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Abstract

The main objective of this thesis was to examine whether the treatment of ADHD-
diagnosed male children using methylphenidate-based medication (MPH) caused
changes to selected subcortical brain structures. The effects of MPH were exam-
ined by comparing MPH-treated trial subjects to a placebo cohort. Radiomics was
utilised to extract high-dimensional datasets from T1-weighted MR images, which
were obtained as part of The effects of Psychotropic drugs On Developing brain
study (ePOD). The analyses performed in this thesis were limited to the trial sub-
jects’ caudate, hippocampus, pallidum, putamen and thalamus.

Radiomic shape and texture features were extracted from the left and right side of
the selected brain structures and analysed. The analyses included a comparison of
the subjects’ structure surface area and volume and a principal component analy-
sis of the extracted shape and texture features. Further, classification experiments
were performed, predicting the treatment method by cross-validating six classifi-
cation algorithms and four feature selectors. The performance of the classification
experiments was evaluated using the area under the receiver operating curve (AUC).

According to the analyses performed, the subjects’ right pallidum’s suface area and
volume were enlarged after methylphenidate-treatment. Furthermore, the MPH-
treated trial subjects showed signs of an increased right hippocampal volume and
right thalamus surface area. None of the principal component analyses performed
based on the shape features or the texture features appeared to be able to distin-
guish the MPH-treated subjects from the placebo group, indicating that no changes
due to the medication were detected by the principal component analyses.

The classification experiments of the pallidum and the putamen associated features
yielded AUC scores close to 80. The best performing models in the caudate’s, hip-
pocampus’ and the thalamus’ classification experiments resulted in AUC scores close
to 65, 75 and 70, respectively. The highest AUC scores were achieved by combining
the Variance Threshold feature selector with either the Decision Tree classifier or the
Extremely Randomised Tree classifier, or by combining the Light Gradient Boost-
ing Machine classifier with either the Fisher Score or ReliefF feature selectors. The
AUC scores achieved by the classification experiments combined with the identified
changes in the structures’ surface area and volume, indicated that MPH-medication
may cause detectable, significant changes in male childrens’ brain structures which
should be examined closer.
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Chapter 1

Introduction and Motivation

Attention-Deficit/Hyperactivity Disorder (ADHD) is ranked as the most commonly
diagnosed neurodevelopmental disorder, with a worldwide occurrence of approxi-
mately 5 - 8 % amongst children and adolescents [1–5]. Behavioural symptoms
such as hyperactivity, impulsivity and inattention arise during childhood due to
the disorder and may persist into adulthood [4, 6]. In addition, ADHD has been
associated with low performance in school, family problems and an increase in so-
cial challenges [3, 5]. The number of children diagnosed with ADHD has increased
drastically during the last decades, accompanied by an increase in prescriptions of
methylphenidate-based medication (MPH) [2].

MPH is one of the most common prescribed psychostimulants reducing symptoms
of ADHD [3]. The medication has been proven to have an efficiency up to 80 %
[1, 3] and safe to use according to literature [7]. However, due to the still-developing
brain of children, MPH-medication may result in undesirable, yet unknown, long
term effects [8, 9]. The combination of lack of knowledge regarding the effects of
MPH on the brain structure and function [7], and the heightened number of children
exposed, has led Schrantee et al. (2020) to emphasize the need for closer examina-
tions of the medications’ effects on patients’ brains [9].

Papers linked to the effects of Psychotropic drugs On the Developing brain (ePOD)
study reported on short-term age-dependency effect(s) of MPH such as changes in
the dopamine (DA) transport system [9, 11]. In addition, Schrantee et al. (2020)
assessed possible biomarkers related to nonresponse to MPH as part of the study
[10] and Bouziane et al. (2019) examined the medication’s effect on human brain
white matter [1]. However, none of the papers related to the ePOD study have as-
sessed the structural changes in the human brain grey matter due to MPH, including
textural changes.

Extraction of quantitative features from medical images, known as radiomics [12],
enabled this thesis to analyse mentioned changes. The concept of radiomics is based
on the idea that medical images contain information about underlying illnesses and
disorders not visible to the human eye, but detectable through quantitative image
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CHAPTER 1. INTRODUCTION AND MOTIVATION

analyses [13]. Applying radiomics to medical images converts them to minable,
high-dimensional datasets, which may be further analysed [12].

The primary objective of this thesis was to assess the effects of methylphenidate
on the brain structure of ADHD-diagnosed patients aged ten-to-twelve, based on
T1-weighted magnetic resonance images (MRI). The images analysed in this the-
sis were collected as part of the ePOD-MPH study [11]. Effects of the treatment
were examined by extracting features from selected brain structures using radiomics.
Characteristics discriminating MPH-treated patients from non-treated subjects were
identified by comparing the groups’ radiomic features using statistical significance
tests and searching for distinct patterns separating the groups through principal
component analyses.

Furthermore, machine learning was used to predict the subjects’ treatment group
based on the extracted features in order to determine the presence of distinct changes
due to MPH-treatment. Multiple feature selectors and classifier algorithms were
cross-validated for this purpose. An initial screening of the resulting models was
performed, in order to provide recommendations for future work related to the topic
of this thesis.

As no explicit guidelines on how to best pre-process MR images before extracting
radiomic features from regions of interest located in the brain was found, a proce-
dure based on recommendations and previous studies, such as Collewet et al. (2004),
Isensee et al. (2018) and Duron et al. (2019), was implemented in this thesis [14–16].
The procedure was also designed to correct for possible inaccuracies due to segmen-
tation.

The thesis is divided into several chapters, and structured according to the IMRaD
model: Introduction, Method, Results and Discussion [17]. Chapter 2 covers the
theory this thesis was based on, explaining ADHD, and its treatment using MPH,
magnetic resonance imaging (MRI) and radiomics. Methods and materials applied in
this thesis are presented in Chapter 3. This includes a description of the dataset, the
segmentation and pre-processing of the MR images as well as the analyses performed.
The thesis’ findings and their assessment are placed in Chapter 4 and 5, respectively.
Chapter 6 covers the conclusion, and Chapter 7 the appendices.
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Chapter 2

Theory

2.1 Attention-Deficit/Hyperactivity Disorder

Attention-Deficit/Hyperactive Disorder (ADHD) is a prevalent world-wide, hetero-
geneous neuropsychiatric disorder, affecting around 5-8% of the world’s children
and adolescent population [1, 3, 18]. According to Wilens and Spencer (2010), the
disorder may be caused by multiple factors such as environmental influences and a
combination of small effects from numerous genes [18], and may persist into adult-
hood [19, 20].

In order to be diagnosed with ADHD, certain criteria have to be fulfilled. The
symptoms used to diagnose patients were derived from behaviour patterns of chil-
dren and adolescents, and include inattention difficulties, forgetfulness, distractibil-
ity, hyperactive-fidgeting, excessive talking and restlessness [18]. The symptoms
can cause academic difficulties and low school achievements, and affect the patients
interpersonal contact and family relationships negatively [3].

2.1.1 The Impact of ADHD on the Brain

In addition to affecting the behaviour of patients, ADHD has been proven to affect
chemical brain processes such as the dopamine system [18]. The neurotransmitter
dopamine (DA) plays an important role in our brains’ reward system, and reacts to
pleasant stimuli such as food and sex. Drugs, such as cocaine and amphetamine,
increase the dopamine production in the reward centre, which can cause addictions
[21]. Children not affected by ADHD will experience a release of dopamine by the
reward center when exposed to positive stimuli, associating the stimuli to a similar
reward in the future. This will reinforce behaviour connected to the stimuli, as illus-
trated in Figure 2.1 [20]. Tripp and Wickens (2009) suggest a delay in the expected
dopamine response associated with the positive stimuli in children with ADHD [20].
The delivered dopamine may even be delayed to the point where it is ineffective,
hindering the positive associations between the reward and the behaviour causing
the stimulus, or the stimulus itself [20].
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CHAPTER 2. THEORY

Figure 2.1: The figure illustrates the effect of dopamine. A positive stimulus activates
the brain’s reward center, releasing dopamine. The dopamine released simulates a posi-
tive effect, creating a desire for more stimulation. This desire reinforces the associated
behaviour.

Imaging studies have also reported anatomical changes in ADHD-diagnosed chil-
dren when compared to control cohorts [22]. According to Tripp and Wickens
(2009), an overall reduction in brain size has been reflected in multiple studies
[20]. Furthermore, reduced volumes of brain regions such as the caudate nucleus,
the cerebellum, the pallidum and the corpus callosum have been identified [20, 22].
A mega-analysis performed by Hoogman et al. (2017) indicated significantly smaller
volumes in ADHD-diagnosed trial subjects’ caudate, amygdala, accumbens, hip-
pocampus and putamen [22]. One more structure to be highlighted as affected by
ADHD was the thalamus, according to Ivanov et al. (2010) [23]. All of the men-
tioned brain regions, except for the cerebellum and the corpus callosum, have been
illustrated in Figure 2.2.

Figure 2.2: Subcortical structures related to ADHD such as the accumbens, the amygdala,
the caudate, the hippocampus, the thalamus, the pallidum and the putamen were illustrated
by Shen et al. [24].
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CHAPTER 2. THEORY

2.1.2 Treating ADHD

When treating children for ADHD, educational remediation, parent training, psy-
chotherapy and psychopharmacological therapy are being considered [4, 18]. Medica-
tion for ADHD may reduce hyperactivity, impulsivity and task-irrelevant activity in
school, in addition to improving academic performances and parent-child interaction
[3, 19]. Methylphenidate-based medications (MPH) such as Ritalin and Concerta are
amongst the most commonly used compounds to treat ADHD in children effectively
and safely, and considered the golden standard [7, 18, 25]. Methylphenidate-based
medication increases extracellular dopamine (DA), and has an efficiency of 70 % in
affected children [9, 25].

Even though the safety of the medication has been documented in literature, the
long-term effects on the developing brain of children are still not fully understood
[7, 9]. The brains of children and adolescents are highly plastic, and its neural struc-
tures and functions are easily influenced by medications [7]. Due to this and the
limited safety controls carried out with regard to the effect of the medicine on the
DAergic system, methylphenidate-based medication is still the objective of multi-
ple studies, such as The effects of Psychotropic drugs On Developing brain study
(ePOD) [9, 11].

Methylphenidate-caused changes in the dopaminergic system were confirmed based
on changes in the cerebral blood flow in the thalamus and the striatum, which
consists of the caudate and the putamen region [9, 21]. According to Wilens and
Spencer (2010), medication may normalise brain functions and structures caused by
ADHD [18]. An example of possible normalisation is the normalised activation in the
accumbens of MPH-treated patients, compared to a placebo cohort [18]. Frodl and
Skokauskas (2012) also reported findings indicating a decrease in ADHD-associated
brain abnormalities due to treatment [26].

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a widespread structural medical imaging tech-
nique, producing two- and three-dimensional images [27, 28]. The imaging modality
is suited for acquiring detailed, anatomical images, and especially for neurological
examinations. MRI provides information based on the hydrogen atom density of
the examined area, and is therefore mainly linked to water and fat tissue, making it
one of the most flexible medical-imaging modalities available [28].

The imaging technique does not involve ionizing radiation and is non-invasive [28,
29]. Because of its ability to be used as often as necessary and detecting a variety
of neural disorders, magnetic resonance imaging is used in multiple studies [27, 28].

Three-dimensional MR images will be referred to as image stacks or volumes in this
thesis. An image stack, or volume, of size i × j × k consists of k slices, as illustrated
in Figure 2.3. The k slices each represent an i × j - sized matrix, Mk, containing
intensity values. Each of the slices consist of i × j voxels, and each of the voxels
are coupled to a corresponding intensity value.
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CHAPTER 2. THEORY

Figure 2.3: A three-dimensional MR image is referred to as an image volume or a stack
of slices, were each slice corresponds to a two-dimensional MR image. Each of the k slice
represents a i × j – sized matrix, Mk. The bundled slices form an image volume of size i
× j × k.

2.2.1 Intensity Representation in MRI

One of the disadvantages of using MRI are the arbitrary intensity values acquired
[30]. Other imaging modalities use standardised units in order to achieve fixed repre-
sentations of the tissue types across images. Computed tomography rescales its data
relative to the intensity value of water before displaying the images. The rescaled
values are referred to as Hounsfield Units. Positron emission tomography applies
a semi-quantitative index, referred to as the standard uptake value (SUV), which
would be equal to unity if the tracer used were to be distributed uniformly through
the entire body [28].

In contrast to other modalities, the intensity value representation in MR images
vary, despite of applying the same protocols, scanners or when imaging the same
patient [27]. Due to the lack of standardised units for MRI, extra pre-processing is
required when comparing images [29].

2.2.2 The Physics behind MRI

Clinical MRI is based on hydrogen nuclei, as they occur in the human body in
abundance [27]. The hydrogen’s proton possesses a spin angular momentum I and
a charge +e, as illustrated by Figure 2.4. The charge can be considered as being
distributed and rotating around the protons axis because of the angular momentum,
resulting in a magnetic field [28].
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CHAPTER 2. THEORY

Figure 2.4: Representation of a nucleus with a spin angular momentum I. Due to the
circulating charge density, a dipolar magnetic field is generated around the nucleus’ axis.
The figure was adapted from Fig 7.1 in Flower [28].

When considering an accumulation of nuclei, the axes are oriented randomly, as seen
in Figure 2.6a [27, 28]. Introducing an external, static magnetic field B0 causes the
protons (see Figure 2.6b), and their net equilibrium magnetisation M0 (see Figure
2.5a), to align with the field B0 [27, 28]. By applying a pulse consisting of a weaker
magnetic field B1, oriented in the xy-plane, the net magnetisation M will experience
a torque. The pulse causes an excitation of the nuclei, and rotates M by an angle α,
as illustrated by Figure 2.5b. When the pulse stops, the protons will gradually re-
align with the original field B0. The realignment of the magnetic spin results in the
emission of low-energy radio frequency photons, referred to as RF signals [28]. The
RF signal is recorded by an RF-coil, and will be transformed into a medical image
[27]. The realignment process illustrated by Figure 2.6d is referred to as relaxation,
and the length of it depends on the nucleus under observation [28].
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Figure 2.5: (a) If applying a static magnetic field B0, as illustrated in Figure 2.6, the net
eqilibrium magnetisation M0 of the protons aligns with B0. (b) When introducing a new,
weaker magnetic field B1 in the xy-plane, the net magnetisation is rotated by an angle α.
The figure was adapted from Fig 7.3 in Flower [28].

Figure 2.6: (a) The axes of nuclei are oriented independently of each other. (b) By applying
a static magnetic field B0, the axes align with the introduced field. (c) Introducing a pulse
of a weaker, magnetic field B1 (green arrows) causes the nuclei to excite and change the
direction of the net magnetisation M . (d) When the pulse stops the protons re-align with
B0 and send out radio frequency photons (orange arrows), which are transformed into an
image. The figure was inspired by Flower [28].
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The RF signal’s strength and duration depends on three main factors, each result-
ing in different image contrasts [27]. The images weighted based on the factors, are
illustrated in Figure 2.7.

T1 - weighting

Spin-lattice relaxation reflects the time it takes for the net magnetisation M to
reach its equilibrium M0 [27]. T1-weighted images highlight fat tissue by imaging
it white. In brain scans, the weighting colours the grey matter grey and the white
matter white [28].

T2 - weighting

Transverse, or spin-spin relaxation, reflects the time it takes for the RF signal to
decay in the transverse plane [27]. T2-weighted images highlight fat tissue as well
as water. Similar to T1-weighted images, the brain’s grey matter is coloured grey.
However, the white matter is coloured dark, making it difficult to separate white
from grey matter [28].

ρ - weighting

Proton density-weighting depicts fluids and fat tissue white. The weighting gives
insight into cellularity, such as tumors, cell swelling and edema [28].

Figure 2.7: The contrast of magnetic resonance images can be varied by weighting the
images, which will reveal different features. The figure illustrates a brain slice which was
weighted with either T1, T2 or proton density weighting. The figure was collected from
Maher [31].

2.3 Radiomics

Radiomics is an emerging field of research aiming to quantify information collected
from biomedical images in the form of extracted features, in order to create mine-
able, high-dimensional datasets [12, 13, 32]. The development of radiomics was

9
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motivated by the idea that medical images contain information reflecting underly-
ing pathophysiology not detectable by the human eye [12, 13]. The information
extracted by radiomics includes complex and possibly previous unknown patterns
and markers which can be used to further research disease evolution, progression
and treatment response, in addition to aiding in evidence-based decision-making
and outcome prediction [13, 32].

The research surrounding radiomics has mainly been focused on and most devel-
oped in regard to oncology, but is in theory applicable to a wide range of diseases,
disorders and other applications [12]. By identifying patterns and possible biomark-
ers associated with diagnoses, radiomics contributes to evolve and improve the re-
lated concept of personalised medicine [10, 12]. Personalised medicine, also called
precision medicine, considers individual variations amongst patients, such as the
patient’s genes, environment and lifestyle, in order to customise their treatment
[10, 12]. Biomarkers applied in personalised medicine can either be diagnostic and
reflecting biological characteristics associated with a disease or of a predictive na-
ture, describing processes tied to treatment response [10].

According to Schrantee et al. (2020), personalised medicine should also be applica-
ble to psychoradiology, which uses medical images to analyse psychiatric disorders
[10]. Biomarkers based on the human brain can provide molecular, anatomical and
physiological characteristics, possibly enabling detection of Alzheimer disease and
diagnosing autism spectrum disorder or ADHD [10, 33]. Biomarkers associated with
radiomics are created by extracting features from a region of interest (ROI) from
medical images. The radiomic features may include first order statistic, and features
describing the ROI’s shape and texture [34].

2.3.1 First Order Statistics

First order radiomic features describe the voxel intensity distribution of regions
of interest by calculating commonly used statistical measures, such as the mean,
maximum, minimum, skewness and kurtosis [13]. The features are based upon
the images’ grey-level histograms, which count the number of voxels, P (i), of each
intensity level, i, present in the region of interest as illustrated in Figure 2.8 [34].
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Figure 2.8: The figure illustrates how a histogram is calculated based on an image. The
histogram counts the number of voxels, P (i), of each intensity level, i, present in the image.
First order statistics are then based upon the generated histogram. The figure was used
with permission from Midtfjord (2018) [35].

2.3.2 Shape Features

Shape-based features describe the ROI’s geometric properties such as the volume,
surface area and maximum diameter [13, 32]. As the features are based solely on the
shape of the ROI, they are independent of the voxels’ grey-level value distribution
in contrast to the first order and texture features [34].

2.3.3 Texture Features

Texture features describe the spatial information of voxel intensities found in im-
ages [32]. The features are measured by assessing the absolute gradient of the image,
where the gradient represents the degree of grey-level intensity fluctuation across an
image [13]. The gradient is at its highest if one of two neighbouring voxels is black
and the other white, while the gradient measured between two voxels is zero if the
intensity values are equal [13].

There are multiple texture feature subcategories, and five of them will be presented
in this thesis. Each subcategory calculates a matrix, from which the texture features
are calculated. As the matrices are based on the image’s intensity values, the size
of the matrices dependent on the number of grey-levels included in the image.

Grey Level Dependence Matrix

Analyses based upon the grey Level Dependence Matrix (GLDM) evaluate the de-
pendency between neighbouring voxel intensities in an image [34]. Figure 2.9 illus-
trates how a two-dimensional GLD-matrix is calculated. Two voxels, a center voxel
i and a neighbour voxel k with a distance δ, are considered dependent if |i−k| ≤ α,
where α is a predefined constant. In the GLD-matrix P (i, j), the (i, j)th element is
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the number of times a center voxel i has j dependent neighbour voxels [34].

Figure 2.9: An example of how a GLDM may be calculated based on an image with four
intensity levels. Here α and δ are set to 0 and 1, respectively. In matrix P , element
P (2, 2) = 1, as there only exists one center voxel with value two with two dependencies in
the image. The figure was used with permission from Midtfjord (2018) [35].

Neighbouring Grey Tone Difference Matrix

Texture analyses using a Neighbouring Grey Tone Difference Matrix (NGTDM) as-
sesses the difference between a voxel intensity i and the average intensity value of
the voxels neighbours within a predefined distance δ [34]. Features extracted from
an NGTD-matrix include coarseness, busyness, and complexity [13].

The NGTD-matrix contains the grey-level probability, pi, and the sum of the abso-
lute difference between the intensity value i and the neighbour voxels, si, as illus-
trated in Figure 2.10 [34].
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Figure 2.10: An example of a two-dimensional NGTD-matrix. ni corresponds to the
number of voxels with intensity value i, pi corresponds to the probability of intensity value
i and si corresponds to the sum of the absolute difference between intensity value i and
the neighbour voxels. The example figure illustrates the calculation of intensity value i=3
with a distance δ=1. As n3=3 and the total number of voxels is 16, p3 =

3
16 = 0.1875 and

s3 = |3 − 4+4+3+1+2
5 | + |3 − 4+4+3+2+2+1+2+3

8 | + |3 − 4+4+1+2+3
5 | = 0.78. The figure was

used with permission from Midtfjord (2018) [35].

Grey Level Co-occurrence Matrix

Grey Level Co-occurrence Matrices (GLCM) capture spatial relationships between
pairs of voxels in an image [13, 34]. The GLC-matrix P (i, j) reflects how often a
combination of the intensity values i and j occur within a predefined distance δ,
and along angle θ in an image [34]. Figure 2.11 illustrates the calculation of a GLC-
matrix in two dimensions with four intensity levels. The size of the matrix with n
discrete intensity levels is n× n, causing large, computational heavy matrices if the
number of intensity levels included is too large [34].

Figure 2.11: An example of how a GLCM is calculated with a distance = 1 between the
voxels, and an angle θ = 0◦. Element (2,1) in the matrix equals one, as only one combi-
nation of the intensity values one and two occur horizontally in the image. The figure was
used with permission from Midtfjord (2018) [35].
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Grey Level Run Length Matrix

Grey Level Run Length Matrices (GLRLM) quantify intensity level runs, which are
defined as a number of consecutive voxels with the same intensity values [13, 34].
In a GLRL-matrix P (i, j|θ), element (i, j) represents the number of intensity runs
of intensity i and length j along angle θ [34], as illustrated in Figure 2.12.

Figure 2.12: An example of how a GLRLM is calculated based on an image with four
intensity values, and an angle θ = 0◦. Element (2,3) in the matrix equals one, as only
one run with intensity level two and a run length of three occurs. The figure was used with
permission from Midtfjord (2018) [35].

Grey Level Size Zone Matrix

The Grey Level Size Zone Matrix (GLSZM) resembles the GLRLM [13]. Instead
of counting the number of runs, the GLSZM counts the number of zones, which is
defines as the number of voxels connected with the same intensity value i [34]. Two
voxels are considered as connected if the distance is one. As illustrated by Figure
2.13, the element (i, j) in a GLSZ-matrix P (i, j) represents the number of zones
with intensity value i and size j in an image [34].

Figure 2.13: An example of how a GLSZM based on four intensity values is calculated.
Element (3,3) equals one, as the image contains one zone with intensity value three and
size three. The figure was used with permission from Midtfjord (2018) [35].
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Chapter 3

Materials and Methods

The main objective of this thesis was to assess whether MPH-treatment causes trace-
able structural changes in brains of ADHD-diagnosed, ten to twelve-year-old trial
subjects. Treated subjects were compared to a control group based on radiomic
shape and texture features extracted from selected brain regions. The features were
acquired through the Python package Biorad [36]. This chapter addresses how the
data set was pre-processed before extracting radiomic shape and texture features,
as no standard autoscaling process is established for MR images of brain structures.

Principal component analysis (PCA) was used to search for distinctive characteris-
tics separating the trial groups. Moreover, machine learning was used to predict the
group affiliations of the trial subjects based on the extracted features. Trial subjects
standing out in the PCAs performed were identified. The feature selection methods
and classifiers used were provided by the machine learning framework Biorad [36].
Biorad was developed as part of two earlier master theses, Albuni (2020) and Lang-
berg (2019) [37, 38].

3.1 The ePOD-MPH Study

The effects of Psychotropic drugs On Developing brain study (ePOD) project was
launched in March 2011, lasted four years and was monitored by the Clinical Re-
search Unit of the Academic Medical Center, University of Amsterdam, Amsterdam,
Netherlands. The project was divided into three studies: ePOD-MPH, ePOD-SSRI
and ePOD-Pharmo. In this thesis, only the ePOD-MPH study was considered. A
full description of the study’s method and design can be found in Bottelier et al.
(2014), Schrantee et al. (2016) and the Netherlands National Trial Register (identi-
fier NTR3103)(https://www.trialregister.nl/trial/2955) [9, 11].

ePOD-MPH was a multicentred randomised trial, designed to be double-blinded and
placebo-controlled. The subjects were treated over a period of 16 weeks, followed
by a washout period of 1 week. Participant MRI’s were acquired before medication
started (baseline session), after eight weeks of MPH and placebo treatment and at
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the end of the washout period.

Subjects included in the ePOD-MPH study were distributed evenly between a group
of children (age 10 to 12) and a group of adult (age 23 – 40) male subjects. Fifty
children and fifty adults diagnosed with ADHD qualified to take part in the trial.
Only males were included to limit subject variation [9, 11].

3.2 The Image Dataset

In accordance with the primary objective presented in Chapter 1, this thesis was
limited to only analysing images acquired from ten to twelve-year-old trial subjects.
Raw T1-weighted MRIs were used to analyse structural differences between placebo-
and MPH-treated participants.

Participants were excluded from further analyses if either no baseline or 17-week im-
age was acquired. Images disturbed by head motion also led to exclusion of images.
Four participants were removed based on the exclusion criteria, leaving 22 MPH-
treated and 24 placebo-treated children. Subjects placed in the placebo group will
from here on be labelled as class 0 or placebo-treated. MPH treated subjects belong
to class 1. Images acquired during the baseline session are further denoted as pre-
treatment images, while the 17-week images are referred to as post-treatment images.

The subjects’ trial IDs applied in the ePOD-MPH study were changed to consec-
utive numbers ranging from 0 to 45. The ID key converting between the subjects’
original ID and their current ID can be found in Appendix A. Subjects nr. 0-21
were treated with MPH, while nr. 22-45 were part of the placebo cohort.

3.3 The Choice of ROI

Five subcortical brain structures were chosen to be analysed in this thesis. The
structures were chosen based on findings presented by the ePOD-MPH study, arti-
cles explaining how ADHD affects the brain anatomy and recommendations received
from Dr. I. R. Groote (personal communication, 29.01.2020).

Two of the structures chosen are the caudate and the putamen, which together are
referred to as the striatum [21]. MPH caused a significant reduction of the dopamine
transport system in young rodent striatum during animal trials, leading to behav-
ioral abnormalities [11]. Related findings have been made in humans according
to Bottelier et al. (2014), implying a structural change also may take place [11].
Schrantee et al. (2016) established a similar connection between MPH treatment of
children and an increase in the cerebral blood flow response to a dopamine change
in the striatum and thalamus [9]. Therefore, the thalamus was included as the
third structure. The fourth and fifth selected structures were the hippocampus and
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the pallidum, as multiple studies imply that both structures are affected by ADHD
[22, 26, 39, 40]. This also applied for the selection of the caudate [20, 22, 26], the
thalamus [23, 41] and the putamen [22, 26, 39].

In order to prevent confusion when referring to the selected structures, a distinction
between the left/right side of a brain structure or the overall structure was defined
in this thesis. When referring to both the left and right part of a brain structure, the
term “brain structure” or the simplified “structure” are used. The term “ROI” de-
notes only one of the two, either the right or the left part of a specific brain structure.

3.4 Image Pre-processing

3.4.1 Segmentation

Before extracting radiomic features from a ROI, medical images were segmented,
and a binary mask of each ROI created. Binary masks contain voxel labels which
identify voxels belonging to the selected region of interest by setting their voxel
label to one. Voxels not included in the region of interest were labeled as zero.
Segmentation maps, or atlases, containing volumetric renderings of brain structures
based on MRIs were generated by automated segmentation software. This thesis
acquired the segmentation maps through the ePOD-MPH study, using the open-
source software FreeSurfer(Martinos Center for Biomedical Imaging, Harvard-MIT,
Boston USA). A binary mask of every ROI selected in chapter 3.3 was extracted
from the maps using nordicICE (NordicNeuroLab, Bergen, Norway) (see Figure 3.1).
Ten masks were generated for every trial subject, one mask for the left and one for
the right part of each selected structure.
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Figure 3.1: The workflow of the script creating binary masks for the ROIs and performing
the autoscaling process before returning the segments of the ROIs corrected for artefact
voxels and with normalised intensity levels. The corresponding script performong the au-
toscaling process can be found in Appendix B.

3.4.2 Artefact Voxels

Manual segmentation is considered the gold standard today, as automated segmen-
tation processes carry the risk of inaccurate renderings of the ROI [32, 42]. In order
to achieve reproducible segmentations Gillies et al. (2016) recommends improving
the automated segmentation by performing manual corrections [12]. However, man-
ual segmentation is time-consuming due to the large number of images and can be
prone to intra- and interobserver variations [42, 43]. Therefore, to yield consistent
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results, software such as FreeSurfer is often used to render brain structures, even
though this may cause minor uncertainties when performing analyses with the seg-
mentations.

Figure 3.2 illustrates an example of inaccurate segmentation by FreeSurfer. Incor-
rectly rendered voxels were marked with an ellipse. The left caudate is distinctly
separated from the anterior horn of the lateral ventricle, as illustrated in Figure 3.3,
emphasising the flawed segmentation provided by FreeSurfer in Figure 3.2. Voxels
rendered incorrectly have been denoted as artefact voxels in this thesis. New binary
masks were created during the autoscaling process illustrated in Figure 3.1, exclud-
ing artefact voxels from final segmented ROIs.

Figure 3.2: An example of inaccurate segmentation of a left caudate, rendered using
FreeSurfer. The blue ellipse marks voxels possibly falsely included in the rendering, as
they overlap with the anterior horn of the lateral ventricle if compared to Figure 3.3.
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Figure 3.3: A brain slice with a blue ellipse marking the area illustrated in Figure 3.2. The
red arrows mark the left caudate and the adjacent anterior horn of the lateral ventricle.

3.4.3 Intensity Normalisation

In order to compare medical images, similar intensity values must represent similar
tissue types across patients. Computer tomography uses the Hounsfield scale, while
positron emission tomography uses standardised uptake values [44, 45]. MRI, on
the other hand, has no standard range for intensity values. The intensity range of
MR images varies between scanners, protocols and patients [32, 46].

Different standardisation techniques can be applied to MR images to enable com-
parisons across patients and scanners. Matching of image histograms or scaling
intensity values to a standard intensity range are methods suggested by several pa-
pers [14, 15, 29, 46, 47]. An autoscaling procedure based on Collewet et al. (2004),
Isensee et al. (2018) and Duron et al. (2019) was applied in this thesis. Segmenta-
tions of the ROIs were created, normalised and rescaled to 8-bit images using the
programming language Python [48], version 3.7.4. The workflow of the autoscaling
process has been illustrated in Figure 3.1. The Python code can be found in Ap-
pendix B.

The Autoscaling Process

A list, LROI , of intensity values was created for each ROI. The intensity values
included in LROI were extracted from the voxels of the pre- and post-treatment MR
images of all trial subjects, using the corresponding masks generated by nordicICE.
The autoscaling of LROI was initialised by normalising the list’s content. Similar to
Isensee et al. (2018), the z-scores of the intensity values, i, were calculated across
LROI [15]:

zi =
i− µROI

σROI

. (3.1)
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µROI and σROI refer to the mean and the standard deviation of LROI , respectively.
The normalised intensity values, zi, were stored in another list, Lnorm.

Similar to Hoogman et al. (2017), possible outlier voxels were removed based on
their zscores to ensure no effects from FreeSurfer influenced the thesis’ results, as
described in Chapter 3.4.2 [22]. All voxels with intensity values located outside of
the range [µROI − 3σROI , µROI + 3σROI ] were excluded from further analyses and
removed from Lnorm according to Collewet et al. (2004), Duron et al. (2019) and
Zwanenburg et al. (2016) [14, 16, 30]. New binary masks were created based on the
remaining voxels. Further, every remaining element, i, in Lnorm was shifted by the
global minimum to avoid negative values:

Ii = Ii −min(Lnorm), for i elements in Lnorm. (3.2)

Finally, the intensity values were rescaled to the range [0,1], allowing the segmented
ROIs to be extracted as 8-bit images. The intensity range of [0, 255] was chosen
based on the size of the ROIs relative to the full brain size. A small bit-size is also
favourable when extracting texture features. As explained in Chapter 2.3.3, the size
of the texture features matrices depends on the number of intensity values included.
A 12-bit image would generate a 4096 x 4096 - sized matrix. 8-bit images generate
256 x 256 - sized matrices, making them less computational heavy and therefore a
preferable choice.

3.5 Image Intensity Discretisation

Before the radiomic features could be extracted, an image intensity discretisation was
performed. By clustering voxels based on their grey-levels to a predefined number
of clusters, discretisation facilitates the calculation of texture features and enables
the construction of several distinctive feature sets [30, 49]. Further, discretisation
should improve the robustness and reproducibility of the extracted features, and
possess a noise-reducing effect [13, 30, 50]. Figure 3.4 demonstrates how an 8-bit
image with 256 intensity levels can be discretised to images with ten and five inten-
sity levels, referred to as 10-bin and 5-bin images respectively, from which unique
texture features can be calculated.
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(a) 8-bit image (b) 10-bin image (c) 5-bin image

Figure 3.4: The figure illustrates how intensity discretisation of an 8-bit image using 10
bins and 5 bins changes the number of intensity levels included in the images, and affects
the images’ texture.

Clustering of voxels can be performed by discretisation to a fixed number of bins or
with a fixed bin size. The approach must be chosen based on the circumstances [30].
A general recommendation proposes choosing a bin size resulting in a bin number
between 30 and 130, based on good performance and reproducibility in literature
[34]. No clear recommendations or standards exist for choosing the number of bins
or bin size when considering MR images [16].

In this thesis the images were discretised using two different bin sizes, creating two
distinct datasets in addition to the original images. One dataset was discretised by
clustering two and two intensity levels, reducing the images’ intensity level range
from 256 to 128 intensity levels. The second discretised dataset was generated by
implementing a bin size of four, reducing the the intensity level range to 64 inten-
sity levels. The discretised datasets were further reffered to as 128-bin dataset and
64-bin dataset.

3.6 The Radiomic Feature Extraction

Radiomic features were extracted from the autoscaled ROIs with code provided by
the Biorad project [36]. The features generated by Biorad were calculated using the
Python package Pyradiomics [51]. Fourteen shape features were extracted together
with 75 texture features distributed between five subcategories, as shown in Table
3.1. The definitions of the extracted features applied in the thesis were defined by
[34].

Table 3.1: Number of radiomic features extracted from the images in this thesis, distributed
between shape features and five subcategories of texture features. The abbreviations of the
texture feature subcategories can be found in Chapter 2.3.3.

Texture

Shape (3D) GLCM GLDM GLRLM GLSZM NGTDM
14 24 14 16 16 5
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In addition to extracting a set of shape features from the image dataset, two sets of
texture features were acquired based on the discretised 128-bin and 64-bin datasets:
a 128-bin and a 64-bin texture feature set. Altogether, six feature sets were ex-
tracted for every ROI, as the features of the pre- and post-treatment images were
extracted separately. The extraction process is illustrated in the workflow-chart in
Figure 3.5.

Figure 3.5: The workflow of the feature extraction process. Shape features and texture
features from 128-bin images and 64-bin images were extracted from the pre-treatment
and post-treatment images of the ROI, using the Python-package Biorad [36].

Each of the feature sets was extracted using the default parameters set by Pyra-
diomics [51]. These include the distance between voxels, δ=1, applied in GLDM,
NGTDM and GLCM features, and the cutoff value of dependence in GLDM fea-
tures, α=0.

First-order statistics were not included when extracting features, as the autoscaling
process applied makes features calculated based on intensity-characteristics such as
the minimum, maximum and mean, redundant. However, future analyses of the
dataset should consider including features based on first-order statistics not nega-
tively affected by intensity value normalisation.

3.6.1 The Feature Matrices

In order to assess changes in brain structures due to the assigned treatment, pre-
treatment feature sets, Preset, where subtracted from the post-treatment feature
sets, Postset:

C(m,n) = Post set(m,n) − Pre set(m,n). (3.3)

Cm,n denotes the change of a single feature value belonging to feature, m, and trial
subject, n, in an arbitrary feature set. By concatenating the feature change, Cm,n,
of the left and right part of a structure, a shape feature matrix, a 128-bin texture
feature matrix and a 64-bin texture feature matrix were constructed, as illustrated
in Table 3.2. Combining the three feature matrices belonging to the same structure
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resulted in five large matrices, one for each of the analysed structures, which were
referred to as full feature matrices.

Based on the created full feature matrices, further matrices were generated by cal-
culating the mean of the corresponding left- and right-sided features of a structure.

Table 3.2: An example of a feature matrix constructed based on the pre-treatment and
post-treatment feature set of an arbitrary structure, using Eq. 3.3. Class 1 corresponds to
MPH-treated, class 0 to the placebo group.

Participant ID Class

Left
segment
feature
1

Left
segment
feature
2

Right
segment
feature
1

Right
segment
feature
2

0 1 Cl1,0 Cl2,0 Cr1,0 Cr2,0

1 1 Cl1,1 Cl2,1 Cr1,1 Cr2,1

...
22 0 Cl1,22 Cl2,22 Cr1,22 Cr2,22

23 0 Cl1,23 Cl2,23 Cr1,23 Cr2,23

...

3.7 Analysing the Extracted Features

The autoscaling process was examined to determine the effect of excluding artefact
voxels on ROI surface area. The percentage of surface area change of the ROIs due
to autoscaling was plotted. In addition, the effect of autoscaling on intensity values
of trial subjects was assessed.

3.7.1 Preliminary Statistical Analysis

Structural changes such as the volume size of the caudate is thought to be associated
with MPH treatment [10]. Therefore, the MPH and the placebo group were com-
pared based on their ROIs surface area and volume. Shape feature’s Mesh Volume
was used as a volume measure, while the surface area corresponds to the same-named
feature. The analysis was performed using boxplots. In addition to analysing the
features extracted from the left and right brain structures, the mean of the left and
right ROIs were calculated and analysed.

Boxplot

A boxplot is a standardised distribution representation of data based on a five-
number summary: the first quartile (Q1), the third quantile (Q3), the “minimum”,
the “maximum” and the median. The first and third quartile were defined as the
25th and the 75th percentile, respectively. As illustrated in Figure 3.6, the interquar-
tile range (IQR) spans from the first to the third quantile, covering approximately 50
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% of the observations. The terms “minimum” and “maximum” refer to the outlier-
limit. Observations outside of the range [Q1 - 1.5 IQR, Q3 + 1.5 IQR] were defined
as outliers (see Figure 3.6) [52, 53].

Figure 3.6: An example of a boxplot.

Using a boxplot enables the comparison of value range and distribution between
datasets. Combining the plot with a statistical significance test confirms whether
the datasets significantly differ from each other. In this thesis, Welch’s t-test was
applied.

Welch’s t-test

A significance t-test evaluates whether two sample group’s mean value (µ1, µ2) differ
from each other. Given the groups variance, s, and the sample size, n, the t statistics
of Welch’s t-test is calculated as

t =
µ1 − µ2√

s21
n1

+
s22
n2

. (3.4)

Compared to other t-tests, Welch’s t-test does not assume equal variance or sample
size if the assumption of a normal sample distribution is covered [54–56]. The test
is also robust against a non-normal sample distribution, given an approximately
homogeneous variance and a sample size difference close to zero [54, 57]. As the
sample sizes were sligjtly dissimilar, Welch’s t-test was applied.

The significance test and annotation in the boxplot were performed using the Python
package Statannot [58]. A 95% confidence interval was applied, alongside the anno-
tation listed in Table 3.3. The difference in mean was accepted as significant given
a p-value ≤ 0.05.
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Table 3.3: The table displays the annotation used by the Python package statannot [58] to
indicate the level of significance detected by the Welch’s t-test.

Annotation p-value
Not significant (ns) 5.00× 10−2 < p ≤ 1.00
∗ 1.00× 10−2 < p ≤ 5.00 × 10−2

∗∗ 1.00 × 10−3 < p ≤ 1.00 × 10−2

∗ ∗ ∗ 1.00 × 10−4 < p ≤ 1.00 × 10−3

∗ ∗ ∗∗ p ≤ 1.00 × 10−4

3.7.2 Principal Component Analysis

Principal Component Analysis (PCA) was used to explore the feature matrices and
detect patterns in this thesis. It is a dimensionality reducing linear transformation
technique transforming datasets into orthogonal components, referred to as principal
components. The goal of PCA is to identify the directions of highest variance and
projecting the original d -dimensional dataset X onto a new k -dimensional subspace
spanning the principal components, as illustrated in Figure 3.7. Typically, k <<d
[59].

Figure 3.7: An illustration of how principal components span across the original subspace
of the dataset. The first principal component (PC) captures the largest amount of variance
possible. The second PC is orthogonal to first PC and captures the second-highest amount
of variance. Two of the samples deviate from the PCA model due to a large Q residual or
Hotelling’s T 2. The illustration was created and modified based on Wise et al. [60].
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By constructing the projection matrix W based on the k largest eigenvalues and the
corresponding eigenvectors, the sample vector x can be mapped to a new feature
subspace z:

x =[x1, x2, ..., xd], x ∈ Rb

↓ xW, W ∈ Rd×k

z =[z1, z2, ..., zk]. z ∈ Rk

(3.5)

Similarly, the dataset X can be projected unto the new subspace using W, creating
the matrix T:

T = XW. (3.6)

Equation 3.6 can be modified to include the variance of dataset X not explained by
the PCA model as residual matrix E:

X = TWT + E. (3.7)

Elements of matrix T are often referred to as scores, and elements of W as loadings
[59, 61].

The first principal component calculated when constructing a PCA model will con-
tain the highest amount of variance possible, due to the projection of dataset X
onto the new feature subspace. The following principal components PCs will con-
tain the largest remaining variance of the dataset, given that they are orthogonal
to the previous components. The maximum amount of variance extracted from a
dataset corresponds to a 100 % cumulative variance. Variance captured by a single
PC was denoted as the component’s individual explained variance [59].

Principal component analyses are capable of de-noising datasets by excluding the
last calculated principal components when calibrating the PCA model. The variance
captured by these components can be classified as either noise or as non-deterministic
[59, 60]. An inclusion of PCs explaining noise may result in an overfitted model [62].
How many components to retain can be decided based on PCA statistics such as the
eigenvalues, the explained variance and the root mean square error of calibration
and cross-validation.

Choosing the Number of Principal Components to Include

The manual of the chemometric tool PLS-Toolbox [60] suggests looking at the eigen-
values from smallest to largest, searching for sudden jumps between the values. The
principal components corresponding to the eigenvalues below the jump should be
considered excluded.

Further, the eigenvalues determine how much information from the original features
each principal component covers, provided the dataset was autoscaled before cali-
brating the model. Therefore, excluding eigenvalues smaller than one reduces the
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amount of noise captured by the model, as the corresponding PC covers less infor-
mation than one original feature [60, 61]. A further rule of thumb recommendation
is to include enough components to ensure 80% cumulative explained variance, but
no more than 90-95% [61, 63].

The number of PCs to include can also be chosen based on the accuracy and the
precision of the PCA model using the root mean square error (RMSE). RMSE refers
in general to the squared sums of squared errors:

RSME =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3.8)

where yi represents a sample and ŷi the fitted or predicted corresponding value.

The RMSE of calibration (RMSEC) measures the goodness of fit between the dataset
and the calibrated model. For every new included principal component in the model,
a new RMSEC is calculated. yi in equation 3.8 is replaced by a calibration sample
and ŷi by a prediction based on the entire calibration sample. As illustrated in Fig-
ure 3.8, the RMSEC decreases for each new PC in the model due to the information
(variance) included. The RMSEC tends to flatten out near the optimal value but
is not as well suited for deciding upon the number of PCs to include as the RMSE
Cross-Validation (RMSECV) [62].

Figure 3.8: An example of how the RMSEC and the RMSECV of a PCA model might
behave. While the curves decrease, information describing systematic variance is gathered
by the model. An increasing RMSECV-curve indicates the model is collecting noise, or
unusual information and overfits [61, 62].

RMSECV functions as model validation and estimates how well the calibrated model
performs for unknown samples. Due to the lack of unknown data to perform the
validation, RMSECV leaves out parts of the calibration data when constructing the
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PCA model. ŷi from equation 3.8 is predicted based on the remaining calibration
data not used to build the model. Similar to the RMSEC, a new RMSECV is cal-
culated for every new principal component included in the model. If an added PC
describes large amounts of systematic variance, the RMSECV should decrease. The
opposite will occur by including PCs describing noise, as illustrated in Figure 3.8.
The PC corresponding to the minimum of the RMSECV should be the last PC
included in the model [60–62].

Performing the PCA

PCA was performed using PLS-Toolbox [60], version 8.8.1, coupled to MATLAB
[64], version 9.7.0.1296695 (R2019b). Fifteen PCA models were generated based on
the shape, 128-bin texture, and the 64-bin texture feature matrices of the structures.
PCA models were created using default settings. In addition to autoscaling the in-
put data and using the singular value decomposition algorithm, cross-validation with
Venetian Blinds was implemented.

PLS-Toolbox recommended the number of principal components to take into further
consideration based on the eigenvalues and the RMSECV. If PLS-Toolbox suggested
less than three PCs, a manual examination of the models’ statistics was performed.
A manual examination included assessing the eigenvalues, cumulative explained vari-
ance, RMSECV and RMSEC.

The principal component corresponding to the number of components included in a
model was denoted as the model’s “cutoff”-component. If, for example, eight com-
ponents were included in a model, the eighth component would be the “cutoff”.

Searching for Class Distinction

Plots of the model’s scores, or score plots, were created using the statistical program-
ming language R [65], version 3.6.2, together with RStudio [66], version 1.2.5033.
The score plots were collected in pair plots, enabling a visual analysis of the principal
components. As the number of components included in a pair plot was restricted to
five, models exceeding this limit were split into multiple plots. Samples belonging
to class 0 were coloured blue and class 1 samples’ coloured red, making it possible
to search for principal components distinguishing the classes.

Identifying Abnormal Trial Subjects

By visually examining the pair plots generated, individuals or clusters of subjects
deviating from the norm were detected and identified, as illustrated in Figure 3.9.
The extraction was performed component by component. To be able to identify the
subjects, score plots created by PLS-toolbox were used.
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Moreover, possible outliers were detected by examining the Q and Hotelling’s T2

statistics. The Q statistics, referred to as Q residuals in this thesis, measure un-
usual variation outside of the model based on the residual matrix E from equation
3.6 [60]. Figure 3.7 illustrates a sample with a large Q residual, corresponding to a
considerable distance between the sample and the model’s subspace. A sample with
a large Hotelling’s T2 is also illustrated in the figure. Hotelling’s T2 measures the
variation in each sample within the model [60]. The Q and Hotelling’s T2 statistics
were plotted as scatter plots using PLS-Toolbox. Such plots are further referred to
as Q - T plots. Participants with a Q residual or Hotelling’s T2 value outside of the
95% confidence interval limit were regarded as possible outliers in this thesis.

Figure 3.9: Individuals and clusters of subjects standing out in generated score plots were
detected and identified, as shown in this example figure.

3.7.3 The Classification Experiment

In this thesis, various supervised classification algorithms were utilised to assess
whether class 0 was distinguishable from class 1 based on the extracted radiomic
features. In contrast to the PCA algorithm, supervised classification is driven by
the samples’ class labels. The goal of supervised classification is to predict the class
labels of unseen or future samples, based on past observations [59]. Two classifica-
tion experiment was performed for every brain structure, predicting the subject’s
treatment. The first experiment was performed based on the full feature matrices,
analysing the radiomic features extracted from the left and right brain structures.
In the second experiment, the mean values of the left and right brain structures’
features were calculated and used to perform the classifications.

The classification experiments were executed using Biorad [36], based on the full
feature matrices. Every experiment implemented cross-validation of six classifica-
tion algorithms, combined with four feature selectors. In addition, classifications
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were performed without feature selection, resulting in thirty classifications for every
experiment. Biorad implemented Scikit-Learn’s RandomizedSearchCV-package [67]
in order to perform hyperparameter optimalisation and cross-validation of the clas-
sification experiments.

The classification algorithms applied by Biorad were the linear classifiers logistic
regression [59], ridge regression [59] and the support vector classification [68]. Fur-
ther, the tree based learning algorithm decision tree classification [59], light gra-
dient boosting machine [69] and extremely randomised tree classification [70] were
included. The abbreviations of the classifiers used in this thesis were listed in Table
3.4.

Removing irrelevant and redundant information by excluding features from the
datasets before classification reduces the complexity of a model and increases the
performance [59, 71]. The feature selectors implemented by Biorad were ReliefF
[72], Mutual Information Classifier [73] combined with Scikit-Learn’s SelectKBest-
package [67], Fisher Score [74] and Low Variance Threshold [74].

Table 3.4: Abbreviations of the classifier algorithms implemented by Biorad [36] and ap-
plied in this thesis.

ET Extremely Randomised Tree Classification
DT Decision Tree Classifier
LGBM Light Gradient Boosting Machine
LR Logistic Regression
Ridge Ridge Regression
SVC Support Vector Classifier

Evaluating the classification experiments

The area under the receiver operating curve (AUC) was used to measure the per-
formance of the classification experiments. The AUC is determined by plotting the
true-positive rate (TPR) and the false-positive rate (FPR), as illustrated in Figure
3.10, and calculating the area under the curve. When classifying samples, the pre-
diction result can either be true positive (TP), false positive (FP), true negative
(TN) or false negative (FN). If a prediction is true positive or true negative, the
sample has been classified correctly [71, 75]. In this thesis, a positive classification
corresponds to predicting class 1 and negative to class 0.

The true-positive rate was defined as [75]

TPR =
TP

TP + FN
, (3.9)

and the false-positive rate as

FPR =
FP

TN + FP
. (3.10)
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As illustrated by the receiver operating curve in Figure 3.10, the AUC can range
from 0.0 to 1.0, where 0.0 indicates no correct and 1.0 no incorrect classifications.
An AUC of 0.5 suggests the classification essentially was performed at random [71].
The Biorad-package [36] illustrated the prediciton models’ AUC-scores of the clas-
sification experiments as heatmaps, and scaled the scores by 100.

Figure 3.10: An example of a receiver operating curve (in orange). The area under the
curve (AUC) was used to measure the prediction models’ performance in this thesis. The
blue dotted line marks were the classification essentially would have been at random.
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Results

The main aim of this thesis was to determine whether ADHD treatment-induced
changes in brain structure geometry and texture. Computation of texture features
required intensity rescaling of the images. The effects of the autoscaling process were
analysed in this chapter, followed by an assessment of the statistical analysis results.
Further, the generated score plots were examined together with the corresponding
Q-T plots. The performances of the classification experiments were evaluated based
on the calculated AUC. In addition, the selection rate of the features and the feature
category distribution were examined.

All definitions and defined terms from Chapter 3 were adopted when presenting the
results.

4.1 Evaluating the Autoscaling Process

Intensity normalisation was performed as described in Chapter 3.4.3. Figure 4.1
displays a slice of subject nr. 0’s left caudate before and after performing the au-
toscaling. Due to the normalisation of intensity values and scaling to 8-bits the ROI
displays sharper contrasts, highlighting texture variations. Moreover, voxels with
corresponding intensity values outside of range [µROI − 3σROI , µROI + 3σROI ] were
removed before extracting the radiomic features. This effect could be observed in
the upper left of the caudate in Figure 4.1.
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Figure 4.1: A slice of subject nr. 0’s left caudate before and after performing the autoscal-
ing process. Due to intensity level normalisation and exclusion of possible outlier voxels,
the intensity distribution has changed and voxels disappeared in the caudate’s upper left
corner.

4.1.1 Examining the Change in Surface Area Due to Voxel
Exclusion

The effects of the artefact voxel removal were assessed by calculating and plotting
the percentage change of the ROIs’ surface area due to the removal. Four plots were
created for every structure, illustrating the change of the left and right structure side
before and after treatment, as shown for the putamen in Figure 4.2. The figures
of the remaining structures can be found in Appendix C. The mean value of the
percentage change and three standard deviations (SD) were marked in the plots,
enabling a comparison of the structures.

On average, the surface area of the trial subjects’ caudate and thalamus decreased
after voxel correction, according to Figures C.1 and C.4. However, an increase of
the subjects putamen, hippocampus and pallidum surface area can be observed in
Figure 4.2, C.2 and C.3. The average percentage change in the structures ranged
from approximately -1.5% to 0.8%. Some of the subjects’ putamen, hippocampus,
pallidum, and thalamus changed more than three standard deviations from the
mean, suggesting these subjects should have been examined closer before feature
extraction. No such examination was performed, as none of the structures of the
subjects in question, nr. 1, 2, 4, 13, 17, 20 and 24, changed more than 2% on
average.
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Figure 4.2: The figure illustrates the change in surface area of the left and right putamen
due to artefact voxel exclusion. The mean of the percentage change of the structures (black
line) and three standard deviations (red lines) were included in the plots. On average, the
subjects’ putamen changed by approximately 1 %. Subject nr. 13 deviated from the mean
by more than three standard deviations in both post-treatment images. The change of the
right putamen of subject nr. 2 pre-treatment, and the right putamen of subject nr. 24
post-treatment also both exceeded three standard deviations.

4.1.2 The Effect of Intensity Value Normalisation

To be able to compare the MR images across the patients, the intensity values were
normalised as described in Chapter 3.4.3. The intensity distributions of the image
stacks were plotted to assess the effect of the normalisation. Figure 4.3 displays the
minimum, maximum and mean intensity values of the subjects’ left pallidum before
and after autoscaling. Due to the autoscaling process, the intensity statistics aligned
across the image stacks. The same change was observed in the intensity distribution
of the other ROIs, found in Appendix D. The image normalisation applied proved
to have the desired effect.
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Figure 4.3: The change in intensity distribution of the left pallidum due to normalisation.
The top and bottom rows display the minimum, maximum and mean intensity values of
the ROI across the subjects before and after normalisation, respectively. The intensity
levels of the subjects were normalised and rescaled to a common intensity level range, [0,
255]. After normalisation the maximum and minimum intensity values were equal across
all subjects, and the mean approximately equal.

4.2 Statistical Boxplot Analysis

Literature connects treating ADHD-diagnosed patients using MPH with the volume
size of the caudate [10]. Therefore, the MPH - and placebo-treated subjects’ surface
area and volume across the ROIs were compared using boxplots. A Welch’s t-test
evaluated the significance of the differences between the group’s mean values. A 95%
confidence interval was applied, together with the annotation explained in Table 3.3.
The boxplot analysis was performed for the radiomic feature values extracted from
the structures’ left and right side, and for the mean values of the structures’ left and
right radiomic features.

No significant differences were detected in the caudates and the putamens due to
treatment, as illustrated by Figure 4.5 and 4.7. The right pallidum of MPH-treated
participants, however, showed signs of a significant larger surface area and volume
compared to the placebo group in Figure 4.6a. The difference between the groups’
surface area was also detected in Figure 4.6b. Moreover, the MPH-treated par-
ticipants seem to have a significantly smaller right hippocampus volume and right
thalamus surface area (see Fig. 4.5a and Fig. 4.8a).
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(a) Left and right brain structure separately.

(b) Mean of the left and right side of the brain structure.

Figure 4.4: The change in surface area and volume due to treatment was compared between
the treatment groups. The comparison was performed for the left and right part of the
structure separately (a) and for the mean feature values of the right-sided and left-sided
parts (b). No significant differences were detected between the MPH and placebo treated
groups in the caudate.
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(a) Left and right brain structure separately.

(b) Mean of the left and right side of the brain structure.

Figure 4.5: The change in surface area and volume due to treatment was compared be-
tween the treatment groups. The comparison was performed for the left and right part of
the structure separately (a) and for the mean feature values of the right-sided and left-sided
parts (b). A significant difference was detected in the right hippocampus’ volume in subfig-
ure (a), differentiating the treatment groups. No such difference was detected in subfigure
(b).
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(a) Left and right brain structure separately.

(b) Mean of the left and right side of the brain structure.

Figure 4.6: The change in surface area and volume due to treatment was compared be-
tween the treatment groups. The comparison was performed for the left and right part of
the structure separately (a) and for the mean feature values of the right-sided and left-sided
parts (b). Significant differences were detected in the right pallidum’s surface area and vol-
ume in (a). A significant difference in the surface area was detected in (b), distinguishing
the treatment groups.
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(a) Left and right brain structure separately.

(b) Mean of the left and right side of the brain structure

Figure 4.7: The change in surface area and volume due to treatment was compared between
the treatment groups. The comparison was performed for the left and right part of the
structure separately (a) and for the mean feature values of the right-sided and left-sided
parts (b). No significant differences were detected between the MPH and placebo treated
groups in either of the boxplots.
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(a) Left and right brain structure separately.

(b) Mean of the left and right side of the brain structure.

Figure 4.8: The change in surface area and volume due to treatment was compared between
the treatment groups. The comparison was performed for the left and right part of the
structure separately (a) and for the mean feature values of the right-sided and left-sided
parts (b). A significant difference was detected in the right thalamus’ surface area in subplot
(a), differentiating the treatment groups. No such difference was detected in subplot (b).

4.3 The Principal Component Analyses

Principal component models were constructed based on the feature matrices of the
structures, searching for patterns in the extracted radiomic features. Generating
three PCA models for every bain structure enabled a search for characteristics distin-
guishing the treatment classes from each other. The creation of the models, together
with the choice of PCs to include was performed according to Chapter 3.7.2. PLS-
Toolbox recommended including three or more components for the texture-based
models, with three exceptions. One component was suggested for all shape-based
models. The number of principal component suggested by PLS-Toolbox and chosen
for further analyses are listed in Appendix G. The model statistics inspected can be
found in Appendix F.
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Score plots were created based on the PCA models and visually inspected. If a model
had captured distinct patterns differentiating class 1 from class 0, a separation of
the classes would be visible. Following the inspection, individuals and clusters of
subjects standing out in the score plots were identified, as explained in Chapter
3.7.2 and listed in Appendix H.

By comparing the subjects standing out in the score plots and listed in Table H.1
to the models’ corresponding Q - T plots, possible outliers were detected. Multiple
subjects could be categorised as outliers according to the plots. However, only sub-
jects standing out in all three PCA models of a brain structure were considered when
compared to the Q - T plots. A confidence limit of 95% was set, marking samples
with high Q-residuals or Hotelling’s T2. According to the Q - T plots, the score
plots captured between 89.31% and 68.14% of the existing variance. The remaining
variance were captured by the residuals.

The PCA models based on the caudate were analysed and the findings presented
in this Chapter, including a general summary of the remaining structures. A closer
examination of the remaining structures, their RMSE curves, score plots and Q - T
plots can be found in Appendix E.

4.3.1 Analysing the PCA-models of the Caudate

PLS-Toolbox recommended using one principal component when creating the shape
feature PCA model. The same recommendation was given for the remaining struc-
tures’ shape feature-based PCA model. According to the model statistics given
in Table F.1, one PC would cover approximately 18% of the cumulative explained
variance. Ensuring that a cumulative explained variance of 80% is secured, the
eighth component was chosen as “cutoff”-component. The eighth component cov-
ered approximately 1.4 features, according to the eigenvalues. In order to ensure
that the remaining shape feature-based models also covered close to 80% explained
variance, more than one principal component was included in further analyses by
each model. The number of principal components included in further analyses of
the shape feature-based models can be found in Table G.1 in Appendix G.

The RMSECV and RMSEC of the shape feature model are illustrated in Figure
4.9. As the RMSEC does not flatten out, it just keeps collecting more information
and noise from the dataset. The lack of decrease in the RMSECV curve in addition
to the steady decreasing RMSEC suggests the model overfits strongly. Therefore,
PLS-Toolbox recommended including as few PCs as possible. Still, eight compo-
nents were chosen, as patterns distinguishing the group could be detected in PCs
explaining less variance. The same assessment was made when deciding upon PCs
for the remaining structures’ shape feature models. The RMSE curves of the shape
feature-based models of the remaining structures behaved similar to the caudate’s
curves, and indicated strong overfitting in these models as well, as seen in Figures
E.1 and E.12, E.25, E.37.
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Figure 4.9: The RMSEC and RMSECV curve of the caudate’s shape feature model. While
the RMSEC curve decreased constantly, the RMSECV increased after eight components,
indicating the model overfited stronlgy.

In contrast to the shape feature model’s RMSECV, the texture feature models’
RMSECV decreased continually, as displayed in Figures 4.10 and 4.11. The RMSE
curves of the remaining structures’ texture feature-based models behaved similar.
While the RMSEC of the model steadily decreased, the RMSECV flattened out.
The behaviour of the curves suggests that overfitting also occured in the texture
feature models. Following the recommendation of PLS-Toolbox, nine components
were included in the 128-bin texture feature model. Seven components were included
in the 64-bin texture feature model, based on the cumulative explained variance.

Figure 4.10: The RMSEC and RMSECV curve of the caudate’s 128-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.
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Figure 4.11: RMSEC and RMSECV curve of the caudate’s 64-bin texture feature model.

Pattern Detection in the Score Plots

No visible patterns discriminating the MPH-treated subjects from the placebo group
were detected in the caudates’ score plots in Figures 4.12, 4.13 - 4.17. The same
applied for the remaining structures, whose score plots were depicted in Appendix E.

The Shape Feature-based PCA model

Figure 4.12: The caudate’s pair plot of the shape feature principal components nr 1-4. No
principal components discriminating the treatment groups were detected.
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Figure 4.13: The caudate’s pair plot of the shape feature principal components nr 5-8. No
principal components discriminating the treatment groups were detected.

The 128-bin Texture Feature-based PCA model

Figure 4.14: The caudate’s pair plot of the 128-bin texture feature principal components
nr 1-4. No principal components discriminating the treatment groups were detected.
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Figure 4.15: The caudate’s pair plot of the 128-bin texture feature principal components
nr 5-9. No principal components discriminating the treatment groups were detected.

The 64-bin Texture Feature-based PCA model

Figure 4.16: The caudate’s pair plot of the 64-bin texture feature principal components nr
1-4. No principal components discriminating the treatment groups were detected.
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Figure 4.17: The caudate’s pair plot of the 64-bin texture feature principal components nr
5-9. No principal components discriminating the treatment groups were detected.

Identifying Possible Outliers in the Score and Q-T Plots

Seven MPH-treated and nine placebo-treated subjects were identified as possible
outliers in the shape feature model. Further, ten MPH-treated subjects were singled
out in each texture feature. In both texture feature models six placebo-treated
participants stood out. Participants nr. 2, 4, 13, 31 and 43 were detected in all
three caudate models. Subjects nr. 2 and 13 are also characterised as possible
outliers by the Q - T plots of the 128-bin and 64-bin texture feature model in Figure
4.19 and 4.20, respectively.

Figure 4.18: The Q-T plot of the caudate’s shape feature model. The blue dotted line
represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated (grey
subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence limit
may qualify as outliers.
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Figure 4.19: The Q-T plot of the caudate’s 128-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.

Figure 4.20: The Q-T plot of the caudate’s 64-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.

4.4 Predicting the Treatment Method

For each structure, two classification experiments were performed, predicting the
treatment method based on the shape features, 64-bin texture features and 128-bin
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texture features. The first experiment was based upon the radiomic features of the
left-sided and right-sided structure separately, resulting in 178 features analysed
for each structure. The second experiment predicted the subjects’ treatment group
based on the mean values of the left- and right-sided structures’ features, halving
the number of features compared to the first experiment performed.

As described in Chapter 3.7.3, the subjects were labelled according to their treat-
ment group as either “MPH” or “placebo”. In each experiment, the class labels of
the subjects were predicted through thirty classifications, one for each classification
and feature selection algorithm combination available. The applied classification
and feature selection algorithms are listed in Chapter 3.7.3. Table 3.4 contains the
abbreviations of the classifier algorithms used in this chapter.

The AUC evaluating the experiments were illustrated through heatmaps. Pie dia-
grams were created to examine the connection between the AUC and the features
selected by the feature selection algorithms by each experiment. The distributions
of the feature categories were weighted with respect to the number of times features
were chosen. Moreover, the selection rate of the five most frequent chosen variables
based on the entire experiment was illustrated.

4.4.1 The Caudate

According to Figures 4.21a and 4.21b, approximately 40% of the features selected
by the classification experiments were categorised as 128-bin texture features. The
same figure yielded that approximately 50% of the chosen features were 64-bin tex-
ture features, and the remaining 10% shape features. The distribution between the
feature categories could be simplified to a 5:4:1 relationship, and differed just slightly
between the two caudate experiments. The dominance of the texture features was
also reflected by the remaining structures’ classification experiments.

Figure 4.22 illustrated the five most selected features by the classification models.
According to Figure 4.22a, 64-bin texture features extracted from the right caudate
dominated when performing the classifications with feature selection. This was con-
firmed by Figure 4.22b, which illustrated the five features selected most often by the
mean-based classification experiment. Only 64-bin texture features were included
in the figure, although these features were partly different features than highlighted
in Figure 4.22a.

49



CHAPTER 4. RESULTS

(a) The selected features distribution based upon the
features of the left- and right sided ROIs separately.

(b) The selected features distribution based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.21: The figure illustrates the overall distribution of the features selected by the
caudate’s classification experiments. The features were sorted by their feature categories;
shape, 128-bin texture and 64-bin texture features. The pie chart in subfigure (a) displays
the selected features distribution from the experiment considering the right- and left-sided
ROI’s separately. Subfigure (b) illustrates the distribution of the experiment predicting the
subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.

50



CHAPTER 4. RESULTS

(a) The five most selected features based upon the
features of the left- and right sided ROIs separately.

(b) The five most selected features based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.22: The figure illustrates the selection rate of the five most selected features by
the caudate’s classification experiments. Only 64-bin texture features were included in the
figures. Subfigure (a) displays the selected features from the experiment considering the
right- and left-sided ROI’s separately, while subfigure (b) illustrates the distribution of the
experiment predicting the subjects’ treatment group based on the mean of the right- and
left-sided ROI’s features.

The heatmaps in Figure 4.23 both present AUC scores ranging approximately from
33 to 67, reflecting a considerable variation in prediction precision depending on
the choice of feature selection and classification algorithm. The Support Vector
Classifier (SVC) yields on average the lowest AUCs amongst the classification algo-
rithms in both experiments. In Figure 4.23a the highest scores were achieved by the
Ridge Classification, the Decision Tree classifier (DT) and the Logistic Regression
algorithm (LR). Especially the Mutual Information Classifier proved to return good
results in combination with the Ridge classifier and LR classifier when considering
the right- and left-sided ROIs separately, yielding an AUC of 63 and 64 respectively.
When combining the left- and right-sided ROIs, the decision tree classifier still per-
formed best amongst the classification algorithms according to Figure 4.23b. The
ReliefF feature selector was the only feature selection algorithm to not return AUC
scores below 50 in Figure 4.23b, independent of the classification algorithm applied.
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(a) The AUC scores from the prediction models based upon
the features of the left- and right sided ROIs separately.

(b) The AUC scores from the prediction models based upon
the mean value of the left- and right sided ROI’s features.

Figure 4.23: The average AUC scores achieved by the thirty prediction models generated by
the caudate’s classification experiments. Four feature selectors were implemented together
with six classification algorithms. In addition, classifications using the six algorithms was
performed without feature selection. Subfigure (a) displays the AUC scores from the exper-
iment considering the right- and left-sided ROI’s separately, while subfigure (b) illustrates
the scores from the experiment predicting the subjects’ treatment group based on the mean
of the right- and left-sided ROI’s features.

4.4.2 The Hippocampus

Similar to the caudet’s experiments, the texture feature categories dominated the
feature selection and were selected an approximately equal amount of times accord-
ing to Figure 4.24. Predicting the treatment groups based on the mean of the left
and right ROI’s features resulted in a slight decrease in the selection of shape fea-
tures, compared to the first experiment. This reduction The reduced was reflected
by the selection rate Figure 4.25, were 4.25a included two shape features and 4.25b
none.
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In contrast to the distribution of the selected features presented in Figure 4.24, two
out of the five features listed in Figure 4.25a were shape features. In addition, two
128-bin texture features and one 64-bin texture feature were included in the figure.
All five features in Figure 4.25a were extracted from the right hippocampus of the
subjects.

(a) The selected features distribution based upon the
features of the left- and right sided ROIs separately.

(b) The selected features distribution based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.24: The figure illustrates the overall distribution of the features selected by the
hippocampus’ classification experiments. The features were sorted by their feature cate-
gories; shape, 128-bin texture and 64-bin texture features. The pie chart in subfigure (a)
displays the selected features distribution from the experiment considering the right- and
left-sided ROI’s separately. Subfigure (b) illustrates the distribution of the experiment pre-
dicting the subjects’ treatment group based on the mean of the right- and left-sided ROI’s
features.

53



CHAPTER 4. RESULTS

(a) The five most selected features based upon the
features of the left- and right sided ROIs separately.

(b) The five most selected features based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.25: The figure illustrates the selection rate of the five most selected features by the
hippocampus’ classification experiments. The name of the features indicate the feature type,
128 corresponding to 128-bin texture features and 64 to 64-bin texture features. Subfigure
(a) displays the selected features from the experiment considering the right- and left-sided
ROI’s separately, while subfigure (b) illustrates the distribution of the experiment predicting
the subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.

Figure 4.26 illustrates the heatmap of the hippocampus’ experiments. The AUC
scores in Figure 4.26a varied from approximately 56 to 71, in contrast to the larger
range observed in 4.26b (from 49 to 73). The Fisher score and ReliefF algorithm
were the only feature selection algorithms achieving results solely above 60, with
one exception in Figure 4.26b. The same applies to the Ridge Classifier, the SVC
and the Extremely Randomised Tree Classification (ET) algorithm.

Although the Light Gradient Boosting Machine (LGBM) algorithm yielded the high-
est AUC of the experiment when combined with the fischer score in 4.26a (AUC ≈
71), the classifier returned the lowest AUC scores on average in both heatmaps
in 4.26. In Figure 4.26b the highest AUC scores were achieved by combining the
Variance Threshold selector with either the SVC or the ET algorithm. These com-
binations achieved AUC scores of approximately 72 and 73, respectively.
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(a) The AUC scores from the prediction models based upon
the features of the left- and right sided ROIs separately.

(b) The AUC scores from the prediction models based upon
the mean value of the left- and right sided ROI’s features.

Figure 4.26: The average AUC scores achieved by the thirty prediction models generated
by the hippocampus’ classification experiments. Four feature selectors were implemented
together with six classification algorithms. In addition, classifications using the six algo-
rithms was performed without feature selection. Subfigure (a) displays the AUC scores
from the experiment considering the right- and left-sided ROI’s separately, while subfigure
(b) illustrates the scores from the experiment predicting the subjects’ treatment group based
on the mean of the right- and left-sided ROI’s features.

4.4.3 The Pallidum

The distributions of the selected features illustrated in Figure 4.27 did not change
noticeably across the experiments, and resembled the distribution of the other struc-
tures’ experiments with approximately 40% covering 128-bin texture features, ap-
proximately 40% covering 64-bin texture features and 10% shape features.

According to Figure 4.28a, illustrating the five most selected features by the ex-
periment considering the left- and right-sided ROI separately, the shape features
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included were based upon the right pallidum of the trial subjects. The remain-
ing features listed in Figure 4.28a belonged to the texture feature categories and
were extracted from the left pallidum. While the selected features in Figure 4.28a
were distributed across the 64-bin texture features, the 128-bin texture features and
the shape features, Figure 4.28b reflected an increased amount of selected 128-bin
texture features. One of the shape features, Maximum2DDiameterRow, and two
64-bin texture features, ClusterTendency d 1 and SizeZoneNonUniformity, were re-
placed by 128-bin texture features.

(a) The selected features distribution based upon the
features of the left- and right sided ROIs separately.

(b) The selected features distribution based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.27: The figure illustrates the overall distribution of the features selected by the
pallidum’s classification experiments. The features were sorted by their feature categories;
shape, 128-bin texture and 64-bin texture features. The pie chart in subfigure (a) displays
the selected features distribution from the experiment considering the right- and left-sided
ROI’s separately. Subfigure (b) illustrates the distribution of the experiment predicting the
subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.
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(a) The five most selected features based upon the
features of the left- and right sided ROIs separately.

(b) The five most selected features based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.28: The figure illustrates the selection rate of the five most selected features by
the pallidum’s classification experiments. The name of the features indicate the feature
type, shape corresponding to shape features and 128 to 128-bin texture features. Subfigure
(a) displays the selected features from the experiment considering the right- and left-sided
ROI’s separately, while subfigure (b) illustrates the distribution of the experiment predicting
the subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.

The AUC scores of the experiment considering the left- and right ROI separately,
illustrated by the heatmap in Figure 4.29a, varied between approximately 45 and 79.
The AUCs of the mean-based experiment in Figure 4.29b were, however, distributed
across a smaller range from approximately 53 to 76. The highest scores identified
in the first experiment were achieved by combining the Fisher Score with the DT
algorithm (AUC ≈ 77) or the Variance Threshold selector with the ET algorithm
(AUC ≈ 78) (see Figure 4.29a).

The Fisher score also achieved relative high AUC scores in the second experiment
in Figure 4.29b, especially combined with the Ridge classifier, the LR algorithm
and the ET algorithm. Similar to Figure 4.29a, the combination of the Variance
Threshold algorithm and the ET classifier also yielded an AUC score above 70, even
though the Variance Threshold on average did return AUC scores below 65 in both
experiments.
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(a) The AUC scores from the prediction models based upon
the features of the left- and right sided ROIs separately.

(b) The AUC scores from the prediction models based upon
the mean value of the left- and right sided ROI’s features.

Figure 4.29: The average AUC scores achieved by the thirty prediction models generated by
the pallidum’s classification experiments. Four feature selectors were implemented together
with six classification algorithms. In addition, classifications using the six algorithms was
performed without feature selection. Subfigure (a) displays the AUC scores from the exper-
iment considering the right- and left-sided ROI’s separately, while subfigure (b) illustrates
the scores from the experiment predicting the subjects’ treatment group based on the mean
of the right- and left-sided ROI’s features.

4.4.4 The Putamen

Figure 4.30 illustrates the distribution of the selected features in each classification
experiment across the feature categories. According to Figure 4.30a, approximately
45% of the features selected by the feature selection algorithms were categorised as
128-bin texture features. An equal amount of 64-bin texture features and approx-
imate 10% shape features were selected. The distribution only changed slightly by
considering the mean of the right- and left-sided ROIs’ features, according to Figure
4.30b.
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Further, the five features with the highest selection rate were listed together with
the corresponding selection rate in Figure 4.31 for each of the experiments. Accord-
ing to Figure 4.31a, one shape feature, two 128-bin texture features and two 64-bin
texture features were highlighted by the experiment based on the left and right
ROIs separately. The mean based experiment (see Figure 4.31b) highlighted two
and three 64-bin and 128-bin texture features, respectively, and none of the same
as in the first experiment. It appears from both the pie charts in Figure 4.30 and
the selection rates in Figure 4.31, that texture features dominated the classification
experiments.

(a) The selected features distribution based upon the
features of the left- and right sided ROIs separately.

(b) The selected features distribution based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.30: The figure illustrates the overall distribution of the features selected by the
putamen’s classification experiments. The features were sorted by their feature categories;
shape, 128-bin texture and 64-bin texture features. The pie chart in subfigure (a) displays
the selected features distribution from the experiment considering the right- and left-sided
ROI’s separately. Subfigure (b) illustrates the distribution of the experiment predicting the
subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.
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(a) The five most selected features based upon the
features of the left- and right sided ROIs separately.

(b) The five most selected features based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.31: The figure illustrates the selection rate of the five most selected features by
the putamen’s classification experiments. The name of the features indicate the feature
type, shape corresponding to shape features, 128 to 128-bin texture features and 64 to
64-bin texture features. Subfigure (a) displays the selected features from the experiment
considering the right- and left-sided ROI’s separately, while subfigure (b) illustrates the
distribution of the experiment predicting the subjects’ treatment group based on the mean
of the right- and left-sided ROI’s features.

The heatmaps illustrating the performance of the classification models were illus-
trated in Figure 4.32. The AUCs achieved by the experiments’ models ranged from
approximately 44 to 80. Overall, the feature selector Mutual Information Classi-
fier performed best in both experiments, regardless of the classification algorithm
chosen. The highest AUC scores in Figures 4.32a and 4.32b were achieved by the
feature selectors ReliefF and the Fisher Score, respectively. The performance of the
models appeared to be connected to feature selectors, rather than the classification
algorithms in both experiments.
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(a) The AUC scores from the prediction models based upon
the features of the left- and right sided ROIs separately.

(b) The AUC scores from the prediction models based upon
the mean value of the left- and right sided ROI’s features.

Figure 4.32: The average AUC scores achieved by the thirty prediction models generated by
the putamen’s classification experiments. Four feature selectors were implemented together
with six classification algorithms. In addition, classifications using the six algorithms was
performed without feature selection. Subfigure (a) displays the AUC scores from the exper-
iment considering the right- and left-sided ROI’s separately, while subfigure (b) illustrates
the scores from the experiment predicting the subjects’ treatment group based on the mean
of the right- and left-sided ROI’s features.

4.4.5 The Thalamus

In the thalamus classification experiment, the distribution of the selected features
across the feature categories resembled the distributions of the other brain struc-
tures presented in this chapter. The distributions of the thalamus’ experiments were
almost identical according to Figure 4.33. Despite of the number of 64-bin texture
features selected according to Figure 4.33, only one of them had a high enough
selection rate to be included in Figures 4.34a and 4.34b, illustrating the five most
selected features by both experiments. The 128-bin texture features and the shape
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features included in the Selection Rate Figure 4.34 were all extracted based on the
subjects’ right thalamus.

(a) The selected features distribution based upon the
features of the left- and right sided ROIs separately.

(b) The selected features distribution based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.33: The figure illustrates the overall distribution of the features selected by the
thalamus’ classification experiments. The features were sorted by their feature categories;
shape, 128-bin texture and 64-bin texture features. The pie chart in subfigure (a) displays
the selected features distribution from the experiment considering the right- and left-sided
ROI’s separately. Subfigure (b) illustrates the distribution of the experiment predicting the
subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.
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(a) The five most selected features based upon the
features of the left- and right sided ROIs separately.

(b) The five most selected features based upon the
mean value of the left- and right sided ROI’s features.

Figure 4.34: The figure illustrates the selection rate of the five most selected features by
the thalamus’ classification experiments. The name of the features indicate the feature
type, shape corresponding to shape features and 64 to 64-bin texture features. Subfigure
(a) displays the selected features from the experiment considering the right- and left-sided
ROI’s separately, while subfigure (b) illustrates the distribution of the experiment predicting
the subjects’ treatment group based on the mean of the right- and left-sided ROI’s features.

The performance of the experiments were evaluated by calculating the AUC scores
of the classification models, and were illustrated as heatmaps in Figure 4.35. The
first experiment, considering the left- and right-sided ROIs’ separatley, yielded AUC
scores ranging from approximately 33 to 64, while the mean based experiment
spanned a slightly smaller range from approximately 48 to 68. Overall, all clas-
sifiers in both experiments returned two or more AUC scores approximately equal
or below 60.

Classifications performed without feature selection solely yielded AUC scores below
50 in Figure 4.35a, and below 60 in Figure 4.35b with one exception. The four
highest scoring classifications in Figure 4.35a were performed by either using the
RefliefF selection algorithm or the DT classification algorithm. The RefliefF algo-
rithm also performed better compared to the remaining selectors in the mean-based
experiment according 4.35b.
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(a) The AUC scores from the prediction models based upon
the features of the left- and right sided ROIs separately.

(b) The AUC scores from the prediction models based upon
the mean value of the left- and right sided ROI’s features.

Figure 4.35: The average AUC scores achieved by the thirty prediction models generated by
the thalamus’ classification experiments. Four feature selectors were implemented together
with six classification algorithms. In addition, classifications using the six algorithms was
performed without feature selection. Subfigure (a) displays the AUC scores from the exper-
iment considering the right- and left-sided ROI’s separately, while subfigure (b) illustrates
the scores from the experiment predicting the subjects’ treatment group based on the mean
of the right- and left-sided ROI’s features.
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Chapter 5

Discussion

The main objective of this thesis was to examine the effects of methylphenidate on
regional locations in the grey matter of brains of ADHD diagnosed children. Anal-
yses performed on magnetic resonance images suggested significant changes in the
volume of the right pallidum and right hippocampus as well as changes in the surface
area of the pallidum and the right thalamus. Results from classification experiments
indicated further detectable changes due to the ADHD-treatment in the pallidum,
the putamen and the hippocampus. These findings will be discussed, along with the
findings of the performed principal component analyses. Uncertainties introduced
due to brain structure segmentation and image pre-processing will also be evaluated.

5.1 Evaluation of the Data Pre-Processing

Before being able to perform the analyses or extract features from the images, the
dataset had to be cleaned and pre-processed. MRIs should not be analysed raw, due
to their intensity values being arbitrary units and therefore not comparable based
on their voxels’ intensity values [16, 32, 46]. An analysis of images across various
patients, scanners or protocols, would require a form of standardisation [32, 46].
Establishing a suitable pre-processing of the images proved challenging, as multiple
techniques have been applied by previous studies involving MRIs [14, 15, 29, 46, 47].

The standardisation method applied was implemented based on recommendations
and techniques from Collewet et al. (2004), Isensee et al. (2018) and Duron et al.
(2019), normalising the images based on the intensity values’ z-scores and rescal-
ing the images of the ROIs to 8-bit images, as described in Chapter 3.4.3. Also,
voxels with intensity values outside of the range [µROI − 3σROI , µROI + 3σROI ] were
removed, as recommended by Collewet et al. (2004), Zwanenburg et al. (2016) and
Duron et al. (2019). The process was referred to as the autoscaling process.
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5.1.1 The Autoscaling Process

Normalising the Intensity Level Distribution

The autoscaling process had three main effects on the MR images. Firstly, the im-
ages’ intensity distribution was altered. As seen in Figures 4.3 and D.1-D.9, the
minimum, maximum and mean intensity values of the structures varied consider-
ably from subject to subject before performing the autoscaling process. Applying
the autoscaling aligned the intensity statistics of the structures to equal minimum
and maximum values, and approximate equal mean values across the subjects, al-
lowing further analyses of the intensity relationships of the ROIs.

Rescaling the Intensity Value Range

Secondly, rescaling images down to 8-bit images enhanced the intensity contrasts
of the structures, as seen in Figure 4.1 and visualised new patterns in the inten-
sity distribution. As explained in Chapter 3.5, rescaling or discretising an image,
affects the level of details included in the images. Due to the nature of the radiomic
texture features extracted from the ROIs, the number of patterns detectable in the
extracted features is directly correlated to the intensity value range of the ROIs’
image volumes [76].

The ROIs analysed in this thesis were relatively small compared to the brain’s total
size. Hence, the intensity level range of the complete brain MRI would not represent
the relationship of the ROIs intensity levels optimally. A new intensity level range
was created for every ROI by rescaling the intensity levels to values in the range
[0,255]. The rescaling of the images of the ROIs ensured a larger intensity level
variation enabeling detection of subtle texture differences between the structures.

Exclusion of Artefact Voxels

The last effect of the autoscaling was the exclusion of possible outlier voxels, re-
ferred to as artefact voxel exclusion in this thesis. According to Perlaki et al.
(2017) [42], FreeSurfer tends to overestimate the volume of the caudate and puta-
men compared to manual segmentations. To correct for the possible uncertainties
in segmentation created by FreeSurfer, voxels with intensity values outside of range
[µROI−3σROI , µROI+3σROI ] were removed, as described in Chapter 3.4.3. According
to a recommendation made by Gillies et al. (2016) [12], the automated segmentation
should be followed by a manual curation in order to achieve optimum reproducible
segmentation. However, an automated correction method was chosen instead to
reduce time usage and eliminate further involvement of physicians.

While the rescaling of the images only affected the radiomic texture features, the
exclusion of voxels affected the shape features as well due to their respective def-
initions defined by Zwanenburg et al. (2020) [33]. By excluding artefact voxels, a
decrease in the ROIs’ surface area was expected. To examine whether a such a
reduction took place, the percentage change of the ROIs’ surface area due to the
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voxel exclusion was plotted. As described in Chapter 4.1.1 the surface area of the
subjects’ caudate and thalamus decreased on average. In contrast, the surface area
of the subjects’ remaining structures increased. Such a behaviour can be explained
by the structures’ changing surface due to the voxel removal. To examine the effect
of the voxel exclusion closer, the ROIs’ volume change also should have been exam-
ined. As the observed average increase in surface area did not exceed 2%, no such
examination was performed.

5.2 Evaluating the Performed Analyses

A variation of papers have been published in the field of psychological radiomics, as-
sessing changes in brain structures due to psychological disorders such as alzheimer’s
disease [77], bipolar disorder [78] and dementia [79]. A majority of papers address-
ing ADHD, focus mainly on discriminating ADHD diagnosed patients from a control
group. One of the papers examining structural changes in ADHD patients was Hoog-
man et al. (2017) [22]. Similar to this thesis, subcortical structures were analysed,
examining the effect of ADHD on the structures’ volume as well as the effect of
stimulation such as MPH or amphetamine [22]. However, no radiomic features were
involved in the analysis. In contrast, Sun et al. (2018) [5] applied radiomic features
to identify characteristics discriminating the ADHD group from healthy control sub-
jects. This paper assessed the possibility of classifying subjects as ADHD diagnosed
or healthy, achieving an accuracy of 73.7% [5].

It is important to point out that no earlier studies tied to the ePOD-MPH trial exam-
ined the structural differences between the non-treated and the treated test-subjects’
subcortical anatomies based on radiomic features. Schrantee et al. (2020) discussed
structural changes connected to MPH-treatment based on the same dataset, but not
associated to the difference between the treatment groups. Instead the possibility
of using the caudate volume, amongst other brain structures, as a biomarker to pre-
dict nonresponse in MPH-treatment patients was examined. Schrantee et al. (2016)
established a connection between MPH-treatment and change in cerebral blood flow
in the striatum and thalamus. However, no structural examinations were performed.

Due to the lack of studies examining the effects of MPH based on radiomic features,
the findings of this thesis were compared to studies and papers examining ADHD
without ties to radiomics or MPH treatment, such as Hoogman et al. (2017), Frodl
and Skokauskas (2012) and Ellison-Wright et al. (2008).

It is also important to note the difference in the complexity of the performed analy-
ses. While the boxplot and PCA analyses both served as exploratory analyses, the
classification experiments were limited to an initial screening. Optimally, the best
performing models would have been examined closer to detect why they perform
better compared to the rest. Due to time restraints, an overall evaluation of the
classification models was prioritised in order to establish whether closer examina-
tion of the models in future work would be useful.
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5.2.1 Comparing the Structure Volumes and Surface Areas

As multiple studies have been performed researching the effect of ADHD on the
brain’s structural anatomy in children [20, 22, 23, 26, 40, 41], boxplot analyses were
performed assessing whether there was a connection between MPH-treatment of
ADHD and structural brain changes in this study. For each of the structures listed
in Chapter 3.3 an analysis was performed comparing the surface area and volume of
the left and right ROIs across the treatment groups. In addition, the mean surface
area and volume of the treated and non-treated subjects’ left and right ROI were
compared.

As described in Chapter 4.2, significant differences in volume were detected in the
right hippocampus (Figure 4.5a) and the right pallidum (Figure 4.6a). No signifi-
cant differences were detected in the mean volume of the structures, suggesting the
difference in volume between the groups was not as prominent as implied by Fig-
ures 4.5a and 4.6a. Based on Figure 4.8, the same can be concluded for the surface
area of the thalamus. In contrast, the surface area of the MPH-treated subjects’
pallidum as well as the mean surface area of the left and right pallidum appeared
to be significantly larger compared to the placebo-treated subjects’ pallidum.

It should be noted that in contrast to the right-sided ROIs, no left-sided ROIs
suggested significant changes discriminating the treatment groups. The lack of sig-
nificant differences in the left-sided ROIs was supported by the review papers Frodl
and Skokauskas (2012) [26] and Ellison-Wright et al. (2008) [39], investigating the
structural volume changes in the brain caused by ADHD. None of the structures
highlighted in this papers were restricted to the left side of the brain.

In addition, it must be noted that uncertainties arose when performing shape feature
based analyses in this thesis. The lack of the FreeSurfer segmentation’s and the arte-
fact voxel exclusion’s precision need to be considered when evaluating the surface
area and the volume of the examined structures. The influence of the uncertainty
on the findings may be reduced by implementing better pre-processing segmentation
corrections, such as manual curation as suggested by Gillies et al. (2016) [12]. The
necessity of implementing such a correction tool becomes clear when comparing the
findings in this thesis with the findings from Hoogman et al. (2017) [22]. This study
mainly examined the effect of ADHD on regional brain structures in the grey matter,
but a comparison of treated subjects to non-treated subjects was also performed. No
significant differences in structure volume discriminating the groups were identified,
in contrast to this thesis’ findings [22].

When evaluating the boxplots, it is important to note that an approximate normal
distribution of the observations was assumed. According to literature, the Welch’s
t-test is robust against non-normal distributions given a homogenous variance or an
equal distribution of subjects between the classes [56]. Despite the possibility of a
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skew distribution, Welch’s t-test was applied due to the sample sizes of the classes
only being slightly dissimilar.

5.2.2 The Principal Component Analyses

Principal component analyses were performed in this thesis to search for patterns in
the extracted radiomic features distinguishing the treatment groups. The shape fea-
tures, 64-bin texture feature and 128-bin texture features were analysed separately.
The mean values of the left and right ROIs’ radiomic features were not analysed
using PCA due to time constraints. For each structure three PCA models were
created, as explained in Chapter 3.7.2. Score plots were created to identify charac-
teristics separating the classes, and subjects standing out were listed in Table H.1
for possible future studies of the ePOD-MPH dataset.

Before deciding upon the number of components to include in the PCA models, the
RMSEC and the RMSECV were examined. As described in Chapter 4.3, the de-
creasing RMSEC and the increasing RMSECV of the shape feature models suggested
the models kept collecting unnecessary information from the features and overfitted
quickly. This behaviour was observed in all shape feature models, independent of
the structure in question. Due to the overfitting, the information extracted from
the shape feature models could have been left out from further analyses. No such
exclusion was performed, and score plots were created and visually examined based
on the shape feature models. No combination of principal components included
in the score plots distinguished the classes noticeably, suggesting no effects due to
methylphenidate treatment were detected by the shape feature PCAs.

The PCA models based on the 64-bin and 128-bin texture features also proved to
behave similarly to each other across structures. Instead of overfitting early, the
RMSEC and RMSECV kept decreasing before flattening. The flattening of the
RMSECV curve indicated at which point the models stopped catching new, utiliz-
able information and started overfitting too. Compared to the shape feature models,
on average more principal components were included in the texture feature models,
suggesting the texture features should be preferred in possible future work related to
this analysis as they may contain useful information about the subjects. Although
the texture feature based PCA models seemed more promising compared to the
shape feature models based on the RMSECV curves, no characteristics distinguish-
ing the treatment classes were detected in either models.

Outlier detection

None of the score plots included in the thesis managed to present clear distinctions
between the MPH- and placebo treated subjects. Nevertheless, smaller groups or
individuals stood out in the score plots, suggesting characteristics were captured
highlighting the subjects. Selected subjects were identified according to Chapter
3.7.2 and listed in Table H.1, enabling future studies to examine the characteristics
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making the trial subjects stand out.

Causes for standing out could be anatomical and tied to the MPH-treatments, or
associated with MR image qualities, the segmentation accuracy or the image pre-
processing performed. In Chapter 4.1.1, trial participants with relative high changes
in surface area due to voxel exclusion were listed. These subjects, except subject
nr. 1, were also listed at least once in Table H.1, suggesting a connection between
the voxel exclusion and the principal component analyses.

If examining the subjects listed in Table H.1 in future studies, it is important to note
that all selections were performed based on visual inspections and are therefore to be
considered relatively subjective. To limit the subjectivity, the highlighted subjects
listed in Table H.1 were compared to Hotelling’s T2 - Q residual plots. Subjects
were considered as possible outliers if they stood out in all three PCA models of a
structure and exceeded the 95% confidence limit.

Future studies of the dataset should examine the possible outliers and determine
whether they should be excluded from further analyses or examined in further de-
tail. The list of possible outliers could also be used as a tool in future studies to
compare the features of the subjects to new patients. By coordinating with physi-
cians, not only anatomical characteristics could be examined, but also include and
analyse clinical factors tied to the patients.

5.2.3 The Classification Experiments

Before examining the classification experiments, it should once again be noted that
the classification experiments only covered an initial screening to evaluate whether
closer examinations of the classification models are worthwhile.

When extracting the texture features using Biorad [36], image discretisation was
applied. Performing discretisation decreases the sparsity of the texture matrices
generating the texture features, and can be performed either using a fixed number
of bins or a fixed bin size [71]. The method of discretisation was already imple-
mented in Biorad [36], but the bin size still had to be decided upon. Bins ranging
two and four intensities were chosen, resulting in discretised images ranging 128 and
64 intensity levels, respectively.

The pie charts illustrating the distribution of the features selected across the feature
categories, suggest that texture features were preferred to the shape features by the
feature selectors. Approximately 85-90% of the selected features in every experiment
belonged to either the 64-bin texture features or the 128-bin texture features. The
distribution between the two texture feature categories was approximately equal in
all experiments according to the provided pie charts. Based on the findings of the
classification experiments, it could not be decided which of the bin sizes contributed
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most to the high-scoring models.

The texture features also dominated the figures illustrating the selection rate of the
five most selected features of every experiment, but due to the lack of more detailed
examinations of the models it could not be determined whether the texture features
contributed to the best performing models. Similar to the RMSECV of the PCAs,
the figures illustrating the features’ selection rate suggest future radiomic feature
analyses should prioritise analysing the texture features rather than shape features.

The figures illustrating the selection rate of the five most selected features in every
experiment also suggested that the right ROI of the structures dominated the classi-
fications. The boxplots in Chapter 4.2 reflect the importance of the right ROIs of the
structures, as significant differences between the MPH-treated group and placebo-
treated groups only were detected in the right ROIs and the mean of the left and
right ROIs. The dominance of the right-sided ROIs can be traced back to the review
papers by Frodl and Skokauskas (2012) [26] and Ellison-Wright et al. (2008) [39],
indicating that the right-sided ROIs were affected by ADHD and therefore also may
be influenced by methylphenidate.

As described in Chapter 4.4 and seen in the corresponding figures, the AUC of
the experiments varied across feature selectors and classifiers, suggesting a possible
overfit in good performing models or arbitrary high achieved AUCs. No structure
presented AUC scores solely above 60, and only a few models surpassed an AUC of
70. While the caudate and thalamus experiments did not return any AUC scores
above 70, the pallidum and putamen had top scores close to 80. The hippocmapus’
experiments’ highest achived AUC equaled 73.

The models achieving AUC scores above 70 were based on varying combination
of feature selectors and classifiers across the structures. Therefore, no best per-
forming feature selector-classifier combination could be identified. No classification
algorithms achieved AUC scores consistently close to 70, but the Decision Tree
Classifier and Extremely Randomised Tree Classification performed relatively bet-
ter than the remaining classifiers. ReliefF and the Fisher Score selectors returned
overall relatively high AUC scores on average in all experiments, independent of the
selected classification algorithm. The experiments clarified the need of feature se-
lection, as the classifications performed without selection on average returned lower
scores compared to the models performed with feature selection.

Overall, the experiments performed well enough to suggest further examinations
of the models of all structures. Especially the pallidum and putamen experiments
should be examined closer in future studies as the high AUC scores indicated the
MPH and placebo groups may be distinguishable based on the radiomic features. A
closer examination of the pallidum’s, the hippocampus’ and the thalamus’ models
was also supported by the boxplot analyses performed, as significant differences be-
tween the treatment groups were detected.
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In addition to recommend performing the classifications only based on texture fea-
tures, it would also be interesting to examine whether a model based on radiomic
features from multiple structures could identify more patterns than the existing ex-
periments.

5.3 Further Work

In order to compare and reproduce findings across studies, a guideline for precise
segmentations of ROIs in MRIs is of essence. As explained in Chapter 3.4.3 and
according to Perlaki et al. (2017) [42], automated segmentation techniques such as
FreeSurfer may cause inaccurate renderings of the ROIs and produce artefact voxels.
In this thesis the exclusion of said voxels was limited to the exclusion technique pre-
sented by Collewet et al. (2004) [14], removing voxels outside of the intensity range
[µROI − 3σROI , µROI + 3σROI ]. As structural differences between treated and non-
treated subjects’ brain structures may be relative minor, there is a need for precise
segmentations. Future studies should examine whether a more precise exclusion of
artefact voxels is possible without performing manual corrections.

As this thesis is limited to an initial screening of the classification experiments, no
detailed examinations of the models and their individual selected features were per-
formed. The highest scoring models of the hippocampus (AUC≈70), the pallidum
(AUC≈80) and the putamen (AUC≈80) indicate the possibility of differentiating
MPH-treated patients from placebo-treated patients based on radiomic shape and
texture features. In order to asses this possibility, the classification models have to
be closer examined. Specifically, the contributions of the different features and fea-
ture categories to the models have to be examined. However, before performing such
an assessment, the models should be tested for overfitting. AUC scores above 70
could have been caused by overfitting the data available. Overfitting can be caused
by various factors, such as a high number of included features in a model or a small
sized dataset [59]. The models should be inspected for both factors, excluding or
confirming a possible overfitting.

It should also be examined whether the structures’ right-sided ROI are directly
linked to structural changes due to MPH treatment, as suggested by the boxplot
analyses and the features highlighted in the selection rate figures in Chapter 4.4.
Review papers by Ellison-Wright et al. (2008) [39] and Frodl and Skokauskas (2012)
[26] suggested an decrease in the right putamen and the right pallidum of ADHD
diagnosed children, compared to non-diagnosed patients. According to the findings
from the boxplot analyses, the right pallidum responded to the MPH-treatment by
increasing. Future studies should therefore assess the possibility that medicating
children diagnosed with ADHD reduced the structural effects caused by ADHD in
brain structures, as suggested by Wilens and Spencer (2010) [18]. However, this
only applied for the pallidum, as no such connections were identified in the right
putamen in this thesis.
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In addition, other brain structures tied to ADHD and MPH should be analysed and
compared to the structures already analysed. Eligible structures for initial screening
and analyses could be the corpus callosum, the prefrontal cortex and the cerebellum.
The structures in question have all been connected to changes caused by ADHD [20]
and non-response to MPH-treatment [10].

In this thesis, possible outliers and subjects standing out based on PCA models
were identified. Assessing possible connections between the subjects standing out
and their treatment group affiliation could shed further light upon the effects of
MPH-treatment on children. In addition to examining structural features, clinical
factors should be analysed by physicians to search for similarities.

Effects of MPH are not restricted to structural changes [9, 10, 25], and an inclusion
of features extracted from other MRI modalities in future analyses may increase the
probability of identifying brain structure characteristics tied to the MPH-treatment.
Schrantee et al. (2016) [9] used pharmacological MRIs (phMRI) to examine and
state differences between the treatment groups on the basis of the cerebral blood
flow. An inclusion of features and information from other MRI modalities such as
phMRIs and functional MRIs (fMRI) should therefore be considered included in
future classification experiments.
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Conclusions

In this thesis, the effects of methylphenidate on ADHD diagnosed children were as-
sessed, utilising radiomic shape and texture features. The analyses were restricted
to examining structural changes in the caudate, the hippocampus, the pallidum,
the putamen, and the thalamus. In addition to examining the right and left regions
of the brain structures separately, the structures’ regions were assessed as a whole.
T1-weighted MRIs analysed in this thesis were collected as part of the ePOD-MPH
study [11].

The analyses performed indicated significant changes in the brain structures’ shape
due to MPH-treatment. According to the boxplot analyses, the surface area of
the right pallidum and the right thalamus, as well as the mean surface area of the
pallidum, differed significantly between the treatment groups. The same applied
to the volume of the right hippocampus and right pallidum. Classification experi-
ments predicted the treatment group of the trial subjects based on the radiomic fea-
tures extracted from the ROIs. The highest AUC score amongst the structures was
achieved by the putamen experiment based on the mean of the left- and right-sided
ROI (AUC≈80), by combining the Fisher score with the Light Gradient Boosting
Machine-classifier. By combining the variance threshold selector with the decision
tree classifier, a similar score was achieved by the pallidum experiment based on
the features of the left and right ROIs separately (AUC≈80). The best performing
model of the caudate, the hippocampus and the thalamus scored approximately 65,
75 and 70, respectively. The highest AUC scores in the caudate’s, hippocampus’
and pallidum’s classification experiments were achieved by combining the Variance
Threshold feature selector with either the Decision Tree or the Extremely Ran-
domised Tree classifier. The combination of the Light Gradient Boosting Machine
classifier with the ReliefF and the Fisher Score feature selector algorithm performed
best in the thalamus’ and the putamen’s experiments, respectively. Furthermore,
the Fisher Score algorithm and the ReliefF algorithm displayed the potential for
stable and relative high AUC scores across all performed experiments, independent
of the classifiers included.

Models with AUC scores above approximately 70 suggested detectable changes in
the hippocampus, the pallidum and the putamen due to MPH-treatment, based on
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analyses of radiomic shape and texture features. However, based on the lack of
detected patterns distinguishing the treatment groups in the PCAs and the number
of models returning AUC scores close to or below 50, further examinations of the
features and classification models are necessary before a detectable change due to
MPH can be confirmed for certain.

Due to the absence of a standardised normalisation method for MRIs before extract-
ing radiomic features from brain regions, an autoscaling process based on Collewet
et al. (2004) and Isensee et al. (2018) was implemented. As a part of the au-
toscaling, artefact voxels were excluded from further analyses to correct for possible
segmentation inaccuracies. In order to reduce intra- and interobservation variability
and securing reproducible and comparable findings across studies and projects, pre-
processing guidelines for handling brain MRIs segmented using automated software
should be established.
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Appendix A

Subject ID key

Table A.1: The original IDs of the ePOD-MPH study’s trial subjects and the corresponding
IDs used in this thesis.

(a) IDs of MPH treated participants

ePOD-MPH ID Thesis ID
1 0
4 1
6 2
10 3
11 4
22 5
24 6
27 7
34 8
36 9
38 10
41 11
44 12
49 13
52 14
54 15
59 16
63 17
67 18
70 19
71 20
75 21

(b) IDs of placebo treated participants

ePOD-MPH ID Thesis ID
3 22
7 23
8 24
17 25
18 26
20 27
21 28
29 29
32 30
33 31
37 32
39 33
42 34
45 35
47 36
50 37
51 38
56 39
62 40
64 41
68 42
69 43
72 44
74 45
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Appendix B

The Autoscaling Program

1

2

3 import nibabel as nib

4 import numpy as np

5 import os

6 from copy import deepcopy

7 from scipy.stats import zscore

8 from skimage import img_as_ubyte

9 from skimage.exposure import rescale_intensity

10 from datetime import datetime

11

12

13

14 def import_data(img_path , affine_header = True):

15 """

16 Importing nifti images

17

18 :param img_path: path to folder containing nifti images

19 :param affine_header: Whether to store the affine

transformation and the

20 header of the images

21

22 :return: list of 3D images. List of affine transformations and

headers

23 are returned if affine_header is true

24 """

25

26 image_list = []

27 if affine_header:

28 image_affine = []

29 image_header = []

30

31

32 for dirname , _, filenames in os.walk(img_path):

33 for file in sorted(filenames):

34 img = nib.load(os.path.join(dirname , file))

35 image = img.get_fdata ()

36 image_swap = np.transpose(image)

37 image_list.append(image_swap)

38 if affine_header:

39 image_affine.append(img.affine)
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40 image_header.append(img.header)

41

42 if affine_header:

43 return image_list , image_affine , image_header

44 else:

45 return image_list

46

47 def dimension_3to1(image_list):

48 """

49 Tranfsorming list of 3D images to 1D

50

51 :param image_list: List of 3D images

52 :return: List of 1D images

53 """

54

55 D1_image = []

56 shape = image_list [0]. shape

57 dim = shape [0]* shape [1]* shape [2]

58

59 for element in image_list:

60 D1_image.append(np.reshape(element , (dim ,1)))

61

62 return D1_image

63

64 def dimension_1to3(image_list):

65 """

66 Tranfsorming list of 1D images to 3D with shape (120, 256, 256)

67

68 :param image_list: List of 1D images

69 :return: List of 3D images

70 """

71

72 D3_image = []

73

74 for element in image_list:

75 D3_image.append(np.reshape(element , (120, 256, 256)))

76

77 return D3_image

78

79 def create_segment(D1_image , D1_mask):

80 """

81 Creating a list of segments based on a list og 1D images and a

list of

82 1D binary masks

83

84 :param D1_image: List of 1D images

85 :param 1D1_mask: List of 1D binary masks

86

87 :return: List of 1D segments

88 """

89

90 segment = []

91 volume = 0

92

93 for element in D1_image:

94 val_ind = 0

95 segment.append(np.zeros (0))

96
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97 for value in element:

98 if D1_mask[volume ][ val_ind] == 1:

99

100 segment[volume] = np.append(segment[volume], value)

101

102 val_ind += 1

103

104 volume += 1

105

106 return segment

107

108 def zscore_calc(segment_list):

109 """

110 Calculating the z-score of elements in a list

111

112 :param segment_list: List of 1D segments

113

114 :return: the normalised input list

115 """

116

117 segment_z = []

118 for ind in range(len(segment_list)):

119 segment_z.append(zscore(segment_list[ind]))

120

121 return segment_z

122

123 def threshold(D1_mask , segment):

124 """

125 Defining new binary masks. Voxels with z-score outside of range

[-3,3] are

126 changed to 0 in new binary masks

127

128 :parma D1_mask: List of binary masks

129 :param segment: List of segments containing normalised values

as z-scores

130

131 :return: List of new binary masks for segments

132 """

133

134 new_mask = []

135

136 for ind in range(len(D1_mask)):

137 new_mask.append(np.ones(int(D1_mask[ind].sum())))

138

139 for element in range(len(segment)):

140 for ind in range(len(segment[element ])):

141 if segment[element ][ind] <-3:

142 new_mask[element ][ind] = 0

143 elif segment[element ][ind] > 3:

144 new_mask[element ][ind] = 0

145

146 return new_mask

147

148 def create_full_mask(new_mask , original_mask):

149 """

150 Creating full , new binary masks based on the new masks of the

segments

151
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152 :param new_mask: List of binary masks of segments

153 :param original_mask: List of the original masks of the

imported images

154

155 :return: List of the new , full masks

156 """

157

158 full_mask = deepcopy(original_mask)

159 mask_copy = deepcopy(new_mask)

160

161 for ind in range(len(original_mask)):

162 for value in range(len(original_mask[ind])):

163 if original_mask[ind][ value] == 1:

164 full_mask[ind][value] = mask_copy[ind ][0]

165 mask_copy[ind] = np.delete(mask_copy[ind] ,[0])

166

167 return full_mask

168

169 def saving(D3_list , affine_list , header_list , path):

170 """

171 Saving 3D images.

172

173 :param 3D_list: List of 3D images

174 :param affine_list: List of affine transformations

175 :param header_list: List of headers

176 :param path: List of paths to save -folder

177 """

178

179 for index in range(len(D3_list)):

180 transposed = np.transpose(D3_list[index ])

181 temp_seg = nib.Nifti1Image(transposed , affine_list[index],

header_list[index ])

182

183 if index < 10:

184 name = path+’/00’+str(index)+’_seg.nii’

185 elif index >= 10 and index < 100:

186 name = path + ’/0’+str(index)+’_seg.nii’

187

188 nib.save(temp_seg , name)

189

190 def minimum(D1_image):

191 """

192 Detecting the minimium value in a list

193

194 :param D1_image: List of 1D images

195

196 :return: The minimum

197 """

198

199 min_seg = []

200

201 for element in D1_image:

202 min_seg.append(element.min())

203

204 global_min = 0

205 for element in min_seg:

206 if element <= global_min:

207 global_min = element
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208

209 return global_min

210

211 def adjust_zscore(D1_zscore , global_min):

212 """

213 Adding the global minimun to the normalised images

214

215 :param D1_zscore: List of normalised 1D images

216 :param global_minimum: The global minimum

217

218 :return: List of shifted , normalised 1D images

219 """

220

221 seg_adjusted = []

222 for ind in range(len(D1_zscore)):

223 seg_adjusted.append(D1_zscore[ind] - global_min)

224

225 return seg_adjusted

226

227 def z_to_8bits(zscore_list):

228 """

229 Rescaling the normalised intensity values of 1D images to 1D 8-

bit images

230

231 :param zscore_list: List of normalised 1D images

232

233 :return: List of 8-bit images

234 """

235

236 float_list = []

237 for ind in range(len(zscore_list)):

238 float_list.append(rescale_intensity(zscore_list[ind]))

239

240

241 uint8_list = []

242 for ind in range(len(float_list)):

243 uint8_list.append(img_as_ubyte(float_list[ind]))

244

245 return uint8_list

246

247 def segment_to_image(bits8_list , mask_list):

248 """

249 Transforming segments back to full 1D images based binary 1D

masks

250

251 :param bits8_list: List of 8-bit segments

252 :param mask_list: List of binary 1D masks

253

254 :return: 1D images of the segments

255 """

256

257 uint8 = []

258 u8_copy = deepcopy(bits8_list)

259 dim =256*256*120

260

261 for ind in range(len(u8_copy)):

262 uint8.append(np.full(dim , 0))

263
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264 for value in range(len(uint8[ind])):

265 if mask_list[ind][ value] == 1:

266 uint8[ind][value] = u8_copy[ind ][0]

267 u8_copy[ind] = np.delete(u8_copy[ind ],[0])

268

269 return uint8

270

271

272 if __name__ =="__main__":

273 # The structures to be autoscaled:

274 brain_parts = [’caudate ’, ’hippocampus ’, ’pallidum ’, ’putamen ’,

’thalamus ’ ]

275

276

277 # The autoscaling process:

278 for brain in brain_parts:

279

280

281 # The paths:

282 path_image =[r’D:\ Master_2020\Data\Segmented data\children\

MPH\image\bl\nifti’,

283 r’D:\ Master_2020\Data\Segmented data\children\

placebo\image\bl\nifti’,

284 r’D:\ Master_2020\Data\Segmented data\children\

MPH\image\bl\nifti’,

285 r’D:\ Master_2020\Data\Segmented data\children\

placebo\image\bl\nifti’,

286 r’D:\ Master_2020\Data\Segmented data\children\

MPH\image\pt\nifti’,

287 r’D:\ Master_2020\Data\Segmented data\children\

placebo\image\pt\nifti’,

288 r’D:\ Master_2020\Data\Segmented data\children\

MPH\image\pt\nifti’,

289 r’D:\ Master_2020\Data\Segmented data\children\

placebo\image\pt\nifti’]

290

291 path_mask = [’D:/ Master_2020/Data/Segmented data/children/

MPH/mask/left_’+brain+’/bl/nifti’,

292 ’D:/ Master_2020/Data/Segmented data/children/

placebo/mask/left_’+brain+’/bl/nifti’,

293 ’D:/ Master_2020/Data/Segmented data/children/

MPH/mask/right_ ’+brain+’/bl/nifti’,

294 ’D:/ Master_2020/Data/Segmented data/children/

placebo/mask/right_ ’+brain+’/bl/nifti’,

295 ’D:/ Master_2020/Data/Segmented data/children/

MPH/mask/left_’+brain+’/pt/nifti’,

296 ’D:/ Master_2020/Data/Segmented data/children/

placebo/mask/left_’+brain+’/pt/nifti’,

297 ’D:/ Master_2020/Data/Segmented data/children/

MPH/mask/right_ ’+brain+’/pt/nifti’,

298 ’D:/ Master_2020/Data/Segmented data/children/

placebo/mask/right_ ’+brain+’/pt/nifti’]

299

300 end_path_image =[’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/mph/bl/image ’,

301 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/placebo/bl/image ’,

302 ’D:/ Master_2020/Data/autoscaled_data/’+
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brain+’/right/mph/bl/image ’,

303 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/placebo/bl/image ’,

304 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/mph/pt/image ’,

305 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/placebo/pt/image ’,

306 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/mph/pt/image ’,

307 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/placebo/pt/image ’]

308

309 end_path_mask =[’D:/ Master_2020/Data/autoscaled_data/’+brain

+’/left/mph/bl/mask’,

310 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/placebo/bl/mask’,

311 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/mph/bl/mask’,

312 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/placebo/bl/mask’,

313 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/mph/pt/mask’,

314 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/left/placebo/pt/mask’,

315 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/mph/pt/mask’,

316 ’D:/ Master_2020/Data/autoscaled_data/’+

brain+’/right/placebo/pt/mask’]

317

318

319 path_dict = {0:[] , 1:[], 2:[], 3:[], 4:[], 5:[], 6:[],

7:[]}

320

321 # 1) Creating segments and new binary masks

322 for path in range(len(path_image)):

323 print(path_mask[path])

324

325 # 1.1) Importing images and masks

326 org_image_list , org_image_affine , org_image_header =

import_data(path_image[path])

327 org_mask_list , org_mask_affine , org_mask_header =

import_data(path_mask[path])

328

329 d1_org_img = dimension_3to1(org_image_list)

330 d1_org_mask = dimension_3to1(org_mask_list)

331

332 # 1.2) Creating segments of the brain structures

333 segment_list = create_segment(D1_image=d1_org_img ,

D1_mask=d1_org_mask)

334

335 # 1.3) Normalising and exporting the segments

336 z_segments = zscore_calc(segment_list)

337 z_cut_mask = threshold(d1_org_mask , z_segments)

338

339 d1_mask2 = create_full_mask(z_cut_mask , d1_org_mask)

340 d3_mask2 = dimension_1to3(d1_mask2)

341 segment_list2 = create_segment(D1_image=z_segments ,

D1_mask=z_cut_mask)
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342

343 path_dict[path]. append(segment_list2)

344 path_dict[path]. append(d1_mask2)

345 path_dict[path]. append(org_image_affine)

346 path_dict[path]. append(org_image_header)

347

348 saving(d3_mask2 , org_mask_affine , org_mask_header ,

end_path_mask[path])

349

350 # 2) Identifying the global minimum

351

352 global_min = 1000

353 for path in path_dict:

354 new_min = minimum(path_dict[path ][0])

355 if new_min < global_min:

356 global_min = new_min

357

358 # 3) Shifting and rescaling the segments to 8-bit images

359

360 for path in range(len(end_path_image)):

361 segment_adjusted = adjust_zscore(path_dict[path ][0],

global_min)

362 segment_uint8 = z_to_8bits(segment_adjusted)

363 uint8_list = segment_to_image(segment_uint8 , path_dict[

path ][1])

364 d3_uint8 = dimension_1to3(uint8_list)

365

366 saving(d3_uint8 , path_dict[path ][2], path_dict[path

][3], end_path_image[path])

367

368 print(datetime.now().time())
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Appendix C

The Change in Surface Area Due
to Voxel Exclusion

The effect of the voxel exclusion performed as part of the autoscaling process, was
evaluated by illustrating the change in surface area of the ROIs. In order to be able
to compare the change in surface area across the ROIs, the average change (black
lines) and three standrad deviations (red lines) were marked. A closer examination
of the figures was performed in Chapter 4.1.1.

Figure C.1: The figure illustrates the change in surface area of the left and right caudate
due to artefact voxel exclusion. The mean of the percentage change of the structures (black
line) and three standard deviations (red lines) were included in the plots. On average, the
subjects’ caudate changed by approximately 1.5 %.
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Figure C.2: The figure illustrates the change in surface area of the left and right hippocam-
pus due to artefact voxel exclusion. The mean of the percentage change of the structures
(black line) and three standard deviations (red lines) were included in the plots. On aver-
age, the subjects’ hippocampus changed by approximately 1 %. Subject nr. 4 deviated from
the remaining subjects as its left hippocampus was reduced by more than three standard
deviations pre-treatment.

Figure C.3: The figure illustrates the change in surface area of the left and right pallidum
due to artefact voxel exclusion. The mean of the percentage change of the structures (black
line) and three standard deviations (red lines) were included in the plots. On average,
the subjects’ pallidum changed by approximately 1 %. Subject nr. 1 deviated from the
remaining subjects as its right pallidum increased by more than three standard deviations
post-treatment.
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Figure C.4: The figure illustrates the change in surface area of the left and right thalamus
due to artefact voxel exclusion. The mean of the percentage change of the structures (black
line) and three standard deviations (red lines) were included in the plots. On average,
the subjects’ thalamus changed by approximately 1 %. Subject nr. 17 deviated from the
remaining subjects as its left thalamus increased by more than three standard deviations
pre- and post-treatment. The same apllied for the right thalamus of subject nr. 20 pre-
treatment.
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Appendix D

The Effect of Intensity Value
Normalisation

In order to examine the effect of the autoscaling process on the ROIs’ intensity level
distribution, the distributions from before and after normalisation were plotted.
In general, the normalisation and rescaling of the images resulted in approximate
alignment of the intensity values across the subjects, as seen in the appendices’
figures.

The Caudate

Figure D.1: The change of the intensity distribution of the left caudate due to normalisa-
tion. The top and bottom rows display the minimum, maximum and mean intensity values
of the ROI across the subjects before and after normalisation, respectively. The intensity
levels of the subjects were normalised and rescaled to a common intensity level range [0,
255]. After normalisation the maximum and minimum intensity values were equal across
all subjects, and the mean values approximately equal.

96



APPENDIX D. THE EFFECT OF INTENSITY VALUE NORMALISATION

Figure D.2: The change of the intensity distribution of the right caudate due to normalisa-
tion. The top and bottom rows display the minimum, maximum and mean intensity values
of the ROI across the subjects before and after normalisation, respectively. The intensity
levels of the subjects were normalised and rescaled to a common intensity level range [0,
255]. After normalisation the maximum and minimum intensity values were equal across
all subjects, and the mean values approximately equal.

The Hippocampus

Figure D.3: The change of the intensity distribution of the left hippocampus due to nor-
malisation. The top and bottom rows display the minimum, maximum and mean intensity
values of the ROI across the subjects before and after normalisation, respectively. The
intensity levels of the subjects were normalised and rescaled to a common intensity level
range [0, 255]. After normalisation the maximum and minimum intensity values were
equal across all subjects, and the mean values approximately equal.
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Figure D.4: The change of the intensity distribution of the right hippocampus due to nor-
malisation. The top and bottom rows display the minimum, maximum and mean intensity
values of the ROI across the subjects before and after normalisation, respectively. The
intensity levels of the subjects were normalised and rescaled to a common intensity level
range [0, 255]. After normalisation the maximum and minimum intensity values were
equal across all subjects, and the mean values approximately equal.

The Pallidum

Figure D.5: The change of the intensity distribution of the right pallidum due to normal-
isation. The top and bottom rows display the minimum, maximum and mean intensity
values of the ROI across the subjects before and after normalisation, respectively. The
intensity levels of the subjects were normalised and rescaled to a common intensity level
range [0, 255]. After normalisation the maximum and minimum intensity values were
equal across all subjects, and the mean values approximately equal.
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The Putamen

Figure D.6: The change of the intensity distribution of the left putamen due to normalisa-
tion. The top and bottom rows display the minimum, maximum and mean intensity values
of the ROI across the subjects before and after normalisation, respectively. The intensity
levels of the subjects were normalised and rescaled to a common intensity level range [0,
255]. After normalisation the maximum and minimum intensity values were equal across
all subjects, and the mean values approximately equal.

Figure D.7: The change of the intensity distribution of the right putamen due to normal-
isation. The top and bottom rows display the minimum, maximum and mean intensity
values of the ROI across the subjects before and after normalisation, respectively. The
intensity levels of the subjects were normalised and rescaled to a common intensity level
range [0, 255]. After normalisation the maximum and minimum intensity values were
equal across all subjects, and the mean values approximately equal.
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The Thalamus

Figure D.8: The change of the intensity distribution of the left thalamus due to normalisa-
tion. The top and bottom rows display the minimum, maximum and mean intensity values
of the ROI across the subjects before and after normalisation, respectively. The intensity
levels of the subjects were normalised and rescaled to a common intensity level range [0,
255]. After normalisation the maximum and minimum intensity values were equal across
all subjects, and the mean values approximately equal.

Figure D.9: The change of the intensity distribution of the right thalamus due to normal-
isation. The top and bottom rows display the minimum, maximum and mean intensity
values of the ROI across the subjects before and after normalisation, respectively. The
intensity levels of the subjects were normalised and rescaled to a common intensity level
range [0, 255]. After normalisation the maximum and minimum intensity values were
equal across all subjects, and the mean values approximately equal.
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Appendix E

Evaluating the PCA Models of the
Hippocampus, Pallidum, Putamen
and Thalamus

E.1 The Hippocampus

The RMSECV and RMSEC curves of the hippocampus’ shape feature PCA model
are shown in Figure E.1, indicated strong overfitting. Based on the model’s statis-
tics in Figure F.4, seven components were included in the shape feature model.
PLS-Toolbox suggested using seven and five PCs for the 128-bin and 64-bin texture
feature, respectively. The suggestions were implemented.

Figure E.1: The RMSEC and RMSECV curve of the hippocampus’ shape feature model.
While the RMSEC curve decreased constantly, the RMSECV increased after four compo-
nents, indicating the model overfited stronlgy.
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Figure E.2: The RMSEC and RMSECV curve of the hippocampus’ 128-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

Figure E.3: The RMSEC and RMSECV curve of the hippocampus’ 64-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

E.1.1 Pattern Detection in the Score Plots

Identical to the caudate, no characteristics were identified in the corresponding score
plots in Figures E.4-E.8.
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The Shape Feature-based PCA model

Figure E.4: The hippocampus’ pair plot of the shape feature principal components nr 1-3.
No principal components discriminating the treatment groups were detected.

Figure E.5: The hippocampus’ pair plot of the shape feature principal components nr 4-7.
No principal components discriminating the treatment groups were detected.

103



APPENDIX E. EVALUATING THE PCA MODELS OF THE HIPPOCAMPUS,
PALLIDUM, PUTAMEN AND THALAMUS

The 128-bin Texture Feature-based PCA model

Figure E.6: The hippocampus’ pair plot of the 128-bin texture feature principal components
nr 1-3. No principal components discriminating the treatment groups were detected.

Figure E.7: The hippocampus’ pair plot of the 128-bin texture feature principal components
nr 4-7. No principal components discriminating the treatment groups were detected.
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The 64-bin Texture Feature-based PCA model

Figure E.8: The hippocampus’ pair plot of the 64-bin texture feature principal components
nr 1-5. No principal components discriminating the treatment groups were detected.

E.1.2 Identifying Possible Outliers in the Score and Q-T
Plots

Eight, ten and five subjects from class 1 stood out in the shape, 128-bin texture and
64-bin texture feature model, respectively. In the same models, five, seven and six
placebo-treated subjects were selected and listed in Table H.1. From the detected
subjects, nr. 3, 4, 7 and 29 stood out in all mentioned models. Out of these, only nr.
4 should be considered as a possible outlier according to the Q - T plots in Figures
E.9-E.11.
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Figure E.9: The Q-T plot of the hippocampus’ shape feature model.The blue dotted line
represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated (grey
subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence limit
may qualify as outliers.

Figure E.10: The Q-T plot of the hippocampus’ 128-bin texture feature model.The blue
dotted line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-
treated (grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95%
confidence limit may qualify as outliers.
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Figure E.11: The Q-T plot of the hippocampus’ 64-bin texture feature model.The blue
dotted line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-
treated (grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95%
confidence limit may qualify as outliers.

E.2 The Pallidum

PLS-Toolbox recommends one PC for the pallidum shape feature model, eleven for
the 128-bin texture feature model and eight for the 64-bin texture feature model.
The suggestions for the texture features were implemented. However, the shape
feature model’s ”cutoff”-component was set to six. The decision was grounded in
the model’s RMSEC in Figure E.12, where the sixth component corresponds to a
local minimum.
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Figure E.12: The RMSEC and RMSECV curve of the pallidum’s shape feature model.
While the RMSEC curve decreased constantly, the RMSECV increased after six compo-
nents, indicating the model overfited stronlgy.

Figure E.13: The RMSEC and RMSECV curve of the pallidum’s 128-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.
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Figure E.14: The RMSEC and RMSECV curve of the pallidum’s 64-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

E.2.1 Pattern Detection in the Score Plots

No principle components discriminating the treatment groups were identified in the
pallidum’s score plots in Figures E.15-E.21 by visual examination.

The Shape Feature-based PCA model

Figure E.15: The pallidum’s pair plot of the shape feature principal components nr 1-3.
No principal components discriminating the treatment groups were detected.
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Figure E.16: The pallidum’s pair plot of the shape feature principal components nr 4-6.
No principal components discriminating the treatment groups were detected.

The 128-bin Texture Feature-based PCA model

Figure E.17: The pallidum’s pair plot of the 128-bin texture feature principal components
nr 1-4. No principal components discriminating the treatment groups were detected.
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Figure E.18: The pallidum’s pair plot of the 128-bin texture feature principal components
nr 5-8. No principal components discriminating the treatment groups were detected.

Figure E.19: The pallidum’s pair plot of the 128-bin texture feature principal components
nr 9-11. No principal components discriminating the treatment groups were detected.
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The 64-bin Texture Feature-based PCA model

Figure E.20: The pallidum’s pair plot of the 64-bin texture feature principal components
nr 1-4. No principal components discriminating the treatment groups were detected.

Figure E.21: The pallidum’s pair plot of the 64-bin texture feature principal components
nr 5-8. No principal components discriminating the treatment groups were detected.

E.2.2 Identifying Possible Outliers in the Score and Q-T
Plots

Ten subjects stood out in the shape feature model, three of them from the placebo
group. Eight placebo-treated and ten MPH-treated subjects were selected in the
64-bin texture feature model. The 128-bin texture feature model highlighted eight
subjects, evenly distributed between the groups. Subjects nr. 5 and 29 were selected
in all models. Out of these two, only nr. 5 was classified as a possible outlier by the
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corresponding Q - T plots.

Figure E.22: The Q-T plot of the pallidum’s shape feature model.The blue dotted line
represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated (grey
subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence limit
may qualify as outliers.

Figure E.23: The Q-T plot of the pallidum’d shape-bin texture feature model.The blue
dotted line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-
treated (grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95%
confidence limit may qualify as outliers.
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Figure E.24: The Q-T plot of the pallidum’s 64-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.

E.3 The Putamen

Establishing the number of components to include in the putamen models based
on the statistics or the RMSECV and RMSEC curves in Figure E.25 proved to
be challenging. The PLS-Toolbox suggested less than three components for each
of the models, covering under 40% of the cumulative explained variance according
to Figures F.10, F.11, F.12. Seven principal components were chosen, covering
approximately 80% of the cumulative variance of the models.

Figure E.25: The RMSEC and RMSECV curve of the putamen’s shape feature model.
While the RMSEC curve decreased constantly, the RMSECV increased after five compo-
nents, indicating the model overfited stronlgy.
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Figure E.26: The RMSEC and RMSECV curve of the putamen’s 128-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

Figure E.27: The RMSEC and RMSECV curve of the putamen’s 64-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

E.3.1 Pattern Detection in the Score Plots

The score plots in Figures E.28-E.33 showed no signs of patterns or characteristics
discriminating the treatment groups.
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The Shape Feature-based PCA model

Figure E.28: The putamen’s pair plot of the shape feature principal components nr 1-3.
No principal components discriminating the treatment groups were detected.

Figure E.29: The putamen’s pair plot of the shape feature principal components nr 4-7.
No principal components discriminating the treatment groups were detected.
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The 128-bin Texture Feature-based PCA model

Figure E.30: The putamen’s pair plot of the 128-bin texture feature principal components
nr 1-3. No principal components discriminating the treatment groups were detected.

Figure E.31: The putamen’s pair plot of the 128-bin texture feature principal components
nr 4-7. No principal components discriminating the treatment groups were detected.
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The 64-bin Texture Feature-based PCA model

Figure E.32: The putamen’s pair plot of the 64-bin texture feature principal components
nr 1-3. No principal components discriminating the treatment groups were detected.

Figure E.33: The putamen’s pair plot of the 64-bin texture feature principal components
nr 4-7. No principal components discriminating the treatment groups were detected.

E.3.2 Identifying Possible Outliers in the Score and Q-T
Plots

Based on the score plots, eight MPH-treated subjects and five placebo-treated sub-
jects were identified as possible outliers in the putamen’s shape feature model. Out
of these, only subject nr. 13 was considered a possible outlier according to the Q
- T plot in Figure E.34. Four and five participants were selected from the 64-bin
texture feature and 128-bin texture feature model, respectively. Participant nr. 41
stood out in all three models but did not have a Q-residual or Hotelling T2 value
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above the 95% confidence limit in any of the corresponding Q - T plot in Figures
E.34-E.36.

Figure E.34: The Q-T plot of the putamen’s shape feature model.The blue dotted line
represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated (grey
subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence limit
may qualify as outliers.

Figure E.35: The Q-T plot of the putamen’s 128-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.
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Figure E.36: The Q-T plot of the putamen’s 64-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.

E.4 The Thalamus

Like the statistics of the putamen models, the statistics of the thalamus’ shape
feature model did not identify an explicit ”cutoff”-component. The toolbox recom-
mended using one component, covering 28.01% of the cumulative variance. Seven
components were chosen, covering 80% according to Figure F.13. The RMSEC, as
well as the RMSECV, of the model, decreased steeply, and flattened out upon reach-
ing the third component, as illustrated in Figures E.38 and E.39. Due to this and
the recommendation of PLS-Toolbox, the third component was chosen as a ”cutoff”
in the texture feature models.
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Figure E.37: The RMSEC and RMSECV curve of the thalamus’ shape feature model.
While the RMSEC curve decreased constantly, the RMSECV increased after six compo-
nents, indicating the model overfited stronlgy.

Figure E.38: The RMSEC and RMSECV curve of the thalamus’ 128-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.
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Figure E.39: The RMSEC and RMSECV curve of the thalamus’ 64-bin texture feature
model. Both curves decreased constantly, until the RMSECV curve flattened out slightly.

E.4.1 Pattern Detection in the Score Plots

Similar to the previous brain structures, no patterns distinguishing the treatment
groups from each other were detectable through visual examinations of the score
plots in Figures E.40 - E.43.

The Shape Feature-based PCA model

Figure E.40: The thalamus’ pair plot of the shape feature principal components nr 1-3.
No principal components discriminating the treatment groups were detected.
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Figure E.41: The thalamus’ pair plot of the shape feature principal components nr 4-7.
No principal components discriminating the treatment groups were detected.

The 128-bin Texture Feature-based PCA model

Figure E.42: The thalamus’ pair plot of the 128-bin texture feature principal components
nr 1-3. No principal components discriminating the treatment groups were detected.
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The 64-bin Texture Feature-based PCA model

Figure E.43: The thalamus’ pair plot of the 64-bin texture feature principal components
nr 1-3. No principal components discriminating the treatment groups were detected.

E.4.2 Identifying Possible Outliers in the Score and Q-T
Plots

No MPH-treated participants were categorised as noticeable observations or pos-
sible outliers in the texture feature models based in the same score plots and the
corresponding Q - T plots in Figures E.45 and E.46. Two placebo-treated subjects
were selected as possible outliers in the 64-bin texture feature model based on the
models score plots. One of the subjects also stood out in the 128-bin texture feature
model’s score plots.

None of these subjects crossed the 95% confidence limit of the corresponding Q -
T plots either. In the score plots of the shape feature model in Figure E.40 and
E.41, eight MPH-treated and four placebo-treated subjects stood out. Similar to
the texture feature models, none of the subjects were categorised as possible outliers
according to the Q - T plot in Figure E.44.

124



APPENDIX E. EVALUATING THE PCA MODELS OF THE HIPPOCAMPUS,
PALLIDUM, PUTAMEN AND THALAMUS

Figure E.44: The Q-T plot of the thalamus’ shape feature model.The blue dotted line
represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated (grey
subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence limit
may qualify as outliers.

Figure E.45: The Q-T plot of the thalamus’ 128-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.
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Figure E.46: The Q-T plot of the thalamus’ 64-bin texture feature model.The blue dotted
line represents the 95% confidence limit. MPH-treated (red subjects) and placebo-treated
(grey subjects) with either q-residual or Hotelling’s T2 values exceeding the 95% confidence
limit may qualify as outliers.
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The PCA Model Statistics

The Caudate’s PCA Model Statistics

In order to chose the number of principal components to include in the thesis’
PCA models, model statistics generated by PLS-Toolbox [60] were examined. The
model statistics included the eigenvalues, the individual explained variance and the
cumulative explained variance, and are displayed in this Appendix.

Figure F.1: The model statistics of the caudate’s shape feature-based PCA model for the
twenty first principal components, including the eigenvalues, the individual explained vari-
ance and the cumulative variance.
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Figure F.2: The model statistics of the caudate’s 128-bin texture feature-based PCA model
for the twenty first principal components, including the eigenvalues, the individual ex-
plained variance and the cumulative variance.

Figure F.3: The model statistics of the caudate’s 64-bin texture feature-based PCA model
for the twenty first principal components, including the eigenvalues, the individual ex-
plained variance and the cumulative variance.
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The Hippocampus’ PCA Model Statistics

Figure F.4: The model statistics of the hippocampus’ shape feature-based PCA model for
the twenty first principal components, including the eigenvalues, the individual explained
variance and the cumulative variance.

Figure F.5: The model statistics of the hippocampus’ 128-bin texture feature-based PCA
model for the twenty first principal components, including the eigenvalues, the individual
explained variance and the cumulative variance.
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Figure F.6: The model statistics of the hippocampus’ 64-bin texture feature-based PCA
model for the twenty first principal components, including the eigenvalues, the individual
explained variance and the cumulative variance.

The Pallidum’s PCA Model Statistics

Figure F.7: The model statistics of the palldum’s shape feature-based PCA model for the
twenty first principal components, including the eigenvalues, the individual explained vari-
ance and the cumulative variance.
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Figure F.8: The model statistics of the pallidumn’s 128-bin texture feature-based PCA
model for the twenty first principal components, including the eigenvalues, the individual
explained variance and the cumulative variance.

Figure F.9: The model statistics of the pallidum’s 64-bin texture feature-based PCA model
for the twenty first principal components, including the eigenvalues, the individual ex-
plained variance and the cumulative variance.
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The Putamen’s PCA Model Statistics

Figure F.10: The model statistics of the putamen’s shape feature-based PCA model for
the twenty first principal components, including the eigenvalues, the individual explained
variance and the cumulative variance.

Figure F.11: The model statistics of the putamen’s 128-bin texture feature-based PCA
model for the twenty first principal components, including the eigenvalues, the individual
explained variance and the cumulative variance.
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Figure F.12: The model statistics of the putamen’s 64-bin texture feature-based PCA model
for the twenty first principal components, including the eigenvalues, the individual ex-
plained variance and the cumulative variance.

The Thalamus’ PCA Model Statistics

Figure F.13: The model statistics of the thalamus’ shape feature-based PCA model for
the twenty first principal components, including the eigenvalues, the individual explained
variance and the cumulative variance.
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Figure F.14: The model statistics of the thalamus’ 128-bin texture feature-based PCA
model for the twenty first principal components, including the eigenvalues, the individual
explained variance and the cumulative variance.

Figure F.15: The model statistics of the thalamus’ 64-bin texture feature-based PCA model
for the twenty first principal components, including the eigenvalues, the individual ex-
plained variance and the cumulative variance.
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Appendix G

Number of Chosen PCs

When creating the PCA models in this thesis, the number of principal components
analysed was limited in order to prevent inclusion of noise and unsystematic variance
in the models. PLS-Toolbox [60] recommended the number of PCs to include in the
models, but the models statistics were also considered when deciding the number
of PCs to include further. Both the suggested and the chosen number of principal
components are listed in Table G.1.

Table G.1: The number of PCs recommended by PLS-Toolbox included in the PCA models,
and the number of PCs chosen included for further analyses.

Feature Matrix
PCs suggested
by PLS toolbox

PCs decided
upon

Caudate: Shape Features 1 8
Caudate: 128-bin Texture Features 9 9
Caudate: 64-bin Texture Features 2 7
Hippocampus: Shape Features 1 7
Hippocampus: 128-bin Texture Features 7 7
Hippocampus: 64-bin Texture Features 5 5
Pallidum: Shape Features 1 6
Pallidum: 128-bin Texture Features 11 11
Pallidum: 64-bin Texture Features 8 8
Putamen: Shape Features 1 7
Putamen: 128-bin Texture Features 1 7
Putamen: 64-bin Texture Features 2 7
Thalamus: Shape Features 1 7
Thalamus: 128-bin Texture Features 3 3
Thalamus: 64-bin Texture Features 3 3
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Subjects Standing Out in Score
Plots

Subjects standing out in score plots generated as part of the principal component
analyses presented in Chapter 4.3.1 and Appendix E were listed in Table H.1.

Table H.1: Subjects which stood out in the PCA models’ generated score plots in Chapter
4.3.1 and Appendix E.

Model
IDs of class 1 IDs of class 0

1 PC 2 PCs 3 or 4 PCs 1 PC 2 PCs

Caudate,
Shape 2, 3, 8,

14, 21
4, 13 25, 26, 27,

31, 34, 35,
42, 44

43

Caudate,
128-bin tex. 0, 4, 6,

13, 17,
18, 21

5, 16 2 27, 28, 31,
33, 40, 43

Caudate,
64-bin tex. 0, 3, 4,

6, 7,
13, 18

2, 5, 16 26, 30, 31,
35, 37, 43

Hippocampus,
Shape 3, 4, 5,

11, 12,
17, 19

7 24, 25, 29,
34, 39

Hippocampus,
128-bin tex. 3, 6, 7,

11, 13,
15, 20

5, 18 4 22, 25, 27,
29, 35, 38,
42

Hippocampus,
64-bin tex. 2, 3, 7 13 4 31, 35, 40,

44
29, 41

Pallidum,
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Continuation of Table H.1

Model
IDs of class 1 IDs of class 0

1 PC 2 PCs 3 or 4 PCs 1 PC 2 PCs

Shape 2, 3, 8,
9, 16

5, 13 29, 33, 44

Pallidum,
128-bin tex. 5, 6,

16, 18
29, 32, 45 44

Pallidum,
64-bin tex. 2, 4, 6,

8, 9,
10, 13,
17, 18

5 24, 25, 28,
29, 30, 32,
42, 43

Putamen,
Shape 2, 5, 8,

9, 12,
13, 17,
18

25, 37, 40,
41, 42

Putamen,
128-bin tex. 3, 4 13, 21 41
Putamen,
64-bin tex. 2, 12,

13
41

Thalamus,
Shape 2, 8,

10, 16,
17, 19

3, 20 25, 29, 33,
42

Thalamus,
128-bin tex. 39
Thalamus,
64-bin tex. 34, 39
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