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Abstract 

The microbial communities found in the gastrointestinal tract of mammals, such as within the 

rumen of herbivores or in the gut of humans exert significant influence on their host via their 

vast array of metabolic functions. Understanding the composition and function of these 

communities can help combat some of the greatest challenges modern society faces. By 

understanding their function and what biochemical properties they instigate, they can be used 

to combat famine, reduce greenhouse gas emissions, increase nutrient absorption, and increase 

overall human health.  

These microbial communities have been challenging to explore for decades due to limitations 

in technology, but through the rise of second and now third generation sequencing platforms, 

the generation of genomic information via Metagenomic Assembled Genomes (MAGs) has 

become faster, cheaper and more accurate. This has allowed scientists to explore a multitude of 

communities previously deemed too expensive and too complex to analyze. Despite this, the 

number of high-quality MAGs, used to determine biochemical function in online databases is 

far from optimal to this day. 

In this study, we explore the different methodological steps that are required to perform 

metagenomic analysis of complex communities, with a particular focus on recovering MAGs 

that represent microbial populations. We applied these approaches to both rumen samples from 

sheep and gut samples from humans, which were also subjected to different sequencing 

platforms, in order to determine the strengths and weaknesses of each alternative. Differences 

in sampling method, DNA extraction method, sequencing platform and analyzing tools were 

explored to determine which were better equipped for the task of generating high-quality 

MAGs. Finally, we explored the applicability of long read sequencing and how it will advance 

metagenomic studies in the coming years. 

 

 

 

 

 

 



IV 
 

Sammendrag 

De mikrobielle samfunnene som finnes i mage-tarmkanalen hos pattedyr, som i vommen til 

planteetere eller i tarmen til mennesker, har betydelig innflytelse på verten deres gjennom deres 

ulike metabolske funksjoner. Å forstå sammensetningen og funksjonen til disse samfunnene 

kan bidra til å bekjempe noen av de største utfordringene det moderne samfunnet står ovenfor. 

Ved å forstå deres funksjon og hvilke biokjemiske egenskaper de har, kan man benytte de til å 

bekjempe hungersnød, redusere klimagassutslipp, øke næringsopptaket og bedre allmenhelsen 

til mennesker. 

 

Disse mikrobielle samfunnene har vært utfordrende å utforske i flere tiår på grunn av 

begrensninger i teknologien, men gjennom forbedringer og utviklingen av andre og nå tredje 

generasjons sekvenseringsplattformer er utforskningen av genomisk informasjon via 

Metagenomic Assembled Genomes (MAGs) blitt raskere, billigere og mer nøyaktig. Dette har 

gjort det mulig for forskere å utforske et mangfold av samfunn, som tidligere ble ansett for for 

dyre og for kompliserte til å utforske. Til tross for dette er antallet MAGs av høy kvalitet, brukt 

til å bestemme biokjemisk funksjon, i nettbaserte databaser langt fra optimalt, selv i dag. 

 

I denne studien utforsker vi de forskjellige metodologiske trinnene som er nødvendige for å 

utføre metagenomisk analyse av komplekse samfunn, med særlig fokus på å uthente MAGs 

som representerer mikrobielle populasjoner. Vi praktiserte disse metodene på både vom prøver 

fra sauer og tarmsprøver fra mennesker, som igjen ble sekvensert på ulike 

sekvenseringsplattformer, for å utforske fordeler og ulemper ved hvert alternativ. Forskjeller i 

prøvetakingsmetode, DNA-ekstraksjonsmetode, sekvenseringsplattform og analyseverktøy ble 

undersøkt for å bestemme hvilke som var bedre rustet til oppgaven med å generere MAG-er av 

høy kvalitet. Til slutt undersøkte vi anvendeligheten av tredjegenerasjons sekvensering og 

hvordan det vil fremme metagenomiske studier de kommende årene. 
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Abbreviations 

OTU              Operational Taxonomic Unit  

PCR               Polymerase Chain Reaction  

rRNA             Ribosomal ribonucleic acid  

MAGs            Metagenomic Assembeled Genomes  

VFA               Volatile Fatty Acids  

CAZymes       Carbohydrate Active enzymes  

E.C Number   Enzyme Comission Number  

KEGG            Kyoto Encyclopedia of Genes and Genomes  
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1 Background 
 

Microorganisms surround us daily; they exist in complex communities and represent the largest 

genetic diversity on Earth. They are estimated to be responsible for 50-78% of the worlds’ 

biomass and manage the worlds biogeochemical cycles (Kallmeyer, Pockalny, Adhikari, Smith, 

& D’Hondt, 2012). They recycle essential elements, forms soil and breaks down both natural 

and anthropogenic organic material (Heyer et al., 2017; Rodríguez-Valera, 2004). Certain 

microorganisms produces bioactive products that promotes health and can be utilized in various 

societal, scientific and industrial fields (Garbeva, Veen, & Elsas, 2004). Society has long 

benefitted from the bioactive properties of microbial communities. Ever since the discovery of 

bread-baking and brewing have these communities been utilized to our benefit.  

Although there is a vast potential in microbial communities, little is understood about them. 

The study of microbiology can be considered to have started alongside the invention of the 

microscope in the 16th century. Nevertheless, researchers have only recently started to study the 

genomic composition of diverse microbial communities.  

The study of microbiology is founded on the exploration of microbes through cultivation. 

However, this approach is not optimal to study communities. The amount of bacteria actually 

suited for cultivation under standard conditions is estimated to be roughly 0.1-1.0% (Staley & 

Konopka, 1985) and this 1% is not the most abundant in an environment, and rarely the ones 

of biochemical interest, but rather the most adaptable to alterations in environment.  

According to (Hugenholtz, 2002) the majority of microbial research conducted in the period 

1991-1997 only studied the same eight bacterial genera, due to their ability to outcompete other 

microbes on agar-cultures. These “microbial weeds” make the traditional culture-based 

approach for community study unreliable (Hugenholtz, 2002).  

Fortunately, through the development of 2nd and 3rd generation sequencing machines, this 

problem has been solved. The newer technology doesn’t rely on bacterial cultivation and as a 

result the amount of Metagenomic Assembled Genomes (MAGs), which are genomes 

assembled from a community sample, have grown exponentially the last decade (see figure 

1.1). By the end of 2016 there were 2,866 Single-Cell Assembled Genomes (SAGs) and 4,622 

Metagenomic Assembled Genomes (MAGs) (Robert M Bowers et al., 2017), but when 

compared to the number of genomes assembled by 2019, these numbers seem inconsequential. 

Studies such as Almeida et al., 2019 and Pasolli et al., 2019 managed to sequence and assemble 
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roughly 250,000 MAGs combined. This illustrates how rapid the field of metagenomics are 

evolving, and what more to expect from it in the future.  

 

Figure 1.1 Increase in number of Single-cell Assembeled genoms (SAGs) and Metagenomic Assembeled Genomes 

(MAGs) over the period 2010-2016 (Robert M Bowers et al., 2017). The trend has grown exponentially over the 

last few years through the development of newer sequencing technologies like Oxfords’ Nanopore and PacBio’ 

Single Molecule Real Time Sequencing (SMRT) and increased interest in the field. Databases like JGI Gold 

(https://gold.jgi.doe.gov/distribution) and EBI metagenomics (https://www.ebi.ac.uk/metagenomics/) contain 

>130,000 MAGs combined. These numbers dwarf the amount of MAGs in this figure, and illustrated the rapid 

growth the field is experiencing. Illustration taken from Bowers et al.2017 

 

1.1 The importance of gut and rumen microbiomes 

 

The microbiomes consists of organisms from various taxa across the tree of life, such as fungi, 

eukaryotes, bacteria, protozoa and viruses (Jose C. Clemente, 2012,). They help their host break 

down complex molecules like fibers and starch to smaller and more easily digestible 

components such as volatile fatty acids (Dijkstra, 1994). Through processes like fermentation 

and  hydrolysis they produce nutrients that benefit themselves and their host (Moran, 2005), 

and are fundamental for their hosts health. 

Two of the most explored microbiomes are the ones of ruminants and humans. These 

microbiomes’ production of bioactive products impacts their hosts’ health and are important to 

understand in order to utilize them. Through the exploration of the ruminant’s microbiome we 

https://gold.jgi.doe.gov/distribution
https://www.ebi.ac.uk/metagenomics/
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might enhance meat and dairy production, and simultaneously reduce their greenhouse gas 

emissions. While the exploration of the human microbiome has been closely linked to the 

maturation and function of our immune system and has been found to have a major impact on 

our general health (Czerkawski, 1986; Lloyd-Price, Abu-Ali, & Huttenhower, 2016). Solving 

these problems could help combat global problems like greenhouse-gas emissions and famine. 

 

1.2 The Rumen 

 

The ruminant’s gastrointestinal tract is comprised of four compartments, the rumen, reticulum, 

omasum and abomasum. These four compartments combined is responsible for digestion of 

consumed biomass and absorption of nutrients in ruminants (Moran, 2005). When the ruminants 

are fed, the biomass is broken into smaller pieces through rumination (cud-chewing). The 

rumination process makes the biomass more susceptible to carbohydrate-hydrolysis and 

bacterial fermentation. The rumination is needed to extract the nutrients found in lignocellulose, 

which comprises most of the ruminants’ diet. 

Lignocellulose consists mainly of cellulose, hemicellulose and pectin, and is found in the plant 

cell-wall where the different polymers interact to create a rigid recalcitrant structure (Moraïs et 

al., 2012). Lignocellulose is a complex material and requires a wide array of enzymes to utilize, 

which ruminants themselves cannot encode for, and are therefore dependent on their 

microbiome.  

The enzymes needed for lignocellulose degradation are called carbohydrate active enzymes 

(CAZymes) can be divided into 5 groups depending on their function (http://www.cazy.org/). 

Glycosyl Transferases (GTs) are transferases responsible for carbohydrates assemblage, as they 

introduce glycoside linkages. Polysaccharide Lysases (PLs) cleave activated glyosidic linkages, 

Glycoside hydrolysis (GHs) catalyzes the hydrolysis of glyosidic bonds between carbohydrates 

and Carbohydrate Esterases (CEs)catalyzes the acylation of the Oxygen or Nitrogen of 

substituted saccharides. PLs, GHs and CEs are all involved in carbohydrate degradation. 

Axilliary Activities (AAs) are redox enzymes that act in conjunction with the other CAZymes.  

The rumen microbiota comprises a large variety of bacteria, which aid in the degradation of 

complex polysaccharides. The more important bacteria are the ones involved in cellulose, 

pectin, lactate proteolytic and lipolytic degradation. All of which play a major role in digestion, 

pH regulation and provides energy for the host.  

http://www.cazy.org/
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The host receives energy from bacterial fermentation and carbohydrate-hydrolysis. The desired 

end-product of these processes are volatile fatty acids (VFA) (Dijkstra, 1994).  VFAs consists 

of 1-6 carbon atoms, and molecules like propionate, acetate and butyrate can transverse the 

hosts epithelium and be used in its energy metabolism. Roughly 70% of ruminants caloric 

requirements come from VFA (Bergman, 1990).  

Another important member of the microbiota is the protozoa, which contributes to 40-80% of 

the rumen biomass. The majority of protozoa (90%) is involved in hydrolysis and fermentation 

of cellulose and (Castillo-González, 2014). Bacteria and protozoa together degrades together 

70-80% of the ingested dry-matter (Moran, 2005).  

In addition, fungi represents 8 % of the biomass in the rumen and aid in hydrolyzing cellulose 

and hemicellulose by producing enzymes capable of breaking down plant-cell wall 

components, and plays an important role in digestion as other microbes gain access to the plant 

material ingested (Castillo-González, 2014). 

 

1.3 The Human Gut 

 

The human microbiome differs quite a bit from the one found in ruminants. While the ruminants 

heavily depend on their microbiome for energy absorption, the human gut operates more 

independently. Roughly 85% of carbohydrates, 66%-95% of proteins and all the fats are 

absorbed before the food enters the large intestine where fermentation takes place (Krajmalnik-

Brown, Ilhan, Kang, & DiBaise, 2012). Approximately ~10% of our energy intake comes in 

the form of VFA as a result of fermentation and carbohydrate hydrolysis (Bergman, 1990).  

Despite this, the microbes still play a critical role in numerous physiological and 

microbiological processes which aids both our health and metabolism. The microbiota is 

fundamental in influencing host-cell proliferation (Ijssennagger et al., 2015) regulate 

abnormal/excessive blood vessel formation (Reinhardt et al., 2012), regulate intestinal 

endocrine functions by interacting with hosts’ hormone production (Neuman, Debelius, Knight, 

& Koren, 2015), neurologic signaling through microbial serotonin production (Yano et al., 

2015), influencing bone density by bodyweight regulation (I. Cho et al., 2012), micronutrient 

synthesis and drug metabolism (Ijssennagger et al., 2015). Furthermore, the microbiome have 

been found to be fundamental in e healthy immune-system, by aiding in maturation and 
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continued education of the hosts’ immune response (Fulde & Hornef, 2014) and suppresses 

pathogen overgrowth (N. Kamada, Chen, Inohara, & Núñez, 2013).  

The structure of the human gut microbiome is heavily altered by factors like, age, host genetics, 

diet and local environment (Browne, Neville, Forster, & Lawley, 2017). This makes it hard to 

determine what a healthy baseline for all humans should be and how to optimize it.  Correlations 

between poor diet and malnourishment indicate that both obesity and starvation have 

detrimental effect on our microbiome. Paradoxically this malnourishment leads to a weakened 

immune system, which in turn reduces the body’s ability to absorb nutrients, creating a negative 

feedback loop (Kau, Ahern, Griffin, Goodman, & Gordon, 2011) (See figure 1.2 below).  

Undernutrition is responsible for ∼45% of the death of children under the age of 5, illustrating 

the massive global problem malnourishment, and poor microbiome composition present 

(Bryce, Boschi-Pinto, Shibuya, Black, & Group, 2005; Robertson, Manges, Finlay, & 

Prendergast, 2019). Other disease, such as Crohn’s disease and ulcerative colitis are also linked 

to the microbial communities in the human gut (Morgan et al., 2012). To help combat problems 

and diseases such as these, we need to further our knowledge about our microbiome, and its 

functions. 

 

Figure 1.2 Proposed relationship between gut microbiome, nutrition and immune system. 

Illustrates how poor microbiome as a result of malnourishment and poor immune function could 

result in an increase of infections, which in turn results in a reduced ability to absorb nutrients, 
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resulting in a negative feedback loop.  

Illustration gathered from https://www.nature.com/articles/nature10213/figures/1. 

 

1.4 How to study microbiomes: metagenomics  
 

The study of microbial communities is a relatively new field of science. The collective interest 

in genomes spiked after projects like Human Genome Project took place (Boeke et al., 2016). 

Further development in sequencing machines, techniques and data processing have also made 

it more of a prominent method to examine both macro and micro-organisms. Notably it was the 

development of second-generation sequencing, or high-throughput sequencing, that allowed 

researchers to properly study complex microbial communities with unprecedented resolution 

and throughput. 

Metagenomics is a powerful research technique that help us explore microbe’s species-richness, 

distribution and relationship to each other in samples (Barzon, Lavezzo, Militello, Toppo, & 

Palù, 2011). It is a culture-independent approach and analyzes the collective set of genomes 

found in a sample taken directly from a community of interest. The most used techniques to 

analyze metagenomes is 16S rRNA sequencing and shotgun metagenomic sequencing. 

Microbial community analysis using 16S rRNA sequencing utilizes Polymerase Chain 

Reactions (PCR) to amplify the ribosomal RNA in prokaryotes. The ribosomal RNA contains 

several hypervariable regions (V1-V9) which are used to determine phylogenetic rank. 16S 

rRNA gene analysis is well suited towards exploring the taxonomic diversity of prokaryotes in 

communities. It has a high bacteria coverage through online reference databases, has a low risk 

of false positives and it is cheap. However, care must still be taken to avoid biases that can arise 

through PCR, depending on how many cycles the PCR runs, what primes are being used and 

what analyzing pipeline is being applied.  

Shotgun metagenomic sequencing, unlike 16S rRNA gene analysis, sequences all the given 

genomic DNA from a given sample, instead of just the ribosomal RNA in prokaryotes. As such, 

shotgun sequencing captures a much broader range of information from a community with a 

higher level of resolution, meaning we can study genes and their predicted function.  

Amplicon and shotgun methods use different processes for this. 16S rRNA uses a method called 

clustering, while shotgun-based methods use a process called ‘binning’. While these two 

https://www.nature.com/articles/nature10213/figures/1
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methods function similarly, by grouping contigs together based on similarities and turning them 

into operational taxonomic units (OTUs) they operate with different criteria for grouping.  

Shortly summarized, ‘clustering’ groups the reads based on similarity, meaning the reads in 

each cluster is more similar to each other as opposed the ones in a different cluster, these groups 

then represent different OTUs. ‘Binning’ utilizes both previously available information and the 

intrinsic information from the sample to create its OTUs. 

These OTUs represent an algorithms best effort to group the microorganisms together, based 

on the similarities of their genomic data. Metagenomic binning entail the creation of 

metagenome assembled genomes (MAGs) that represent as-yet uncultured microorganisms that 

are in your sample of interest. The usefulness of MAGs depends greatly on their completeness, 

quality and their degree of novelty. For example, trying to assign taxonomy to MAGs that are 

less completed is only reliable at more general taxonomic ranks, like domain, kingdom or 

phylum. In contrast, completed/near-completed genomes can provide more precise 

proximations.  

Which metagenomic approach (16S rRNA gene analysis vs shotgun metagenomics) depends 

on the aim of one’s study. If you’re only after taxonomic profiling of a sample, then 16S is 

cheaper and require less data processing. However, shotgun sequencing provides more data and 

can be connected to the other `omics`, such as proteomics and transcriptomics, which is best 

suited for determining biochemical function and metabolic potential of microbes.  

 

1.5 Sequencing Technology 

 

Different DNA sequencing machines provide different output (i.e. sequence reads), with some 

providing long, but few, while other produce massive number of shorter reads. Each of the 

sequencing machines provide us with some unique information the others cannot. 

 

1.5.1 First Generation Sequencing 

When researchers first started to study the metagenomes, Sanger-sequencing (first generation-

sequencing) was used. However, it wasn’t very suited towards it. While it creates long and high 

accuracy, which is beneficial when sequencing novel reference genomes for individual species, 

it relies on bacterial cloning for sequencing.  
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The vector-based cloning and Escherichia coli-based amplification can implement biases when 

sequencing. Certain regions in the transferred genome can be cloned less often than others when 

amplifying due to biological factors, like vector preferences and palindromic sequences. This 

bias manifests in the form of a lower expected coverage of affected regions (Mardis, 2008). 

Sanger sequencing also produces a low amount of sequencing reactions, and relies on 

electrophoresis to detect the sequencing output, all of which make first-generation sequencing 

too time consuming and ineffective to study samples that contains a multitude of genomes.  

 

1.5.2 Second Generation Sequencing 

Second-generation sequencing, or high-throughput sequencing, operates in principle the same 

way as Sanger-sequencing. It uses DNA polymerase to add fluorescent nucleotides, one by one, 

to a DNA template, where each nucleotide us identified by its fluorescent tag. The main 

difference between these technologies is while Sanger sequences only one nucleotide at a time 

second-generation can sequence a multitude simultaneously. Therefore it can produce massive 

amounts of reads, they are however shorter (35-250 base-pairs) compared to sanger-sequencing 

(650-800 base-pairs) (Mardis, 2008). While first generation sequencing can produce hundreds 

of sequence reactions, second generation can produce thousands-millions, and the sequence 

output can be detected without the need of electrophoresis. In addition, the samples being 

sequenced can be taken directly from the gut, without the need of cultivation (Huttenhower, 

Kostic, & Xavier, 2014) removing potential biases when looking at community composition.  

In addition to analyzing population diversity, high-throughput sequencing can also help 

determine microbe functions through gene annotation and comparative metagenomics (Meyer 

et al., 2008). By comparing sequence composition, taxonomic diversity, or meta-transcriptomes 

through online reference databases, high-throughput sequencing can determine the chemical 

pathways in communities. This can help explore the metabolic potential in microorganisms and 

how the various microorganisms co-evolve with each other and their host (Cardona et al., 2012). 

Moreover, understanding the metabolic potential of microbes would be beneficial when 

examining how the various interactions can benefit us. 

Although high-throughput short-read sequencing generates massive amounts of data for 

genome-recreation, it falls short when trying to finalize and polish genomes. The short length 

of the reads makes it difficult for bioinformatic software to analyze repeating regions, and 

ambiguities in alignment of contigs often occur. Since repetitive regions can cover large 
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portions of a genome, like in humans where it is responsible for nearly half of our gene-material, 

major difficulties will occur when it is not analyzed properly (Treangen & Salzberg, 2012).  

Given the length of sequence reads, first-generation sequencing does not have the same 

problems with this, and it is still being used to this day on small scale projects, despite being 

over 40 years old. It is however still too slow to be reliably used to study large scale 

metagenomic samples. Fortunately, through recent development in sequence technology a 

multitude of new sequencing machines fills the gaps high-throughput sequencing leaves and is 

a lot more efficient than traditional Sanger-sequencing.  

 

1.5.3 Third Generation Sequencing: Long read 

Third generation (i.e. Long-read) sequencing has gotten a lot of attention recently, and for good 

reason. 3rd-generation sequencing-technology can analyze single molecules of DNA in real-

time without the use PCR amplification, which eliminates potential biases that can arise through 

amplification or cultivation. This can make it better suited for de novo sequencing than 2nd 

generation and has an increased conscious accuracy for base-calling, if the same DNA strand 

is sequenced multiple time, which enables rare variant detection (Wick, Judd, & Holt, 2019). 

However, DNA-strands only sequenced once will have potential faults in its base-calling which 

can complicate de novo assembly as well (Amarasinghe et al., 2020).  

Arguably the most important aspect of long-read sequencing is the pore technology itself. While 

second-generation sequencing needs to ‘reassemble’ the reads with DNA templates and free 

nucleotides during sequencing, third generation can allow complete strands of DNA to be 

analyzed at once. The pores measure the electrical resistance of the nucleotides as they pass 

through the nanopore, and since each nucleotide has a different resistance to electricity, it can 

identify them (Jain, Olsen, Paten, & Akeson, 2016). Third-generation library preparations can 

also produce longer fragments than its predecessors (Amarasinghe et al., 2020). This is due to 

its potential in exploiting various DNA-polymerases or avoid chemical and biological processes 

all together. This reduction in chemical handling has to potential to massively increase read-

length (Schadt, Turner, & Kasarskis, 2010). 

Despite this, 3rd generation sequencing is not without its challenges. For example, it produces 

fewer reads than 2nd generation, and is not as accurate as 1st and 2nd generation when recognizing 

nucleotides (Ye, Hill, Wu, Ruan, & Ma, 2016) and DNA-extraction protocols for Third-
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generation sequencing needs improvements since possible contaminants can complicate 

downstream analysis to a large extent (Van Dijk, Auger, Jaszczyszyn, & Thermes, 2014).  

The reduced sequencing depth combined with inaccurate base-calling and unoptimized 

protocols makes 3rd generation sequencing machines unreliable to a certain degree when used 

alone. Nevertheless, the data provided by long-read sequencing can validate the contigs created 

through short-read sequencing when used in assembly as a reference or framework.  

The production of longer reads makes for more continuous reconstructions of genomes, making 

it easier to detect insertions, deletions and repeating regions, when assembling contigs. This 

simplifies assembly and helps increase the overall quality of the genomes (Lee et al., 2016).  

Long-read sequencing technology is far from optimized but shows a lot of potential. And given 

the incredible decrease in cost and increase in base-calling quality over the last few years 

(Mardis, 2008; Wick et al., 2019), new areas, previously deemed too expensive to examine, 

will open up for researchers. One can speculate this increase in quality and decrease in costs 

will continue in the future, possibly leading to long-read sequencing being more reliable, and 

favorable over short-read sequencing. However, as of now it is best utilized in combination 

with other sequencing technologies.  

By implementing a combination of sequencing technologies, the amount of complete/near-

complete genomes in online reference databases could increase. In the period of 2007-2011 

only 35% of online reference genomes had an accuracy of >99.99% (Koren et al., 2013), 

illustrating the need for higher quality reference genomes. Through better developed reference 

databases, deeper analysis of microbiotas is possible. The more completed or near-completed 

reference genomes a database contains, and the higher quality they are, the easier it will be to 

annotate microbes’ taxonomy and function. This information can be used by researchers to 

create more advanced simulations of microbiomes, and possibly induce desired properties in 

them (Mende et al., 2012). 

 

1.6 DNA Extraction 

 

A contested area for metagenomic studies is the manner of which the DNA is extracted from 

the samples. While the samples are taken from a community and contain a plethora of 

microorganisms and their DNA, obtaining optimal DNA yield and quality with suitable lengths 
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for the selected sequence technology can be challenging.  

Two commonly used approaches for extraction is Kit-based and a more manual phenol-

chloroform approach, each of which has its own benefits and detriments. The aim of your study 

dictates which approach is best suited. 

Through recent development in the field of molecular biology the kit-based approaches for 

DNA extraction have improved. They now give more DNA of higher quality than before. 

However, the phenol-chloroform approach still is superior in terms of DNA yield and quality 

when compared to its kit-based counterpart. Arguably,  a DNA extraction primary task is to 

yield as much decontaminated DNA as possible and a kits’ ability to purify sample depends 

heavily on what type sample is being analyzed, while phenol-chloroform based approaches can 

more easily be altered to better suit the samples being tested (Janabi, Kerkhof, McGuinness, 

Biddle, & McKeever, 2016).  

Nevertheless, one needs also take into consideration a method ease of use, and how time 

consuming it is. Moreover, for the study of metagenomics the novelty of the microorganisms 

being studied dictates which approach if preferable. A kit-based approach could have 

difficulties providing sufficient amount of DNA for low-abundant species. Despite this, it 

should provide the same overall number of bacterial species when compared to the phenol-

chloroform approach (Peng et al., 2013). Furthermore, the biggest benefit of the kit-based 

approaches, is their ease of use. The phenol-chloroform methods require foom-hoods, handling 

and disposal of hazardous substances, also fresh lysozyme solutions will have to be made for 

each extraction. Most kit-based approaches can easily be done from a bench-top with ordinary 

lab equipment and precautions, straight out of the box. 

 

1.7 DNA assembly 

 

One of the most important steps in a metagenomic study, especially shotgun and long-read, is 

the assembly of genomes after sequencing. The process of turning individual reads in to longer 

continuous fragments (contigs) and then merging these contigs into scaffolds that can ultimately 

a completed genome is a daunting task. Especially in metagenomic studies where samples 

contain a plethora of genomes.  

Many bioinformatic tools exist for metagenomic data processing and which annotation strategy 

is best suited depends on the sequencing platform used, and the aim of the study. The different 
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methods vary in their ability to process different read-lengths. Some are best suited for long 

read sequencing, while others depend on the massive output and high-coverage produced by 

high-throughput sequencing. There are four different approaches when assembling genomes, 

the Naïve approach, the Greedy approach, Overlap-Layout Concecnious and De-brujin graphs. 

The Navïe approach is one of the oldest, and simplest approaches for sequence assembly 

(Staden, 1979). It focuses on finding separate sequences with significant and enough overlap 

between these sequences and merging them into a longer read. However, errors in sequences, 

like insertions, deletions, inversion, and repeating regions makes it unreliable and when 

assembling entire genomes consisting of billions of base-pairs, these errors will scale 

logarithmic with 4^n depending on how many bases are affected by these errors. This makes it 

insoluble for the naïve approach to assemble genomes unless the errors and repeating regions 

are shorter than the reads analyzed (Simpson & Pop, 2015). 

Another of the simpler approaches for DNA assembly is the greedy approach. The greedy 

approach involves continuously combining reads in decreasing order of quality in their 

overlaps. In summary, it combines the reads with the best overlap first and then adds to it with 

reads of lower quality until a predefined threshold is reached. If a read overlap contests an 

already merged read it is ignored. It is a greedy approach as the term implies, as it only involves 

the most logically optimal assembly for each merging of reads and discards other potential 

alternatives. While this approach can be inaccurate it often provides a solid approximation for 

the optimal assembly. However, due to its simple approach and how it assembles reads locally, 

it suffers when handling repeating regions and have been replaced by more complex graph 

algorithms that better handles repetitive sequences (Simpson & Pop, 2015).  

 

Through the development of newer Next Generation Sequencing (NGS) platforms both the 

Naïve and the greedy approach have been replaced. These newer sequencing platforms provide 

cheaper, faster and higher-throughput sequences than their predecessors, especially platforms 

like the Oxford MinION and the PacBio SMRT provides exceptionally long reads. These longer 

reads makes it easier for bioinformatic software to detect repeated regions, insertions, deletions 

and inversions (Indels) that can take up large portions in a genome. The long reads can span 

entire open reading frames (ORF).  

ORFs can be defined as sequences with a length that is divisible by three and is bound by stop 

codons (Sieber, Platzer, & Schuster, 2018). ORFs are important when identifying protein 

coding regions or functional RNA-coding regions in DNA sequences. Although these 
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sequencing platforms can cover ORFs, they are accompanied with their own inherited flaws. 

MinION and SMRT both suffer from a low sequencing depth and have a high error-rate for 

base-calling compared to 2nd generation sequencing platforms. These problems combined with 

the increase of sequencing output and read lengths and the high species complexity in 

metagenomic samples raises the computational requirements for assembly, making it more 

challenging.  

 

Overlap-layout-consensus (OLC) is one of the algorithm approaches that can handle the data 

output from 3rd generation sequencing platforms. It was developed in the 1980s and was used 

with sanger sequencing. It functions by turning each read into a node in a graph, these nodes 

are structured based on their overlaps, meaning one can see how different reads are connected. 

It then performs a multiple sequence alignment, where the different sequences are structured 

based on order and overlap, and eventual inconsistencies are removed. OLC can also be 

modified to construct the map/graph with k-mers, which are subsequences of length (k).  

K-mers is a user specified parameter that can help assembly by covering repetitive and non-

unique regions in a metagenome, at the cost of coverage. Using k-mers can drastically reduce 

time spent screening for overlapping reads.  

The OLC based approach is best suited to assemble small genomes, or when processing longer 

reads. This is because the OLC method suffers from bottlenecks especially in the overlap 

computing step and the vast amount of reads and sequencing output 2nd generation sequencing 

platform provides makes OLC a very time-consuming and computational demanding approach 

for high-throughput sequences (Li et al., 2011). 

 

The last of the assembly approaches is De-bruijn graphs. It also was created in the 1980s and is 

widely used today. It is well suited to study large genomes and metagenomes (Simpson & Pop, 

2015). In this assembly method each of the reads are broken into sequences with overlapping 

k-mers. Each of the unique k-mers are given a distinct node of the graph and the k-mers that 

comes from adjacent nodes are linked with an edge that indicates direction of the read. After 

the k-mers are mapped an ‘Eulerian walk’ is performed, which is a “walk” through graph from 

node to node and crosses each of the edges exactly once. The result of the Eulerian walk should 

correspond with the original sequence order (Pevzner, Tang, & Waterman, 2001).  

However, repeating regions on the sequence can make this challenging. The algorithm will 

create different Eulerian walks where there is alternative pathing between the nodes. These 

incorrect reshuffling of the genomes in repeating regions makes it difficult for the algorithm for 
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select the one corresponding with the original sequence (Limasset, Cazaux, Rivals, & 

Peterlongo, 2016). Changing the k-mer length can help against this problem by covering larger 

portions of the sequences. However, the created contigs that are unambiguous and non-

branching are reliable and provides valuable information when processing high-throughput 

sequencing data.  

 

The bruijn graphs are more commonly used than OLC because of the significant computational 

advantage it holds. Unlike OLC, De-bruijn graphs does not require finding the overlapping pair 

ends of reads and because of this don’t require extensive dynamic programming in order to 

search for said overlaps. Instead the overlaps are inferred by the nodes in the graph, this reduces 

processing power required. The De-bruijn graph approach can operate very quickly with the 

right parameters due to this. However, it struggles when finalizing genome assembly.  

Because of the short read-lengths from high-throughput sequencing not covering ORFs, the 

repeating regions hinders its effectiveness. Therefore, it is better suited at creating several ‘near-

complete’ genomes instead of complete genomes. Sequencing errors, like false base-calling, 

also proves to be difficult for De-Bruijn to process. Since it produces a node for each unique k-

mer of k-length, the number of nodes and edges in the graph will increase with the amount of 

errors are introduce and can increase the size of the graph considerably. This adds to the already 

considerable amount of memory De-Brujin requires from the computational hardware and is 

one of the major problems this approach suffers from.  

 

1.8 Binning & Taxonomy assignation 

 

Binning is the process of turning post assembled contigs into genome bins and assigning 

taxonomy. It allows the of study individual organisms and their interactions from metagenomic 

samples (Sedlar, Kupkova, & Provaznik, 2017). In other words, binning is a tool that tries to 

identify contigs by assigning them, ideally, to a single genome (Kunath, Bremges, Weimann, 

McHardy, & Pope, 2017). There are currently two approaches for assigning taxonomy in 

metagenomic studies. You have 16S rRNA amplicon sequencing and whole metagenome 

shotgun (WMS) sequencing.  
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Like mentioned previously, 16S rRNA sequencing uses clustering to create OTUs and relies on 

similarities between reads to do so. And while whole metagenome shotgun approaches utilize 

all available DNA, 16S rRNA amplicon sequencing uses only phylogenetic marker genes. 

Based on these genes it screens for species abundance and richness. This approach has a 

plethora of comprehensive databases that contains extensive amounts of reference marker 

genes. This makes it easy and reliable to assign contigs based on similarities (Ribeca & 

Valiente, 2011). However, like previously mentioned, no additional information can be gained 

besides species richness and abundance from 16S rRNA data.  

If one wants to study more than just taxonomy and abundance in a sample, then whole 

metagenome shotgun sequencing is required. Like mentioned in previous sections the WMS 

approach sequences all the DNA available instead of just the ribosomal RNA. However, this 

makes binning even more challenging. There are two ways to bin WMS sequences, the 

taxonomy dependent and independent approach.  

The taxonomy dependent approach performs homology inferences based on online reference 

databases, meaning it assigns taxonomy based on similarities with already taxonomically 

assigned contigs. These algorithms assigns taxonomy based sequence composition (McHardy, 

Martín, Tsirigos, Hugenholtz, & Rigoutsos, 2007), homology (Huson, Auch, Qi, & Schuster, 

2007), phylogenetic affiliation (Krause et al., 2008), or a combination of these approaches 

(MacDonald, Parks, & Beiko, 2012).  

Nevertheless, due to the small amount of completed/near-completed reference genomes in the 

databases, assigning taxonomy can be challenging (Teeling & Glöckner, 2012), especially if 

you have poorly assembled genomes with a lot of unknown regions. There are currently a 

multitude of different tools that align sequences and compare then using reference databases 

for various types of gene material, either it being DNA, RNA viral RNA or proteins. Tools such 

as MEGAN (Huson et al., 2016), SOrt-ITEMS (Monzoorul Haque, Ghosh, Komanduri, & 

Mande, 2009) that both operate with read, and Phylopythia (McHardy et al., 2007) that operates 

with k-mers, are just a few that can assign taxonomy based on aligning sequences to reference 

databases such as NCBIs’ BLAST.  

The other approach of WMS binning, often referred to as the ‘unsupervised approach’ have had 

a lot development in the recent years. These algorithms use intrinsic information present in 

samples, like GC-percentage, codon usage and oligonucleotide usage patterns to cluster the 

reads, meaning grouping data based om similarities, and assign taxonomy based on these 

clusters (Mande, Mohammed, & Ghosh, 2012). Tools such as Metabin2.0 (Liu, Hou, & Fu, 
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2015) can assign taxonomy based on k-mer frequencies and TETRA (Teeling, Waldmann, 

Lombardot, Bauer, & Glöckner, 2004) that clusters based on computed correlations between 

nucleotide usage pattern between reads are both effective at assigning taxonomy for reference 

free reads. However, in metagenomic samples there are imbalances in read coverage which can 

make it a computational challenge compared to the taxonomic dependent approach (Imelfort et 

al., 2014). Which of these approaches is best suited depends entirely of the novelty of species 

found in your samples. 

  

1.9 Gene Calling & Functional Annotation 

 

After assigning taxonomy to contigs the process of ‘gene calling’ can begin. Gene calling 

revolves around identifying RNA and protein coding regions in the (meta)genomes. It can be 

performed on both contigs and raw reads from long read sequencing platforms. There are two 

approaches for gene calling, “Sequence similarity-based” and “Ab Initio” and similarly to 

binning, the optimal one depends on the novelty of contigs you are analyzing (Kunath et al., 

2017). The Sequence similarity-based approach relies on well-developed reference databases 

and searches for homology between the sample-genes and the database-genes. It provides 

highly accurate results and can predict functions of processed genes, given it can find matches 

in the databases.  

The “Ab Initio” approach is for the analysis of novel genes with no references in databases. It 

systematically searches sequences for certain ‘signs’ that indicate coding regions. These signs 

are based on either ‘signals’ or ‘content’ of the sequences. For prokaryotes, many of the 

promotor sequences are known to us, making them easy to identify. By analyzing codon 

frequencies and genome nucleotide composition, ab initio algorithms could differentiate 

between coding and non-coding regions (Zhu, Lomsadze, & Borodovsky, 2010). Examples of 

tools that can be used for gene prediction of metagenomes are GeneMark.hmm (Lukashin & 

Borodovsky, 1998) which operates with a ‘hidden Markov framework’ and uses ribosomal 

binding patterns to predict translation initiation codons, and Prodigal (Hyatt et al., 2010) which 

has a ‘trial and error’ approach and operates with a self-learning algorithm to differentiate 

between coding and non-coding regions.  

Although powerful, these tools still make mistakes, especially in metagenomic studies that 

exclusively rely on short-read sequences. The short reads provided by 2nd generation 
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sequencing platforms often results in fragmented and incomplete genes due to them not being 

able to cover ORFs. Furthermore, the short contigs makes it hard to identify homologous and 

will result in a poor identification of novel genes (Kunath et al., 2017). However, these 

problems can be negated by using a combination of long and short reads when assembling the 

genomes (M. Kamada et al., 2014)(Price, Hayer, Depledge, Wilson, & Weitzman, 2019). Using 

short reads to polish the long reads allows for longer ORFs to be examined, which makes it 

easier to discover the coding regions. 

 

1.10 Pathway Annotation 

 

After contig taxonomy have been assigned and coding regions have been identified, the 

remaining step is to determine the predicted function of these genes and what pathways they 

are involved in.  

Pathway annotation revolves around comparing the predicted ORFs with already annotated 

sequences from functional databases. The goal is to produce accurate annotations based on the 

comparisons and correctly identify orthologous genes, to which we already know the function. 

There are several approaches for this and a multitude of reference databases to select from. 

However, what pathways one aims to study dictates what database is best suited.  

For our study we used KEGG (Kyoto Encyclopedia for Genes and Genomes) to reconstruct the 

pathways and annotate gene function. In addition, we utilized a specialized database to identify 

carbohydrate active enzymes (CAZymes), referred to as the CAZy database 

(CAZyDB). CAZyDB is a specialized database with detailed information on carbohydrate 

active enzymes. It analyzes and displays the genomic structural and biochemical information 

of these enzymes and contains more than 300 families to which to analyze for sequence 

similarities from (Kunath et al., 2017).  

  

 

1.11 Aim of Study 

 

In this study we originally planned to explore the metagenomic composition and function of 

sheep rumen. However, due to time constraints (COVID19), alterations had to be made. Instead, 

we examine different aspects of a metagenomic study and their strengths & weaknesses. We 
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perform the different steps involved in a metagenomic study, like DNA-extraction, sequencing, 

binning and annotation, but on different sample types. 

The objectives of our altered study were to obtain an overview of the taxonomy of our samples, 

understand the function of some of the microbes in these samples and understand how third-

generation sequencing can be used to fulfill these roles. 

 

2 Materials 

2.1 Lab equipment 

2.1.1 Specific lab equipment 

PowerPac™ Basic Power 

Supply 

BioRad 1645050 

Gel Doc™ EZ System BioRad 1708270EDU 

UV Sample Tray BioRad 1708271EDU 

P95 DW Mitsubishi - 

KP95HG Mitsubishi - 

Telstar AV-100 TELSTAR 

TECHNOLOGIES, S.L. 

- 

Heraeus Multifuge X1 

Centrifuge 

Thermo Scientific™ 75004210 

913 pH Meter, laboratory 

version 

Metrohm Nordic AS 2.913.0210 

Labcycler Gradient, 

Thermoblock 96, silver 

SensoQuest 012-103 

Mastercycler® Gradient Eppendorf®  6311 000.010(?) 

Qubit dsDNA BR Assay Kit Invitrogen Q32853 

Qubit Assay tubes, set of 500  Invitrogen Q32856 

Qubit™ 1 Fluorometer Invitrogen Q32857 

50x TAR Electrophoresis Thermo Scientific B49 

PeQGreen DNA/RNA PeQlab 37-5000 

Iproof HF MasterMix BioRad 1725310 

AMPure XP Beckman Coulter A63881 
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Quick-load, Purple 1 kb 

DNA ladder 

New England Biolabs N0552s 

Gel loading dye blue(6x) New England Biolabs B7021S 

Seakem LE Agarose Lonza 50004 

Surebeads Magnetic Rack BioRad - 

TruSeq Index Plate Fixture illumina 15028344 

Adhesive Sealing Sheets Thermo Scientific AB-0558 

Centrifuge 5418R Eppendorf®  - 

Galaxy 14D VWR - 

Refrigerator BOSCH - 

Freezer BOSCH - 

Ultra-Low Temperature 

Freezer C585 Innova  

New Brunswick - 

FastPrep-24 TM  MP Biomedicals - 

Thermomixer C + (1,5 mL 

block) 

Eppendorf®  - 

NanoDrop 

Spectrophotometer ND-1000 

Saveen Werner - 

Sartotius Quintex 124-1S VWR - 

GS Kern - 

AV-100 Tellstar 13472 

MS2 minisloaker IKA - 

Galaxy14D VWR - 

RCT Classic IKA - 

Quintix 124-1s Sartorious - 

Mini Sub cell GT BioRad - 

Tisch-autoclav Certoclav - 
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2.1.2 General lab equipment 

Pasture pipette 5 mL non-

sterile graduated up to 1 mL 

VWR 612-1684 

Biospehere filter tips 0.1-20µ VWR 70.1114.210 

Biospehere filter tips 2.0-20 

µl 

VWR 70.760.213 

Biospehere filter tips 20-300 

µl 

VWR 70.765.210 

Biospehere filter tips 200 µl VWR 70.1189.215 

Biospehere filter tips 1250 µl VWR 70.1186.210 

ART™ Barrier Hinged Rack 

Pipette Tips 

Thermo Scientific™ 2139-HR 

Finntip™ Pipette Specific 

Pipette Tips, 10mL 

Thermo Scientific™ 9400303 

Ultra fine pipette tip 0.1-10 

µl 

VWR 613-0364 

Ultra fine pipette tip 1.0-250 

µl 

VWR 613-0362 

Ultra fine, FlexTop, extended 

pipette tip 100-1250 µl 

VWR 613-0272 

Axygen® 1.5 mL MaxyClear 

Snaplock Microcentrifuge 

Tube 

Axygen MCT-150-C 

Axygen® 0.2 mL Thin Wall 

PCR Tubes with Flat Cap 

Axygen PCR-02-A 

Axygen® 2.0 mL MaxyClear 

Snaplock Microcentrifuge 

Tube 

Axygen MCT-200-C 

Finnpipette F1, 8 channels, 

0.5-10 µl 

Thermo Scientific™ OH68580 

Finnpipette F1, 8 channels, 5-

50 µl 

Thermo Scientific™ OH69611 

Finnpipette F1, 8 channels, 

30-300 µl 

Thermo Scientific™ PH78657 

Finnpipette F1, single 

channel, 0.5-10 µl 

Thermo Scientific™ NH70705 
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Finnpipette F1, single 

channel, 5-50 µl 

Thermo Scientific™ CH50877 

Finnpipette F1, single 

channel, 30-200 µl 

Thermo Scientific™ CH20500 

Finnpipette F1, single 

channel, 100-1000 µl 

Thermo Scientific™ LH37761 

Finnpipette F1, single 

channel, 1.0-5.0 mL 

Thermo Scientific™ LH47208 

Finnpipette F1, single 

channel, 2-10 mL 

Thermo Scientific™ T23916 

 

2.2 Chemicals, manufactured reagents and kits 

DNeasy PowerLyzer 

PowerSoil Kit 

QIAGEN 12855-100 

Iproof HF MasterMix BioRad 1725310 

AMPure XP Beckman Coulter A63881 

Nextera XT Index Kit illumina 15055294 

PhiX control v3 illumina 15017666 

AMPure XP Beckman Coulter A63881 

Emsure Methanol Merck - 

Emsure chlroroform Merck - 

phenol:chloro Sigma-Aldrich P2069 

NEBnext FFPE DNA Repair 

Mix  

New England Biolabs M6630S 

Blunt/TA Ligase Master Mix New England Biolabs M0367S 

NEBnext Ultra II End-

Repair/dA-tailing module 

New England Biolabs E7546S 

Flow cell wash kit Oxford nanopore EXP-WSH003 

Flow cell priming kit Oxford nanopore EXP-FLP002 

Ligation sequencing kit Oxford nanopore SQK-LSK109 

Primere  Eurofins genomics - 

PeQGreen DNA/RNA PeQlab 37-5000 
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50x TAR Electrophoresis Thermo Scientific B49 

Gel loading dye blue(6x) New England Biolabs B7021S 

Seakem LE Agarose Lonza 50004 

 

2.3 Buffers 

We only needed to mix two buffers ourselves, since the rest came complete from the suppliers. 

The buffers we created was 10 mM Tris pH 8.5 and 0.2 M NaOH 

Our 10mM Tris pH 8.5 was comprised of the following: 

Tris Buffer, 0.1M Solution, 

Ph 7.4 500Ml 

aMRESCO A611-E553-10 

Nuclease-free water Thermofisher scientific AM9920 

Hydrochloric Acid, 

Concentrated 

VWR Chemicals 470301-260 

 

Our 0.2 M NaOH was comprised of the following: 

Sodium chloride 5 M in 

aqueous solution, autoclaved 

VWR Chemicals 7647-14-5 

miliQwater (created in lab) - - 

 

2.4 Software tools 

Name Function Supplier Reference 

Rcommander, 

DADA2 pipeline 

Assembly, binning 

and illustration of 16S 

rRNA taxonomy 

Benjamin J Callahan 

et.al 

(Benjamin J. 

Callahan et al., 2016) 

GhostKoala Annotation of MAGs Minoru Kanehisa 

et.al 

(M. Kanehisa, Sato, 

& Morishima, 2016) 

EPI2ME Sequence alignment 

and binning 

Oxford Nanopore 

technologies 

https://nanoporetech.

com/nanopore-

sequencing-data-

analysis 

https://www.thermofisher.com/order/catalog/product/AM9920
https://nanoporetech.com/nanopore-sequencing-data-analysis
https://nanoporetech.com/nanopore-sequencing-data-analysis
https://nanoporetech.com/nanopore-sequencing-data-analysis
https://nanoporetech.com/nanopore-sequencing-data-analysis
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MetaGeneMark Gene annotation John Besemer, 

Alexandre Lomsadze 

and Mark 

Borodovsky 

(Besemer, Lomsadze, 

& Borodovsky, 2001) 

 

3 Methods  

 

Due to severe time limitations as a result of problems with DNA extraction, PCR amplification 

and the Covid-19 outbreak, alterations to our study were made. While we originally set out to 

perform 16S rRNA, metagenomic shotgun and minION sequencing on rumen samples collected 

from sheep fed with seaweed, we instead performed 16S rRNA like planned, but switched our 

shotgun metagenomic analysis to samples from a human gut derived enrichment culture. This 

analysis included generating long-read shotgun data using Oxford Nanopore technology and 

analysis of previously constructed metagenome-assembled genomes via short-read Illumina 

technology (Ostrowski et al., 2020). 

 

3.1 Sampling 

3.1.1 16S rRNA samples 

The 16S rRNA samples were collected from lamb that was fed with different levels of seaweed 

(Saccharina latissima/Sugar kelp) over a period of 30 days. Temporal rumen samples were 

collected by esophageal tubing throughout this period; however, we only analyzed the last 

samples (taken at the slaughterhouse). The different feeding groups have 8 biological replicates 

and are divided into A (0% seaweed,) B (5% seaweed) and C (2.5% seaweed). Each of the feed 

groups contain four samples that contain the fluid phase and four that consists of particle phase. 

The samples were then immediately frozen and stored at -80°C. 

3.1.2 Metagenomic DNA and shotgun data 

As mentioned above, within in this thesis we analyzed MAGs from a previously generated 

metagenome (Ostrowski et al., 2020), and provide a summary of the methods used hereafter. 

Fecal samples from 80 healthy 18-20-year-old adults were collected and immediately placed in 

an anaerobic jar (2.5 L AnaeroJar; Oxoid) equipped with a gas-generating kit (AnaeroGen; 

Oxoid). Samples were diluted at 10% (wt/wt) in phosphate-buffered saline (PBS) (0.1 M, pH 
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7.4) and a 100 µl aliquot was grown in Defined Medium (DM) supplemented with 10 mg/mL 

xanthan gum (XG, Sigma). Samples that showed growth on xanthan gum, as evidenced by loss 

of viscosity and increased culture density (20 samples), were sub-cultured 10 times by diluting 

an active culture 1:100 into fresh DM-XG medium. Multiple samples harvested at different 

time points were stored for gDNA extraction. Samples (44 in total) from 2 mL cultures were 

harvested by centrifugation and stored a -20 C until further use.  

A phenol:chloroform:isoamylalcohol and chloroform extraction method was used to extract 

high molecular weight DNA as previously described (Pope et al., 2011). The DNA was 

quantified using a Qubit™ fluorimeter and the Quant-iT™ dsDNA BR Assay Kit (Invitrogen, 

USA), and the quality was assessed with a NanoDrop One (Thermo Fisher Scientific, USA). 

A total of 44 samples were subjected to metagenomic shotgun sequencing using a combination 

of Illumina HiSeq 3000 and Illumina HiSeq X platforms (Illumina, Inc.) at the Norwegian 

Sequencing Center (NSC, Oslo, Norway). Samples were prepared with the TrueSeq DNA PCR-

free preparation and sequenced with paired ends (2 × 150 bp) on two lanes. Quality trimming 

of the raw reads was performed using Cutadapt (Martin, 2011), removing all bases on the 3′-

end with a Phred score lower than 20 and excluding all reads shorter than 100 nucleotides, 

followed by a quality filtering using the FASTX-Toolkit     

(http://hannonlab.cshl.edu/fastx_toolkit/).  

Reads with a minimum Phred score of 30 over 90% of the read length were retained. Remaining 

reads were co-assembled using metaSPAdes v3.10.1 with default parameters and k-mer sizes 

of 21, 33, 55, 77 and 99 (Nurk, Meleshko, Korobeynikov, & Pevzner, 2017). The resulting 

contigs were binned with MetaBAT v0.26.3 in “very sensitive mode” (Kang, Froula, Egan, & 

Wang, 2015). The quality (completeness, contamination, and strain heterogeneity) of the MAGs 

was assessed by CheckM v1.0.7 with default parameters (Parks, Imelfort, Skennerton, 

Hugenholtz, & Tyson, 2015). Open reading frames were annotated using PROKKA v1.14.0 

(Seemann, 2014). 

 

 

 

http://hannonlab.cshl.edu/fastx_toolkit/
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3.2 Cell lysis and DNA extraction 

3.2.1 Bead beating cell lysis and DNA extraction 

The sheep rumen contains a variety of microorganisms, Gram-positive, gram-negative bacterial 

cells, fungal, archaeal and protozoal cells all inhabit the rumen. Due to this variety of organisms 

to examine we chose bead beating to extract the DNA from both the liquid and the solid 

samples. Bead beating is a harsh and mechanical way to disrupt the cell membrane in order to 

acquire the DNA the beads used were 0.1mm glass. Before the cells were lysed the samples 

were thawed on ice (around +4°C) and vortexed to homogenize. 

 

For the DNA extraction we utilized the “DNease, Powerlyzer, Powersoil Kit from QIAGEN 

and proceeded in accordance with the protocol accompanying the kit. The kit was chosen over 

the traditional Phenol/chloroform approach due to its ability to effectively extract DNA from 

multiple samples at the same time, while the Phenol/Chloroform technique require more labor 

per sample, so to save time while still obtaining adequate amounts of DNA this approach was 

chosen.  

We transferred roughly 0.25g of sample material into the provided Powerbead Tube added 750 

µl Powerbead Solution, 60 µl C1 solution and used a Powerlyzer 24 homogenizer to lysate the 

cells. We decided to use the Powerlyzer instead of vortexing by hand to save time, and to ensure 

equal amount of stress was put on each of our samples. The machine ran on 4,000 RPM for 45 

seconds after which the cells were lysed through the shaking process, and the intramitochondrial 

DNA was supposedly released into the solution, the sample was centrifuged at 9,900 RCF to 

form a pellet, the fresh supernatant was transferred in to a clean 2 mL collection tube (provided 

in kit).  

While the protocol expects 400-500 µl supernatant we often got more (around 600), and always 

extracted as much as possible. After adding 250 µl of C2 solution (provided in kit) and briefly 

vortexing the samples were incubated for 5 minutes in a fridge with +5°C. After which the 

samples were centrifuged for 1 minute at 9,900 RCF and roughly 750 µl supernatant were 

extracted to a new clean 2 mL tube (provided in kit). A 1200 µl aliquot of C4 solution (provided 

in kit) was then added to the samples, and then vortexed for 5 sec.  

A total of 675 µl supernatant was then transferred to the MB Spin Column (provided in kit) and 

then centrifuged at 9,900 RCF for 1 minute, with the flow through discarded. This process was 

repeated until all the supernatant was used. A 500 µl aliquot of C5 solution (provided in kit) 
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was added and centrifuged for 30 seconds at 9,900 RCF. The flow through was discarded, and 

the tube was then centrifuged again at 9,900 RCF for 1 minute to dry out the MB Spin Column 

for flow through. The filter contained in the MB Spin Column was transferred to a clean 2 mL 

collection tube and 100 µl of C6 solution (provided in kit) was added on top of the filter 

membrane. The tube was then centrifuged at 9,900 RCF for 30 seconds before the filter was 

removed and we were left with pure DNA in the bottom of the 2 mL collection tube. 

  

All the centrifuging was done in room temp (around 20°C) in accordance with the protocol 

provided by the kit. The kit used were customized towards lysing cells found in processed soil, 

fecal, water, food, insects, swabs with PCR inhibitors. 

 

3.2.2 Measuring DNA concentration 

DNA-concentrations were measured after DNA extractions as well as before and after the PCR 

cleanup process start, using Qubit machines for quantification and by validating on agarose gel.  

The Qubit measures the nucleic acids ability to absorb ultraviolet radiation with the wavelength 

of 260 nm, the more DNA you have the more of the radiation will be absorbed. Nucleic acids 

cannot absorb any UV radiation consisting of wavelengths longer than 260, therefore the Qubit 

machine also measures absorbance on 280 nm wavelength to detect any foreign particles in the 

sample. By comparing these 2 values it can provide indications on the purity of your samples. 

If the 260/280 value precedes 1.7, the sample can be considered “pure” from contamination.  

However, quantifying DNA through spectrophotometry can be unreliable. The machine is not 

able to distinguish between DNA, RNA and proteins, free nucleotides and other particles will 

also affect the purity score.  

By using fluorescent dyes, the downsides of spectrophotometer quantification can be reduced 

(Haque et al., 2003). Qubit machines require the use of specific coloring molecules that binds 

to the particles being examined in order to distinguish between them, whether it is DNA, RNA 

or proteins.  

We mixed 1 µl DNAdye 199 µl buffer, from the dsDNA HS assay kit from Thermo Fischer 

Scientific, for each sample. The 198 µl buffer/dye dilution was mixed with 2 µl DNA from our 

samples and vortexed to homogenize. We then used a Qubit machine to measure absorption. 
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We used a electrophorese gel to validate the length of our DNA. For our samples we tested out 

different gels and run times depending on which stage of the library preparation we were on. 

After DNA extraction we used a 1% agarose gel and ran it on 70 volts for 40 min, while post 

PCR DNA ran at 1.5% gel at 90 volts for 40 min. We created the gels using electrophoresis 

grade agarose from VWR and concentrated TAE-buffer from Thermo Scientific that we diluted 

in distilled water. 

 

3.3 16S rRNA gene amplicon analysis 

 

The 16S ribosomal RNA is one of the most used sequences for determining phylogeny. The 

main benefits of sequencing this region is its presence in all bacteria and archaea, also the slow 

mutation rate providing more accurate measures of time when used as a molecular clock. In 

addition, different regions within the 16S rRNA gene contain hypervariable sections resulting 

in ease of differentiating and the large size of the region makes it usable for informatic purposes.  

We chose 16S rRNA gene sequencing to examine taxonomy of our samples, the complex 

composition of microorganisms found in rumens makes it nearly impossible to utilize other 

techniques like DNA-DNA hybridization. While DNA-DNA hybridization is reliable when 

examining small samples containing fewer bacteria, it falls short when utilized on samples 

containing massive amounts of different microorganisms, it would be too costly and time-

consuming to utilize(J.-C. Cho & Tiedje, 2001). While 16S rRNA gene data often is too 

conserved to determine taxonomy on species and subspecies level, it is better suited than DNA-

DNA hybridization when determining microbiological compositions in a more general manner, 

which was our focus for this paper. 

When sequencing the 16S rRNA gene we looked at the v3-v4 region. The combination of V3 

and V4 regions strikes a nice balance with their hypervariable regions and how conservative 

they are. The V4 region contains few hypervariable regions and can reliably identify to the 

phylum level as well as the whole 16S rRNA gene (Yang, Wang, & Qian, 2016). V3 contains 

more hypervariable region which allows for better identification down to genus level. The 

combination of these regions allows us to analyze for new and unique bacteria while retaining 

the ability to identify well conserved species. Although other regions, like V2-V3 can give more 

accurate depictions of species richness (Yang et al., 2016) we opted to determine taxonomy 

based on the V3-V4 regions due to availability .  



28 
 

 

All the amplicon sequencing was done in accordance with the protocol provided by Illumina. 

https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-

metagenomic-library-prep-guide-15044223-b.pdf 

 

3.3.1 PCR Amplification 

The function of the PCR Amplification step is to amplify the desired DNA template, using 

primers designed for specific regions and overhang adapters to induce ligation. We used 341F 

and 805R primers for our amplicon PCR, designed for the V3-V4 region creating strands of 

428 basepairs. 

The PCR Amplification was done under sterile conditions in a sterile cabinet using sterilized 

equipment and containers. We created a mastermix(MM) containing 1 µl DSMO, 1 µl forward 

primer, 1 µl reverse primer, 12.5 µl polymerase and 7 µl H2O per sample in a 1.5mL Eppendorf 

tube. In individually marked PCR-tubes we mixed 2.5 µl DNA (diluted to 10 ng/µl) from each 

sample with 22.5 µl MM to a sum total of 25 µl. The PCR tubes were placed in a Sensoquest 

Labcycler and ran on the following program (98°C for 3 min, 25 cycles of (95°C for 30 sec, 

53°C for 30 sec and 72°C for 30 sec) 72°C for 5 min, hold at 4°C. The PCR product ran on a 

1.5% agarose gel at 70v for 40 minutes to check for contamination and general quality. 

 

3.3.2 PCR Clean-up 1 

The PCR Clean-up step uses AMPure XP beads to purify the PCR product from primer and 

primer dimer species, leaving purer strands of the V3-V4 regions desired. 

AMPure XP beads were vortexed for 30 seconds to evenly disperse the beads and 20 µl was 

transferred to each well in the Amplicon PCR plate using a multipippette. The beads and PCR 

product were mixed up and down 10 times using the multipipette. The plate was sealed and 

shaken at 1800 RPM for 2 minutes using a MIDI plate. After shaking the plate was placed at 

room temperature and incubated for 5 min. The plate was placed on a magnetic stand for 2 min, 

so the beads could separate from the supernatant.  

The supernatant was discarded after separation from the beads, by using a mulitpiptette. A 200 

µl aliquot of fresh 80% ethanol was added to each well, using a multipipette to wash the beads. 

The plate was incubated for 30 seconds while still on the rack before the supernatant was 

carefully discarded. This step was repeated once. After supernatant was removed the plate was 

https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
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placed to airdry for 10 minutes, after which the plate was removed from the magnetic stand and 

52.5 µl 10mM Tris, with a pH of 8.5 was added to each well. The beads and the Tris were gently 

mixed by pipetting, before being incubated at room temperature for 2 minutes. The plate was 

placed back on the magnetic stand for the beads to gather and supernatant to clear. After which 

50 µl of the supernatant was transferred to a clean PCR-plate for further use.  

 

3.3.3 Index PCR 

Index PCR consists of different pairs of index primers added in unique pairs to individual 

samples. This allows us to mix samples together and sequence them as such. After sequencing 

the Illumina MiSeq, different steps are taken to recognize the reads and which sample they 

originate from due to their unique indexes and can sort them accordingly. This makes 

sequencing a lot more time and cost efficient, since pooling of the different samples negates the 

problem of having to run individual runs for each sample. 

We used a multipipette to transfer 5 µl of the previous PCR product to a new clean 96-well 

plate. The various primers were arranged on a TruSeq Index Plate Fixture Index primer 2(white 

caps) arranged from A-H on the plate, while the index primer 1(orange caps) was arranged from 

1-6. A 2.5 µl aliquot of each primer type, 12.5 µl HiFi HotStart ReadyMix and 5 µl PCR grade 

water was mixed and added to each well and mixed gently by pipetting up and down. The plate 

was centrifuged at 1000 x g at room temp for 1 minute. The PCR plate was then placed in a 

Sensoquest Labcycler where we used the same program as the Amplicon PCR, consisting of 

95°C  for 3 min, 8 x (95°C, 30 sec. 53°C, 30 sec. 72°C, 30 sec.) 72°C for 5 minutes and hold at 

4°C after which it was frozen at -20°C.  

 

3.3.4 PCR Clean-up 2 

PCR clean-up 2 is the final cleaning step before the DNA be quantified, normalized and 

sequenced. 

After defrosting the PCR product, the AMPure XP beads were vortexed for 30 seconds to 

homogenize and 28 µl was added to each well in our index PCR plate containing the PCR 

product and mixed gently with pipetting. The PCR plate was then incubated at room 

temperature for 5 minutes before it was placed on a magnetic rack till the supernatant cleared. 
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The clear supernatant was discarded and 200 µl fresh 80% ethanol was added to the beads and 

was incubated for 30 seconds at room temperature, before the clear supernatant again was 

discarded. The ethanol wash was repeated once. After the ethanol was discarded following the 

second wash, the beads were air-dried for 10 min. After the beads were dried the well was 

placed off the magnetic rack and 27.5 µl 10mM Tris with a pH of 8.5 was added to each well 

and gently pipetted up and down to mix before incubating for 2 min. After which the plate was 

again placed on a magnetic rack till the supernatant cleared and all the supernatant was 

transferred to a new 96-well PCR plate by pipetting. 

 

3.3.5 Troubleshooting 

When initially running the PCR amplification we had major difficulties getting it to work. We 

ran it according to protocol, but it barely amplified our DNA. While it can be expected that the 

amount of DNA will increase logarithmically with the amount of cycles you run, we barely saw 

a doubling of the DNA, even after 25 cycles.  

We tried adding different solutions to enhance the amplification and increase yield, and we tried 

different dilutions of the DNA, in case contaminants were blocking for the primers or 

deactivating the polymerase. We ran two sets of amplification PCR to test different PCR 

enhancers, the first with 1 µl DNA and the second with 2.5 µl DNA. In each of the sets we 

added different volumes of PCR amplifying solutions, the first with 1 µl and the second with 2 

µl, totaling up to 4 different tests for each solution.  

DNA/solution 

volume 

BSA MgCl2 DSMO 

1 µl DNA 1 µl 1 µl 1 µl 

 2 µl 2 µl 2 µl 

2.5 µl DNA 1 µl 1 µl 1 µl 

 2 µl 2 µl 2 µl 

Tabel 1.1 Showing the different solvents and their concentration for improving the PCR. 
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Figure 2.1 Showing from left to right in increasing order what results we from the different amplifying solvents. 

The first four wells contain BSA, the next four contain DMSO and the last four contain MgCl2 

 

Out of the different solutions we added we had best success with the DMSO. DMSO makes the 

GC rich regions more heat-labile and reduces the melting temperature for the reaction. It 

directly binds to the Cytosine residue in the GC rich regions and changes its conformation and 

reduces the strength of the triple-hydrogen bond, which is what makes the DNA less accessible.  

This increased our amplification and gave us notably more DNA, but still less than expected. 

We believe the reason as to why we struggled with amplification is because we chose the kit-

based approach for DNA extraction. Although the kit was designed to handle soil samples, 

which in theory should be harder to handle than rumen samples, some contaminants probably 

got through.  

We noticed a time-gradient between amount of amplification and time spent prepping samples, 

since once we reduced the number of samples handled at once and focused on working rapidly 

with them, we saw a much larger yield through amplification than previously (see figure 2.2). 

We speculate that the contaminants might have influenced our polymerase, decreasing its 

efficiency. 

While we still managed to extract enough DNA for 16S rRNA gene analysis, some downstream 

biases might have arisen due to these complications.  
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Figure 2.2 PCR results after reducing the number of samples handled at once. The four outmost wells on the left 

picture are the same samples in the second picture and shows a considerable increase in band-strength. 

 

3.4 Library preparation & Sequencing 

3.4.1 16S rRNA gene sequencing 

Before 16S rRNA gene sequencing took place, the DNA samples were quantified. The formula for 

quantifying and the quantified measurements can be found in Appendix 1. 

After 16S rRNA gene amplification, PCR products were sequenced on an Illumina MiSeq. A 

heatblock, suited for 1.7 ml microcentrifuge was heated up to 96°C. The MiSeq reagent 

cartridge was removed from the freezer and thawed at room temperature. For denaturing our 

DNA, 4nM pooled library (5 µl) and 0.2 N NaOH (5 µl) was mixed in a microcentrifuge tube. 

The samples were then vortexed to mix and centrifuged at 280 x g at 20°C for 1 minute. The 

samples were then incubated at room temperature, to allow the DNA to denature into single 

strands. A 990 µl aliquot of pre‐chilled hybridization buffed (HT1 from Illumina kit) was added 

to the tube containing the denatured DNA (10 µl). The samples were then kept on ice between 

dilutions. We desired a final concentration of 6pM, so 180 µl of our 20pM denatured library 
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was mixed with 420 µl pre-chilled HT1 solution. The tubes were then inverted several times 

and pulse centrifuged, before being placed back on ice.  

 

The next step was denaturing and diluting the PhiX Control to the same loading concentration 

of our Amplicon library. A 2 µl aliquot of the 10nM PhiX library and 10 mM Tris pH 8.5 was 

mixed in a sterile 1.5mL Eppendorf tube. After diluting the PhiX library with 10 mM Tris pH 

8.5 until a 6 nM concentration was achieved, 5 µl of 6 nM PhiX library and 5 µl of 0.2 N NaOH 

was mixed and vortexed briefly. After a 5-minute incubation at room temperature to allow for 

denaturation, 990 µl of pre-chilled HT1 solution and 10 µl denatured PhiX library was 

combined in a sterile 1.5mL Eppendorf tube.  

The PhiX library was then diluted with 180 µl denatured library in 420 µl pre-chilled HT1 

solution inside a sterile 1.5mL Eppendorf tube. The tube was then inverted, and pulse 

centrifuged to mix. A 20 µl aliquot of the PhiX library was then mixed with 480 µl amplicon 

library. The combined sample was heated in a heat block at 96°C for 2 minutes and loaded onto 

the MiSeq v3 reagent cartridge which was inserted into the MiSeq for sequencing. 

 

3.4.2 MinION sequencing 

MinION sequencing preparations were made in accordance with Oxford Nanopores “Genomic 

DNA by Ligation (SQK-LSK109)” protocol. 

While there are possibilities to fragment the DNA in your samples, which increases the 

durability of the flowcells we chose to omit this, because we were interested in obtaining as 

long reads as possible. 

 

3.4.2.1 DNA repair and end-prep 

The DNA and the reagents were thawed slowly on ice. After running a Qubit we normalized 

the two samples, we transferred 6.4 µl(1µg DNA) of sample XDC.orginial and 17.6 µl(1µg 

DNA) of XDC.03 to separate Eppendorf DNA LoBind tubes and added nuclease free water till 

the total volume reaches 49 µl and flicked the tubes to homogenize. A 47 µl aliquot of this DNA 

solution was transferred to a new Eppendorf DNA LoBind tube and the following reagents was 

added, 3.5 µl NEEBNext FFPR DNA Repair Buffer, 2 µl NEEBNext FFPE DNA Repair Mix, 

3.5 µl Ultra 2 End-prep reaction buffer and 3 µl Ultra 2 End.prep enzyme mix. The mixture was 
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flicked gently, spun down and placed on a thermal cycler and incubated at 20°C for 5 min, 

followed by 65°C for 5 min. 

The AMPure XP beads was vortexed to homogenize and added to the mixture and flicked 

before it was placed on a holamixer(rotator mixer) for 5 minutes at 11 RPM in room 

temperature. Afterwards the Eppendorf DNA LoBind tube was spun down and placed on a 

magnetic rack to pellet the beads. After the solution was clear the supernatant was removed 

with a pipette. The beads were washed with 200 µl freshly made 70% ethanol, without 

disrupting the pellet and the supernatant was removed again, before another 200 µl fresh ethanol 

was added and again removed.  

The Eppendorf DNA LoBind tube was spun down and placed again on the magnetic rack where 

any ethanol residues was removed, and the pellet was dried for 30seconds. The Eppendorf DNA 

LoBind tube was removed from the magnetic rack and 61 µl of nuclease free water was added 

before the sample was incubated at room temperature for 2 minutes. The Eppendorf DNA 

LoBind tube was again placed on the magnetic rack and once the eluate was clear it was 

transferred to a clean 1.5 ml Eppendorf DNA Eppendorf DNA LoBind tube. 

We ran another Qubit on the samples to validate DNA concentration. The XDC03 samples had 

almost twice the amount of DNA than XDC original, because of this we diluted it till both had 

roughly 1000 ng DNA in each sample. 

 

3.4.2.2 Adapter ligation and clean-up 

Adapter ligation is the process of attaching oligonucleotides to the DNA fragments. These 

Oligonucleotides can perform various functions and are a critical step in library preparation. 

For nanopore sequencing the oligonucleotides consists of motor proteins that attach to the 3’ 

and 5’ ends of the DNA fragments and allows them to attach with the nanopores. Furthermore, 

these adapters increases the probability for the complementary strand to immediately follow 

the template strand during sequencing (Gilpatrick et al., 2020; Schalamun et al., 2019) 

The reagents were thawed at room temperature and placed on ice. In a DNA Eppendorf DNA 

LoBind tube 60 µl DNA sample from the previous step, 25 µl Ligation buffer (LNB), 10 µl 

NEBNext Quick T4 DNA Ligase and 5 µl Adapter Mix (AMX) was mixed and flicked gently 

to combine, before it was spun down and incubated for 10 minutes at room temperature. The 

AMPure XP beads were vortexed to homogenize before 40 µl was added to the reaction and 
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mixed by flicking and the reaction was placed on a Hula mixer (rotator mixer) for 5 minutes 

with 11RPM at room temperature.  

The LoBind tube was spun down and placed on a magnetic rack, after the solution was clear, 

the supernatant was removed. The beads were then washed with 250 µl Long Fragment Buffer 

(LFB) and the tube was flicked to resuspend the pellet and then placed back on the magnetic 

rack. The supernatant was removed and discarded after the pellet reformed. The previous step 

was repeated once. The LoBind tube was spun and placed back on a magnetic rack where any 

residual supernatant was removed, and the pellet airdried for 30 seconds. After which the tube 

was removed from the magnetic rack and 15 µl Elution buffer (EB) was used to resuspend the 

pellet.  

After a 10-minute incubation at 37°C the tube was placed back on a magnetic rack for a pellet 

to form. The clear eluate was the transferred into a clean 1.5ml Eppendorf DNA LoBind tube. 

We used a Qubit to quantify the samples and it seemed the previous dilution had worked since 

both were close to the desired DNA concentration range of 700ng. 

 

3.4.2.3 Priming and loading the Flow Cell 

All the reagents were thawed at room temperature and placed on ice. After the priming port on 

the flowcell was opened air was removed using a pipette. A 30 µl aliquot of Flush Tether (FLT) 

was added directly to the Flush Buffer (FB) tube and mixed by vortexing. An 800 µl aliquot of 

this priming mix was then added to the priming port followed by 5 minutes of waiting.  

Meanwhile, in a separate tube 37.5 µl Sequencing Buffer (SQB), 25.5 µl Loading Beads (LB) 

that was mixed before use, and 12 µl of our DNA library was added and gently mixed by 

flicking. A 200 µl aliquot of the priming mix was then loaded to the flow cell via the priming 

port, the SpotON sample port cover was removed, and 75 µl of our sample was added via the 

SpotON sample port in a dropwise fashion. The SpotOn sample port cover was then replaced 

and the priming port was sealed. The sequencing was then performed on a minION device, 

connected to a laptop using the MinKNOW software for basecalling and analysis. 
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3.5 Bioinformatic processing 

3.5.1 16S rRNA gene amplicon analysis 

The 16S rRNA Amplicon data was analyzed using the DADA2 pipeline(Benjamin J Callahan 

et al., 2015). We trimmed our reads to 275 on forward length and 235 on reverse length and 

trimmed off the edges at 17bp on the forward reads and 21 on the reverse to make sure the index 

primers were excluded in the downstream analysis. We tried altering the maximum number of 

“expected errors” in order to optimize our pipeline but found that the default setting of 

MaxEE=c (2,2) provided the best results. After accounting for abundancies of our chimeric 

variants we found that 15.55% of our reads were chimeras. 

OTUs were created with the standard settings and taxonomy was assigned using a “Naive 

Bayesian Classifier” based method (Wang, Garrity, Tiedje, & Cole, 2007). Alpha diversity, 

Bray-Curtis distance and phylogenetic distribution graphs were all created using the ‘Phyloseq’ 

data package.  

When running the dada2 pipeline we had problems merging our reads. We tried trimming our 

reads at different lengths in order to negate this problem, but with little success. Out of the 120 

000 reads, roughly 70 000 were merged. As a result of this we decided to instead assign 

taxonomy based on the forward reads alone. We speculate this problem can have occurred due 

to problems with our primers and potential bias as a result of complications with PCR 

amplification. 

 

3.5.2 Metagenmoic Shotgun Analysis 

After receiving completed assembled MAGs we analyzed them using GhostKoala version 2.2 

(M. Kanehisa et al., 2016). GhostKoala is an annotation server for genomes and metagenome 

sequences and performs Kegg orthology assignments which identifies individual gene 

functions. It also recreates KEGG pathways BRITE hierarchy and KEGG modules to infer 

functions to the annotated organisms. 

 

3.5.3 MinION analysis 

After sequencing was completed the long-reads were analyzed using EPI2ME version. 2020.2 

10-3247478. EPI2ME is Oxford Nanopores own analysis platform and was used to assign 

taxonomy and align sequences.  

We used 16S rRNA gene data, from the same samples our long-reads were from, to select 
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reference genomes from public databases (i.e. NCBI) to align our shotgun sequences against. 

We also used previously constructed MAGs that was that was provided for us and was well 

represented in our sample as reference genomes to align with. The next step in our study would 

have been assembling and performed genome binning of these reads. However, due to time 

limitations as a result of the COVID-19 outbreak this could not be done. 

 

4 Results 

 

Table 4.1 Sample Summary Table. The different samples we used for the different sequencing 

platforms, what we did with them, and what we would have done, if time allowed. 

 16S rRNA Metagenome 

(MAGs) 

Metagenome 

(Nanopore) 

Metagenome 

(hybrid MAGs) 

Rumen 543, 548, 550, 

552, 559, 563, 

568, 549, 556, 

570, 575, 580, 

581, 582, 584, 

588, 591, 595, 

600, 602, 

TBD TBD TBD 

Human Gut XDC.Original, 

XDC.03 

INDI.25.1, 

INDI25.2, 

INDI.25.6, 

INDI25.8, 

INDI25.9, 

INDI25.10 

*INDI.01 

*INDI.03 

*INDI.10 

XDC.Original, 

XDC.03 

TBD 

* Used for Nanopore vs Illumina MAG allignments 

 

4.1 16S rRNA Amplicon results 

 

The bacterial diversity in our samples was analyzed using 16S rRNA gene amplicon data that 

was generated from the sheep rumen samples collected that were subjected to three different 

feed groups. Our data was analyzed for differences in microbial composition as a result of 

different concentrations of sugar kelp in their diet. We analyzed the MiSeq results using the 

DADA2 pipeline and created graphs illustrating alpha diversity (see figure 4.1, 4.2), Bray-

Curtis dissimilarities (See figure 4.3) and prokaryotic family distribution (see figure 4.4). 
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Our 16S rRNA sequencing produced 4,660,772 reads from the different feed types. After 

filtering and removing chimeras 3,424,480 reads remained. However, due to only utilizing 

forward reads, sequencing depth was reduced and could have hindered the creation of OTUs. 

Further sequencing and binning using merged reads could be beneficial for further discovery 

of microbial composition. The Shannon-Wiener index (Figure 4.1 & 4.2) represents both unique 

species and their evenness (Shannon, 1949). A high Shannon-Wiener index represent high 

microbial diversity and an even distribution of the bacteria, while a low index indicates low 

diversity and uneven distribution. Most our samples showed a high Shannon-Wiener index 

despite the index between our samples varied greatly, ranging from roughly 5.5 up to almost 

7.5. The Simpsons index (Figure 4.1 & 4.2) adds to this information. A high Simpson index 

indicates high diversity within samples, most our samples had a Simpson index ranging between 

0.996 - 0.999. These are high values and confirm the Shannon-Wiener index, indicating our 

samples had high microbial diversity evenly distributed. These is no apparent pattern between 

feed-groups nor sample type when measuring alpha-diversity. 

The Bray-Curtis dissimilarities (Figure 4.3)  measures the difference in species populations 

between samples, with the lower the values, the more similar the samples are. In our samples 

there are no apparent pattern between the different feed types, however there as distinct 

separation between fluid samples and particle samples. The fluid samples appear to be more 

similar in terms of species, while the particle appears more diverse. The prokaryotic family 

distribution appeared even across all the samples (Figure 4.4). Prvotellaceae was the most 

abundant closely followed by Lachnospiraceae and Rikenellaceae. Although the abundance 

varies greatly between the samples, the distribution still remains similar.  
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Figure 4.1 Illustrating the alpha diversity of samples of the different feedgroups A, B and C. 

Shannon-Wiener index in the left graph and Simpson diversity in the right. Y-axis indicate the amount 

of diversity in the Shannon index and how even the distribution is in the Simpson index. X-axis show 

particle and fluid samples, while the color indicates the feed group. 
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Figure 4.2 Alpha diversity by sample type. Left is Shannon Index, right is Simpson index. Each node 

represents a sample and A, B, C indicate feed group. Y-axis indicate the amount of diversity in the 

Shannon index and how even the distribution is in the Simpson index. The blue nodes are particle 

samples and orange are Fluid samples. 

 

 

Figure 4.3 Illustrating the Bray-Curtis dissimilarities between the samples. Each node represents a 

sample and color represents feed group on the left graph and the sample type on the right side. The 

distance between the node represents how different they are in terms of specie composition. 
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Figure 4.4 Phylogenetic distribution of the 50 most represented Prokaryotic families in each 

sample. Each node in a column represents a genus or species. The most represented families being 

Rikenellaceae, Prevotellacea and Lachnospiraceae across all samples.  

Based on these results we selected 2-3 samples from each feeding group (A, B and C) with at least one 

from each sample type (particle/fluid). We selected our samples for further sequencing and analysis 

based on their microbial composition. Especially diverse samples, or samples containing bacterial 

families of interest for lignocellolytic degradation, like Lachnospiraceae, was prioritized. 

 

4.2 Shotgun Metagenomic Results 

 

Given the above-mentioned delays that affected this project, we used previously generated 

Illumina data that was generated from a human gut microbiome enrichment and assembled into 

MAGs (Ostrowski et al., 2020).  

In total we selected six MAGs for genomes annotation and comparison against our long-read 

shotgun data. For MAG annotation, we used open reading frame (ORF) FASTA amino acid 

files (.faa) as input for GhostKoala (table 4.2). GhostKoala searches for orthology and assigns 

KEGG Orthology (KO) numbers based on distinct orthologs. The KO assignment of genes 

utilizes the SSDB database containing ‘SSEARCH’ computation, which compares all possible 
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genomes (Minoru Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 2016). 

 

Based on these ortholog annotations, we used Ghostkoalas’ KEGG mapping for network 

recreation which recreates the pathways and what predicted enzymes could be found in our 

MAGs. The KEGG pathway diagram (Figure 4.5 & 4.6) represents the relationship of genes 

and gene products. The enzyme commission numbers (EC numbers) are a numerical 

classification system for enzymes. Every EC number specify a specific enzyme catalyzed 

reaction and each node in the pathway illustrates a chemical compound these enzymes interact 

with and produces.  

We decided to study two pathways involved in the degradation of lignocellulose across six 

different MAGs. These six MAGs were selected out of a set of 30 based on their genomic 

content. The Starch & Sucrose metabolism pathway (Figure 4.5) and Glycolysis pathway 

(Figure 4.6) was selected due to their importance in plant cell wall degradation and anaerobic 

fermentation in the gut ecosystem. In the Starch and Sucrose pathway we can find three active 

pathways that produces D-Glucose, which is the lignocellulolytic component that cellulose is 

comprised of. The D-Glucose in the MAG ‘INDI25.2’ are derived from trehalose, maltose and 

cellulose.   

D-Glucose was predicted to be one of the most produced compounds in our samples and is 

further broken down in the glycolysis pathway. In our KEGG pathway we found most of the 

enzymatic reactions needed for breaking down D-Glucose to Pyruvate and Acetyl-CoA across 

all six MAGs (table 4.3).  

These KEGG maps combined shows how there were enzymes present for breaking down 

Cellulose, Maltose and Glucose into the VFAs Pyruvate and Acetyl CoA. We also used 

GhostKoala to screen for CAZymes present it our samples (Table 4.4). Among the different 

CAZyme families, glycosyltransferase (GT) and glycoside hydrolases are the only one present 

in the ‘starch and sucrose metabolism’ pathways. GHs make out 68% of all CAZymes while 

GTs make out the remaining 32%. The most representated CAZyme is the GH13, which was 

present in all samples and account for 37.5% of all the CAZymes. 
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Table 4.2 Annotation results from GhostKoala summarized. ‘Number of nucleotides’ and 

‘Contigs’ shows the content of our faa files used as input, while ‘Entries’ and ‘% Annotation’ 

shows the amount of MAGs and the percentage of our samples GhostKoala managed to 

annotate. 

Samples Number of 

nucleotides 

Contigs Entries % Annotation Taxonomy 

(Phylum) 

INDI25.1 2796691 44 1198 48.1% Monoglobus 

pectinilyticus 

INDI25.2 6599619 124 2104 40.3% Parabacteroides 

distasonis 

INDI25.6 10827299 166 4582 49.9% Blautia producta 

INDI25.8 3520264 61 1670 50.4% Faecalitalea 

cylindroides T2 

INDI25.9 4409231 346 2926 70.7% Escherichia coli 

ED1a 

INDI25.1

0 

4489977 190 1976 50.7% butyrate producing 

bacterium SM4 1 
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Figure 4.5 Chemical pathway for Starch and sucrose metabolism. E.C numbers marked in green are 

present E.C numbers in MAG INDI25.2. Marked in red are pathways connected to the production of D-

Glucose. Arrows between E.C numbers and chemical compounds indicate how they interact. 
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Figure 4.6 Chemical pathways for Glycolysis. E.C numbers marked in green are enzymes present in 

MAG INDI 25.2.  Arrows between E.C numbers and chemical compounds indicate how they interact. 
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Table 4.3 The presence of enzymes needed for breaking down D-Glucose to Pyruvate and/or 

Acetyl-CoA. ‘X’ indicates presence and ‘-’ indicates absence across six samples. E.C numbers are 

grouped based on similar functions. 

 

 

 

 

 

 

Essential E.C INDI25.1 INDI25.2 INDI25.6 INDI25.8 INDI25.9 INDI25.10 

1.2.1.12/1.2.1.59 X,- X,- X,- X,- X,- X,- 

1.2.1.9/1.2.7.6/1.2.1.90 -,-,- -,-,- -,-,- -,-,- -,-,- -,-,- 

1.2.7.1 X X X 3(X) X X 

1.2.7.11 2(X) 2(X) X X - - 

2.7.1.199 X X X 2(X) 3(X) X 

2.7.1.40 X X X X X X 

2.7.2.3 X X X X X X 

2.7.9.1/2.7.9.2 -,- -,- -,- -,- -,- -,- 

3.1.3.11/2.7.1.11/2.7.1.146/2.

7.1.90 X,X,-,X X,X,-,X X,X,-,X -,X,-,X 2(X),X,-,- X,X,-,X 

4.1.1.32 X X X X X X 

4.1.1.49 - - X - X X 

4.1.2.13 X 2(X) 3(X) 3(X) 3(X) 3(X) 

4.2.1.11 X X X X X X 

5.3.1.1 X X - - - - 

5.3.1.9 X X 2(X) 2(X) 2(X) 2(X) 

5.4.2.11/5.4.2.12 -,2(X) -,X X,2(X) X,X X,2(X) -,2(X) 
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Table 4.4 Heatmap of present CAZymes associated with starch and lignocellulose hydrolysis 

across six MAGs. Each row represents a CAZyme family and each column represent a sample. ‘X’ 

indicate presence of said E.C number, while ‘-’ indicate absence. Numbers in front of ‘X’ indicate how 

many times this E.C number was discovered in a MAG. 

MAGs INDI25.1 INDI25.2 INDI25.6 INDI25.8 INDI25.9 INDI25.10 total 

GH4    1   1 

GH5 2 2 2 1 1  8 

GH13 3 3 8 4 5 4 27 

GH31  1 1  1 1 4 

GH32  1 1 1  1 4 

GH37     1  1 

GH57  1     1 

GH65 1      1 

GH94 1      1 

GH97  1     1 

GT1   1 1 1 1 4 

GT2   1 1 1  3 

GT4  1  1 1  3 

GT5   1 1 1 1 4 

GT20  1   1  2 

GT35 1 1 1 1 1 1 6 

GT36   1    1 

total 8 12 17 12 14 9 72 
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4.3 MinION Sequencing Results 

4.3.1 Sequencing 

To complement our Illumina-generated MAGs, two DNA samples from the same human gut 

microbiome enrichment were running on the MINion for long-read sequencing (XDC.original 

& XDC.03).  

Two sequencing runs were performed on two separate flowcells and MINion machines. The 

machine running the ‘XDC-original sample’ created 346.05 K reads and 3.47 Gb of bases. The 

estimated N50 value of 37.24 Kb indicate that half of our genome’s sequences can be found in 

contigs longer than 37.24 Kb. Exceptional long reads were created in this run with some reads 

well above 200 Kb (Figure 4.7). The Q-score for the XDC-original run (Figure 4.8) was 

consistently high and scored 11. It never dipped below the median which indicates the generated 

reads was of high quality.  

In the XDC.03 sample 325.86 K reads, and 3.08 Gb of bases was created. The estimated N50 

value was 25.62 Kb, which indicate more fragmented reads compared to our XDC-original run. 

However, long reads above 146 K can be found, but not as extreme as in the other run (Figure 

4.7). The average Q-score for our reads ranged between 10-11 (Figure 4.8), although lower than 

the XDC-Original sample, it still fluctuates within the expected median, despite dropping 

towards the end of the run.  

 

 

 

(A)                    
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 (B)   

 

Figure 4.7 Estimated read length from the MINion sequencing of XDC.original sample(A) and 

XDC.03 sample (B). Kb = Kilo bases, Mb = Mega bases. X-axis indicate read length while Y-axis 

shows estimated amount of bases of X length 

 

 

 

(A)                                                                                 (B) 

 

 

Figure 4.8 Average Q-score for the XDC-original sample (A) and XDC.03 sample (B). Q-score 

indicate the quality of identification of nucleotides generated in the sequencing run 
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4.3.2 Binning 

The taxonomic binning of both samples was performed using Oxford Nanopores’ WIMP. 

WIMP is a quantitative analysis tool for real-time species identification. It can be used to 

identify bacteria, fungi, archaea and viruses. We used the raw reads from our sequencing for 

this. Due to the high-quality reads that were generated and a shortage of time, DNA assembly 

was skipped.  

In the XDC-original sample 290,568 reads were analyzed and 202,115 reads was classified, 

leaving 88,453 unclassified. The classified reads consisted of 99% bacteria <1% eukaryote, 

virus and archaea. The most abundant bacteria genus in the sample was Bacteroides with 

101,358 reads. The most represented species among the Bacteroides was Bacteroides 

cellulosilyticus, which accounted for 84.33% of these reads. Other notable genera identified 

using WIMP was Escherichia with 33,867 reads and Lachnoclostridium with 31,693 reads 

(Figure 4.9). 

In the XDC.03 sample 568,303 reads were analyzed, but only 335,260 of these reads was 

classified, leaving 233,043 unclassified. The classified reads consisted of 98% bacteria, 1 % 

eukaryote and <1% archaea and viruses.  

In this sample the most predominant genus present was Parabacteroides, these made out 

120,954 of the classified reads. Other notable genuses that was present is Escherichia, with 

58,695 reads, Bacteroides with 34,217 reads and Lachnocolstridium with 25,032 reads (Figure 

4.10). The most represented specie in the Parabacteroides genus was Parabacteroides sp. 

CT06, which is an uncharacterized species in the NCBI database with 55,680 reads and 

Parabacteroides distasonis with 53,967 reads. 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=246787#!/_blank
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=246787#!/_blank
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Figure 4.9 WIMP results from XDC-original. List in the left shows taxon and how many reads are 

allocated to which genus, while the taxonomy shows the most abundant taxa in form of relatedness. 

 

Figure 4.10 WIMP results from XDC.03. List on the left shows taxon and how man reads are allocated 

to which genus, while the taxonomy shows the most abundant taxa in the form of relatedness. 

 

4.3.3 Sequence Alignment 

To compare our long-read shotgun data against the previously generated Illumina dataset, we 

aligned our nanopore reads against the abovementioned MAGs. As our original research aims 

were to use a genome-centric approach, we used MAGs as opposed to the unassembled Illumina 
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metagenome. When aligning sequences, we previously analyzed 16S rRNA data containing 

taxonomic data for the same samples (Ostrowski et al., 2020) to determine what MAGs to align 

against our long-reads.  

This 16S rRNA gene data also enabled us to predict the expected coverage of taxonomically 

assigned MAGs from both samples, which were further characterized based on level of 

completeness and contamination.  

Finally, to estimate the coverage of our long-reads and see if the values compared to the relative 

abundances determined via 16S rRNA gene analysis, we used the MAGs reference to assess 

the coverage of our long-read binning, where highly represented genus like Bacteroides and 

Escherichia were detected.  

For the XDC-Original sample a MAG taxonomically assigned as Parabacteroides distasonis 

with 99.22% completeness and 0% contamination and 98.73% Average Nucleotide and Amino 

Acid Identity (AAI) was selected for alignment.  

For the XDC.03 sample a MAG taxonomically assigned as Escherichia flexneri, with 99.65% 

completeness and 0.08% contamination and 99.57% AAI was selected for alignment. 

In our XDC-original MAG alignment 203,752 nanopore reads were analyzed and 22,134 were 

successfully aligned against the P. distasonis MAG with an average alignment accuracy of 

79.6%. The coverage in this alignment was quite low where the majority sequences ranged 

between 20-40x coverage.  

However, in these samples there were sections of the references that had massive amounts of 

coverage, in the 200x-300x range, while the remaining sequence positions had a coverage of 

roughly 20-25x, which draws down the average (Figure 4.12). 

For the XDC.03 alignment 326,198 reads were analyzed and 69,406 was successfully aligned 

against the E. flexneri MAG with an average alignment accuracy of 92%. Surprisingly for this 

alignment, some sequences consisting of 28,513 alignments, stood out from the rest (Figure 

4.11). Where average coverage resided between 50x-70x for the other sequences, this one stood 

out with 992x coverage. For these sequences, roughly the first 100 positions of the sequence 

had a coverage of 28,304 and 24,722, which defies expectations.  

We initially expected this to be a 16S rRNA gene or ribosomal RNA, however by running the 

sequence through NCBI’s BLASTN we deduced it to be transposons. This goes to show our 

long-reads have gaps and most likely didn’t manage to cover entire ORFs, resulting in an 
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abnormal coverage of these regions, since these transposons can come from a multitude of 

species. 

Both previous alignments are far from optimal. They both show a relative low coverage that is 

inconsistent over the positions of the contigs. However, one of the MAGs from XDC.03 showed 

great promise.  

It was classified as P. distasonis with 98.27% completeness, 1.54% contamination and a 

96.75% AII. Our Nanopore alignment against this MAG consisted of 335,260 reads, where 

128,523 was aligned successfully with a 91.2% average alignment accuracy. The coverage for 

this MAG ranged between 240-320x for the majority of contigs. The coverage was more 

consistent across the sequence positions when compared to the other alignments (Figure 4.13). 

Although a great alignment, the result is not too surprising since the Parabacteroides was the 

most represented genus from our XDC.03 WIMP result based on 16S rRNA gene analysis 

(Figure 4.10). 

 

Figure 4.11 sequence alignment abnormality for XDC.03. This alignment was between our XDC.03 

long reads and XDC.03. INDI.03 short reads. The first positions on the coverage bar has a coverage of 

>24,000, while the remaining, which are hard to see due to the difference, resides in the 50x-70x 

coverage range. 
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Figure 4.12 Sequence alignment for XDC-original. This alignment was between our XDC-original 

long reads and XDC-original. INDI.10 short reads. The average coverage for this sequence was 38x, but 

if we exclude the inconsistent ‘spikes’ of coverage, we can see that most positions were in the 15-25x 

coverage range. 

 

Figure 4.13 The best sequence alignment from XDC.03. This was an alignment between XDC.03 

long read data and XDC.03. INDI01 short reads, this alignment had higher and more consistent coverage 

across the sequence positions. 
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4.3.4 Annotation 

Based on the sequencing alignments we decided to annotate our INDI.03 sample due to the 

abnormal amounts of coverage this MAG contained. This was done in order to confirm or deny 

our suspicions of the coverage originating from transposons. The annotation was performed 

using Ghost Koala. 

 The alignment of MAG INDI 0.3 to our XDC.03 long-reads, showed it contained variable 

levels of coverage consisted of 69 contigs and 4518942 bases. From these, 3115 genes were 

annotated, which account for 74.6% of the input data which is roughly 25% more than our other 

annotations (table 4.2).  

Fascinating, the most represented genes were involved in coding proteins involved in genetic 

information processing. Followed by proteins involved in signaling and cellular processing and 

carbohydrate metabolism (Figure 4.14). This sample also contained a considerable increase in 

genes involved environmental information processing (Figure 4.14).  

We annotated the other MAGs we used in sequence alignment (INDI.01 & INDI.10)While 

Ghost Koala managed to assign 29 ABC-transporters in the INDI.10 sample, and 27 ABC-

transporters in the INDI.01 sample, the INDI.03 alignment had 176 ABC-transporters assigned 

to it.  

Furthermore, this MAG contained a considerable increase of genes involved in signal 

transduction, especially genes involved in two-component system. Our other MAGs (INDI.01 

& INDI.10) contained 27 and 30 orthologs assigned to them involved in two-component signal 

transduction, while the INDI.03 sample with abnormal coverage had 148 orthologs assigned to 

it. This solidifies our suspicions of this MAG containing large amounts of transposons. 
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Figure 4.14 Annotation performed on MAG with inconsistent and abnormal amounts of coverage 

long-read coverage. 

 

5 Discussion 
 

The aim of this study was to explore metagenomic taxonomy and biochemical potential of gut 

microbiome samples from both the rumen of sheep and feces of human (i.e. distal gut), in 

addition to survey the potential strengths and detriments of both short and long read sequencing. 

 

5.1 Sample & Library preparation 

 

Sample preparation in this study was conducted using DNeasy Powerlyzer Powersoil Kit’s 

Quick-Start Protocol for DNA-extraction, Illumina’s 16S rRNA gene amplicon Metagenomic 

Sequencing Library Preparation for 16S rRNA gene sequencing and Oxford Nanopores 

“Genomic DNA by Ligation (SQK-LSK109)” protocol for Oxford’s MINion long-read 

sequencing. 

The success of our different sample preparation varied extensively with the different sequencing 

platforms, the library preparation we struggled the most with was when working the 16S rRNA 

gene. For our 16S rRNA gene sequencing we decided to use a kit for DNA extraction as 
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opposed to a traditional Phenol-chloroform approach, which proved to be troublesome. Our 

samples did not transition through the 16S rRNA gene library preparation protocol in an optimal 

manner. The most challenging step was the amplicon PCR, where our DNA was barely 

amplified, even though we tried to optimize it.  

Arguments can be made for the benefits of a kit-based approach, such as time-efficient 

extraction, low costs, less chance of cross-contamination between samples and sufficient 

amount of DNA for 16S rRNA gene sequencing (Kramvis, Bukofzer, & Kew, 1996). However, 

in our experience more time was spent troubleshooting for our ineffective library preparation 

than what we saved using this approach, rendering one of the kit-approach greatest assets 

useless. Surprisingly, the kit we used was designed to handle soil samples, which should be 

harder to process than rumen samples, despite this, contaminants seemingly still got through. 

However, we cannot say for certain if our problems were due to using a kit approach, or if they 

originated somewhere else, like in sampling. Our problems could also be a result of poor 

handling on our part; however, it is unlikely given we had trouble amplifying all our  original 

48 samples. 

 

5.2 16S rRNA gene analysis 

 

The 16S rRNA data generated in this study, should have been used to map out the microbial 

composition of our samples, before shotgun sequencing could commence. However, due to 

time limitations, and trouble with the library preparation we had to swap sample type from 

sheep rumen samples to human gut samples between 16S rRNA gene sequencing and shotgun 

sequencing. If we had continued with the original plan, comparing the 16S rRNA gene 

taxonomy with our binned shotgun sequences would have provided important information in 

how well our assembly and binning were. In addition, 16S rRNA gene analysis and WGS 

analysis can provide different data from the same sample (Ranjan, Rani, Metwally, McGee, & 

Perkins, 2016).  

While WGS taxonomy can more precise and assign on a species level, due to high coverage, 

the ability to utilize different databases for referencing by using both 16S rRNA gene and WGS 

analysis will provide a better understanding of the microbial composition of the sample. 

Furthermore, using 16S rRNA gene analysis is more cost-effective than WGS and can be used 

to validate WGS data, as well as a tool for selection of samples for further sequencing.  



58 
 

Despite not being able to use our 16S rRNA gene data for validation of the WGS data, our data 

can still provide useful information on the differences between feed-groups and sample-type. 

There was no apparent pattern between the different feed-type and microbial composition when 

looking at alpha diversity and Bra-Curtis dissimilarities. This indicates different concentrations 

of sugar kelp, as a substitute to concentrates, will have little impact on the microbial 

composition of the rumen. Since seaweed is little used in today's society, it could be a valuable 

source of nutrients for our ruminants.  

Utilizing this untapped potential could help reduce farm areas that is currently used for 

production of concentrates, which in turn will allow for more efficient use of suitable farm 

areas. This could help increase food production on a global scale.  

 

Despite there being little difference between our feed-types, there were seemingly a difference 

in sample type. When looking at our Bray-Curtis dissimilarities for sample types, our fluid 

samples showed lesser values than our particle samples. This indicates that the microbial 

community associated with our fluid samples was structurally distinct to that associated with 

our particle samples. Based on this, using both fluid and particle samples for DNA-extraction 

should be valuable when looking at diversity, since only extracting the fluid seemed to filter 

out some of the microbes. 

While our 16S rRNA gene data should show the taxonomic composition accurately down to 

family level, we have to take into consideration the troubles we experienced with amplification 

PCR and merging of forward and reverse read in our DADA2 pipeline. The troubles we 

experienced with amplification could have impacted our results. Although we used the 

recommended amount of amplification cycles, the small amount of actual amplification that 

took place could have resulted in inaccurate representations of microbial composition, this 

combined with the reduced coverage from only using forward reads, could have had negative 

repercussion on our results. Ways to improve our 16S rRNA gene data would be to re-extract 

DNA using a phenol-chloroform approach and use primers designated to the V2-V3 regions 

instead of V3-V4, which are better for taxonomic assignment (Bukin et al., 2019). 
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5.3 Shotgun sequence annotation 

 

To circumvent the technical issues with our sheep rumen samples, we worked with fully 

assembled and binned MAGs from human gut samples, which enabled us to proceed with 

genome annotation and functional predictions.  

The selected MAGs we used had varying degree of ORFs with functional assignments, but the 

majority ranged between 40-50% annotation. Despite the low amount of annotation, we still 

managed to recreate two important biochemical pathways, with E.C numbers involved to the 

full degradation of the highly prevalent fiber component D-glucose. This indicate that even 

though fiber fermentation to VFA contributes a relatively small amount of human energy 

consumption, it still is a valuable source of nutrients that our digestive tract is well adapted to 

process.  

Furthermore, in our annotated MAGs we discovered several CAZymes involved in these 

pathways, however, the GH13 family was represented more than the others. The GH13 family 

consists of several enzymes, such as different amylases, glucosidases and hydrolases. Given the 

well represented glycolysis pathway we can assume the GH13 CAZyme family plays an 

important role in breaking down D-Glucose and turning it in to Pyruvate and Acetyl CoA.  

Although we managed to annotate our MAGs to an extent, it is important to consider the amount 

of information we lost by just utilizing short reads for their assembly. The fact that roughly half 

our ORFs were annotated could come from the fact that assembly was hindered by the inherent 

flaws of just using the short reads.  

The ability to detect and resolve assembly problems that originate with repeating elements such 

as, inverted transposable elements, transposons, gene duplications and prophage sequences is 

of major importance in order to assemble high quality MAGs (Moss, Maghini, & Bhatt, 2020). 

Similar studies, that utilized short-reads for their MAG assembly, have found that roughly half 

of their MAGs met the MIMAG values(Stewart et al., 2018) of 90% completeness and <5% 

contamination, set out by (Robert M. Bowers et al., 2017).This shows that even though MAGs 

assembled with short reads are a valuable source of information and can be used to discovery 

of novel species, their inability to assembly high quality MAGs leaves them sub-optimal for 

annotation.   

 If our study had gone as planned, we would have used the short-read MAGs as the bulk force 

of information regarding annotation, however, we would have polished said MAGs with our 

long-read data. 
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5.4 Long-read sequencing 

 

For our long-read sequencing run we produced longer than average reads. When comparing our 

N50 values to the average presented by PacBio’s SMRT sequencing technology of roughly 20 

Kbp, our average N50 values of 25.62 Kbp and 37.24 Kbp is quite good. Our values even 

exceeded that of studies utilizing MAGs created from just short-reads (Datema et al., 2016). 

These results shows the power and ease of use of the third-generation sequencing platform, 

since this was the first time we tested out the equipment and still managed to get good results. 

However, due to time limitations our use of these long reads was limited. Because of this we 

could only use the long-reads for assessing coverage and assigning taxonomy. 

Based on the taxonomy assignment performed by WIMP we could see the most represented 

bacteria phylum was  Bacteroides, Firmicutes and Proteobacteria which corresponds with the 

typical microbial composition of the human gut (Rinninella et al., 2019). We can also see the 

similarities on represented families between out 16S rRNA gene taxonomy and our long-read 

taxonomy, despite being samples from different animals (table 4.1). Lachnospiraceae and 

Bacteroidaceae were among the most represented families in both samples analyzed in this 

study. Based these families known function in fermentation we can assume they are important 

across species in fiber degradation. However, we cannot properly explore their actual 

biochemical potential due to lack of high-quality MAGs for functional annotation. 

One of the challenges with utilizing third-generation long-read sequencing as a standalone 

platform, has been its lack of coverage(Lui, Nielsen, & Arkin, 2020). While 2nd generation 

platforms generate a massive array of reads, the long consistent reads generated with long-read 

sequencing hinders copies of the same DNA fragments to be sequenced simultaneously. Low 

amounts of coverage can make the discovery of structural variations unreliable, especially if 

base-calling errors are not accounted for.  

However if moderate amounts of coverage 15-17x is reached, the long-reads should be able to 

effectively detect these genomic variants better than short-reads are able to (Cretu Stancu et al., 

2017; De Coster et al., 2019).  

For our long-reads, most of our custom alignment reached this 15x-17x threshold and could, in 

theory, be used for detecting genetic variations between microbes. However, since we did not 

assemble nor bin our reads it is hard to say if the coverage was consistent enough across the 

contigs to be reliably used. Many of the MAG contigs that were aligned against our nanopore 

data had an average coverage much higher than the modest 15x-17x. The most consistent 
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alignment we found had a coverage ranging between 200x-300x across several MAG contigs. 

With that much coverage, evenly dispersed across the contigs, binning and annotation could be 

easily performed using just long-reads, instead of co-assembling short and long reads.  

To generate HQ-MAGs from just third-generation sequencing platforms would be more cost-

effective and less time-consuming than having to rely on both short and long-read assembled 

MAGs.  If one could consistently generate this amount of coverage evenly dispersed, one could 

argue third-generation sequencing platforms would replace second-generation sequencing 

platforms entirely. However, as of today, long-read sequencing is still costly and based on our 

results, this type of coverage is not common, but given the rapid development this technology 

this may no longer be the case, in the near future. 

The inconsistencies we found in our long-read data provides a strong argument for how long-

reads are better utilized when assembled with short-reads, acting as a correction tool in genome 

assembly instead of as a standalone analysis method, despite massive recent improvements for 

error-correction and polishing (Amarasinghe et al., 2020). If both short and long-reads are 

utilized for genome assembly, recreating “connected high quality (HQ)-MAGs” encoding entire 

16S rRNA genes in addition to several other rRNA genes would be easier, especially for de-

novo assembly (Singleton et al., 2020).  

If time would have allowed, we could have linked our co-assembled HQ-MAGs to our 16S 

rRNA gene amplicon data. This would have allowed for better assembly contiguity, and the 

recovery of multicopy and conserved single copy genes which are normally missing in short-

read assemblies (Lui et al., 2020).  Furthermore, being able to link complete genomic data to 

well-developed 16S rRNA gene databases would allow us to explore microbial function and 

link it to structural trends in microbial communities.  

This would improve our understanding of microbial communities and microbe’s biochemical 

potential since we would have better taxonomic data that has been collected over years of study 

and our annotation would be more complete using the HQ MAGs.   
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6 Conclusion 
 

The original aim of this study was to explore the microbial composition of sheep using second 

and third generation sequencing, and to better understand if sea kelp could be a viable 

supplement in feed. However, due to time limitations we instead explored the taxonomy of 

sheep rumen and human gut. We also tried annotating based on short reads alone and used 

MinION to better understand its limitation in terms of coverage.  

The different aspects of our metagenomic study each provide valuable information regarding 

both taxonomy and function of microbes. Based on our results we cannot conclude much, since 

sample types was swapped during the study, making it hard to draw parallels across the different 

sequencing platforms.  

Nevertheless, we can validate the different methods we used and explore their strengths and 

weaknesses. Our 16S rRNA gene analysis provided detailed information of the microbial 

composition of the sheep samples. In many cases microbes were identified down to a species 

level. It was a powerful and easy tool for us to use to validate our samples and better understand 

which samples to further explore. Furthermore, we could have used that data to validate our 

future sequencing, binning and annotation, improving their quality.  

The short-read MAGs we obtained were useful for understanding the function of microbial 

communities found in the gut. Based on these MAGs we managed to recreate vital biochemical 

pathways for our metabolism, illustrating how powerful and useful annotation can be, despite 

not being optimized, in terms of the MAGs reaching MIMAG’s threshold of 95% completeness 

and <5% contamination. Our long-read sequencing gave us detailed information of the sample’s 

taxonomy. However, since we did not assemble our reads, we could not use them for annotation, 

which would have been interesting. Based on our alignments we could see the coverage these 

reads provided was inconsistent.  

Despite this, most of our contigs had a coverage higher than the minimal amount recommended 

for differentiating between genetic variants, which means our long reads could have been just 

as a stand-alone platform. 

Based on our findings we can conclude that each of these techniques utilized to explore 

microbial communities have their own niches and that the best way to use them, based on 

today's technology, is in unison. By assembling MAGs based on both short and long-reads we 

can obtain more complete genomes and using well developed 16S rRNA databases we can 
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explore the compositional trends of the microbes of interest, more valuable information can be 

obtained this way.  
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7 Appendix 

7.1 Appendix 1 

Measurements for our quantified DNA samples. 

Formula:  

(concentration in ng/µl) (660 g/mol × average library size) × 106 = concentration in nM 

    DILUTION   

    tot vol:   

    50   

Sample  Well (ng/ul) nM Dil. DNA Water  

543 A1 13.5 37.19008264 5.4 45  

544 B1 10.1 27.82369146 7.2 43  

545 C1 14.4 39.66942149 5.0 45  

546 D1 12.9 35.53719008 5.6 44  

547 E1 13.8 38.01652893 5.3 45  

548 F1 6.83 18.815427 10.6 39  

549 G1 5.83 16.06060606 12.5 38  

550 H1 5.82 16.03305785 12.5 38  

551 A2 6.61 18.20936639 11.0 39  

552 B2 8.65 23.8292011 8.4 42  

553 C2 12.4 34.15977961 5.9 44  

554 D2 14.4 39.66942149 5.0 45  

555 E2 19.7 54.26997245 3.7 46  

556 F2 21.8 60.05509642 3.3 47  

557 G2 16.7 46.00550964 4.3 46  

558 H2 15.5 42.69972452 4.7 45  

559 A3 8.89 24.49035813 8.2 42  

561 B3 25.4 69.97245179 2.9 47  

563 C3 21.4 58.95316804 3.4 47  

565 D3 17 46.83195592 4.3 46  
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567 E3 20.4 56.19834711 3.6 46  

568 F3 21.6 59.50413223 3.4 47  

570 G3 27.7 76.30853994 2.6 47  

572 H3 14 38.56749311 5.2 45  

575 A4 10.5 28.92561983 6.9 43  

576 B4 42.9 118.1818182 1.7 48  

577 C4 23.8 65.56473829 3.1 47  

578 D4 16.1 44.35261708 4.5 45  

579 E4 21.8 60.05509642 3.3 47  

580 F4 23.8 65.56473829 3.1 47  

581 G4 20.1 55.37190083 3.6 46  

582 H4 4.59 12.6446281 15.8 34  

583 A5 14.2 39.1184573 5.1 45  

584 B5 32.6 89.80716253 2.2 48  

585 C5 25.5 70.24793388 2.8 47  

586 D5 11.1 30.5785124 6.5 43  

587 E5 22.7 62.53443526 3.2 47  

588 F5 23.7 65.2892562 3.1 47  

589 G5 20.5 56.4738292 3.5 46  

590 H5 8.71 23.99449036 8.3 42  

591 A6 22.1 60.8815427 3.3 47  

593 B6 18.9 52.0661157 3.8 46  

595 C6 26.9 74.1046832 2.7 47  

597 D6 38.9 107.1625344 1.9 48  

599 E6 30.8 84.84848485 2.4 48  

600 F6 19.7 54.26997245 3.7 46  

602 G6 19.6 53.99449036 3.7 46  

604 H6 11.7 32.23140496 6.2 44  
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