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Abstract 

Solar photovoltaic (PV) systems demand improved operation and maintenance (O&M) 

measures to increase system longevity and overall performance. Installation of solar PV 

systems are rapidly increasing, and while technology is improving, O&M measures are 

neglected or poorly understood. Appropriate O&M will improve solar PV market 

competitiveness. This study aims to design requirements for operators to provide necessary 

information to perform an analysis of the state of the system. Building on existing literature for 

monitoring PV system, it asks: Which parameters and indicators are necessary to evaluate the 

state of the system, which quality assessments must be made to produce reliable results, and 

what must operators do the first year to aid this process? 

Based on literature regarding monitoring and maintenance of solar PV, an analysis was 

performed on the operational data set from the PV system at Glava Energy Center in Glava, 

Sweden. The methodology was based on CRISP-DM and was exploratory. Data were analysed, 

enhanced, and analysed further in the context of Overall Equipment Effectiveness. The 

approach was adjusted as understanding grew. The results provide insights into the parameters, 

indicators and the general quality of data. Temperature and plane-of-array irradiance is 

suggested as the most influential parameters to evaluate system projections, although the 

parameters should be accompanied by other measurements. There are also presented an analysis 

of the quality of the data set. The quality is periodically low, which leads to recommendations 

regarding maintaining quality of monitoring of the PV system.  
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Sammendrag 

Solcelle fotovoltaiske systemer krever forbedrede tiltak for drift- og vedlikehold (O&M) for å 

øke systemets levetid og generelle ytelse. Installasjonen av solcelleanlegg øker raskt, og mens 

teknologien forbedrer seg, er O&M-tiltak neglisjert eller dårlig forstått. Passende O&M vil 

forbedre konkurranseevnen til PV. Denne studien tar sikte på å utforme krav til operatører til å 

gi nødvendig informasjon for å utføre en analyse av systemets tilstand. På bakgrunn av 

eksisterende litteratur for overvåking av PV-system spør den: Hvilke parametere og indikatorer 

er nødvendige for å evaluere tilstanden til systemet, hvilke kvalitetsvurderinger som må gjøres 

for å gi pålitelige resultater, og hva må operatørene gjøre det første året for å hjelpe denne 

prosessen? 

Basert på litteratur om overvåking og vedlikehold av solcelleanlegg, ble det utført en analyse 

av driftsdatasettet fra PV-systemet ved Glava Energy Center i Glava, Sverige. Metodikken var 

basert på CRISP-DM og var utforskende. Data ble analysert, forbedret og analysert videre. 

Tilnærmingen ble justert etter hvert som forståelsen vokste. Resultatene gir innsikt i 

parameterne, indikatorene og den generelle kvaliteten på data. Temperatur og plan-av-array-

irradians foreslås som de mest innflytelsesrike parameterne for å evaluere 

systemframskrivninger, selv om parameterne bør ledsages av andre målinger. Det blir også 

presentert en analyse av kvaliteten på datasettet. Kvaliteten er periodisk lav, noe som fører til 

anbefalinger om opprettholdelse av kvaliteten på overvåkingen av PV-systemet. 
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1.  Introduction 

1.1. Background 

A transition to renewable energies is necessary to reach the global 2-degree target, as proposed 

by the Paris Agreement. Globally, 65% of electricity is produced by burning coal, oil and fossil 

gas (International Energy Agency 2019). A large portion of the carbon emissions come from 

burning fossil fuels for electricity. Solar power could prove to be an important technology for 

energy production with low carbon emissions per MWh.  

Yearly solar flux exceeds yearly energy demand by four orders of magnitude (Hofstad 

2019). The worlds combined energy consumption in 2018 was 161 248 TWh (BP plc 2019), 

while the sun provides 89 000 TW annually across the globe (Tsao and Crabtree 2006). This 

means that the sun can power a year of energy consumption in less than 2 hours. All this solar 

flux cannot, of course, be converted to useful electricity. After considering the suitable surface 

area for solar PV and assuming a high 40% efficient energy conversion (Tsao and Crabtree 

2006) (although the highest recorded efficiency is 46% (Geisz, Steiner et al. 2017)) the technical 

potential equates to roughly 7500 TW. Harvesting all technically possible solar flux would then 

meet the world’s yearly energy demand in 22 hours. There are therefore clear indications that 

the sun could meet a large part of the global energy demand. 

Over the past 10 years, solar photovoltaic (PV) capacity has been increased by a factor 

of 28.55. In 2018 alone, there were installed 136 additional TWh, increasing the total capacity 

by 31% (Heymi Bahar, D'Ambrosio et al. 2019). This surge of new installed capacity comes 

with a greater need for operation and maintenance (O&M). Proper O&M mitigates potential 

risks, improves levelized cost of electricity (LCOE) and Power Price Agreements (PPA) prices 

and positively impacts the return on investment (ROI). The O&M phase of the PV project is 

also by far the longest phase, typically lasting for more than 30 years (SolarPower Europe 

2019). It is therefore crucial that O&M is studied and improved. Longer lifetime positively 

impacts the LCOE, since a system with a longer lifetime will produce more total power than a 

shorter-lived system.  

Prices for solar PV capacity has decreased by 85% to 57 USD/MWh, during a ten year 

period from 2009 to 2019 (Jäger-Waldau 2019). With steadily decreasing prices per MWh, the 

market competitiveness of solar PV is growing, and solar energy represented 42.5% of all new 

renewable energy investments in 2018 (Jäger-Waldau 2019). 2018 was also the 9th year in 

which solar power represented the largest share of new investments (Jäger-Waldau 2019). 
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Improved knowledge regarding O&M for solar modules will lead to a higher ROI. One study 

from Spain reveals that a reduction of O&M tasks by 76% resulted in a 26% reduction in energy 

production (Muñoz-Cerón, Lomas et al. 2018). The reason for the deviation is not yet 

understood, but there is clear indications that effective O&M results in decreased LCOE 

(Muñoz-Cerón, Lomas et al. 2018). There must be knowledge regarding the state of the system 

to perform suitable O&M. 
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1.1.1. Scope and research questions 

The complexity of O&M for Solar PV system is challenging, as failure appears due to different 

causes in different climates. The failures also have different consequences in different climates, 

as well as climate-dependent cascade-effects. For that reason, this paper will limit the scope to 

focus on these OEE parameters: 

• Performance – the usefulness of the system when it is operating. 

• Uptime – The availability of the system, when required. 

• Quality – The ability to provide useful function. 

 

The goal for this thesis is that it should design instructions for operators so that the operators 

produce a basis for evaluating the state of the solar PV system.  

The research questions related to that goal are as follows: 

1. Which indicators and parameters are necessary to perform said evaluation of the state 

of the system? 

2. Which demands are there to quality of data, monitoring and analysis? 

3. What sort of O&M must be performed the first year to make this evaluation? 

 

There should be attention to understanding O&M for solar PV systems, but there must be 

insights into the failures and deviations that degrade PV systems. To understand failures and 

deviations within the system an analysis of the state of the solar PV system must be performed, 

to determine a baseline. 

The motivation for the approach is largely determined by the context. The thesis is preliminary 

work for the project that PhD candidate Jesper Frausig is performing. In that context, it is 

relevant to analyse the failure modes for PV systems. Therefore, there will be attention to 

degradation nodes for different climates as presented below.  
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1.1.1.1. Performance indicators 

The primary OEE parameter influencing lifetime is performance. One example of a 

performance issue for PV systems is ribbon degradation. Ribbon degradation is uniquely 

manifesting as failure clusters in polar and tropical environments. It manifests differently in the 

two climates, and the review ought to establish when the climate-specific degradation pathway 

indicates a performance issue.  

 

1.1.1.2. Uptime indicators 

The secondary parameter affecting the PV lifetime is uptime or the availability of the system, 

when required. An example of an uptime indicator is physical damage of the cell. Physical 

damage is uniquely manifesting as a failure cluster in snow climates and moderate climates. It 

manifests differently in each climate, and the review ought to establish when the climate-

specific degradation pathway indicates an uptime issue. 

 

1.1.1.3. Quality indicators 

The third parameter supporting performance and uptime is quality. Quality is defined as the 

ability to provide useful function. One example of a quality issue is backsheet damage. 

Backsheet damage is uniquely manifesting as a failure cluster in polar, arid and moderate 

environments. It manifests differently in each climate, and the review ought to establish when 

the climate-specific degradation pathway indicates a quality issue. 
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1.1.2. Outline 

The thesis begins with the summary of the main findings.  

A theoretical basis is presented to give the reader the necessary understanding and common 

agreement of core aspects that will be discussed in the thesis. 

Then the methodology is presented. It is assumed that the reader knows why certain 

methodology is used in different circumstances. This chapter will aim to explain and defend 

why the chosen methodology will give credibility to the results. 

After the methodology follows the results from the analysis. They will give insight into what 

was discovered and provide examples for the reader. There are numerous other examples that 

have been excluded, but it was concluded that including more examples would not provide any 

additional and meaningful information. They will be used further by PhD candidate Jesper 

Frausig in his research.  

Subsequently follows a discussion of the results and their implication. The discussion aims to 

answer the research questions and will highlight several relevant aspects. This chapter will also 

discuss several topics on the periphery of the scope of this paper that are important to the topic 

and the results.  

The thesis will end with some concluding words to summarize the findings and the most 

important parts from the discussion. This section provides answers to the research questions 

posed in the introduction. Finally, this chapter ends with some suggestions for future work that 

have been considered relevant after the process of writing this thesis.  

After the conclusion to the thesis follows the addendum with attachments and the reference list 

used for researching the topic.   
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2. Theoretical basis 

2.1. Solar PV basics 

The module and cells compromising a solar module are commonly referred to as solar a module 

and solar cells. For the purpose of disambiguation from other types of solar technology, the 

term photovoltaics will be used. Photovoltaics (PV) cells are made using semiconductors. 

Semiconductors are insulators in their pure form but will conduct electricity under certain 

temperatures or when they are mixed with other materials. PV cells are generally built using p-

type and n-type doped silicon wafers. When the sides of a silicon wafer are oppositely doped a 

layer between them called the depletion region will be produced. As a few electrons move from 

the n-side to the p-side, a bandgap of negative charge preventing more electrons from moving 

that way is formed. PV cells utilize solar radiation to excite electrons to pass the bandgap, 

creating an asymmetric abundance of electrons. When these two sides are connected through a 

cable and a resistance, electricity will flow.  

 

2.1.1. Operational Equipment Effectiveness as applied to PV 

Overall equipment effectiveness (OEE) is a measure of how well a system manufactures its 

products during the period it is supposed to operate (Vorne Company s.a.). By analysing quality, 

performance, and uptime, insights into how the process can be optimized are possible. For PV 

this means analysing quality of equipment, while performance refers to the output of the system, 

and uptime refers to the availability of the system and what percent of expected uptime where 

the system produces. Due to the nature of solar power, there will be periods where weather will 

reduce the output of the PV system. Without proper monitoring, it can be difficult or impossible 

to determine if any reduction in output is caused by system degradation, monitoring errors, or 

simply weather.  

Some studies have shown that using risk analysis and the Risk Priority Number (RPN) 

can help to identify which degradation and failures are most critical (Colli 2015), although more 

research into the method is still necessary. One article showed that degradation, static shading 

and variable shading can be detected successfully from analysing voltage and current of the PV 

system (Pei and Hao 2019).  
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2.1.2. Overview of select maintenance issues 

One challenge for O&M for PV modules is that PV modules degrade only 0.8-1% annually 

(Jordan and Kurtz 2012) (National Rewewable Energy Laboratory 2016) (Azizi, Logerais et al. 

2018). This means that due to uncertainty in measurements, lack of attention, or low quality of 

data, several years may pass without detection of failures or degradation (Pearsall 2017).  

When degradation is confirmed within an uncertainty interval, it can be challenging to 

identify which degradation cause(s) are responsible for the error. Damaged and otherwise 

impaired parts can have both synergetic and antagonistic effects on other parts of the PV 

module, which increases the challenge of correlating observations with only one cause. The 

microclimate in which the PV system is located will, however, indicate which causes are more 

likely to occur given the conditions.  

Additionally, it appears results are skewed for degradation rates. PV modules with 

higher degradation rates have a tendency to be left shorter in operation, and thus gives the 

impression of sinking degradation rates as systems age (Jordan and Kurtz 2012).  

It can be useful to view the degradation of PV modules as aging. As the PV module 

ages, the OEE will decrease accordingly. Factors that contributes to aging that can be hindered 

or reduced are highly relevant for O&M operators to register and evaluate. One study showed 

that the resistance in a module increased by 12.8% in 20 years, which reduced the power output 

by 30% (Azizi, Logerais et al. 2018). 

The following subchapters will explore three specific cases of PV module degradation: ribbon 

degradation, cell physical damage and backsheet damage. 

 

2.1.2.1. Ribbon degradation 

Cell interconnect ribbon degradation reduces the power transmitted from the solar cell to the 

bus bar. When moisture leaks through the backsheet of the solar module, the ribbon will 

corrode, which increases the series resistance (Chattopadhyay, Dubey et al. 2014). Increased 

resistance results in lower power output as more power is converted into heat inside the solar 

module. Overheated PV modules can cause cascading effects of degradation. Since the initial 

quality of a part in a solar cell or module will vary, degradation can lead to varying 

consequences in each PV module, especially accompanied by electrical mismatching. 
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The ribbon located on top of the solar cells carry current from each string to the PV bus bar. 

When the series resistance increase, the power transmitted from solar cells will decrease, and 

consequently, leads to a reduction of OEE.  

Corrosion of the cell’s interconnect ribbon (and in their entirety), is sped up by corrosive 

products from the encapsulation. The ethylene vinyl acetate (EVA) film protects the solar cell, 

but will decompose into acetic acid that increases corrosion and degrade the metal of which the 

interconnect ribbon is made of (van Dyk, Chamel et al. 2004) (Kempe, Jorgensen et al. 2006). 

Van Dyk et al. also showed that during the drier summer months, there was less moisture inside 

the solar module, which resulted in improved performance (van Dyk, Chamel et al. 2004). 

Additionally, Kempe et al. discovered that solar modules in lower than -15 ℃ will be more 

vulnerable to mechanical damage from snow and wind than similar solar modules in other 

climates (Kempe, Jorgensen et al. 2006).  

 

2.1.2.2. Cell physical damage 

Cell physical damage occurs in snow climates due to large amounts of snow on the PV module. 

When snow and ice loads are unevenly distributed across the module, the stress can bend the 

frame, break the glass and loosen screws (International Energy Agency 2014). The damage can 

be characterised as the following four effects: 

1. Vertical loads from snow and ice on an inclined surface can be broken down into two 

component forces: The normal force and the downhill force.  

2. Sliding snow on the surface of the module is distributed inhomogeneously. 

3. Inhomogeneous loads cause moments and torques in the lower part of the module along 

the axial direction of the test specimen.  

4. Temperatures below 0 ℃ may cause embrittlement of the adhesives and further reduce 

stability.  

 

The extent to which cell cracks will influence power output directly is poorly understood. 

(Köntges, Kajari-Schröder et al. 2011) and (Köntges, Oreski et al. 2017) suggest that the 

orientation of a cell crack is a critical factor in determining the reduction in power output. The 

two papers also present illustrations to show how cell cracks were unevenly distributed across 

the module and the resulting uneven distributed power loss.  



NMBU Master Thesis Ås 

16 
 

Additionally, isolated cell cracks will decrease the maximum power point. The combination of 

these sources of uncertainty means that the power loss of the module will be different from the 

sum of all losses from cracked cells (Köntges, Oreski et al. 2017). Nevertheless, cracks may 

lead to degradation from humidity, regardless of the total power loss.   

Furthermore, it is suggested that PV modules located in cold and polar climates (D and E in 

Köppen-Geiger classification (Peel, Finlayson et al. 2007)) are more vulnerable to cell damage. 

The degradation rate of 7% annually is higher for those climates as opposed to the average 

degradation rate from cell physical damage in other climates (Köntges, Oreski et al. 2017). On 

the other hand, the same paper established that Köppen-Gieger classification works poorly to 

predict the failure modes in different climates, possibly since Köppen-Geiger classification is 

meant to classify plant growth under different temperature and precipitation conditions, and not 

weather affecting PV modules (Köntges, Oreski et al. 2017). Köppen-Gieger classification will 

defined below. 

 

2.1.2.3. Backsheet damage 

PV module backsheets normally consists of three-layer laminates:  

• A weather resistant outer layer 

• An electrical resistant middle layer 

• An adhesive inner layer.  

Degradation can occur as a result of exposure to light, heat, moisture, and other environmental 

stressors.  

This damage can manifest as physical cracks in the backsheet, which allows moisture and 

oxygen a pathway into the solar cells. Cracks leads to degradation of the packaging and solar 

cells. Lyu et al. showed that the inner layer is the layer most affected by degradation (Lyu, 

Fairbrother et al. 2020). There is also indications from Lyu et al. that light, heat, and moisture 

facilitated cracking of the backsheet (Lyu, Fairbrother et al. 2020). These effects are highly 

dependent on the microclimate in which the module is placed, which could make it hard to 

generalize backsheet damage from one PV system to another, based solely on their 

macroclimate. 

Several studies show the material that the backsheet consists of can be a significant contributor 

to the rate of degradation of the backsheet (Wiesmeier, Huelsmann et al. 2012) (de Oliveira, 
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Cardoso et al. 2017) (Gebhardt, Bauermann et al. 2018). This effect further complicates the task 

of generalizing our understanding of degradation mechanisms in the backsheet of PV modules.  

 

2.2. Relevant climates 

The climates in which the systems are located will impact which degradation modes are relevant 

to consider. Similar degradation in different climates may have different causes, development, 

and impact, so the results given for one degradation mode in one climate cannot be transferred 

to another climate without further research. In this chapter, there will be attention to the polar 

and snow climates as classified by Wladimir Köppen (1846-1940) and Rudolf Geiger (1894-

1981). The Köppen-Gieger classification breaks down climates into five groups (Kottek, 

Grieser et al. 2006):  

 

Initially, these categories were created by Wladimir Köppen based on his experience from 

botany and thus were used to analyse ecosystem conditions and vegetation. Later, the system 

was improved by Rudolf Gieger. The system has since its creation been used in a wide range 

of climate, climate change, physical geography, hydrology, agriculture, and biology research 

(Kottek, Grieser et al. 2006).  

While these classifications can clearly determine attributes of the macroclimate, the 

microclimate in which the solar modules are located is necessary to understand. Usually, 

microclimates only differ slightly from the surrounding area. These small differences can lead 

to significant changes in solar modules, especially since degradation modes are dependent on 

different causes than minimum and maximum temperatures and precipitation.  

 

 

A

• Tropical

B

• Arid

C

• Warm

D

• Cold

E

• Polar
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2.2.1. Polar climate 

The polar climate (E) is commonly found near the poles.  

Climate Condition (Kottek, Grieser et al. 2006): 

All polar climates Tmax < 10 ℃ in the warmest month  

Tundra climate 0 ℃ ≤ Tmax < 10 ℃ 

Frost climate  Tmax < 0 ℃. 

Due to this temperature criterion, these climates will be largely determined by permafrost and/or 

snow (if precipitation allows for snow cover). This can lead to unique effects on the solar 

module, since these subclassification are the climates with the lowest temperatures. Considering 

the climate-specific factors with respect to the degradation types listed above, it is worth noting 

that: 

• Some metals are brittle in lower temperatures. This might damage or weaken the solar 

modules. 

• Low temperatures allow the module to work more efficiently. Solar modules in polar 

climates might have higher efficiency. 

Examples of Polar climate include, but are not limited to, Svalbard, Norway; Mount Everest, 

China/Nepal; and Nord, Greenland.  

 

 

2.2.2. Cold climate 

Cold climates, also referred to as continental climates, snow climates, or microthermal climates, 

are defined by the mean temperature of the coldest month being below -3 ℃. Cold climates 

have more variations within the climates, deemed by the timing of the precipitation: 

Climate Condition (Kottek, Grieser et al. 2006): 

All cold climates Tmean < -3 ℃ in the coldest month  

Snow climate with dry summer Psmin < Pwmin, Pwmax > 3Psmin and Psmin < 40 mm 

Snow climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin 

Snow climate, fully humid Neither of the two options above 
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Psmin, Pwmin, Pwmax, Psmax are the highest and lowest monthly precipitation values in the 

summer(s) months and winter(w) months (Kottek, Grieser et al. 2006). Examples of Cold 

climate include Oslo, Norway; Moscow, Russia; Pyongyang, North Korea; and Toronto, 

Canada. Interesting weather phenomena include, but are not limited to: 

• Snow can remain for periods of time, causing low availability, while also partly melting. 

This can lead to an uneven mechanical stress on the PV modules, eventually lowering 

the performance, and even quality of the system. 

• Seasonal humidity can cause differences in stressors for modules. It could prove to be 

different degradation between dry summers and wet summers for PV modules. 

 

2.3. Solar PV system indicators and parameters  

This section will introduce the indicators and parameters that have been relevant in this thesis 

to lay the foundation for shared definitions and understanding.  

 

2.3.1. Irradiance parameters 

In this thesis there will be results and discussions surrounding irradiance. The terms DHI, DNI, 

GHI, POA30, POA40 will be used to describe different types of ways of measuring irradiance.  

DHI (diffuse horizontal irradiance) refers to the irradiance received per unit area by the modules 

or measuring equipment, that has not travelled a direct path from the sun after being scattered 

by molecules in the atmosphere. The irradiance arrives in equal amount from all directions 

(Vashishtha 2012). 

DNI (Direct normal irradiance) is the irradiance received by the module or measuring 

equipment at a normal orientation to the irradiance that travels directly from the sun to the 

module. Since the orientation of modules are static, and the sun moves, this irradiance is 

multiplied by the cosines angle (Vashishtha 2012). 

GHI (Global horizontal irradiance) is the total irradiance received by a surface that is horizontal 

to the ground. It is the sum of DNI (cosine adjusted) and DHI (Vashishtha 2012).  

POA30 and POA40 (plane-of-array) refers to the irradiance coming from directly from the sun 

multiplied by the angle of incidence (30 or 40 in this paper), diffuse irradiance from 

surroundings and reflected irradiance, resembling the amount irradiance incident on the plane 
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of array of the PV system. The reflected irradiance is determined by several factors, like the 

module tilt angle and soil reflectance factor (EcoSmart s.a.).  

Clearsky conditions is the conditions during a day where there are no clouds covering sky and 

casting shadows on the solar module. The irradiance resembles a bell curve and can help analyse 

measured irradiance against expected irradiance (Silva, Balanzategui et al. 2019) (Hatti 2014).  

 

Figure 1: The image displays the sensor station at GEC. Photo: Jesper Frausig. 

 

2.3.2. Module temperature 

The module operating temperature is the second most influential parameter aside from 

irradiance when considering module performance (Pearsall 2017). The module temperature 

determines the rate of reaction of degradation, and by controlling temperature, one can improve 

the lifetime of the module. The parameter is a function of the following variables (Pearsall 

2017):  



NMBU Master Thesis Ås 

21 
 

• The irradiance received 

• The ambient temperature 

• The module design, regarding how it rejects heat 

• The module efficiency, since a lower efficiency means that more irradiance is converted 

to heat 

• The mounting system, regarding how ventilation affects the module 

• Other ambient conditions, such as wind speed and direction 

Generally, module temperature is proportional with irradiance received. Higher module 

temperature leads higher cell temperature, which results in lower efficiency (Pearsall 2017). 

This means that with higher irradiance, there will be lower performance. Additionally, there 

will be slight variations between cell temperature, module temperature and ambient 

temperature.  

 

2.3.3. Power output 

Power output will be possible to register as alternating current (AC) or direct current (DC). AC 

can be divided into real, reactive, and apparent power. Real power is measured by Watts, 

Reactive power is measured in Volt-Amps-Reactive (VAR), and apparent power is measured 

in Volt-Amps (VA). Apparent power is a complex value and is the vector sum of the real power 

and the reactive power (Engineering ToolBox 2005). Power measurements in this thesis will be 

based on apparent power. 

 

2.4. Cloud focusing 

Cloud focusing (or cloud enhancement) is a phenomenon where days with partly cloud cover 

can experience higher measurements of irradiance higher than clearsky estimations. The 

phenomenon is generally explained by reflection through cloud edges to the solar modules, but 

Järvelä et al. argue that this explanation is insufficient (Järvelä, Lappalainen et al. 2020). Their 

results indicate that cloud focusing can result in irradiance 1.5 times higher than clearsky 

irradiance (Järvelä, Lappalainen et al. 2020). Zehner et al. found that irradiance may reach up 

to 30% higher than clearsky (Zehner, Weigl et al. 2011). Generally, cloud focusing is a 

phenomenon that is not yet completely understood, but it may affect some measurements in this 

paper.  
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2.5. Definition of deviations 

For the purpose of this text, and general definitions within the PV discipline, the following 

terms will be defined accordingly. In terms of solar PV, several definitions are used to describe 

the concept of problems regarding the PV system. Degradation, fault, malfunction, error, defect 

and failure are all definitions that have somewhat overlapping meaning in terms of deviation of 

a system’s performance. This paper will focus on degradation and failure of PV systems. 

 

2.5.1. Differentiation between deviation types: failure and degradation 

Degradation of a system is a result of a malfunction and refers to the detected reduction of the 

system’s ability to perform normally (Parhami 1997). A degraded system is only partially 

faulty. When a system has a failure, it cannot meet expectations and/or is unable to perform 

properly. A failure can happen independent of degradation, but a degradation in general will 

eventually lead to a failure. Neglecting to attend to the issues may later result in a catastrophic 

failure. From a warranty perspective, a module is considered failed when its power output is 

less than 80% of its original power output (Hatti 2014). However, even if PV modules fulfil 

their technical specifications, the expected performance may not satisfy economic requirements 

of the business case.  

Since PV systems have no moving parts, the main cause of reduced reliability is instability and 

corrosion of the individual parts (Pearsall 2017). Degradation will slowly reduce the output of 

individual parts, until the degradation is noticeable. To prevent cascading degradation effects, 

discovering degradation as early as possible and rectify critical problems immediately is 

important.  

 

 

2.6. Diagnostics, detection, identification and monitoring 

2.6.1. Monitoring 

The ways of monitoring solar power plants are several, but analysis of the data and 

measurements must be conducted by someone with expertise within the field (Hatti 2014).  

Furthermore, Hatti raises the following perspectives regarding monitoring of systems (Hatti 

2014): 
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• Inverters can be used to monitor the performance of the system 

• Measurement of radiation is essential to ensure precise control of the performance of a 

facility. Both on-ground measurements and satellite measurements are possible. This 

thesis used a combination of these methods.  

Solar PV systems have no moving parts, unless there is solar tracking installed. This means that 

it may not be easy to distinguish which part has broken down when the performance declines 

or the system fails (Pearsall 2017). Pearsall argues that the most relevant input parameters for 

a solar PV system is the irradiance it receives and the temperature of the module. Furthermore, 

Pearsall argues that measurement of electrical output together with other parameters will be 

essential to perform meaningful analysis of the performance of the system (Pearsall 2017).  

Pearsall provided a table with common faults that could be identified in a system that has 

reduced output. The faults mentioned in the table is as follows (Pearsall 2017): 

1. Inverter threshold 

2. System outages 

3. Shading 

4. Poor MPPT (maximum power point tracking) behaviour 

5. Grid voltage fluctuations 

6. Poor inverter efficiency at low light levels 

7. Inverter output plateau  

8. Temperature effects 

An example of these could be inverter power plateau. The table describes that the AC output 

will be the parameter that indicates this issue, and that the data should be plotted for a day with 

clearsky conditions and high sunlight levels. If inverter power plateau is indeed the issue, the 

AC should follow the irradiance most of the day, but will be restricted to a level that is lower 

than the expectation (Pearsall 2017). The other faults in the list are similarly explained. A 

comprehensive understanding of all such tests would simplify O&M and make monitoring of 

performance easier. 
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2.6.2. Health and safety 

Health and safety of the workers are a fundamental part of performing O&M of any power 

plant. Solar power is no exception, as workers can be exposed to great heights, large voltages 

and hot surfaces. Hatti goes into detail of proper precautions regarding O&M and suggest that 

O&M should only be performed by qualified and trained personnel (Hatti 2014). This paper 

will focus more on O&M when applied to diagnostics, detection, and monitoring, and will not 

focus on the specific and necessary measures that should be taken when investigating and 

working near a solar PV plant.  

 

2.7. CRISP-DM  

In this thesis there has been used an approach from data science called Cross-industry standard 

process for data mining (CRISP-DM). The methodology is divided these six phases (Vorhies 

2016): 

1. Business Understanding: determine business objectives; assess situation; determine 

data mining goals; produce project plan 

2. Data Understanding: collect initial data; describe data; explore data; verify data 

quality 

3. Data Preparation (generally, the most time-consuming phase): select data; clean data; 

construct data; integrate data; format data 

4. Modelling: select modelling technique; generate test design; build model; assess model 

5. Evaluation: evaluate results; review process; determine next steps 

6. Deployment: plan deployment; plan monitoring and maintenance; produce final report; 

review project 

CRISP-DM is an intuitive process for understanding a data set by having a circular approach to 

the problem, and is the most widely-used analytics process standard (Brown 2015). The list 

above fails to explain that the process is also circular and does not necessarily only involve six 

steps. The steps are all parts of an cycle of activities, that might demand that the researchers 

work back and forth between the phases (Brown 2015). 

 

2.8. O&M for solar PV 

Several measures can be taken in order to perform O&M on solar power plants. Mustapha Hatti 

published a detailed book describing, among several issues, the details for annual inspection, 

detailed visual inspection and manufacturer-specific inverter inspection (Hatti 2014).  
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The solar power plant must be regularly maintained. Without proper care, one or more parts is 

likely to break, which leads to reduced power output or a catastrophic failure. The amount of 

O&M necessary for each individual plant will be different, both due to random incidents 

occurring and the micro- and macroclimate specific stressors affecting the plant. Operators can 

independently choose how much maintenance should be planned based on the simplified list 

below: 

 

 

Option 1 should appear undesirable for most operators. The costs of investment in PV systems 

are large, contingent on third-party loans, and the possible reduction of power output is 

documented from several plants. Therefore, it can be assumed that option 1 will lead to a higher 

LCOE in the long term, even if saving costs on O&M in the short-term.  

Option 2 should keep the plant in the best shape the operators are capable of. This will not 

reduce the risk completely, as the list of issues that can arise is incomplete even given a full 

understanding of the underlying issues that might affect the plant. This risk is likely to decrease 

over time, as additional research provides better understanding of these issues. Since option 2 

involves the most time spent on O&M, it is easy to assume that this will lead to the highest 

operating costs. 

Option 3 will be any solution between option 1 and 2. It will be chosen under the assumption 

that there will be a too great cost of closely investigating the plant daily. There is not consensus 

regarding how much O&M is economically optimal. Tentative figures are 0.5-1% per year of 

investment costs; however, the actual costs are dependent on a range of factors. NREL 

published a study indicating that O&M costs per kW has been reduced in the 2010-2018 

timespan (Fu, Feldman et al. 2018). O&M costs for residential, commercial and utility-scale 

PV declined by 60%, 47%, and 49%, respectively (Fu, Feldman et al. 2018). Reduced costs for 

O&M will result in reduced LCOE for solar power. 

 

1: NO O&M. The system is left alone

2: Complete O&M. Close monioring and inspection of parts to rectify any issue

3: A solution between option 1 and 2
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2.9. Quality of solar PV measurements 

Systems of high quality monitoring will exceed general system monitoring requirements for PV 

systems (Silva, Balanzategui et al. 2019). The extent of requirements for quality measurement 

systems might be different for each system, depending on the intended use of the data.  

Silva et al. displays an overview for quality control, where it is the result of a triangle consisting 

of quality assurance, quality assessment and quality enhancement (Silva, Balanzategui et al. 

2019). The four concepts can be described as follows: 

1. Quality control: The complete process through the other three concepts whereas the 

quality of data is maintained. 

2. Quality Assessment: The process of flagging data points that are incorrect. The process 

also involves comparing the data to itself. 

3. Quality Assurance: This concept is about maintaining a high level of quality in the 

measurement process to prevent corrupt data from appearing. 

4. Quality Enhancement: This concept refers to the act of improving the data quality after 

considering quality assurance and quality assessment. This is the only process that 

changes the data set. Since it changes the data set of which the analysis is built upon, it 

can change the result from analysis. Therefore, it must be carried out by an expert, and 

it is advised that the original data set is saved in case the enhancement was incorrect. 
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Logical charts with branches can sometimes help visualize which leads to which measures. The 

following charts are visual representations inspired by literature regarding the subject.  

 

Figure 2: The chart indicates some logical connections for quality improvement and data handling. The figure is inspired by: 

(Silva, Balanzategui et al. 2019), NREL Quality Management Handbook and Solar Bankability Project.  

 

Figure 3: The chart indicates some logical connections for control of measurements. The figure is inspired by: (Silva, 

Balanzategui et al. 2019), NREL Quality Management Handbook and Solar Bankability Project. 
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2.9.1. Quality Assurance 

Quality assurance include calibration and measurement procedures and suitable instrument 

selection for the intended use of data. Some sensors could have fitting accuracy, but the sensors 

could still be a suboptimal choice for the microclimate in which the module is located due to 

degradation of the sensor itself. Furthermore, it is necessary to acquire data correctly. Some 

important points to remember when assuring the quality of PV data sets are as follows (Silva, 

Balanzategui et al. 2019): 

1. Sampling rates affect the data set and data analysis. A great sampling rate might 

generate a more accurate data set, but it might become excessively large and 

cumbersome to analyse afterwards. Similarly, a slow sampling rate will result in a data 

set that will be easier to handle, but it could hide certain trends or faults.  

2. Measurement ranges could limit the extent to which faulty measurements deviate from 

the expected. 

3. Weather conditions should be acquired to check the validity of the measurements. 

4. Raw data files should never be modified, and there should exist extra copies in case of 

mistakes that prevent any future use of the data. 

The software used should also be evaluated and monitored. Logging errors could result in 

broken data sets, as well as processing software might produce corrupt sets. 

 

2.9.2. Quality Assessment 

Quality assessment assure the validity of the data sets by checking if the data acquired are 

reasonable. Testing validation criteria and visual inspection will identify errors, which leads to 

reliable scientific studies and more accurate estimations for energy production (Silva, 

Balanzategui et al. 2019). Silva et al. suggest the following methodology for quality control of 

irradiance for PV data sets (Silva, Balanzategui et al. 2019): 

1. Control the data recording time. 

2. Visual inspection of solar radiation components 

3. Confirming physically impossible values  

4. Confirming physically possible, but extremely rare values 

5. Testing for inconsistencies across values. Some values are known to have a correlation 

and when the data points do not, the data points could be wrong. 
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Further quality assessment should be done by experts. Graphing the data sets can be an 

additional tool, especially useful for investigating periods with many flagged data points. Data 

sets for days may consist of large data files, depending on sampling rate, and analysis may be 

easier with visual aids.  

The aforementioned list for irradiance could be translated to use for meteorological data values. 

The microclimate in which the module is located will determine some upper and lower bounds 

for temperature, wind speed, pressure, and relative humidity, which can flag other data points 

(Silva, Balanzategui et al. 2019).  

Finally, Silva et al. suggests that monitoring the performance of the measurement equipment 

should be performed to make sure that faults or breakdown of the equipment do not ruin an 

entire research project (Silva, Balanzategui et al. 2019).  

 

2.9.3. Quality Enhancement 

Wrong or missing data points identified from the quality assessment should be removed. 

Missing irradiance data points could be replaced by accurate values, if other irradiance 

parameters are in place to do so. The datapoints could also be interpolated from the larger data 

set, if enough of the data set is not corrupted (Silva, Balanzategui et al. 2019). Removed data 

points should be marked as “NULL”, “NaN” or similar, depending on the programming 

language used.  

Another option is to calculate mean values for larger time intervals if some data points are 

missing. Hourly mean values can be calculated if more than 50% of the data points from that 

hour is present. Daily mean values can be calculated if more than 75% of the data points are 

present. The remaining points can be interpolated from the hourly values.  
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3. Methodology 

3.1. Introduction 

To answer the research questions posed in the introduction chapters there has been gathered 

information from various scientific sources and analysis of data gathered from a PV system 

owned by Glava Energy Center (GEC) in Glava, Sweden. GEC owns several different systems, 

but the systems that have been analysed in this thesis is their “Ongrid System” (Glava Energy 

Center s.a.). The Ongrid System is grid-connected system intended to be analysed for research 

with two parks: Solar module park 1 and solar module park 2. Solar Module park 1 has been 

analysed in this paper. The four different technologies are presented in table 1 below: 

Table 1: The specifications of each plant in Solar Module Park 1 (Glava Energy Center s.a.). 

Plant name Size Module number and producer Inverter type 

Plant no 1  4,6 kW 20 from REC solar SMA 

Plant no 2  17,6 kW 80 from Innotech Solar Eltek Valere 

Plant no 3  86 kW 400 from REC Modules ABB 

Plant no 4  28 kW 120 from Innotech Solar and 

SweModule 

Microinverter, 

Optistring, SolarMagic 

and SMA 

 

Figure 4: The four inverters at for the different plants at GEC. Photo: Jesper Frausig. 
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The PV system is in Glava, Sweden. Map coordinates are 12.62 longitude and 59.53 latitude, 

and is marked on figure 5 on the map below from Google Maps: 

 

Figure 5: A map displaying the location of the solar research centre in Glava, Sweden. The red marker is placed 

in Glava and the image is a screenshot from Google Maps (Google Maps s.a.). 

 

The data set has been analysed by one PhD candidate and one master’s student at NMBU. The 

review of the data uncovered necessary measures to clean the data set. Analysis of selected 

days, months, and events provided deeper understanding of the data, so that analysis could be 

generalized to the entire data set of roughly 10 GB of relevant parameters, out of a database in 

excess of more than 120 GB.  

The complete methodology for the thesis looked as follows: 

1. Acquiring data 

2. Data analysis (see expanded list and explanation below) 

3. Presentation of results and evaluation of findings 
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The data set was acquired from GEC. The selected data set is in its totality ~10 GB, which was 

exported from their logging program into excel-files. There were also acquired satellite images 

day-by-day for the period to verify data regarding clouds and snow. Additionally, there was 

obtained satellite data for simulating irradiance for the select location. 

 

3.2. Data analysis 

A simplified version of the data analysis process (number 2 in above list) looked as follows: 

 

This approach is circular, because it proved difficult to determine an approach to the data set 

before seeing the data set. This means that there have essentially been several rounds of 

discoveries in the data set that changed how the data set was analysed. As insight was gained, 

so was the methodology and measures changed accordingly. This is also in accordance with the 

expert recommendation regarding analysis and quality control of PV data, presented in chapter 

2.9 “Quality of Solar PV measurements”, as well as the general CRISP-DM methodology for 

data mining. As CRISP-DM explains, researchers are often moving back and forth between 

different phases, which was also true for this thesis.  

 

 

First analysis of 
chosen data 

Measures to 
clean the 

chosen data 

Second deeper 
analysis of 

data 
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3.2.1. First analysis of chosen data 

The first-hand analysis was used to understand the data set and its features. At first glance this 

meant understanding the different output parameters, and which part of the module each value 

corresponded with. The data and python script used to evaluate the data was stored on a cloud 

computer and accessed thought ‘Google Colab’ in order to let the student and PhD candidate 

work together. 

  

3.2.2. Measures to clean the chosen data 

Cleaning the dataset of incorrect values for the first time was a comprehensive process 

involving up 10 different checks that disqualified a value each. Each value that failed a test was 

marked for later analysis.  

One way to quantify the quality of the data sets were to use Quality Control Index (QCI) to 

determine the amount of corrupt data in each set. This was done on a monthly level. QCI is 

developed by Pecos and tests all numbers for different parameters (Klise K.A. and J.S. 2016). 

This analysis defined the interval of accepted data between minimum and maximum values, 

limited the maximum a value could change by each delta and set the amount of false data in a 

row to be at least 2 before they would be flagged. This list can be expanded and reduced to fit 

the analysis. Pecos takes the fraction of accepted values divided by total values to give the QCI 

between 1 and 0. 

Periods of time with an unusually large number of disqualified values were analysed to 

understand the root cause. Given that the understanding that was gained as the work progressed, 

parts of this work were non-linear: Some results of the analysis of the data set granted meta-

understanding of the data set, which improved the robustness of the analysis by changing the 

method of analysis. For example, PV modelling supplemented or replaced some types of 

generic quality control checks. 

Some extreme values were unnecessary for the research questions, since the inaccurate 

information did not assist in obtaining any results. However, these values could give 

information about degradation of measuring equipment, which would be relevant to observe for 

those in charge of the O&M. As described by chapter 2.9.2 “Quality Assessment”, data points 

that are incorrect should be removed. 
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3.2.3. Second deeper analysis of data 

The second and deeper analysis of the data included visually inspecting the GHI plot of each 

month. Whenever something that was deemed important were noticed, it was logged and stored 

in a separate file. Similarly, a heatmap of the GHI for each month was also visually inspected, 

and notable events were logged. Thereafter, there was an investigation into the different 

comments. Certain notes were rectified immediately as problems with the script. Other 

comments were investigated to achieve better understanding of the data set, and some 

comments lead to the findings that is presented in the result chapter. 

The deeper analysis was developed further to create “interactive reports” that presented a large 

array of data in the browser. The visual representation was interactive by having the option to 

slice the time periods and to toggle data points in a graphical user interface (GUI).  

During the deeper analysis there was also simulated expected power output from satellite data. 

The simulation used 15-minute rolling windows for output, and there was experimented with 

different uncertainty bands. Originally, there was used three standard deviations from the mean, 

but later there was used two standard deviations. 

Finally, there were calculated correlation and R2 values for each parameter. The values were 

places in a colour coded matrix for visual inspection. Three such correlation matrices were 

constructed: One calculation containing all data points, one calculation containing only the 

flagged datapoints, and the last one was the sum of the two matrices.  

Smaller correlation thumbnails were also employed for inspecting the relationship between two 

values. These were used in the interactive reports.  

In the GUI there were figures for: 

• Two-parameter correlation plot 

• Availability, performance, and quality scores 

• Mean, median, minimum, maximum, standard deviation values for power output 

•  An irradiance heatmap 

• Power output, simulated uncertainty band for power, and simulated clearsky plot 

• Monthly deviation trend  
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3.3. Other comments regarding methodology 

The data from GEC was used to address the issue of uptime. Uptime is generally an issue of 

availability, so it was essential to determine if the solar modules generated maximum possible 

power for the irradiance available. To understand this, it was fundamental to cross-reference 

the amount of irradiance at any given point in time. Only when it was certain that there were 

no clouds blocking the solar radiation, the availability of the solar modules could be analysed.  

 

The sources of data were chosen to have a suitable resolution. To evaluate uptime, it is 

necessary to have high resolution in the data, since the timestamp must match the event 

analysed. Determining other present conditions at any point in time will be crucial to make the 

correct conclusion, and therefore the data had measurements every 6 seconds.  

The data could naturally have had a higher resolution than every 6th second. That would demand 

more processing power and time, and there was no such data set available. A lower resolution 

would mean that the results would have a higher uncertainty, because rapidly moving clouds, 

shadows, and other unexpected events would be harder to separate from other sources of 

reduced uptime.  

The data sets were treated several times to make sure it would result in a meaningful analysis. 

One crucial part was to make sure the data from different sources was adjusted to the same time 

steps. Operational data about the solar modules was gathered by the solar modules itself, while 

satellites were used to gather satellite data. Finally, data was simulated with use of PVlib Python 

to generate idealized data for irradiance when assuming optimal clear-sky conditions.  

 

The point of this research is partly to eliminate the need for operators to analyse their own O&M 

data, and instead use techniques presented in this thesis and following papers to make it 

manageable for laymen to perform proper O&M without an engineering background. Thus, it 

was necessary to spend time understanding not only what were likely causes of degradation, 

but also how to treat data in an effective and robust way. Understanding which time periods 

were expedient to analyse for the posed research questions are also important.  
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3.4. Quality assurance of the data set 

To achieve scientifically robust results that could be generalized, there was necessary to ensure 

that the data used for calculation had sufficient quality. The measuring equipment used by GEC 

includes some innate errors, which results in some incorrect values. For example, temperature 

values below -60C were removed, since they do not grant any meaningful information regarding 

the research questions.  

Additionally, the data set was evaluated to ensure the legitimacy of the numbers. One part of 

that involved simulating clearsky conditions to review whether the irradiation measured by the 

equipment was within a reasonable interval. Measurements above that value would either be 

cloud focusing or incorrect numbers. Regardless, those values were discarded. Likewise, values 

of irradiance below 0 W/m2 were discarded. When discussing maintenance, deviations from the 

expected is the most interesting. Therefore, the focus has not been on random or chaotic values, 

but meaningful analysis of the degradation of the solar modules.  

Data sets obtained from GEC AS were originally exported as Excel csv-files. The data sets were 

converted to Python feather-files for faster processing and lower memory demand. 

Additionally, data points from when the sun was -5 degrees below the horizon were removed 

from the files to reduce time spent on processing data values during night-time. This action 

reduced the data sets by roughly 2/3 of the original size. Although this process destroys 

information, there should not be any uptime to analyse during night-time. It is then assumed 

that this does not impact the results regarding uptime of the system. However, this action will 

impact the data set, and could make it harder to detect other faults in the measuring equipment. 

These faults are interesting for future research, but they are beyond the scope of this paper.  

.  
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4.  Results 

The results gathered will be presented in the order in which they were obtained. There will first 

be presented results regarding defect measuring equipment for the initial analysis. Thereafter 

there are presented results for the interactive reports. The chapter ends with results for the OEE 

indicators and other analysed parameters. 

 

4.1.1. Corrupt data points 

The quality of data presented had several instances of corrupt data. In this paper, “corrupt data” 

refers to an instance of data points missing, data points assigned an incorrect value, or where 

the timestamp and the data point mismatches.  

• Missing datapoints were generally NaN (Not a Number), where meaningful analysis 

about the problem would be impossible.  

• Data points with incorrect values could happen anywhere, and it is not possible to claim 

that any point has a correct value without verification through additional sources. 

However, data points where the irradiance is -500W/m2 for no discernible reason were 

ruled out as wrong data. The root cause could be faulty measuring equipment, faulty 

logging etc. These values need to be removed to make reasonable calculations about the 

remaining data set.  

• Datapoints matched with wrong data points would present themselves as uptime during 

night-time. This happened sometimes due to exporting problems, and sometimes it 

happened due to logging errors.  

 

  



NMBU Master Thesis Ås 

38 
 

4.2. Defect measuring equipment 

Below follow examples of defect measuring equipment. The examples do not include every 

error, but they will serve as a basis for highlighting the problems that have been discovered. 

 

4.2.1. Non-defect measurements of GHI 

For the sake of comparison later in this report, figure 6 of GHI and solar height for February 

2014 below does not contain any obvious corrupt data points:  

 

Figure 6: The plot displays GHI from February 2014 without obvious corrupt data. 

 

4.2.2. Missing data points 

 

Figure 7: This plot should display the entire February of 2015, but it exists only data points from 3 days. 

“Missing data points” means that the data points for a period is non-existent. Figure 7 displays 

the existing data points for February 2015, which only contains 3 days of data. Additionally, 

two of the three days have corrupt data. The last two days suggest that the GHI is constantly -

550 W/m2.  
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4.2.3. Inaccurate data points 

 

Figure 8: Plot of the GHI for February 2013. The blue line remains close to 0 W/m2 from the 14th. 

Figure 8 above shows an example of how a simple visual inspection of a data set can reveal 

corrupt data points. Even with thick clouds there is expected to be some sort of irradiance 

absorbed by the measuring equipment. Some data values for day 3 and 6 are also above the 

expectation, the second plot display solar height and as such is only indicative. 

 

 

Figure 9: This figure is much harder to visually inspect, since the range of right Y-axis is wider than in normal 

plots of June. 

As shown in figure 9 above, corrupt data can also make the remainder of a month difficult to 

visually inspect, since the Y-axis is adjusted to the data points plotted. This can naturally be 

changed by constant height on Y-axis, but that would be less dynamic and would remove 

information. 
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Figure 10: Missing data points for power output thought the Laddstolpe inverter. The green points indicate power 

production. 

Figure 10 above displays two months from the site using a Laddstolpe inverter. The system 

failed, and there are no usable data points for power available.  

 

4.2.4. Mismatched timestamp with data 

The data points presented in figure 11 below for the latter half of the month has been 

mismatched with the time stamps. The error does not carry over to the next month, since the 

data sets are exported individually for each month.  

 

Figure 11: The latter half of this month has a mismatch between the datapoints and the timestamp.  

 

4.2.5. Quality Control Index to evaluate data quality 

During analysis there were noted observations regarding the month analysed. One example of 

such notes and comments is exemplified by table 2 and figure 12 below. The comment was 

saved with the month it corresponded with. The comment for September corresponds with bad 

data, since the data did not exist. October had apparently better data, as noted by its QCI. The 

comment for December also suggests that something is wrong with the dataset, and this could 

also have been assumed by looking at the QCI. 
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Table 2: Example of unprocessed comments from visual analysis and accompanying QCI for September, October, 

and December 2012. The note for December is translated for the purpose of this paper, but it is nonetheless an 

incorrect explanation. The correct explanation is that the heat map spectrum is compressed due to corrupted (in 

this case too low) measurements of GHI. 

comment_2012_9QCI:-1.0 

- No data 

comment_2012_10QCI:0.929 

comment_2012_12QCI:0.843 

- Cf. comment from ‘months’. It appears GHI is corrupt, which adjusts the colour spectrum and makes 

it difficult to see the differences clearly. 

 

   

Figure 12: The heatmaps corresponds with the table above. Left to right: September, October, December of 2012. 

The clock is set backwards in October and shifts the graph. 

 

4.2.6. Indications of forewarning before measuring equipment failure 

There were made observations for the time periods before measuring equipment failure. Below 

follows three heatmaps that displays the behaviour of the irradiance before a failure of the 

measuring equipment.  

   

Figure 13: The heatmaps left to right display irradiance for March, April and May in 2016. In May there is a 

failure of the measuring equipment that corrupts the remainder of that month. The plots are displayed in the 

addendum as Attachment 3. 
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There are multiple instances of measurement failures. They last for days or up to several 

months. Sometimes there are months with more missing data than normal before these failures.  

   

Figure 14: The heatmaps left to right display irradiance for August, September, and October in 2014. The 

measuring equipment failed in September and lasted for several months. The plots are displayed in the addendum 

as Attachment 4. 

 

4.3. Interactive reports 

4.3.1. Solar irradiance from several angles 

There was conducted analysis of irradiance from POA and GHI. POA irradiance proved to be 

the most accurate model to conform with the simulated power. While GHI needed three 

standard deviations to accurately match the measured irradiance, the uncertainty band of POA 

needed only two standard deviations to reach similar accuracy. 

 

4.3.2. Satellite images 

Data sets and results were verified by checking satellite imagery for the day or period analysed. 

In this context, there was tested if snowfall would be noticeable as a failure mode on the 

irradiance measuring equipment. The satellite images are only a snapshot from one day at a 

time. 

 

4.3.2.1. Snow affecting measuring equipment  

When attempting to find evidence of snow affecting the uptime of the system, a paradox arose. 

The intention was to verify that that system could operate at peak performance (i.e. under 

clearsky conditions), and then to identify that it did not operate at peak capacity after snowfall. 
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However, identifying clearsky after snowfall proved to be a challenge, as snowfall could also 

cover the measuring equipment that would identify clearsky conditions.  

A great example of this was December 2018 in figure 15 below.  

 

Figure 15: The plot shows GHI for December 2018. It can be argued that either the snowfall on days 6th-8th 

influences the availability of the system or it does not. This figure displays the difficulty of reading visual data. 

 

From satellite imagery it is visible that there was no snow on December 5th. On December 6th-

8th there are cloudy satellite images. On December 9th the satellite images are clear again, and 

snow is clearly visible, which has fallen between 6th and 9th. These satellite images are presented 

below as compressed images, but they can be found in full resolution in the Addendum as 

“Attachment 2”.  

  

Figure 16: Satellite image from December 5th and 11th, 2018. There fell snow sometime during December 6th-8th. 

Investigation of output in certain time periods could be coupled with satellite images to 

conclude that there has been snowfall. This insight could be used in combination with output 

data to analyse the impact of snowfall. However, access to high resolution snow coverage data 

would be an alternative approach. 
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Another example of this effect is displayed below in figure 17. The first day is January 2nd, 

where the satellite image shows no snow. Snow falls on January 3rd or 4th, but there is not 

obvious on January 5th that there is any snow covering the measuring equipment.  

 

Figure 17: GHI for January 2017, which displays no obvious signature effect on the GHI after snowfall on January 

3rd or 4th. The plot begins at January 2nd, due to lack of data from January 1st.   

 

For reference, there was investigated if the irradiance measured on January 15th, 2017 was lower 

than an equal clearsky day in January another year. Figure 18 below from 2020 shows that 

January 12th had clearsky, but lower overall irradiance. Satellite images from that date shows 

that there was no snow.  

 

Figure 18: GHI for January 2020. January 12th has clearsky conditions. 

 

4.3.2.2. Faulty satellite images 

Satellite images can contain a diagonal cut through the image that reduces the trust in that 

image. The cause for this issue is unclear. Figure 19 below illustrates this effect. The line is 

located in the same position in all observed cases.  
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Figure 19: Satellite image for January 14th, 2017. There appears to be two different images combined. This image 

confirms that the photos are from the same location.  

 

 

 

4.3.3. Differences between sites 

There was sometimes founds different power output from the 3 sites when comparing over the 

same time period. The sites use different technologies and dimensioned differently, so the 

values are not equal. The three sites are presented below in figure XX. For the sake of easy of 

readability there is only plotted 7 days. The complete figures are presented in the Addendum as 

“Attachment 1”.  

The uncertainty band is the light blue areas. The size of the uncertainty band depends on the 

variability of the satellite data.  
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Figure 20: The three plots (20a, 20b, 20c) display the power output, the uncertainty band and the clearsky GHI. 

Top to bottom: SMA, ABB, Eltek.  

The circles are coloured red whenever the power output is lower than the uncertainty bound. The axes have 

different units of measurement: Power is measured in W against the left axis, and GHI is measured in W/m2 on 

the right axis. The right axis includes has been cut for readability purposes, and it includes 0-800 W/m2.  

 

Figure 20 is one example of how measurements can vary between systems in the same location. 

On day 2 there is a flagged point for SMA and ABB, but that point is not registered for Eltek. 

Likewise, day 5 have 1 flagged value for SMA and ABB, but three flagged points for Eltek.  

The uncertainty bound does not seem to align with the measured output for these select 7 days, 

since most points do not lie within the light-blue interval. Figure 20 is also a visual 

representation of which data points are flagged and inspected. Data points above the uncertainty 

bound has been investigated for research purposes, but they are not flagged by the system.  

On day 2, 3, and 4 in figure 20a there is visible how the power production follows a rough sine 

wave most of the day, but it appears to reach a maximum threshold at the peak of the waveform. 

This can be seen more clearly when this power output in 20a is compared to 20b and 20c.  
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4.4. Quantifications of OEE parameters and indicators 

There was performed an attempt to quantify the OEE parameters introduced in theory section 

2.1.1.  

Availability was defined as percentage of the period in which the data points are measured 

above the lower end of the uncertainty bound. This excludes any flagged data point. Availability 

values varied between the different systems. Four months from 2012 were analysed. The 

following maximum and minimum values were found for each system: 

System Minimum value Maximum value 

SMA 0.8528 0.9432 

ABB 0.8517 0.9757 

Eltek 0.6135 0.9630 

 

Performance was defined as the average value of the entire period compared to the uncertainty 

band. Any point above the lower bound was defined as 1, and any point below was some number 

between 0 and 1. The average value for the entire period was denoted as the performance.   

Four months from 2012 were investigated. The following maximum and minimum values were 

found for each system: 

System Minimum value Maximum value 

SMA 0.9379 0.9767 

ABB 0.8857 0.9818 

Eltek 0.7524 0.9855 

 

The system using Eltek-inverter has the lowest minimum values. The minimum values for Eltek 

are both from December 2012, where most power values are ~0 W. The reason for the 

difference between the different technology is not evident.  

 

Quality was initially defined as the average of all the R-squared values for the different 

parameters in question. This would result in lower quality for circumstances where the data did 

not correlate with our model and understanding. However, later quality was defined as period 

of performance above the upper uncertainty bound.  
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Five months from 2012-2013 were investigated. The following maximum and minimum values 

were found for each SMA. (The other systems did not comply with the code): 

System Minimum value Maximum value 

SMA 0.2333 0.5144 

 

 

4.5. Other analysed parameters  

Correlation between parameters could indicate the importance of that parameter for O&M. This 

thesis investigated windspeed, angle of incidence, precipitation, and pressure. One way to 

crudely analyse correlation is to plot them all in one map, as in figure 21 below. This gives an 

overview of which parameters are positively and negatively correlated. Several of these 

parameters are naturally correlated and will not provide meaningful conclusions alone.  

 

Figure 21: This figure is a plot of the correlation between each parameter. 
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Figure 22: This figure plots the correlation values for every parameter, but only the data points that have been 

flagged for being lower than the uncertainty band.  

 

Windspeed was plotted against the simulated temperature. The plots below in figure 23 show 

examples of what the figure could look like.  

 

April 2012 
 

May 2012 

 

November 2012 

 

December 2012 

Figure 23: Windspeed plotted against temperature in the solar cell. The two lines are the best fit regression lines. 

The red circles correspond with the data points that have been flagged for being power production below the 

uncertainty band. R2 is the R-squared number for each graph. There appears to be no correlation between the 

windspeed and the temperature in these cases. These examples are from the system using an SMA inverter. 
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Angle of incidence (AOI) was plotted against GHI. The plots below in figure 24 show 

examples of what the figures could look like. 

 

April 2012 

 

May 2012 

 

November 2012 

 

December 2012 

Figure 24: AOI plotted against GHI. The red circles correspond with the data points that have been flagged for 

being power production below the uncertainty band.   

 

Precipitation was plotted against “sd_v_oc”. The plots below in figure 25 show examples of 

what the figures could look like. Voc is the modelled open circuit voltage of a single module, 

calculated as check value. 

 

April 2012 

 

May 2012 

 

November 2012 

 

December 2012 

Figure 25: Precipitation plotted against “sd_v_oc”. There are different x-axes, so this will skew the data points 

accordingly. The lines are best fit linear regression. The red circles correspond with the data points that have 

been flagged for being power production below the uncertainty band. 
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Pressure was plotted against GHI in figure 26 below.  

 

April 2012 
 

May 2012 

 

November 2012 

 

December 2012 

Figure 26: Mean pressure against GHI. There are different Y-axes, so this will skew the data points accordingly. 

The red circles correspond with the data points that have been flagged for having power production below the 

uncertainty band. 

 

Maximum power output was studied from the interactive reports. The maximum as-built 

specifications were defined by GEC on their website. The results and the as-built specifications 

are listed below. The maximum power output was reached in April for both plants.  

Plant name Size Module number and 

producer 

Inverter type Max power output 

measured 

Plant no 1  4,6 kW 20 from REC solar SMA 3,9 kW 

Plant no 3  86 kW 400 from REC Modules ABB 88 kW 
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5. Discussion 

This chapter will discuss the results obtained and approach the findings from different 

perspectives. The discussion should as a minimum answer the research questions posed in the 

introduction. Additionally, there has been made observations and gained insight during the 

research that is worth discussing. The chapter should also be reviewed in tandem with the results 

for graphs and values, as well as the theoretical basis for context.  

 

5.1. Parameters and indicators 

5.1.1. POA as a parameter and indicator for the status of the PV system 

The most important parameter for understanding solar PV is the amount of irradiance the 

modules receive. The irradiance is the source of solar power, and with 0 irradiance there will 

be 0 power production. Multiple ways to measure and predict irradiance exist, and some of 

these methods have been explored in this thesis. The results obtained in this thesis indicates that 

POA40 is the parameter that most closely resembles hybrid power output for this system, shows 

robustness, and retain consistent relations to other parameters. The output uncertainty band was 

estimated based on simulated power production.  

One should also mention that the spectra from GHI by satellite also ought to be adjusted to the 

spectra response of the solar cell, and in all likelihood, the values adjusted to fit ground-truth. 

By analysing the POA irradiance, the most precise estimation for the behaviour of the system 

may be performed. If operators could only install one type of measurement for irradiance, the 

results could indicate that POA would be the most precise approach.  

However, one measurement of irradiance should be accompanied by other measurements of 

irradiance. The data set analysed in this thesis has countless instances of missing data for 

irradiance. Independently of the root cause(s) responsible, these data points cannot be easily 

obtained. There are a few possible solutions to rectify this issue. As mentioned by Silva et al., 

it is possible to calculate mean values for a period if the values are missing (Silva, Balanzategui 

et al. 2019). Another option is to analyse data from other functioning logging equipment for 

irradiance like GHI, DNI or DHI. Both strategies are inaccurate or not satisfactory, but they 

may provide some insights into the interval without data points. Additional measurements may 

further decrease uncertainty and can validate data quality in general.  
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Furthermore, POA should be analysed within the context of albedo. Albedo can greatly change 

during winter with the occurrence of snowfall. Analysing the changes in albedo would be 

helpful, since POA includes ground reflection into the measurement to an extent. Albedo will 

depend on the local configuration and microclimate, so it may vary between systems.  

 

5.1.2. Temperature as a parameter and indicator 

The results regarding power output for the system gives clear indications that the efficiency of 

the system increases with lower temperatures (for example: winter) and likewise increases for 

higher temperatures (for example: summer). This is also in accordance with literature, as 

Pearsall claims the operating temperature is the second most influential parameter to predict 

module system output (Pearsall 2017).  

However, there are some challenges with using temperature alone to predict the output of the 

system. Temperature is a function of several parameters, many of which can be measured. They 

are described in detail in Theoretical basis under “Operating Temperature”. In order to perform 

meaningful analysis regarding the temperature, there need to be context regarding the 

parameters for the entire system. In descending order of importance, this thesis suggests 

measuring, time-synchronized irradiance, windspeed, precipitation and pressure.  

Irradiance, as explored in the previous section on POA irradiance, will greatly influence both 

power output and temperature. Module temperature and power output has a feedback loop, in 

the short and long term. In the short term there is a correlation between module temperature 

and the power output of the system. In the long term there will be system degradation that leads 

to lower efficiency of the system, which in turn decreases power output and thus dissipates 

energy as heat in the system instead. Therefore, there should be data logging of at least one kind 

of irradiance for the system to complement module temperature. 

Measuring the temperature on-site is necessary, however one must decide which type of 

temperature reading one wants to measure and possibly model. 

Furthermore, temperature could also be complemented by measurements of wind, precipitation 

and pressure, to obtain a more precise model. Of the aforenoted parameters, wind has a more 

obvious relation with power output, by its relation to module temperature. These parameters 

may grant additional explanations for circumstances where temperature and irradiance cannot 
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alone explain the behaviour of the system. One may assume a system deviation if neither a 

combination of these parameters explains the behaviour measured.  

The final parameter that could be relevant to evaluate is the efficiency of the system. Efficiency 

is generally some ratio between output and input. Since the input energy density and output 

power is available, it may seem tempting to use efficiency as a tool to evaluate system 

performance. However, this is too early to be useful at this stage in the process of understanding 

O&M for solar PV. There are too many unexplored conditions and parameters to accurately 

determine an efficiency that will aid the analysis process. With the current status, efficiency 

may be a useful parameter in technical terms, however not for coordinating operation of the PV 

system. 

Temperature can be used both as a parameter to aid modelling of system behaviour and as an 

indicator of degradation. If the owners wish to perform analysis of degradation, there will likely 

be relevant to study a combination of ambient temperature, module temperature, and cell 

temperature. This further complicates the issue, but it will lead to more robust results for 

degradation analysis.  

Otherwise, it will be sufficient to measure either the module temperature or the cell temperature 

to simply increase performance through necessary O&M measures.  

 

 

5.1.3. Size of periods analysed will affect the result obtained 

Plots for correlation between two parameters were shown for all points from four different 

months in 2012. Choosing a longer time period like a month may hide correlations for a single 

incident, since added data points for the entire month that does not necessarily coincide with 

that incident.  The following paragraphs explore three topics that highlights why researches 

must consciously choose an appropriate time period for analysis. 

One advantage of analysing the entire period simultaneously is that it provides a trend overview 

for the entire period. Constant correlations will be highlighted, since the relations will always 

be true to a degree, due to physical relationship or logical relations. For example, temperature 

and GHI will always retain a correlation, since sunlight provides heat to the surface. Unlucky 

researchers could study this correlation for one day with extraordinary conditions where such a 
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correlation between these two parameters may not exist. Therefore, analysing large data sets to 

discover correlations that are true over time may be advantageous. 

One disadvantage of analysing large time periods is natural seasonal changes affect the power 

output. This will further obfuscate the correlation between parameters. Seasonal changes in 

input parameters are one of the reasons that solar PV is hard to analyse, since analysing data 

from different seasons will have different input parameters. Parameters may also be different 

from random weather changes on the same day in two different years. 

On the other hand, the advantage of analysing select intervals within one period is that greater 

insight into single incidents or events may result. For example, problems that are caused by 

snowfall may only affect the module for a short time. In this case studying parameters for 

exactly that time period in order to clearly evaluate the correlation is preferable. Researcher or 

operators must remember that the values obtained must only be evaluated for the selected 

period. 

 

5.1.4. Applications and Limitations of correlations found 

Two sets of correlations of visualizations were used for the analysis: one large matrix containing 

every parameter and several small thumbnails plotting two parameters together.  

The matrix is a crude and exploratory model that should not be used to make conclusions. 

Instead, it helps researchers evaluate the correlation between a wide range of parameters of 

interest. For this thesis two sets of correlation matrices containing all parameters available were 

used. The first matrix applied all data points to calculate the total correlation, while the other 

plotted the correlation between the data points that had been flagged. This way there was gained 

insights into which parameters correlated when the system was underperforming. The 

difference between the two correlation values were also subtracted from each other to see which 

correlation changed the most.  

Correlation thumbnails provided the ability to analyse correlation between two parameters of 

interest. The process of selecting periods to analyse through the interactive visualizations will 

affect the correlation plots, which naturally leads to possible problems of selection bias if the 

values are translated to other periods where they are not applicable. R-squared was used to 

evaluate how well a given correlation explained the relation between two selected parameters. 
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5.2. Strength and weakness of OEE as applied to PV 

5.2.1. Discission of definition of availability, performance and quality 

As discussed in section 5.1.3 – “Temperature as a parameter and indicator”, evaluating 

efficiency might be too complex at this stage. One solution might be to nuance the issue by 

using OEE instead of simple efficiency. This introduces “availability”, “performance” and 

“quality” to quantify which parts of the production is responsible for the reduced effectiveness. 

OEE are designed for manufacturing productivity, and is therefore not perfectly applicable to 

solar PV. The effort made in this thesis defined the terms in – “Quantification of OEE 

parameters and indicators”. Transferring the definitions from one manufacturing proved both 

challenging and rewarding:  

Availability could be defined as the uptime of the system, which is similar to the 

manufacturing, and the results successfully flag periods without production or measurement. 

Unplanned stops in production can be exemplified by snowfall covering the module or 

measurement equipment.  

Performance could be defined as the ability of the parts of the PV system to operate at their 

best ability. Unfortunately, this term is close related to efficiency, which has already been ruled 

out for future work. Performance in this thesis were defined as the ratio between the minimum 

expected power and the measured power. This definition is only partly sufficient for the 

definition of “performance” in traditional OEE. It is, however, defendable for the sake of 

evaluating if the system is producing power at the expected level.  

Quality is normally defined as the quality of the production units. The ratio is between the 

approved units and the total units. Analysing to what extent power produced is approved is not 

easy. It has not been the scope of this thesis. The definition presented will instead be that quality 

is measured by the amount of time the yield from the system is within the expectancy. Whenever 

it is not, the model is wrong, or the efficiency is decreased for some unknown reason. Quality 

is probably the definition that fits PV the least. It is simply an attempt at transferring the 

approach from OEE to another technology. Furthermore, quality is also the indicator that scores 

the lowest for the entire PV system. 

One advantage of differentiating between availability, performance and quality is that a low 

value can lead to a different response for each case. Availability issues must be dealt with 

immediately. Performance issues are visible over time and so must be dealt with when 



NMBU Master Thesis Ås 

57 
 

necessary. Quality issues lead the operators to evaluate their models and methodology over the 

long term. 

One limitation of this method for defining the OEE indicators is that performance and quality 

depend on the uncertainty chosen by the researchers. For this thesis, the size of the uncertainty 

band was two standard deviations from the expectancy. If the uncertainty band is increased, it 

will encapsulate more data points, which gives an improved performance and quality score. 

Definitions are tweaked/tuned along the way, as learning grew. 

As mentioned in 4.4 – “Quantification of OEE parameters and indicators”, efficiency might be 

too simple to explain PV behaviour. OEE might also be insufficient, as the results show. 

Defining quality is challenging when the production units could not be visually inspected or 

tested. Performance has a debatable definition, so it could have different definition. These are 

some of the weaknesses that must be considered when transferring OEE concepts to solar PV. 

 

5.2.2. Inaccurate system specifications   

Inaccurate system specifications are a general issue for specifications that are backed by 

warranties. In our specific case, further analysis was needed to handle this issue. Results 

regarding maximum power output show that the inverter specifications listed on Methodology 

about GEC’s website is not equal. Plant 3 using ABB inverters has allegedly peak output at 86 

kW while the results for maximum power output suggests the maximum is 88 kW. This leads 

to at least two problems:  

1. It could mean that the PV system is outsized by its specifications. This could potentially 

make it challenging to determine the original maximum power output when there are no 

records of the true maximum output. 

2. If this is an ongoing issue, it may mean that other specifications also have different 

dimensions than suggested.  

Typically, PV modules operate with plus tolerances for warranty purposes, and as such the 

initial performance may be higher than the datasheets. 

 

Likewise, the inverter maximum capacity has been reached for Plant 1, but that maximum is 

below the suggested maximum. GEC’s website claims the system have capacity for 4.6 kW, 
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but the maximum measured is 3.9 kW. The graphs clearly show an inverter cut-off around 4 

kW, which remains a constant maximum that may be reached each day. The inverter may have 

too low capacity to handle the power output of the modules. Unfortunately, this leads to at least 

two challenges: 

1. There is difficult to determine to which extent a system has degraded when the 

maximum capacity of the module exceeds the inverter maximum.   

2. The total power output of the system and its signature might be affected by the 

maximum measured power being lower than the true maximum generated power. For 

example, by temporary heat dissipating at inverter cut-off, causing a different thermal 

operational point. 

 

The challenges presented means that researchers must employ more sophisticated methods to 

determine the amount of degradation of the system. Maximum power output could be measured 

in months where the peak capacity is not reached on any day. The maximum power could later 

be compared to power from similar days to evaluate performance, if other parameters are 

similar enough to allow it.  

 

5.3. Indications of forewarning before measuring equipment shutdown 

During the analysis there was analysed if a trained human mind could identify the reason for a 

failure of the measuring system. The two examples show what the irradiance appears on the 

heatmap before the failure. The hypothesis was that a failure should occur due to a cause, and 

that this cause could be observed as a visual signature from studying the data.  

The first example, figure XX, show how there are an increasing amount of missing data in the 

months before the failure. The second example does not show this effect on the heatmap, 

although the heatmap appears to have more extreme values than other equal months. The 

expected signature of the data set is not self-evident if it truly exists.  

The hypothesis should be studied further. Enabling operators to stop failures of the measuring 

equipment will greatly improve the data quality, and thus improve reliability and robustness of 

the results. 
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5.3.1. Possibility of detecting signature in data after snowfall 

Another hypothesis during this research was that there would be a signature in the data set for 

how snow affected the irradiance measurement and power output. The hypothesis is not directly 

tied to the research questions after a shift in perspective, but the results may yet be of future 

interest. There were confirmed that irradiance data combined with satellite imagery can detect 

snowfall. Irradiance measurements from the system in question are, fortunately, not affected by 

snow after the clouds have cleared. The time periods that were identified to have snowfall in 

this research unfortunately did not have enough available data to compare the insights with 

power output.  

It is entirely possible that there is a signature to snow on modules, but it is not self-evident by 

visually inspecting only irradiance alone. 

This research has identified approaches to confirm snowfall within a time period, and that 

irradiance measurements are not affected by the snow. This insight may be used further for 

other periods with snowfall where data for power production is available. With this approach 

there might be gained further insight into the behaviour of the model after snowfall.  

It should be noted, however, that there is some uncertainty in the consensus of the effects of 

snow on modules. One study suggests that the losses are dependent on the angle of module and 

the technology of that module (Andrews, Pollard et al. 2013). Therefore, there must be 

conducted further research into this topic. 

 

5.3.2. Machine learning  

One final point that could be considered it a machine learning approach to this issue. It can be 

argued that data science and machine learning could assist in evaluating the large data set. The 

results discussed provide several examples for the difficulty of detecting significant values or 

significant incidents in large data sets.  

There is a clear benefit to have multiple ways of analysing data, for example by having different 

people cooperate and discuss findings. Additionally, there are benefits to have a machine 

teaching itself how to analyse the large sets efficiently. Analysis of the data does not necessarily 

demand human attention, although it is a safety mechanism at this early stage of understanding 

O&M. Some studies suggest that a combination of human comprehension and computer 
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algorithm can derive understanding of how environmental stressors affect degradation in PV 

modules (Wheeler, Gok et al. 2015).   

 

One weakness of using data scripts for analysis is that several of the instances of degradation 

happen seldom to the modules. Machine learning can be weak in discovering the causation 

between output and rare phenomena. It must be guided by human intervention so that the 

insights learned may be transferred to human knowledge. By for example, choosing time 

periods where snowfall has been confirmed, the algorithm can be guided to analyse the data set 

in that context. 

Another weakness of using data science directly is that the complex interactions are not yet 

fully understood in the scientific community. This means that the algorithm can be trained based 

off of inaccurate or wrong assumptions. This may lead the algorithm to make inaccurate or 

wrong conclusions. Additionally, machine learning should provide scientists and engineers a 

greater understanding of the failure mechanisms. The insights gained will be independently 

beneficial, but understanding the conditions that cause the degradation may allow operators to 

completely nullify the issue.  

 

5.4. Quality control and assessment 

Generally, data should be validated by independent sources to give the results more weight. 

That was done partly in this paper. For example, to verify data points regarding solar irradiance, 

there was analysed the measured irradiance on the module from different angles, the power 

induced by the irradiance in the cell, and satellite imagery to confirm weather conditions. This 

is only the next-best thing and can potentially lead us to make claims based on bad data sets. In 

addition, there was taken care of in this paper to quality control the data sets based off human 

comprehension of what a reasonable value would be.  

 

5.4.1. False positive measurements  

Another point that should be considered in analysing data is that some corrupt data will likely 

be corrupted without being noticed. It might be skewed by a couple of minutes or raised without 

being flagged as corrupt. This might happen because it is not severe enough to be noticed, or 

because its self-correcting from a corrupt value to a reasonable, yet wrong, value. False 
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positives will always be a part of data sets of this size. False positives might indicate that a 

system has a higher OEE than it does, which falsely leads to a suboptimal O&M. If can also 

disguise root causes that would otherwise indicate an upcoming failure.  

 

5.4.2. Real-time O&M improves system and quality of data 

Proper data quality control, as described in chapter 2.9 in theoretical basis, will be essential to 

provide trusted and reliable results. There are numerous examples of entire months of data that 

is unable to be used for analysis due to missing or corrupt data. Analysis of data from up to 

eight years ago might not be relevant now for the operators, but it would provide this research 

project with more data for analysis.  

O&M should be performed in real-time for mainly two reasons: Firstly, this enables operators 

to rectify issues so that the least amount of power is lost. Secondly, it can protect the module 

from cascading degradation modes. In addition, the results obtained in this thesis shows that 

O&M should also be performed in real-time to preserve data quality. Analysis of the state of 

the system and prediction for its future life will be greatly enhanced by improved uptime of the 

system.  

Likewise, monitoring and analysis should also be done in real-time for the system. That way 

there can be performed visual inspection in combination with the analysis of operation 

behaviour. The analysis in this thesis had, in comparison, an academic approach. The aim was 

not necessarily to address the system as presented by the data, but instead to explore the data 

set. Thus, there was some leniency to use old data sets. 

Pearsall claims that there is not sufficient to look at select times for performance, since natural 

variations may change the output. He also claims that yearly averages do not necessarily 

provide enough context unless you understand the year in question (Pearsall 2017). These 

aspects were attempted overcomed by in-depth analysis of the data set and is part of our 

delivery.  
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5.4.3. Resolution of data  

The chosen resolution of data will affect the results by changing the data points that are 

analysed. There was made a conscious decision to obtain data sets with high resolution, so that 

there could be performed precise analysis on changes of module behaviour under different 

weather circumstances. The resolution enabled closer and more precise correlation estimation 

between phenomena and module behaviour. This is also in accordance with Hansen et al. who 

found that reducing weather-averaging from one hour to 15 minutes reduces the error in energy 

by a factor of 10 (Hansen, Stein et al. 2012). The thesis also combined data from several sources. 

If the sources have different sampling rate, the intermediate points from one source must be 

dismissed since they do not correspond to a point from the other source. 

However, a high resolution of a data set demands much more processing power and time. One 

of the simulations done in this project demanded 10 minutes to visually display the heat map 

for each month, which equals less than 10% of the entire data source. Measurement equipment 

able to make log data with higher quality and sampling rate will also be more expensive.  

Additionally, data analysis for operational data for PV systems are generally at much lower 

resolution than the data set evaluated in this thesis. When the research in this thesis used a 

higher resolution there is possible to detect known issues, as well as unknown issues. One 

example is that temperature lags behind shifting weather on a small timescale. 

Data were down sampled to another frequency for the latest interactive produced reports. This 

means that precision was sacrificed to make it possible to use the GUI in the web browser. 

Sampling for a new frequency was also done to match the frequencies of different sources with 

unequal frequencies. While this is useful for slicing and studying data quickly, it will reduce 

the accuracy drastically.  

 

5.4.4. Methodology based on incomplete models may yield incomplete results  

One issue that should be noted is that our methodology is largely influenced by three factors: 

the data set available, our understanding of solar modules, and the academically suggested 

approach. Our understanding of the influence of O&M on solar modules is incomplete, which 

in turn guides us to make imperfect assumptions when analysing the data set. We strive to make 

the analysis as rigid as possible, but effects outside our understanding will likely not be 
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investigated, simply because its importance is unknown. In conclusion, this makes the results 

determined by the understanding of the problem. 

Another relevant effect is that the information available determines how data is collected by the 

operators and researchers. For operators, this means that they will only notice effects that their 

measuring equipment is designed to measure. Likewise, scientists looking into the effects on 

the modules will only notice what is known to be an issue. The combination of these two effects 

can lead to a narrow-focused approach that in turn leads to incomplete descriptions of module 

degradation. Our analysis of snow affecting the modules are one example of incomplete 

understanding yielding incomplete answers. Further interdisciplinary studies are necessary. 

 

5.5. Weaknesses of methodology used 

One limitation for the methods is that there are room for human error in the processes of figuring 

out how to approach the data set. Several instances of perceived relationships were in fact 

human mistakes in the programming, extraction or analysis phase. Avoiding misunderstanding 

requires resources, i.e. time and effort, which could otherwise have been spent on meaningful 

analysis. 

Another weakness of the approach is that the research was exploratory. There is hard make bold 

conclusions when a majority of the research is investigation and discovery of opportunities. 

These opportunities may, however, be used as a foundation for future research. Additionally, 

exploration of a data set with many variables leads to an increasing chance of randomness to 

affect the data set. 

Furthermore, even though there were multiple technologies analysed and several plants, there 

were only one geographical location in question. One single location limits the possibility of 

generalizing findings or insights to other microclimates.  

OEE is a concept that is transferred from one technology to another. Adopting the three main 

indicators proved challenging, and using them may be an inaccurate model that could lead to 

inaccurate conclusions due to inaccurate or wrong assumptions. 
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6. Conclusion 

The research aimed to identify indicators and parameters that would necessary to evaluate the 

state of a solar PV system. Through an exploratory analysis of the operational data from a grid-

connected solar PV system in Sweden there were identified two parameters, namely POA 

irradiance and temperature, that contributed the greatest to evaluate the state of the system. Both 

parameters should be evaluated in combination with other parameters to create the most robust 

predictions for the future of the system.  

The thesis also introduced OEE as a tool to benchmark the PV system. There are proposed 

definitions that are transformations from the manufacturing industry. The range of availability, 

performance and quality have been presented, and the indicators and OEE in general show some 

promise as a tool to evaluate the state of the solar PV system.  

From the research there were made observations regarding behaviour that may be a forewarning 

for equipment failure. There may be a signature in the data set that could prove useful to prevent 

a failure from decreasing the quality of the data set, so that the reliability and robustness of 

analysis could be improved. The insights gained by OEE were beneficial on their own terms, 

and more importantly, system understanding enables operators to reduce or even eliminate 

issues, and the potential value of humans-in-the-loop for O&M data analysis were illustrated. 

The research also aimed to evaluate the quality of datasets and the reliability of the results. 

There were presented a wide range of instances with low quality in the data set, which have 

been separated from the analysis. There were also made several considerations regarding the 

quality assurance relevant to the research. Additionally, there were made considerations for 

how this research methodologically could be improved.  

Finally, the research has identified several necessities that must be satisfied the first year of 

operation to ensure that the data set is satisfactorily detailed and quality assessed. Having 

complete data sets are especially important to perform meaningful analysis of the behaviour of 

the system. These recommendations stemmed from observations that were made throughout 

the research. 
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6.1. Future work 

This paper is far from comprehensive, and there are obvious issues that needs to be tackled to 

improve the understanding of O&M and its effects on the lifetime of solar modules. This study 

aims to provide a system condition assessment. The natural progression from this understanding 

would be to provide a recommendation of O&M-measures for better OEE and lifetime, by 

continuing to pursue CRISP-DM as a tool to analyse solar PV systems. 

Below follows a suggestion for future work. This chapter does not, naturally, completely cover 

the extent of unexplored topics in this field, but will be based on results, ideas and perspectives 

gained throughout the research for this thesis. 

 

6.1.1. Using Machine Learning to assist human evaluation of degradation 

Machine learning may provide another tool to aid humans in evaluating degradation in solar 

PV. The data sets are large, and algorithms could provide new insights, if the process is 

appropriately monitored and studied. This thesis has suggested snowfall as one weather 

phenomenon that can be analysed further.  

 

6.1.2. Analysis of materials used in the modules 

The material that the solar cell is constructed from will have significant influence on how the 

environmental stressors affect the module. To ensure that results gathered from this research is 

generalizable, the topic must be researched further in combination with an analysis of materials 

science. This is beyond the expertise of the student and will be beyond the scope of this paper. 

 

6.1.3. Economic aspects 

The economic aspect has not been a part of the analysis of this paper. It should, however, be a 

concern for future research and discussion. The motivation for improved O&M is partly 

financial competitiveness, and it must be evaluated thoroughly the levels of O&M that is the 

most profitable. This will likely change over time, due to development of technology and 

improved knowledge. Two proposed strategies could involve: 

• Evaluating the spot price for kWh and then compare it to the cost of O&M 
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• Evaluation of market opportunities by comparing amount of possible O&M in one 

market and the potential to create business opportunities for that market 

 

6.1.4. Missing parameters 

This analysis could be enhanced by having more parameters. Especially voltage and current 

could have been used in this thesis to improve the analysis. Analysing how much voltage was 

generated by the cells could give insights into the correlation between temperature and voltage 

and evaluating the ratio between voltage and current could give new insights into power 

generation as well as another estimate of the maximum power generated. It may also lead to 

more robust understanding of where the reactive power stems from. 
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Attachment 1: Complete plots for power and clearsky irradiance 

 

Figure 27: Supplementary plots to Figure XX. This shows the system using SMA-inverter. 
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Figure 28: Supplementary plots to Figure XX. This shows system using ABB-inverter. 
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Figure 29: Supplementary plots to Figure XX. This shows the system using ELTEK inverter. 
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Attachment 2: Satellite images for December 5th-11th, 2018 
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Attachment 3: Heatmaps for March, April, May 2016. 
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Attachment 4: Heatmaps for August, September, October 2014 
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