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Abstract
Breast cancer is the most common cancer type in women, and response to
treatment varies immensely between subtypes. As of today, patients with Basal-
like breast cancer lacks targeted treatment, which leads to poor prognosis for this
group. Also other subtypes could benefit from a more targeted treatment. The
molecular characteristics of each subtype remains an active area of research,
and transcription factors that drive the subtypes need to be investigated in
order to provide potential targets for more effective treatments. The molecular
characteristics of each breast cancer subtype were inferred from ATAC-seq and
RNA-seq data from 70 breast cancer patients, using two different matrix factorization
methods. The first analysis used non-negative matrix factorization (NMF) on
two separate data sets: One for ATAC-seq data, and one for RNA-seq data.
The samples were clustered into five groups, based on molecular patterns shared
within the groups, for both data sets. The DNA regions that were specifically
open for each group were investigated for enriched transcription factor binding
sites. The same was done for the promoter regions of the genes that were highly
expressed in each group. The Basal-like subtype achieved the most successful
clustering, and transcription factors likely to drive this subtype were uncovered.
Also transcription factors responsible for driving a collective group of estrogen
positive (ER+) subtypes were uncovered. The second analysis used Multi-Omics
Factor Analysis (MOFA) to integrate the ATAC-seq and RNA-seq data in one
combined analysis. The main purpose of this analysis was to support the findings
of the first analysis, and possibly improve the clustering. The integration of multi-
omics data resulted in two clusters, separating the Basal-like subtype from the
rest of the subtypes. The clustering was not improved. However, some of the
key transcription factors found for each group supported the results of the NMF
analysis.
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Sammendrag
Brystkreft er den krefttypen som rammer flest kvinner, og effekten pasienter har
av behandling er svært avhengig av subtype. Fortsatt mangler pasienter med
Basal brystkreft behandlingsalternativer som er målrettet mot denne subtypen,
og prognosen er derfor dårlig for disse pasientene. Også pasienter med andre
subtyper kunne ha dratt nytte av mer målrettet behandling. De molekylære
egenskapene som kjennetegner hver subtype er et felt det forskes mye på, og
transkripsjonsfaktorer som kan være viktige for hver av disse subtypene må
undersøkes som potensielle mål for behandling. De molekylære egenskapene
som kjennetegner de ulike subtypene ble funnet fra RNA-seq og ATAC-seq data
fra 70 brystkreftpasienter, ved bruk av to ulike matrisefaktoriseringsteknikker.
Den første analysen brukte ikke-negativ matrisefaktorisering (NMF) på to ulike
datasett: Ett for ATAC-seq data, og ett for RNA-seq data. Prøvene ble gruppert
i fem grupper, basert på de molekylære mønstrene som var felles for hver gruppe,
for hvert datasett. DNA-regionene som var spesifikt åpne for hver gruppe ble
undersøkt for å finne transkripsjonsfaktorbindingssetene som opptrådte oftest
for hver gruppe. Det samme ble gjort for promoter-regionene til genene som var
høyest uttrykt i hver gruppe. Den beste seperasjonen ble oppnådd for den Basale
subtypen, og for denne gruppen ble det funnet en rekke transkripsjonsfaktorer
som trolig er viktige. Det ble også funnet transkripsjonsfaktorer som kan være
viktige i subtyper som er drevet av østrogenreseptorer (ER+). Den andre analysen
brukte «multi-omics» faktoranalyse (MOFA) for å integrere ATAC-seq og RNA-
seq data i en kombinert analyse. Hovedmålet med denne analysen var å understøtte
funnene fra den første analysen, og å forbedre grupperingene ommulig. Integreringen
av «multi-omics» data resulterte i to grupper, som separerte den Basale subtypen
fra resten av subtypene. Grupperingene ble ikke forbedret. Likevel kunne noen
av transkripsjonsfaktorene som ble funnet for hver gruppe brukes til å støtte opp
om resultatene fra NMF-analysen.
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Chapter 1

Introduction
Cancer is a disease that occurs when normal cells turn into high replicating tumor
cells. It can happen anywhere in the body and can be caused by multiple factors,
for example genetic predisposition, viral infections, radiation or contaminants
such as tobacco smoke. Age, diet and physical activity are highly contributing
risk factors (WHO, 2018). The various types of cancer are responsible for nearly
10 million deaths globally each year, and is the second leading cause of death
among the global population (WHO, 2018). As of today, cancer is one of the most
challenging diseases to combat, as it varies immensely between patients. Cancers
in different tissue types are driven by different factors, and so are cancers within
the same tissue type, giving rise to multiple subtypes of each cancer type (Song
et al., 2015) (Figure 1.1).

Figure 1.1: There are multiple cancer types, each of which have multiple
subtypes. Here shown for breast cancer (BRCA), with five molecular subtypes:
Basal-like, Luminal A, Luminal B, Normal-like and Her2.

2



Breast cancer is the most commonly diagnosed cancer type for women in developed
countries (Bray et al., 2018). Approximately 8% of Norwegian women will
get breast cancer at one point in their life (Kreftforeningen, 2020), and the
number is estimated to be 12% for American women (Waks & Winer, 2019).
Up until 2011, it was also the leading cause of cancer related deaths for women
in developed countries (Jemal et al., 2011; Torre et al., 2015). In some countries,
including Norway, breast cancer has now been surpassed by lung cancer, likely
due to improved treatments (Bray et al., 2018; DeSantis et al., 2017). Current
treatments include surgery, chemotherapy, radiation and hormone therapy (Waks
&Winer, 2019). However, the clinical outcome of these treatments varies immensely
from patient to patient, depending on subtype (Waks & Winer, 2019).

Breast cancer subtypes
Breast cancer can be subtyped in a number of ways, depending on which underlying
characteristics that are in focus (Dai et al., 2016; Stingl & Caldas, 2007; Sun
et al., 2014). According to the literature reviewed for this thesis, the three most
common methods are:

1) Histological/morphological methods
Classification based on location or tissue in the breast where cancer
cells are present, or morphological features from microscope examination.
These subtypes are often referred to as breast cancer types in order
to avoid confusion with other subtypes (Canadian Breast Cancer
Network, 2020). Examples include ductal carcinoma in situ and
metastatic (stage IV) breast cancer (Malhotra et al., 2010; Ivshina
et al., 2006).

2) Receptor status
Method that uses immunohistochemistry markers (IHC) to describe
different subtypes. These subtypes are normally created from a combination
of estrogen receptor (ER) status, progesterone receptor (PR) status
and human epidermal growth factor receptor 2 (HER2) status. Each
receptor status can also be used independently, by for example dividing
breast cancer into ER+ and ER- (Dai et al., 2016).

3) Molecular subtype
Classification of subtypes based on molecular profiles. The most
common methods are i) integrative clustering and ii) intrinsic clustering
(Russnes et al., 2017). Integrative clustering is based on a combination
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of copy number drivers and gene expression, while intrinsic subtypes
are based on gene expression alone. Molecular subtypes based on
intrinsic clustering normally include Normal-like, Basal-like, Her2,
Luminal A and Luminal B (Russnes et al., 2017). Prediction analysis
of microarray-50 (PAM50) (Parker et al., 2009) has gained popularity
as a robust way of classifying breast cancer into these five molecular
subtypes based on the expression of 50 genes (Nielsen et al., 2010;
Sabatier et al., 2014).

These methods for classifying subtypes are based on different criteria, which
means that tumors that are grouped together using one criteria may not be
grouped together using another. However, tumors with the same molecular
subtype usually have the same receptor status (see Table 1.1).

Table 1.1: Relationship between molecular subtype and receptor status.
Normal-like, Luminal A and Luminal B tumors are normally hormone receptor
positive, while Her2 and Basal-like tumors are almost exclusively hormone
receptor negative. Her2 and some Luminal B tumors are enriched for HER2
(HER2+) (Nguyen et al., 2008; Breastcancer.org, 2020). Some individual tumors
can have an atypical profile, but this table is based on the characteristics of most
tumors. *ER+ and/or PR+

Molecular subtype ER status PR status HER2 status

Luminal A ER+/-* PR+/- HER2-
Luminal B ER+/-* PR+/- HER2+/-
Normal-like ER+/-* PR+/- HER2-
Her2 ER- PR- HER2+
Basal-like ER- PR- HER2-

Separating between estrogen receptor positive (ER+) and estrogen receptor negative
(ER-) breast cancer has often been a main focus in clinical settings, as it has a
great impact on current treatment. ER+ tumors (Luminal A, Luminal B and
Normal-like) account for 75-80% of the breast cancer cases (Cui et al., 2005; Hart
et al., 2015), and because ER+ tumors are enriched for estrogen receptors (ER),
patients with this subtype are likely to respond to hormone therapy. About 65 %
of these ER+ tumors are also positive for progesterone receptor (PR+), and the
combination of both these receptors increases success rate of hormone treatment
and survival further (Cui et al., 2005). On the other hand, patients with ER-
breast cancer (Basal-like and Her2) normally also lack the progesterone receptor,
and are much less likely to respond to hormone treatment (Itoh et al., 2014).
However, Her2 and some Luminal B tumors usually respond to treatment that
targets HER2 receptors (Arteaga et al., 2012), while the treatment of Basal-
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like cancer is limited to chemotherapy (Waks & Winer, 2019). This lack of
targeted treatment leads to poor prognosis for patients with Basal-like breast
cancer compared to the other subtypes (Anders & Carey, 2008; Dai et al., 2016)
(Figure 1.2).

Figure 1.2: The five molecular subtypes (Basal-like, Luminal A, Luminal B,
Normal-like and Her2) have different prognosis, based on response to current
treatment. Hormone receptor positive subtypes (ER+/PR+) have the best
prognosis, with Luminal A being the least deadly, followed by Normal-like and
Luminal B. The hormone receptor negative subtypes have worse prognosis, with
Basal-like being the most deadly (Wang et al., 2011; Breastcancer.org, 2020).
Adapted from Dai et al. (2017).

In order to investigate the possibility for more successful treatments, especially for
patients with Basal-like tumors, it is important to know the molecular subtypes
and what characterize them. Molecular classifiers such as PAM50 has shown that
each subtype can be characterized by a common gene expression pattern, called
a gene signature (Cantini et al., 2017). Although these types of gene signatures
have good prognostic value, they are intended for classification, and therefore
contain the minimum number of genes needed to classify a sample (Nielsen et al.,
2010). In order to explain more of the characteristics that define each subtype,
larger gene signatures can be defined by using unsupervised learning methods
on a full set of gene expression data. Molecular subtypes such as PAM50 can
be used to validate the clusters, thus, combining a priori knowledge of subtypes
with larger, data-driven gene signatures. However, to understand exactly why the
subtypes exhibit different gene expression patterns, we have to understand the
mechanisms behind. One of the most important mechanisms is gene regulation.

1.1 Gene regulation in breast cancer

Gene regulation is a set of mechanisms that increase or decrease the expression
of genes, and previous research has shown that it plays an important part in the
development and progression of breast cancer (Emmert-Streib et al., 2014; Hua
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et al., 2008). Expression of genes are regulated at different stages: Transcription,
translation and post-translation (Chen & Rajewsky, 2007; Kulis et al., 2013), as
shown in Figure 1.3. Transcription of genes is largely regulated by a cooperation
between transcription factors and chromatin structure (Bonifer & Cockerill, 2011).
The regions where this regulation takes place are found in non-coding DNA, in
regions previously called "junk DNA" (Nowak, 1994). Changes in gene regulation
at transcriptional level will impact the later stages, and is therefore considered
to be the most critical control point of gene regulation (Delgado & León, 2006).

Figure 1.3: Regulation of gene expression is a multi-level process, that takes
part in all steps of the central dogma. Transcriptional regulation is the first step,
and affects the downstream processes of translation and post-translation. One
example of regulation is shown for each step, starting from top: 1) TF binding, 2)
microRNA binding and 3) acetylation. However, gene regulation is a complex
process, and there are multiple other factors at play. Created with BioRender.

To better understand gene regulation, imagine a greenhouse where the goal is
to get a tree to thrive. There are thousands of buttons with different functions:
Some are responsible for watering, some are responsible for light, while others
provide different kinds of nutrients to the roots. We have multiple janitors, each
of them responsible for pushing one or more buttons. In order to do so, they
need to have access to the buttons. Sometimes they are told they need to turn
the buttons slightly up or down, so the tree gets exactly what it needs for normal
function and growth. There are also some buttons that are supposed to stay
turned off. These buttons are blocked, and the janitors are unable to push them.
Now, imagine that this tree is a cell in our body. The buttons are genes, the
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janitors are transcription factors and whether these janitors have access to the
buttons or not correspond to open or closed chromatin. In normal cells, this
system works: Chromatin opens where it is supposed to, and transcription factors
only turn on the genes that should be on. However, this could change.
Let us say that one day, a lightening strikes and damages the system. Some of
the buttons are unblocked by mistake, and the janitors push the buttons that are
supposed to stay off. At the same time, some of the buttons that are supposed
to be pushed are blocked, and the janitors responsible for pushing these buttons
are unable to do so. Suddenly the tree starts growing uncontrollably; the trunk
bulges into a thick structure and the branches start growing in every direction.
This scenario is essentially what happens when normal cells turn into cancer cells.
Here, the lightening strike represents an external cause that creates mutations in
regions of the DNA related to growth. This is the case in about 90-95% of cancer
cases, including breast cancer (Anand et al., 2008; Mehrgou & Akouchekian,
2016). These mutations initiate a cascade reaction where multiple genes that
are involved in promoting cell division and growth are turned on, while genes
involved in suppressing cell division and growth are turned off (Hua et al., 2008;
Cox & Goding, 1991). The result is uncontrolled growth and tumor formation.

Figure 1.4: Gene regulation can be represented as the process of turning
buttons, or genes, on/off or up/down.

1.1.1 Transcription factors

The transcription factors (TFs) - or "janitors" - are, together with chromatin,
crucial for ensuring that the correct genes are expressed at the correct time in the
correct cells in order for our body to function normally. There are roughly 1,600
different human TFs (Lambert et al., 2018), and previous research has estimated
each TF to have as many as 10,000-300,000 copies within a single cell (Biggin,
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2011; Simicevic et al., 2013). TFs can bind to different regions in the genome,
but often bind the promoter region, which is located near and upstream of the
transcription start site (TSS) of the gene they regulate (Tompa et al., 2005).
TFs can also bind to regions located far away from the gene they regulate, as
chromatin arrangements can allow them to be close in three-dimensional space
(Marsman & Horsfield, 2012). These distant binding sites are located in regions
called enhancers or silencers (Delgado & León, 2006). TFs that bind to promoter
and enhancer regions are normally responsible for increased expression of the
gene they regulate. On the other hand, TFs that bind to silencers can block
RNA polymerase II (RNAPII) from binding and turn off all expression of a gene
(Maston et al., 2006; Delgado & León, 2006).

Previous studies have shown that TFs have an important role in the development
and progression of breast cancer (Shepherd et al., 2016). The most active TFs
vary between breast cancer subtypes, resulting in different transcriptional profiles
(Zhu et al., 2020).
There is a general agreement that TFs such as FOXA1, GATA3 and ERα (estrogen
receptor alpha) are important drivers in ER+ subtypes like Luminal A/B and
Normal-like (Theodorou et al., 2013). However, there is still a lot to discover
about the TFs that potentially separate these subtypes.
On the other hand, there seems to be a lack of established consensus regarding the
TFs that drive ER- tumors like Her2 and Basal-like. Some studies have suggested
SOX2 as a possible driver of Basal-like tumors (Rodriguez-Pinilla et al., 2007;
Chen et al., 2008), in addition to other SOX TFs, like SOX10 (Cimino-Mathews
et al., 2013), SOX4 (Zhang et al., 2012) and SOX11 (Shepherd et al., 2016).
TEAD4 (Wang et al., 2015; Adélaïde et al., 2007; Zhu et al., 2020), STAT3 (Zhu
et al., 2020), CEBPB (Willis et al., 2015) and MYC (Xu et al., 2010) have also
been suggested as potential Basal-like drivers. However, there seems to be large
variations between different studies, depending on the data type and methods
used.
For the Her2 subtype, Yin Yang 1 (YY1) has received attention as a likely
TF driver (Begon et al., 2005; Powe et al., 2009). YY1 has been proposed
to cooperate with TFs in the AP-2 (activator protein 2) transcription factor
family (Woodfield et al., 2010; Powe et al., 2009). Although various AP-2 TFs
appear to be enriched in Her2 tumors (Begon et al., 2005; Turner et al., 1998),
other studies have found that they cooperate with ERα in ER+ luminal tumors
(Cyr et al., 2015). TFAP2C (transcription factor AP-2γ) is a member of the
AP-2 family, and though this specific TF is often associated with ER+ tumors
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(Woodfield et al., 2010), it has long been suggested to have important functions
in different subtypes (Turner et al., 1998; Gee et al., 2009; Woodfield et al., 2010).

The TFs that drive the various breast cancer subtypes depend on differences in
chromatin accessibility landscape, as TF binding is restricted to open chromatin
regions. This gives possibilities for searching open regions for transcription factor
binding sites (TFBSs).

1.1.2 Chromatin

The human genome contains roughly 3 billion base pairs (bp) of DNA (National
Human Genome Research Institute (NIH), 2020), and this DNA is divided between
23 pairs of chromosomes. In order to fit these massive amounts of DNA in each
cell, the DNA in each chromosome is tightly packed at several levels. The inner
level of this packaging consists of DNA wrapped around proteins called histones,
and this structure is called chromatin (Figure 1.5). Chromatin can either be
tightly packed, in which case it is called closed chromatin, or loosely packed,
which is called open chromatin. The reason why not all chromatin is tightly
packed, is because the open and closed state of chromatin is one of the main
contributors to gene regulation (Buenrostro et al., 2013).
If we think of the example above, the chromatin state decides whether the
"janitors" are able to push the buttons or not. In other words, if a TF cannot
reach its binding site due to a closed chromatin state, it is unable to regulate
the gene. Similarly, if the TF has access, the genes they regulate will either be
transcribed or repressed, depending on which region the binding site is located
in. The process of opening closed chromatin and vice versa is called chromatin
remodeling, and is driven by many different mechanisms. These include binding
of pioneer TFs (Zaret & Carroll, 2011) and post-translational modifications of the
histones (Delgado & León, 2006; Phillips & Shaw, 2008). In addition, complexes
such as the CTCF/cohesin complex play a part in organizing the 3D structure
of chromatin, which also affects transcription (Song & Kim, 2017). In order for
a gene to be transcribed beyond basal levels, the chromatin in the promoter and
enhancer regions of that gene needs to be accessible. The open regions gives
RNAPII and TFs direct accessibility to the DNA, and thereby allow binding and
subsequently transcription (Buenrostro et al., 2013).
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Figure 1.5: Chromatin is DNA wrapped around histone proteins, and can be
open or closed. Created with BioRender.

1.2 Investigating gene regulation

There are multiple techniques available to investigate gene expression, open
chromatin and TFs, in addition to methods for analyzing the data these techniques
generate. Together, these techniques and methods can be used to understand
gene regulation under different conditions, such as breast cancer.

1.2.1 Measuring gene expression

For many years, microarray was the leading method for measuring gene expression.
RNA sequencing (RNA-seq) arose as a contender after the sequencing of the
first human genome, and proved to be a more sensitive method able to detect
genes expressed at very low and high level (Zhao et al., 2014). Following the
commercialization of sequencing, the price of an RNA-seq experiment was drastically
reduced, and is currently cheaper than microarray (Rao et al., 2019; Lachmann
et al., 2018). As a result, RNA-seq is now the leading technique for measuring
gene expression (Lachmann et al., 2018). RNA-seq uses next-generation sequencing
to study different parts of the transcriptome. The transcriptome refers to all
transcribed RNA in a given sample at a given time (Wang et al., 2009). The
technique is commonly used to measure gene expression (Li et al., 2010), by
adapting the sequencing library to sequence mRNA only (Wang et al., 2009). A
brief overview of this procedure is described in Figure 1.6 (Wang et al., 2009).
RNA-seq has often been used to perform gene set enrichment analysis and define
gene signatures (Rapaport et al., 2013; Ackermann et al., 2016). Another usage
is to search for TFBSs in the promoter of the most highly expressed genes. If
combined with techniques that search for TFBSs in all open regions (including
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Figure 1.6: The first step of RNA-seq is normally fragmentation, as mRNA
fragments are too big to be sequenced directly. After fragmentation, mRNA is
converted to cDNA. However, the order of these two steps depends on the
procedure. Regardless of order, the resulting cDNA fragments are then sequenced
and mapped to the genome. As each mRNA molecule codes for a gene, the
fragments will map to the positions of the corresponding gene. Generally, the
genes that are highly expressed will have more reads mapped to it. However,
larger genes will have larger mRNAs, which again will produce more reads.
Correcting this bias by normalization is a crucial step before analyzing the data
(Li et al., 2015). Created with BioRender.
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enhancers/silencers), potential overlaps will represent a robust set of TFs located
in promoter regions, that possibly regulate the most highly expressed genes.

1.2.2 The open chromatin landscape and TFs

Open chromatin has previously been captured by sequencing techniques such
as DNase-seq (Song & Crawford, 2010), FAIRE-seq (Davie et al., 2015) and
MNase-seq (Schones et al., 2008) (Figure 1.7), in order to gain information about
transcriptionally active regions and the TFs that bind there. However, these
methods require lots of cells and are expensive and time consuming (Buenrostro
et al., 2015; Tsompana & Buck, 2014). ChIP-Seq (Landt et al., 2012) is another
technique that has gained popularity in search of TFBSs, and uses antibodies
to extract DNA bound to TFs of interest. Although ChIP-Seq has proven to
be a successful technique with high resolution, it requires antibodies to extract
specific TFs, making it time consuming and expensive (Park, 2009; Buenrostro
et al., 2015).

Figure 1.7: Different methods for capturing chromatin accessibility. MNase-seq
finds accessible DNA indirectly, by probing closed regions (nucleosomic DNA).
DNase-seq and FAIRE-seq capture accessible DNA directly. Adapted from
Tsompana & Buck (2014).

A relatively new technique that has gained popularity lately due to low cost, low
cell requirement and high speed is Assay for Transposase-Accessible Chromatin
using sequencing (ATAC-seq) (Buenrostro et al., 2015; Bajic et al., 2018). This
technique has high sensitivity, and has been successfully used to find TFBSs
in various studies (Davie et al., 2015; Corces et al., 2018). Also, the low cell
requirement has also made it popular in single cell studies (Yan et al., 2020;
Erbe et al., 2020).
ATAC-seq uses a protein called Tn5 transposase to extract DNA in accessible
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chromatin regions, and sequences the DNA using next generation sequencing
(Buenrostro et al., 2015). Tn5 proteins will only bind to regions that are loosely
packed, for the simple reason that there is no physical space for them to bind to
the DNA hidden within the tightly packed closed chromatin (Sun et al., 2019).
After sequencing the accessible regions captured by Tn5, these regions will show
up as peaks, and can be used to capture the accessibility landscape. More details
on the technique is described in Figure 1.8.

Figure 1.8: The hyperactive Tn5 proteins attach to accessible regions in the
chromatin (i), where they cut the DNA and insert adapter sequences to the
fragment ends (ii). The tagged DNA is then amplified by PCR and prepared for
sequencing (iii). After preparations, the reads are sequenced using next generation
sequencing. The resulting sequences are mapped to the genome, giving the
coverage for each position. When plotted, this will reveal peaks, meaning regions
in the genome with more overlapping reads than the background. Peak calling is
applied in order to separate peaks that arise from truly open regions from
background noise. Larger peaks correspond to more open regions. Created with
BioRender.
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1.2.3 Interpreting big data by dimensionality reduction

High-throughput based sequencing techniques such as RNA-seq and ATAC-seq
generate a vast amount of data, and in order to gain useful insight into the
characteristics of each subtype, it is normally necessary to do some type of
dimension reduction. Matrix factorization (MF) is a popular, unsupervised way
of reducing dimensions (Gaujoux & Seoighe, 2010), and simultaneously cluster
samples based on common features.
The most popular MF methods include Principal Component Analysis (PCA),
Independent Component Analysis (ICA) and Non-negative Matrix Factorization
(NMF) (Stein-O’Brien et al., 2018). Common for all of these methods, is that
they factorize one big matrix A into two smaller matrices: the amplitude matrix
(W), which explains the relations between features (e.g. genes or peaks of open
chromatin), and the pattern matrix (H), which explains the relations between
samples (Stein-O’Brien et al., 2018). Each of these methods try to reduce the
dimensions by using a low number of components, called patterns, while still
preserving the original information (Figure 1.9).
In PCA, the patterns are called principal components and aim to maximize
variation in the data. The first component describes most of the variation, and
each component has to be orthogonal to the previous one. As a consequence, the
first two or three principal components usually describe most of the variation, and
meaningful patterns may be mixed (Stein-O’Brien et al., 2018). ICA and NMF
are better suited for clustering, as all patterns have relatively equal variation and
capture "co-variation" that is particular for different clusters of samples. Both
require the rank (total number of patterns) to be chosen beforehand, and this
remains one of the biggest challenges with these technique, especially if no a
priori knowledge about classification exists. Both ICA and NMF have been used
successfully to derive biologically meaningful gene signatures (Teschendorff et al.,
2007; Brunet et al., 2004), but the non-negativity constraint of NMF makes the
interpretation of the patterns much more intuitive than for ICA (Stein-O’Brien
et al., 2018). NMF also has no restrictions on orthogonality or independence
- each feature can contribute to multiple patterns, to a different degree. This
dependency is valuable when explaining complex, biological data, as it allows
the features (e.g. genes) to contribute to multiple patterns. These patterns may
represent pathways or co-variation that is important for certain groups (Gaujoux
& Seoighe, 2010).
Other MF methods, such as Multi-Omics Factor Analysis (MOFA) (Argelaguet
et al., 2018), enables integration of data from multiple "omics" for the same set of
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Figure 1.9: Matrix factorization methods factorize the observed count matrix
(A) into two smaller matrices: The amplitude matrix (W) and the pattern matrix
(H). In NMF, both the original matrix A and the factorized matrices W and H
contain non-negative values only. This is not a requirement for PCA and ICA
(Stein-O’Brien et al., 2018). W and H can be used for multiple purposes,
including gene/peak set discovery and clustering of subtypes, respectively. Here,
we see part of the RNA-seq process and how the resulting data can be used in
MF. The number of patterns equals the number of dimensions ("rank"). Adapted
from Stein-O’Brien et al. (2018).
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samples. Omics is merely an abbreviation for biological fields ending with -omics,
such as transcriptomics (including RNA-seq) or epigenomics (including ATAC-
seq) (Vailati-Riboni et al., 2017). MOFA works in a similar way as PCA, but
instead of factorizing one big matrix into two smaller matrices, MOFA factorizes
multiple matrices from multiple omics into one pattern matrix and multiple
amplitude matrices - each describing the features from a omics (Figure 1.10).
In that way, it clusters samples based on the combined signal from multiple
data types. The advantage of this technique is that it can be used to highlight
biological processes that are affected on multiple "omics levels", presuming that
the molecular patterns of the omics data are highly connected (Vailati-Riboni
et al., 2017). However, unlike NMF, MOFA has no non-negativity constraint,
which can complicate the interpretation of the analysis.

Figure 1.10: MOFA can handle input of multiple omics data sets for the same
group of patients. The omics data can be count-based, continuous or binary.
Adapted from (Vailati-Riboni et al., 2017).

NMF has previously been used for text mining, image processing and sound
source separation (Shahnaz et al., 2006; Gillis, 2014; Virtanen, 2007)). In later
years it has gained popularity in the field of bioinformatics, especially for positive,
count-based data such as RNA-seq data and ATAC-seq data (Devarajan, 2008;
Stein-O’Brien et al., 2018; Erbe et al., 2020).
The goal of NMF is to reduce dimensions, while still getting as close as possible
to representing the original matrix. This is performed through the factorization
of the original matrix A into W and H so that:

A ≈ WH (Lee & Seung, 2001)
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However, finding the perfect combination of W and H, where the difference to the
original matrix is at a global minimum, is simply too time consuming - especially
for larger data sets. Instead, the algorithm iterates until a local minimum is
reached (Lee & Seung, 2001). Because the algorithm settles for a local minimum,
there will always be some differences between the original matrix and the one
recreated by combining W and H, especially when running on larger data sets.

In the initiation of NMF, random weights are assigned to H and W. These are
adjusted after every iteration, when the algorithm measures how well the weights
preserved the observed data in A. For each element of A, the corresponding
vector of W and H must be multiplied together using a linear combination of the
patterns. The values of W and H are then adjusted up or down, depending on
whether the product attained is higher or lower than the element of the original
matrix. In order to better understand how this works, an example is presented
in Figure 1.11. In the example, the number of values have been reduced from
20 to 18, which is a small reduction. However, if we had a data set with 50,000
rows and 150 columns, the number of values would be reduced from 7,500,000
to 100,300 if we set the rank to 2. In other words, NMF effectively reduces
dimensions in larger data sets.

In addition to dimension reduction, NMF can be used directly for clustering
samples and features through the patterns it creates after factorization. This
is called biclustering (Kim & Park, 2007). For the pattern matrix (H), these
patterns will represent the different co-variation of the features, and cluster
assignment can be done based on which pattern contributes most to each sample.
An example of cluster assignment is shown in Figure 1.12. The amplitude matrix
(W) describes the contribution of each feature to the different patterns, and
features that contribute strongly to the same pattern can be clustered together.
The pattern matrix and the amplitude matrix are strongly connected: The
features that cluster to Pattern 1 are the features that are most important in
the samples that cluster to Pattern 1. By using this simple, inherent clustering,
it is possible to get a direct link between a cluster of features and a cluster
of samples, which is very useful in the search for features that characterize a
group of samples. For use in analyses that involve prior knowledge of subtypes
(e.g. PAM50), each cluster should preferably represent one subtype. In that
way, when some characteristics are learned about a pattern or a cluster, this
knowledge can be directly transferred to a subtype. Thus, it is possible to
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Figure 1.11: As an example, we create a 4x5 count matrix (A) with peaks in
rows and samples in columns. In order to estimate the first value for A after
factorization, we combine the first row in W and H. First, we multiply the element
for [Pattern 1, Peak 1] in W with the element for [Pattern 1, Sample 1] in H, and
repeat the procedure for Pattern 2. The two values are then added together. This
gives the value 2.98, which means that the algorithm came close to representing
the real value 3. If the local minimum had not yet been reached, NMF would do
more iterations and adjust the colored weights slightly up in order to get closer to
3.

18



combine unsupervised and supervised learning to learn important features of
pre-defined subtypes, without making assumptions about an expected outcome.
When NMF is used for data types with features that can be connected to genomic
regions, these features can be searched for enriched TFBSs in order to find out
which TFs are active in a set of regions.

Figure 1.12: An example of cluster assignment using the pattern matrix.
Sample 1, 3 and 4 will be assigned to the Pattern 1 cluster, while Sample 2 will be
assigned to the Pattern 2 cluster. Sample 4 has high values for both Pattern 1 and
Pattern 2, which means that this sample shares similar features with both groups.

1.2.4 Predict transcription factor drivers from regulatory regions

There are multiple tools available for finding enriched TFBSs in genomic regions,
including MEME Suite (Bailey et al., 2009), Enrichr (Kuleshov et al., 2016),
UniBind Enrichment Analysis (UniBind, 2020) and HOMER (Heinz et al., 2010).
Some tools, like HOMER, scan the genomic regions for sequences that match a
set of pre-defined motifs for regulatory regions, such as TFBSs. Since most TFs
can bind to multiple, similar sequences, these motifs are variable sequences. The
motifs can be represented as position weight matrices, based on alignment of
known binding sites in the cell type of question (Wasserman & Sandelin, 2004;
EMBL-EBI, 2020; Ren et al., 2016). PWMs are often visualized as sequence logos,
where the size of the letters indicate their relative frequency (Figure 1.13). The
binding site of each TF can also have multiple motifs, if computed from different
sets of TFBSs, from different cell types or conditions. Other tools, like UniBind
(UniBind, 2020), use a combination of motifs and known genomic positions of
TFBSs. These known TFBS regions can be intersected with the regions provided
as input. The TFBSs in the UniBind database have been located by ChIP-Seq
experiments, which is an advantage - it has been experimentally shown that a
certain TF binds in certain regions, and it therefore avoids only relying on motifs
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that might be similar for different TFs within the same family.

Figure 1.13: An example of a motif, showing the binding site of the TEAD4
transcription factor. Retrieved from the JASPAR database (Fornes et al., 2020).

All these techniques have previously been used in various combinations to explore
gene regulation in breast cancer. For example, RNA-seq has been used together
with techniques like ChIP-Seq in order to infer gene regulatory networks in cancer
(Angelini & Costa, 2014). However, there is still a lot to explore about the
unique characteristics of each breast cancer subtype. Combining relatively recent
techniques in the field, like ATAC-seq, RNA-seq and NMF, can uncover new
information and help us get a better understanding of gene regulation in different
subtypes of breast cancer. Finding the TFs that drive each subtype can provide
potential targets in the search for new treatments.

20



Chapter 2

Aim of thesis
The main goal of my thesis is to find out which transcription factors drive the
different subtypes of breast cancer, and possibly associate these with subtype-
specific, highly expressed genes. This is done in order to understand the molecular
mechanisms behind the different gene regulatory profiles, and provide research
that can be used for potential treatments.

To achieve this goal, three subgoals were formed:
1) Use NMF on RNA-seq and ATAC-seq data from the same patients to derive
subtype-specific gene and peak signatures
2) Search for enriched transcription factor binding sites within the regions of the
most subtype-specific features
3) Explore information gained by combining RNA-seq and ATAC-seq data in a
multi-omics experiment

An outline of the methods and data flow for subgoal 1) and 2) is showed in
Figure 2.1.
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Figure 2.1: Overview of methods and data flow. The initial input is a normalized
count matrix, which is factorized into two smaller matrices through NMF. The
pattern matrix is used for clustering, and top features are selected from the
amplitude matrix for each cluster. The top features are then searched for enriched
transcription factor binding sites in each cluster. Blue/sharp edge describes data,
while red/rounded edge describes method. Created with BioRender.
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Chapter 3

Materials and methods
The materials and methods in this chapter were used to achieve the goal of
uncovering the key transcription factors in different breast cancer subtypes. All
data analysis in R was conducted with RStudio version 3.6.0 (RStudio Team,
2015), and all plots were created with ggplot2 (Wickham, 2016) unless specified
otherwise.

3.1 Data

ATAC-seq and RNA-seq data from a matching cohort of 70 breast cancer patients
was analyzed in order to explore characteristics of different subtypes at a molecular
level.

ATAC-seq data

The ATAC-seq data used in this thesis is based on BRCA-US data produced
by the cancer genome atlas (TCGA) (Weinstein et al., 2013) and has been
preprocessed and normalized by Corces et al. (2018). The normalized count
matrix was retrieved from Supplemental Data Files and available through the
GDC database (National Cancer Insitute, 2020). Corces et al. (2018) had defined
a subset of peaks that were specific for breast cancer, and also used a set width
for all peaks (501 bp) in order to decrease bias in motif analyses, which was an
advantage for the purpose of this master thesis. ATAC-seq data was available
for 74 donors with one sample and one or two technical replicates per sample,
resulting in a total of 141 samples/replicates. The data was subsetted further to
only keep samples with corresponding RNA-seq data. After subsetting, 70 unique
samples remained. When including technical replicates for these samples, the
numbers added up to 134 samples (samples + replicates). Log2 transformation
from former normalization had to be removed before further processing, as the
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data contained negative values. After preprocessing, the result was a matrix with
49,748 peaks (rows) and 134 samples (columns).

RNA-seq data

In order to create a corresponding RNA-seq count matrix, normalized mRNA-
seq data for the BRCA-US project was downloaded from the International Cancer
Genome Consortium (ICGC) data portal (International Cancer Genome Consortium
(ICGC), 2020). The data for the BRCA-US project was generated by TCGA
(Weinstein et al., 2013). Before the data could be used for downstream analysis, it
needed to go through multiple preprocessing steps. First, the donor information
was used to match the ICGC ID with the ICGC ID of donors with available
ATAC-seq data. The 70 common IDs were then converted to donor (DO) IDs,
and the file containing the donor IDs was used to search the RNA-seq file using
the Unix command grep. This resulted in a subset that only contained data for
donors that also had available ATAC-seq data. The genes with unknown gene ID
were filtered out, along with the SLC35E2 gene. SLC35E2 appeared twice in the
data for all samples, with highly variable expression within the same samples.
There was no way to determine if one of them was due to a sequencing error,
and if so, which. As a result, both duplicates of the gene were removed. The
data was then reshaped into a matrix with 20,500 genes and 85 samples from
the 70 common donors. A last column filtering was done to only keep samples
that also had ATAC-seq data available, and this resulted in a matrix with 20,500
genes and 72 samples (columns), where 70 of the samples were unique and 2 were
biological replicates of one of the samples. The biological replicates were kept
to validate the clustering, as they should preferably cluster together. Last, the
genes that contained 0 for all samples or all samples but one, were filtered out.
These did not contribute to separating the data, and would cause trouble for the
next steps. The final count matrix contained 19,766 genes (rows) and 72 samples
(columns).

Metadata

The metadata containing ER status and PAM50 subtypes were retrieved for all
samples. The PAM50 subtypes were extracted using the TCGA_MolecularSubtype
function from the TCGAbiolinks R package, while information about ER status
was available as supplement through Corces et al. (2018). All samples had
subtype information, except for the two biological replicates of a Basal-like sample
in the RNA-seq data. These were imputed as Basal-like, as they came from the
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same sample and were expected to be the same subtype.

3.2 NMF analysis

The NMF analysis section describes the methods and data flow shown in Figure 2.1.

3.2.1 Non-negative matrix factorization (NMF)

NMF was performed on the ATAC-seq and RNA-seq data in order to reduce
dimensionality. There were multiple tools available for NMF, and for R there
were two packages commonly used for biological data: NMF (Gaujoux & Seoighe,
2010) and CoGAPS (Fertig et al., 2010). CoGAPS uses Bayesian inference to
reduce local optima, and has been shown to be successful for biological count
data such as single-cell ATAC-seq, single-cell RNA-seq and microarrays (Erbe
et al., 2020; Fertig et al., 2010). The NMF package uses multiplicative update
rules from Lee & Seung (2001), which makes it more prone to uncertainty, but
also speeds up the algorithm considerably (Sherman et al., 2019). Both packages
were tried for this thesis, but the NMF package was chosen based on the big
difference in computational speed combined with indistinguishable differences in
result.
All runs of NMF were performed with the nmf function, with default parameters.
The default algorithm was ’brunet’, based on Kullback-Leibler divergence from
Brunet et al. (2004). The choice of rank was guided by calculating the cophenetic
correlation coefficient, which is a measure of cluster stability (Brunet et al., 2004).
The cophenetic correlation coefficient was calculated using the nmfEstimateRank
function from the NMF package, with the number of runs per rank set to 3
and otherwise default parameters, corresponding to the parameters of the nmf

function. A common seed was used for all runs. Because the estimation was
time consuming for large data sets, the cophenetic correlation coefficient was
compared for a limited number of ranks. To guide this selection, we used four
different ranks that would be likely to form meaningful clusters in our data: 2,
3, 4 and 5. These ranks were chosen because the subtype information available
contained two different ER based subtypes (ER+/ER-) and five different PAM50
based subtypes (Luminal A, Luminal B, Normal-like, Her2 and Basal-like).
NMF was then performed using the nmf function on the ATAC-seq and RNA-
seq data, with ranks ranging from 2 to 5. Multiple runs were performed in
order to see how the choice of rank affected the concordance with prior subtypes.
The dimensions of the pattern matrices were then reduced further, using the
umap function from the uwot R package. This was done in order to project
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multiple ranks in a two-dimensional space (McInnes et al., 2018). Then, the
new pattern matrices were plotted with colors corresponding to subtype, and
shape corresponding to cluster. The cluster assignment was made on the basis
of which pattern was the strongest in each sample, as described in Figure 1.12 in
the Introduction. UMAP was only used for visualization purposes, and had no
impact on the clustering.

3.2.2 Feature selection

A subset of genes and peaks that contributed most to each pattern had to be
defined, in a process called feature selection. The first step of feature selection
was feature scoring.

Feature scoring

The features of the amplitude matrices were scored using the featureScore

function from the NMF package with method ’Kim’ (Kim & Park, 2007). The
Kim method scores each feature based on how pattern-specific it is, but also
how important it is. If the feature (peak or gene) contributes almost solely to
one pattern, it will receive a higher score than features that contribute evenly
to multiple patterns. Higher value for a pattern-specific feature means higher
importance, and also contributes to the score. A feature score is calculated for
each pattern, and the highest score is kept for each feature (See example in Figure
3.1).

Figure 3.1: An example of feature scoring, shown with the highest feature score
for each peak. The first peak contributes more to Pattern 4 than the other
patterns, but receives a low feature score due to lack of importance. The second
peak are important for the first three patterns, but receives a low score due to
lack of pattern-specificity. The third peak receives a high score, due to a
combination of high pattern-specificity and importance.

The Kim scores always range between 0 and 1, and can be calculated as follows:

Gene_score(i) = 1 +
1

log2(k)

k∑
r=1

p(i, r)log2(p(i, r)),
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where k is the total number of patterns (rank) and p(i,r) is the probability that
the i-th feature contributes to a pattern r. p(i,r) for each pattern Ω is calculated
as follows:

p(i,Ω) =
W (i,Ω)
k∑

r=1
W (i, r)

,

where W(i,Ω) is the weight of the i-th feature for a given pattern, and
k∑

r=1
W (i, r)

is the sum of the weights for all patterns of the i-th feature.

Feature extraction

The featureScore function is built into the extractFeatures function, which
was also available from the NMF package. Here, the scores are calculated and
extracted in one step. The Kim method uses the scores to choose the most
pattern-specific features based on a certain threshold. In order to pass this
threshold, scores need to be greater than:

µ̂ + 3σ̂,

where µ̂ is the median of the scores, and σ̂ is the median absolute deviation
of the scores (Kim & Park, 2007). In addition, the maximum values in the
corresponding rows of the amplitude matrix (W) has to be larger than the median
value of all weights in W.

The extractFeatures function was performed on the amplitude matrices from
both data sets, with the Kim method for feature scoring and extraction, and
the rest of the parameters set to default. This resulted in one list for each
data set, with list elements corresponding to the indeces of top contributing
features for each of the patterns. In addition to the Kim feature selection,
a new feature selection method was created and tried on the data, extracting
the n most pattern-specific peaks based on pattern-specificity and importance.
In addition, it took into account the score distribution of other peaks for each
pattern before selection. However, the method yielded similar results as the Kim
feature selection, which so far is a more reliable method. Therefore, only the
Kim method was used for further processing.
The pattern-specific features (peaks and genes) obtained from the ATAC-seq and
RNA-seq data using Kim were our defined gene/peak signatures for each pattern.
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3.2.3 Investigating genomic regions

In order to investigate whether the gene signatures were likely to be associated
with the peak signature, the chromosomal regions where the peaks and genes
reside were investigated. The percentage of peaks and genes coming from each
chromosome was plotted, in order to see if the transcriptionally active regions
from the ATAC-seq data resided in the same chromosomes as the highly transcribed
genes. First, the location of the genes were extracted. All gene locations were
downloaded in bed format from the UCSC Table Browser (UCSC, 2020). Next,
the table was read into R, and each of the five gene signatures were matched by
gene names in order to extract the genomic regions. The percentage of genes
residing in each chromosome was then plotted into pie charts, using the pie

function from the base R package. The regions of the peaks were already available
through (Corces et al., 2018), and pie charts showing chromosome distribution
were created for the peaks as well. The UCSC genome browser (Kent et al., 2002)
was then used to investigate specific regions, for subtypes that were dominated
by activity on a specific chromosome.

3.2.4 Gene ontology enrichment analysis

The gene signatures could also be used to perform a gene ontology enrichment
analysis, in order to find enriched processes and functions. This was tried using
Gene Ontology enRIchment anaLysis and visuaLizAtion tool (GOrilla) (Eden
et al., 2009). However, no significant hits were found, except for one cluster.
The search was therefore extended to include a wide range of ontology and
gene signature databases. This was done using HOMER findMotifs.pl, while
simultaneously searching for enriched TFBS motifs in the promoter regions. The
parameters are described in the next part.

3.2.5 Transcription factor binding site enrichment

Using the top features for each cluster in both data sets, we wanted to see if
there was an enrichment of any particular TFBSs located in the top peaks of
the ATAC-seq data, and in the promoter regions of the gene sets derived from
the RNA-seq data. The first TFBS enrichment analysis was performed with
HOMER, on the regions defined as informative features for each pattern.
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HOMER

HOMER had two tools available for motif enrichment: findMotifsGenome.pl for
search in genomic regions, and findMotifs.pl for search in promoters of genes
in a gene list (Heinz et al., 2010). HOMER returns motifs that are enriched with
p < 0.05, compared to the background.
First, we tried to uncover the TFBSs hidden within the peaks from the ATAC-
seq data. findMotifsGenome.pl was performed with the genomic regions of the
peaks and the hg38 genome as input. The size parameter was set to 200, which
meant that 200 bp on each side of the peak center were searched for motifs. The
background was generated automatically by HOMER, using similar GC content
as in the input peaks. In addition, we used the -mask option in order to reduce
bias from repeated regions in the genome. The rest of the parameters were set
to default.
Second, findMotifs.pl was used to search for TFBS motifs in the promoters of
the pattern-specific genes derived from the RNA-seq data. The only mandatory
parameter, except for a gene list, was the organism the promoter regions would
be extracted from, which was set to ’human’. Otherwise, the tool was run with
default parameters.

UniBind

The second TFBS enrichment analysis was done using UniBind Enrichment
Analysis (UniBind, 2020; Gheorghe et al., 2019). UniBind finds overlaps between
sets of regions and sets of TFBSs, and the enrichment is calculated using the
LOLA R package (Sheffield & Bock, 2016). TFBS set enrichment was performed
on the ATAC-seq peaks with two different settings: 1) Background consisting
of all top peaks for all the different patterns and 2) No provided background.
All peaks were kept at their original length (501 bp) for this TFBS enrichment
analysis.

3.3 Multi-omics analysis

The ATAC-seq and RNA-seq data was combined in a multi-omics analysis, using
a matrix factorization tool called MOFA (Argelaguet et al., 2018). This was done
in order to compare with the NMF analysis, where each data set was analyzed
separately.
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3.3.1 Data preprocessing and normalization

Technical/biological replicates were removed from each data set, so that each
ATAC-seq sample had exactly one matching RNA-seq sample, and so on. This
left 70 samples, one per patient.
Two normalization methods were tried on both data sets. The first method was
to calculate counts per million using the cpm function from the edgeR R package
(Robinson et al., 2010). A pseudocount of 5 was added to the data, before taking
the log2. For the second method, the estimateSizeFactors function from the
DESeq2 R package (Love et al., 2014) was used to estimate and normalize for
size factors, before adding a pseudocount of 5 and taking log2 of the values. The
poscount method was used for estimating size factors, because it calculates a
modified geometric mean that is better suited for handling multiple rows with
zero counts than the default median ratio. The two methods were then compared.
Multi-omics analysis was performed with the MOFA2 R package (Argelaguet
et al., 2018). Similarly to NMF and ICA, it required the choosing of a rank
beforehand. Different ranks were tried in order to best describe the data. The
normalized data was used to create a MOFA model, which contained a pattern
matrix and two amplitude matrices: One for the ATAC-seq peaks, and one for
the RNA-seq genes. The pattern matrix was then used to cluster the samples
according to the strongest factor (similar to pattern in NMF).

3.3.2 Feature selection and signature analyses

Feature selection was performed for each factor in each data type (ATAC-seq and
RNA-seq), using extractFeatures with method Kim, the same feature selection
method described in Figure 3.2.2. As extractFeatures was unable to handle
the negative weights resulting from MOFA, a "pseudocount" of +1 was added to
all values before selecting the most pattern-specific genes and peaks.
The resulting gene and peak signatures for each factor were used for two purposes:
1) Do a gene ontology enrichment analysis for enriched biological processes, by
loading the gene list in GOrilla (Eden et al., 2009), and 2) Find enriched TFBS
sets from the peak signatures using UniBind Enrichment analysis (UniBind, 2020;
Gheorghe et al., 2019). The latter was tried both with a background consisting
of the top peaks, and with no background.
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Chapter 4

Results
The results presented here show how the different methods were able to provide
insight into the gene regulatory profiles of each breast cancer subtype. The
different parts will fulfill the subgoals, which together will achieve the main goal:
To find out which transcription factors drive the different subtypes of cancer.

4.1 NMF

4.1.1 Clustering of samples into a priori subtypes

In order to find a peak/gene signature for each subtype, NMF was performed
on ATAC-seq and RNA-seq data for breast cancer patients. To achieve the best
possible clustering of subtypes, the rank was chosen by combining unsupervised
and supervised methods. For the purpose of this study, we would preferably
opt for a rank that was close to the number of subtypes, so that each cluster
could possibly represent one subtype. However, if the data naturally clustered
into another number of groups, the clusters should not be forced to match prior
subtypes that were based on other criteria. To investigate the most stable
and inherent clustering, the cophenetic correlation coefficient was calculated as
suggested by Brunet et al. (2004). The results of the cophenetic correlation
calculations show that rank 5 achieves the most stable clustering for the ATAC-
seq data, as the clusters vary less between each run than for the other ranks
(Figure 4.1). The RNA-seq data has the highest stability of clusters for rank 4
and 5, which means that the data can naturally be divided into 4 or 5 clusters.
In general, however, the clusters are more stable for the ATAC-seq data, as the
cophenetic correlation coefficients are closer to 1 (Figure 4.1).
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Figure 4.1: Cophenetic correlation coefficient of ATAC-seq data (left) and
RNA-seq data (right). Each point in the graph is the result of 3 runs of NMF
with "brunet" method, and represent cluster stability for each rank. The
cophenetic correlation coefficient is always between 0 and 1, where 1 represents a
perfect reproduction of clusters throughout the runs.

Afterwards, the samples were clustered through the pattern matrices from the
different ranks, in order to show compatibility with a priori subtypes (PAM50/ER
status). For the ATAC-seq data, the clustering of samples shows that the most
accurate clusters (shapes) according to prior subtypes (color) is achieved with
rank 5 and PAM50 subtypes (Figure 4.2). With rank 5, the Basal-like samples
cluster alone (right), and so do most Her2 samples (top). Two of the clusters are
dominated by Luminal A samples (middle/bottom), while a third (left) contains
a more even mix of Luminal A and Luminal B samples. However, none of the
ranks are able to truly separate the Luminal A, Luminal B and Normal-like
subtypes. For the RNA-seq data, the clustering of the samples shows that most
clusters are slightly less compatible with prior subtypes (Figure 4.3), compared
with the ATAC-seq data. However, both rank 4 and rank 5 were able to separate
most Basal-like and Her2 samples from other subtypes. These ranks also have
the most stable clusters according to the cophenetic correlation coefficient. The
best separation of Basal-like samples is achieved with rank 5. Here, only three
samples with different subtype share their cluster, versus seven for rank 4 and
thirteen for rank 3. As a result, the pattern matrix and amplitude matrix gained
from running NMF with rank 5 were used for further processing. There were also
two Basal-like samples that formed their own cluster. These were the samples
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that were imputed as Basal-like, as they were biological replicates of a Basal-like
sample. However, they appear to have a distinct pattern that separates them
from other Basal-like samples.
There is an overall similarity between the distribution of subtypes in the clusters
for both data sets. However, that does not mean that the exact samples necessarily
cluster together between the data sets, which makes it harder to create a link
between the clusters in some of the subtypes in the ATAC-seq and RNA-seq
data. This is especially the case for the Luminal A samples, which are separated
between multiple clusters. The list of samples and their cluster assignments is
listed in Table S5 in Attachments.
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Figure 4.2: ATAC-seq pattern matrices for 4 runs of NMF. The dimensions have
been further reduced using UMAP, and the axes correspond to each UMAP
factor. Each plot contains 134 samples/technical replicates from 70 samples. The
cluster assignment varies from each run of NMF, and their exact names (strongest
pattern) are therefore not comparable between ranks. Subtype names have been
abbreviated for the plot. Basal = Basal-like, Her2 = Her2, LumA = Luminal A,
LumB = Luminal B and Normal = Normal-like.
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Figure 4.3: RNA-seq pattern matrices for 4 runs of NMF. The dimensions have
been further reduced using UMAP, and the axes correspond to each UMAP
factor. The plot contains 72 samples/biological replicates from 70 samples. The
cluster assignment varies from each run of NMF, and their exact names (strongest
pattern) are therefore not comparable between ranks. Subtype names have been
abbreviated for the plot. Basal = Basal-like, Her2 = Her2, LumA = Luminal A,
LumB = Luminal B and Normal = Normal-like.
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NMF creates patterns in a random order, meaning that Pattern 1 in the ATAC-
seq data does not necessarily correspond to Pattern 1 in the RNA-seq data, and
so on. In order to keep track throughout the analysis, names that reflect the
dominating subtype were created for each of the five clusters. The exception
was for Luminal A, which dominated multiple clusters. Therefore, the cluster
containing all the Normal-like samples and the majority of the Luminal A samples
was named as a combination of these, for both data sets. The same was done
for the cluster that contains most of the Luminal B samples, but also a large
number of Luminal A samples in both data sets. The distribution of subtypes
in each cluster and the given cluster name is shown in Table 4.1 and 4.2 for the
ATAC-seq and RNA-seq data, respectively.

Table 4.1: Distribution of subtypes belonging to each cluster for the ATAC-seq
data with rank 5. The values correspond to number of samples (labeled with a
priori PAM50 subtypes) belonging to each cluster.

Cluster Luminal B Basal Normal Her2 LumA Cluster name

Pattern 1 11 0 0 2 12 LumA/B
Pattern 2 0 28 0 0 0 Basal
Pattern 3 4 0 3 0 25 LumA/Normal
Pattern 4 6 0 0 18 0 Her2
Pattern 5 6 0 0 0 19 LumA

Table 4.2: Distribution of subtypes belonging to each cluster for the RNA-seq
data with rank 5. The values correspond to number of samples (labeled with prior
PAM50 subtypes) belonging to each cluster.

Cluster Luminal B Basal Normal Her2 LumA Cluster name

Pattern 1 0 2 0 0 0 Basal outlier
Pattern 2 2 0 0 5 3 Her2mix
Pattern 3 0 0 2 1 19 LumA/Normal
Pattern 4 11 0 0 2 8 LumA/B
Pattern 5 1 14 0 2 0 Basal

4.1.2 Clustering of features reveals the activity of each pattern

After clustering the samples into patterns, we needed to cluster the features
to find out which peaks and genes contributed most to each pattern. The
heatmaps in Figure 4.4 show the amplitude matrix of the ATAC-seq data (a)
and RNA-seq data (b), with the contribution of all features (peaks/genes) to
the different patterns. The rows are scaled so that each row sums up to 1,
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and ordered by which pattern the features contribute most to (the strongest
pattern). Similarly to the clustering of samples, the features can be clustered by
the strongest pattern. For the ATAC-seq data (Figure 4.4(a)), Pattern 2 has
14,160 regions contributing mostly to this pattern. We can roughly say that this
pattern is defined by a large number of accessible regions that are mainly specific
to this pattern. Overall, the clear, red squares indicate that there is little overlap
between the clusters, meaning that a lot of the peaks are specific for one pattern.
For the RNA-seq data (Figure 4.4(b)), Pattern 4 and 3 have the highest number
of genes contributing to their clusters (7087 and 6530, respectively). However,
their squares are less defined and overlap somewhat with each other, indicating
that some of these genes are important for both patterns. Other patterns, like
Pattern 1, has a small number of genes contributing to it. However, the red color
of the square indicates that these genes are highly specific for this pattern.

Figure 4.4: Heatmaps showing the contribution of features (rows) to patterns
(column). The number of features contributing to each pattern is shown on the
right side of each cluster of features. The rows are scaled so that each row sums
up to 1, and ordered by which pattern the features contribute most to. The color
bar on the left represents the cluster, which is assigned by the strongest pattern.
(a) Heatmap of the ATAC-seq amplitude matrix showing the contribution of each
of the 49,748 peaks to each pattern. (b) Heatmap of the RNA-seq amplitude
matrix showing the contribution of each of the 19,766 genes to each pattern.

4.1.3 Connecting the samples with pattern-specific features

The feature selection resulted in a set of peaks and genes that were highly
important and specific for each subtype. The plots in Figure 4.5 and 4.6 show
heatmaps of the amplitude matrix containing the top features (a), and the pattern
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matrix containing all samples (b). The rows in Figure 4.5(a) and 4.6(a) are
scaled so that each row sums up to 1, and ordered by which pattern the features
contribute most to (strongest pattern). The number of pattern-specific features
has been added to the plots, to the right of each peak/gene cluster. By looking
at both heatmaps for each of the data sets, we can see how much each pattern-
specific peak/gene contributes to each pattern, and how strong those patterns are
in the samples. For the ATAC-seq data in Figure 4.5, we can see that Pattern 2
contains the largest amount of pattern-specific peaks (904 peaks). By looking at
the corresponding sample clusters, we see that Pattern 2 is strongest for Basal-
like samples. In other words, Basal-like samples have a lot of regions that are
very accessible in this subtype, but not in other subtypes. For the RNA-seq
data, the number of highly expressed, pattern-specific genes seems to be more
equally distributed between the patterns (Figure 4.6), however, Pattern 3 and
Pattern 5 contain the largest amount of pattern-specific peaks (214 and 202
peaks, respectively). From the sample heatmap to the right, we can see that
Pattern 3 corresponds to mostly Luminal A/Normal-like samples, while Pattern
5 corresponds to mostly Basal-like samples.

Figure 4.5: Heatmaps of ATAC-seq data after NMF. The color bars on the left
(top pattern) are colored by the cluster names that represent each pattern. Purple
= LumA/B (Pattern 1), black = Basal (Pattern 2), green = LumA/Normal
(Pattern 3), pink = Her2 (Pattern 4) and Yellow = LumA (Pattern 5). (a)
Contribution of peaks to each pattern. The peaks (rows) represent the 1544 most
pattern-specific peaks out of 49,748 peaks. (b) Peak pattern profile of all 134
samples (samples + technical replicates), showing how strong each pattern is in
each of the samples. The color bar on top shows the PAM50 subtype for each
sample, while the lower bar matches the side bar and shows the strongest pattern.
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Figure 4.6: Heatmaps of RNA-seq data after NMF. The color bars on the left
(top pattern) are colored by the cluster names that represent each pattern. Grey
= Basal outlier (Pattern 1), pink = Her2mix (Pattern 2), green = LumA/Normal
(Pattern 3), Purple = LumA/B (Pattern 4) and black = Basal (Pattern 5). (a)
Contribution of genes to each pattern. The genes (rows) represent the 824 most
pattern-specific genes out of 19,766 genes. (b) Gene expression profile of all 72
samples (samples + biological replicates), showing how strong each pattern is in
each of the samples. The color bar on top shows the PAM50 subtype for each
sample, while the lower bar matches the side bar, and shows the strongest pattern.

4.1.4 Gene signatures and gene set enrichment analysis

The set of pattern-specific genes that make up our gene signatures could be
compared to known, subtype-specific genes directly. The top 5 most highly
expressed genes for each cluster is shown in Table 4.3, together with some hits
from further down the list. These were included due to previous findings, which
will be discussed further in the Discussion. The full pattern-specific gene list is
available in Attachments, in Table S1.
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Table 4.3: The top 5 genes from the gene signatures, for each pattern. The
cluster names are used as header, without the pattern number, in order to save
space. Basal outliers = Pattern 1, Her2mix = Pattern 2, LumA/Normal =
Pattern 3, LumA/B = Pattern 4 and Basal = Pattern 5.

Basal outliers Her2mix LumA/Normal LumA/B Basal

SNORD9 LACRT CSN2 CPB1 CARD18
SNORA47 SULT1C3 C10orf96 CYP2A7 SERPINB3
SNORD67 UGT2B28 IRS4 UCN3 SPRR2D
SCARNA4 TBX10 ARHGAP36 CGA MAGEA4
SNORD8 MUCL1 PROL1 CYP2A6 KRT79

- - - SERPINA6 EGFR
- - - BEX1 SOX8
- - - AGTR1 SOX10

However, looking at each gene separately is time consuming, and the collection
of a number of genes can provide more biological meaning. Therefore, the gene
sets were used to perform gene set enrichment analyses. Due to a low number
of pattern-specific genes per pattern, only one of the patterns were enriched for
biological processes using GOrilla. This was Pattern 1 (the Basal outliers), which
was most enriched for RNA metabolic process (P = 6.34E-8).
By widening the search to include gene signature databases, using HOMER, these
genes could be used to check for enrichment in pre-existing gene signatures. The
top enriched gene signature for the different subtypes can be seen in Table 4.4.
Pattern 1 - Basal outlier describes two distinct Basal-like samples, and the genes
are enriched for a gene signature related to the RNA polymerase I promoter
opening pathway, which plays a role in the regulation and synthesis of rRNA
(Reactome, 2020). This is similar to what was found in the GOrilla results for
this pattern. Pattern 2 - Her2mix contains mostly Her2 samples, and our gene list
for this pattern is enriched for genes previously found to define the Her2 subtype.
The same goes for Pattern 3 - LumA/Normal, which is dominated by Luminal A,
and is enriched for Luminal A-typical genes. Pattern 4 - LumA/B, which consists
of slightly more Luminal B than Luminal A samples, is enriched for Luminal B-
like genes. Similarly, Pattern 5 - Basal, which consists of Basal-like samples
only, is enriched for a predefined Basal-like gene signature. All of these gene
signatures are stored in the Molecular Signatures Database (MSigDB), which
is part of a cooperation between UC San Diego and BROAD Institute (GSEA,
2020). The results for Pattern 2-5 show that our gene signatures share similarities
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Table 4.4: The most enriched ontology term for the 5 different patterns defined
in this thesis. The top result for each pattern was found in the MSigDB, and most
corresponded to gene signatures previously defined for these subtypes. Cluster
names are derived from Table 4.2. ERBB2, which is the name of the gene that
encodes HER2, is an alternative naming of the Her2 subtype. The table is
adapted from HOMER Gene Ontology Enrichment results.

Pattern Cluster name Term P-value

Pattern 1 Basal outliers REACTOME_RNA_POL_I_PROMOTER_OPENING 3.392e-43
Pattern 2 Her2mix SMID_BREAST_CANCER_ERBB2_UP 9.745e-16
Pattern 3 LumA/Normal SMID_BREAST_CANCER_LUMINAL_A_UP 2.053e-53
Pattern 4 LumA/B SMID_BREAST_CANCER_LUMINAL_B_UP 2.687e-58
Pattern 5 Basal SMID_BREAST_CANCER_BASAL_UP 2.226e-77

with the gene signatures found by Smid et al. (2008) using microarray data, for
the subtypes that dominate our clusters.

4.1.5 Open regions and their chromosomal location

In order to get an overview of the active regions for each subtype, the chromosome
regions were plotted for the pattern-specific peaks. This was also done for the
most pattern-specific genes, in order to compare the regions (Figure 4.7). From
the pie charts, we can see that some of the top peaks (left) are largely accessible
at certain chromosomes, while the distribution is more even for the most highly
expressed set of genes (right). When comparing the similar clusters in the ATAC-
seq and RNA-seq data (row-wise), there seems to be little overlap between the
chromosome distribution of the top peaks and the top genes. For example, the
peaks from the LumA/B cluster of the ATAC-seq data are mostly located in
chromosome 8, while this is not the case for the genes from the LumA/B cluster
of the RNA-seq data, and so on.
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Figure 4.7: Pie charts showing the percentage of each chromosome for the active
regions of the ATAC-seq data (left) and RNA-seq data (right), for each cluster.
The most enriched chromosome is shown with a square, and in the cases where
two chromosomes have the same enrichment, both are shown.
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Due to the very high accessibility levels on chromosome 17 for the Her2 cluster,
the regions of these pattern-specific peaks were investigated closer using the
UCSC genome browser. The top peaks spanned two major regions, which were
investigated separately. The first region contained the ERBB2 gene, which codes
for the human epidermal growth factor 2 (HER2). The gene is situated on
chromosome 17, from base 39,700,080 to 39,728,662. This region also contained
miR-4728, a microRNA known to be encoded by ERBB2, located within the
introns of the ERBB2 gene. Nine out of the 125 top peaks for the Her2 cluster
were situated within the region of the ERBB2/HER2 gene (+/- 500 bp), and
three of these peaks were on the top four most accessible peaks in the Her2
cluster, confirming that there is a lot of transcriptional activity related to the
ERBB2 gene for the Her2 cluster, which contains 18 Her2 samples and 6 Luminal
B samples.
The second active area was also present in chromosome 17, from base 39,461,486
to 39,534,544. The region contained the CDK12 gene, which codes for Cyclin-
dependent kinase 12 (CDK12), a protein that regulates transcriptional and post-
transcriptional processes (Lui et al., 2018). Eleven of the 125 top peaks were
found within the region of this gene (+/-500 bp), and six of these were found in
the top 25

4.1.6 Key transcription factors

In order to reveal the TFs that bind to regions within the subtype-specific peaks
and promoter of genes, HOMER and UniBind were used for TFBS enrichment.

ATAC-seq TFBS enrichment results

The UniBind and HOMER TFBS enrichment for the most pattern-specific ATAC-
seq peaks are shown for Pattern 1 (LumA/B) and Pattern 2 (Basal) in Figure
4.8 and 4.9, respectively. The results for the rest of the patterns are shown in
Attachments (Figure 4.8-6.3), together with the UniBind results without background
(Figure 6.4-6.8).
Each dot in the UniBind swarm plots represents the enrichment of a TFBS set,
and the sets are derived from different cell types with different treatments. The
colors represent the TF that binds to the TFBS set. The location of the TFBSs
for a certain TF vary between cell types and condition. This is because the
TFBSs found are the ones currently bound by a TF (using ChIP-Seq), and the
regulatory state affecting the binding varies. In some cell types and conditions,
the TFBS set for a given TF overlaps a lot with the input set of regions, while
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other sets for the same TF overlap less. This explains the different enrichment
of the TFBS sets representing the same TF. The names of the top 10 TFs with
enriched TFBS sets are shown to the right. The HOMER table shows the most
enriched TFBS motifs for the most pattern-specific regions of the ATAC-seq data.
The name of the TF is shown first (bold), followed by the name of the TF family
in parenthesis. Some of the TFs have multiple motifs, derived from different sets
of TFBSs.
The result of both enrichment tools for Pattern 1 (LumA/B) is shown in Figure 4.8.
The UniBind results (top) describe a "typical" ER+ TF profile according to the
literature, with FOXA1, GATA3 and ERα (ESR1) highly enriched. The HOMER
results are mainly dominated by motifs from the Forkhead family, including
FOXA1 and FOXA2 (bottom). Two different GATA motifs are also enriched.
The result for Pattern 2 (Basal) is shown in Figure 4.9. The UniBind results
(top) show that the TFBS sets for TFAP2C are highly enriched compared to
those representing other TFs. The other results include two members of the SOX
family (SOX10 and SOX2), TEAD4 and GRHL2, among others. The HOMER
results show an enrichment for motifs corresponding to the binding site of the
SOX family, including SOX10 and SOX2.
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Figure 4.8: TFBS enrichment for the Pattern 1 clusters of peaks, which are most
important in Luminal B and Luminal A samples. The UniBind swarm plot (top)
represents the top 10 TFs with enriched TFBS sets, and the HOMER table
(bottom) shows the top 10 enriched TFBS motifs. The overlap between the two
methods are marked with a red square.
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Figure 4.9: TFBS enrichment for the Pattern 2 clusters of peaks, which are most
important in Basal-like samples. The UniBind swarm plot (top) represents the top
10 TFs with enriched TFBS sets, and the HOMER table (bottom) shows the top
10 enriched TFBS motifs. The overlap between the two methods are marked with
a red square.
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RNA-seq TFBS enrichment results

A TFBS enrichment analysis was also performed for the RNA-seq data, using
HOMER. This analysis was performed on the promoter regions of the genes in
our gene signatures, and would therefore not capture TFs binding to enhancer
regions. The results for the LumA/B and Basal cluster are shown in Table 4.5
and 4.6, respectively. The name of the TF is shown first (bold), followed by the
name of the TF family in parenthesis. The motifs found correspond to variable
binding sites of TFs that are present in the promoter regions of our gene set. The
motifs found for the LumA/B cluster mostly belong to the Forkhead TF family.
These include FOXA1 and FOXA2, which were also found from the ATAC-seq
data for the corresponding cluster. For the Basal cluster, we find a lot of motifs
for TFs in the bZIP family. In addition, we find GHRL2 and OCT4-SOX2-TCF-
NANOG. The latter is the enrichment of a motif representing multiple TFs that
bind together. GHRL2 and SOX2 were also found to be enriched for the ATAC-
seq data. The results for the rest of the clusters are shown in Table S2-S4 in
Attachments.

Table 4.5: Enriched TFBS motifs for Pattern 4 (LumA/B) from the RNA-seq
data. The table is ordered by P-value.
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Table 4.6: Enriched TFBS motifs for Pattern 5 (Basal) from the RNA-seq data.
The table is ordered by P-value.

4.2 MOFA

ATAC-seq and RNA-seq data was combined in a multi-omics analysis in order
to see if this would improve the clustering. In addition, this would give a more
direct link between the different clusters of the two data sets, meaning that we
could do a gene ontology (GO) enrichment analysis on the most pattern-specific
genes, that could possibly be connected with the TFs binding to the most pattern-
specific peaks.

4.2.1 Normalization

Because the two data sets used for NMF had been normalized in different ways
by different research groups, the raw data had to be normalized again, in a more
similar manner. This was done using different methods from different packages,
and the methods were compared by creating boxplots of the count data after
each normalization (Figure 4.10). The boxplots show that the best normalization
method for these data sets was to normalize by size factor (DESeq2).
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Figure 4.10: Boxplots showing different normalization methods for our data.
ATAC-seq data (left) and RNA-seq data (right) is shown with raw data (top),
edgeR (middle) and DESeq2 (bottom).

4.2.2 Sample clustering

The normalized data was used to create a MOFA model. Rank 2 yielded the
best results according to prior subtypes, and was therefore used to create a
MOFA model. Also, using more than two factors caused the remaining factors
to explain less and less variation. The model was used to cluster the samples
according to the strongest factor (similar to pattern in NMF). The clusters were
plotted using UMAP, and different subtypes were attempted as labels, including
PAM50 subtypes, ER+/ER- and Basal/Non-basal. The latter was derived from
the PAM50 subtypes, and the non-basal group contained all subtypes except
for Basal-like: Luminal A, Luminal B, Normal-like and Her. The Basal/Non-
basal labels were used due to low concordance with the other subtypes (ER
status/PAM50). The sample clusters derived from the multi-omics analysis using
MOFA is shown in Figure 4.11. The subtype labels have been modified to Basal
(Basal-like) and Non-basal (Luminal A, Luminal B, Normal-like and Her), as
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these two groups explained most of the variation. All the Basal-like samples
clustered in one group, but six of the Non-basal samples also clustered in the
Basal group. However, none of the Basal-like samples were present in the Non-
basal cluster. The cluster assignment is shown with shapes, and the groups are
shown with color.

Figure 4.11: Clustering of samples based on the two factors created by MOFA.

4.2.3 Gene ontology enrichment analysis

In order to find out if the genes defining the Basal and Non-basal groups were
enriched for any particular processes, a gene ontology enrichment analysis was
performed on each factor from the MOFA analysis (Figure 4.12). The gene set
corresponding to the Basal group (Factor 1) is enriched for processes involving
mitosis (cell division), and especially for the organization of different cell components
during mitosis. The gene set corresponding to the Non-basal group (Factor 2) is
enriched for processes involving cell differentiation in different tissues. It is also
enriched for different hormone receptor pathways, including positive regulation
of the estrogen receptor signaling pathway.
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Figure 4.12: GOrilla gene ontology enrichment results showing enriched
processes for the genes that were specific for the Basal (top) and Non-basal
(bottom) groups. All 14 significantly enriched processes for the Basal group is
shown, while the Non-basal group were enriched for 38 processes, and only the top
15 is shown.

4.2.4 UniBind TF enrichment

In order to see if the Basal and Non-basal groups achieved a similar transcriptional
profile as in the NMF analysis, enriched TFBS sets were found using UniBind.
The analysis was performed both with and without background. However, only
the results using no background is presented. The top 10 TFs with enriched
TFBS sets for the Non-basal group is shown in Figure 4.13, and include FOXA1,
ERα and GATA2/3, among others. The top 10 TFs with enriched TFBS sets for
the Basal group include GHRL2, TEAD4, FOXA1 and GATA2 (Figure 4.14).
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Figure 4.13: UniBind enrichment for 657 factor-specific genes corresponding to
the Non-basal group.

Figure 4.14: UniBind enrichment for 5117 factor-specific genes corresponding to
the Basal group.
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Chapter 5

Discussion
For this study, two different matrix factorization methods were used in order
to find the key transcription factors (TFs) that drive each subtype: NMF and
MOFA. In this chapter, we will discuss the results gained from each study, in
addition to aspects of the methods that may have affected the results.

5.1 NMF analysis

The aim of the non-negative matrix factorization (NMF) analysis was to divide
the samples into clusters that reflected the prior subtypes, and derive a set of
peaks and genes that defined each cluster. The clustering of samples showed to
be largely related to the PAM50 subtypes for both data sets, especially for the
Basal-like subtype. The gene signatures derived for each subtype were consistent
with gene signatures from previous studies.

5.1.1 Subtype clustering

The clustering of samples shows that when divided into five clusters, the data
has the biggest overlap with PAM50 subtypes, for both the ATAC-seq and RNA-
seq data (Figure 4.2 and 4.3, respectively). Because the Basal-like subtype was
the most interesting due to the lack of targeted treatment, the focus was on
preserving this group in a separate cluster. This was especially successful for
the ATAC-seq data, were all Basal-like samples clustered alone (Figure 4.2).
Thus, this cluster can be directly interpreted as the Basal-like subtype, and the
characteristics found are important for that subtype alone. The credibility of the
clusters is supported by the cophenetic correlation coefficient, which indicates
stable clusters for rank 5 (Figure 4.1). The concordance with PAM50 subtypes
was somewhat expected, as PAM50 is based on gene expression data. The PAM50
subtypes were also expected to make most sense for the RNA-seq data, as they
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were based on the same data type. Therefore, it was surprising that the ATAC-
seq data achieved the best concordance with these subtypes, particularly for
the Basal-like and Her2 subtypes (Figure 4.2). However, the ATAC-seq data
had almost twice as many samples due to the number of technical replicates,
which may have impacted the results. In addition, the clustering of the RNA-
seq data might have been impacted by the two Basal outliers. These share a
distinct pattern that separate them from the other samples, which may be the
result of contamination in the prior RNA-seq process. Their gene expression
profiles could also be the result of technical errors during sequencing. In that
case, these replicates should perhaps have been removed in order to see if this
improved the clustering. However, if the gene expression pattern is not due to
errors, these samples could have biological characteristics that would explain
some of the diversity found within the same tumor, and should not be excluded.
The exact reason for their distinct pattern was hard to know without analyzing
the data further, and since the Basal-like pattern clustered well regardless, the
replicates were kept for further analysis.
While PAM50 worked well for separating clusters, the use of ER status with rank
2 gained mixed clusters, which was not surprising considering that the two ER-
subtypes (Basal-like and Her2) behave widely differently. As stated by Perou
et al. (2000): "The clinical designation of ‘oestrogen receptor negative’ breast
carcinoma encompasses at least two biologically distinct subtypes of tumours
(basal-like and ErB-B2 [HER2] positive), which may need to be treated as distinct
diseases". This was also indicated in the instability of the clusters, especially for
the RNA-seq data. Using these clusters for further analysis would have lead to
mixed signals when deriving the characteristics from each cluster. Although the
Basal-like subtype - which was the main focus for this thesis - clustered well using
PAM50, the overall clustering could potentially have been improved by including
more samples from other subtypes than Luminal A. These are however the only
samples with available ATAC-seq and RNA-seq data from the US-BRCA project,
so far.

5.1.2 Gene and peak signatures

From Figure 4.3, we can see some of the most pattern-specific genes resulting
from NMF. Some of these genes have previously been described in other breast
cancer related studies, for example EGFR, SOX8 and SOX10, which were found
in the Basal gene signature. EGFR is a co-activator that has been investigated as
a potential target for Basal-like breast cancer (Siziopikou & Cobleigh, 2007), and
is highly expressed in the majority of Basal-like tumors (Cleator et al., 2007).
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The SOX genes code for a family of TFs related to development (Kamachi &
Kondoh, 2013), and various members of this family have previously been found
to be overexpressed in Basal-like tumors (Zhang et al., 2012; Liu et al., 2018),
including SOX8 (Tang et al., 2019) and SOX10 (Cimino-Mathews et al., 2013). In
addition, some of the genes from the LumA/B cluster, namely SERPINA6, BEX1
and AGTR1, have been proposed as markers for poor response to chemotherapy
for patients with HER2 negative tumors (De Ronde et al., 2013). These genes
were not found in the LumA/Normal cluster, which would make sense as patients
with Luminal B tumors have a worse prognosis than most patients with Luminal
A or Normal-like tumors (Figure 1.2).

5.1.3 Gene ontology enrichment analysis

The gene signatures were also used to search for enriched ontology terms and
gene signatures. Although the GOrilla gene ontology enrichment analysis did
not result in any enriched biological processes or functions for the NMF analysis,
HOMER discovered an enrichment for previously defined gene signatures (Table
4.4). The gene signature for the Basal outliers was not enriched for any type
of breast cancer signatures, but for RNAPII promoter opening. However, the
gene signatures for the rest of the clusters were enriched for the subtype that
dominated the clusters, which was a confirmation that these were truly active,
subtype-specific genes. This indicates that NMF was successful at defining
meaningful gene signatures, and that the algorithm itself preserved a lot of the
original information.

5.1.4 Chromosome distribution

The pie charts showing the percentage of peaks/genes residing at each chromosome
were created in order to visually compare between the corresponding clusters of
ATAC-seq and RNA-seq data (Figure 4.7). The pie charts should preferably
show similar chromosome distribution if the TFs that bind to open regions in
a subtype regulate the most highly expressed genes for the same subtype. This
assumption was made because most TFBSs are found on the same chromosome
as the genes they regulate (van Arensbergen et al., 2014). However, no such
connection was apparent. There could be several reasons for this. First, some
of the samples that cluster together in the ATAC-seq data, cluster together with
other samples in the RNA-seq data, causing mixed signals (Table S5). Second,
some of the open regions could possibly be bound by TFs at silencer regions. As
we only look at highly expressed genes, the effect of potential silencer regions

55



would not be uncovered.
Although the regions did not overlap between the data sets, the disproportionate
distribution of chromosome locations in the most pattern-specific ATAC-seq
peaks were highly interesting. The Pattern 1 (LumA/B) and Pattern 4 (Her2)
clusters were the most extreme cases, showing great accessibility in chromosome
8 and chromosome 17, respectively. The simultaneous accessibility through open
chromatin could suggest that multiple regions work together, in a potential
transcription regulatory network. For the Her2 cluster, which contains 18 Her2
samples and 6 Luminal B samples, multiple peaks were located in close proximity
to each other. These regions were investigated through the UCSC genome
browser, uncovering the ERBB2 (encodes HER2) and CDK12 genes. The high
accessibility surrounding the ERBB2 gene in this cluster is not surprising, considering
that Her2 and some Luminal B tumors are known to overexpress ERBB2 (Hugh
et al., 2009). The overexpression of ERBB2 and other genes in the surrounding
regions of chromosome 17 has previously been linked to DNA amplification
(Perou et al., 2000), which might explain the major activity in these regions.
CDK12 is known to be commonly co-amplified with ERBB2 in breast cancer,
although its exact function and relation to ERBB2 remains largely unknown
(Tien et al., 2017). The fact that the top peaks for the Her2 cluster were
found in these regions, indicated that also the peak signatures derived from NMF
made sense. Because the peak signatures succeeds in describing the differences
in chromatin accessibility between subtypes, at least for the Basal-like and Her2
subtypes, these peak signatures could potentially be stored and used for classification
purposes.

5.1.5 Subtype-specific transcription factors

For the ATAC-seq data, TFBS enrichment was performed using both UniBind
and HOMER. HOMER was also used to find enriched TFBS motifs from the
RNA-seq gene signatures. The latter only involved enrichment in promoter
regions, which means that the TFBS enrichment for the ATAC-seq data gave
a fuller picture by involving possible enhancer regions as well. In addition, the
cluster assignment differed slightly between the data sets (Figure S5). Therefore,
the results from both data sets were not expected to fully overlap.

LumA/B
The results of the TFBS enrichment analyses for the ATAC-seq data show that
FOXA1, FOXA2 and GATA(3/2) are enriched for the LumA/B cluster, for
both TFBS enrichment tools (Figure 4.8). The roles of FOXA1 and GATA3 in

56



Luminal breast cancer have been widely documented in multiple studies, while
FOXA2 and GATA2 have received less attention. However, some studies have
shown that FOXA2 acts to prevent metastasis in breast cancer (Zhang et al.,
2015). In addition, multiple sets of TFBSs for ERα (showed as "ESR1" in the
plot) were found enriched using UniBind. ERα is known to be a main driver
of ER+ subtypes, and was therefore expected to be enriched. It is unclear
why this TF was not enriched using HOMER for the ATAC-seq data. The
TFBS enrichment for the LumA/B cluster from the RNA-seq data showed an
enrichment for FOXA1 and FOXA2, showing that these TFs could possibly
upregulate some of the most highly expressed genes in the LumA/B peak signature
through the promoter regions (Figure 4.5).

Basal
For the Basal cluster of the ATAC-seq data, which only contained Basal-like
samples, SOX10, SOX2, TEAD4 and GHRL2 were found enriched, regardless of
TFBS enrichment tool (Figure 4.9). All of these TFs have previously been found
to be enriched in the Basal-like (or triple negative) subtype (Cimino-Mathews
et al., 2013; Rodriguez-Pinilla et al., 2007; Wang et al., 2015). In addition, STAT3
and MYC, which have also been proposed as potential Basal drivers (Zhu et al.,
2020; Xu et al., 2010), were found enriched using UniBind, but not HOMER.
The TFBS enrichment for the Basal cluster from the RNA-seq data showed an
enrichment for GHRL2 and OCT4-SOX2-TCF-NANOG (Figure 4.6). As these
overlaps with some of the TFs found in the ATAC-seq data, this strengthens the
hypothesis that SOX TFs and GHRL2 are important drivers of Basal-like breast
cancer. Also, because the clustering of Basal-like samples was strong also for the
RNA-seq data, it is likely that these TFs are involved in regulating some of the
genes in the Basal gene signature.

The results of the following clusters are shown in Attachments.

LumA/Normal
The LumA/Normal cluster differed from the LumA/B cluster, as the peaks that
characterized this cluster were enriched for CEBP and members of the STAT
family, including STAT5 (Figure 6.1). STAT5 has previously been associated
with good prognosis in ER/PR+ breast cancers (Barash, 2012), indicating that
this group might represent the group with the best prognosis. These TFs were
however not found in the promoter regions from the RNA-seq data, which contained
very few enriched TFBSs (Figure ??). Previous research has shown that both
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CEBP and STAT bind to enhancer regions (Ramji & Foka, 2002; Vahedi et al.,
2012), which explains why these were not found in the promoter region of the
highly expressed genes.

Her2
The results for the Her2 cluster showed no overlap between HOMER and UniBind
(Figure 6.2). However, using UniBind, TFAP2C and YY1 were found to be
enriched. These TFs are both previously found to be important for the Her2
subtype (Begon et al., 2005; Powe et al., 2009; Woodfield et al., 2010). Also here,
UniBind is more consistent with previous research. The TFs found enriched in
the promoter regions of the top genes for the Her2mix cluster (Figure ??) did
not correspond with the TFs found for the Her2 cluster from the ATAC-seq
data. Here, FOXA1 and FOXA2, among others, were found enriched. These are
normally associated with ER+ subtypes, such as Luminal A and Luminal B. The
enrichment seen for these TFs are likely because the Her2mix cluster contains a
mix of five Her2 samples, three Luminal A samples and 2 Luminal B samples, and
some of the highly specific genes for this group might be related to the Luminal
subtypes.

LumA
The LumA cluster from the ATAC-seq data contained a large number of Luminal
A samples, and some Luminal B samples. Although the locations of the most
open regions differ from the LumA/B cluster, they involve a lot of the same
TFs (Figure 6.3). These include FOXA1, FOXA2 and GATA3/GATA2. The
overlap indicates that the tumors making up the samples of this cluster might
behave in a similar matter as those from the LumA/B cluster. This cluster
had no corresponding cluster in the RNA-seq data, as the RNA-seq data only
contained two Luminal clusters, instead of three. Therefore, most of the samples
in this group were distributed between the LumA/B and LumA/Normal RNA-
seq clusters. This complicated the results of the analysis for the ER+ subtypes
(Luminal A, Luminal B and Normal-like) considerably, especially when making
connections between the data sets. Understanding which TFs of the ATAC-
seq cluster regulates which genes of the RNA-seq clusters is therefore a hard
connection to make from this analysis. However, the TFs inferred from the
ATAC-seq data are largely supported by literature, and give valuable information
on its own.
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5.2 MOFA analysis

The aim of the MOFA analysis was to explore the possible advantages of integrating
the RNA-seq and ATAC-seq data in one analysis. MOFA was used to perform a
gene set enrichment analysis, and TFBS enrichment was performed also here in
order to possibly produce a more robust set of key TFs.

5.2.1 Subtype clustering

The MOFA analysis was performed with two factors (rank 2), in order to separate
the Basal-like samples from the other subtypes. Compared to the clustering
performed with NMF and rank 5, the separation of Basal-like samples was poor
(Figure 4.11). Some of the Non-basal samples were clustered with the Basal
group, which was not ideal. Nevertheless, the resulting pattern matrix and
the two amplitude matrices were used for further analysis, as the samples that
dominated each cluster would hopefully provide a strong signal.

5.2.2 Gene ontology enrichment analysis

The gene ontology enrichment showed that the genes selected as factor-specific
for the Basal group (Figure 4.12 (top)) were largely involved in processes related
to cell cycle and cell division (mitosis), including the organization of cell division
related compartments, such as the cytoskeleton and spindle. The Basal-like
subtype is an aggressive subtype, and enhanced cell division is expected. A
study by Yang et al. (2019) also found that genes specific for Basal-like breast
cancer were associated with pathways involving the cell cycle.
The gene ontology enrichment for the Non-basal group showed that the genes
were largely involved in processes that involved cell differentiation (Figure 4.12
(bottom)). Higher degree of cell differentiation is associated with less aggressive
tumors and better prognosis, which is in line with the prognosis of the majority
of the subtypes residing in this cluster. GATA3, which was found for the Luminal
subtypes in almost all TFBS enrichment analysis in this study, has previously
found to be an important regulator of Luminal cell differentiation (Asselin-Labat
et al., 2007). Therefore, it is likely that GATA3 regulate some of the genes that
are enriched for this biological process. In addition to cell differentiation, the
genes for this group were enriched for positive regulation of estrogen receptor
(ER) signaling pathway. The enrichment for this pathway was expected, as most
of the samples in this group are ER+, except for some Her2 samples. If we
had excluded the Her2 samples before the analysis, it is possible that the most
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factor-specific genes would be more enriched for this pathway.

5.2.3 Subtype-specific transcription factors

TFBS enrichment was performed for the MOFA peaks using UniBind, with no
background. The choice of using no background was made based on the fact that
we only had two groups, and most of the top peaks were more open in the Basal
group (5117 out of 5774). The results of using no background were also more in
line with previous studies, including the NMF analysis performed in this study.
The TFs found to be most enriched for the Non-basal group include FOXA1,
ERα, GATA2 and GATA3 (Figure 4.13). These were repeatedly found in the
Luminal clusters for the NMF analysis, which makes sense as this group is mostly
dominated by Luminal samples.
The most enriched TFs for the Basal group include GHRL2, TEAD4, FOXA1
and GATA2 (4.14). Seen in the context of the results from the NMF analysis,
this appears to be a mixed signal of Basal-like and Luminal TFs. The enrichment
of FOXA1 and GATA2 is likely due to the fact that this group also contains some
Luminal samples. However, the presence of GHRL2 and TEAD4 strengthen the
chance of these TFs being key drivers of the Basal-like subtype.

5.3 Method discussion

This section will discuss the different tools and parameters used in both analyses,
and potential improvements that can be made.

NMF method

As previously mentioned, NMF has some drawbacks. First, the choice of rank
will affect the clusters and the value of the information gained. We attempted to
overcome potential bias by also looking at the stability of the clusters, independent
of prior knowledge of groupings. Another drawback is the initialization of NMF:
As it starts with random numbers for the pattern matrix and amplitude matrix,
the path it takes before it reaches a local minimum vary from run to run, and
the results are therefore not reproducible (Pehkonen et al., 2005). Methods that
aim for a more deterministic solution have been suggested, and others are still
in development (Wild et al., 2004; Sauwen et al., 2016; Janecek & Tan, 2011;
Gong & Nandi, 2013). Although the lack of reproducibility using a random
initialization remains a problem, the results gained from this study proves that
it can be a useful tool for exploratory studies.
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The probability of reaching a bad local minimum could have been reduced by
running the algorithm multiple times and choosing the run with the lowest error,
but this was discovered too late. Instead, multiple runs were performed with
visual inspection, in order to make sure that the TFs uncovered were the same,
which they were. Also, the overlap of the peak and gene signatures with previous
studies suggested that no bad local minimum was reached. Nevertheless, this is
a possible source of error that should be accounted for when interpreting the
results.

MOFA method

MOFA is a new method, first published in 2018 (Argelaguet et al., 2018). Therefore,
the advantages and disadvantages of this method are still being established.
However, one disadvantage is the lack of a non-negativity constraint, which
makes it less intuitive when interpreting the data, compared to NMF. Another
disadvantage that has been mentioned is when the multiple data sets being used
do not have a direct, linear relationship (Peng et al., 2020). This could have
impacted the results of this study, as some of the open regions might have been
bound by TFs at silencers in some samples, and at enhancers in others. The
openness of the peaks would thereby be similar, but the effect on the genes being
expressed would be different. In this study, the clustering of samples were not
improved compared to NMF, indicating that there could potentially be some
inconsistencies between the data sets. However, it could also be the underlying
characteristics of the algorithm itself, which is hard to tell. In order to make
full use of the MOFA analysis, the clustering of these subtypes should have been
improved. Regardless, MOFA was a useful comparison to NMF for finding a
robust set of TFs for the Basal-like and Luminal subtypes.

TFBS enrichment methods

The two TFBS enrichment methods used in this study gained some differences in
results. In general, it appears that the most enriched TFs found using UniBind
are more consistent with previous research. Often, the top HOMER hits involved
multiple TFs from the same family, which is likely due to the fact that TFs within
the same family share similar motifs. In addition, similar motifs derived from
different cell types were presented as different hits, thereby pushing other results
further down the list. Enrichment for different cell types is better represented
in the UniBind plot, as only the top TFBS set is used to define the degree of
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enrichment for each TF. In general, UniBind is a newer method that combines
the use of motifs with known TFBSs, which makes it more reliable.

There were also some parameters that differed between the methods, which
may have impacted the results. First, the choice of size for the ATAC-seq
data differed. In UniBind, the full peaks (501 bp) were analyzed, while only
401 bp of each peak were analyzed in HOMER. For ChIP-Seq data, this would
not matter, as the TFs are usually found to bind within 50 bp from the peak
center (Bailey, 2011). However, ATAC-seq extracts regions in a different way,
and TFBSs might potentially be shifted a bit further from the peak center. To
ensure that this did not impact the results, HOMER was also tried with size 2000,
which yielded highly similar results. Thus, it is likely that the TFBSs are well
covered with size 200, and that this parameter had little effect on the differences
in results between the methods. Second, the backgrounds differed between the
methods. For UniBind, a background consisting of the top peaks were used for
the NMF analysis. For the analyses performed with the no background option,
a background consisting of all TFBS sets stored in the UniBind database was
used. HOMER, on the other hand, creates random backgrounds that match the
GC content of the input sequences, when no customized background is provided.
The use of random sequences in HOMER versus real regions known to be active
in UniBind could have impacted the results. In order to possibly improve the
HOMER analysis, a customized background could have been provided.
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Chapter 6

Conclusion and future
perspective
In this study, two different matrix factorization methods were used in order to
uncover the TFs that drive each subtype of breast cancer.
The first aim was to use NMF on RNA-seq and ATAC-seq data, in order to
define gene and peak signatures for each subtype. Five different gene and peak
signatures were defined for each cluster of samples, and these were further explored
and validated. The clusters did not correspond directly to a subtype, with the
exception of the Basal-like subtype. The clustering could possibly have been
improved by using more samples, if ATAC-seq data had been available for these.
An increase in available data is expected as the ATAC-seq technique improves.
The second aim was to find enriched TFBSs within the peaks and promoter
regions of the signatures derived from NMF. The TFs that were found to drive
the Basal-like subtype include members of the SOX family (specifically SOX2
and SOX10), GRHL2 and TEAD4, all of which have previously been suggested as
potential drivers in different studies. In addition, MYC and STAT3 are possible
candidates. The Luminal subtypes are largely driven by FOXA1, ERα and
GATA3, as found in previous studies. They were also found to be enriched for
FOXA2 and GATA2, which have gotten less attention than their family members
(FOXA1 and GATA3, respectively), for their potential roles in Luminal breast
cancers.
The third aim was to explore information gained by combining RNA-seq and
ATAC-seq data in a multi-omics experiment. A gene ontology enrichment analysis
was performed, which revealed that the Basal-like breast cancer is enriched for
processes involving cell division. Although the results of the MOFA analysis was
impacted by the poor clustering, the TFBS enrichment analysis supported some
of the results found for the NMF analysis, suggesting that GRHL2 and TEAD4
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are key drivers of the Basal-like subtype.
The unsupervised matrix factorization methods used in this study have shown
great potential for learning characteristics of different groups, and should be
applied to other cancer types in order to potentially discover new subtypes
and their molecular characteristics. The computational process involving these
different tools should also be made available for public use, possibly as an R
package. The key TFs found for each breast cancer subtype throughout this
study, especially for the Basal-like subtype, should be investigated as potential
targets for new treatments.
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Table S1: Gene signatures for each pattern, after feature selection. Each gene in
the table has been chosen because it is pattern-specific. The cluster names are
used as header, without the pattern number, in order to save space. Basal outliers
= Pattern 1, Her2mix = Pattern 2, LumA/Normal = Pattern 3, LumA/B =
Pattern 4 and Basal = Pattern 5.

Basal outliers Her2mix LumA/Normal LumA/B Basal
SNORD9 LACRT CSN2 CPB1 CARD18
SNORA47 SULT1C3 C10orf96 CYP2A7 SERPINB3
SNORD67 UGT2B28 IRS4 UCN3 SPRR2D
SCARNA4 TBX10 ARHGAP36 CGA MAGEA4
SNORD8 MUCL1 PROL1 CYP2A6 KRT79
SNORA28 SCGB2A2 SMR3B GAGE12D CYP2F1
SNORA66 LST-3TM12 OLFM3 KCNJ3 SERPINB4
SCARNA3 TGM4 ART4 MUC2 NCAN
SCARNA22 AICDA CBLN2 UGT2B4 MAGEA9B
SNORA13 KRT12 SHISA2 TRH CTAG1B
SCARNA23 CDH10 LALBA CHGA PAGE2
SCARNA11 KRT20 MYBPC1 CHGB SPINK6
SNORA51 DCD CIDEA CPLX2 SPRR2E
SNORA41 FGA FXYD1 CT45A1 GABBR2
SNORA58 SCGB2A1 CYP4F22 ASCL1 C4BPA
SCARNA14 HPD SCARA5 SERPINA6 C1orf105
SNAR-A3 SCGB1D2 TUSC5 PAGE5 SERPINB13
RPPH1 FGG LOC389033 SLIT1 CTAG2
SNORA71D MYL1 HBA1 PHGR1 SPRR1B
SCARNA10 FGB CIDEC MYT1 LY6D
SNORA1 ERVFRDE1 PI16 CST5 LGALS7B
SNORA68 UGT2B11 MYL7 SGCG KRTDAP
SNORA54 DLK1 GPD1 VTN SLC1A6
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Table S1 continued from previous page
Basal outliers Her2mix LumA/Normal LumA/B Basal
SNORD89 FAM177B FOSB BEX1 C4orf7
RNU6ATAC WFDC6 GDF9 SEZ6L CAPNS2
RMRP APOD ZNF385D GRIA2 TRPM8
SNORA80 GLRA3 PLIN4 PCDH19 SPIB
SNORA38 ALB EGR3 SYT13 PRSS33
SNORA50 TAT ADH1B NPY6R SPRR2A
SCARNA1 FGL1 CXCL13 PCDH10 KRT83
HIST1H1A CLEC4D CCL14 RIMS4 KLK6
SNORA44 SPINK8 DARC CYP2B7P1 IVL
SNORA48 AKR1B15 NDP TPH1 AMTN
SNORA71A ACE2 AQP7 ALDOB LGALS7
SNORA42 CST4 LEP HAO2 ECEL1
SCARNA18 XAGE1D C2orf40 FAM5B KRT6A
SNORA14A C6orf223 PGLYRP2 MSMB SERPINB7
SNORA12 PIP TNN PVALB GFRA3
SNORA53 ALOX15B RERGL ANO2 KRT1
RNU4ATAC PPP1R14D HRASLS5 PCSK1 WIF1
SNORA16A ACY3 SCGB3A1 SOX2 MAGEA10
HIST1H4L HPGD THBS4 TRPA1 BPI
SCARNA7 LRRC31 MFAP4 IL20 S100A8
SCARNA8 GABRB3 FABP4 PRSS1 SPINK5
SNORA37 ATP13A4 CRISPLD1 PDZRN4 C1QL4
SCARNA5 ATP13A5 C7 AGTR1 MLC1
SNORA63 CXCL17 SLC26A3 GDF15 SOX8
SNORA49 STAC2 ADAMTS16 TMPRSS6 ORM2
SNORA75 GLYATL2 PLAC9 CPA6 MSMP
RNU11 HMGCS2 CILP GNG13 CASP14
TMEM14E OLFM4 COL14A1 RTBDN VGLL1
SNORA40 MUC20 PNMA2 TRY6 MIA
HIST1H3I SLC26A4 ADIPOQ AFP AMY1A
SNORA14B ABCC11 HBB FAM25A PRPH
SNORA9 TARP MUM1L1 CACNA1H NPB
SNORA78 SNPH ANKRD43 LOC145837 CRABP1
SNORA81 PNLIPRP3 EGR1 NKAIN1 CCL20
SCARNA2 MUC6 PGM5 UPF0639 FZD9
SNORD17 PAX7 PYDC1 AMBP CAPN6
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Table S1 continued from previous page
Basal outliers Her2mix LumA/Normal LumA/B Basal
SNORA84 FAIM2 OGN SLC5A8 PI3
SNORA23 TCAP STK32B CRISP3 CLDN10
HIST1H4C CYP4Z2P FAM155A INHA GJB6
SNORD10 GJB1 S100G HSPB8 BCL2A1
SNORA57 PPP1R1B TNXB B4GALNT2 MAPK4
SNORA24 ST6GALNAC1 ABCA8 SERPINA5 LOC100124692
SNORA7B PSCA GPIHBP1 AKR7A3 MSLN
HIST1H1B SERHL2 FGFR2 EEF1A2 MUC13
SNORA52 SLC25A18 FOS SYT1 S100A7
SNORA20 LRRC26 NGFR DNAJC12 SMOC1
SNORA74A NUDT8 SSTR2 KCNK15 POMC
SNORA77 HSPB6 TSPAN8 S100A7A
SNORA69 NEK10 FAM196A FGFBP1
SNORD97 PLIN1 BCAS1 MMP12
TERC CDC20B GDPD3 RAET1L
SNORA74B AK5 ABP1 SLC26A9
SNORA27 MMRN1 FOXJ1 GTSF1
SNORA26 FCER1A RGS22 KRT16
HIST1H2BI COL17A1 BMPR1B COL11A2
HIST1H4B MGP IFI27 S100A9
SNORA8 TIMP4 ROBO2 FBN3
HIST2H2AB KCNIP2 C15orf59 PRR4
SNORA71C SDPR KRT13 KRT6C
SNORA70 ABCC8 MAT1A FGFBP2
HIST1H3F CTSG ARC SBSN
HIST1H2AB ADAM33 ISG15 SIX3
SNORA32 DES GFRA1 S100B
SNORA22 ZBTB16 COX6C ROPN1
SNORD15B PGR KCNF1 KLK5
SNORA25 MMP23B FLJ45983 C8orf46
SNORA61 SORCS2 ADCY1 CXorf61
SNORD94 ELN CA12 ACTG2
SNORA18 ST8SIA6 NBPF4 CA9
SCARNA6 VSTM2A ELOVL2 RARRES1
SNORA64 LRRC17 AFF3 COL9A3
SNORA10 PTN IFI6 GJB3
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Basal outliers Her2mix LumA/Normal LumA/B Basal
PRO0611 ABCC13 ACTL8 S100A2
SNORA3 SCN4B DIO1 EPHB1
HIST1H4A HBA2 TFF1 PKP1
SNORA72 TPSAB1 SEMA3B TMSB15A
SNORA79 PNMT COL2A1 KLK8
SNORA2B SLC40A1 NEURL MARCO
HIST1H4D CCDC8 C10orf82 MT1H
HIST1H1E MYH11 CAPSL CRLF1
SNORA38B CHRDL1 CST9 CALML3
SCARNA12 WISP2 IGSF1 KRT81
SNORA19 BTG2 INSM1 VCAM1
SNORA71B HSPB7 KIF5C KIF1A
SNORA34 GALNTL1 CST2 DNER
HIST1H3B NPY1R TMEM150C GAL
SNORA6 PTGER3 CXCL14 FAM3D
SNORA5A SCUBE2 TNNT1 IGF2
SCARNA9 CYP4Z1 TUBA3E PTGS2
SNORA15 GPR162 TFF3 SYT8
SNORA46 CADM3 SPAG6 KRT6B
SNORA4 GRP RAMP1 EPHX3
HIST2H3C TFAP2B C20orf85 CXCL1
HIST1H3A NOVA1 WNK4 GPR64
SNORA31 PAMR1 CHAD KRT14
SNORA11D PTHLH SLC16A6 SCRG1
SNORA62 TNNT3 SERPINI1 PPP1R14C
SCARNA20 GRPR CLSTN2 CHI3L2
SNORA45 MS4A2 DOK7 GSDMC
SCARNA21 STC2 IGFALS SOX10
SNORA11B OXTR LINGO1 LEMD1
HIST1H2AJ PDE8B CACNG4 GABRE
HIST1H4E COL4A6 CEACAM6 UBD
SNORA5C SAA2 GNMT IDO1
WDR74 TPSB2 C6orf141 DEFB1
HIST1H2AL WNT5A HSH2D IRX1
HIST1H2AH SLC19A3 KCNE4 SLC6A14
SNORA55 MYL2 FSIP1 CHI3L1
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Basal outliers Her2mix LumA/Normal LumA/B Basal
CDR1 MATN3 TUBA3D SPRR1A
SNORA65 RDH5 PADI3 C2orf82
SCARNA27 CPA3 LRP2 GJB5
SCARNA16 PODN TPRXL TTYH1
SNORA2A AOX1 GATA3 A2ML1
SNORA21 CKM ADRA2C SOSTDC1
SNORA76 CITED1 DNALI1 LGR6
SNORA11 ITGA10 SLC6A4 APCDD1L
HIST1H1D NCAM2 CEACAM5 KRT5
HIST1H2BL C20orf103 C16orf89 TUBB2B
MALAT1 NME5 ESR1 BCL2L14
SNORD15A PI15 CORO6 FAM150B
HIST2H2AC PDK4 MPP2 IL20RB
ABCA13 SELP CNTD2 TRIM29
SNORA36A FST FAM134B UCA1
DSG1 GP2 RBM24 CDKN2A
SNHG7 CLEC3B MAGEA1 XDH
SCARNA17 PLEKHA4 RGS11 GPR87
HIST4H4 CLDN11 DACH1 MAGEA2
HIST2H3D PLA2G2A LIN7A HRCT1
HIST1H3J MEOX1 PRAME GDF5
HIST1H2AD CLDN5 PCSK6 EN1
PCDH11X LRRN1 CCDC48 GABRP
HIST1H2BF MT1M NAT2 KRT17
SNORA59B LAMA2 L1CAM SLC15A1
SNORD22 NPY5R SLC9A3R1 PCP4
SNORA11E EGR2 SLC7A2 ORM1
SCGB3A2 SSC5D C19orf21 CD1A
ART3 NNAT SYBU CRTAC1
HORMAD1 RAI2 LONRF2 COL22A1
GPR12 INMT STARD10 EGFR
ZNF460 SUSD3 REPS2 FERMT1
C6orf15 FAM189A2 GREB1 AQP5
ANKRD36BP1 SYT9 ANKRD29 RHCG
C11orf90 SEMA6D MKX KCNK5
CCDC144A SFRP4 LYPD6B PCOLCE2
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Basal outliers Her2mix LumA/Normal LumA/B Basal
DSG3 NTRK2 THSD4 LAMB3
SPDYE8P SLC30A8 NAT1 NCCRP1

LRRC4C RGMA
CNTN1 ROPN1B
KLK4 C6orf176
ANKRD30A MAGEA6
LTC4S RBP4
OMD ANXA8L2
AMPH FABP7
RANBP3L CPA4
GALNTL2 CWH43
TMEM100 EPHB6
TP63 SELE
LYPD6 DKK1
ASPN YJEFN3
CFD CRYAB
NRK sep.03
PLIN5 LOC84740
LPL ELF5
UPK1A ANKRD35
LRRC48 FAM83A
ITIH5 DLX5
NELL2 IGF2BP2
IQCA1 HLA-DOB
CYP4F8 SFRP1
FAM38B KRT4
TSPAN7 LBP
LOC642587 DSC3
ADCY5 PRSS12
MAPT MFI2
CNN1 CLCA2
ZNF423 CSAG3
ERBB4 TMCC2
TMEM26 C1orf186
ZFP36 NRTN
CA2
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Table S1 continued from previous page
Basal outliers Her2mix LumA/Normal LumA/B Basal

TGFBR3
HOXA7
KCNJ11
ATP1A4
GRB14
CYR61
SHROOM1
CPXM1
NEFH
NTN4
ISM1

Full HOMER results for the RNA-seq data

The HOMER results in Table S2-S4 show all enriched TFBS motifs for the gene
signatures of Pattern 1 (Basal outliers), Pattern 2 (Her2mix) and Pattern 3
(LumA/Normal).

Table S2: All enriched TFBS motifs for Pattern 1 - Basal outliers from the
RNA-seq data.
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Table S3: All enriched TFBS motifs for Pattern 2 - Her2mix from the RNA-seq
data.

Table S4: All enriched TFBS motifs for Pattern 3 - LumA/Normal from the
RNA-seq data.

UniBind with background and HOMER supplementary results

Figure 6.1-6.3 show the HOMER and UniBind results for Pattern 3, 4 and 5.
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Figure 6.1: Enriched TFBSs for the Pattern 3 cluster of peaks, which are most
important in Normal-like and most Luminal A samples. Top: Top 10 TFs with
enriched TFBS sets. Bottom: Top 10 enriched TFBS motifs with corresponding
TF name in bold.
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Figure 6.2: Enriched TFBSs for the Pattern 4 cluster of peaks, which are most
important in Her2 samples. Top: Top 10 TFs with enriched TFBS sets. Bottom:
Top 10 enriched TFBS motifs with corresponding TF name in bold.
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Figure 6.3: Enriched TFBSs for the Pattern 5 cluster of peaks, which are most
important in Luminal A and some Luminal B samples. Top: Top 10 TFs with
enriched TFBS sets. Bottom: Top 10 enriched TFBS motifs with corresponding
TF name in bold.
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UniBind with no background

Figure 6.4-6.8 show the output of the UniBind Enrichment analysis with no
background, for each of the patterns in the ATAC-seq data.

Figure 6.4: UniBind Enrichment without background for Pattern 1: LumA/B
from the ATAC-seq data.
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Figure 6.5: UniBind Enrichment without background for Pattern 2: Basal from
the ATAC-seq data.

Figure 6.6: UniBind Enrichment without background for Pattern 3:
LumA/Normal from the ATAC-seq data.
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Figure 6.7: UniBind Enrichment without background or Pattern 4: Her2 from
the ATAC-seq data.

Figure 6.8: UniBind Enrichment without background for Pattern 5: LumA from
the ATAC-seq data.
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Cluster assignment

The cluster assignment of the samples are shown in Table S5. The table shows
cluster names, together with the "true" PAM50 subtype.

Table S5: Comparison of cluster assignments for the ATAC-seq data and
RNA-seq data.

sample clusterATAC clusterRNA truePAM50
1 TCGA-BH-A0E0-01 Basal Basal Basal
2 TCGA-A7-A13E-01 Basal Basal Basal
3 TCGA-A2-A0SX-01 Basal Basal Basal
4 TCGA-A2-A0YJ-01 Basal Basal Basal
5 TCGA-A2-A4RX-01 Basal Basal Basal
6 TCGA-AO-A124-01 Basal Basal Basal
7 TCGA-AO-A12F-01 Basal Basal Basal
8 TCGA-AR-A0TP-01 Basal Basal Basal
9 TCGA-C8-A12K-01 Basal Basal Basal
10 TCGA-C8-A12V-01 Basal Basal Basal
11 TCGA-S3-AA0Z-01 Basal Basal Basal
12 TCGA-AR-A0U0-01 Basal Basal Basal
13 TCGA-AR-A0U4-01 Basal Basal Basal
14 TCGA-BH-A0DL-01 Basal Basal Basal
15 TCGA-C8-A12Q-01 Her2 Her2mix Her2
16 TCGA-A2-A0CX-01 Her2 Her2mix Her2
17 TCGA-A8-A08J-01 Her2 LumAB Her2
18 TCGA-A8-A094-01 Her2 Her2mix Her2
19 TCGA-AO-A12D-01 Her2 Her2mix Her2
20 TCGA-C8-A137-01 Her2 LumAB Her2
21 TCGA-BH-A0EE-01 Her2 Basal Her2
22 TCGA-BH-A1EV-01 Her2 Her2mix Her2
23 TCGA-D8-A13Z-01 Her2 Basal Her2
24 TCGA-C8-A12T-01 LumAB LumANormal Her2
25 TCGA-A2-A0ES-01 LumANormal LumANormal LumA
26 TCGA-A7-A0D9-01 LumAB LumAB LumA
27 TCGA-AO-A0J5-01 LumANormal LumANormal LumA
28 TCGA-AO-A0JG-01 LumANormal LumAB LumA
29 TCGA-BH-A0B1-01 LumAB LumANormal LumA
30 TCGA-BH-A0B5-01 LumA LumANormal LumA
31 TCGA-C8-A12O-01 LumAB Her2mix LumA
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Table S5 continued from previous page
sample clusterATAC clusterRNA truePAM50

32 TCGA-A2-A0T4-01 LumANormal LumANormal LumA
33 TCGA-A2-A0T5-01 LumA LumANormal LumA
34 TCGA-AO-A03L-01 LumAB LumAB LumA
35 TCGA-A2-A0ET-01 LumANormal LumAB LumA
36 TCGA-A2-A0EV-01 LumANormal Her2mix LumA
37 TCGA-A2-A0T6-01 LumANormal LumANormal LumA
38 TCGA-A2-A0YC-01 LumA LumAB LumA
39 TCGA-A2-A0YD-01 LumA LumANormal LumA
40 TCGA-A2-A0YL-01 LumANormal LumANormal LumA
41 TCGA-AO-A0J8-01 LumA LumANormal LumA
42 TCGA-BH-A0BA-01 LumANormal Her2mix LumA
43 TCGA-BH-A0C1-01 LumANormal LumANormal LumA
44 TCGA-BH-A0DP-01 LumANormal LumANormal LumA
45 TCGA-BH-A0HP-01 LumANormal LumANormal LumA
46 TCGA-C8-A12Y-01 LumA LumAB LumA
47 TCGA-C8-A133-01 LumA LumAB LumA
48 TCGA-A2-A0EX-01 LumAB LumANormal LumA
49 TCGA-A2-A0T7-01 LumAB LumANormal LumA
50 TCGA-A7-A0CH-01 LumA LumANormal LumA
51 TCGA-AQ-A04L-01 LumANormal LumANormal LumA
52 TCGA-BH-A0DV-01 LumA LumANormal LumA
53 TCGA-A2-A0YF-01 LumA LumAB LumA
54 TCGA-A2-A0EW-01 LumANormal LumANormal LumA
55 TCGA-A2-A0EY-01 Her2 Her2mix LumB
56 TCGA-A2-A0YH-01 LumAB LumAB LumB
57 TCGA-BH-A0BZ-01 LumAB LumAB LumB
58 TCGA-A2-A0SV-01 LumA LumAB LumB
59 TCGA-A2-A0YG-01 LumANormal LumAB LumB
60 TCGA-AO-A03N-01 LumANormal Her2mix LumB
61 TCGA-AO-A0JM-01 Her2 LumAB LumB
62 TCGA-A2-A0SW-01 Her2 LumAB LumB
63 TCGA-A7-A13F-01 LumA LumAB LumB
64 TCGA-C8-A12M-01 LumAB LumAB LumB
65 TCGA-C8-A130-01 LumA Basal LumB
66 TCGA-A2-A0YT-01 LumAB LumAB LumB
67 TCGA-AR-A0TV-01 LumAB LumAB LumB
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sample clusterATAC clusterRNA truePAM50

68 TCGA-C8-A12U-01 LumAB LumAB LumB
69 TCGA-A2-A0YK-01 LumANormal LumANormal Normal
70 TCGA-AO-A0JB-01 LumANormal LumANormal Normal

Annotation of peaks

The annotation of peaks are shown in Table S6.

Table S6: Distribution of peak region annotations for the top peaks of the
ATAC-seq data. Annotation data is retrieved from \cite{corces2018chromatin}.

perc3UTR perc5UTR percDistal percExon percIntron percPromoter
1.554 0.194 42.681 2.008 50.259 3.303

96



  


	Acknowledgments
	Abstract
	Sammendrag
	Abbreviations
	Introduction
	Gene regulation in breast cancer
	Transcription factors
	Chromatin

	Investigating gene regulation
	Measuring gene expression
	The open chromatin landscape and TFs
	Interpreting big data by dimensionality reduction
	Predict transcription factor drivers from regulatory regions


	Aim of thesis
	Materials and methods
	Data
	NMF analysis
	Non-negative matrix factorization (NMF)
	Feature selection
	Investigating genomic regions
	Gene ontology enrichment analysis
	Transcription factor binding site enrichment

	Multi-omics analysis
	Data preprocessing and normalization
	Feature selection and signature analyses


	Results
	NMF
	Clustering of samples into a priori subtypes
	Clustering of features reveals the activity of each pattern
	Connecting the samples with pattern-specific features
	Gene signatures and gene set enrichment analysis
	Open regions and their chromosomal location
	Key transcription factors

	MOFA
	Normalization
	Sample clustering
	Gene ontology enrichment analysis
	UniBind TF enrichment


	Discussion
	NMF analysis
	Subtype clustering
	Gene and peak signatures
	Gene ontology enrichment analysis
	Chromosome distribution
	Subtype-specific transcription factors

	MOFA analysis
	Subtype clustering
	Gene ontology enrichment analysis
	Subtype-specific transcription factors

	Method discussion

	Conclusion and future perspective
	Bibliography
	Attachments

