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Abstract

Noise is a growing problem in today’s society. This is especially true in urban
areas, where noise pollution has become an important factor in the deteriorating
health of the residents. Due to this, several regulations have been implemented by
different governmental bodies. One of these is EU’s directive 2002/49/ec, which
says that noise maps must be created for specific areas that are especially noise
heavy. These noise maps are created through simulations and have been shown to
be imprecise and also dependent on good data sources, something which is scarce.
Innovations look at noise monitoring through wireless communication systems to
counteract these problems, but they are mostly dependent on either a cable grid for
energy supply or a secondary energy source.

Most of the noise indicators used today are cumulative of nature, and thus a contin-
uous data stream is not of necessity. Therefore, a thought is to introduce a sampling
strategy to the wireless sensors. A sampling strategy decides when to measure
sound and when not to, and may lessen energy usage.

A dataset containing continuous measurements over 11 weeks of a student working
environment at NTNU is used to evaluate different sampling strategies. The dataset
consists of data collected from five sensors. The data was preprocessed and a
master sensor chosen. The rest of the sensors’ data was utilized to impute the
missing values of the master sensor. The time interval of noise measurements was
chosen to be 15 minutes.

Three algorithms; a Dummy Regression, a Linear Regression and a Random Forest
Regression were trained and evaluated. The target variable was the RMSE between
theLAeq,15min containing all measurements and theLAeq,15min containing only the
subsampled measurements.

The models’ performance was put in the context of the economic benefits that
a lower energy usage may give. A Pareto-front was used to find the optimum,
and it was concluded that a subsampling rate of 65 % was optimal for the student
working space. A cost-benefit analysis was done on four different sensor network
alternatives consisting of 22 sensors, and the best scoring alternative was the one
that implemented the subsampling rate that NTNU SOA recommended.
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Sammendrag

Støy er et økende problem i dagens samfunn. Dette gjelder spesielt for urbane
områder, der støyforurensning har blitt en viktig faktor i den svekkede helsen til
innbyggerne. På grunn av dette er flere forskrifter blitt lagt frem av forskjellige
statlige organer. Et av disse er EUs direktiv 2002/49 / ec, som sier at det må lages
støykart for spesifikke områder som er spesielt støytunge. Disse støykartene er
laget gjennom simuleringer og har vist seg å være upresise og også avhengige av
gode datakilder, noe som er mangelvare i dag. Innovasjoner ser på støyovervåking
gjennom trådløse kommunikasjonssystemer for å motvirke disse problemene, men
de er stort sett avhengig av enten et kabelnett for energiforsyning eller en sekundær
energikilde.

De fleste støyindikatorene som brukes i dag er kumulative av natur, og derfor er det
ikke nødvendig med en kontinuerlig datastrøm. Derfor er en tanke å introdusere en
samplingsstrategi for de trådløse sensorene. En samplingsstrategi bestemmer når
du skal måle lyd og når ikke, og kan redusere energiforbruket.

Et datasett som inneholder kontinuerlige målinger over 11 uker i en gruppearbei-
dsplass ved NTNU brukes til å evaluere forskjellige samplingstrategier. Datasettet
består av data samlet inn fra fem sensorer. Dataene ble preprosessert og en hov-
edsensor valgt. Resten av sensorenes data ble brukt til å imputere de manglende
verdiene til hovedsensoren. Tidsintervallet for støymålinger ble valgt til å være 15
minutter.

Tre algoritmer; en dummy-regresjon, en lineær regresjon og en random forest re-
gresjon ble trent og evaluert. Målvariabelen var RMSE mellom LAeq,15min som in-
neholder alle målinger ogLAeq,15min som bare inneholdt de samplede målingene.

Modellenes ytelse ble satt i sammenheng med de økonomiske fordelene som en
lavere energibruk kan gi. En Pareto-front ble brukt for å finne optimum, og det
ble konkludert med at en samplingrate på 65 % var optimal for studentens arbeid-
splass. En kostnad-nytte-analyse ble gjort på fire forskjellige sensornettverksalter-
nativer bestående av 22 sensorer, og det beste scoringsalternativet var det som im-
plementerte sampling strategien som NTNU SOA anbefalte.
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Chapter 1

Introduction

1.1 Noise

”The only constant in life is change” said Heraclitus, a Greek philosopher who
lived around 500 BC. The author of this master thesis would argue that another
constant in life is noise. This has become especially true in the last decades, where
the urbanization of the world and human proclivity for surrounding themselves
with ceaseless stimulation have made noise not only a constant but also a problem.
In western Europe alone, it is estimated that a minimum of one million deaths come
from traffic-related noise [1]. This warrants the question: ”What is noise?”. When
researching noise it is essential to define the difference between noise and sound.
Noise is a subset of sound which is unwanted. The unwantedness of the specific
sound depend on the subject which listens, so it is important to properly define
what is sound and what is noise.

To combat the growing problem of environmental noise EU, the European Union
put a directive forward in 2002. The directive made it mandatory for EU mem-
ber countries to create noise maps for all railways, airports, major roads and urban
areas over a specific size [2]. A noise map is a map that shows the sound levels
and distribution over a given area. The noise maps only capture yearly averages
and have to be updated every five years, as per the directive. The noise maps are
made through simulations determined by predetermined parameters such as traffic
flow and 3D-terrain. Mioduszewski et al. [3] have shown that these simulations to
not adequately describe the real soundscape in the areas. The simulations are de-
pendent on stable data sources and the associated data collection methods, which
is not always available. The data sources may be sensors placed in the street net-
work, models of the street network and digital terrain models. Furthermore, recent
research has shown that noise levels consistently exceed the limits recommended
by the EU [4]. The demands of the regulative bodies combined with the challenges
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today’s methods experience in precisely describing the soundscape has led to the
development of alternative methods. A crucial part of this includes real-time mon-
itoring using wireless sensors to estimate sound levels.

1.2 Noise monitoring with wireless systems

Due to the expensive equipment and the inflexibility of today’s systems, there
is a huge incentive in innovating the noise monitoring industry. Several projects
use wireless sensors to more efficiently estimate sound levels and classify sound
sources. Some examples of these are SONYC [5], SENSEable [6], DYNAMAP [7]
and CENSE [8]. A Norwegian startup that has received national attention is Sound-
sensing [9]. Soundsensing uses a sensor network consisting of self-developed sen-
sors with embedded machine learning models done on-edge (in the wireless sensor
package), to minimize the information sent over the IoT-network. On-edge means
that the machine learning models are run locally on the sensors, and preferably
only the result is transmitted over the IoT-network.

1.3 The economical costs of noise

The economical cost of noise is not only about the aforementioned deaths and
illnesses, which may be induced by noise. There is also the question about the
viability of sensor companies that focus on noise mapping.

With continuous real-time monitoring of sound levels, the IoT-device has to be
constantly in use. For noise estimation, many metrics such as Lden and Lnight,
which are defined in 2.1.5, are only reported as an average per day, and it may have
the potential to skip/reduce the data acquisition. For humans, a change in noise of ±
3 dB is the lowest that they can sense. ± 10 dB is observed as a doubling or halving
of sound loudness, while ± 5 dB is deemed as audibly recognizable [10, 11]. This
leads to the decision to use ± 3 dB as a boundary for acceptable error, as errors
under this threshold are not considered as noticeable by humans.

This leads to the question, ”How often does the IoT-device need to record noise lev-
els while keeping the accuracy below the error threshold?” The trade-off between
the model’s accuracy in predicting the noise level error and battery usage will be
key to answer this question, and a Pareto-front will be used to find the optimum
point. There is already some existing work on the topic of noise estimation and
sampling strategies. Two essential resources in this realm are [12] and [13], which
utilize the same dataset as in this master thesis.

The noise estimation analysis is done on indoor data in Koopen, but a cost-benefit-
analysis is done on an imaginary installation with 22 sensors in a Wireless Sensor
Network in an outdoor environment. This because the dataset of interest is on an
indoor study environment, but the big motivation is to try to extrapolate the findings
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done on the indoor dataset to an outside space. A reduction in energy consumption
can create business cases that previously were not economically viable due to the
economic cost. With this in mind, municipalities and national governing bodies
may take a more proactive stance on noise and implement solutions based on real-
time data.

1.4 Problem scope

The problem scope is limited to using different sampling strategies on a master
sensor in a student working space and predicting the error of the noise level. The
scope will also be limited to only the sampling strategy. Furthermore, the results
of the predictions will be applied in an economic analysis where a Pareto optimum
and Cost-benefit analysis are applied.

1.5 Research questions

1. How often does the IoT-device need to record noise levels, while keeping
the accuracy below the error threshold with regards to the energy-accuracy
trade-off?

2. In a Wireless Sensor Network consisting of 22 sensors, which alternative
with the associated sampling strategy and energy usage is the best with re-
gards to net value?

1.6 Structure of the thesis

This thesis starts with the theory behind sound, machine learning, microcontrollers
and the performed economic analysis in chapter 2. Chapter 3 discusses the cur-
rent state of arts and sampling strategies. Chapter 4 explores and preprocesses
the dataset, and the methodology used is described. Chapter 5 presents the re-
sults which is further discussed in chapter 6. Lastly, the findings in this thesis is
summarized in chapter 7.

3
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Chapter 2

Theory

This chapter presents the theory regarding the topics relevant to this master the-
sis. The topics covered will be sound, machine learning, microcontrollers and
economic analysis.

2.1 Sound theory

Sound can be described as variations in pressure over time [14]. To measure sound,
both the amplitude of the sound pressure wave as well as the frequency of the
waves are recorded. An example of a sound wave and the two mentioned metrics is
illustrated in Figure 2.1 on the following page. The amplitude decides the loudness
of the sound. The greater the amplitude of the sound, the greater the energy of the
sound, and the louder it is perceived. The frequency affects the pitch of the sound.
The pitch of a sound can be described as how the ear and, subsequently, the brain,
interprets the sound. A sound with high frequency will have a high pitch, while a
sound with a low frequency will have a low pitch. Humans generally can hear in
the frequency range of 20 Hz to 20 kHz. The human ear is the most sensitive in the
frequency range from 2 kHz to 5kHz [15].

The intensity of a sound wave is the amount of energy that is transported over an
area. When the amplitude is bigger, more energy is transported, and the intensity
of the sound wave is larger. The intensity can be expressed through Intensity =

Energy
T ime∗Area or Intensity = Power

Area since Energy
T ime = Power. A common unit for

expressing a sound wave’s intensity is Watts/meter2. The area the sound wave
it is transported over and its intensity is an inverse square relationship [17]. This
means that when the distance from a sound source has doubled, the intensity is
reduced to one fourth.

When researching noise, it is important to define the difference between noise and

5



Figure 2.1: Image of a sound wave showing the amplitude and frequency

of the pressure wave over time. Adapted from [16].

sound. Noise is a subset of sound which is unwanted. The unwantedness of the spe-
cific sound may be dependent on the subject (human) which listens, so it is crucial
to properly define what is sound and what is noise. Noise has been shown to affect
students negatively when studying and affect the communication, intelligence and
focus of the student [18].

2.1.1 Measuring loudness

The loudness of a sound is typically measured in decibel. Decibel is a logarithmic
dimensionless unit described by the ratio between the measured and the defined
reference quantity for the unit. Decibel may be used to describe power levels,
currents or in this master thesis’ case: sound pressure levels.

The formula used for decibel is:

L = 10 log10(
A

B
) dB (2.1)

where L is expressed in decibel and represents the sound level, A is the measured
quantity, while B is the reference quantity. The measured quantity may be the mea-
sured Sound Pressure Level, while the reference quantity may be Sound Pressure
Level of the threshold of hearing. In this thesis, the L represents the Sound Pressure
Level (SPL).
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2.1.2 Threshold for error

The lowest sound a human ear can perceive is set to 0 dB. 0 dB is equivalent to
an intensity of 1 ∗ 10−12W/m2. A sound that is ten times more intense is given
a dB value of 10. Due to the nature of the logarithmic scale, a 10 dB increase of
sound will be experienced as a two-fold increase in sound volume. While the sound
volume is experienced as a doubling in volume, the sound energy is experienced
as a ten-fold increase. When an object vibrates, it produces a kind of mechanical
energy. This is sound energy. A doubling in sound energy will be experienced as
an increase of 3 dB by a human’s ears. If a human is exposed to a continuous sound
for 1 hour at a volume of 40 dB, the same person would only need to stay in the
room for 30 minutes to be exposed to the same amount of energy if the volume
was 43 dB. Noise limits are often based on this, and in the example this is a 3 dB
exchange rate [14]. To be exposed to more sound energy is a larger load on the
ears even if the comparative decibel difference is not that great. The effect this has
on a human is also influenced by the aforementioned distance, and thus intensity,
between the sound source and the person exposed to the sound.

This leads us to a definition of a threshold for error for the predictions going to be
made later in this thesis. ± 10 dB is observed as a doubling or halving of sound
loudness, while ± 5 dB is deemed as audibly recognizable. A change in the noise
of ± 3 dB is the lowest that humans can sense [10, 11]. A decision to use ± 3 dB
as an boundary for acceptable error is made, as errors under this threshold are not
considered to be noticeable by humans.

2.1.3 Frequency Weighting

To mimic the human hearing system, one can apply weighting filters. Some of
these are standardized in IEC 61672-1:2013 [19].

A-weighting is one of these filters and is commonly used when looking at industrial
and environmental noise. Without any loss of hearing abilities humans can hear in
a range from 20 Hz to 20 kHz, and are most sensitive in the range from 2 kHz
to 5kHz. These are the frequencies that A-weighting emphasises. C-weighting is
another type of frequency-weighting. In C-weighting, the low-frequency sounds
are more emphasized than in A-weighting, and it measures in the frequency range
of 30 Hz to 10 kHz, while A-weighting measures in the frequency range of 500
Hz to 10 kHz. The peaks of noise are emphasized in C-weighting. A third method
is the Zwicker method [20]. This method measures the binaural loudness. The
threshold for a sound heard by two ears is usually lower than just for one ear.

In this study, A-weighting is used. To show that the sound has been A-weighted,
an A is added to the dB suffix, dBA. It may also be shown as LAeq.
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2.1.4 Overview of different sound levels

Different type of noise has different dBA levels. To build an intuition of the dif-
ferent thresholds of dBA, which the human ear detects, Table 2.1 is presented. A
quiet library is estimated to have a dBA of 40, while a noisy restaurant may have a
dBA of up to 85. Hearing loss may occur when exposed to a dBA of over 85 over
a more extended period.

Table 2.1: Overview of different sound sources and their accompanying

dBA level. Distance from sound source where applicable. Adapted from

[12]

Sound source dBA

Human hearing threshold 0

Breathing normally (1m) 10

Whispering (1m) 30

Quiet library 40

Large office, busy street (90m) 60

Normal conversation (1m) 65

Vacuum cleaner (3m) 70

Heavy traffic, noisy restaurant 85

Truck (10m), shouted conversation (1m) 90

Chainsaw (1m) 110

Rock concert (5m), threshold of discomfort 120

Jet engine (50m) 130

Threshold of pain 140

Gunshot (0.5m) 160

Explosion (close) 190

2.1.5 Indicators of noise

The aforementioned EU Directive [2] operates with two main noise indicators,
Lden and Lnight. These two are based on LAeq, and most research studies use Lden

and Lnight to determine noise levels. Lden is the average noise level for a day. The
acronym den stands for day-evening-night. The day is split into three, where the
day-period is from 07-19, evening-period from 19-23 and night-period from 23-07.
Added together Lday + Levening + Lnight = Lden. Lday is a day-weighted
noise-indicator, Levening is an evening-weighted noise-indicator while Lnight is
a night-weighted noise-indicator. The evening and night periods have a weighting,
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respectively 5 dBA and 10 dBA, which are added to the period’s dbA-value. This
is due to human’s increased sensitivity for noise in these time frames. To get the
values of e.g. Lday is not possible to just do a normal average of the decibel values
due to the decibel formula’s logarithmic nature. Thus, to calculate LAeq,T , where
T is a given time-period the formula is:

LAeq,T = 10 log10

[
1
T

∫ t2
t1
p2A(t)dt

p20

]
dB (2.2)

where pA(t) is the instantaneous A-weighted sound pressure at running time t, and
p0 is equal to 20 µPa (micropascals).

In the dataset used in this master thesis LAeq is already provided, not only sound
pressure levels, so instead another formula has to be used. The anti-log of the
values are added together and divided by the number of samples n.

LAeq,T = 10 log10

[
1

n

n∑
i=1

10

(
LAeq,1s

10

)]
dB (2.3)

To capture a different representation of the noise, one can look at the statistical
distribution of LAeq,T for the time interval T . Some possible indicators are LA10,T ,
LA50,T and LA90,T . LA10,T looks at the peaks of noise and is the A-weighted SPL
exceeded for 10 % of the time interval T . This noise indicator is often used for
noise measurement of traffic. LA50,T describes the average/median of the noise
and is the A-weighted SPL exceeded for 50 % of the time interval T . LA90,T

describes the background noise level and is the A-weighted SPL exceeded for 90
% of the time interval T .

2.1.6 Time interval of noise measurement

Noise is such that it often is the sustained noise levels that affect the health and
hearing of humans. Therefore an integral part of an experiment looking at noise
pollution is the time interval in which to accumulate the noise measurements.
Research by Brocolini et al. [21] has shown that a 10 minute time interval of
noise measurements gives a representative showing of the noisescape in almost all
cases. If there is more variability in the noise measurements, longer time intervals
may be needed. This is supported by the the Norwegian Environmental Agency
(Miljødirektoratet) guideline on noise measuring for industries. A 10 minute in-
terval was proposed here as well, and in the case of large variability in noise mea-
surements, the noise measuring should be repeated hourly [22]. The repetitions
are set to a minimum of three in the nighttime and five in the daytime. In [12]
different time intervals were tested and how the sampling affected the associated
noise indicators. A more robust noise indicator is less affected by the sampling
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strategy implemented. The ranking of the robustness of the noise indicators was as
following:

1. LAeq,8h

2. LA50,15min

3. LA90,15min

4. LAeq,1h

5. LAeq,15min

6. LA10,15min

7. LA10−A90,15min

8. LNPL,15min

In Kraemer et al. [13] LAeq,15min was used as the noise indicator.
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2.2 Preprocessing and machine learning

To pick the optimal sub-sampling percentage, machine learning will be used. Ma-
chine learning is the science in which algorithms are fed data and train models that
perform a task without explicit programming. To grasp what kind of tasks can be
solved with machine learning, two simple examples are provided. One is credit
card transactions and the other postal code readings. When a credit card transac-
tion is done through a website, it is vital for the company that it is not fraudulent.
Here, the machine learning task would be to determine if the transaction is likely to
be fraudulent based on the information collected about the user up to the point of
the transaction. In the scenario of postal code readings, the machine learning task
may be even more straight-forward and be to determine what the postal code on a
letter is based on a snapshot of the letter. Both these tasks can be and are solved
with machine learning today.

Machine learning has different sub-genres. These are normally split into three:
supervised learning, unsupervised learning and reinforcement learning. The differ-
ence between these sub-genres lies in how the algorithms learn.

In supervised learning, the data had been labeled. A label represents the ground
truth and may be as simple as a binary representation of 0 or 1. To understand
the concept better this can be put into the context of the credit card example. A 1
would indicate that the transaction is fraudulent, while a 0 would indicate that it
is not fraudulent. Humans often do the process of labeling data through extensive
manual labor. The aforementioned example with the binary representation is a
classification task. There is another task in the sub-genre supervised learning. This
is regression. In regression, the task is to predict a continuous value for the given
sample. In classification, the goal is to assign the sample to its correct class. In this
master thesis regression is the task that is used.

In unsupervised learning labels are not used, and thus the learning not based on a
ground truth. Herein, the goal is to find the underlying structure in the data, and
unsupervised learning is often used for clustering and anomaly detection. If one
did not have the manual labor to label the data in the fraudulent example, unsuper-
vised learning could have been used as an anomaly detection case to try to detect
fraudulent cases. Unsupervised learning is not used in this master thesis.

The last sub-genre is reinforcement learning. In this sub-genre, a reinforcement
learning agent interacts with the environment and receives rewards for the per-
ceived action. An example of this transferred over to real-life could be how a child
learns to walk. First, the child starts to emulate the parents, and throughout the
process, the child meets different challenges it has to overcome to finish the task.
If the child received a reward for every time a couple of steps were successfully
made, and no reward when the walking was unsuccessful, it would be similar to
how a simplified reinforcement learning task could look. The agent receives a re-
ward when it comes closer to the goal and no reward when the opposite happens.
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Reinforcement learning is not used in this master thesis, even though its structure
may be applicable to the task.

2.2.1 Missing values

Missing values imputation

Datasets often contain missing values. This means that there are no measurements
done in a specific occurrence. In the example of the fraudulent credit card transac-
tion it may be that the name of the cardholder is missing. Then the missing value is
represented with a NaN. A NaN is an acronym for Not a Number, which is a way
of representing a missing value.

Sensor data often have holes in their data streams as they are especially vulnerable
to missing data due to practical limitations. This may be battery outages. Since
many machine learning algorithms cannot handle missing values, it is necessary to
impute them. Here there are several techniques. Some simple techniques which
work well for time-series data are forward fill, backward fill and rolling fill.
These techniques respectively impute the missing value with the preceding value,
the succeeding value, or the mean/median of the n surrounding values. It is also
possible to use techniques involving K-nearest neighbors .

Another possibility is to use other methods for imputing the missing values in the
dataset. With sensors, one can use the other IoT-sensors to impute the missing
values. This has shown to improve the accuracy of the imputation [23].

2.2.2 Regression

Regression is a task in machine learning where the purpose is to predict a continu-
ous value for the given sample. This is the task that is used in this master thesis. An
example of this could be a used car dealership which wants to predict the selling
price of a used car based on features such as the age of the car, brand and type
of transmission. A feature in machine learning is what is commonly known as a
column in other applications in the world. It is information that is measurable and
is used to distinguish between different samples. Error is another important term,
which is the difference between the measured value and the predicted value.

To measure how well the model is doing, one uses performance metrics. There
are multiple metrics used in regression tasks, but some common ones are mean
squared error (MSE) and mean absolute error (MAE).

Further in this master thesis, the metrics will be written as their acronym. In table
2.2 on the facing page, both MSE and MAE sum the mean over the difference
between the predicted and the true data (et). The difference lies in that whilst
MAE takes the mean over the absolute difference, MSE squares the errors. This
makes large errors, called outliers more punishable, and is of interest in tasks where

12



Table 2.2: Overview of different regression metrics, where e is the sum of

the errors between the predicted value and target value.

Metric Formula

Mean squared error (MSE)
1

n

n∑
t=1

e2t

Root mean squared error (RMSE)

√√√√ 1

n

n∑
t=1

e2t

Mean absolute error (MAE)
1

n

n∑
t=1

|et|

such outliers are not desirable given the context of the machine learning task. The
reason for taking the square root of MSE and turning it into RMSE is to make it
easier to interpret since it will come back to the original measurement unit as it was
before the squaring.

2.2.3 Training process

For a machine learning model to work, one needs to specify what the goal is. A
machine learning model is only as good as the data which is used to train the model.
This concept is called Garbage In - Garbage Out.

In a real-world application, a machine learning model should be able to predict
well on data it has never seen. This is the concept of generalization. When a
model consistently performs well on unseen data, it is seen as generalized. It is
quite easy to be blinded by a model that performs well on the data the model was
trained on. The problem here lies in that the model may learn trends specific to
the accessible data, which not necessarily transfers well to the unseen data. This
is called overfitting on the training data and in such a case the generalization of
the model is worsened. A model that does not perform well and only learn little or
nothing about the trends in the data is said to be underfitted. The art of machine
learning lies in finding the balance between a model that is neither underfitted nor
overfitted.

To counteract both overfitting and underfitting, there is a method in data-driven
modeling [24]. By splitting the data into different sets that have different functions
in the machine learning task, one simulates a real-world application.

Test dataset

The first step is to take one part of the data and put it into a test dataset. This is
illustrated in Figure 2.2 on the next page.
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TestTraining

Original Dataset

Figure 2.2: Creating a test dataset. Adapted from [25]

The original dataset is split into a training and test dataset. The training dataset
is used to train the model whilst the test dataset should only be used to test the
aforementioned generalizability of the model. The size of the splits should be such
that the training data is representative of the real-world. Often, the accessible data
is limited, and therefore the size of the test dataset is linked to the size of the
original dataset. The larger the original dataset, the larger amount of data can be
set aside for the test dataset.

To use the test dataset as a test for generalizability, a requirement is that it is used as
sparingly as possible. Each use of the test data will reveal some information about
the data, and data leakage will occur. Data leakage is the concept of data outside
the training data affecting the model and therefore giving the model information
it should not have. This may invalidate the model’s performance since the model
now has more knowledge than it should have.

Validation set

To avoid information leakage and achieve generalizability, the concept of holdout
cross-validation is introduced. In this process, the training dataset is split one more
time into a smaller training dataset and a validation dataset. This process can be
seen in Figure 2.3.

Test

Original Dataset

Training Validation

Figure 2.3: Holdout cross-validation. Adapted from [25]

The model is trained on the training dataset and optimized on both the training and
validation dataset. The model is evaluated, and the hyperparameters are tuned on
the training dataset and validation dataset. Hyperparameters are parameters of the
model which are used to affect the learning process. Examples of hyperparameters
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will be shown in Chapter 2.2.4. The test dataset is not used in this process and is
left as the last check of the model’s generalizability.

K-fold cross-validation

The challenge with using holdout cross-validation is that the data which is put in the
validation dataset does not necessarily represent the distribution of the dataset as a
whole. Thus the performance score on the validation dataset may be very different
for different subsets of the data. This high variance leads to high uncertainty in the
model’s performance. There is another issue with completely removing data from
the training dataset and putting it into a separate validation dataset. By removing
data from the training dataset information, which may be necessary for the model
to understand the trends in the data is lost. A solution to this is K-fold cross-
validation.

Training Set

Validation FoldValidation FoldValidation Fold

⋮

1st Iteration

3rd Iteration

kth Iteration

2nd Iteration

Figure 2.4: K-fold cross-validation. Adapted from [25]

In K-fold cross-validation the data is split into k folds of data with an equal amount
of data in each fold. For each iteration, a different fold is used as the validation
dataset. The rest of the folds, k − 1 are used for training the model. This is
illustrated in Figure 2.4.

2.2.4 Regression Algorithms

There are several regression algorithms that are relevant. The two main algorithms
used in this study are Linear Regression and Random Forest Regression and will
be described in more detail below. There are also other regression algorithms that
could have been used. Neural networks can be implemented to output a continuous
value, which is regression by definition. There are also variants of Linear Regres-
sion such as LASSO Regression or Ridge Regression, which have been shown
to work well when dealing with variables which are collinear [26]. They impose
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different types of shrinkage on the regression coefficients to avoid overfitting by
avoiding extreme weights.

Linear Regression

Linear Regression is a linear algorithm, which explains the relationship between a
feature and the target feature linearly. A feature is a measurable characteristic and
is used as the input for the algorithm. This algorithm can also be used to explain
the relationship between multiple features and the target feature. This relationship
can be expressed mathematically through:

ŷ = β0 + x1β1 + x2β2 + ...+ xpβp (2.4)

for i observations and k features,

ŷ is the target value based on the dependent features,

β0 is the y-intercept - the constant term,

xk are the explanatory features,

βk are the slope coefficients for every explanatory feature,

Random Forest

Random Forest is an algorithm that builds an ensemble of Decision Trees [27]. An
ensemble is a collection of several individual elements, and as a musical ensemble
consists of several individuals that perform as a group, the same is true for the
Random Forest. As a forest is a collection of trees, the Random Forest algorithm
is a collection of Decision Trees. A Decision Tree breaks down the data by asking
questions which the model then uses to make its decision. It starts at its root and
splits on the feature which gives the largest information gain. The information gain
is a metric used to train decision trees, which determines the quality of the split.
A sub-node that splits into further sub-nodes is called an internal node or decision
node. A node which does not split is called a leaf node or terminal node. This basic
structure of a Decision Tree can be seen in Figure 2.5.

The deeper a Decision Tree goes, the more complex the decision boundary, and the
more prone it is to overfitting. This is where the Random Forest algorithm comes
in. Each Decision Tree is trained on different subsets of the data, with different
subsets of features. This allows the trees to learn different subpatterns. Thus, the
model has a better opportunity to learn the trends in the data. The predictions
of the Decision trees are averaged to give the prediction of the Random Forest
model.
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Figure 2.5: A Decision Tree’s basic structure.

A hyperparameter is used to affect the learning process of the algorithm. For the
Random Forest algorithm, there are several interesting hyperparameters:

N estimators decide the number of Decision Trees in the Random Forest. The
computational cost increases and becomes more expensive as more trees are added
to the model.

Min samples leaf describes the minimum number of samples required to be at a
leaf node.

Dummy Regression

To test how the algorithms perform a dummy algorithm can be used as a baseline.
A Dummy Regression is a predictor that predicts based on simple rules. An imple-
mentation of a dummy regression can be found in scikit-learn [28]. In scikit-learn
the Dummy Regression can predict based on a couple of strategies. It can use ei-
ther the mean or the median of the training dataset. It can also predict based on a
quantile of the dataset, which also is specified as a parameter of the model. There
is also the possibility to predict a constant, which is provided as an input. In this
master thesis, the Dummy Regression will use mean as the predictor.
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2.3 Microcontrollers

A microcontroller is a small computer on a fingernail’s size, which is integrated
on a data chip. The microcontroller consists of a Central Processing Unit (CPU),
Random Access Memory (RAM) and persistent storage. Persistent storage is the
name of a storage device that keeps its memory even after the power is shut off. The
microcontroller also has a peripheral that functions as a communication tool for the
outer world. The market for microcontrollers is projected to have 28.9 billion units
sold in 2020, with it being estimated to grow to 38.2 billion in 2023 [29].

2.3.1 Machine learning on microcontrollers

Machine learning models integrated on microcontrollers are trained mainly on an
offline basis. The model is trained on another platform, which can either be a
desktop or a cloud platform. Subsequently, the model is imported unto the micro-
controller. This is due to the energy expensive task of training a machine learning
model and the large amount of computing power necessary in this process. An-
other way of implementing machine learning on a microcontroller is through on-
line learning. In online learning, the model is continuously updated based on a
stream of new data. The experimental setup of this master thesis is based on an
offline learning strategy.

2.3.2 Energy states for microcontrollers

There are multiple ways to find the energy usage of a microcontroller. One of these
is implementing the model on the device and then measuring the energy usage with
a secondary device used for such tasks. With such a process, it is necessary to have
the model ready in advance. There are also external factors that may affect energy
consumption. The time needed to implement such a method is larger than the
time-frame of this thesis. A second method is to approximate the device’s energy
usage through a formula which takes the data input as an assumption for energy
consumption. This is a more straightforward method to implement and the one
chosen in this thesis.

The microcontroller is assumed to have two different energy states, sleep-mode
and on-mode. In sleep-mode, the energy usage is assumed to be 0. The process of
going from sleep-mode to on-mode is assumed to be 0 both in the term of time and
the energy cost. This mimics the process in Kraemer et al. [13]. Therefore

Energy consumption = Sampling rate (2.5)

where Sampling rate 0 < x ≤ 100
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2.4 Economic analysis

2.4.1 Pareto optimality

The solution to a problem is often a conjunction of multiple objectives. More often
than not, these objectives conflict with each other. This is often the fact when
looking at environmental and economic standpoints. Pareto optimality is given as
the state where it is not possible to reallocate resources to one objective without
affecting the other objectives negatively [30]. The optimal resource balance lies in
the Pareto front. An illustration of this with regards to the objectives in this thesis
can be seen in Figure 2.6.

Figure 2.6: Pareto front example. Pareto points represent the most optimal

points, which will lay on the Pareto front given the specific requirements.

Adapted from [31]

2.4.2 Cost-benefit analysis

A cost-benefit analysis is a method where the drawbacks and strengths of dif-
ferent alternatives are ranked against each other. A systematic approach is used
where each alternatives’ potential benefits and costs are measured and presented to
the decision-makers [32]. The costs are given in net value and have to be multi-
plied with a discontinuation rate. A cost-benefit analysis is often used as a macro-
economic method to understand and compare the benefits of different public mea-
sures. In Norway, all projects with a cost of over 750 million kroner need to have
a cost-benefit analysis done [33].
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There are different discontinuation rates. A normal one used in projects where the
time-frame is below 40 years is 4 %, as shown in [34]
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Chapter 3

Literature Review of Sampling
strategies

Systematic literature review

A systematic literature review was used to find research that was important for this
topic. This is an essential factor in research, according to [35]. The information
has to be systematically identified and reported if it supports the hypothesis or not.
A systematic literature review has several stages. A question is defined, data which
is of relevance is searched for, then evaluated and quality assessed. Afterward, it
is analyzed and combined with other data that have been previously collected. For
this, Google Scholar was used as the primary search engine. The majority of the
papers found were published on one of:

– Academia

– Academic Journals Database

– IEEE Xplore

– ResearchGate

– Semantic Scholar

Some of the papers used were provided by the NTNU-researchers, Frank Kraemer
and Faiga Alawad personally.

Sampling strategies

Mioduszewski et al. [3] showed that the way of measuring environmental noise
today, with the help of maps and temporary measurements done with expensive
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recording hardware is not precise. Therefore, the idea of continuous noise mon-
itoring, with cheap, energy-effective IoT-devices, which also have the option of
replenishing their energy reserves, is of interest. To lessen the need for a sec-
ondary energy source, it is of importance to optimize the usage of energy by the
IoT-device. Most environmental noise indicators do not need to be precise on the
second due to the cumulative nature of these indicators, as described in 2.1.5. The
key would be to lessen the amount of measurements while still maintaining an ac-
ceptable accuracy. What kind of level of accuracy that is acceptable is discussed in
Chapter 2.1.2.

Sampling strategies are a tool where the measurements are done in a sampling
interval, not continuously on the IoT-device. The sampling interval is the time
between each measurement. By increasing the sampling interval, the IoT-device is
kept longer in the sleep state, which has a lower energy usage than the recording
state. Due to the lower energy consumption, the IoT-device can monitor for a more
extended amount of time. This may lead to a better overview of the soundscape in
the specific area. It also may lead to new, more viable business opportunities for
companies working in the realm.

Previous work

Urban noise is one of the focus areas for most of the projects which focus on
continuous monitoring of noise. Due to the nature of urban noisescapes, these
projects are mostly focused on traffic and creating maps. Some examples of this
are SONYC [5], SENSEable [6], DYNAMAP [7], CENSE [8] and Soundsensing
[36].

Most of the projects where low cost is a factor use cables as a mean of power.
Still, some of the projects try to use different power sources. The CENSE and
SONYC projects are aiming to use solar-powered devices. Soundsensing uses a
sensor network consisting of off-the-shelf sensors with embedded machine learn-
ing, which are done on-edge, to minimize the information having to be sent over
the IoT-network. This means that more processing power is needed, and therefore
an increased energy usage. This is one of the reasons why Soundsensing has struck
up a partnership with NMBU with regard to this master thesis.

There are gaps in the discussion of sampling strategies in the aforementioned
projects. Zambon et al. talk about cost in [25], but only on a macro-time scale
when trying to describe the daily average sound levels of road types. Kramer et al.
[13] showed the large energy savings which can be done with a static sampling rate,
where reducing the sampling rate to 7 % in a 15 minutes interval did not noticeably
affect the accuracy of the estimations and achieved an RMSE of 2.

There are not many mentions of an adaptive sampling rate with regards to either
the accuracy of the measurements or the energy situation of the IoT-node. In other
domains there are some cases of adaptive sampling rates. Bhuiyan et al. [37]
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uses an event-based sampling rate, with either a low sampling rate or high sam-
pling rate dependent on if an event has occurred or not. In the field of Human
Activity Recognition (HAR), Cheng et al. [38] used a learning algorithm called
Datum-Wise Frequency Selection. When looking at a combined measurement of
energy cost and classification error, it performed better than the state-of-the-art
algorithms. Furthermore, Trihinas et al. [39] proposed AdaM, an Adaptive Moni-
toring Framework for Sampling and Filtering on IoT Devices. In their paper, their
adaptive monitoring framework reduced the data quantity by 74 %, had an accu-
racy of greater than 89 % while reducing the energy consumption by 71 % and
more.
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Chapter 4

Materials and Methods

The thesis’ scope was to test different sampling strategies and their impact on both
the accuracy and battery life on an IoT device, which records noise levels.

Due to the large amounts of preprocessing and the different techniques involved,
the materials and methods chapters are put in the same chapter. The methodology
used in this study consists of data preparation, an experiment setup, model selection
and evaluation. Before those steps are shown and discussed, a short introduction is
made of the dataset and data collection.

4.1 Data overview and collection

4.1.1 Software

This study used Python version 3.6.4 on an Anaconda platform with Numpy [40]
version 1.16.2, Pandas [41] version 0.24.2, Scikit-learn [42] version 0.21.3. Mat-
plotlib version [43] 3.0.3 and Seaborn [44] version 0.9.0.

4.1.2 Dataset

The dataset used in this master thesis consists of data collected by and at NTNU. It
is used in both [12] and [13]. From this point [12] will be referred to as the NTNU
master, while [13] will be referred to as the NTNU paper. The data is sensor data
and provides information about the sound levels at the specific area, Koopen. The
area in which the data was collected will be described in 4.1.4. The data was
recorded from week 6 in 2019, until week 17 in 2019.

The dataset consist of LAeq-values, which are used as the basis for the calculations
done further on in this chapter. This means that the LAeq-values will be the lowest
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level in this analysis. L10 and L90 will not be used in the analysis.

4.1.3 Time interval of noise measurement

The dataset is containing data about the noisescape in a student working environ-
ment. It is crucial to choose the right time interval with regard to the problem. A
time interval is an interval in which the measurements are accumulated up to. As
presented in 2.1.6, 10 minutes is deemed by several sources to be a big enough time
interval to capture a representative noisescape. In [12] and [13], the time interval
was set to 15 minutes. By choosing 15-minute intervals as the time interval, it has
a balance of being precise enough that a student may check for the interval each
15 minute, and not too granular, so that it has too much information for a student
looking for a silent place to study. This experimental setup is going to use the same
time interval.

4.1.4 Data collection

The data was collected in Koopen, a study area at NTNU used by the students
at the program Electronic engineering. It is meant to be used as a meeting place
for students at the study program, and as a place for group work [45]. Thus the
students need to know how noisy it is at Koopen before going there, as noise has a
negative impact on studying [18].

The data collection setup consisted of five sensors. They were connected to a router
through WiFi-connection. These then send the data to a database on a server. This
is illustrated in Figure 4.1 on the facing page.

The calibrated range of the sensors is between 50 dB and 100 dB [12]. The sensors
which recorded the sound level were from Libelium, a manufacturer of IoT-devices.
The devices used consist of two parts; one is a Libelium Waspmote Plug & Sense!
Smart Cities Pro and the other is a Libelium Noise Level Sensor. The devices
were placed 2.5 meters above the ground due to the placement of whiteboards on
the walls. The devices were connected to a power supply and, thus, could record
noise levels continuously throughout the data collection period. The data was sent
to a database through a Cisco router, as pictured in Figure 4.1 on the next page.
The setup of the Libelium devices can be pictured in Figure 4.2 on the facing
page.
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Figure 4.1: Setup of sensor nodes in Koopen. Figure adapted from [12].

Figure 4.2: Waspnodes setup in Koopen. The Libelium Waspmote Plug &

Sense! Smart Cities Pro on the right and the Libelium Noise Level Sensor

on the left. Figure adapted from [12].

,
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4.2 Data preprocessing

A-weighting was used as a filter for the dataset. The process of A-weighting is
described in 2.1.3 on page 7.

4.2.1 Calibration and time-shifting

Figure 4.3: Boxplot of LAeq values of all sensors.

Even though the Libelium devices are calibrated in a range of 50 to 100 dBA Figure
4.3 shows that there is a multitude of measurements outside this range. There seems
to be a lower limit of 40LAeq. From the NTNU-master, it is stated that it is possible
for the Libelium devices to do lower readings than the stated calibrated range, but
that the uncertainty in these readings are greater than in the calibrated range. The
noise level recordings are made every two seconds, which is the highest reading
frequency that the devices are capable of.

Sometimes in the dataset, the different sensor measurements are misaligned by a
second. Since a 15-minute interval is used for the evaluation it is possible to shift
the misaligned measurements back a second so that all measurements are on the
same time interval of 0, 2, 4, 6, 8 seconds. The bigger noise picture of the 15-
minute interval will still be maintained, and it is not a significant difference that
some measurements were shifted a second. In the places where measurements
are made in the second 0 and in the second 1, the measurements made on even-
numbered time index were kept.
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4.2.2 Data statistics

To fully grasp how the dataset is constructed, one needs to go deeper into each
sensor. A simplification made in this master thesis is to use only one sensor as
the basis for prediction, even though in theory, one could try to predict values for
all five sensors. Another possible route would be to use the other sensors’ data
as different test sets to see if the model is generalizable to other sensors. One
would have to make sure that there was no data leakage in that the time frame,
which is predicted in the other sensors, does not overlap with any of the training or
validation data.

Table 4.1: Statistics of LAeq values of all sensors.

sensor count mean std min 25% 50% 75% max

node01 3034904 45.5 7.9 0.0 43.5 44.3 46.5 88.4

node02 3104532 47.5 4.0 0.0 45.2 45.8 47.5 89.6

node03 3158160 46.3 4.9 0.0 43.5 44.3 46.4 92.6

node04 3159952 44.6 4.8 0.0 42.0 42.5 44.5 89.7

node05 3050684 55.1 3.1 0.0 54.1 55.1 55.4 92.4

One can observe in Table 4.1 that sensor node 05 has higher values than the other
four sensor nodes. This is regarding the mean-value, which is 9.2 (LAeq) higher
than sensor node 03, and also around that range for the rest of the sensors. This is
also true regarding the 25, 50 and 75 quantiles, where sensor node 05 is 8-13 LAeq

higher than the rest of the respective quantiles for the rest of the sensors.

When looking at Figure 4.1 on page 27, one may observe that sensor node 05 is
placed over tables that function as group working places, which may explain some
of the higher values on that sensor node, but then one would assume that sensor
node 01 also had higher measurements than the rest. Since this is not the case, it is
unknown why this is so, but an assumption is made that there is a difference in the
calibration of the sensors.

Sensor node 03 was concluded to be the most stable in Bosch [12]. In Figure 4.4,
the LAeq,15 for the observation period can be observed. One can clearly see the
period in which students are present in Koopen. This is from 06:00 till 19:00, with
some outliers as well in e.g. weeks 12 and 13. Friday afternoons are quieter than
other weekdays. Weekends and holidays (week 16) are quieter than the weekdays.
In the nighttime, the working space is the quietest. There are two nights which are
outliers in week 12, which may be because of late-night studying or a party.
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Figure 4.4: LAeq,15 of Sensor node 03 for the observation period.
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4.2.3 Missing values

If there are missing values in the measurements, it will affect the experiment. This
is due to how the experimental setup has been designed. A mask will walk through
every 15-minute window and pick out measurements based on a sampling percent-
age. For an experimental setup like this, there should be 450 measurements in each
15-minute window.

In the NTNU-paper, only one sensor was used, sensor node 01, and all 15-minute
windows with missing data were discarded. To get an overview of the amount
of missing data which has to be discarded or how many missing values has to be
imputed a deeper analysis is performed.

Figure 4.5: Barplot of the number of measurements per week with each

sensor node represented with its own color. The number of measurements

on the y-axis. X-axis represented by week.

The data was collected over 11 weeks. Due to the noisy environment and observa-
tions based on the calculated statistics on the sensor nodes, an assumption is made
that all LAeq-values with a value 0 are wrong measurements and are set to NaN.
There were 56 336 (1.9%) LAeq-measurements with value 0 in sensor node 01, 53
in sensor node 02, 52 in sensor node 03, 72 in sensor node 04 and 3418 in sensor
node 05.

By looking at Figure 4.5, one can see that Week 6 and Week 17 have fewer mea-
surements than all other weeks. This may indicate that the data collection was
started and ended midway through a week. Furthermore, node 01 and node 05
had approximately 900 000 (3.9 %) and 750 000 (3.5%) fewer measurements than
the other three sensors, as shown in Table 4.1 on page 29. When all sensors are
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functioning properly, node 05 seems always to have a little fewer measurements
than the other sensor nodes. In week 12 the sensors nodes had approximately a 15
% reduction overall in measurements in comparison to both the week before and
after.

Frequency of missing measurements in the 15-minute windows

Each 15-minute window in the dataset will be examined for the number of missing
measurements. This is important because if there are any specific time intervals
with a large number of missing measurements, these may be necessary to either
impute, or, if the percentage of the missing measurements is abnormally high, that
specific time interval may be discarded. By discarding data, the model’s ability to
discern the trends may be weakened, yet if the specific time interval has a large
percentage of missing measurements, it may be necessary.

By counting the number of measurements in each 15-minute window one can get
an overview of the quality of the dataset. If the majority of the 15-minute windows
have more than 50 % missing measurements, it may be difficult to conduct the
experiment with the masking method mentioned, and another method has to be
introduced. In Figure 4.6 on the next page, each sensor node with it’s associated
15-minute windows, and their number of missing measurements is presented. From
the analysis performed, it looks like not one 15-minute window has measurements
for all 450 sample points and that the lowest amount of missing measurements in a
15-minute window is 6.

There are two areas on the figure which show a large amount of count of instances.
This is from 0-50 missing measurements in a 15-minute window and, on the very
end, at 450 missing measurements. In the other areas, the trend is some small
instances with missing measurements, but not any systematic trends, as seen in the
two aforementioned areas. Sensor node 01 is the lone outlier, and it has several
windows with around 300 missing measurements.

The large increase in instances of windows with 100 % of missing measurements
can be assumed to be partly due to the aforementioned weeks 6 and 17, where the
data collection did not start until midweek. When focusing on the other area of
interest, the interval between 0 and 50, there seems to be cohesion between the
sensors. In Figure 4.7 on the facing page, this area is presented. The plot shows
a clear trend where the number of missing measurements are following the same
tendencies with the most abundant instances of missing measurements being in the
range of 10 to 20 per 15-minute window.

The findings lead to the decision to impute the missing values. The NTNU-paper
discarded all 15-minute windows with missing values, yet the results in that paper
could not be reproduced by the author of this master thesis, and zero 15-minute
windows without missing values were found.
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Figure 4.6: Frequency of missing measurements for each 15-minute win-

dow. Count of instances on the y-axis and the number of missing measure-

ments in a 15-minute window on the x-axis.

Figure 4.7: Frequency of missing measurements for each 15-minute win-

dow. Count of instances on the y-axis and the number of missing mea-

surements in a 15-minute window on the x-axis. The only difference to the

previous figure is that the number of missing measurements are limited to

50 on the x-axis.
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Process of the imputation of missing values

Figure 4.8: Barplot of the number of missing measurements per week,

for each sensor node. The number of measurements on the y-axis. X-axis

represented by week.

Due to the large number of missing values discovered, with not one 15-minute
window without missing values, a decision is made to impute the missing values.
The data from week 16 is chosen as test data due to the full week that is represented.
It is the last week with a low degree of missing measurements, as seen in Figure
4.8.

Sensor node 03 is chosen to be the main sensor node. It will from now on be re-
ferred to as the master sensor node. Along with sensor node 04, it is the sensor with
the lowest amount of missing measurements overall, as seen in Figure 4.8.Another
important factor as to why sensor node 03 is chosen as the master sensor node is
its central placement in the room, as seen in Figure 4.1 on page 27. Isolated, the
sensor’s placement is not that important, but if one wishes to use the other sensor
nodes to impute the missing measurements in the master sensor node, it will affect
the imputed values. The reasoning is that the central placement of sensor node 03
in the room will give it a more correct soundscape than if sensor node 04, which is
placed in the corner, was chosen.

The imputation method is as follows:

For the measurements where sensor node 03 does not have a value, an average
over the other sensor nodes’ measurements for that specific missing time point is
imputed in sensor node 03. The number of sensor nodes with measurements varies
and may be in the range of 0 to 5. In the cases where no measurements have been
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made, a normal forward imputation is made where the missing value is replaced
with the value of the previous measurement. In the cases where sensor node 03
does not have a missing measurement, the existing measurement is kept.

Sensor node 05 has different average values than the other sensor nodes, as seen in
Table 4.1 on page 29, and it is presumed that this is due to a different calibration.
To not skew the imputation method, all data in sensor node 05 is re-scaled so that
the mean of sensor node 05 is equal to the mean of sensor node 03. This process
is done by multiplying each measurement for sensor node 05 with the constant
from Equation 4.1. This is done on the dataset where week 16 is excluded and all
measurements with noise level value 0 are replaced with NaN. The mean of sensor
node 03 is 46.94, while the mean of sensor node 05 is 55.20.

ReScalingConstant =
sensornode03mean

sensornode05mean
(4.1)

From this point in the thesis, the data for week 17 is discarded due to the large
degree of missing measurements. A comparison between theLAeq-values of sensor
node 03 before and after the imputation is provided in Figure 4.9. The sensor data
have a wider range of values after the imputation, but otherwise, the distribution
does not change much.

Figure 4.9: Comparison of LAeq-values for Sensor node 03 before and

after imputation.
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4.2.4 Masking

To decrease the energy usage, a subsampling strategy will be implemented on the
data. This will lead to the device being on for less time, and thus the energy usage
decreases. This also leads to fewer recorded measurements, yet one does not wish
this to affect the accuracy such that it crosses the threshold of ±3 LAeq, defined in
Chapter 2.1.2.

When subsampling from the original dataset, a mask will be applied to every 15
window to pick out measurements based on a sampling percentage. The mask is
a one-dimensional NumPy array with 450 elements. The mask elements which
are marked with a 1 are the places where measurement is picked out; the rest is
discarded. One mask is created for each subsampling rate and then copied the
number of 15-minute windows in the dataset times. Thus a mask which covers the
whole dataset is created.

The RMSE is calculated between the LAeq-value for the original 15-minute win-
dow and the LAeq-value for the subsampled 15-minute window. Then the mean
of the RMSE across all 15-minute windows based on a specific subsampling per-
centage is calculated. This is done to understand how each subsampling performed.
RMSE will then be a measure of how representative the subsampled measurements
are of the true variation in sound.

Masking methods

Two different masking methods are implemented and tested. Masking method 1
(MM1) picks out measurements based on set intervals. As an example, when using
a subsampling percentage of 50 % MM1 marks every other sample with a 1, and
the sample is copied into the subsampled data frame. The relationship between
subsampling percentage and the frequency can be seen in Table 4.2 on the facing
page. MM1 is limited to whole numbers, which can be multiplied into 450.

Masking method 2 (MM2) uses a NumPy random function, NumPy.random.choice,
to create a one-dimensional NumPy array with length 450, filled with zeros and
ones where the ratio of ones and zero is determined by the subsampling percent-
age. Thus, the masking is applied at random. With a masking method that uses a
random selection, there is no set frequency. This means that it is possible to use all
possible subsampling percentages in the range of 0 to 100. The distribution of el-
ements picked out by the masking method across the binned elements can be seen
in Figure 4.10. What can be seen in this figure is that there are some bins which
are a bit over-represented in comparison to the neighboring bins. This can be seen
for the subsampling rate of 35 % and bin 271-315 and the neighboring bins. This
does not seem to be a problem.
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Table 4.2: Overview of the relationship between subsampling percentage,

number of samples and frequency of subsampling with MM1.

Subsampling percentage Number of samples Frequency

100 % 450 1

50 % 225 2

20 % 90 5

10 % 45 10

6.7 % 30 15

3.3 % 15 30

2 % 9 50

1 % 4.5 100

Selection of the masking method

The two masking methods are applied to the dataset and compared. It is essential to
see how they fare in the different subsampling areas, as there may be areas where
one has a better performance than the other. In Figure 4.11 on page 39, MM1
(called Determined in the figure) works better when the subsampling rate is over
10 %. When the subsampling rate is below this threshold, MM1 does not perform
much differently from MM2 (called Random in the figure).

The error bands on the figure show the variation dependent on the week. MM1,
Determined, is more stable, than MM2, Random, which has more variation be-
tween the weeks. However, despite the difference in variation, MM2 provides
much greater flexibility in usage, with the ability to use a wide range of subsam-
pling percentages. This is due to it not being constrained by the frequency of the
set masking method, where each sample has to come every 2 or 4 sample. This
flexibility is determined to outweigh the lower performance in subsampling per-
centages over 20 % and the larger variation in performance between the different
weeks.

The subsampling percentages that MM2 will use are from 100 % to 5 %, with a
decrease of 5 % between each subsampling percentage.
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Figure 4.10: An overview of MM2 distribution across binned values of a

window with 450 elements. Rows indicate sampling percentage, and the

column are the bins that the elements are divided into.
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Figure 4.11: Comparison of two masking methods with specific week.

RMSE on the y-axis and percentage of dataset (subsampling rate) on x-

axis.
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4.2.5 Summary of processes and methods implemented

Week 17 was discarded due to the large number of missing measurements. Week
16 was separated into a test dataset.

Sensor node 03 was chosen as the master sensor. Sensor node 05 was re-scaled
with regards to the mean of sensor node 03. Then a weighted mean between all
sensor nodes was applied on rows with missing measurements. MM2, Random,
was chosen as the masking method due to the flexibility this method has. The
subsampling percentages that MM2 will use are from 100 % to 5 %, with a decrease
of 5 % between each subsampling percentage.

The resulting dataset comprimises a training dataset with 2 908 350 rows and a test
dataset with 302 400 rows.

The dataset consists of an index that has an interval of 2 seconds and a column with
LAeq-values for the specific timestamp.
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4.3 Experimental setup

An experiment has to be set up to test the hypothesis. The hypothesis is how often
the IoT-device needs to record noise levels while keeping the accuracy below the
error threshold regarding the energy-accuracy trade-off. This hypothesis is tested
by seeing if it is possible to predict the RMSE of the LAeq-values with the features
available in the dataset. The data which is going to be used is the preprocessed
data of the master sensor, sensor node 03. This data frame has a time index and a
column with LAeq-values, and the rows have a measurement every 2 seconds. The
data frame will be called O.G-Dataframe, an abbreviation for Original-Dataframe,
and can be seen in Figure 4.12.

Figure 4.12: Original-Dataframe (O.G-Dataframe) containing LAeq of

the master sensor. Time-index with even spacing of 2 seconds and the

accompanying LAeq-value.

The experiment should mimic a real-life scenario where one does not have infor-
mation about the next measurements. The goal is to test how different subsampling
rates affect the error in the predictions made by the machine learning model. To
test the different subsampling rates, the original data frame has to be transformed
into the time interval, which was decided in Chapter 4.1.2 on page 25, 15 minutes.
A major question that the experiment will try to answer is if it is possible to predict
the error of window n+1, while only using the info of the previous window, n as
input into the already trained machine learning model.

The subsampling space used will be every subsampling rate from 100 % to 5 %,
with an interval of 5 %. This gives 20 different subsampling rates. For each sub-
sampling rate MM2 will pick out the measurements and put these in a new, empty
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data frame. Simultaneously the feature extraction will be performed. This process
will be described more in Chapter 4.3.3.

All subsampled data frames together will be called SubX-Dataframes. If there is
talk about a specific subsampling rate, the X will be replaced with the subsampling
rate, e.g., Sub20-Dataframe. If a subsampling rate is not mentioned, X indicates
all subsampling rates. An excerpt of the Sub20-Dataframe is shown in Figure
4.13.

Figure 4.13: Sub20-Dataframe containing time-index with even spacing of

15 minutes and the accompanying features derived from theLAeq-values in

the particular 15-minute window. Leq orig and Leq sampled are dropped

from the data frame but kept in the figure to show the RMSE-calculation.

Rounding is performed for clarity in the figure, but not in the analysis.

All subsampling rates within the SubX-Dataframes will be copied into one large
data frame. The data frame, called 15Min-Dataframe, is the dataset in which
predictions are going to be made on. It has a row for every 15 minutes, which
indicates every 15-minute window, n, n+1, n+2, n+3,... n+k. These n, n+1, n+2,
n+3,... n+k windows exist for each subsampling rate, which means that each time
window n has 20 instances in the 15Min-Dataframe, with different values. An
example of this can be seen in Figure 4.14.
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Figure 4.14: 15min-Dataframe containing time-index with all 20 in-

stances of same 15-minute window from different SubX-Dataframes shown

with accompanying features + 2 extra instances of next 15-minute window.

Leq orig and Leq sampled are dropped from the data frame but kept in the

figure to show the RMSE-calculation. Rounding is performed for clarity in

the figure, but not in the analysis.
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4.3.1 Target variable

The target variable in the 15Min-Dataframe is the feature RMSE. The RMSE is the
difference between Leq orig and Leq sampled of the 15-minute window. Leq orig
is the average LAeq-value of the 15-minute window without any subsampling per-
formed. In other words, it is the average LAeq-value of the Sub100-Dataframe.
This can be seen on Figure 4.14 on the row with value 100 in the Subsampling rate.
Leq sampled is the average LAeq-value of the 15-minute window with the specific
subsampling implemented. The RMSE is calculated for all SubX-Dataframes for
each 15-minute window, n, n+1, n+2, n+3,... n+k.

Leq orig and Leq sampled is calculated through the formula in Equation 2.3 on
page 9. The reason for using the average LAeq-value from the Sub100-Dataframe
as the ground truth for average LAeq-values is that this particular subsampled
dataframe has all 450 measurements included.

A column of RMSE-values for all 15-minute windows is added to the 15Min-
Dataframe, as seen in Figure 4.14, and this will be the target variable. The tar-
get variable will be a continuous value which cannot be lower than 0 and higher
than the difference between the highest and lowest value in each 15-minute win-
dow.

4.3.2 Distribution of errors (RMSE)

Figure 4.15: Distribution of RMSE (LAeq) over subsampling percentages

for the whole training set. 100 % indicates that the full dataset has been

used.
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An overview of the error distribution for all subsampling percentages is shown
in Figure 4.15 on the preceding page. The fewer measurements used in the time
interval, the higher the RMSE. This increase is increasing steadily up to the sub-
sampling percentage of 25 %. From a subsampling percentage of 20 %, there is a
substantial increase in errors over 10 RMSE. The challenge will be to train a model
that can model the error distribution for all subsampling percentages.

4.3.3 Feature extraction

In the O.G-Dataframe, there are two columns that can be used to generate more
features to predict the target variable. This is either the datetimeindex or the column
with LAeq-values. It is of interest to test if a time-independent dataset has the
potential to predict the RMSE. Therefore, preliminary, only the column with LAeq-
values is used to generate more features. Statistics for each subsampled 15-minute
window is calculated based on the LAeq-column. The statistics were calculated
using pandas.DataFrame.resample and the time interval was set to 15 minutes. The
statistics calculated were max, min, standard deviation, skewness and mean. Max-
min and std/mean are also added as features after doing row-wise operations on the
dataset.

These values are calculated for the 15-minute window for each subsampling rate
and added to the associated SubX-Dataframe, as shown in Figure 4.13. The sub-
sampling percentage is also added as a feature to each SubX-Dataframe. Then
every SubX-Dataframe is added to the 15Min-Dataframe, which can be seen in
Figure 4.14 on page 43.

4.3.4 Time-dependent features

Another variant of the experiment is done with two additional features, hour and
day of week. These two features are included in the model. Day of week is a
feature with a range of integers from 0 to 6, while hour is a feature with a range
of integers from 0 to 23. The features are the two most important features used in
the NTNU-paper to predict their noise predictors. They are added to the 15Min-
Dataframe with the other features in a separate experiment before predicting, and
no other changes are made.

4.3.5 Set selection

Week 16 is set aside as a test set. To train the model and evaluate the performance
of the models, a K-fold cross-validation is implemented. Each week represents a
different fold. With week 16 set aside as test set, ten weeks left for the training and
evaluation process. These weeks are 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.

The folds are paired through a random selection. The resulting distribution of folds
towards the training and validation set can be seen in Table 4.3.
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Table 4.3: Overview of how the different weeks are split into training and

validation sets in the K-fold cross-validation.

Fold Training set (weeks) Validation set (weeks)

1 6, 7, 8, 9, 11, 13, 14, 15 10, 12

2 6, 8, 9, 10, 12, 13, 14, 15 7, 11

3 7, 8, 10, 11, 12, 13, 14, 15 6, 9

4 6, 7, 9, 10, 11, 12, 13, 15 8, 14

5 6, 7, 8, 9, 10, 11, 12, 14 13, 15

This results in 5 different models, which are evaluated on different subsets of the
data. The variation in scores between the different models will be used to determine
the stability of the models.

4.3.6 Metrics

The metric used to determine the accuracy of the model will be RMSE of RMSE.
The target variable (RMSE) is calculated between the average LAeq-value of the
Sub100-Dataframe and the average LAeq-value of each SubX-Dataframe for each
15-minute window, n, n+1, n+2, n+3,... n+k. After the process of predicting the
RMSE, one gets RMSE of RMSE. This says how many LAeq,15min the prediction
is from predicting the correct RMSE of the 15-minute window.

4.3.7 Using window n to predict RMSE of window n (Baseline)

Before predicting the RMSE of window n+1 based on the features of the n win-
dow, a baseline is created. The baseline is found through predicting the RMSE of
window n based on the statistics of the same window, n.

Three different algorithms are used; a Linear regression, Random Forest Regres-
sion and Dummy Regression. The set selection is shown in Table 4.3. The Dummy
Regression uses the mean of the target variable in the whole training set as a pre-
dictor. The Linear Regression is trained out of the box with no hyperparame-
ters tuned. The Random Forest Regression has the parameters n estimators set to
10 and min samples leaf to 0.001. These values were found through a little grid
search, which consisted of training several models with different values for the pa-
rameters. The goal of the hyperparameter-tuning is both to prevent overfit towards
the training dataset and reduce the bias. The values tested were 10, 20 and 30 for
the n estimators. In addition, the min samples leaf was tested on 0.1, 0.01 and
0.001. This resulted in nine models. The model with n estimators set to 10 and
min samples leaf to 0.001 was the best performing. An overview of the Random
Forest models and the two hyper-parameters tested is presented in Table 4.4.
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Table 4.4: Overview of all Random Forest Regression models based on

different combinations of hyperparameters.

Model n estimators min samples leaf

1 10 0.1

2 10 0.01

3 10 0.001

4 20 0.01

5 20 0.01

6 20 0.001

7 30 0.1

8 30 0.01

9 30 0.001
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4.3.8 Using window n to predict RMSE of window n+1

In a real-life scenario where a subsampling process is implemented, one will only
have the info of the previous windows available, and those data may be subsam-
pled. This means that the model should be able to predict the RMSE of the n+1
window based on the features of the n window, which may be based on subsampled
data.

To make this possible, the model must be trained on every combination of subsam-
pling percentages in window n and n+1. One model is trained one all the different
combinations. In a hypothetical scenario with 1000 windows and 20 sampling per-
centages the number of windows to train on would be 1000 x 20 x 20.

A new data frame needs to be created. It will be called 15Min-n+1-Dataframe.
In the data frame the target variable, RMSE, of the window n+1 is shifted unto the
features of window n. This target variable shifting process is done for all possible
sampling percentages, X, for the window n+1. Window n now is represented 20
times in the new data frame, with 20 different RMSE values. The subsampling rate
for the target variable will be represented with a feature called ”Subsampling Rate
for Target Variable”. The subsampling rate for the features will be represented
with a feature called ”Subsampling Rate for Features”. An overview of 15Min-
n+1-Dataframe is provided in Figure 4.16.

The experiment is tested on the same three algorithms as in the baseline; a Linear
regression, Random Forest Regression and Dummy Regression. The Linear Re-
gression is trained out of the box with no hyperparameters tuned. The Random
Forest Regression has the parameters n estimators set to 10 and min samples leaf
to 0.001. The Dummy Regression uses the mean of the target variable in the
whole training set as predictor. The set selection is the one shown in Table 4.3
on page 46.
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Figure 4.16: 15min-n+1-Dataframe containing time-index and 22 in-

stances of same 15-minute window from different shifted SubX-dataframes

with accompanying features. ”Subsampling Rate” shortened to ”SR” for

figure clarity. Rounding is performed for the same reason, but not done in

the analysis.
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4.4 Method for performing an economic analysis

An imaginary installation with 22 sensors in a Wireless Sensor Network is used
to do an economic analysis of different sampling strategies. The sensors should
have a uniform sampling strategy so that the data produced is easier to analyze.
As mentioned in chapter 2.3.2, the microcontroller is assumed to only have two
different energy states. In sleep-mode, the energy-usage is 0. In on-mode, the
energy-usage is the percentage of the subsampling. This mimics the process in the
NTNU-paper, as mentioned in the aforementioned theory chapter. The percentage
of the different sampling modes and their energy consumption can be seen in Table
4.5.

Table 4.5: Sampling rates and their energy consumption.

Sampling percentage samples i in 15 min Energy consumption

100 % 450 100 %

95 % 427 95 %

90 % 405 90 %

85 % 382 85 %

80 % 360 80 %

75 % 337 75 %

70 % 315 70 %

65 % 292 65 %

60 % 270 60 %

55 % 247 55 %

50 % 225 50 %

45 % 202 45 %

40 % 180 40 %

35 % 157 35 %

30 % 135 30 %

25 % 112 25 %

20 % 90 20 %

15 % 67 15 %

10 % 45 10 %

5 % 22 5 %
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4.4.1 Pareto

After finding the models’ optimal hyperparameters, the models are retrained on
the whole training dataset, not split across K-folds. Should the models with the
additional time-dependent features perform better, that is the dataset that will be
chosen. If not, the models will be trained only on the time-independent features.
The models are tested on the test dataset, which was set apart (week 16). This
process is only done on the Using window n to predict RMSE of window n+1, as
predictions on the same window are not of interest in a real-world context.

The data frame containing the results will have another feature added which rep-
resent the energy consumption The energy consumption is derived from Formula
2.5. The test accuracy is plotted against the energy consumption, and the Pareto
front is found.

4.4.2 Cost-benefit analysis

In the cost-benefit analysis, the sensors are placed in an outdoor environment. Re-
gardless of connectivity to the electricity grid or not, the sensors are the same. The
sensors used in this analysis are not the Libelium-devices used in the data collec-
tion of the dataset. The sensors used and the information about them is provided
by Soundsensing. A cost-benefit analysis is performed on different Senor Network
alternatives. These are presented in Table 4.6.

Table 4.6: Cost-benefit analysis - Alternatives.

Alt. Alternative description Energy source Sub-sampling rate

0 Grid Baseline Connected to grid 100 %

1 Wireless baseline Battery 100 %

2 NTNU SOA Battery 7 %

3 Experiment Battery Pareto optimum

The sensors have a lifetime of 5-10 years, and the lifetime is set to 10 years to
follow two cycles of the noise mapping demanded by [2]. The battery life will
be dependent on the subsampling rate. A sensor that does continuous sampling is
assumed to have a battery life of a month (30 days). The battery usage is assumed to
be linear throughout the month. Thus, a reduction of energy consumption by 50 %
would lead to a battery life of two months. A sensor using the NTNU SOA, which
has a subsampling rate of 7 %, would have a battery life of 429 days, approximately
14 months.

Battery lifedays =
30 days

Subsampling rate
(4.2)
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where 30 is days before empty on full subsampling rate, and Subsampling rate is
given in percentage.

Table 4.7: Cost-benefit analysis - Battery information.

Alt. Energy source Subsampling rate Battery-life

Grid Baseline Connected to grid 100 % -

Wireless baseline Battery 100 % 1 month

NTNU SOA Battery 7 % 14 months

Experiment Battery Pareto optimum -

The cost of each sensor is assumed to be 10 000 kr. This is not the real cost of
the sensors that Soundsensing provides but is an example price used to make the
cost-benefit analysis possible.

Every alternative is sending the data wirelessly over IoT-networks. The costs as-
sociated with this are a minimum of 20 kr per month. With continuous recording,
one may assume a cost of 50 kr per month. The cost per extra percentage of sub-
sampling is assumed to be linear, and thus 1 % of data sent costs 0.5 kr.

The installment of each sensor is associated with a cost. The alternative Grid Base-
line has an extra cost in this regard, due to the need to connect to the electricity grid.
The sensors will be placed outside, on a building’s facade or other placements. An
assumption is made that every installment has to be done by a certified electrician
due to the cables which have to be laid out. The hourly price of an electrician is set
to be 1000 kr [46]. Every installment is assumed to take 2 hours. For the sensors
which use batteries as the energy source, the installment can be done by a person
from the Soundsensing team and is assumed to take 1 hour. The associated cost of
an hour’s work is assumed to be 200 kr.

The batteries are rechargeable, and thus a new one does not have to be bought each
time, but there is a cost with a person having to change the batteries. A battery
swap is assumed to take 10 minutes, and the batteries are changed in the whole
Wireless Sensor Networks as a whole. It is assumed 5 minute travel time between
each sensor. The reason for using 5 minutes is the thought that the Wireless Sensor
Network is in a specific local area. Thus, for 22 sensors, the associated time usage
is five and a half hours. The battery swap can be done by a Soundsensing team
member at the cost of 200 kr per hour.

Battery swap costyearly =
12 months

Battery life
∗ 200 kr (4.3)

where 12 months is the number of months in a year, and Battery life is the number
of months the battery lasts.
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The cost of the electricity used by the sensor connected to the grid and the cost of
the electricity used to recharge the batteries is assumed to be the same.

Table 4.8: Cost-benefit analysis - Cost picture. (y) indicates the yearly

cost.

Alt. Sensor Installment Data sending (y) Battery swap (y)

Grid Baseline 10 000 kr 2000 kr 600 kr 0 kr

Wireless baseline 10 000 kr 200 kr 600 kr 2400 kr

NTNU SOA 10 000 kr 200 kr 240 kr 168 kr

Experiment 10 000 kr 200 kr - -

A discontinuation rate of 4 % is used for the Cost-benefit analysis, as decided in
2.4.2.
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Chapter 5

Results

5.1 Prediction of RMSE

5.1.1 Using window n to predict RMSE of window n

Figure 5.1: Plot of model performance, Using window n to predict RMSE

of window n. Accuracy (RMSE of RMSE) on the y-axis and Subsampling

percentage on the x-axis.

In Figure 5.1, one can see that both the Linear Regression and Random Forest Re-
gression have a performance significantly better than the Dummy Regression for
all subsampling percentages. This trend is reinforced for all subsampling percent-
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ages below 65 %. The Random Forest Regression seems to be a little overfitted,
which can be seen by the discrepancy between the training score and the valida-
tion score, also known as the model’s variance. The Linear Regression has a lower
variance than the Random Forest Regression but higher bias.

All three algorithms have an upward trend where the error is increasing with a
lower subsampling rate. Both the Linear regression and the Random Forest Re-
gression have a steady increase in error, indicating that the difference in error dis-
tribution is learned better by these models. The curve of the Dummy Regression
has a much steeper slope, especially in the subsampling percentages below 25 %.
Since the Dummy Regression predicts the same mean-value for all samples, this is
to be expected.

5.1.2 Using window n to predict RMSE of window n+1

Figure 5.2: Plot of model performance, Using window n to predict RMSE

of window n+1. Accuracy (RMSE of RMSE) on the y-axis and Subsam-

pling percentage on the x-axis.

When looking at Figure 5.2, one can observe that it is possible to split the three
models’ performance into three parts. From 100 % to 60 %, from 60 % to 25 %
and from 25 % to 5 %. From 60 % to 25 %, the models perform quite similar,
while in the first and last part, the Random Forest Regression outperforms both the
Linear Regression and the Dummy Regression.

The variance for all three algorithms is low, but the bias is markedly high, espe-
cially for low subsampling rates, with RMSE of RMSE up to 8 LAeq for subsam-
pling rates around 25. The subsampling rate of 25 has another interesting char-
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acteristic. Below this subsampling rate, both the Linear Regression and Random
Forest Regression perform better than the Dummy Regression. This is particularly
true for Random Forest Regression.

5.2 Prediction of RMSE with additional time-dependent
features

5.2.1 Using window n to predict RMSE of window n

Figure 5.3: Plot of model performance, Using window n to predict RMSE

of window n with additional time-dependent features. Accuracy (RMSE of

RMSE) on the y-axis and Subsampling percentage on the x-axis.

Figure 5.3 shows no difference from Figure 5.1. This claim is verified when check-
ing each model’s performance against each other through a manual check of each
score point in python.
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5.2.2 Using window n to predict RMSE of window n+1

Figure 5.4: Plot of model performance, Using window n to predict RMSE

of window n+1 with additional time-dependent features. Accuracy (RMSE

of RMSE) on the y-axis and Subsampling percentage on the x-axis.

Figure 5.4 shows no difference from Figure 5.2. This claim is verified when check-
ing each model’s performance against each other through a manual check of each
score point in python.
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5.3 Economic impact of sampling strategies

5.3.1 Pareto optimization

To find the Pareto front, the models are re-trained on the full training dataset, as
mentioned in 4.4.1. The re-training is done on the features which are not time-
dependent since both 5.2.1 and 5.2.2 showed no difference in performance with
the compared models.

The new re-trained models’ performance and trends were checked against the pre-
vious models trained through the K-folds cross-validation. The model was deter-
mined to follow the same trends, and the Pareto plot was made, as presented in
Figure 5.5.

Figure 5.5: Pareto plot. Using window n to predict RMSE of window n+1

without additional time-dependent features. Accuracy (RMSE of RMSE)

on the y-axis while Energy consumption on the x-axis. The yellow dotted

line (- - -) marks the threshold for error at ± 3 LAeq. The orange dotted

line (- - -) marks ± 5 LAeq, which is deemed as an audible difference.

The Pareto front will be the points where the optimal resource balance is. From
Energy consumption 5 % to 25 %, the Random Forest Regression is creating the
Pareto Front. From 25 % to 55 %, the three algorithms’ Pareto points are almost
indistinguishable. From energy consumption 100 % to 55 %, the Pareto front again
lies at the points of the Random Forest Regression.

The threshold for error, which is marked with the yellow dotted line, is ± 3 LAeq.
Thus the optimal point is where the energy consumption is the lowest, and the ac-
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curacy (RMSE of RMSE) has not crossed the threshold for error. This point lies in
the Pareto points of the Random Forest Regression and has an energy consumption
of 65 % and an accuracy (RMSE of RMSE) of 2.5.

5.3.2 Cost-benefit analysis

The Pareto optimum of the experiment is used to do the Cost-benefit analysis. With
a subsampling rate of 65 %, the battery life of a sensor is found through Formula
4.2. Thus, the Alternative Experiment has a battery life of 46 days. An overview
of the battery information across all alternatives is shown in Table 5.1.

Table 5.1: Cost-benefit analysis - Battery information - With results from

the experiment.

Alt. Energy source Subsampling rate Battery-life

Grid Baseline Connected to grid 100 % -

Wireless baseline Battery 100 % 1 month

NTNU SOA Battery 7 % 14 months

Experiment Battery 65 % 1.5 months

The yearly data sending cost is 0.5kr ∗ 65 ∗ 12 = 390kr. The yearly battery
swap cost with the Alternative Experiment is 1600 kr, as found through Formula
4.3. An overview of the cost information across all alternatives is shown in Table
5.1.

Table 5.2: Cost-benefit analysis - Cost picture. (y) indicates the yearly

cost - With results from the experiment.

Alt. Sensor Installment Data sending (y) Battery swap (y)

Grid Baseline 10 000 kr 2000 kr 600 kr 0 kr

Wireless baseline 10 000 kr 200 kr 600 kr 2400 kr

NTNU SOA 10 000 kr 200 kr 240 kr 168 kr

Experiment 10 000 kr 200 kr 390 kr 1600 kr

The costs in Table 5.2 were multiplied by the number of sensors in the Wireless
Sensor Network, 22, and a cost-benefit analysis was performed on the alternatives.
The results are shown in Table 5.3

The alternative with the best net value is Alternative NTNU SOA, which uses bat-
teries as an energy source and a subsampling rate of 7 %. The Net value is 326 656
kr. Following is the 0-alternative, the Grid Baseline, with a net value of 360 910 kr.
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Table 5.3: Results of Cost-benefit analysis

Alt. Energy source Subsampling rate Net value

Grid Baseline Connected to grid 100 % 360 910 kr

Wireless baseline Battery 100 % 789 162 kr

NTNU SOA Battery 7 % 326 656 kr

Experiment Battery 65 % 608 938 kr

With its subsampling rate of 65 % found through Pareto optimization, Alternative
Experiment had a net value only better than the Wireless baseline. This is mostly
due to the lower costs associated with the battery swaps.
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Chapter 6

Discussion

6.1 Discussion of Materials and Methods

6.1.1 Data collection

There are multiple factors that may have affected the data collection and the result-
ing sensor data. One of these is the knowledge the student have of being monitored.
This may have affected the students who were spending their time in Koopen and
contributed to either lower and higher noise levels than normal. This factor is coun-
terweighted by the length of the data collection period. Nine weeks would most
likely have given the students time to adjust to the fact that their noise levels are
being recorded. Koopen is often used for experiments, and this makes the students
less likely to be affected by the data collection.

Another factor that may have affected the sound levels recorded is the distance
from the most significant noise source, the students, to the Libelium recording
devices. The Libelium devices were placed 2.5 meters above the students due to
whiteboards hanging on the walls. Since the collected data is looked upon as the
ground truth, the distance should not affect the prediction, but it may have altered
the recorded soundscape.

6.1.2 Choice of master sensor

When choosing sensor node 03 as the master sensor and constructing the O.G
Dataset, large amounts of data are discarded from the dataset. Even though some
of the data from the other sensor nodes are used when imputing the weighted mean
of the available sensors, the rest of the data from the sensor nodes is not used in
the analysis. This is a simplification made due to the time and resource restraints
of a master thesis. A more sophisticated analysis could involve all sensors in the
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training process. Another possible route could have been to use the other sensors
as different test sets, to see if the model is generalizable to other sensors. One
would have to make sure that there was no data leakage, in that the time frame
which is predicted in the other sensors does not overlap with any of the training
or validation data. Neverteheless, even when taking measures like this, one would
still have some data leakage due to the proximity of the sensors towards each other,
and the placement in the same room. To create a dataset where the generalizability
is more in focus, sensor nodes could be placed in different rooms and areas of the
building.

6.1.3 Imputation process

The imputation process is also of interest. An imputation process was not done in
the NTNU-paper, as it was stated that they discarded the windows with missing
values. These results could not be reproduced by the author of this thesis.

In Figure 4.7, it can be observed that there are no windows with 0 missing mea-
surements. The lowest amount of missing measurements found in a window was
6. This finding led to the decision to impute the missing measurements.

As seen in Figure 4.3, sensor node 05 overall has higher values for the measure-
ments. When re-scaling the measurements by a constant, 0.9, an assumption is
made that the device’s calibration is wrong. Still, there is the possibility that the
corner sensor node 05 is placed in is a particularly noisy corner, with ventilation
or another constant noise in the very near vicinity, and that the data representation
is correct. Because the dataset was acquired from external sources and that the
Corona pandemic has made all universities close down their buildings, it was not
easy to check if the assumption was correct or not, and the decision had to be made
based only on the data. Thus, the decision to re-scale all values of sensor node
05. When re-scaling the LAeq-values, a change is made to the noisescape, and the
noise environment has changed from what it was originally, something which may
have affected the results.

Another challenge in the imputation process is applying the weighted mean across
the sensor nodes for the imputation of the missing measurements in sensor node
03. This is a rather simple imputation and could have been strengthened if metadata
regarding people’s position in the room was available. With more time, a prediction
model could have been created specifically for imputation, based on the data from
the other sensors. Then the different imputing processes could have been compared
to each other and the best used.

6.1.4 Choice of the time interval

The choice of the time interval is vital in the experimental setup. In the NTNU-
master there were other LAeq,T time intervals found to have better robustness,
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specifically LAeq,8h and LAeq,1h. However, by choosing 15-minute intervals as
the time interval, it has the balance of being precise enough that a student may
check for the interval each 15 minute and it is not too granular so that it has too
much information for a student looking for a silent place to study. This is supported
by the NTNU-paper, which used the same time interval.

6.1.5 Masking methods

The decision to choose the random masking method, MM2, instead of the masking
method with the set interval, of masking frequency, MM1, is of considerable inter-
est when looking at the results. Even though the flexibility of MM2 was determined
to outweigh the more stable MM1, the decision was based on limited testing. If
the one removed the demand for all the intervals to be exactly the same in MM1,
one could have used this for all possible sampling percentages as well. This would
have resulted in some of the windows being 2 seconds longer.

A different masking method may have given different answers, especially when
looking at the subsampling rates below 20 %. This does not seem to be the case
in either of the predictions in chapter 5.1.1 and chapter 5.1.2. Both the Linear Re-
gression and Random Forest Regression did not have a significant worsening of
performance in the area with subsampling rates below 20 %. In fact, in chapter
5.1.2, as seen in Figure 5.2, the Linear Regression has a flattening of performance,
while the Random Forest Regression performs better in the aforementioned sub-
sampling area.

MM2 cannot be called a true random masking method due to the fact that it is
copied across all windows. If the random masking was performed once every
window, then the masking method is more similar to a random selection. The
frequency chosen for making the training data, and also the subsampling process
in the evaluation and test data may have impacted the performance. The distri-
bution of the elements picked can be seen in Figure 4.10. Some bins are a bit
over-represented with elements compared to the neighboring bins, but it does not
seem like a big problem. To counteract this uncertainty, a loop with ten differ-
ent random seeds could have been implemented. Then the models could have been
ran, and the performances checked against each other to see how much the masking
method affected the results.

6.1.6 Set selection

To minimize the variance in the accuracy of the models, the choice was made
to use K-folds cross-validation. The folds were split based on the week number
and then paired through a random selection method. The different sets which were
placed together, as seen in Table 4.3, may have affected the performance. To further
increase the evaluation process’s trustworthiness, the paired weeks in the validation
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sets could have been redone another time to test if different pairs might affect the
performance.

This K-folds cross-validation uses an independent random selection of weeks to
select the folds. For time-series, this is not a good practice. In the first fold in
Table 4.3, one can see that week 11 is in the training set while weeks 10 and 12 are
in the validation set. Due to the expectation that these weeks will be quite similar,
this results in a violation of independence and data leakage. Another factor that
weakens the choice of using independent random selection to select the folds is
when thinking about a real-world prediction. If the current week is week 10, future
measurements are not available, and there are no future weeks.

6.1.7 Feature extraction

The decision to only use the column with LAeq-values was taken due to the goal
to test the models with features that were time-independent. Later, a decision was
made to extend the search to also look at some columns based on the time-column
as well. The two chosen features were the two most important features in the pre-
dictions of the noise predictors in the NTNU-paper, day of week and hour. In
Figure 4.4, the differences in LAeq values over both days and hours can be ob-
served. There is a much bigger presence of noise on the weekdays, and specifically
in the timeframe of 06:00 till 19:00.

Other features that were used in the NTNU-paper and that could also have been
included are holiday, schedule and quarter. Schedule here would describe if there
were any planned events in Koopen. Based on Figure 4.4, another feature of inter-
est could have been a night/morning/midday/afternoon feature.

6.1.8 Algorithm selection

There are several considerations that need to be evaluated. One of these is the
choice of the baseline. The Dummy Regression predicts based on the mean. When
looking at Figure 4.3, Figure 4.9 and Table 4.1, one can observe that although the
measurements are mostly in the area between 40 and 50 LAeq, an algorithm that
always predicts the mean will be limited. A baseline with more flexibility, such
as an algorithm that is randomly predicted in the interval between 40 and 50 LAeq

might have provided more insight.

The number of other algorithms tested could also have been increased. There are
several other algorithms that could have been of interest. This is especially true
when looking at the Linear Regression. Here, either Lasso Regression or Ridge
Regression could have worked with collinear features, as mentioned in chapter
2.2.4.
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6.1.9 Learning strategy - offline and online

The learning strategy for the experimental setup was based on an offline-learning
strategy, as mentioned in Chapter 2.3.1. This was a good starting point since it
gives an overview of what kind of performance is possible with full historical data.
The long training period made the strategy not as adaptable to changes, and it
vulnerable to changes that happen after the training period. This was tried remedied
with K-fold cross-validation.

An online learning strategy would have been less susceptible to the vulnerabilities
of the offline learning strategy. Here one could have used e.g., only an estimate
from the previous week to estimate the future values. Different problems do occur
instead, most importantly, the question “Does the features available contain enough
information that the performance of the model will be good enough?”. The results
in this master thesis indicate that no, they do not.

6.2 Model performance

6.2.1 Using window n to predict RMSE of window n

The Random Forest Regression performs the best of the algorithms tested, as
seen in Figure 5.1. It is a little overtrained, but this has been remedied with the
min samples leaf set to 0.001, as found through the small grid-search mentioned
in chapter 4.3.8. The steady increase of both the Linear Regression and Random
Forest Regression show that they are able to predict the error even for subsampling
rates lower than 25 %, which have a much different distribution of errors, as ob-
served in Figure 4.3.2. This is also the area where the Dummy Regression has the
most substantial increase in performance error and shows that the Dummy Regres-
sion, which uses the mean as method for prediction, struggles to predict correctly
when the error distribution widens. The Dummy Regression never gets under the
threshold of error at ± 3 LAeq, something which both the Linear Regression and
the Random Forest Regression manages to. The Random Forest Regression has
performance better than the threshold of error for all subsampling rates, a positive
sign for the baseline of the experiment.

6.2.2 Using window n to predict RMSE of window n+1

In a real-life scenario where a subsampling process is implemented, one will only
have the info of the previous windows available, and those data may be subsam-
pled. Figure 5.2 shows vastly different performance scores for both the Linear
Regression and the Random Forest Regression than in the baseline presented over.
The Dummy Regression performs the same, which is natural given that it uses the
mean of the whole training set as the predictor.
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One can split the three models’ performance into three parts. From 100 % to 60 %,
from 60 % to 25 % and from 25 % to 5 %. From 60 % to 25 %, the models perform
quite similar, while in the first part and the last part, the Random Forest Regression
outperforms both the Linear Regression and the Dummy Regression.

In the middle part, from 60 % to 25 %, it seems that neither the Linear Regression
nor the Random Forest Regression manages to beat predicting with the mean of
the previous window. Similarly, it is when the two models reach this subsampling
rate that they exceed the error of threshold.

6.2.3 Prediction of RMSE with additional time-dependent features

The predictions on both Using window n to predict RMSE of window n and Using
window n to predict RMSE of window n+1 show no difference when the additional
time-dependent features are added. Figure 5.3 shows little difference from Figure
5.1. The same can be seen in Figure 5.4, which shows little difference from Figure
5.2.

The fact that the models did not perform better with additional features derived
from the time feature is surprising. The NTNU-paper showed that the two extra
features chosen to be added into the model were the most important for predicting
their noise predictors. This fact adds uncertainty into the performance of this the-
sis’ models and asks the question, is the metadata derived from the noise level, the
LAeq, that much more important than the time. When looking at Figure 4.4 there
are definite trends that are dependent on the time, both the day and the hour. Thus
one would expect that adding these two features would increase the performance
of the models.

6.2.4 Model selection and optimization

A possibility to find a better model could have been to implement a more extensive
grid-search in search of the best model. One could also have used other models, as
mentioned earlier in discussion.

When comparing the models in this thesis with the subsampling percentage found
to be optimal in the NTNU-paper, it is the model sing window n to predict RMSE of
window n that is of interest. This is due to the setup of the experiment for the mod-
els Using window n to predict RMSE of window n+1, which utilized subsampled
15 minute windows as input, something which the NTNU-paper does not. When
having that in mind, one can observe in Figure 5.1 that the difference in perfor-
manceis not that big between the NTNU SOA and the Random Forest Regression
in this experiment. This was not taken into consideration when performing the
economic analysis.
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6.3 Economic impact of sampling strategies

A significant weakness of the Pareto plot is Formula 2.5, which is used to calculate
energy consumption. Even though the same process was used in the NTNU-paper,
it is a big simplification of the different energy states that a microcontroller has.
Thus the energy consumption and the sampling rate have a 1:1 ratio, which prob-
ably does not generalize to the real world. Both the Linear Regression and the
Random Forest Regression perform better than the error of audible threshold down
to a sampling rate of 65 %, which indicates that a 35 % energy reduction can be
gained with the presumptions made. This performance would have been changed
if a secondary energy source such as solar panels had been introduced to the equa-
tion. Other factors that may affect energy consumption are the energy usage in the
idle state, to keep the RAM running and the energy usage of the modem, which
sends the data.

In the Cost-benefit analysis, the Pareto optimum found through the experiment is
used. The implication of using the findings on a dataset on an indoor environment
to an outdoor space implies that the conclusions done need to be treated with care.
Indoor noisescapes have different characteristics than outdoor noisescapes. How-
ever, the limited access to a high-quality dataset of continuous noise measurements
over a long period of time means that the indoor environment dataset was used.
TThe Alternative NTNU SOA, which was ultimately found to have the best net
value, was also derived from the same indoor dataset used in this master thesis.
The NTNU SOA was found to have approximately a 35 000 kr better net value
than Alternative Grid Baseline. Since the Cost-benefit analysis only involves eco-
nomic criteria, this gap could have changed if different criteria were introduced to
the analysis. This is particularly true in the realm of facade interventions, but also
flexibility in where the sensors may be placed. In Alternative Grid Baseline, the
sensors need to have access to the electrical grid, limiting the possible placements.
This is not a factor in the alternatives where batteries are the energy source.

The costs which the Cost-benefit analysis was based on are using several assump-
tions. If some of these assumptions were replaced by facts, the uncertainty in
the analysis’s uncertainty would have been lessened. The highest variable cost to
wireless sensor networks focusing on noise estimations is the cost of manual labor
when changing batteries. This is why a subsampling strategy will have such a big
impact on the viability of different business cases. The cost of installment for Al-
ternative Grid Baseline could be reduced if a framework agreement was made with
an electrician firm.

6.4 Implications for environmental noise monitoring

A lowering of cost means that applications which earlier were not economically
feasible, now are. With real-time feedback on the noise levels in a city, the munici-
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pality has much more information available. Decisions made are more data-driven
and less based on human intuition. The noise maps demanded by the EU will
also be easier to create due to the more stable data sources and may achieve better
accuracy than with the usage of complicated simulation models.

This is not necessarily only relevant for municipalities, but businesses may also
have substantial benefits from having an understanding of the noise levels in their
working environment. Noise has been shown to impact the concentration and
workflow, and a better understanding of the noisescape of the workplace may lead
to higher productivity.
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Chapter 7

Conclusions & Further work

A dataset was procured from NTNU containing noise measurements over an 11
weeks. The data was preprocessed and used to train three models, a Linear Regres-
sion, a Random Forest Regression and a Dummy Regression. These were evaluated
based on the accuracy (RMSE of RMSE). The goal was to find the subsampling
rate, which both upheld the threshold of error and had the lowest possible energy
consumption. The threshold for error was ± 3 LAeq, and the Pareto optimal point
for the experimental setup was created by the Random Forest Regression model.
It had an energy consumption of 65 % and an accuracy (RMSE of RMSE) of 2.5.
A cost-benefit analysis was done on four different Wireless Sensor Network alter-
natives consisting of 22 sensors with different sampling strategies implemented.
The alternative with the best net value was Alternative NTNU SOA, which used
batteries as an energy source, a subsampling rate of 7 % and achieved a RMSE of
± 2 LAeq in their study. The Net value was 326 656 kr. The next best alternative
was the 0-alternative, the Grid Baseline, with a net value of 360 910 kr. Alternative
Experiment, with it’s subsampling rate of 65 % found through Pareto optimization,
had a net value of 608 938 kr, which was only better than the Wireless baseline of
789 162 kr.

If more time was available, an uncertainty analysis could have been performed
in conjunction with the Cost-benefit analysis. Here the economic benefits could
have been combined with benefits like e.g., the technical solution and innovations
created through that and the intervention on facade and architecture. An expert
group with Oslo municipality and Soundsensing team members could have been
created to quantify the scores of the different alternatives.

Another part of the further work is creating a prediction model specifically for the
imputation of missing values based on meta-data from the other sensors. This may
have lead to more correct values and, subsequently, better performing models. The
models could also have been improved if more time-based features were included,
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even though the tests done showed that the time-based features used had no impact
on the model’s performance.

Another way of handling the problem could have been to use reinforcement learn-
ing instead of supervised learning. A big challenge in the supervised learning
method was to find a suitable target variable. This challenge could have been
avoided by using reinforcement learning, and finding the optimum for the multiple
objectives (accuracy and energy usage) may have been easier.
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Appendix

Appendix A: Cost-benefit analysis
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Figure 7.1: The process of cost-benefit analysis. Discontinuation rate.
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Figure 7.2: The process of cost-benefit analysis. Alternative 0.
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Figure 7.3: The process of cost-benefit analysis. Alternative 1.
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Figure 7.4: The process of cost-benefit analysis. Alternative 2.
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Figure 7.5: The process of cost-benefit analysis. Alternative 3.
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