’s model A are also used here, except
the parameters tuned within the given parameter space (belonging to the Al-state) to create a

dataset for further exploration of the metamodelling processes described in section 6.5
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Metamodelling procedures. For an overview of parameters used in the NEST network
simulation, see section 6.2.1 Simulations using NEST. Running a simulation using these
parameters and specifications results in an overview of recorded spikes from a given number
of neurons in the network. These spike-patterns serves as a basis for the creation of statistical

measures used as targets/responses (Y) in the modelling procedure.

5.3.2. Featuretools (Deep Feature Synthesis)

Feature engineering can be crucial in many machine learning projects but can be difficult and
time consuming if one is not deeply familiar with the data and domain. Featuretools [25] is a
tool for automated feature engineering (see section 4.2.2 “Feature engineering”), by using
Deep Feature Synthesis (DFS) on the given data. It can also handle temporal and relational
datasets, and thus transforms it into feature matrices for machine learning. This allows for an
automated process of creating new features, which is generalized and fits all datasets with
equal structures (samples as rows and features as columns). It comes with a range of different
options for aggregation of existing regressors, but one can easily create and add tailored
functions, called primitives, (for example if adding domain knowledge-based criteria and

filters) if necessary.

The features created by DFS are produced based on Feature Primitives, the building blocks of
Featuretools. They define the individual computations that are applied to the raw data given
as input to creates new features, and they are separated into two types; aggregations and
transformations. The transformations (used in section 6.4.1 Transforming Features) are
applied to columns in a table/dataset, whereas aggregations are applied across multiple tables
with a defined relationship (parent/child relationship defined).

By breaking common feature engineering calculations into their primitive components, one is
able to capture underlying structures of the features that human creates when doing feature
engineering “manually”. Thus, by using this automated feature calculations/engineering one
can include domain knowledge (see section 4.2.2 Feature engineering) into the model,
without extensive work.

Featuretools provides a range of created primitives to choose from, but custom primitives are
easily created and added if necessary. For an example on how to implement this, see
Appendix F, where DFS is used for applying feature engineering to the dataset.
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5.3.3. Scikit Learn — PLSR Regression

Scikit Learn [26] provides a class for PLSRegression; PLS2 for block regression and PLS1 in
case of one-dimensional response. This class implements: the NIPALS: algorithm, and the
method scales the input data (Model Parameter ‘Scale’ = True by default). In this model
design (see section 6.6 Metamodelling Procedures), the global and local modelling is done
using SkLearn PLSRegression.

5.3.4. SkFuzz — Fuzzy clustering and prediction

The SciKit-Fuzzy [27] library is a fuzzy logic toolbox for SciPys, written in python
programming language. The fuzzy logic principles work by assigning (cluster) membership
values to all samples in a multidimensional dataset. The membership value for a sample is
calculated based on the similaritiy with each cluster center, and all samples has a sum of
100% cluster belonging in total. This is a soft clustering technique more elaborated in section
4.1.7 “Fuzzy C Clustering”. The module creates cluster centers using training data in the
skfuzzy.cmeans()-method, and followingly predicts cluster belongings to new and unseen
data by skfuzzy.cmeans_predict(). The Fuzzy Partition Coefficient (FPC) is defined on the
range [0,1], and describes the separability between the clusters, i.e. how cleanly the data is
being described by a certain model. When FPC is maximized, the data is optimally described
by the fuzzy clustering algorithm. To illustrate the FPC coefficient, see Figure 12 -

[llustration of FPC from [27] below, where one clearly sees how the coefficient is at its

highest when the clusters are separated as expected.



https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/cross_decomposition/_pls.py#L266
https://cran.r-project.org/web/packages/nipals/vignettes/nipals_algorithm.html
https://www.scipy.org/
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Figure 12 - lllustration of FPC from [27]

5.3.5. PyPet — Hierarchical organization of work

PyPet [28] is a python parameter exploration toolkit that provides a functional framework
that manages exploration of a defined parameter space by running numerical simulations and
storing the resulting data in a hierarchical manner. PyPet creates a trajectory containing all
the data, and stores it as a hierarchical HDF5 file, which is easily accessible to read and
navigate in using an HDF-file reader

It also organizes the resulting data (simulation outputs) together with the corresponding
input-parameters, so that one easily can have full access to historical runs and parameters
used. In addition to this, supplementary information can also easily be added to the hierarchy,
such as extra summaries, calculations, statistical measures, textual descriptions and notes. It
also allows for adding upcoming (new) simulations and parameter inputs, thus is a

convenient tool if continuing work is to be done on the project.

Running an experiment in PyPet happens in an “Environment”, that works as the logic

controller for filling parameters and results in the correct manner. The advantage here is that
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the environment takes care of issues like logging (useful in cases of interrupted experiments),
multiprocessing logistics, memory capacities, and other logistic matters. It also provides a
direct integration with Git, offering a convenient way of storing backups and work progress.
For explanation of the use of PyPet Trajectories in this project see Appendix H.

5.3.6. Latin Hypercube Sampling from SMT

The Latin Hypercube Sampling (LHS) [29] is a widely used method to generate controlled
random samples [30], and is a way of generating random samples from a defined parameter
space. The SMT (Surrogate Modelling Toolbox) has a library for sampling methods, and
herein is the LHS method implementation. Five criteria for the construction of LHS are
implemented in SMTa :
1. Center the points within the sampling intervals
2. Maximize the minimum distance between points and place the point in
a randomized location within its interval
3. Maximize the minimum distance between points and center the point
within its interval
4. Minimize the maximum correlation coefficient
5. Optimize the design using the Enhanced Stochastic Evolutionary
algorithm (ESE)

5.3.7. Elephant — Adding Statistics

Elephant (Electrophysiology Analysis Toolkit) [31] is a library for analysis of
electrophysiological data. It offers generic analysis functions for spike train data and time
series recordings from electrodes (such as Local Field Potentials, LFP, of intracellular
voltages). It is used in this project because it provides a consistent analysis framework that is
built in a modular and manageable way. It is specialized in handling spike trains, the

foundation of the data generated in section (data generation).


https://smt.readthedocs.io/en/latest/_src_docs/sampling_methods/lhs.html
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5.4.Implementation design choices

It is hard to know in advance exactly what constellation of modelling options that will result
in the better performance results. Some sort of “trial and error”-way of working is often
required, but to reduce the amount of tedious and cumbersome work is always to be
preferred. It was therefore, as mentioned, a sub goal to structure the implementation in such a
hierarchical way, so that a “general” model produces the benchmark for the dataset and the
following options of architectures could be used strategically on the search for better
performing model variations. Sometimes, the best of a few model options might pinpoint
direction of which type of modelling strategy that works for the given dataset, and one can
start tune and prune the better performing model to be further improved. The benchmark
model (the main model) is the root of a tree with many branches representing options for
model variations to test.

This can be a good way of creating modelling architectures, that encourages for different
fields to also use and explore the possibilities of modelling without having to be a Data
Scientist (or similar). To create standard methodologies that can be used by many scientists
interested in modelling, without knowing exactly how to explore the infinite varieties of
modelling strategies that can be applied, invites to cross-disciplinary projects and facilitates

collaboration across fields of sciences.

6. Methods

6.1. Overall metamodelling pipeline

When data was formed and available by preprocessing and preparation, the strategy (of HC-
PLSR [2]) was to model this data using a global model, then clustering the resulting model
output (scores) into smaller segments, and followingly creating local regression models for
each clustered batch of data.

The hypothesis is that this way of clustering the data will account for some of the non-
linearity in the data, that one single regression model cannot capture alone. Several ways of
combining different clustering methods and regression models was tested (further described
in section 6.6). In general, the PLSR was used as a regression method, because it removes the
issue of multicollinearity in the data, and also gives the option of modelling using only some

of the principal components. Clustering is introduced as an attempt of handling non-
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linearities in the data that one PLSR model cannot account for alone. Two different clustering
methods were tested, the K-Means (see section 4.1.7) and the Fuzzy C Means (see section
4.1.8). Clustering was intended to pick up patterns from the scores created by a global PLSR
model, and thus labelling and grouping together samples with more in common. Local PLSR
models for each cluster was then created, based on the belonging samples.

Predictions were made by projecting new samples onto the new feature space defines by the
PC’s of the global model, and then a) predicting using the local PLSR model belonging to the
cluster the sample was labeled with b) calculate a weighted sum of all prediction made by the
local models, where the Fuzzy-C cluster probability serves as weights for the regression

coefficients.

6.2.Data generation implementation. (network creation, simulation, storing)

The dataset is generated by using NEST (see section 5.3.1 NEST — Network simulation tool)
for simulation of a neural network as described by Brunel [3] (mentioned in section 4.1.4
Neural networks). The simulation output results are one spike pattern/spike train for each
recorded neuron, thus creating a matrix of all (recorded) neurons and their spikes at any given
time (see Figure 5 for example). These spiking patterns (spike trains) form the basis for
creation of response variables (see section 6.4.2 Adding statistics /spike train summaries
using elephant), by calculating statistical measures described in section.

The characteristics of the spike trains change when varying the simulation input parameters
g, J, eta and D [3].Thus, in order to simulate different outcomes and tendencies in the spike
patterns, the parameter space was sampled randomly using LHS (see 4.1.11 Latin Hypercube
Sampling from SMT). The four parameters were varied within the parameter ranges
belonging to the Al-state of network activity. The Al-region of network behavior is the most
common state to be measured in the cortex, and it was therefore decided to begin the model
exploring on this parameter region. When a model created on this parameter range is
sufficiently good, one might include wider parameter ranges for incorporating different

network tendencies to the model.

6.2.1. Simulations using NEST

The network (Model A) described by Brunel was simulated and tested to verify that the input

settings and the simulation outputs were consistent with the resulting states described in [3].
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The tool used for creating and running the network simulation was, as mentioned previously,
the NEST simulation toolbox. Description of how to implement and test the network design

and simulation can be found in [8]. Parameter and variable settings are specified in the table

below (see Table 3), and the script for creation of the network is included in Appendix K.

Parameters marked with [*] are default values from Brunel (Model A) [3].

Table 3 — Table of parameters for simulation of Brunel Network Model

Symbol Value Explanation

dt 0.1 Simulation resolution in NEST, and bin size for
histogram plots

simtime 1100 ms Duration of the experiment simulation in [ms]

simlation Cutoff | 100 ms

D Interval [1.0, 2.5] Transmission delay, axonal propagation as a
time delay. Represents Synapse delay between

neurons, in [ms]

J Interval [0.05, 0.4] | EPSP (Excitatory post synaptic potential)
amplitude. Synapse weight between neurons.

eta Interval [1.5, 3.0] n = Vext/Vthr

g Interval [4.5, 6.0] Relative strength of inhibitory synapses.

Inhibitory synaptic strength, relative to

excitatory synaptic strength.

V_ext Frequency of external input

Epsilon [*] 0.1 Connection probability. Excitatory Neurons *
epsilon = number of synapses per neuron

Order 2500 Defining relation between excitatory and
inhibitory neurons. Relative number of neurons
in network.

N_rec 50 Number of neuron to be recorded durng
simulation

Num_threads 10 Number of cores used for processing.

Simulation in threads for parallelizing.
print_report True Simulation variable, if set True; prints progress

as output throughout simulation.
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input_stop False If > 0, stops input signals after the given ms has
passed

Ne [*] 10 000 Number of excitatory neurons

Ni [*] 2 500 Number of inhibitory neurons

Ce [*] 1000 Number of excitatory connections per neuron

Ci[*] 250 Number of inhibitory connections per neuron

6.2.2. Sampled feature space

As previously mentioned, the varied simulation inputs were parameters g, j, eta and D (see
section network desc), and the intervals sampled from is seen in Table 3 above. In order not
to introduce bias in the model by introducing imbalanced data, the parameters were sampled
evenly using the LHS sampling method (see 4.1.11 Latin Hypercube Sampling) with 500
sampling points (see script in appendix L). This also results in being able to ignore the
possibility for outliers, since the data was created from deterministic modelling where

features (the parameters) has been selected and created intentionally.

6.3.Data Handling

To attain the dataset, it was required to run several simulations. All simulation runs were
using different combinations of parameters. It was a priority to handle this part of the
modelling process in a functional way that transfers well across simulation tools, parameters
to tune etc. This because new universal methodologies for creating models can widen the
reach of use of such modelling methods and make it more accessible for other scientists to

benefit from its advantages.

Accessing data via natural naming and grouping the data into meaningful categories and
support for many different data formats are some of the most attractive features for this type
of data generation and modelling. Therefore, the PyPet parameter exploration toolkit was a
convenient tool for creating and storing the resulting data. Data formats that PyPet supports
include python natives, lists, tuples, dictionaries, Numpy arrays and matrices, Scipy sparse
matrices, Pandas Series, DataFrames and Panels (and BRIANZ2 quantities and monitors). All

of the mentioned datatypes happen to be used in this project, and PyPet allows/aims for it all
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to be seamlessly combined into a convenient workflow. After simulation results were stored
(together with the corresponding simulation parameters), the calculation of additional
statistics (correlation of variation, covariance matrices, correlation matrices and fanofactor,
see section 6.3.2) were inserted to a Pandas DataFrame and saved with the corresponding
simulation run. The dataset used for further modelling where extracted from the trajectory as
a simple csv-file. Using a dataset from a csv-file for modelling is the norm in Data Science,
and thus was chosen as a natural choice for data flow for generalization purposes. The dataset
(csv format) contains 500 simulations (rows), 4 simulation parameters (features, predictors)
[0, ], eta, D] and 4 response variables (targets, Y), thus a 500*8-matrix. Both the trajectory
file (HDF5 format), the resulting csv-file and the scripts for generating them can be found in

the open project Github repository [4] and in the Appendix.

6.4.Data preprocessing

6.4.1. Transforming Features

As a part of comparing performance of different modelling strategies, an option to improve
modelling performance for linear regression models is to include interaction terms and higher
order terms to the regressors (X). See a discussion of collinearity and interaction terms
section (4.1.10). This was done using the Python library Featuretools and the functionality
Deep Feature Synthesis (see section5.3.2). To continue the work in a direction that
generalizes well, a selection of common aggregations was used when creating the additional
terms. Primitives included in this model were:

[add_numeric, multiply_numeric, logarithm, square_root, squared, cube]. The name Deep
Feature Synthesis comes from the methods ability to stack these primitives to in turn generate

more complex features (example multiply ( log(a) + log(b)) ). Each time primitives are

stacked, the “depth” of a feature is increased. This is controlled by the max depth parameter,

and it controls the maximum dept of the features returned by DFS. For some experimentation

in the modelling process, some of the new features were excluded, but the widest set of new

features was created using max depth=1:

Original features:
['g, 'eta’, J, 'D]
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DFS features (new features, cross terms):

['g', ‘eta’, J','D', 'eta+J,'D + g‘, 'D+eta, 'D+1J, 'g +J,
‘etat+tg,'eta*J),'D*g,'D*eta,'D*J,'g*J, 'eta*g,
'LOG(eta)", 'LOG(J), 'LOG(g)', 'LOG(D)', 'SQUARE_ROOT (eta)',
'SQUARE_ROOT(J)", 'SQUARE_ROOT(g)', 'SQUARE_ROOT(D), 'SQUARE(eta)',
'SQUARE(J)", 'SQUARE(g)', 'SQUARE(D)', 'CUBE(eta)', 'CUBE(J),,
'CUBE(g)', 'CUBE(D)

The implementation of DFS and transformation of features is added in Appendix F and also

available in the open project Github-repository [4].

6.4.2. Adding statistics /spike train summaries using elephant

When creating this metamodel, it has been an angle of approach to try to map the network
spiking tendencies by (only) assessing the input parameters, and their resulting spiking state
measures. Elephant (5.3.7), is an open source generic tool that provides analytic functions for
spike train data and time series recordings, as well as statistics especially for spike trains.

A variety of different descriptive measurements/summaries of the spike patterns were
computed, using this package (Appendix M + E ).

Statistics used as targets for this modelling were summaries like:

Table 4 - Creating of Statistical measures overview

Type Shape Comment

Fanofactor 50x1 list

Coefficient of Variation [CV] 50x1 list

Coefficient of Correlation 50x50 matrix Calculated the mean of
[CCorr] the triangular matrix,

thus a summary of the

matrix becomes a 50x1-

shaped list
Coefficient of Covariance 50x50 matrix Calculated the mean of
[CCov] the triangular matrix,

thus a summary of the
matrix becomes a 50x1-

shaped list
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6.4.3. Standardizing/scaling

The idea of scaling is to make the models more robust to analysis on feature spaces. Some
algorithms, like PCA and KNN, are sensitive to the metric spaces, will be more weighted
towards features with higher numbers (i.e. towards 5000g instead of 5 kg, even though they
represent the same), and this is where scaling becomes handy. Scaling does not affect the
significance of features; in contrast it improves analysis of data.

In this project, the standard scaling was done on the input data before creating PLSR-model
(by using the internal scaler from Scikit Learn), and on the input data before creation of
clusters (i.e. on the scores from the global PLSR model, see section 6.6 “Metamodelling

Procedures”)

6.5.Data inspection

The data is a result of deterministic modelling, and therefore; outliers and missing values are
not present in the dataset. Below is the dataset visualized in two figures, firstly the original X
and Y, and in the second figure, the first 15 scores are plotted against each other (Xscores VS.
Yscores). AS seen, the cov_mean variable is fairly close to zero and might not contribute with
much in the modelling. However, it was decided to be included, as it is expected to change
characteristics when the parameter ranges are altered to contain values corresponding to the

other network states (synchronous regular states [3]).
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6.6.Metamodelling Procedures

Two objectives were explicitly prioritized when designing the implementation and
framework for this model. Firstly, it was a goal to implement a method that allows for
different varieties of data, with equal structure (n samples * k features). In addition to this,
the performance of models varies a lot when the dataset/type of data is altered. Therefore, as
a second quality of this project was to prepare for exploration of different architecture-types
/meta modelling design, to easily explore what type of structure design that optimized

performance for the given dataset at hand.

Optimization of a metamodel is not a defined concept, since it is highly dependent on the
type of data the model is used on. Thus, a selection of tested strategies and some further
development on these ideas were selected. When that is stated, a list of recommendations for

further exploration has been formed (section 0
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Further work) that is especially suitable for low effort implementations (since already

considered in creation of this project).

- Optimization techniques for the metamodel was in this project, the exploration of;
- different number of added features (cross and higher order terms)

- different clustering/classifier methods for clustering the scores

- Clustering on X scores vs clustering on y scores

- “Weighted Sum Prediction” vs. “Best Cluster Prediction”

- Parameter tuning for the clustering methods

- Outlier restrictions for cluster models and local models

Both the global and local PLSR models contains the optimal number of principal
components, and this was determined based on the lowest MSE of the predictions of the
response matrix Y, calculated by using cross-validation. A 10-fold cross-validation was used,
where data was split randomly into ten segments. Then, 10 PLSR models were then created
based on 9/10 segments and prediction was made by using the last segment.

The clustering method splits up the output space defined by the global model, i.e. clustering
is then done on the scores from the fitted PLSR model. The original samples are then labeled
according to the cluster belonging, and for each of the cluster labels, a local PLSR model is

created (based on the samples for that cluster label). See figure below for illustration.

fuzzy_Clustenng results

AAAAAA

Figure 15 - Illustration of 3 PCs with cluster labels (colored green, yellow and pink)

Clustering of the scores were consequently always done on the first 3 components. The PLSR
methods from Scikit Learn has a build in scaler that standardizes the data before fitting the

model and turning this of worsens the resulting prediction. Thus, it was left “on”.
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Standardization of input data for the PLSR models improved modelling performance,

standard scaling of the PCs before clustering did also improve prediction accuracy.

This was implemented by 1) using the built in scaler (default=True) from SkLearn’s

PLSRegression method, and 2) using SkLearn’s StandardScaler() for scaling the principal

components before training the clustering algorithm. It should be noted that scaling for the

PLS models happens after the DFS creates new transformed features, thus the new features

are created on original regressors (X) and not on the scaled ones like done in [2].

In an attempt of improving performance, a plan to optimize the models was outlined. The

approach resulted in a “modelling variations”-scheme, where the main steps of the HC-PLSR

has tuning options defined in Table 5 - Model Variations for all steps in the meta model

pipeline.

All these model variations were compared to the performance of a single PLSR, and the

result is described in an overview table (section 7.3)

Table 5 - Model Variations for all steps in the meta model pipeline

Step 1 Step 2 Step 3 Step 4
Global model Clustering Local models Prediction comments
Orlglnal features AlgOI‘Ithm Welghted sum

Added cross
combinations and
higher order

terms

Outlier restrictions

scores to cluster

Added cross
combinations and
higher order
terms

Limit ot
minimum number
of samples | a
local model
Limit (lower
threshold) of
cluster belonging
(if soft
clustering)

Best cluster

prediction

Weighted sum

I'he N most
relevant clusters
form a weighted

sum prediction
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Assessing and tuning of the model combinations described above were carried out in a

standardized way. The hyperparameters tuned for each model variations are described in

Table 6 - Hyperparameter tuning overview . The procedure of tuning was equal for all meta

model variations, and the best performing hyperparameter combination were noted as the

result in Table 11 - Model options and best performing model result.

Table 6 - Hyperparameter tuning overview

Global model Clustering

Cv Fuzzy C Means:
Fuzzifier

Number of principal Number of clusters

components

I est size tor dataset HDBScan:
Distance

Minimum number of

samples in cluster

7. Results

Local models

Cv

Number ot Components

Outhiers excluded from

local modelling

Comments

This section describes the resulting model architecture and performance of a selection of the

tested model variants. The metamodelling descriptions are in turn split into 3 different

varieties with interesting resulting performances. In general, clustering on X-scores of the

global PLSR model yielded the better results for “weighted sum” prediction and for the “best

cluster” prediction. However, it looks like clustering of the Y-scores were able to

split/separate the datapoints into more “natural”-looking clusters This is illustrated below;
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fuzzy_Clustering results

Figure 16 - Visualization of clustering on the Y_scores

fuzzy_Clustering results

Figure 17 - Visualization of clustering of the X_scores

A variation of the metamodel architecture was tested (Called Version 2), where the global
model is trained on the original features, and the local models are polynomial (added
interaction terms). This variation gave the best improvement in prediction accuracy,
compared to the signle PLSR model for comparison.

Since clustering on the Yscores requires the global model to predict the target before it is
transformed to the new feature space (spanned by the PCs), two global models were created;

one polynomial for high prediction accuracy, and a second based on the original features that
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is used for the projection of the datapoints before clustering. This gave a slight improvement

in the prediction results.

7.1.Data preparation

Feature engineering as described in 6.4 Data preprocessing, resulted in the following feature

transformations (cross and higher order terms):

Original features:
['g, 'eta’, J, 'D]

DFS features (new features, cross terms):

‘etat+g,'eta*),'D*g,'D*eta,' D*J,'g*J, 'eta*g,

'LOG(eta)', 'LOG(J)', 'LOG(g)', 'LOG(D)', 'SQUARE_ROOT (eta)',
'SQUARE_ROOT(J)', 'SQUARE_ROOT(g)', 'SQUARE_ROOT(D)', 'SQUARE(eta)',
'SQUARE(J)", 'SQUARE(g)', 'SQUARE(D)', 'CUBE(eta)', 'CUBE(J)',

'CUBE(g)', 'CUBE(D)1]

This is a result of max depth=1 in the DFS tool. The new dataset (with the transformed

features) were then the input of the PLSR-optimizer function (see Appendix D), where the
optimal number of PCs where included in the resulting PLSR models (used for creation of
both global and local PLSR models).

In creation of response variables (Y variables), statistical calculations of the spike train
matrices (NEST simulation results, section5.3.1) were created as described in (section 6.1.1
and 6.3.2). This resulted in a 4-dimensional response surface consisting of the measures:
fanofactor, coefficient of variation, coefficient of correlation, coefficient of covariance.
Since coefficient of variation, coefficient of correlation and coefficient of covariance are
calculations for each neuron, a summary (mean, median and maximum value) were tested.
The final dataset however, used mean as a statistical summary. When using median and

maximum value, predictive performance for the methods dropped drastically.



55

7.2.Combined Model Variations

Here are some of the resulting model variations outlined and explained. For a complete
overview, all model variations (and the resulting best performing version) that were tested are
included in Table 11 - Model options and best performing model result. The “split”
represents the train-test-split coefficient, indicating the relative (percent) amount of the total
dataset used for testing. (e.g. split=0.2 indicated that 20 percent of the dataset was used as

“unseen data” for model performance assessment).

7.2.1. PLSR original terms

Model created for comparison. No features added.
Split 0.3
R2 =0.885

MSE = 0.07
MAE = 0.037

Split 0.4

R2 = 0.879
MSE = 0.009
MAE = 0.040

7.2.2. PLSR Polynomial

Model created for comparison. New features from DFS (see section) added.
Split 0.3

R2=0.914

MSE = 0.004

MAE = 0.028

PLS

MSE

l:j 1I5 2:2- 2I5 3;2-
Number of PLS components

[}
[

Figure 18 - PLSR optimizer function of optimal number of components
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7.2.3. Variation a

HC-PLSR model variation (a) (Appendix A), where the clustering model is created on Y-
scores from the global PLSR model. The PLSR models (both global and local) are including
the transformed terms and components included in the models are chosen based on the
optimize-function in script Appendix D.

Model specifications are stated in the table Error! Reference source not found..

Table 7 - model specifications for HC-PLSR variation (a)

Split 0.3

Number of clusters 3

Fuzzifier coefficient | 8

Scores Y scores

In the following 3 figures, the clustering performance and the overall model performance is

illustrated.

fuzzy_Clustening results

Figure 19 — Clustering result on Scores, for variation (a)
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———— Global model
R2 glob: 0.914
b:

R2 glob: ©.520
MSE glob: @.002
MAE glob: 0.022

R2 glob: 0.902
MSE glob: @.001
MAE glob: 0.009

——— Cluster 2
R2 glob: 0.786
MSE glob: 0.011
MAE glob: @.@53

——— Weighted sum:
R2 glob: @.854
MSE glob: 0.010
MAE glob: 0.046

R2 glob: 0.902
MSE glob: 0.005
MAE glob: 0.031

Figure 22 - Performance of model variation (a)

7.2.4. Variation b

HC-PLSR model variation (b) (Appendix A), where the clustering model is created on X-
scores from the global PLSR model. The PLSR models (both global and local) are including
the transformed terms and components included in the models are chosen based on the
optimize-function in script Appendix D.

Model specifications are stated in the table Error! Reference source not found..

Table 8 - model specifications for HC-PLSR variation (b)

Split 0.3

Number of clusters 3

Fuzzifier coefficient | 1.1

Scores X scores
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In the following 3 figures, the clustering performance and the overall model performance is

illustrated.

fuzzy_Clustenng results

Figure 23 - Clustering result on Scores, for variation (b)
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Figure 24- Clustering results on original data, for variation (b)



fuzzy_prediction TEST

60

Figure 25 - Clustering Prediction method on scores, for variation (b)
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Figure 26 - Y_predicted vs Y_true plot, predictions from each cluster in different color, for variation (b)



——— Global model
R2 glob: 0.914
MSE glob: ©0.004
MAE glob: ©0.028

—— Cluster @

R2 glob: @.930
MSE glob: 0.002
MAE glob: 0.019

Cluster 1
R2 glob: 0.925
MSE glob: 0.000
MAE glob: 0.010

——— Cluster 2
R2 glob: 0.841
MSE glob: ©.009
MAE glob: 0.044

——— Weighted sum:
R2 glob: 0.922
MSE glob: 0.004
MAE glob: ©.025

——— Best_cluster_prediction:
R2 glob: 0.921

MSE glob: 0.004

MAE glob: 0.026

Figure 27 - Performance of model variation (b)

61



62

7.2.5. Variation c

HC-PLSR model variation (c) as Version 2 (Appendix B), where the clustering model is
created on X-scores from the global PLSR model. The global PLSR is created on original
features, whereas the local PLSR models include the transformed terms. The number of
components included in the PLSR models are chosen based on the optimize-function in script

Appendix D.
Model specifications are stated in the table Error! Reference source not found..

Table 9- model specifications for HC-PLSR variation (c)

Split 0.3

Number of clusters 3

Fuzzifier coefficient |5

Scores X scores

In the following 3 figures, the clustering performance and the overall model performance is

illustrated.

Figure 28 - Clustering result on Scores, for variation (c)



63

175 " - -
150 . . .
- . & . g Ty . &
125 .« 3 » . H o .
5 100 . . . :5 " o.. . ...o .;". :.. . *°* - :
% 075 ..: ...:‘.5 s :f ...:‘ Ly ;'.. . . ... 2.; % gf.‘.'.
3 1 * 1 ey -y, &
Bo| EAN et ] 2 e o R xRl
| & BT | Al
on) Sl | SRS By
000 | SRS SeRRRE | ORI e oSty Rahe
10 . . . ] Ses
.. ) foly .....:fg‘d. e 5 Oe,.{z%. ..;.‘q. ..'.....g. - :o
R IR TN L R - o B
. 3% ?;.‘%m"-. P e % @..é" Ty .’i
.| Boadh 2Rt | Serogun .t Gt Sedle,cefated &
© 069 % .0'5“5.%;5% } % T8 et oot 2 ;E&."
N A A Siaot " oin 408 %o P S B
5 04 o0 et t Ul IR O et .-'i'-a"; a'."
S SIS 2o o RS eSfat s, SN2 MUY D )
02 "!.20;:,;‘-0 e 1 3...5“:53 o L &..g.“ .
.nv‘ﬁ:o' A O ot - d"‘%ut‘.‘. r; '*?fa .lno.. L
00 T T T T T T T T T T T T T - label
003 « 0
« 1
0oz 4 . 2
§ 001 1 1
u : ae [ L R ) - ot L)
E ’”%&' = e @ 4 T S L] L e ) sl
5' oo0] **ﬁééﬁﬁ?ﬁ Gasadias & e’ ’EE?E"M. TaNnes | iﬁ%@iﬁﬁ?ﬁ s
—0.01
_002 T T T T T T T T T T T T T
002
00l A
5
E 0.00 1 #0008008 08 S80S0 880 08 18 4 imeerenecmrminm -
§|
—0.01
-0.02 R
11z B i 5 6 7 1 3 1 i1 5 6
[1] eta D
Figure 29 - Clustering results on original data, for variation (c)
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Figure 30 - Y_predicted vs Y_true plot, predictions from each cluster in different color, for variation (c)




———— Global model
R2 glob: 0.914
MSE glob: 0.004
MAE glob: @.028

luster @
R2 glob: 0.925
MSE glob: 0.000
MAE glob: @.007

——— Cluster 1
R2 glob: 0.928
MSE glob: @.001
MAE glob: @.013

luster 2
R2 glob: 0.870
MSE glob: @.007
MAE glob: ©.038

——— Weighted sum:
R2 glob: 0.871
MSE glob: ©.010
MAE glob: ©0.043

——— Best_cluster_prediction:
R2 glob: @.927

MSE glob: @.004

MAE glob: @.024

Figure 31 - Performance of model variation (c)
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7.2.6. Variation d
HC-PLSR model variation (d) as Version 2 (Appendix B), where the clustering model is
created on Y-scores from the global PLSR model. The global PLSR is created on original
features, whereas the local PLSR models include the transformed terms. The number of
components included in the PLSR models are chosen based on the optimize-function in script

Appendix D.
Model specifications are stated in the table Error! Reference source not found..

Table 10 - model specifications for HC-PLSR variation (d)

Split 0.4
Number of clusters 3

Fuzzifier coefficient | 2
Y scores

Scores

In the following 3 figures, the clustering performance and the overall model performance is

illustrated.

fuzzy_Clustering resuits

Figure 32 - Clustering result on Scores, for variation (d)
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Figure 33 - Clustering results on original data, for variation (d)
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——— Global model
R2 glob: ©0.920
MSE glob: 0.006
MAE glob: 0.031

——— Cluster @

R2 glob: ©0.880
MSE glob: 0.000
MAE glob: 0.009

—- Cluster 1

R2 glob: ©.854
MSE glob: 0.001
MAE glob: 0.011

—— Cluster 2

R2 glob: ©.782
MSE glob: 0.011
MAE glob: 0.047

——— Weighted sum:
R2 glob: 0.913
MSE glob: 0.005
MAE glob: ©.030

—— Best_cluster_predicti
R2 glob: ©.914
MSE glob: @.005
MAE glob: 0.027

Figure 35 - Performance of model variation (d)
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7.3.0verview of performance results
7.3.1. Total overview of model variations
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Performance marked in green is exceeding the performance of the comparing model (PLSR).

Version 1 models (V1) uses same variation of linear/non-linear on the global and local

models, whereas Version 2 models (V2) uses linear PLSR model as a global model, and non-

linear local modelling.

Table 11 - Model options and best performing model result

Features in
global PLSR

Original

Polynomial

Original

Original

Score | Clustering | Features in
s used | Algorithm | Local PLSR
in

Clust
ering
X Fuzzy C Original
Y Fuzzy C Original

Result

Split 0.3

R2 =0.885
MSE = 0.07
MAE = 0.037

Split 0.4

R2 = 0.879
MSE = 0.009
MAE = 0.040
Split 0.3

R2 =0.914
MSE = 0.004
MAE = 0.028

Split 0.3

Weighted sum:

R2 =0.889
MSE = 0.006
MAE =0.036

Best cluster:
R2 =0.897
MSE = 0.006
MAE = 0.036

Split 0.4

Weighted sum:

R2 =0.859
MSE = 0.009
MAE =0.039

\Version

V1

V1

Notes

Linear PLSR model for
comparison, with
optimal number of
principal components
included in the model
Ch.8.2.1

Non-linear PLSR model
for comparison, with
optimal number of
principal components
included in the model
Ch.8.2.2
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Best cluster:
R2 =0.896
MSE = 0.005
MAE = 0.029

04

Polynomial

Fuzzy C

Polynomial

Split 0.3

Weighted sum:

R2 =0.922
MSE = 0.004
MAE = 0.025

Best cluster:
R2 =0.921
MSE = 0.004
MAE = 0.026

V1

05

Polynomial

Fuzzy C

Polynomial

Split 0.3

Weighted sum:

R2 =0.854
MSE = 0.010
MAE = 0.046

Best cluster:
R2 =0.902
MSE = 0.005
MAE =0.031

V1

06

Original

Fuzzy C

Polynomial

Split 0.3

Weighted sum:

R2=0.871
MSE = 0.010
MAE = 0.043

Best cluster:
R2 =0.927
MSE = 0.004
MAE = 0.024

V2

07

Original

Fuzzy C

Polynomial

Split 0.4

Weighted sum:

R2=0.913
MSE = 0.005
MAE = 0.030

Best cluster:
R2 =0.914
MSE = 0.005
MAE = 0.027

V2
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7.3.2. FCP Inspection

Fuzzy Partition Coefficient (FPC) for X scores using original:

0.55 1

0.50 1

0.45 1

0.40 1

Fuzzy partition coefficient

035 1

0.30 1

] 8 10 12 14
Number of centers

[N
s

Figure 36 - Clustering on X_scores, Fuzzifier = 2
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Figure 37 - Clustering on X_scores, Fuzzifier = 1.1




7.3.3. Number of clusters and fuzzifier inspection
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Below are plots visualizing the model performance and how it is influenced by the fuzzifier-

coefficient (clustering method parameter) and the number of clusters included in the model.

Performance - Number of clusters
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Figure 38 - Rz Performance, Cluster and Fuzzifier inspection, Model "Version 2"
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Figure 39 - R2 Performance, Cluster and Fuzzifier inspection, Model *Version 1" using polynomial PLSR
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Figure 40 - R2 Performance, Cluster and Fuzzifier inspection, Model "Version 1", PLSR without cross/interaction terms
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8. Discussion

The high prediction accuracy achieved by using a single polynomial PLSR, can reveal that
only soft non-linearities exists in the behavior of the system. However, the increase in
performance when clustering the subspace into regions, using HC-PLSR, might expose that
abruptions of the subspace exists, that needs to be considered by a non-linear modelling
technique. When comparing the HC-PLSR to a single PLSR model it is clear that the
emulation capacities of the local linear modelling approach can account for a wider range of

non-linearities, and thus result in greater prediction abilities.

Regarding the clusters influence prediction accuracy, two main aspects stand relevant for
discussion. Firstly, the difference between clustering on X-scores and Y-scores. It is visually
apparent that the clustering on Y-scores is managing the grouping of more “naturally”
looking clusters. The space spanned from the first three X-components contains evenly
distributed sample points, and the clustering method splits the subspace into smaller regions
(rather than to extract new information about the data by exposing natural clustering
patterns). If this is the case, there might exist more computationally effective ways of
dividing the subspace into smaller regions. One could then debate the reasons for why the
clustering on the Y-scores did not outperform the x-score clustering. One theory may be that
the projections of new samples (for prediction using the HC-PLSR) when clustering on the y-
scores are transformed by the PLSR model, after the target has been predicted from the same
model. This means that prediction inaccuracies from the PLSR model is transferred when
later projected onto the new feature space and labeled to the existing clusters, thus yield
suboptimal results. In order to use the Y-scores as a basis for the clustering, the separation of
the observations needs to be quite distinct [2], since the Y-scores contain some prediction

error that may disrupt the classification when the clusters are not distinctly separated.

There were also some differences in the performance when considering the “Best cluster
Prediction” versus the “Weighted sum Prediction”. The former used only the local model
prediction from the most probable cluster for each sample, whereas the latter used the cluster
belonging probabilities for all clusters as weights for the regression coefficient. Effectively
the prediction was calculated as a weighted sum by utilizing the soft cluster belonging. These
two different prediction methods gave slightly different performance results depending on

what model combination was used. In [2] it is stated that the first approach performs better on
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data with very distinct clusters, whereas the weighted sum of the local clusters probably will
give better results on more continuous data. The performance of the prediction methods
depend on how the cluster-algorithm separates the data into clusters, and this might explain
the fluctuations in how the predictions options performed, even though this dataset is of a
more continuous characteristic, where the clusters are not entirely separable. It is therefore
hard to conclude on an optimal prediction strategy, whereas both should be included for
comparison. However, if the “Best cluster” prediction method result in higher performance, it
might be indicating that a fuzzy clustering method is unnecessary. This might also be
explored by adjusting the fuzzifier-coefficient of the Fuzzy C Clustering algorithm. If a
stronger separation of the fuzzy clusters improve performance, this may also indicate that an
optional cluster method is favored. The Fuzzy C clustering is a fairly computationally
demanding method compared to other “simpler” clustering techniques (e.g. K-nearest or K-
Means clustering). One could also try to use the fuzzy-prediction method on clusters that
were created as a result of hard clustering techniques, such as the two mentioned above. This
will increase the computational efficiency, which is especially relevant if the dataset is
relatively big and the fuzzy-prediction (“weighted sum”- prediction) accuracy is not

outperforming the “best cluster” - prediction.

The HC-PLSR model structure can be altered in many ways while still applying the main
concepts of locally linear modelling techniques. Both the clustering method (with all its
parameter and optimization methods) and the local modelling present options for model
architecture exploring. Examples of this might be outlier restrictions (for clustering and for
creation of local models), or restrictions on amount of explained variance accounted for by
the principal components. As a solution to the many modelling options for the HC-PLSR, a
framework for testing several variations was the strategy when implementing the model
design. The difference in performance depending on architectural designs, might be a usable
and efficient tool for learning about the structures of the given dataset. As presented in [2],
one of the strengths of HC-PLSR metamodelling lies in its ability to improve the analytical
insights of the model being emulated. When little or no prior knowledge of the model
behavior exists, is serves as a powerful tool for attaining knowledge about the system

behavior that is not possible by a global model generalizing the entire dataset.

The predictive performance of a polynomial PLSR model is quite good and might indicate

that the level on non-linearity in the given dataset is handled sufficiently well compared to an
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HC-PLSR model. However, if no new cross- and higher order terms are added to the models,
the HC-PLSR outperforms the PLSR by a greater margin. From this it is clear that the
clustering is able to handle non-linearities in the data, and determining “how much better” it
performs, is a matter of the degree of non-linearity in the data.

The new model strategy called “Version 2 in “Results”, did result in the most improved
prediction accuracy of all tested variants in this project. This might imply that the clustering
of scores from a global model built on the original features (without interaction terms), is
able to represent relevant non-linear structures in the data that diminishes when adding

polynomial features.

The statistical summaries/measurements were used to represent the model output, were
chosen based on general knowledge of relevant statistical aspects of spike-train
characteristics. The coefficient of covariance was close to zero for almost all simulation runs,
however it was included in the model because it is expected to change if the input parameter
ranges is altered to include values from different states of the network. In addition to this, the
statistical package “Elephant” does contain several other measurements, such as wave-to-
noise-ratio or other descriptive values, that could uncover new knowledge about the neural
network behavior that characterizes the defined states. This aspect highlights the need for
interdisciplinary collaboration; by including more domain knowledge to the modelling, the
prediction performance and interpretability can be optimized. Examples of this could be
considering the choice of what simulation input parameters considered relevant, or defining

the parameter regions to sample from, and by creating meaningful response parameters.
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9. Further work

A focus for this implementation has been on generalizing the method to facilitate the
exploring of what model is more efficient for the dataset at hand. It is clear that the clustering
method and the resulting subspaces is of high importance for the HC-PLSR performance. The
fuzzy clustering implemented herein, is computationally demanding for large sample sizes. A
way to increase the computational efficiency of the HC-PLSR is to look for an alternative to
Fuzzy-C Clustering method and it could also be interesting to see if there exists some
relationship between the structure of the samples plotted on the principle components from

the PLSR-model and the optimal cluster method for the given dataset.

Other suggestions for future work include:

- Use parameters regions that include different network states for the modelling

- Standardize a framework for easily altering as exploring model parameters such as:
different clustering technique, different cluster prediction technique, number of
components to cluster on, number of cluster centers, different distance measures,
outlier restrictions, ways of including domain knowledge, prediction using the most
probable clusters. This could look like the GridSearchCV from Sklearn, where the
function would return the optimal parameter combination.

- Generalize for many types of data as a “plug and play” for inspection, would
contribute largely for future work on the area.

- Use agglomerative Hierarchical clustering or HDBScan to inspect for cluster patterns
before fuzzy (since K-Means and Fuzzy-C tends to create round clusters, and the
density-based methods might pick up the anomalous patterns)

- Automize detection of best number of clusters, by measuring cluster performance.
(using silhouette plots or "is the internal measures similar for the training and the test
data?")

- Include criteria for explained variance of the latent variables included in the model

- Add framework with unit tests to verify code quality
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10. Conclusion

This study is an exploration of the local multivariate modelling method called HC-PLSR. It
also contains (model) implementations to examine the performance using a dataset generated

from deterministic modelling of a Neural Network simulation (first described by Brunel [3]).

The main objective was to explore the possibilities of creating metamodels of Brunel’s
Neural Network model with good prediction accuracy. This may then be used to gain better
insights and understanding of neural networks and their workings. In this context it was of
interest to investigate how non-linear/non-monotone this system is by comparing PLSR (with
and without higher order terms) and HC-PLSR, that accounts for different types of non-

linearities.

One observes that when the global and local PLSR models are without polynomial terms
(trained only using original features without added interaction terms), the HC-PLSR does
indeed account for some non-linear relationships in the dataset that a single PLSR-model
cannot. However, when added cross- and higher order terms to the features the HC-PLSR
outperforms the polynomial PLSR model (for comparison) by a slighter margin. Another
interesting result occurred from a new variant of the HC-PLSR modelling being tested. Here
the global PLSR was without polynomial terms while the local PLSR-models were
polynomial (added interaction and higher order terms). This variant of the model (called
Version 2 in “Results”) yielded the best predictive performance of all tested models and
model combinations. These results indicate that the use of HC-PLSR modelling is an
effective method for emulating non-linear mathematical models. Division of the parameter
spaces into subspaces is the core idea of HC-PLSR and changing what the clustering method
results in can impact the modelling performance a lot. Thus, continuing to explore the
different clustering strategies seems like an effective approach for further optimization of the
HC-PLSR.

A second aim of this study was to contribute to a methodology that invites for
interdisciplinary understanding and collaboration. The framework for implementations of the
models tested in this project is created on a modular basis and focuses on model exploration
and development by facilitating testing of new modelling strategies. Important parts of model
assembling of the HC-PLSR is safeguarded against implementation errors, by using tools and

packages from external developers. In addition, the use of this model exploration technique
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does not require prior knowledge of the system/model output or of the structure of the given
dataset; a favored feature when different scientific fields cooperate on development of a

model strategy.
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Implementations included here are for adding information to the descriptive explanations in

this paper. However, many more files of local modules tested were necessary, so ensure that

all parts of the workflow worked individually before creating a model pipeline structured

script. All of these tests and implementation blocks are available on the Open GitHub page,

to simplify the continuing on this project or taking parts of it to use in new projects.

Appendix
A

Filename

Meta_compressed_v1.py

Meta_compressed_v2.py

Fuzzy_cluster.py

Optimize_PLSR.py

Split_data.py

Dfs.py

Performance.py

Run_exploration_simulation_NEST_pypet LHS.py

Create_csv_wsSats_from_hdf5.py

Brunel_delta_ml.py

comment

Version 1 (main)
implementation of HC-PLSR
Version 2, optional variant of
HC-PLSR

Handles the creation of
clusters and prediction of
cluster labels (Fuzzy C
Clustering implementation)
Finding optimal number of
components in the PLSR
model (minimizing MSE)
Splitting data into training and
test sets (randomly shuffled)
Adding cross and higher order
terms using Featuretools Deep
Feature Synthesis

Calculating and printing
performance of model
Running a test exploration
simulation

Creating the CSV-file
containing X and Y

NEST [24] version of

Brunel’s model implemented



Brunel_delta.py

Run_NEST using_pypet LHS.py

Add_statistics_summaries.py

Requirements.txt

Altered implementation of
Brunel’s model A. Based on
Brunel_delta_ml.py
Running main exploration
simulation

Adding statistical summaries
of the spike trains
Module/environment

requirements

86
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Appendix A

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

nun

Created on Wed Jul 29 13:29:21 2020

@author: Anja Stene, anja.stene @nmbu.no

nun

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import random

from optimise_PLSR import optimise_pls_cv

from split_data import get_splitted_data

random.seed(100)

np.random.seed(100)

from sklearn.cross_decomposition import PLSRegression

df = pd.read_csv("data_500_params_stats_v5.csv")

def create_local_plsr_models(traindata_wLabels):

unique_clusters = np.unique(traindata_wLabels['label])
print("uniq",unique_clusters)

metamodel_v1.py

# collect datapoints belonging to each cluster in separate datasets

data_split_by_clusters={}

for i in unique_clusters:

data_split_by_clusters["cluster{}".format(i)] = traindata_wLabels.loc[traindata_wLabels['label] == i]

#split to X and y for each cluster
X_y_in_cl={}

for i in unique_clusters:
X_y_in_cl["X{}".format(i)] =\
data_split_by_clusters["cluster{}".format(i)][features]
X_y_in_cl["y{}".format(i)] =\
data_split_by_clusters["cluster{}".format(i)][targets]

pls_models_dct={}

for i in unique_clusters:
Xn = X_y_in_cl["X{}".format(i)]
max_ncomps = len(Xn.columns)
#Xn = scaler_pls.transform(Xn)
yn = X_y_in_cl["y{}".format(i)]
print(i,"",Xn.shape)

pls_models_dct["plsmod{}".format(i)] = optimise_pls_cv(Xn, yn, max_ncomps, plot_components=True, title='"PLSR for cluster {}'.format(i))
#pls_models_dct/"plsmod{}".formal(i)] = PLSRegression(n_components=3, scale=True).fit(Xn, yn)

return pls_models_dct

def create_best_localmodel_prediction_col(testdata_wLabels):

## Adding the prediction from the best results in as "best_cl_" to data_w_labels

m = pd.DataFrame([])

for i in uniquie_clusters:

best_cl_data = testdata_wLabels.loc[testdata_wLabels['label]==i]

best_cl_preds = best_cl_data[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),

"pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i) ]].copy()

best_cl_preds.columns = ['best_cl_fano', 'best_cl_cV', 'best_cl_corr', 'best_cl_cov']

m=m.append(best_cl_preds)

testdata_wLabels = testdata_wLabels.join(m)

return testdata_wLabels
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79

80 def calculate_weighted_sum(testdata_wLabels):

81

82 ## Create Weighted sums

83

84 weighted_sum_fano = 0

85 weighted_sum_cv = 0

86 weighted_sum_corr = 0

87 weighted_sum_cov = 0

88

89 for i in uniquie_clusters:

90 weighted_sum_fano += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_fano_{}".format(i)])
91 weighted_sum_cv += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cv_mean_{}".format(i)])
92 weighted_sum_corr += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_corr_mean_{}".format(i)])
gi weighted_sum_cov += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cov_mean_{}".format(i)])
95 testdata_wLabels['sum_pred_fano'] = weighted_sum_fano

96 testdata_wLabels['sum_pred_cv'] = weighted_sum_cv

97 testdata_wLabels['sum_pred_corr] = weighted_sum_corr

gg testdata_wLabels['sum_pred_cov'] = weighted_sum_cov

100 return testdata_wLabels

101 4

102

103 split= 0.2 #Train-test split to use

104 seed = 10 #random seed

105 ncenters = 3 #number of cluster centers to use in HC-PLSR

106 -2 #Fuzzyfier component

107 components_to_cluster = 3 #Number of Principal Components to peform clustering on

108 score = 'x' #Cluster on the X-Scores

1?3 #score =y’ #Cluster on the Y-Scores

11 4

112

113

Hg X_train, y_train, X_test, y_test, data = get_splitted_data(df, split)

116

117 targets = ['cv_mean','fanofactor’, ‘corr_mean’, 'cov_mean']

118 #y_train = data_trainftargets]
119

120 4

121
122

123 from dfs import get_DFS
124

122 X_train_dfs, X_test_dfs = get_ DFS(X_train, X_test)
127 #Assign DFS versions to X_train/test
128 X_train = X_train_dfs.copy()

129y test = X_test_dfs.co
o _test_ py()

131

132 features = X_train.columns #column names to all features / regressors

133

134 # Global model

135 plsmod_full_dfs = optimise_pls_cv(X_train, y_train, len(X_train.columns), plot_components=True)
136

137 #Exiracting the x_scores from the global plsrmodel to cluster

138 pls_x_scores = pd.DataFrame(plsmod_full_dfs.x_scores_)

139 pls_y_scores = pd.DataFrame(plsmod_full_dfs.y_scores_)

140

141

142 #

143

144

145 from fuzzy_cluster import fuzzy_cluster, fuzzy_prediction
146

147 if score =="y"

148 pls_scores = pls_y_scores

149 else:
150  pIs_scores = pls_x_scores
151

152  traindata_wLabels, scaler_cluster, cntr = fuzzy_cluster(pls_scores, X_train, y_train, components_to_cluster, ncenters, f, seed)

153 uniquie_clusters = np.unique(traindata_wLabels['label)
154 4
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Appendix A metamodel_v1.py

pls_models_dct = create_local_plsr_models(traindata_wLabels)

#
#Plotting original data for structure inspections after labeling

import seaborn as sns; #sns.sel(style="ticks", color_codes=True)

p = sns.pairplot(traindata_wLabels, x_vars=['g', 'eta’, 'J', 'D1,
y_vars = ['fanofactor','cv_mean','corr_mean’, 'cov_mean'], hue="label", palette="Set2") # hue="cluster",

#
## test data

"X _test_sc = scaler_pls.transform(X_test)
X_test_sc = pd.DataFrame(X_test_sc, columns = features )

nun

#prediction using global PLSR-model
y_pred_glob = plsmod_full_dfs.predict(X_test)

#Projecting/transforming X-data onto components from PLSR
transf_X, transf_y = plsmod_full_dfs.transform(X_test, y_pred_glob)

if score =="y"
df_transf = pd.DataFrame(transf_y.copy())

else:
df_transf = pd.DataFrame(transf_X.copy())

testdata_wLabels = fuzzy_prediction(df_transf, X_test, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy prediction TEST")
p = sns.pairplot(testdata_wLabels, x_vars=['g', 'eta’, 'J', 'D'],
y_vars = ['fanofactor','cv_mean','corr_mean’, 'cov_mean'], hue="label", palette="Set2") # hue="cluster",

#

## predict using local plsr model and sum up using weights

#For all local models: Predict sample
# calculate weighted sum based on clusterbelonging and pred value from all local plsr models

for i in uniquie_clusters: #or for local_plsmodel in pls_model_dct:
#split data belonging to certain cluster into x and y
X = testdata_wLabels[features]
y_pred_loc = pls_models_dct["plsmod{}".format(i)]. predict(X)

predicted_colnames = ["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
"pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]

predicted_df = pd.DataFrame(y_pred_loc, columns = predicted_colnames)
testdata_wLabels = testdata_wLabels.join(predicted_df)

#

testdata_wLabels = calculate_weighted_sum(testdata_wLabels)

testdata_wLabels = create_best_localmodel_prediction_col(testdata_wLabels)

#
# PRINT PERFORMANCE
# - Global PLSR model performance on test

from performance import performance_data
performance_data( y_pred_glob, y_test, title="---- Global model ")

# —mmmmee Local PLSR models performance

# split datapoint into groups based on clusterbelonging



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277

Appendix A

# check performance from only that cluster
plt.figure(figsize=(20,10))

for i in uniquie_clusters:

clusterdata = testdata_wLabels[testdata_wLabels['label']==i]

metamodel_v1.py

y_pred = clusterdata[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
"pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]]

y_true = clusterdata[targets]

#inspect local prediction accuracy

for p in range(len(y_true.columns)):
x=y_true[y_true.columns[p]]
y=y_pred[y_pred.columns[p]]

plt.subplot(2, 2, p+1)
plt.scatter(x, y)
plt.title(y_true.columns[p])

if y_pred.empty: #/f no samples was predicted with local model
print("--- None in cluster {}".format(i))
continue

# Calculate r2 score & mean squared error for local models

title=("--- Cluster {}").format(i)
performance_data(y_pred, y_true, title)

-------- Calculating MSE and R2 for weighted sum

y_pred = testdata_wLabels[['sum_pred_fano','sum_pred_cV',

'sum_pred_corr', 'sum_pred_cov']]

y_true = testdata_wLabels[targets]

performance_data(y_pred, y_true, title="--- Weighted sum: ")

-------- Calculating MSE and R2 for Best_cluster_prediction

y_pred2 = testdata_wLabels[['best_cl_fano', 'best_cl_cV/,

'best_cl_corr', 'best_cl_cov']]

y_true2 = testdata_wLabels[targets]

performance_data(y_pred2, y_true2, title="--- Best_cluster_prediction: ")
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Appendix B metamodel_v2.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

nun

Created on Wed Jul 29 13:29:21 2020

@author: Anja Stene, anja.stene @nmbu.no

nun

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import random

from optimise_PLSR import optimise_pls_cv
from split_data import get_splitted_data
from performance import performance_data
random.seed(100)

np.random.seed(100)

df = pd.read_csv("data_500_params_stats_v5.csv")

def create_local_plsr_models(traindata_wLabels):
uniquie_clusters = np.unique(traindata_wLabels['labelT)

# collect datapoints belonging to each cluster in separate datasets
data_split_by_clusters={}

for i in uniquie_clusters:
data_split_by_clusters["cluster{}".format(i)] = traindata_wLabels.loc[traindata_wLabels['label] == i]

#split to X and y for each cluster
X_y_in_cl={}

for i in uniquie_clusters:
X_y_in_clI["X{}".format(i)] =\
data_split_by_clusters["cluster{}".format(i)][features]

X_y_in_cl["y{}".format(i)] =\
data_split_by_clusters["cluster{}".format(i)][targets]

pls_models_dct={}
for i in uniquie_clusters:
Xn = X_y_in_clI["X{}".format(i)]
max_ncomps = len(Xn.columns)
#Xn = scaler_pls.transform(Xn)
yn = X_y_in_cl["y{}".format(i)]
pls_models_dct["plsmod{}".format(i)] = optimise_pls_cv(Xn, yn, max_ncomps, plot_components=True, title='"PLSR for cluster {}'.format(i))

return pls_models_dct

def create_best_localmodel_prediction_col(testdata_wLabels):
## Adding the prediction from the best results in as "best _cl_"to dala_w_labels
m = pd.DataFrame([])

for i in uniquie_clusters:
best_cl_data = testdata_wLabels.loc[testdata_wLabels['label']==i]

best_cl_preds = best_cl_data[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
"pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i) ]1].copy()

best_cl_preds.columns = ['best_cl_fano', 'best_cl_cV', 'best_cl_corr', 'best_cl_cov']

m=m.append(best_cl_preds)

testdata_wLabels = testdata_wLabels.join(m)

return testdata_wLabels
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78  def calculate_weighted_sum(testdata_wLabels):
79

80 ## Create Weighted sums

81

82 weighted_sum_fano = 0

83 weighted_sum_cv = 0

84 weighted_sum_corr = 0

85 weighted_sum_cov = 0

86

87 for i in uniquie_clusters:

88 weighted_sum_fano += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_fano_{}".format(i)])
89 weighted_sum_cv += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cv_mean_{}".format(i)])
90 weighted_sum_corr += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_corr_mean_{}".format(i)])
g; weighted_sum_cov += (testdata_wLabels[int("{}".format(i))] * testdata_wLabels["pred_cov_mean_{}".format(i)])
93 testdata_wLabels['sum_pred_fano'] = weighted_sum_fano

94 testdata_wLabels['sum_pred_cv'] = weighted_sum_cv

95 testdata_wLabels['sum_pred_corr'] = weighted_sum_corr

gg testdata_wLabels['sum_pred_cov'] = weighted_sum_cov

98 return testdata_wLabels

9 4

100

101

102 split= 0.2 #Train-test split to use

103 seed = 10 #random seed

104 neenters = 3 #number of cluster centers fo use in HC-PLSR

105 ¢-» #Fuzzyfier component

106 components_to_cluster = 3 #Number of Principal Components to peform clustering on

107 score = 'x' #Cluster on the X-Scores

182 #score =y’ #Cluster on the Y-Scores

110 4

111

112

Hi X_train, y_train, X_test, y_test, data = get_splitted_data(df, split)

115

116 targets = ['cv_mean','fanofactor', ‘corr_mean’, 'cov_mean']

1 1; #y_train = data_trainftargets]

119 4
120
121

122 from dfs import get_DFS
123

gg X_train_dfs, X_test_dfs = get_DFS(X_train, X_test)
126 #Assign DFS versions to X_train/test
12; X_train = X_train_dfs.copy()
X_test = X_test_dfs.co
1 e _test_ py()
130 original_features = ['g', 'eta’, 'J', 'D']
131 features = X_train.columns

132

133 # Global model

134 plsmod_full_dfs = optimise_pls_cv(X_train, y_train, len(X_train.columns), plot_components=True)
135

136 plsmod_original_features = optimise_pls_cv(X_train[original_features], y_train, len(original_features), plot_components=True)
137

138 #Extracting the x_scores from the global plsrmodel to cluster

139 #pls x_scores = pd.DataFrame(plsmod_full_dfs.x_scores )

140 #pls_y_scores = pd.DataFrame(plsmod_full_dfs.y_scores_)

141

142 pls_x_scores = pd.DataFrame(plsmod_original_features.x_scores_)

143 pls_y_scores = pd.DataFrame(plsmod_original_features.y_scores_)

144

145 #

146

147

148 from fuzzy_cluster import fuzzy_cluster, fuzzy_prediction
149

150 if score =="'y"

151 pls_scores = pls_y_scores

152 else:

153 plIs_scores = pls_x_scores
154
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155  traindata_wLabels, scaler_cluster, cntr = fuzzy_cluster(pls_scores, X_train.copy(), y_train, components_to_cluster, ncenters, f, seed)

156  uniquie_clusters = np.unique(traindata_wLabels['label)
157 #

158
159
160
12; pls_models_dct = create_local_plsr_models(traindata_wLabels)
163 #
122 #Plotting original data for structure inspections after labeling

166 import seaborn as sns; #sns.set(style="ticks", color_codes=True)
167
168 p = sns.pairplot(traindata_wLabels, x_vars=['g', 'eta’, 'J', 'D,

133 y_vars = ['fanofactor','cv_mean','corr_mean’, 'cov_mean'], hue="label", palette="Set2") # hue="cluster",

171

172 4
173 44 test data
174

175

176wy test sc = scaler_pls.transform(X_test)

1;2 X_test_sc = pd.DataFrame(X_test_sc, columns = features )
179 gprediction using global PLSR-model

180 y_pred_glob = plsmod_full_dfs.predict(X_test)

181 y_pred_small = plsmod_original_features.predict(X_test[original_features])

123 performance_data( y_pred_small, y_test, title="---- original data plsr model ")

184 #Projecting/transforming X-data onto components from PLSR

185 wtransf X, transf_ y = plsmod_full_dfs.transform(X_test, y_pred_glob

186 #transt_X, transf_y = plsmod_original_features.transform(X_testforiginal_features], y_pred_glob)
122 transf_X, transf_y = plsmod_original_features.transform(X_test[original_features], y_pred_small)

189 if score == 'y

i

190 df_transf = pd.DataFrame(transf_y.copy())

191 gse:

135 df_transf = pd.DataFrame(transf_X.copy())

132 testdata_wLabels = fuzzy_prediction(df_transf, X_test, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy_prediction TEST")
196

197 4

198

199 ## predict using local plsr model and sum up using weights

200

201 #For all local models: Predict sample

202 # calculate weighted sum based on clusterbelonging and pred value from all local plsr models
203

204

205 for i in uniquie_clusters: #or for local_plsmodel in pls_model_dct:

206 #split data belonging to certain cluster into x and y

207 X = testdata_wLabels[features]

208 y_pred_loc = pls_models_dct["plsmod{}".format(i)]. predict(X)

209

210

211 predicted_colnames = ["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
212 "pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]
213

214 predicted_df = pd.DataFrame(y_pred_loc, columns = predicted_colnames)
215 testdata_wLabels = testdata_wLabels.join(predicted_df)

216
217 #
218
219 testdata_wlLabels = calculate_weighted_sum(testdata_wLabels)

220

221 testdata_wLabels = create_best_localmodel_prediction_col(testdata_wLabels)
222
223 #
224 # PRINT PERFORMANCE

225

226 #-------- Global PLSR model performance on test

227

228 from performance import performance_data

229 performance_data( y_pred_glob, y_test, title="---- Global model ")
230

231 # ocal PLSR models performance
232
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# split datapoint into groups based on clusterbelonging
# check performance from only that cluster
plt.figure(figsize=(20,10))

for i in uniquie_clusters:
clusterdata = testdata_wLabels[testdata_wLabels['label]==i]
y_pred = clusterdata[["pred_fano_{}".format(i), "pred_cv_mean_{}".format(i),
"pred_corr_mean_{}".format(i), "pred_cov_mean_{}".format(i)]]
y_true = clusterdata[targets]

#inspect local prediction accuracy

for p in range(len(y_true.columns)):
x=y_true[y_true.columns[p]]
y=y_pred[y_pred.columns[p]]

plt.subplot(2, 2, p+1)

plt.scatter(x, y)
plt.title(y_true.columns[p])

if y_pred.empty: #/f no samples was predicted with local model
print("--- None in cluster {}".format(i))
continue

# Calculate r2 score & mean squared error for local models

title=("--- Cluster {}").format(i)
performance_data(y_pred, y_true, title)

# v Calculating MSE and R2 for weighted sum

y_pred = testdata_wLabels[['sum_pred_fano','sum_pred_cV',
'sum_pred_corr', 'sum_pred_cov']]
y_true = testdata_wLabels[targets]

performance_data(y_pred, y_true, title="--- Weighted sum: ")

R Calculating MSE and R2 for Best_cluster._prediction

y_pred2 = testdata_wLabels[['best_cl_fano', 'best_cl_cVv/,
'best_cl_corr', 'best_cl_cov']]

y_true2 = testdata_wLabels[targets]

performance_data(y_pred2, y_true2, title="--- Best_cluster_prediction: ")

#

import pkg_resources

installed_packages = pkg_resources.working_set

installed_packages_list = sorted(["%s==%s" % (i.key, i.version)
for i in installed_packages])

print(installed_packages_list)
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Appendix C fuzzy_cluster.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

unn

Created on Wed Jul 29 16:37:34 2020

@author: Anja Stene, anja.stene @nmbu.no

unn

import skfuzzy as fuzz

import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler
from mpl_toolkits import mplot3d

import matplotlib.pyplot as plt

def fuzzy_cluster(pls_scores, data_wLabels, y_train, components_to_cluster,ncenters, f, seed, title="fuzzy_Clustering results"):

### FUZZY C MEANS CLUSTERING

# Cluster on scores

pls_scores = pd.DataFrame(pls_scores.copy())
length = len(pls_scores.columns)

columns = ['sc{}'.format(i) for i in range(length)]
pls_scores.columns = columns

#components_to_cluster = 3# =length
to_cluster = columns[:components_to_cluster]

cluster_data_train = pls_scores[to_cluster] #po/s_y scores
colnames=cluster_data_train.columns

scaler_cluster = StandardScaler()

cluster_data_train = scaler_cluster fit_transform(cluster_data_train)
cluster_data_train = pd.DataFrame(cluster_data_train, columns=colnames)

#2. Inspect for optimal number of clusters? based on fcp

error=0.005
maxiter=1000

fpcs=[]

for i in range(2,15):
s - — _ _, fpC = fuzz.cluster.cmeans(
cluster_data_train.T, i, f, error=error, maxiter=maxiter, init=None)
fpcs.append(fpc)

plt.title("FCP for #Clusters")
#plt.plot(fcp)
fig2, ax2 = plt.subplots()
ax2.plot(np.r_[2:len(fpcs)+2], fpcs)
ax2.set_xlabel("Number of centers")
ax2.set_ylabel("Fuzzy partition coefficient")

#3. create fuzzy C model with given number of clusters

cntr, u_orig, _, _, _, _, _ = fuzz.cluster.cmeans(
cluster_data_train.T, ncenters, f, error=error, maxiter=maxiter, init=None, seed=seed)

#Inspect cluster belongings

cluster_membership = np.argmax(u_orig, axis=0)
u_df=pd.DataFrame(u_orig)

weights_df = u_df.T

weights_df = weights_df.join(pd.DataFrame(cluster_membership, columns = ['label]))
print("weights")
print(weights_df)

# Add weights to training data (scores matrix that were clustered)
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Appendix C fuzzy_cluster.py
labeled_scores = cluster_data_train.copy()
labeled_scores = labeled_scores.join(weights_df)

## -- plot clusters from training fuzzy C

plt.figure(figsize=(20,10))
ax2 = plt.axes(projection='3d")

mal’kel’S = [|/\|, IOI, IPI, IDI, ISI, Idl, IXI, |>|]
colors = ['darkgreen’, 'plum’, '‘goldenrod’,'skyblue’, ‘mediumblue’, 'limegreen’, 'orangered’, 'black’]

# Data for three-dimensional scattered points
for label in (np.unique(labeled_scores['labell)):
df = labeled_scores.loc[labeled_scores|['labell==label].copy()

xdata = df'sc2'] #0
ydata = dff'sc1] #7
zdata = df{'sc0'] #2

ax2.scatter3D(xdata, ydata, zdata, c=colors[label], marker = markers[label])

ax2.set_xlabel('PC2')
ax2.set_ylabel('PC1")
ax2.set_zlabel('PCO0')

plt.title(title)
plt.show()

# for fuzzy C Means (Labeling)

data_wLabels = data_wLabels.reset_index()

data_wLabels = data_wLabels.join(weights_df)

data_wLabels = pd.concat([data_wLabels,y_train.reset_index()], axis=1, sort=False)

return data_wLabels.copy(), scaler_cluster, cntr
def fuzzy_prediction(pls_scores, data_wLabels, y_test, scaler_cluster, components_to_cluster, cntr, f, seed, title="fuzzy_prediction"):

### FUZZY C MEANS CLUSTERING

#4. Predict new cluster membership with ‘cmeans_predict’ as well as
# ‘cntr’ from the 4-cluster mode/

length = len(pls_scores.columns)

columns = ['sc{}'.format(i) for i in range(length)]
pls_scores.columns = columns

to_cluster = columns[:components_to_cluster]

cluster_data_test = pls_scores[to_cluster]
cluster_data_test = scaler_cluster.transform(cluster_data_test)
cluster_data_test = pd.DataFrame(cluster_data_test, columns = to_cluster)

# e use old model, label predicted data and plot clustered scores
u, u0, d, jm, p, fpc = fuzz.cluster.cmeans_predict(
cluster_data_test. T, cntr, f, error=0.005, maxiter=1000, seed=seed)

#Inspect cluster belongings
u_df=pd.DataFrame(u)
cluster_membership = np.argmax(u, axis=0)

weights_df = pd.DataFrame(u_df.T)
weights_df = weights_df.join(pd.DataFrame(cluster_membership, columns = ['label]))

labeled_scores = cluster_data_test.copy()
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lapeled_scores = labelea_scores.join(weignts_ar)

plt.figure(figsize=(20,10))
ax2 = plt.axes(projection='3d")

markeI’S = [I/\I’ |0|’ IPI, IDI, ISI, Idl, IXI, |>|]
colors = ['darkgreen’, 'plum’, 'goldenrod','skyblue’, ‘'mediumblue’, ‘limegreen’, ‘orangered', 'black’]

# Data for three-dimensional scattered points

# df.loc[dff'Color’] == ‘Green’]

for label in (np.unique(labeled_scores['labell)):
df = labeled_scores.loc[labeled_scores['label’]==label].copy()
print("df.shape", df.shape)

xdata = dff'sc2'] #0
ydata = dff'sc1'] #7
zdata = dff'sc0 #2

ax2.scatter3D(xdata, ydata, zdata, c=colors[label], marker = markers[label], label="cluster{}".format(label))

ax2.set_xlabel('PC2')
ax2.set_ylabel('PC1")
ax2.set_zlabel('PCO0')

plt.title(title)
plt.show()

#Addling labels and clusterweights to testdata (original, not projected)
data_wLabels = data_wLabels.reset_index()

data_wLabels = data_wLabels.join(weights_df)

data_wLabels = pd.concat([data_wLabels,y_test.reset_index()], axis=1, sort=False)

return data_wLabels.copy()
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Appendix D optimise_PLSR.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

unn

Created on Mon Jul 27 22:50:47 2020

@author: Anja Stene, anja.stene @nmbu.no

unn

from sys import stdout

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error, r2_score
import warnings

def optimise_pls_cv(X, y, n_comp, scale=True, plot_components=False, to_be_minimized="mse/, title = "PLS"):
"Run PLS including a variable number of components, up to n_comp,
and calculate MSE "'
with warnings.catch_warnings():
warnings.simplefilter(“ignore")

mse =[]
component = np.arange(1, n_comp) #ifn_comp then OLS
for i in component:
pls = PLSRegression(n_components=i, scale=scale);
# Cross-validation
y_cv = cross_val_predict(pls, X, y, cv=10) #70
mse.append(mean_squared_error(y, y_cv))

# Calculate and print the position of minimum in MSE
msemin = np.argmin(mse)
print("Suggested number of components (MSE): *, msemin+1)

if to_be_minimized == 'mse":
minimise = mse
arg_min=msemin

stdout.write("\n")
if plot_components is True:
with plt.style.context((‘ggplot")):
plt.plot(component, np.array(minimise), '-v', color = 'blue’, mfc="blue’)
plt.plot(component[arg_min], np.array(minimise)[arg_min], 'P', ms=10, mfc="red’)
plt.xlabel('Number of PLS components')
plt.ylabel(MSE')
plt.title(title)
plt.xlim(left=-1)
plt.show()

# Define PLS object with optimal number of components
pls_opt = PLSRegression(n_components=arg_min+1, scale=scale)

# Fit to the entire dataset
pls_opt.fit(X, y);
y_c = pls_opt.predict(X)

# Cross-validation
y_cv = cross_val_predict(pls_opt, X, y, cv=10)

# Calculate scores for calibration and cross-validation
score_c = r2_score(y, y_c)
score_cv = r2_score(y, y_cv)
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# Calculate mean squared error for calibration and cross validation
mse_c = mean_squared_error(y, y_c)
mse_cv = mean_squared_error(y, y_cv)
print('R2 calib: %5.3f' % score_c)
print('R2 CV: %5.3f' % score_cv)
print(MSE calib: %5.3f' % mse_c)
print(MSE CV: %5.3f' % mse_cv)

return pls_opt
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Appendix E

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

unn

Created on Mon Jul 27 22:53:32 2020

@author: anja.stene

unn

import pandas as pd
import statistics
import re

import numpy as np
import random
random.seed(100)
np.random.seed(100)

from sklearn.model_selection import train_test_split

def get_splitted_data(df, split):

## -- Adding CV_mean to Y dataset

cv_list = df['cv_list']

cov_mean_list = df['cov_sparsematrix_mean_cols']
corr_mean_list1 = df['corr_sparsematrix_mean_cols']
corr_mean_list = corr_mean_list1
print(corr_mean_list[1])

#Extracting all floats in list. could not use split() because first and last element has a ‘[" or a "]" included

cv_list = [re.findall(r'[-+]?\d*\.\d+|\d+", i) for i in cv_list]

split_data.py

cov_mean_list = [re.findall(r"[-+]?\d*\.\d+[\d+", i) for i in cov_mean_list]
corr_mean_list = [re.findall(r"[-+]?\d*\.\d+|\d+", i) for i in corr_mean_list]

#re.findall(r[\d\.\d]+', cv_list0) #Less robust?

#Converting all elements in list to float, before calculating mean, by double list comprehension

cv_list = [[float(i) for i in p] for p in cv_list]

cov_mean_list = [[float(i) for i in p] for p in cov_mean_list]

corr_mean_list = [[float(i) for i in p] for p in corr_mean_list]

#Computing the mean for each spike train, across all neurons, for all 500 simulations

cv_mean_list=[statistics.mean(i) for i in cv_list]
#cov_meanofmean_list=[max(i) for i in cov_mean_list]

#eorr_meanofmean_list=[max(i) for i in corr_mean_lIist]

cov_meanofmean_list=[statistics.mean(i) for i in cov_mean_list]
corr_meanofmean_list=[statistics.mean(i) for i in corr_mean_list]

#Adding the list of mean cv coefficients fo the dataframe used for modelling

df['cv_mean'] = cv_mean_list
df['cov_mean'] = cov_meanofmean_list
df['‘corr_mean'] = corr_meanofmean_list

data=df[['g', 'eta’, 'J', 'D', 'fanofactor’, 'cv_mean','corr_mean’, 'cov_mean']]

targets = ['fanofactor','cv_mean','corr_mean’, 'cov_mean']

y = data[targets]
X = data[['g', 'eta’, 'J', 'DT]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split, random_state=42, shuffle=True)



66
67
68
69
70
71
72
73

Appendix E
X_train = pd.DataFrame(X_train)
X_test = pd.DataFrame(X_test)
y_train = pd.DataFrame(y_train)
y_test = pd.DataFrame(y_test)

return X_train, y_train, X_test, y_test, data

"

#f_name__=="_main__":
# print(get_splitted _data)

split_data.py
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Appendix F

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

unn

Created on Mon Jul 27 22:58:45 2020

@author: Anja Stene, anja.stene @nmbu.no

unn

import featuretools as ft

from featuretools.primitives import make_trans_primitive
from featuretools.variable_types import Numeric

import numpy as np

from sklearn.preprocessing import StandardScaler
import pandas as pd

def get_ DFS(X_train, X_test):

features=X_train.columns

scaler=StandardScaler(with_mean=False)
X_train_sc = scaler.fit_transform(X_train)
X_test_sc = scaler.transform(X_test)

X_train = pd.DataFrame(X_train_sc, columns=features)
X_test = pd.DataFrame(X_test_sc, columns=features)

# Create two new functions for our two new primitives
def Log(column):
return np.log(column)
def Square_Root(column):
return np.sqrt(column)
def Square(column):
return np.square(column)
def Cube(column):
return np.power(column, 3)

# Create the primitives
log_prim = make_trans_primitive(

function=Log, input_types=[Numeric], return_type=Numeric)

square_root_prim = make_trans_primitive(

dfs.py

function=Square_Root, input_types=[Numeric], return_type=Numeric)

square = make_trans_primitive(

function=Square, input_types=[Numeric], return_type=Numeric)

cube = make_trans_primitive(

function=Cube, input_types=[Numeric], return_type=Numeric)

trans_primitives=['add_numeric', 'multiply_numeric']
trans_primitives.append(log_prim)
trans_primitives.append(square_root_prim)
trans_primitives.append(square)
trans_primitives.append(cube)

# Make an entityset and add the entity
es = ft.EntitySet(id = 'v1')

es.entity_from_dataframe(entity_id = 'e1', dataframe = X_train,

make_index = True, index = 'index’)
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# Run deep feature synthesis with transformation primitives
X_train_dfs, feature_defs = ft.dfs(entityset = es, target_entity = 'e’,
trans_primitives = trans_primitives, max_depth=1)

## --- DFS for Test data

# Make an entityset and add the entity

es2 = ft.EntitySet(id = 'v2')

es2.entity_from_dataframe(entity_id = 'e1’, dataframe = X_test,
make_index = True, index = 'index’)

# Run deep feature synthesis with transformation primitives
#X_test_dfs, feature_defs = ft.dfs(entityset = es2, target_entity = ‘et’,
# trans_primitives = trans_primitives, max_depth=1)

X_test_dfs2 = ft.calculate_feature_matrix(features = feature_defs, entityset=es2)
X_test_dfs = X_test_dfs2

print("PRINTING", X_test['g[0], X_test_dfs['g"][0])

return X_train_dfs, X_test_dfs
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Appendix G performance.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

unn

Created on Thu Jul 30 12:07:44 2020

@author: anja.stene

unn

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import pandas as pd

def performance_data(y_pred, y_true, title="performance'):

y_pred = pd.DataFrame(y_pred)
y_true = pd.DataFrame(y_true)

score_glob = r2_score(y_true, y_pred)
mse_glob = mean_squared_error(y_true, y_pred)
mae_glob = mean_absolute_error(y_true, y_pred)

print(" ")
print(title)

print('R2 glob: %5.3f' % score_glob)

print(MSE glob: 9%5.3f' % mse_glob)

print(MAE glob: %5.3f' % mae_glob)

print(" ")

return



run_exploration simulation NEST-Pypet-LHS

August 10, 2020

0.0.1 Running Network simulation on sampled feature space and stores hierarchical
data using hdf5-format

Script for implementing LHS (sampling), NEST (network simulation) and Pypet (explolation and
hdf5-storing)

[1]: import numpy as np
import matplotlib.pyplot as plt
from smt.sampling_methods import LHS

[2]: def get_lhs_sampling_points(num_sampling_points):

#AI parameterspace from Brunel
g_space = [4.5, 6.0]

eta_space = [1.5, 3.0]

J_space = [0.05, 0.4]

D_space = [1.0, 2.5]

xlimits = np.array([g_space, eta_space, J_space, D_spacel])
sampling = LHS(xlimits=x1limits)

x = sampling(num_sampling_points)

print(x.shape)
print(x[:, 0])
print(x[:, 1])
print(x[:, 21)
print(x[:, 3])

return x[:, 0].tolist(), x[:, 1].tolist(), x[:, 2].tolist(), x[:, 3].
—tolist ()

[3]: from elephant.statistics import isi, cv, fanofactor
from elephant.spike_train_correlation import corrcoef, covariance
from elephant.conversion import BinnedSpikeTrain
from neo.core import SpikeTrain
from quantities import Hz, s, ms



def get_statistics(spiketrains, t_stop):

cv_list = [cv(isi(spiketrain)) for spiketrain in spiketrains]
isi_list = [isi(spiketrain) for spiketrain in spiketrains]
fano_factor = fanofactor(spiketrains)

spiketrain_list = [SpikeTrain(spiketrain*s, t_stop=t_stop) for spiketrain
—in spiketrains]
binned_sts=BinnedSpikeTrain(spiketrain_list, binsize=10*ms)

corr_coef = corrcoef(binned_sts, binary=False)
cov_coef = covariance(binned_sts, binary=False)

return cv_list, isi_list, fano_factor, corr_coef, cov_coef

[4]: from pypet import Environment
import pandas as pd
import numpy as np
import os # To allow file paths working under Windows and Linuzx
from brunel_delta_ml import sim_brunel_delta
from neo.core import SpikeTrain
from quantities import Hz, s, ms

def run_simulation(g, eta, D, J, simtime, cutoff):

df, spiketrains = sim_brunel_delta(g=g,
eta=eta,
J=7J,
delay=D,
simtime=simtime,
cutoff=cutoff)
return df, spiketrains

def my_pypet_wrapper (traj):

df, spiketrains = run_simulation(traj.g, traj.eta, traj.D, traj.J, traj.
—simtime, traj.cutoff)

cv_list, isi_list, fanofactor, corr_coef, cov_coef =
—get_statistics(spiketrains, traj.simtime)

traj.f_add_result('$set.$.sim_res_df', df, comment='Result from simulation,
—1 pandas dataframe”')



traj.f_add_result('$set.$.cv_list', cv_list, comment='CV, Contains
—coefficient of variation for every spiketrain')

#traj. f_add_result('$set.$.isi_list', isi_list, comment='List of,
—interspikeintervals for all spiketrains')

traj.f_add_result('$set.$.fanofactor', fanofactor, comment='fanofactor f =,
—var(v) / mean(v) where v is a list of the interspike interval variability')

traj.f_add_result('$set.$.corr_coef', corr_coef, comment='CC, Coefficient,,
—of correlation matrix, sparse')

traj.f_add_result('$set.$.cov_coef', cov_coef, comment='CCov, Coefficient,,
—of covariance')

def add_parameters(traj):
"""Adds all parameters to “traj’
The parameters to be explored are also added here with
default value that is equal to function defaults in brunel_delta.py.

nmnn

print ('Adding Parameters')

traj.f_add_parameter('simulation.dt', 0.1, comment='Simulation Resolution
—in NEST')

traj.f_add_parameter('simulation.simtime', 1100.0, comment='Duration of the
—experiment simulation in ms')

traj.f_add_parameter('neuron.D', 1.5, comment='delay, synapse-delay between
—neurons in ms')

traj.f_add_parameter('neuron.g', 5.0, comment='Inhibitory synaptic strength
—relative to excitatory')

traj.f_add_parameter('neuron.eta', 2.0, comment='V ext / V thr')

traj.f_add_parameter('neuron.epsilon', 0.1, comment='Excitatory Neurons *
—epsilon = nr of synapses per neuron')

traj.f_add_parameter('neuron.order', 2500, comment='Relative number of,
—neurons in network')

traj.f_add_parameter('neuron.J', 0.1, comment='Synapse weight between,,
—neurons')

traj.f_add_parameter('neuron.N_rec', 50, comment='Number of neurons toy
—record during simulation')

traj.f_add_parameter('simulation.num_threads', 10, comment='simulation in
—threads for parallelizing')

traj.f_add_parameter('simulation.print_report', True, comment='print output,
—during simulation')

traj.f_add_parameter('simulation.stop_input', False, comment='Stop network
—input in simulation after x ms')

traj.f_add_parameter('simulation.num_sampling_points', 500, comment='Number,
—of sampling points in Latin Hypercube Sampling Method')

traj.f_add_parameter('simulation.cutoff', 100, comment='Cutoff first x ms,
—to avoid transient effects, in ms')



def add_exploration(traj):
"""Explores different wvalues of g, eta, J and D ."""
print('Adding exploration of g, eta, J and D')
g_vals, eta_vals, J_vals, D_vals = get_lhs_sampling_points(traj.
—num_sampling_points)
explore_dict = {'neuron.g': g_vals,
'neuron.eta': eta_vals,
'neuron.J': J_vals,
'neuron.D': D_vals

}
traj.f_explore(explore_dict)

[6]: # Create an environment that handles running
filename = os.path.join('hdf5', 'biggest_set_updated.hdf5')

env = Environment(filename = filename,
overwrite_file = True)
traj = env.traj

MainProcess pypet.storageservice.HDF5StorageService INFO I will use the hdfb
file “hdf5/biggest_set_updated.hdf5".
MainProcess pypet.environment.Environment INFO Environment initialized.

[6]: # Add parameters
add_parameters(traj)

# Let's explore
add_exploration(traj)

Adding Parameters
Adding exploration of g, eta, J and D

(500, 4)

[6.5335 5.9535 4.6545 5.9955 5.4495 5.0175 5.6175 5.2305 4.8255 5.0145
5.6715 5.9355 4.8795 4.9395 4.7205 5.4615 5.1435 4.7445 5.2005 5.7945
5.7825 5.8275 5.7975 5.5695 4.8525 5.4975 4.6905 5.8995 5.9565 4.7655
5.1165 5.6535 4.9335 5.7135 4.9665 5.4825 4.8075 5.6295 5.9295 5.4675
4.6665 5.1705 4.8885 4.8765 4.6605 5.0805 5.3535 4.7115 5.4945 5.9625
5.9895 5.3775 4.9755 5.2065 5.7735 4.8495 4.8915 4.6245 5.4555 4.6395
4.9215 4.9965 5.8935 5.3205 5.9265 5.1285 5.2875 5.0295 5.2245 5.6835
5.9805 5.8395 5.2635 4.8165 5.8545 5.1015 5.7315 5.5455 4.8615 5.1915
5.1645 5.6955 5.4525 4.5705 4.8225 5.5245 4.9485 5.2755 5.5905 5.7345
5.5365 5.9775 5.1315 5.1105 5.1765 5.9025 5.6235 5.7915 5.4585 5.9055
5.8485 5.1465 5.8905 5.2905 5.3415 4.8435 5.2485 5.6595 5.4885 5.1405
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.0835
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.0475
.8245
.6865
.5135
.2125
.5945
.5035
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.6305
.3925
.8105
.7075
. 7625
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.3625
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.5045
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.9695
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.6685
.4285
.8785
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.1615
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.3985
.8735
.0715
.4225
.8045
L7715
.7505
.8425
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L7705
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.4735
.2185
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.5975
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. 7475
.5995
.8695
.5645
.8585
.7805
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.9815
.0415
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.9985
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.8635
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.6515
.0385
.6895
.1945
.6265
.3235
.2695
.0535
.8705
.4015
.6355
.3685
. 5485
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.6575
.5305
.6005
.0505
.6775
.9145
.8125
.3955
.5965
.8305
.6365
.4075
.2365
.3055
. 3445
.8155
.8825
.0655
.5815
.1495
. 7595
.1675
.2575
.3295
.3175
.5585
.5675
.8135
.8185
.3565
.0025
.9385
.0625
.5095
.7195
. 7865
.8975
.4705
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.6385
.0415
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.1255
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.9815
.9175
.4825
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.6095
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.0205
.1885
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.1135
.2665
.3865
.5495
.6325
.9935
. 7435
.6035
.9275
.0565
.6925
.5795
.9745
.6875
.5075
.2785
.0685
. 7405
. 7685
.8065
.3475
.6065
.9415
.8365
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.6335
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.1165
.3385
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.1135
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.9085
. 7415
.6145
.5425
.5605
.1075
.0775
.9725
.4165
.4435
.2395
.6655
.6125
.6445
.2845
.8605
.5005
.8405
.4255
.0265
.9115
.5065
.6415
.5845
.8345
.2275
. 7255
.1735
.4045
L7675
.3025
. 7585
.2095
.6205
.8015
.9995
L7765
.1525
.7055]
.9745
. 7595
.9955
.8765
.9035
.0715
.3265
.9965
.7135



N, NNMNNMNNEFE PR, EPRPRNDNNNENNDMNDMEDNDNNNDNDMNNNDMENENNDNNERERENDNDNDNDDNDNDNDNDDNDDNDN

o

O O O O O O

.8935
.4885
.4135
.9145
.6115
.4225
.8335
.5995
.7075
.6895
.1345
. 7865
.8375
.3175
.4585
.5905
.6815
.5185
.6965
.1105
.3955
.0115
.5155
.3745
.5425
.6935
.0805
.7735
.9505
.5705
.9595
.5785
.8495
.8465
.5105
.3085
.9535
.3715
. 9445
.8075
.2245
.31775
.09165
.36045
.30725
.30445
.32055
.29535

R, P, NN NEPERNNDNDNNDNNDNDNDNNDNENDNDRNNNDNENDNDNENDNDNNDNDNDMNNNNDEDNDRNNNDEAENDNDNDDNDDNDN

.5035
.1315
.4195
.5605
.3325
.0475
. 7325
.6175
.2485
.2275
.8975
.2695
.6865
.1795
.6235
.2395
.5005
.9865
.9695
.4975
.6295
.5975
.8845
.6805
.5125
.2605
.5225
.1855
.4345
.0055
.0865
.0745
.5545
.4255
.8315
.3865
.8965
.8215
LT775
.8405
.5195

O O O O O O O

F NP P NNDNDNEDNMNDNMNDNNMNENNMNENDMNNDMNEEDNDNERERERPRDNDMNMENNDMERENDMNRPRPRPNDEDNDMNDMDNDMDNDMDNDNDNERENDRERPRRPRDN

.08535
.34015
.29955
.25125
.37095
.08955
.11265

.4945
.5375
.6575
.5915
.3295
.5045
.9085
.3805
. 0445
.2455
.1375
.4645
.8225
.5095
.6665
.9335
.9235
.8135
.6565
.5495
. 7525
.6445
.6515
.9155
.2995
.7655
. 7465
.6925
.6125
.3475
.9395
.1675
.1495
.5815
.9305
.1435
.0565
.8585
.9185
.7165
.5855

F N NNENDNDNNNNDNNDMNNENNEDNDMNNNNDNNER, R EPRPDNNDNENNDNDNNDNDNNNDNDMNNNDNNMNDMNDNEDNDNDEN

N

.13995
.19805
.20995
.05385
.25195
.29325
.27645

O O O O O O O

.9025 2.3655
.5345 1.6065
.8395 2.4435
.7855 1.9605
.8615 1.6245
L9775 1.5735
.6055 1.8915
.6205 1.8105
.2305 1.6155
.6725 2.7795
.4495 2.6985
.8485 1.8675
.0895 2.0025
.2425 1.6035
.75565 1.6365
.9835 1.7085
L4765 2.9295
.6635 1.8195
.45565 1.8165
.6215 2.1645
.9875 1.6875
.9935 2.7885
.2815 1.9755
.0595 1.5135
.5965 2.7645
.7045 2.3115
.7955 1.8555
.2935 1.5465
.6755 1.9575
.4525 2.4285
.5665 2.6655
.1915 2.4315
.3595 2.3925
.1705 2.0955
.2185 1.9485
.6185 1.7505
.6625 1.8255
.4735 2.2155
.8995 2.9895
.6095 2.1045
.8815 2.0085

0.18615 0

0.13085 0

0.32335 0

0.33315 0

0.07835 0

0.08885 0

0.09795 0

.39195
.29115
.38285
.18965
.14765
.09935
.16515

.6265
.9265
.5875
. 7475
.6595
.8575
. 7985
.8525
.4165
.3205
.0295
.9635
.2035
.55655
.2635
.2515
.6905
.6005
.7805
.2005
.5455
.2095
.1765
.8065
.5315
.4015
.6605
.1195
.8035
.6425
.4375
.8285
.6355
.1465
.4075
.9415
.7535
.7625
.2665
.6535

NNEFE P DNNNNDNNEPEPNDMNENDNNENDMNENDNNMNNDMNMNNERERPRPRPRPNDMNNNMERENNERERNDNDMDNDERPRDNDNDERENDNDN

O O O O O O O

.0175
. 7585
.5075
.4675
.6455
.7385
.8455
.6475
.9365
.6395
.6085
.9425
.6415
.8645
.5695
.2545
.8015
.1975
.9995
. 7295
.0205
.9545
.0235
.8795
.9905
.9475
L7705
.9055
.6745
.4105
.8855
.6845
.5365
.8945
.8045
. 7445
.5635
.7025
.9455
.9665
. 7435

N R R R NRPPRPNONRPRPRPNOMNNNNNNDMNNRERPNOMNRNNRRNNRNDNNDNERENNRNNRRPRNNNDRERNDERDNDDND

.09585
.11685
.32895
.07345
.05595
.06365
.27855

O O O O O O O

N NN EFENNEDNNNDNDNDMDNDNDNNNMNEDNDNDNNNDMNDMNDENENDEDNDNDNDMNDENNDMNENDNDMEDNDNDNDNDDND

.1735
.2575
.0685
.1825
.3685
.5765
.6025
.1585
.5615
.9925
L7975
L7175
.5485
.3565
. 7285
.9095
.8365
.9065
.1555
.6695
.9715
.5515
.1945
.2065
.2365
.1525
.8885
.2965
.1225
.8425
.2905
.5245
.9655
.3025
.5825
.7195
. 7945
.7145
.9985
.9385
.3775

.30375
.36255
.33245
.33385
.05665
.31985
.31145

O OO OO OO NF P NEFEFDNNNDMNDMNNNDNEFEFNDMNNNNDNNENDNNNDDNNNDMENNDDNNEPENDNNERENDNNDMNDNNERENDNNDNDER-

.7235
.7055
.5845
.8695
.6145
.6485
.3355
.4795
.2215
.0265
.8435
.5215
.8275
. 7685
.0925
.5065
.3505
.7355
.0145
.4465
.4855
.5275
.8245
.7205
.9325
.2845
.7825
.2785
. 7895
. 7495
.8635
.7015
.3895
.1285
.8665
.3145
.8825
.3235
.7115
.7415
.1405
.36395
.38005
.32475
.39405
.09095
.37935
.24495

NP NEFELNNMNNNE PP NNMNNMNDNNERE, PR RPRPPRPNNMNNDMENDMNERERPRPNDMDNDMDNDNERERNDMNEENNERENDNERE PR, ERNDEREDNDNDND

.0505
.2125
.9205
.6995
.5395
.5645
.5015
. 7265
.6685
.7925
.1615
.9215
L7765
.9245
.8735
.5575
.0775
. 7255
.9005
.8345
.8545
.55625
.1885
.8875
.5885
.6305
L7715
.5585
.7315
.7615
.4915
.7915
.6545
.5405
.8095
.8155
.4045
.5675
.3415
.9725
.3835]

O O O O O O O

.13645
.38145
.36535
.34505
.14345
.25055
.07275



O O O O O O OO OO OO OOOOOODODODODODODODODODODODODODODODO0ODODODOODODOOOOOOOOOOCO

.17075
.38775
.34575
.05945
.18895
.20155
.27015
.39895
.35625
.06925
.11755
.32545
.16935
.28625
.35835
.38215
.17495
.21835
.24565
.29885
.18265
.34785
.19455
.35415
.26245
.18055
.15605
.06715
.34295
.08675
.30795
.10495
.08185
.27225
.32265
.12385
.21485
.16865
.17005
.06225
.12525
.30865
.34085
.13505
.19175
.39755
.27785
.08255

O O O O O O O O OO OO OO OO OO OO OO OOOOOODOODODODOODODOOOOOOOOOOOOO

.30585
.21275
.27995
.27925
.26945
.22675
.07205
.13925
.38915
.37375
.11545
.34435
.36815
.08465
.18405
.15815
.08325
.24215
.33875
.26665
.28485
.39965
.38425
.29605
.09515
.27715
.28345
.11195
.06015
.31565
.06155
.14625
.37235
.14135
.24915
.26455
.26525
.26875
.20295
.05805
.24985
.05105
.12035
.10425
.21765
.36955
.27295
.34995

O O O O O O O O O OO OO OO OO O OO OO ODODOODIODODODODODODOODODODOOODODOOOOOOO OO

.20505
.12945
.33455
.15955
.35135
.12315
.33805
.36465
.33945
.28695
.19875
.09235
.33595
.14975
.18825
.10355
.07485
.35275
.34855
.08745
.22535
.12735
.16445
.13295
.32195
.13785
.07905
.16585
.07695
.25685
.12875
.27575
.34645
.36325
.13015
.15745
.28205
.38355
.31635
.12455
.32755
.22605
.34225
.29465
.33525
.39545
.15465
.39055

O O O O O O OO OO OO OODODODODODODODODODODODODODODODODODODODODODODOOOODOOODODOOOOOCO

.12595
.13715
.20225
.32965
.17635
.30515
.17145
.22465
.12665
.16375
.19735
.33735
.23865
.12105
.11055
.10705
.11965
.29815
.13365
.32615
.18545
.19525
.19315
.17845
.27365
.24145
.28065
.09445
.22045
.22395
.14695
.08395
.18755
.07555
.20925
.28905
.33175
.35695
.356555
.39265
.05525
.19595
.18475
.31425
.14415
.22815
.06315
.35485

O O O O O O OO OO OO OOOOOODODODODODODODODODODODODODODODODODOOODOOOOOOOOOOOCO

.15885
.14065
.37305
.15185
.30305
.22115
.06645
.37725
.26035
.37865
.39825
.21345
.07975
.23725
.37165
.28835
.35975
.26595
.14555
.07765
.26105
.19385
.27085
.14275
.22745
.22255
.37515
.06855
.15395
.25335
.10215
.21975
.36115
.23375
.20575
.31075
.10285
.05035
.15675
.38565
.33105
.16235
.39125
.30235
.34715
17775
.29255
.31495

O O O O O O O O O OO OO OO OO OO OO OO OOOO0OOO0OOOODOODODOOOOOOOOOOOOOO

.21135
.25475
.07065
.06505
.25965
.31355
.20015
.22885
.23935
.28765
.35905
.09305
.38845
.19945
.35065
.06995
.18195
.09025
.25895
.24635
.25545
.23165
.39685
.06575
.11125
.22955
.10845
.24845
.21205
.17215
.38075
.17705
.05455
.10075
.17565
.16025
.10635
.10005
.34925
.37585
.21065
.36185
.31005
.36745
.07625
.25755
.39335
.14835

O O O O O O O O O OO OO OO OO O OO OO ODODOODIODOD OO ODODOODODODOOODOOOOOOOO OO

.24355
.09375
.23305
.11335
.23025
.10915
.29185
.24075
.09865
.27155
.13155
.33665
.17425
.18125
.26735
.06785
.28275
.10775
.21905
.08115
.28135
.31215
.09725
.38705
.37795
.09655
.10985
.319156
.12245
.11405
.19105
.16095
.28415
.25615
.11895
.23515
.30165
.34365
.21555
.20085
.23445
.30025
.11615
.18335
.29045
.38635
.16165
.08605

O O O O O O O OO OO OOODODODODODODODODODODODODODODODODODODODODODODOOOOOODOOOOOOOCO

.31705
.18685
.32125
.11475
.23795
.20715
.24005
.10145
.17915
.27505
.24705
.15325
.26385
.36605
.08815
.07135
.36885
.13855
.15045
.31285
.29745
.27435
.33035
.22185
.24775
.13225
.05875
.19035
.38495
.28975
.38985
.156535
.23655
.36675
.16725
.21415
.07415
.29675
.16305
.056175
.17285
.20645
.06085
.12175
.19245
.15115
.11825
.21695

O O O O O O OO OO OO OOOODOODODODODODODODODODODODODODODODOO0ODO0ODOOOOOOOOOOOOOOOCO

. 24425
.32685
.12805
.37655
.32405
.19665
.13435
.25405
.05245
.26805
.30655
.08045
.05735
.30095
.35345
.15255
.06435
.20435
.39615
.29395
.21625
.20365
.39475
.14205
.26175
.24285
.23235
.34155
.17985
.31845
.23585
.35765
.25265
.20855
.28555
.30935
.10565
.14905
.32825
.26315
.20785
.22325
.14485
.16655
.13575
.256825
.37025
.17355



,_|
N O

R R RPN, RPNNMNNNRNNRPRPRPRPRPPRPRPPRNNMNNMNMR,R,OMNMNRNDNRNNRRRPRRERRPREBRNNRPRNR,RRRRBRNDR RN

.3155
.0515
.8235
. 7485
.3695
.6765
.8595
.2145
.8925
.1755
.2765
.7665
.1205
.3855
.9915
.6615
.7695
.2985
.1635
.0935
L7275
.4955
.1185
.4385
.2375
.9435
.3435
.2225
.3455
.1385
.6585
.2655
.3495
.8475
.0345
.1245
.4125
.3965
.5265
.0395
.1655
.2925
.9765
.2645
.2325
.0615
.9465

2585

.1485
.1235
.1865
.8985
.9285
.2535
.4185
.8025
.2955
.3725
.9315
.6015
.0725
.0165
.1545
.3195
.4865
.8265
.3525
.3035
.9795
.3815
.4935

.23095 0.35205
2.0305
1.6975
1.4395
2.4355
1.3975
1.3285
1.9105
1.3645
1.0135
1.3885
1.1725
1.0555
1.5505
1.3825
1.1335
2.3365
2.0635
1.8565
1.7035
1.4455
1.2025
1.5805
1.5655
2.
1
2
2
1
1
1
1
1
1
2
1
1
2
1
1
1
2
1
1
2
1
2
1

1
1
2
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
2
1
1
2
1
2
1
2
1
1
1
1
2
2
2
2
2
1
1
2
2
1
2
1
1
1
1
2
1

0.16795 0.37445 0.06295]

. 7455
.9825
.0695
.1395
.35565
.2205
.5925
.4605
.4275
.0435
.1305
.4665
.4055
.7755
.1275
.2735
.3735
.3015
.1115
.8865
.8055
.1715
.6345
.2825
.4065
.1505
.9345
.5415
.8415
.4365
.0785
.2465
.2795
.3515
.4415
.9495
.0945
.2135
.3665
.4545
.2435
.1815
.7335
.6855
.4155
.4325
.7815

1.
.6435
.2865
.3615
.9975
.1955
.6885
.6945
.9075
.2915
.1175
.9945
.8145
.4575
.6795
.1055
.1805
.7515
.0075
.0545
.0645
.8175
.1515
.0375
.8355
.4505
.1445
.2855
.5085
.6465
.7935
.1265
.3215
. 3405
.1935
.3245
.7305
.3305
.3995
.2235
.3905
.3425
.6195
.5565
.9645
.8745
.1065

R R R, R P NNNNRPRNNMNNNERERNNRRPRNONNRPRERENNNONNNRPR,RER,RRERNNRRNOONNRR,RR,RRNONNRPR RN R PR 2 e

5595

1.
.2115
.0465
.4985
.2685
.8445
.7575
.9705
.4845
.1665
.4965
.8655
.4235
.9885
.0825
.5325
.2265
.4205
.9135
.4655
.4785
L1775
.0095
.4035
.2345
.3105
.9195
.5715
.1695
.0215
.3705
. 7425
.1295
.8205
.2295
.3675
.6165
.35685
. 7845
.0255
.0275
.8895
.0845
.9585
.2525
.0765
.3935

NFFNFR,PNFEFNNMNRP,P PP RPRPPPRPNDMDRPPRPNMNRPRPRPRPPRPNDMNRENOMNMAENMNRAPNMNR,PRPRPRPRPNNRPRRPRPRPRPRPRRRPRERNDRPR

0225

2

.3065
2.3095
2.0875
2.1355
1.4425
1.0975
2.3485
1.56835
1.7395
1.1365
1.0915
2.4685
2.4445
2.3635
2.4895
1.4725
2.2615
1.3075
1.2175
1.4695
1.7905
2.2315
2.0755
1.
1
2
1
1
1
1
2
2
1
2
2
1
2
2
1
1
1
1
2
2
1
1
1

6375

.1035
.2555
.6645
.4905
.7965
.5115
.4595
.4565
.1605
.0665
.0995
.6735
.2945
.2045
.7635
.8385
.1905
.5745
.1145
.2705
.9165
. 3465
L7725

P NN, NP NR, PPN, RP PP PNNRPRPRPPRPNNRPRPRPRPNNMNRPRPRPNMNNNMRPRPRPRPRPNNMNRPRPRPNMNNMNNR,RRPRPRPNNRRRPR RPN

.1895
.5985
.1575
.5175
.2805
.0525
.4805
.5295
.6255
.2385
.1835
.3395
.3275
.6555
.6825
.0815
.9405
.2835
.1455
.0185
.0005
.9555
.0105
.1415
.0315
.0015
.0045
.2075
.7215
.2595
.2505
.4535
.3375
.8805
. 5445
.2085
.7605
.3785
.2715
.8115
L4175
.7065
.4295
.6495
. 0425
.0335
.7005

B NP P R NNR R R R R R RPRRPRBNONNNMNRRNNMNRNNMNENMNNMNR,RRPRNONNNRRNDNRRRRNDMDNOOMNODNDRS BB BN

.1425
.3875
.8325
.8625
. 7545
.3915
.3605
.3755
.1685
.1625
.0405
.9045
.4635
.7185
.3545
.2445
.9735
L4775
.4265
.9225
.3165
.6405
.1475
.0065
.3765
.4925
.3225
.2405
. 7365
.2625
.0965
.3005
.6135
.2415
.5055
.1215
.9015
.9525
.6285
.5865
.1785
.2255
.5955
.6315
.3135
.2105
.4995

N, P, PP P PRPNNPRPNDMNNNRRPRPPRPNDNRL,RPPRPRPRPRPRPNDMNRNNMNRPRPRPNNMNERNNERPNDMDNNRRPRNDMDENNMNNDNNR,RRPRPRNDNDERENDDND

.0455
.3845
.7155
.1085
.2495
.9375
.8685
.1095
.9675
.2675
.2195
.3575
.3945
.2885
.8505
.5205
.4625
.1595
.8715
.3185
.4875
.3125
.5895
.4755
.4715
.2055
.4745
.3315
.6045
.0195
.4515
.8535
.2015
.0885
.4305
.4485
.0155
.4115
.8775
.2975
.0285
.2565
.2355
.0675
.3345
.2745
.0605

P P P NNRPR,P NP, PP RPRPRRPRPRRPRPRPRPRPRPRPRPRPNDMNRPRPRPNMNNNRPRPRPRRRPRPRPNODMDNMNMARERPNMNAENDMNRPRNDMNNNREPRPRPNDMNRENDRRRARDND

.0125
.6915
.4335
.9255
.3335
.0585
.1985
.5685
.5235
. 7245
.0485
.4025
.4815
.0365
L7125
.4835
.1005
.9615
.0245
.4145
.2165
.1965
.1995
.6225
.2475
.0705
.3045
.1325
.0905
.5355
.55635
.1745
5775
.8835
.5385
.5145
.6105
.3255
.0855
.8955
.8085
.1565
.4215
.1025
.3795
.7095
.4095



[7]:

1.7875 1.5625 1.5475 1.4005 2.0035 1.0795 1.0735 1.1125 1.0495 1.6525
1.7785 2.2285 1.6675 1.7995 1.2895 1.11565 1.2775 1.9855 1.1875 1.8295
1.4245 2.1925 1.1845 2.1535 2.4085 2.0575 1.6075 1.5025 1.6705 2.4475]

# Run your wrapping function instead of your simulator
env.run(my_pypet_wrapper)

MainProcess pypet.environment.Environment INFO I am preparing the Trajectory
for the experiment and initialise the store.

MainProcess pypet.environment.Environment INFO Initialising the storage for
the trajectory.

MainProcess pypet.storageservice.HDFb5StorageService INFO Initialising

storage or updating meta data of Trajectory “trajectory.

MainProcess pypet.storageservice.HDF5StorageService INFO Finished init or
meta data update for “trajectory’.

MainProcess pypet.environment.Environment INFO

sk stk sk sk ok sk ok ok ok sk sksk sk ok sk ok ok sk stk sk sk ok ok ok sk skesksk sk ok ok ok sk sk sk sk sk sk o ke ok sk sk sk sk sk sk o ok ok sk sk sk sk ok

STARTING runs of trajectory

“trajectory’.

sk sk sk ok ok ok o o ok sk sk ok ok ok o o sk sk sk sk ok ok o o ok ok sk sk sk sk sk o o ok ok sk sk sk ok sk o o ok sk sk ok ok ok ok o ok ok ok ok ok ok

MainProcess pypet INFO PROGRESS: Finished 0/500 runs [
1 0.0%
MainProcess pypet INFO

Starting single run #0 of 500

Building network

Connecting devices

Connecting network

Excitatory connections

Inhibitory connections

Simulating

Brunel network simulation (Python)

Number of neurons : 12500

Number of synapses: 15637600
Exitatory : 12512500
Inhibitory : 3125000

Excitatory rate : 20.00 Hz
Inhibitory rate : 20.80 Hz
Building time : 3.04 s
Simulation time : 36.14 s
Cutoff first ms : 100.00

/Users/anjastene/anaconda3/envs/pypetNestFriend/lib/python3.6/site-
packages/pypet/storageservice.py:3110: FutureWarning:Conversion of the second
argument of issubdtype from “str® to “str” is deprecated. In future, it will be



create csv. wStats from hdfb

August 10, 2020

0.0.1 Add statistical measures of the spike trains, create a csv of the resulting data
of regressors and responses.

Create a csv file containing the data from simulations relevant for model training (i.e. exluding the
spiketrains)

Workflow: * import modules * load trajectory for the correct file * run through dataset to pick up
values * store everything in a pandas df * export df to csv

[13]: import os
[14]: # Create an environment that handles running

# using the same filename as for runinng the simulation
filename = os.path.join('hdf5', 'biggest_set_updated.hdf5')

# Reload the stored data from above.
# Do not need an environment for that, just a trajectory
from pypet.trajectory import Trajectory

# Create a new trajectory and pass it the path and name of the HDF5 file.

del traj

# Disable logging and close all log-files
env.disable_logging()

del env

traj = Trajectory(filename=filename)

# Load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

[15]: | #ADJUSTING THE CORR_COEF AND COV_COEF TO DATAFRAMES
import pandas as pd

df = pd.DataFrame({'g': [1, 'eta': [1, 'J': [1, 'D': I}

for run_name in traj.f_get_run_names():



[16]:

[16]:

—ignore_index=True)

traj.f_set_crun(run_name)
g=traj.g

eta=traj.eta

D=traj.D
J=traj.J

cv_list=traj.results.crun.cv_list
fanofactor=traj.results.crun.fanofactor
corr_coef=pd.DataFrame(traj.results.crun.corr_coef)
cov_coef=pd.DataFrame(traj.results.crun.cov_coef)

if run_name == "run_00000000":
print(type(cv_1list))

typelist

[type(g), type(eta), type(J), type(D), type(cv_list),
type (fanofactor), type(corr_coef), type(cov_coef)]

df = df .append({'g': g, 'eta': eta, 'J': J, 'D': D, 'cv_list': cv_list,
—'fanofactor': fanofactor,

'corr_coef': corr_coef, 'cov_coef': cov_coefl}, |

# Reset your trajectory to the default settings, to release its belief to
# be the last run:
traj.f_restore_default()

<class 'list'>
df

g
0 5.5335 2
1 5.9535 1
2 4.6545 2
3 5.9955 2
4 5.4495 2
495 4.5165
496 5.1825
497 4.5885
498 5.4795
499 4.7055
0
1
2

NN N NN

eta

.9355
.5255
.2725
.0655
.3985

.6505
. 7435
.3775
.1405
.3835

o

O O O O O

O O O O O

J

.31775
.08535
.13995
.18615
.39195

.23095
.35205
.16795
.37445
.06295

N = S V)

N =, =, =N

D \

.3155
.0305
. 7455
.5595
.0225

.0675
.6075
.5025
.6705
.4475

corr_coef \
3
3
3

N NN



4 0 1 2 3
495 0 1 2 3
496 0 1 2 3
497 0 1 2 3
498 0 1 2 3
499 0 1 2 3

cov_coef \

0 0 1 2
1 0 1 2
2 0 1 2
3 0 1 2
4 0 1 2
495 0 1 2
496 0 1 2
497 0 1 2
498 0 1 2
499 0 1 2
cv_list fanofactor
0 [0.8994818646428511, 0.8833214891550989, 0.728.. 0.682474
1 [0.25165910206812425, 0.3926207436303479, 0.14.. 0.080781
2 [0.20762749796857238, 0.21467588525256862, 0.2. 0.043621
3 [0.40877302892258993, 0.4463324448200583, 0.66.. 0.234228
4 [0.6672862464314624, 0.9885214444992486, 0.956.. 1.054967
495 [0.3763781161989031, 0.45302429910672376, 0.38.. 0.175074
496 [0.8478812817357193, 0.8386207340778052, 0.889.. 0.873585
497 [0.2535824426631328, 0.24068543901411885, 0.24.. 0.088251
498 [0.9498606846375839, 0.8073126445427456, 1.041.. 0.655409
499 [0.0647609406282632, 0.07939149021435067, 0.08.. 0.013249

[500 rows x 8 columns]
[17]: import numpy as np

corr_sparsematrix_mean_cols = []
cov_sparsematrix_mean_cols = []

for i in range(500):
corr = df['corr_coef'] [i]
c2 = corr.copy()
c2.values[np.tril_indices_from(c2)] = np.nan
corr_sparse_mean = c2.mean().round(4)



corr_sparsematrix_mean_cols.append(corr_sparse_mean.tolist())

cov = df['cov_coef'][i]

c2 = cov.copy()

c2.values[np.tril_indices_from(c2)] = np.nan
cov_sparse_mean = c2.mean().round(4)
cov_sparsematrix_mean_cols.append(cov_sparse_mean.tolist())

df ['cov_sparsematrix_mean_cols'] = cov_sparsematrix_mean_cols
df ['corr_sparsematrix_mean_cols'] = corr_sparsematrix_mean_cols

df .to_csv('data_500_params_stats_v5.csv')

[32]: | #Print exzample of sparse matriz
listo = df['corr_sparsematrix_mean_cols'] [40]
mean=pd.DataFrame(listo) .mean()
print(listo)

[nan, -0.0041, 0.4979, 0.3306, 0.4979, 0.5983, 0.3306, 0.4262, 0.4979, 0.5537,
0.5983, 0.361, 0.4142, 0.5365, 0.5697, 0.3975, 0.4352, 0.4684, 0.4979, 0.4715,
0.4979, 0.5218, 0.4523, 0.4761, 0.4979, 0.518, 0.5365, 0.4421, 0.4621, 0.4806,
0.4979, 0.5141, 0.4665, 0.5131, 0.5266, 0.5408, 0.4423, 0.4573, 0.5242, 0.5364,
0.4478, 0.5345, 0.5456, 0.4396, 0.4524, 0.4646, 0.5196, 0.5299, 0.5397, 0.4468]

[12]: 4df
[12]: g eta J D \
0 3.8815 2.5760 2.5760 2.0635
1 3.9895 2.5056 2.5056 1.3255
2 3.7505 2.2176 2.2176 1.6165
3 3.8205 1.1936 1.1936 1.2655
4 3.7455 2.8960 2.8960 1.1665
495 3.9605 1.8016 1.8016 1.4935
496 3.9205 2.3776 2.3776 2.3635
497 3.8105 1.7696 1.7696 1.5595
498 3.5765 3.2864 3.2864 1.6315
499 3.9035 3.1904 3.1904 2.2225
corr_coef \
0 [[1.0, 0.08769903861511744, 0.0784531101735543..
1 [[1.0, 0.01728911707080802, 0.0328569510763425...
2 [[1.0, 0.2480000894941341, 0.2386142184490019,..
3 [[1.0, 0.30912913506069245, 0.2901624570175456...
4 [[1.0, 0.6359804817245023, 0.3999531350309014,..

495 [[1.0, 0.03662724949678573, 0.1005310046419901..



496 [[1.0, 0.08716013215270216, 0.1196789682146686...

0
497 [[1.0, 0.14534771774327976, 0.0878020691827465...
498 [[1.0, -0.004277305918350799, -0.0042773059183...
499 [[1.0, 0.1988573568773955, 0.19913232796808136...
cov_coef \
0 [[0.0040922434832052195, 0.0003561073695711283...
1 [[0.0016155779928577862, 3.275980194861276e-05...
2 [[0.0040922434832052195, 0.0010193388534937094...
3 [[0.003253014614182443, 0.0009985970120389525,...
4 [[0.003920904322270698, 0.002493618619673402, ..

495 [[0.0019326317016105103, 5.24863449171852e-05,..
496 [[0.003550969141041778, 0.00031418731905827243...
497 [[0.0039389428333646, 0.0005751320879776593, O..
498 [[0.004236482811000761, -1.8139999619831253e-0...
499 [[0.003929923660463029, 0.0007930652262128003,...

cv_list fanofactor

0 [0.11955736909306632, 0.1421869977753263, 0.13.. 0.019662
1 [4.150413981426069, 2.7431881025313944, 4.1881.. 18.849440
2 [0.09357560331217467, 0.07995183704465272, 0.0... 0.008727
3 [0.1796574806985018, 0.18612593963940413, 0.17.. 0.045734
4 [0.06651385216671868, 0.06797297812237542, 0.0.. 0.002517

495 [2.5284775395765395, 3.792132359368514, 3.0715.. 11.909103

496 [0.6181448695096702, 0.593012056537501, 0.3060.. 1.014082
497 [0.15317431647710103, 0.14271864634470188, 0.1.. 0.019435
498 [0.02210814800649538, 0.022097086912079546, O.. 0.000464
499 [0.18577443915723346, 0.12260881688165026, O0.1.. 0.040708

[600 rows x 8 columns]
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Appendix J brunel_delta_ml.py
#l/usr/bin/env python3
# -*- coding: utf-8 -*-

def sim_brunel_delta(dt=0.1,
simtime=10.0,

delay=1.5,
g=5.0,
eta=2.0,
epsilon=0.1,
order=2500,
J=0.1,
N_rec=50,

num_threads=1,
print_report=True,
input_stop=False,
cutoff=0):

# the following code is based on brunel-delta-nest.py

# which is part of NEST.

#

# Copyright (C) 2004 The NEST Initiative

# NEST is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

#

# NEST is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <http.//www.gnu.org/licenses/>.

# This version uses NEST's Connect functions.
# Link Quickref: htips.//www.nest-simulator.org/quickref/

import nest
import nest.raster_plot
import time
from numpy import exp

nest.ResetKernel()
startbuild = time.time()

# Parameters for asynchronous irreqular firing
NE = 4 * order #=10000 in simulation

NI =1 * order #=2500 in simulation
N_neurons = NE + NI

CE = int(epsilon * NE) # number of excitatory synapses per neuron
Cl = int(epsilon * NI) # number of inhibitory synapses per neuron
C_tot = int(Cl + CE) # fotal number of synapses per neuron

cutoff = cutoff # Cutoff to avoid transient effects, in ms

# Initialize the parameters of the integrate and fire neuron
tauMem = 20.0
theta = 20.0

J_ex=J
J_in=-g*J_ex

nu_th = theta / (J * CE * tauMem)



Appendix J brunel_delta_ml.py

66 nu_ex = eta * nu_th

67 p_rate = 1000.0 * nu_ex * CE

68

69 if not print_report:

70 nest.set_verbosity('M_WARNING')

71

72 nest.SetKernelStatus({"resolution": dt, "print_time": True,
73 "local_num_threads": num_threads,

74 ‘overwrite_files': True})

75

76 print("Building network")

77

78 neuron_params = {"C_m": 1.0,

79 "tau_m": tauMem,

80 "t_ref": 2.0,

81 "E_L": 0.0,

82 "V_reset": 0.0,

83 "V_m": 0.0,

84 "V_th": theta}

85

86 nest.SetDefaults("iaf_psc_delta", neuron_params)

87

88 nodes_ex = nest.Create("iaf_psc_delta", NE)

89 nodes_in = nest.Create("iaf_psc_delta", NI)

90

2 # Stop input after x = input_stop ms if input_stop is not 0
92 # https://www.nest-simulator.org/helpindex/cc/poisson_generator.htm/
93 if input_stop:

94 params = {'rate": p_rate, "stop": input_stop}

95 else:

96 params = {"rate": p_rate}

97

98 nest.SetDefaults("poisson_generator", params)

19090 noise = nest.Create("poisson_generator")

101 espikes = nest.Create("spike_detector")

182 ispikes = nest.Create("spike_detector")

104 nest.SetStatus(espikes, [{"label": "brunel-py-ex",

105 "withtime": True,

106 "withgid": True,

107 "to_file": False}])

108

109 nest.SetStatus(ispikes, [{"label": "brunel-py-in",

110 "withtime": True,

m "withgid": True,

112 "to_file": False}])

113

11‘5" print("Connecting devices")

116 nest.CopyModel("static_synapse", "excitatory”, {"weight": J_ex, "delay": delay})
H; nest.CopyModel("static_synapse", "inhibitory", {"weight": J_in, "delay": delay})
119 nest.Connect(noise, nodes_ex, syn_spec="excitatory")
12? nest.Connect(noise, nodes_in, syn_spec="excitatory")
122

nest.Connect(nodes_ex[:N_rec], espikes, syn_spec="excitatory")

122 nest.Connect(nodes_in[:N_rec], ispikes, syn_spec="excitatory")

125 print("Connecting network")

126

127 # We now iterate over all neuron IDs, and connect the neuron to

128 # the sources from our array. The first loop connects the excitatory neurons
122 # and the second loop the inhibitory neurons.

131

print("Excitatory connections")



Appendix J brunel_delta_ml.py
132
133 conn_params_ex = {'rule": 'fixed_indegree', 'indegree": CE}
134 nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory")
135
136 print("Inhibitory connections")
137
138 conn_params_in = {rule': 'fixed_indegree’, 'indegree’: Cl}
139 nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory")
140
141 endbuild = time.time()
142
143 print("Simulating")
144

145 nest.Simulate(simtime)
146

147 endsimulate = time.time()
148

149 events_ex = nest.GetStatus(espikes, "n_events")[0]
150 rate_ex = events_ex / simtime * 1000.0 / N_rec

151 events_in = nest.GetStatus(ispikes, "n_events")[0]

152 rate_in = events_in / simtime * 1000.0 / N_rec

153

154 num_synapses = nest.GetDefaults("excitatory")["num_connections"] + \
155 nest.GetDefaults("inhibitory")["num_connections"]

156

157 build_time = endbuild - startbuild
158 sim_time = endsimulate - endbuild

159
160 print("Brunel network simulation (Python)")
161 print("Number of neurons : {0}".format(N_neurons))

1 gg print("Number of synapses: {0}".format(num_synapses))

print(" Exitatory : {0}".format(int(CE * N_neurons) + N_neurons))
e print(" Inhibitory : {0}".format(int(CI * N_neurons)))
166 print("Excitatory rate : %.2f Hz" % rate_ex)
167 print("Inhibitory rate : %.2f Hz" % rate_in)
168 print("Building time  : %.2f s" % build_time)

169 print("Simulation time : %.2f s" % sim_time)

("
(
(
(
(
165 K
(
(
(
170 print("Cutoff first ms : %.2f " % cutoff)

171

172 #nest.raster_plot.from_device(espikes, hist=True)

173

174 # The function shall return a tuple consisting of the excitatory and
175 # inhibitory spikes recorded, as Pandas data frames:

176 import pandas as pd

177

178 exc_spikes = nest.GetStatus(espikes, 'events’)[0]
179 inh_spikes = nest.GetStatus(ispikes, 'events')[0]
180

181
182 # Excitatory spike trains

183 # Makes sure the spiketrain is added even if there are no results
184 # to get a regular result

185 #eutoff = 100

186 events_E = exc_spikes

187 nodes_E = nodes_ex

188 spiketrains = []

189

190 for sender in nodes_E[:N_rec]:

191 spiketrain = events_E["times"][events_E["senders"] == sender]
192 spiketrain = spiketrain[spiketrain > cutoff] - cutoff

193 spiketrains.append(spiketrain)

194

195 #Creating pandas df of spikeevents
196 df_e = pd.DataFrame(exc_spikes)
197 df_i = pd.DataFrame(inh_spikes)
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208

Appendix J
#adding spike-type info to dataframe
df_e['excitatory'] = 1
df_i['inhibitory']= 1

#Appending dataframes to one big dataframe
df=df_e.append(df_i, sort=False, ignore_index=True)
return df, spiketrains

#return exc_spikes, inh_spikes

brunel_delta_ml.py
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Appendix K brunel_delta.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

nnn

Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene @nmbu.no

nnn

def sim_brunel_delta(dt=0.1,
simtime=10.0,
delay=1.5,
g=5.0,
eta=2.0,
epsilon=0.1,
order=2500,
J=0.1,
N_rec=50,
num_threads=1,
print_report=True,
input_stop=False,
cutoff=0):

# the following code is based on brunel-delta-nest.py

# which is part of NEST.

#

# Copyright (C) 2004 The NEST Initiative

# NEST is free software: you can redistribute it anad/or modify

# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

#

# NEST is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY;, without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <htip://www.gnu.org/licenses/>.

# This version uses NEST's Connect functions.
# Link Quickref: https.//www.nest-simulator.org/quickref/

import nest
import nest.raster_plot
import time
from numpy import exp

nest.ResetKernel()
startbuild = time.time()

# Parameters for asynchronous irregular firing
NE = 4 * order #=10000 in simulation

NI =1 * order #=2500 in simulation
N_neurons = NE + NI

CE = int(epsilon * NE) # number of excitatory synapses per neuron
Cl = int(epsilon * NI) # number of inhibitory synapses per neuron
C_tot = int(Cl + CE) # fotal number of synapses per neuron

cutoff = cutoff # Cutoff to avoid transient effects, in ms

# Initialize the parameters of the integrate and fire neuron
tauMem = 20.0
theta = 20.0



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Appendix K brunel_delta.py

J_ex=1J
J_in=-g"J_ex

nu_th = theta / (J * CE * tauMem)
nu_ex = eta * nu_th
p_rate = 1000.0 * nu_ex * CE

if not print_report:
nest.set_verbosity('M_WARNING')

nest.SetKernelStatus({"resolution": dt, "print_time": True,
"local_num_threads": num_threads,
‘overwrite_files': True})

print("Building network")

neuron_params = {"C_m": 1.0,
“tau_m": tauMem,
“t_ref": 2.0,
"E_L" 0.0,
"V_reset": 0.0,
"V_m": 0.0,
"V_th"; theta}

nest.SetDefaults("iaf_psc_delta", neuron_params)

nodes_ex = nest.Create("iaf_psc_delta", NE)
nodes_in = nest.Create("iaf_psc_delta", NI)

# Stop input after x = input_stop ms if input_stop is not 0
# https.//www.nest-simulator.org/helpindex/cc/poisson_generator. html
if input_stop:
params = {"rate": p_rate, "stop": input_stop}
else:
params = {"rate": p_rate}

nest.SetDefaults("poisson_generator", params)
noise = nest.Create("poisson_generator")

espikes = nest.Create("spike_detector")
ispikes = nest.Create("spike_detector")

nest.SetStatus(espikes, [{"label": "brunel-py-ex",
"withtime": True,
"withgid": True,
"to_file": False}])

nest.SetStatus(ispikes, [{"label": "brunel-py-in",
"withtime": True,
"withgid": True,
"to_file": False}])

print("Connecting devices")

nest.CopyModel("static_synapse", "excitatory”, {"weight": J_ex, "delay": delay})
nest.CopyModel("static_synapse", "inhibitory", {"weight": J_in, "delay": delay})

nest.Connect(noise, nodes_ex, syn_spec="excitatory")
nest.Connect(noise, nodes_in, syn_spec="excitatory")

nest.Connect(nodes_ex[:N_rec], espikes, syn_spec="excitatory")
nest.Connect(nodes_in[:N_rec], ispikes, syn_spec="excitatory")

print("Connecting network")
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131 # We now iterate over all neuron IDs, and connect the neuron to
132 # the sources from our array. The first loop connects the excitatory neurons
133 # and the second loop the inhibitory neurons.
134
135 print("Excitatory connections")
136
137 conn_params_ex = {'rule": 'fixed_indegree’, 'indegree": CE}
138 nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory")
139
140 print("Inhibitory connections")
141
142 conn_params_in = {'rule": ‘fixed_indegree', 'indegree’: Cl}
143 nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory")
144
145  endbuild = time.time()
146
147 print("Simulating")
148

149 nest.Simulate(simtime)
150

151 endsimulate = time.time()

152

153 events_ex = nest.GetStatus(espikes, "n_events")[0]
154 rate_ex = events_ex / simtime * 1000.0 / N_rec
155 events_in = nest.GetStatus(ispikes, "n_events")[0]
156 rate_in = events_in / simtime * 1000.0 / N_rec

157

158 num_synapses = nest.GetDefaults("excitatory")["num_connections"] + \
159 nest.GetDefaults("inhibitory")["num_connections"]

160

161 build_time = endbuild - startbuild

162 sim_time = endsimulate - endbuild
163

164 print("Brunel network simulation (Python)")

172 print("Building time  : %.2f s" % build_time)

(
165 print("Number of neurons : {0}".format(N_neurons))
166 print("Number of synapses: {0}".format(num_synapses))
e print(" Exitatory : {0}".format(int(CE * N_neurons) + N_neurons))
128 print(" Inhibitory : {0}".format(int(Cl * N_neurons)))
170 print("Excitatory rate : %.2f Hz" % rate_ex)
171 print("Inhibitory rate : %.2f Hz" % rate_in)
(
173 print("Simulation time : %.2f s" % sim_time)
174 print("Cutoff first ms : %.2f " % cutoff)
175
176 #nest.raster_plot.from_device(espikes, hist=True)
177

178 # The function shall return a tuple consisting of the excitatory and
179 # inhibitory spikes recorded, as Pandas data frames:

180 import pandas as pd

181

182 exc_spikes = nest.GetStatus(espikes, '‘events')[0]

183 inh_spikes = nest.GetStatus(ispikes, 'events')[0]

184

185
186 # Excitatory spike trains

187 # Makes sure the spiketrain is added even if there are no results
188 # to get a regular result

189 #eutoff = 100

190 events_E = exc_spikes

191 nodes_E = nodes_ex

192 spiketrains = []

193

194 for sender in nodes_E[:N_rec]:

195 spiketrain = events_E["times"][events_E["senders"] == sender]

196 spiketrain = spiketrain[spiketrain > cutoff] - cutoff
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spiketrains.append(spiketrain)

return pd.DataFrame(exc_spikes), pd.DataFrame(inh_spikes), spiketrains

#return exc_spikes, inh_spikes
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Appendix L run_NEST_pypet LHS.py

#l/usr/bin/env python3
# -*- coding: utf-8 -*-

nnn

Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene @nmbu.no

unn

import numpy as np

from smt.sampling_methods import LHS

from pypet import Environment

import pandas as pd

import os # 7o allow file paths working under Windows and Linux
from brunel_delta_ml import sim_brunel_delta

from neo.core import SpikeTrain

from quantities import Hz, s, ms

from elephant.statistics import isi, cv, fanofactor

from elephant.spike_train_correlation import corrcoef, covariance
from elephant.conversion import BinnedSpikeTrain

def get_lhs_sampling_points(num_sampling_points):

g_space = [4.5, 6.0] #up fo 5
eta_space = [1.5, 3.0]
J_space = [0.05, 0.4]
D_space = [1.0, 2.5]

xlimits = np.array([g_space, eta_space, J_space, D_space])
sampling = LHS(xlimits=xlimits)

x = sampling(num_sampling_points)

print(x.shape)
print(x[:, 0])
print(x[:, 1])
print(x[:, 2])
print(x[:, 3])

return x[:, O].tolist(), x[:, 1].tolist(), x[:, 2].tolist(), x[:, 3].tolist()

def get_statistics(spiketrains, t_stop):

cv_list = [cv(isi(spiketrain)) for spiketrain in spiketrains]
isi_list = [isi(spiketrain) for spiketrain in spiketrains]
fano_factor = fanofactor(spiketrains)

spiketrain_list = [SpikeTrain(spiketrain®s, t_stop=t_stop) for spiketrain in spiketrains]
binned_sts=BinnedSpikeTrain(spiketrain_list, binsize=10"ms) # binsize = simulation resolution?

corr_coef = corrcoef(binned_sts, binary=False)
cov_coef = covariance(binned_sts, binary=False)

return cv_list, isi_list, fano_factor, corr_coef, cov_coef

def run_simulation(g, eta, D, J, simtime, cutoff):

df, spiketrains = sim_brunel_delta(g=g,
eta=eta,
J=J,
delay=D,

simtime=simtime,
cutoff=cutoff)
return df, spiketrains

def my_pypet_wrapper(traj):

df, spiketrains = run_simulation(traj.g, traj.eta, traj.D, traj.J, traj.simtime, traj.cutoff)
cv_list, isi_list, fanofactor, corr_coef, cov_coef = get_statistics(spiketrains, traj.simtime)
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Appendix L run_NEST_pypet LHS.py

traj.f_add_result('$set.$.sim_res_df', df, comment='"Result from simulation i pandas dataframe™)

traj.f_add_result('$set.$.cv_list', cv_list, comment='CV, Contains coefficient of variation for every spiketrain')
#traj.f_add_result('$set.$.isi_list, isi_list, comment="List of interspikeintervals for all spiketrains')

traj.f_add_result('$set.$.fanofactor', fanofactor, comment="fanofactor f = var(v) / mean(v) where v is a list of the interspike interval variability')
traj.f_add_result('$set.$.corr_coef', corr_coef, comment='CC, Coefficient of correlation matrix, sparse')

traj.f_add_result('$set.$.cov_coef', cov_coef, comment='"CCov, Coefficient of covariance')

def add_parameters(traj):
"""Adds all parameters to ‘traj’
The parameters to be explored are also added here with
default value that is equal to function defaults in brunel_delta.py.

nnn

print('Adding Parameters')
traj.f_add_parameter('simulation.dt', 0.1, comment='Simulation Resolution in NEST')
traj.f_add_parameter('simulation.simtime', 1100.0, comment='Duration of the experiment simulation in ms')
traj.f_add_parameter('neuron.D’, 1.5, comment='delay, synapse-delay between neurons in ms')
traj.f_add_parameter('neuron.g', 5.0, comment='Inhibitory synaptic strength relative to excitatory')
traj.f_add_parameter('neuron.eta’, 2.0, comment='V ext/ V thr')
traj.f_add_parameter('neuron.epsilon’, 0.1, comment="Excitatory Neurons * epsilon = nr of synapses per neuron')
traj.f_add_parameter('neuron.order', 2500, comment='Relative number of neurons in network')
traj.f_add_parameter('neuron.J’, 0.1, comment='Synapse weight between neurons')
¢
(
(
(
(
(

traj.f_add_parameter('neuron.N_rec', 50, comment="Number of neurons to record during simulation')
traj.f_add_parameter('simulation.num_threads', 10, comment='simulation in threads for parallelizing')
traj.f_add_parameter('simulation.print_report', True, comment="print output during simulation’)
traj.f_add_parameter(‘'simulation.stop_input', False, comment='Stop network input in simulation after x ms')
traj.f_add_parameter('simulation.num_sampling_points', 500, comment='"Number of sampling points in Latin Hypercube Sampling Method')
traj.f_add_parameter(‘'simulation.cutoff’, 100, comment='Cutoff first x ms to avoid transient effects, in ms')

def add_exploration(traj):
"""Explores different values of g, eta, Jand D ."""

print('Adding exploration of g, eta, J and D')
g_vals, eta_vals, J_vals, D_vals = get_lhs_sampling_points(traj.num_sampling_points)
explore_dict = {'neuron.g: g_vals,

‘neuron.eta’: eta_vals,

‘neuron.J': J_vals,

‘neuron.D": D_vals

}

traj.f_explore(explore_dict)

# Create an environment that handles running
filename = os.path.join('hdf5','biggest_set_updated.hdf5') #1hisfile.hdf5’

env = Environment(filename = filename,
overwrite_file = True)
traj = env.traj

# Add parameters
add_parameters(traj)

# Let's explore
add_exploration(traj)

# Run your wrapping function instead of your simulator
env.run(my_pypet_wrapper)
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Appendix M add_statistics_summaries.py

#l/usr/bin/env python3
#-*- coding: utf-8 -*-

nnn

Created on Mon Aug 10 16:58:59 2020

@author: Anja Stene, anja.stene @nmbu.no

nnn

import os
# Create an environment that handles running

# using the same filename as for runinng the simulation

filename = os.path.join('hdf5','biggest_set_updated.hdf5') #7hisfile.hdf5'

# reload the stored data from above.
# need an environment for that, just a trajectory.
from pypet.trajectory import Trajectory

# So, first let's create a new trajectory and pass it the path and name of the HDF5 file.
# Yet, to be very clear let's delete all the old stuff.

#del traj

# Before deleting the environment let's disable logging and close all log-files
#env.disable_logging()

#del env

traj = Trajectory(filename=filename)

# Now we want to load all stored data.
traj.f_load(index=-1, load_parameters=2, load_results=2)

# ADJUSTING THE CORR_COEF AND COV_COEF TO DATAFRAMES
import pandas as pd

df = pd.DataFrame({'g" [], 'eta’: [], 'J: [I, 'D": [I})

for run_name in traj.f_get_run_names():
traj.f_set_crun(run_name)
g=traj.g
eta=traj.eta
D=traj.D
J=traj.J
cv_list=traj.results.crun.cv_list
fanofactor=traj.results.crun.fanofactor
corr_coef=pd.DataFrame(traj.results.crun.corr_coef)
cov_coef=pd.DataFrame(traj.results.crun.cov_coef)

if run_name == "run_00000000":
print(type(cv_list))

typelist = [type(q), type(eta), type(J), type(D), type(cv_list),
type(fanofactor), type(corr_coef), type(cov_coef)]
#df = df.append({'q": g, ‘eta” eta, J: J, 'D: D}, ignore_index=True)
df = df.append({'g": g, 'eta’: eta, 'J: J, 'D": D, 'cv_list": cv_list, 'fanofactor': fanofactor,
‘corr_coef': corr_coef, 'cov_coef': cov_coef}, ignore_index=True)

# Don't forget to reset your trajectory to the default settings, to release its belief to
# be the last run:

traj.f_restore_default()

#df.to_csv('data_500_params_stats_v5.csv))
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Appendix M add_statistics_summaries.py
#dff corr_coef'J[0]. mean()

import numpy as np

corr_sparsematrix_mean_cols = []
cov_sparsematrix_mean_cols = []

for i in range(500):
corr = df['corr_coef']i]
c2 = corr.copy()
c2.values[np.tril_indices_from(c2)] = np.nan
corr_sparse_mean = c2.mean().round(4)
corr_sparsematrix_mean_cols.append(corr_sparse_mean.tolist())

cov = df['cov_coef"[i]

c2 = cov.copy()

c2.values[np.tril_indices_from(c2)] = np.nan

cov_sparse_mean = c2.mean().round(4)
cov_sparsematrix_mean_cols.append(cov_sparse_mean.tolist())

df['cov_sparsematrix_mean_cols'] = cov_sparsematrix_mean_cols
df['corr_sparsematrix_mean_cols'] = corr_sparsematrix_mean_cols

df.to_csv('data_500_params_stats_v5.csv')

import pandas as pd
df = pd.DataFrame({'g" [], 'eta”: [], 'J": [1, 'D": [I})

for run_name in traj.f_get_run_names():
traj.f_set_crun(run_name)
g=traj.g
eta=traj.eta
D=traj.D
J=traj.J
cv_list=traj.results.crun.cv_list
fanofactor=traj.results.crun.fanofactor
corr_coef=traj.results.crun.corr_coef
cov_coef=traj.results.crun.cov_coef

typelist = [type(Q), type(eta), type(d), type(D), type(cv_list),
type (fanofactor), type(corr_coef), type(cov_coef)]
#df = df.append({g": g, ‘eta’ eta, J': J, ‘D" D}, ignore_index=True)
df = df.append({'g": g, 'eta": eta, 'J: J, 'D" D, 'cv_list": cv_list, 'fanofactor': fanofactor,
‘corr_coef': corr_coef, 'cov_coef': cov_coef}, ignore_index=True)

# Don't forget fo reset your trajectory to the default settings, to release its belief to
# be the last run.
traj.f_restore_default()



Appendix N requirements.txt

matplotlib==3.1.3
numpy==1.18.1
pypet==0.4.3
neo==0.8.0
smt==0.3.4
elephant==0.6.4
quantities==0.12.4
pandas==1.0.1
nest==1.3.0
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