
nanomaterials

Article

Comparative Analysis of Machine Learning Models
for Nanofluids Viscosity Assessment

Mohammadhadi Shateri 1, Zeinab Sobhanigavgani 1, Azin Alinasab 1, Amir Varamesh 2,
Abdolhossein Hemmati-Sarapardeh 3,4,* , Amir Mosavi 5,6,7,* and Shahab S 8,9,*

1 Department of Electrical & Computer Engineering, McGill University, Montreal, QC H3A 2K6, Canada;
mohammadhadi.shateri@mail.mcgill.ca (M.S.); zeinab.sobhanigavgani@mail.mcgill.ca (Z.S.);
azin.alinasab@polymtl.ca (A.A.)

2 Department of Chemical & Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
amir.varamesh@ucalgary.ca

3 Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
4 College of Construction Engineering, Jilin University, Changchun 130600, China
5 Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
6 School of Economics and Business, Norwegian University of Life Sciences, 1430 Ås, Norway
7 Institute of Automation, Kando Kalman Faculty of Electrical Engineering, Obuda University,

1034 Budapest, Hungary
8 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
9 Future Technology Research Center, College of Future, National Yunlin University of Science and

Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
* Correspondence: hemmati@uk.ac.ir (A.H.-S.); amir.mosavi@mailbox.tu-dresden.de (A.M.);

shamshirbandshahaboddin@duytan.edu.vn (S.S.)

Received: 23 June 2020; Accepted: 31 August 2020; Published: 7 September 2020
����������
�������

Abstract: The process of selecting a nanofluid for a particular application requires determining the
thermophysical properties of nanofluid, such as viscosity. However, the experimental measurement
of nanofluid viscosity is expensive. Several closed-form formulas for calculating the viscosity
have been proposed by scientists based on theoretical and empirical methods, but these methods
produce inaccurate results. Recently, a machine learning model based on the combination of seven
baselines, which is called the committee machine intelligent system (CMIS), was proposed to predict
the viscosity of nanofluids. CMIS was applied on 3144 experimental data of relative viscosity of
42 different nanofluid systems based on five features (temperature, the viscosity of the base fluid,
nanoparticle volume fraction, size, and density) and returned an average absolute relative error
(AARE) of 4.036% on the test. In this work, eight models (on the same dataset as the one used in
CMIS), including two multilayer perceptron (MLP), each with Nesterov accelerated adaptive moment
(Nadam) optimizer; two MLP, each with three hidden layers and Adamax optimizer; a support vector
regression (SVR) with radial basis function (RBF) kernel; a decision tree (DT); tree-based ensemble
models, including random forest (RF) and extra tree (ET), were proposed. The performance of these
models at different ranges of input variables was assessed and compared with the ones presented
in the literature. Based on our result, all the eight suggested models outperformed the baselines
used in the literature, and five of our presented models outperformed the CMIS, where two of them
returned an AARE less than 3% on the test data. Besides, the physical validity of models was studied
by examining the physically expected trends of nanofluid viscosity due to changing volume fraction.

Keywords: nanofluid viscosity; experimental data; machine learning; deep learning; nano;
nanomaterials; nanofluid; artificial neural network; data science; big data; ensemble models; artificial
intelligence; computational fluid dynamics; material design; computational mechanics

Nanomaterials 2020, 10, 1767; doi:10.3390/nano10091767 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-4842-0613
https://orcid.org/0000-0002-6605-498X
http://dx.doi.org/10.3390/nano10091767
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/9/1767?type=check_update&version=2

Nanomaterials 2020, 10, 1767 2 of 20

1. Introduction

Conventional working mediums, such as water, ethylene glycol, etc., cannot provide enough
efficiency in industrial processes since they suffer from relatively poor heat transfer characteristics.
Investigations have proved that the suspension of solid particles into traditional fluids enhances their
heat transfer capability. Based on this idea and with advances in nanotechnology, a new generation of
heat transfer fluid, named as nanofluids, was invented. Nanofluids are the suspension of nanoparticles
(such as metals, metal oxides, non-metals, etc.) whose dimensional size is typically in the range of
1–100 nm in a base fluid (such as water, oil, ethylene glycol, etc.) [1,2]. In comparison to conventional
working mediums, nanofluids can provide much more efficient thermo-physical properties, which are
the controlling factors for flow behavior and heat transfer ability of working fluids [3–6]. Therefore,
the thermo-physical properties of nanofluids, including viscosity, are important parameters that must
be evaluated before any application of them.

The viscosity of fluids is a measure of its resistance to flow. Nanofluids viscosity directly impacts
the required pumping power and associated pressure drop in any energy system. In addition,
the amount of heat augmentation in convection is strictly influenced by nanofluid viscosity. Moreover,
the viscosity of nanofluids should be determined accurately since the value of critical dimensionless
numbers, including Brinkman number, Prandtl number, and Reynolds number, are related to the
value of viscosity [7,8]. Considering the importance of the viscosity of nanofluids, over the past years,
different methods and equations were introduced to predict that. Einstein [9] was the first one who
proposed an equation for the estimation of the viscosity of floating small particles with low volume
fraction into a fluid. After Einstein’s [9] pioneering work, many other authors tried to propose new
methods for the prediction of viscosity of suspended particles, either by modifying Einstein’s [9]
equation or developing a new method. Brinkman [10], Lundgren [11], Frankel and Acrivos [12],
Batchelor [13], Thomas and Muthukumar [14], Chen et al. [15], Maiga et al. [16] are among the most
well-known developed models. A recent review of the available models for the prediction of viscosity
of nanofluids was published by Varamesh and Hemmati-Sarapardeh [17]. They reviewed almost
all the important models for the viscosity of nanofluids and categorized them into three main types,
theoretical models, empirical equations, and computer-aided models.

Recently, artificial intelligent models, such as an artificial neural network (ANN), radial basis
function neural network (RBF-NN), etc., which have powerful nonlinear regression ability and
can theoretically model complex relations, have been widely utilized to model thermo-physical
properties of nanofluids. These strong data-driven modeling tools can determine the complex
nonlinear dependency of an output parameter to its input variables with high speed and low
computational cost [6,18]. Karimi et al. [19] firstly proposed an artificial neural network based
on a genetic algorithm (GA). They gathered 381 experimental data from eight different types of
nanofluids for the development of the model by considering the input variables, including particle
volume concentration, temperature, the viscosity of fluid base, particle size, and density ratio
of base fluid to the nanoparticle. Their statistical results showed that the predicted values and
experimental data were in good agreement. The mean average relative error of the model was
2.48%. Since then, several other computer-aided data-driven models have been developed by
considering different intelligent modeling approaches, including fuzzy C-means clustering-based
adaptive neuro-fuzzy system (FCM-ANFIS), hybrid self-organizing polynomial neural networks
(PNN) based on group method of data handling (GMDH), least-square support vector machine
(LSSVM), radial basis function neural networks (RBF-NN), genetic algorithm-polynomial neural
network (GA-PNN), multilayer perceptron neural networks (MLP-NNs), gene expression programming
(GEP) [8,20–35]. However, the most accurate model with a wide range of applicability for the
prediction of viscosity of nanofluids was developed by Hemmati-Sarapardeh et al. [1], based on a
committee machine intelligent system (CMIS). They introduced a machine learning model based on the
combination of seven baselines, including four MLP-NNs, two RBF-NNs, and an LSSVM. Each of the
MLP-NNs was optimized with different algorithms, including Levenberg–Marquardt (LM), resilient

Nanomaterials 2020, 10, 1767 3 of 20

backpropagation (RB), Bayesian regularization (BR), and scaled conjugate gradient (SCG). The RBF-NNs
were optimized by utilizing particle swarm optimization (PSO) and the genetic algorithm (GA).
The LSSVM model was optimized with coupled simulated annealing (CSA). The proposed CMIS by
Hemmati-Sarapardeh et al. [1] was applied on 3144 experimental data of relative viscosity of 42 different
nanofluid systems by considering temperature, the viscosity of the base fluid, nanoparticle volume
fraction, size, and density as input variables to predict relative viscosity as the output variable.
The obtained results by Hemmati-Sarapardeh et al. [1] showed good agreement with experimental
data with an average absolute relative error of 3.95% between predicted relative viscosity values and
corresponding experimental data. Besides, the developed CMIS outperformed all of the investigated
available models, and unlike the previously available models, the developed CMIS showed high
accuracy over the whole range of input variables. Hemmati-Sarapardeh et al. [1] also analyzed the
quality of the gathered 3144 experimental data points and showed that all of the data points had very
good reliability except a small percent of them.

This study aimed to improve the accuracy and efficiency of the CMIS model developed by
Hemmati-Sarapardeh et al. [1], which is the best available model. For this purpose, in this study,
using the same data set gathered by Hemmati-Sarapardeh et al. [1], the two main baselines used
by them, including a multilayer perceptron (MLP) network and LSSVM, were considered, and the
hyperparameters of each were tuned. Moreover, a deeper MLP network, decision tree (DT) model,
a random forest (RF) model, and extra trees model were used to improve the performance of the CMIS
model developed by Hemmati-Sarapardeh et al. [1].

2. Data Collection

In this study, the most comprehensive data bank of nanofluid viscosity was used to develop
reliable and accurate models. This data bank, which was already used in our previous study [1],
covers 3144 experimental data points of nanofluid viscosity of 42 various types of nanofluid samples.
Nanoparticle size, temperature, particle volume fraction, the density of the nanoparticles, and the
viscosity of the base fluid were selected as the inputs of models, whereas the relative viscosity of
nanofluid was assumed as the output. Details for the used data are summarized in Table 1. For more
information about this data bank, readers can refer to our previous study [1]. The reason why the
number of data points for some particles was low is that there are only limited studies regarding
the evaluation of the viscosity of these particles, and we could not find more experimental data for
these particles.

Nanomaterials 2020, 10, 1767 4 of 20

Table 1. The data bank of nanofluids used in this study.

Al2O3 CuO SiO2 SiC TiO2 Fe3O4 MgO Mg(OH)2 Co3O4 Nanodiamond ZnO

References [36–51] [39,49,52–55] [41,56–60] [61] [36,44,46,47,62–65] [66,67] [24] [68] [69] [70,71] [72,73]

Base fluid

Water
DI water

Transformer
oil

R11 refigerant
Polyalphaolefins

EG
EG/W 20:80 wt %
EG/W 40:60 wt %
EG/W 20:80 wt %
W/EG 60:40 vol %
W/EG 50:50 vol %
W/EG 40:60 vol %

Water
EG

PG/W 30:70 vol %
EG/W 60:40 wt %

Water
Ethanol
DI water

Transformer
oil
EG

EG/W
25:75%
EG/W
50:50%
BG/W

20:80 vol %
BG/W 30:70 vol %

DI water

Water
DI water

EG
EG/W 20:80 wt %
BG/W 20:80 vol %
BG/W 30:70 vol %

Water
Toluene EG EG EG

water
EG/W 20:80 wt %
EG/W 60:40 wt %
EG/W 40:60 wt %

EG

T (◦C) 0–72 −35–67 19–80 30 9.85–80 20–60 20–70 23–65 10–50 0–60 10–50
ϕ (%) 0.01–10 0–9 0–8.4 0–3 0.2–10 0.04–2 0.1–5 0.1–2 0.9–5.7 0.2–1 0.25–5

dp (nm) 8–120 11–152 7–190 100 6–50 10–13 21–125 20 17 11.83–19.27 4.6–48
ρP (gr/cm3) 3.69–4 6.31 2.22–2.65 3.21 4.18–4.23 5.17–5.81 3.58 2.34 6.11 3.1 5.61–13.61
µnf (cp) 0.44–610.46 0.46–447.35 0.59–37.36 0.93–1.60 0.46–28.41 0.32–1.65 3.70–30.60 4.82–23.02 8.06–44.76 25.51 6.14–49.30
µbf (cp) 0.39–452.60 0.42–99.54 0.54–18.53 0.8 0.42–23.01 0.3–0.79 3.63–21.11 1.02–1.60 1.02–1.44 0.24–13.74 6.08–35.44
No. of

data points 1197 500 278 5 308 121 198 35 25 357 122

W: Water, DI: Deionized, PG: Propylene Glycol, EG: Ethylene Glycol, BG: BioGlycol.

Nanomaterials 2020, 10, 1767 5 of 20

3. Model Development

In this section, all the models used in this study are introduced.

3.1. Multilayer Perceptron Network

The perceptron learning rule introduced by Rosenblatt [74] corresponds to a simple model
consisting of one neuron (illustrated in Figure 1a) in which the output is a function of the sum of
weighted inputs modified by an activation function or transfer function (f).

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 23

3. Model Development

In this section, all the models used in this study are introduced.

3.1. Multilayer Perceptron Network

The perceptron learning rule introduced by Rosenblatt [74] corresponds to a simple model
consisting of one neuron (illustrated in Figure 1a) in which the output is a function of the sum of
weighted inputs modified by an activation function or transfer function (f).

Figure 1. (a) Perceptron model, (b) Multilayer perceptron (MLP) with two hidden layers (Note that f,
g, and h are activation functions, while the w represents the weights that the model needs to learn. x
is also input of the model).

The multilayer perceptron (MLP) is a system of interconnected perceptron models. It is proved
that the MLP can be trained to model every smooth, measurable function without concerning the
data distribution [75]. In other words, using nonlinear activation functions gives the MLP networks
the ability to approximate non-linear functions, while MLP with linear activation function can only
model linear functions. For MLP networks, four kinds of hyperparameters, including the type of
activation functions used in hidden and output layers, number of hidden layers, number of neurons
in each hidden layer, and optimizer method, can be assumed and need to be determined before using
the network for prediction. Tanh and Sigmoid are the most commonly used activation functions used
in MLPs [76]. The optimizer has a pivotal role in the performance of MLP. In this study, four types of
optimizers were used, and each of them has been explained in the next section.

3.2. Support Vector Machine for Regression

The support vector machine (SVM) was largely developed at AT&T Bell Laboratories. The
support vector machine for regression (SVR) was first introduced in 1997 by H. Drucker et al. [77],
following Cortes and Vapnik’s work on support vector machines (SVM) [78]. SVR uses the same
principles as SVM, with only a few minor differences. The SVR is a method to estimate a function
that maps the input to a continuous number, which is the target output. SVM for classification does
not apply a penalty on the points far away from the hyperplane as long as the class is predicted
correctly; however, SVR needs the estimated function to be as close as possible to all target points.
Therefore, SVR will apply a penalty on all points out of a predefined margin, ε, from the estimated
function. In other words, SVR does not care about the errors as long as they are less than ε, but will
not accept any deviations higher than ε. In the case of a linear function, 𝑓(𝑋) = 𝑤. 𝑥 + 𝑏, we can
describe the problem as a convex optimization problem:

Figure 1. (a) Perceptron model, (b) Multilayer perceptron (MLP) with two hidden layers (Note that f, g,
and h are activation functions, while the w represents the weights that the model needs to learn. x is
also input of the model).

The multilayer perceptron (MLP) is a system of interconnected perceptron models. It is proved
that the MLP can be trained to model every smooth, measurable function without concerning the data
distribution [75]. In other words, using nonlinear activation functions gives the MLP networks the
ability to approximate non-linear functions, while MLP with linear activation function can only model
linear functions. For MLP networks, four kinds of hyperparameters, including the type of activation
functions used in hidden and output layers, number of hidden layers, number of neurons in each
hidden layer, and optimizer method, can be assumed and need to be determined before using the
network for prediction. Tanh and Sigmoid are the most commonly used activation functions used in
MLPs [76]. The optimizer has a pivotal role in the performance of MLP. In this study, four types of
optimizers were used, and each of them has been explained in the next section.

3.2. Support Vector Machine for Regression

The support vector machine (SVM) was largely developed at AT&T Bell Laboratories. The support
vector machine for regression (SVR) was first introduced in 1997 by H. Drucker et al. [77],
following Cortes and Vapnik’s work on support vector machines (SVM) [78]. SVR uses the same
principles as SVM, with only a few minor differences. The SVR is a method to estimate a function that
maps the input to a continuous number, which is the target output. SVM for classification does not
apply a penalty on the points far away from the hyperplane as long as the class is predicted correctly;
however, SVR needs the estimated function to be as close as possible to all target points. Therefore,
SVR will apply a penalty on all points out of a predefined margin, ε, from the estimated function.
In other words, SVR does not care about the errors as long as they are less than ε, but will not accept

Nanomaterials 2020, 10, 1767 6 of 20

any deviations higher than ε. In the case of a linear function, f (X) = w·x + b, we can describe the
problem as a convex optimization problem:

minimize
1
2
‖ w ‖2 subject to

{
yi −w·xi − b ≤ ε
w·xi + b− yi ≤ ε

(1)

where yi represents the true value of the ith sample, while the w and b are the weight and bias associated
with the model, respectively. The value x is also input of the model.

Soft SVM: Similar to SVM, one can modify the optimization loss function by introducing slack
variables, ζi and ζi

*, to allow a soft margin when finding a function that can map all samples within
the predefined margin, which is not feasible. The optimization problem will change as follows:

minimize
1
2
‖ w ‖2 + C

l∑
i=1

(
ζi + ζ∗i

)
subject to

yi −w·xi − b ≤ ε+ ζi
w·xi + b− yi ≤ ε+ ζ∗i
ζi, ζ∗i ≥ 0

(2)

where C ≥ 0 is the variable that specifies how much deviation more than ε is allowed. Greater C is
closer to hard margin SVR. This corresponds to introducing the ε-insensitive loss function. Figure 2
shows the concept of soft margin and the ε-insensitive loss function.

|ζ|ε =

{
0 i f |ζ| ≤ ε
|ζ| − ε otherwise

(3)

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 23

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 12 ‖𝑤‖ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 − 𝑤. 𝑥 − 𝑏 ≤ 𝜀𝑤. 𝑥 + 𝑏 − 𝑦 ≤ 𝜀 (1)

where 𝑦 represents the true value of the ith sample, while the 𝑤 and 𝑏 are the weight and bias
associated with the model, respectively. The value x is also input of the model.

Soft SVM: Similar to SVM, one can modify the optimization loss function by introducing slack
variables, ζi and ζi*, to allow a soft margin when finding a function that can map all samples within
the predefined margin, which is not feasible. The optimization problem will change as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 12 ‖𝑤‖ + 𝐶 (+ ∗) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 − 𝑤. 𝑥 − 𝑏 ≤ 𝜀 + 𝑤. 𝑥 + 𝑏 − 𝑦 ≤ 𝜀 + ∗
 , ∗ 0 (2)

where C ≥ 0 is the variable that specifies how much deviation more than ε is allowed. Greater C is
closer to hard margin SVR. This corresponds to introducing the ε-insensitive loss function. Figure 2
shows the concept of soft margin and the ε-insensitive loss function. || = 0 𝑖𝑓 || ≤ 𝜀 || − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

Figure 2. Soft margin nonlinear SVR (support vector machine for regression) with ε-insensitive loss
function (ϕ(.) is a feature mapping function, W is the weight matrix, and b is bias vector).

The quadratic optimization problem (2) can be modeled and solved in two different ways,
including primal and dual.

Primal: Introducing Lagrangian multipliers 𝜂 , 𝜂∗, 𝛼 , 𝛼∗, the Equations (4) and (5) show the
primal form of the optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 12 ‖𝑤‖ + 𝐶 + ∗ − 𝜂 + 𝜂∗∗
− 𝛼 (𝜀 + 𝜂 + 𝑦 + 𝑤. 𝑥 + 𝑏)
− 𝛼∗(𝜀 + 𝜂∗ + 𝑦 + 𝑤. 𝑥 + 𝑏) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼 , 𝛼∗ 0𝜂 , 𝜂∗ 0

(4)

Figure 2. Soft margin nonlinear SVR (support vector machine for regression) with ε-insensitive loss
function (φ(.) is a feature mapping function, W is the weight matrix, and b is bias vector).

The quadratic optimization problem (2) can be modeled and solved in two different ways,
including primal and dual.

Nanomaterials 2020, 10, 1767 7 of 20

Primal: Introducing Lagrangian multipliers ηi, η∗i , αi, α∗i , the Equations (4) and (5) show the primal
form of the optimization problem:

minimize 1
2‖ w ‖2 + C

l∑
i=1

(
ζi + ζ∗i

)
−

l∑
i=1

(
ηiζi + η∗iζ

∗

i

)
−

l∑
i=1

αi(ε+ ηi + yi + w·xi + b)

−

l∑
i=1

α∗i

(
ε+ η∗i + yi + w·xi + b

)
subject to

{
αi,α∗i ≥ 0
ηi, η∗i ≥ 0

(4)

Dual: The dual form of the optimization problem can be derived using the primal objective
as below:

maximize
l∑

i=1
yi
(
αi − α

∗

i

)
− ε

l∑
i=1

(
αi + α∗i

)
−

1
2

l∑
i=1

l∑
j=1

(
αi − α

∗

i

)(
α j − α

∗

j

)
xix j

subject to

l∑

i=1

(
αi − α

∗

i

)
= 0

0 ≤ αi,α∗i ≤ C

(5)

Kernels: When the data is not linearly separable (classification), one can use the kernel functions
to transform the data into a higher dimensional feature space, where it turns to a linearly separable
data. For the regression case, non-linear SVR can be done by kernelizing the data. Common kernel
functions are summarized as follows:

Polynomial : k(x, x′) = (< x, x′ >+ c)d

Tanh : k(x, x′) = tanh(θ+∅< x, x′ >)

RBF : k(x, x′) = exp
(
‖x−x′‖2

2σ2

) (6)

3.3. Decision Tree

A decision tree that can be used for both regressions and classification problems is a non-parametric
supervised learning algorithm. Messenger and Mandell in 1972 [79] proposed the first classification
tree algorithm, which was named as THAID. The decision tree is a hierarchical tree-like flowchart
composed of a root node, internal nodes, leaf nodes, and branches. The topmost node with no
incoming branch, which represents the entire sample space, is called the root node. The nodes with
one incoming branch and two or some outgoing edges are known as internal or test nodes, and all
other nodes representing the final results are leaves, also named as terminal nodes. Splitting, stopping,
and pruning are the main steps for building a decision tree [80]. Splitting the data means recursively
partitioning the input data into two or more subsets based on testing the most significant attribute,
which can separate the training instances as well as possible. The significant attribute is determined by
different criteria, including the Gini index, entropy, classification error, gain ratio, information gain,
and towing [81] for classification trees, and variance reduction or standard deviation-reduction for
regression trees. Figure 3 represents an example of a decision tree for classification and regression
problems. Splitting the data starts from the root node and continues on internal nodes until predefined
homogeneity or stopping criteria is satisfied. Determining the stopping criteria, such as the minimum
number of records in a node prior to splitting, the minimum number of records in a leaf, and the
depth of any leaf from the root node, reduces the complexity of the tree, which prevents overfitting.
Without stopping criteria, the splitting continues until a complex tree is constructed, in which the
records in each node are 100% pure; such a tree would be fitted very well on the training data, but will
not perform well on the unseen data. Therefore, these stopping criteria are normally tuned during
training the model to choose the best values. Pruning is another method to avoid overfitting when
stopping methods do not perform satisfactorily. In pruning, a complete tree is grown and then pruned
back to a smaller tree by eliminating nodes, which have less information gain on the validation set.

Nanomaterials 2020, 10, 1767 8 of 20

Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 23

Figure 3. Examples of using a decision tree for regression.

3.4. Random Forest and Extra Trees

Random forest (RF) is an ensemble method, covering both classification and regression tasks.
This algorithm creates a forest of multiple decision trees. The random forest algorithm, proposed by
Leo Breiman [82], combines Breiman’s idea of bagging with the random decision forests algorithm
developed by Tin Kam Ho [83]. The random forest uses the randomly created trees approach. For
creating each tree of the forest, k features of total m features are selected randomly (where k < m), the
best feature is chosen by the splitting methods for the root node, and the internal nodes tests are
selected by the same splitting approach until reaching the leaves. To predict unseen data with the
trained model, each tree predicts and stores the outcome. The final forest output will be the majority
voted class by different classification trees in case of classification, or the average of outcomes by
different regression trees in case of regression. Random forest robustness against overfitting is one of
the most important advantages of this algorithm, comparing the decision tree [84]. There is another
tree-based ensemble model, which is called the extra trees (ET) algorithm. In contrast to the RF, which
tests all possible splits over a fraction of features, the ET method tests random splits (cut point) over
a fraction of features [85]. Besides accuracy, the ET method is computationally efficient compared to
the RF. In this study, both methods were used and compared with other methods.

3.5. Optimization Methods

The gradient descent (GD) algorithm is one of the most well-known optimization methods.
Considering the objective function J(θ) parameterized by model parameter θ, the GD updates the θ
in the opposite direction of the gradient of J(θ) as follows: 𝜃 = 𝜃 − 𝜂. 𝛻 𝐽(𝜃) (7)

where η is the learning rate. There are other versions of GD called stochastic gradient descent (SGD)
and mini-batch gradient descent, which are faster than SGD [86]. Choosing proper learning rate,
learning rate schedule, and trapping in (escaping) the local minima are some challenges with SGD
and its other versions. To address these challenges, the following optimization algorithms that are
extensively used in deep learning are provided.

Momentum: When the SGD method encounters ravines, which are common around local
optima, it starts to oscillate across the slope of the ravine. The momentum method [87] helps the SGD
to damp the acceleration toward the local optima in the true direction by adding a fraction of previous
updates. 𝑣 = 𝛾𝑣 + 𝜂. 𝛻 𝐽(𝜃)𝜃 = 𝜃 − 𝑣 (8)

where 𝛾 is called the momentum term.

Figure 3. Examples of using a decision tree for regression.

3.4. Random Forest and Extra Trees

Random forest (RF) is an ensemble method, covering both classification and regression tasks.
This algorithm creates a forest of multiple decision trees. The random forest algorithm, proposed by
Leo Breiman [82], combines Breiman’s idea of bagging with the random decision forests algorithm
developed by Tin Kam Ho [83]. The random forest uses the randomly created trees approach.
For creating each tree of the forest, k features of total m features are selected randomly (where k < m),
the best feature is chosen by the splitting methods for the root node, and the internal nodes tests
are selected by the same splitting approach until reaching the leaves. To predict unseen data with
the trained model, each tree predicts and stores the outcome. The final forest output will be the
majority voted class by different classification trees in case of classification, or the average of outcomes
by different regression trees in case of regression. Random forest robustness against overfitting is
one of the most important advantages of this algorithm, comparing the decision tree [84]. There is
another tree-based ensemble model, which is called the extra trees (ET) algorithm. In contrast to the RF,
which tests all possible splits over a fraction of features, the ET method tests random splits (cut point)
over a fraction of features [85]. Besides accuracy, the ET method is computationally efficient compared
to the RF. In this study, both methods were used and compared with other methods.

3.5. Optimization Methods

The gradient descent (GD) algorithm is one of the most well-known optimization methods.
Considering the objective function J(θ) parameterized by model parameter θ, the GD updates the θ in
the opposite direction of the gradient of J(θ) as follows:

θ = θ− η·∇θ J(θ) (7)

where η is the learning rate. There are other versions of GD called stochastic gradient descent (SGD)
and mini-batch gradient descent, which are faster than SGD [86]. Choosing proper learning rate,
learning rate schedule, and trapping in (escaping) the local minima are some challenges with SGD
and its other versions. To address these challenges, the following optimization algorithms that are
extensively used in deep learning are provided.

Momentum: When the SGD method encounters ravines, which are common around local optima,
it starts to oscillate across the slope of the ravine. The momentum method [87] helps the SGD to damp
the acceleration toward the local optima in the true direction by adding a fraction of previous updates.{

vt = γvt−1 + η·∇θ J(θ)
θ = θ− vt

(8)

where γ is called the momentum term.

Nanomaterials 2020, 10, 1767 9 of 20

NAG: Nesterov accelerated gradient or NAG is similar to the momentum method, except it
calculates the gradient with regards to the future position of the parameter as follows [88]:{

vt = γvt−1 + η·∇θ J(θ− γvt−1)

θ = θ− vt
(9)

Adagrad: Adaptive gradient algorithm (Adagrad), introduced by Duchi et al. [89], modifies the
learning rate η for parameter θi at time step t using the past gradients used for θi as follows:

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i (10)

where gt,i = ∇θi J(θt,i) and Gt is a diagonal matrix, where each diagonal element ii is the sum of squared
gradients with regards to θi up to time step t.

Using this modification, the infrequent parameters have a larger update, while there is a smaller
update for the frequent parameter. The Adagrad has been used in different learning applications;
however, the accumulation of the squared gradients in the denominator of the learning rate eventually
shrinks the learning rate and makes the update rule ineffective.

Adadelta: To address the issue mentioned in Adagrad, the Adadelta method is introduced by
Zeiler [90]. The main idea is that, instead of accumulating all the past squared gradients, just a fixed
number of them, w, are used. This prevents the monotonical shrinkage of the learning rate. In practice,
to avoid storing w previous squared gradients, an exponentially decaying average of squared gradients
is used as follows: E

(
g2

)
t
= ηE

(
g2

)
t−1

+ (1− η)gt
2

∆θt =
RMS[∆θ]t−1

RMS[g]t
·gt

(11)

where RMS[x]t =
√

E(x2)t + ε for any x.
Adam: Adaptive moment (Adam) is another optimization method, which is a combination of

the momentum method and Adadelta [91]. This method uses the exponentially decaying average of
previously squared gradients (similar to Adadelta) and the exponentially decaying average of gradients
(similar to momentum).

θt+1 = θt −
η

√
v̂t + ε

m̂t (12)

where m̂t =
mt

1−β1
t , v̂t =

vt
1−β2

t , mt = β1mt−1 + (1− β1)gt and vt = β2vt−1 + (1− β2)gt
2.

AdaMax: AdaMax is a variant of the Adam method, which scales the gradients based on the
infinite norm, instead of the l2 norm [91].

θt+1 = θt −
η

ut
m̂t (13)

where ut = β2
∞vt−1 + (1− β2

∞)gt
∞ = max

(
β2vt−1,

∣∣∣gt
∣∣∣).

Nadam: Nesterov accelerated adaptive moment (Nadam) is a combination of the Adam and NAG
methods [92].

θt+1 = θt −
η

√
v̂t + ε

(β1m̂t +
(1− β1)gt

1− β1
t) (14)

In this work, four of these optimizers, including Adagrad, Adadelta, AdaMax, and Nadam,
were used in optimizing the MLP network parameters.

4. Results and Discussion

Generally, two kinds of baseline models, including an MLP network with two hidden layers
and an LSSVM model, were used in [1]. In this part, hyperparameters of these two baselines were

Nanomaterials 2020, 10, 1767 10 of 20

tuned using validation data set for better performances. More specifically, the data sets were split
into train and test sets with a ratio of roughly 85:15, while 10% of the training data was used as the
validation set, which was used to set the hyperparameters. In this work, the MLP network with two
hidden layers and four different optimizers was used as a baseline in [1]. In all of them, the Tanh,
Sigmoid were used as activation functions for first and second hidden layers, respectively. Moreover,
in all of the MLP networks, pure linear activation was used for the output layer. Among all of these
MLP networks, MLP with Bayesian regularization (BR) optimizer returned the lowest average absolute
relative error (AARE) of 4.931% on the test data. We believed by tuning the number of neurons in
each hidden layer and selecting an appropriate optimizer method, the performance of MLP could
be improved. Another option for improving the performance of MLP was increasing the number of
hidden layers (deeper MLP), and we have used this option in the next section as one of our suggested
models. Therefore, in this work, the same architecture, as [1], was used, but the number of neurons in
each hidden layer and the type of optimizer were tuned as a validation set using a grid search method.
As the preprocessing, the input data were normalized, i.e., each feature was centered by its mean value
and scaled by its standard deviation. It should be noted that in this work, the MLP form was generally
considered as (Input: number of neurons)(Hidden 1: number of neurons, activation function)(Hidden
l: number of neurons, activation function)(Output: number of neurons, activation function)-optimizer.
The result of the Grid search showed that MLP with form (5)(Tanh,32)(Sigmoid,64)(Linear,1)-Nadam
had the best performance on the validation data set. Another modification that might improve the
performance of the MLP used in [1] was the type of activation function. More specifically, in their MLP,
the output layer had a pure linear activation function, and if be replaced with a non-linear activation
function, they might improve the performance. Therefore, MLP with sigmoid activation function at the
output layer was tuned for the appropriate number of neurons in hidden layers and type of optimizer.
The Grid search result returned MLP with the form (5)(Tanh,32)(Sigmoid,64)(Sigmoid,1)-Nadam as
the best model. Another baseline used in [1] was the least square SVM (LSSVM), which returned
an AARE of 6.630% on the test data. In this work, the SVM regression with radial basis function
(RBF) kernel was used. Our assumption was that since Gaussian models are the most commonly
used models for real-world data, Gaussian kernel should be used in SVM. Two hyperparameters,
including penalty parameter C and kernel coefficient gamma, were considered and tuned using the
Grid search algorithm. The result showed that RBF-SVM with C = 1 and gamma = 2.3 provided the
lowest AARE on validation data. Other models, including decision tree, random forest, extra trees,
and an MLP with three hidden layers, could be used to improve the performance of the CMIS model
used as the main model in [1]. The results of the CMIS model on different ranges of input features
showed that in some ranges (for example, range 50–75 for nanoparticle size), the model had poor
performance (large AARE), while in some other ranges, it had better performance. This behavior
suggested that algorithms, such as decision tree (DT) or an ensemble of them (random forest and
extra trees), which goes through each feature and finds the best test split based on the different ranges
of features, might be a good candidate. To this end, four hyperparameters, including a maximum
number of features, maximum depth, the minimum number of sample split, and a minimum number
of leaf nodes, were considered and tuned using Grid search. The results of the Grid search suggested
a DT with maximum depth equal to14, the maximum number of features equal to 4, the maximum
number of leaf nodes of 450, and the minimum number of sample split of 3. As another attempt to
improve the results, random forest (RF) was used as an ensemble of DTs. Hyperparameters, including a
maximum number of features and the maximum depth, were tuned using the Grid search, and the
results based on the best parameters maximum depth 18 and a maximum number of features 4 were
provided. Extra trees (ET) was another ensemble of DTs. Similar to the DT, four hyperparameters were
tuned, and the optimum values were the maximum depth of 20, the maximum number of features of 5,
the maximum number of leaf nodes of 1000, and the minimum number of sample split of 4. The MLP
network with three hidden layers was the last model used to improve the performance. Similar to the
MLP with two hidden layers, hyperparameters (including the number of neurons in hidden layers

Nanomaterials 2020, 10, 1767 11 of 20

and the type of optimizer) of MLP with three hidden layers were tuned using the Grid search. Again,
the last activation function was changed to a Sigmoid function to see whether any improvement had
been achieved. Table 2 lists the performance of each mentioned model using statistical parameters,
including average absolute relative error (AARE (%)), average relative error (ARE (%)), root mean
square error (RMSE), and standard deviation (SD).

From this table, it can be seen that the baselines model SVM and two layers MLP compared to
baselines [1] were improved by fine-tuning. In addition, the suggested models, including random
forest (RF), extra trees (ET), and three layers MLP (both with and without nonlinear activation at
the output layer), provided better performance than the CMIS model. To see the performance of
the models visually, the cross plot of the training and test data for each model are represented in
Figure 4. In this figure, closer data points to the unit slope line indicated a better prediction of viscosity.
For example, comparing Figure 4a,b, it can be seen how a nonlinear activation at the output layer
improved the performance of MLP, or by comparing the trees-based methods in Figure 4d–f, the RF
and ET outperformed the DT by providing more prediction close to the unit slope line.

Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 23

From this table, it can be seen that the baselines model SVM and two layers MLP compared to
baselines [1] were improved by fine-tuning. In addition, the suggested models, including random
forest (RF), extra trees (ET), and three layers MLP (both with and without nonlinear activation at the
output layer), provided better performance than the CMIS model. To see the performance of the
models visually, the cross plot of the training and test data for each model are represented in Figure
4. In this figure, closer data points to the unit slope line indicated a better prediction of viscosity. For
example, comparing Figure 4a,b, it can be seen how a nonlinear activation at the output layer
improved the performance of MLP, or by comparing the trees-based methods in Figure 4d–f, the RF
and ET outperformed the DT by providing more prediction close to the unit slope line.

Figure 4. Cross plot of predicted viscosity versus experimental value, (a): MLP 2 layers (linear
activation at output), (b): MLP 2 layers (non linear activation at output), (c): RBF-SVM, (d): Decision
Tree, (e): Random Forest, (f): Extra Trees, (g): MLP 3 layers (linear activation at output), (h): MLP 2
layers (non linear activation at output).

A better comparison of the presented models was done using the cumulative frequency as a
function of absolute relative error (%) in Figure 5. As this figure shows, the MLP (with three layers
and sigmoid at the end) could predict 85% of the data points with an absolute relative error of less
than 3%, which outperformed all the models.

Figure 4. Cross plot of predicted viscosity versus experimental value, (a): MLP 2 layers (linear
activation at output), (b): MLP 2 layers (non linear activation at output), (c): RBF-SVM, (d): Decision
Tree, (e): Random Forest, (f): Extra Trees, (g): MLP 3 layers (linear activation at output), (h): MLP 2
layers (non linear activation at output).

Nanomaterials 2020, 10, 1767 12 of 20

Table 2. Statistical error analysis for prediction of the relative viscosity of nanofluids.

Model
ARE (%) AARE (%) RMSE SD

Train Test Total Train Test Total Train Test Total Train Test Total

CMIS [1] −0.382 −0.515 −0.409 3.933 4.036 3.954 0.094 0.088 0.093 0.062 0.061 0.062
MLP [1]: (5)(Tanh,12)(Sigmoid,8)(Linear,1)-BR −0.440 −0.179 −0.387 4.557 4.931 4.632 0.100 0.113 0.103 0.069 0.074 0.070

LSSVM [1]: Optimized by CSA −0.921 −1.029 −1.011 5.342 6.630 5.488 0.187 0.047 0.193 0.070 0.017 0.108
MLP: (5)(Tanh,32)(Sigmoid,64)(Linear,1)-Nadam 1.596 1.555 1.587 4.076 4.818 4.238 0.012 0.015 0.013 0.064 0.080 0.067

MLP: (5)(Tanh,32)(Sigmoid,64)(Sigmoid,1)-Nadam −0.206 −0.457 −0.260 2.369 3.876 2.697 0.008 0.012 0.009 0.040 0.062 0.046
RBF-SVM: C = 1; gamma = 2.3 0.089 −0.131 0.041 2.120 4.740 2.690 0.010 0.023 0.014 0.051 0.096 0.064

Decision Tree: max depth = 14, max feature = 4, min
samples split = 3, max leaf nodes = 450 −0.103 0.321 −0.011 2.043 4.579 2.595 0.005 0.022 0.011 0.032 0.087 0.050

Random Forest: max depth = 18, max feature = 4 −0.204 −0.499 −0.268 1.746 3.945 2.225 0.006 0.020 0.011 0.036 0.080 0.049
Extra Trees: max depth = 20, max feature = 5, min

samples split = 4, max leaf nodes = 1000 −0.149 −0.335 −0.189 1.244 3.597 1.756 0.004 0.016 0.008 0.023 0.070 0.038

MLP:
(5)(Tanh,64)(Sigmoid,128)(Sigmoid,16)(Linear,1)-AdaMax 1.063 1.181 1.088 1.632 2.914 1.911 0.005 0.010 0.006 0.030 0.051 0.036

MLP:
(5)(Tanh,64)(Sigmoid,128)(Sigmoid,16)(Sigmoid,1)-AdaMax −0.507 −0.635 −0.535 1.583 2.855 1.860 0.005 0.009 0.006 0.029 0.049 0.035

Nanomaterials 2020, 10, 1767 13 of 20

A better comparison of the presented models was done using the cumulative frequency as a
function of absolute relative error (%) in Figure 5. As this figure shows, the MLP (with three layers and
sigmoid at the end) could predict 85% of the data points with an absolute relative error of less than 3%,
which outperformed all the models.Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 23

Figure 5. Cumulative frequency versus absolute relative error for all the mentioned models.

Moreover, from this figure, it can be seen that for the low absolute relative error (%), the RBF-
SVM had the best performance where it could predict 63% of the data points with an absolute relative
error less than 1%. The extra trees (ET) model showed consistent and acceptable performance in all
absolute relative error ranges.

Figures 6–10 represent the trend of AARE (%) at different input ranges for all the presented
models. In addition to determining the performance of each model by changing the input, these
figures were used to specify which model was appropriate for a specific input range. For example,
Figure 6 shows that the general trend of AARE (%) for all the models was decreasing by temperature
until about 35 °C. It can be seen that for this temperature range (<35 °C), the MLP (with three layers
and sigmoid at the end) had the best performance. For the other inputs, the MLP (with three layers
and sigmoid at the end) showed almost the best performance.

Figure 6. Average absolute relative error at different temperature ranges for prediction of the viscosity
of nanofluids.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Absolute Relative Error (%)

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Temperature, °C

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 5. Cumulative frequency versus absolute relative error for all the mentioned models.

Moreover, from this figure, it can be seen that for the low absolute relative error (%), the RBF-SVM
had the best performance where it could predict 63% of the data points with an absolute relative error
less than 1%. The extra trees (ET) model showed consistent and acceptable performance in all absolute
relative error ranges.

Figures 6–10 represent the trend of AARE (%) at different input ranges for all the presented models.
In addition to determining the performance of each model by changing the input, these figures were
used to specify which model was appropriate for a specific input range. For example, Figure 6 shows
that the general trend of AARE (%) for all the models was decreasing by temperature until about 35 ◦C.
It can be seen that for this temperature range (<35 ◦C), the MLP (with three layers and sigmoid at the
end) had the best performance. For the other inputs, the MLP (with three layers and sigmoid at the
end) showed almost the best performance.

To examine if the provided models can follow the physically expected trends of nanofluid viscosity
by changing volume fraction, the predicted values by these models are represented in Figure 11. As can
be seen in this figure, for two nanofluid samples, the experimental relative viscosity values increased
with increasing the nanoparticles volume fraction. All the models could capture the expected trend
with a variation of volume fraction, although some models had a slight deviation from the experimental
data. This figure also proves that the proposed models were physically valid, with a variation of
volume fraction as the most affecting parameter on the relative viscosity of nanofluids.

Nanomaterials 2020, 10, 1767 14 of 20

Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 23

Figure 5. Cumulative frequency versus absolute relative error for all the mentioned models.

Moreover, from this figure, it can be seen that for the low absolute relative error (%), the RBF-
SVM had the best performance where it could predict 63% of the data points with an absolute relative
error less than 1%. The extra trees (ET) model showed consistent and acceptable performance in all
absolute relative error ranges.

Figures 6–10 represent the trend of AARE (%) at different input ranges for all the presented
models. In addition to determining the performance of each model by changing the input, these
figures were used to specify which model was appropriate for a specific input range. For example,
Figure 6 shows that the general trend of AARE (%) for all the models was decreasing by temperature
until about 35 °C. It can be seen that for this temperature range (<35 °C), the MLP (with three layers
and sigmoid at the end) had the best performance. For the other inputs, the MLP (with three layers
and sigmoid at the end) showed almost the best performance.

Figure 6. Average absolute relative error at different temperature ranges for prediction of the viscosity
of nanofluids.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Absolute Relative Error (%)

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Temperature, °C

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 6. Average absolute relative error at different temperature ranges for prediction of the viscosity
of nanofluids.Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 23

Figure 7. Average absolute relative error at different nanoparticle size ranges for prediction of the
viscosity of nanofluids.

Figure 8. Average absolute relative error at different volume fraction ranges for prediction of the
viscosity of nanofluids.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Nanoparticle Size, nm

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Volume Fraction, %

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 7. Average absolute relative error at different nanoparticle size ranges for prediction of the
viscosity of nanofluids.

Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 23

Figure 7. Average absolute relative error at different nanoparticle size ranges for prediction of the
viscosity of nanofluids.

Figure 8. Average absolute relative error at different volume fraction ranges for prediction of the
viscosity of nanofluids.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Nanoparticle Size, nm

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Volume Fraction, %

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 8. Average absolute relative error at different volume fraction ranges for prediction of the
viscosity of nanofluids.

Nanomaterials 2020, 10, 1767 15 of 20

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 23

Figure 9. Average absolute relative error at different nanoparticle density ranges for prediction of the
viscosity of nanofluids.

Figure 10. Average absolute relative error at different base fluid viscosity ranges for prediction of the
viscosity of nanofluids.

To examine if the provided models can follow the physically expected trends of nanofluid
viscosity by changing volume fraction, the predicted values by these models are represented in
Figure 11. As can be seen in this figure, for two nanofluid samples, the experimental relative viscosity
values increased with increasing the nanoparticles volume fraction. All the models could capture the
expected trend with a variation of volume fraction, although some models had a slight deviation
from the experimental data. This figure also proves that the proposed models were physically valid,
with a variation of volume fraction as the most affecting parameter on the relative viscosity of
nanofluids.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

2 3 4 5 6 7

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Nanoparticle Density, g/cc

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Base Fluid Viscosity, cp

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 9. Average absolute relative error at different nanoparticle density ranges for prediction of the
viscosity of nanofluids.

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 23

Figure 9. Average absolute relative error at different nanoparticle density ranges for prediction of the
viscosity of nanofluids.

Figure 10. Average absolute relative error at different base fluid viscosity ranges for prediction of the
viscosity of nanofluids.

To examine if the provided models can follow the physically expected trends of nanofluid
viscosity by changing volume fraction, the predicted values by these models are represented in
Figure 11. As can be seen in this figure, for two nanofluid samples, the experimental relative viscosity
values increased with increasing the nanoparticles volume fraction. All the models could capture the
expected trend with a variation of volume fraction, although some models had a slight deviation
from the experimental data. This figure also proves that the proposed models were physically valid,
with a variation of volume fraction as the most affecting parameter on the relative viscosity of
nanofluids.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

2 3 4 5 6 7

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Nanoparticle Density, g/cc

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r,

%

Base Fluid Viscosity, cp

MLP(2layers with sigmoid at end)
MLP(3layers with linear at end)
MLP(3layers with sigmoid at end)
RBF-SVM
Random Forest
Extra Trees
Decision Tree

Figure 10. Average absolute relative error at different base fluid viscosity ranges for prediction of the
viscosity of nanofluids.

Nanomaterials 2020, 10, x FOR PEER REVIEW 18 of 23

Figure 11. Variation of relative viscosity with a volume fraction of nanoparticles for two nanofluid
samples, (a) ZnO (48 nm)—EG, (b) ZnO (4.6 nm)—EG [73].

5. Conclusions

In this study, the viscosity of various nanofluids was modeled using advanced computational
frameworks. To this end, eight machine learning models were proposed, including two multilayer
perceptron (MLP), each with Nesterov accelerated adaptive moment (Nadam) optimizer; two MLP,
each with three hidden layers and Adamax optimizer; a support vector regression (SVR) with radial
basis function (RBF) kernel; a decision tree (DT); two tree-based ensemble models, including random
forest (RF) and extra tree (ET). The data bank, which was used for modeling, includes 3144 data points
of nanofluids at different volume fraction, size, and density of nanoparticles, temperature, and
viscosity of base fluids. The performance of these models at different ranges of input variables was
evaluated and compared with the literature models. Based on our result, all the eight suggested
models outperformed the baselines used in the literature, and five of our presented models
outperformed the CMIS model, where two of them returned an AARE less than 3% on the test data.
In addition, the physical validity of models was confirmed by examining the physically expected
trends of nanofluid viscosity due to changing volume fraction.

Author Contributions: Conceptualization, A.H.-S.; methodology, M.S., Z.S. and A.A.; software, M.S., Z.S. and
A.A.; validation, A.H.-S., A.M., and S.S.S.; formal analysis, A.V., M.S., Z.S. and A.A.; investigation, A.V.;
resources, A.V., A.H.-S.; data curation, A.V., M.S., Z.S. and A.A.; writing—original draft preparation, A.H.-S.,
A.V., M.S., Z.S. and A.A.; writing—review and editing, A.H.-S., A.M., S.S.S.; visualization, M.S., A.V., Z.S. and
A.A.; supervision, A.H.-S., A.M., S.S.S.; project administration, A.H.-S., A.M., S.S.S.; funding acquisition, A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: The research has been partly carried out within the EFOP-3.6.2-16-2017-00016 project in the framework
of the New Szechenyi Plan. The completion of this project is also partly funded by the European Union and co-
financed by the European Social Fund. Furthermore, the support of Alexander von Humboldt foundation is also
acknowledged

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hemmati-Sarapardeh, A.; Varamesh, A.; Husein, M.M.; Karan, K. On the evaluation of the viscosity of
nanofluid systems: Modeling and data assessment. Renew. Sustain. Energy Rev. 2018, 81, 313–329,
doi:10.1016/j.rser.2017.07.049.

2. Yang, L.; Xu, J.; Du, K.; Zhang, X. Recent developments on viscosity and thermal conductivity of
nanofluids. Powder Technol. 2017, 317, 348–369.

Figure 11. Variation of relative viscosity with a volume fraction of nanoparticles for two nanofluid
samples, (a) ZnO (48 nm)—EG, (b) ZnO (4.6 nm)—EG [73].

Nanomaterials 2020, 10, 1767 16 of 20

5. Conclusions

In this study, the viscosity of various nanofluids was modeled using advanced computational
frameworks. To this end, eight machine learning models were proposed, including two multilayer
perceptron (MLP), each with Nesterov accelerated adaptive moment (Nadam) optimizer; two MLP,
each with three hidden layers and Adamax optimizer; a support vector regression (SVR) with radial
basis function (RBF) kernel; a decision tree (DT); two tree-based ensemble models, including random
forest (RF) and extra tree (ET). The data bank, which was used for modeling, includes 3144 data points
of nanofluids at different volume fraction, size, and density of nanoparticles, temperature, and viscosity
of base fluids. The performance of these models at different ranges of input variables was evaluated and
compared with the literature models. Based on our result, all the eight suggested models outperformed
the baselines used in the literature, and five of our presented models outperformed the CMIS model,
where two of them returned an AARE less than 3% on the test data. In addition, the physical validity
of models was confirmed by examining the physically expected trends of nanofluid viscosity due to
changing volume fraction.

Author Contributions: Conceptualization, A.H.-S.; methodology, M.S., Z.S. and A.A.; software, M.S., Z.S. and
A.A.; validation, A.H.-S., A.M., and S.S.; formal analysis, A.V., M.S., Z.S. and A.A.; investigation, A.V.; resources,
A.V., A.H.-S.; data curation, A.V., M.S., Z.S. and A.A.; writing—original draft preparation, A.H.-S., A.V., M.S., Z.S.
and A.A.; writing—review and editing, A.H.-S., A.M., S.S.; visualization, M.S., A.V., Z.S. and A.A.; supervision,
A.H.-S., A.M., S.S.; project administration, A.H.-S., A.M., S.S.; funding acquisition, A.M. All authors have read and
agreed to the published version of the manuscript.

Funding: The research has been partly carried out within the EFOP-3.6.2-16-2017-00016 project in the framework
of the New Szechenyi Plan. The completion of this project is also partly funded by the European Union and
co-financed by the European Social Fund. Furthermore, the support of Alexander von Humboldt foundation is
also acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hemmati-Sarapardeh, A.; Varamesh, A.; Husein, M.M.; Karan, K. On the evaluation of the viscosity of
nanofluid systems: Modeling and data assessment. Renew. Sustain. Energy Rev. 2018, 81, 313–329. [CrossRef]

2. Yang, L.; Xu, J.; Du, K.; Zhang, X. Recent developments on viscosity and thermal conductivity of nanofluids.
Powder Technol. 2017, 317, 348–369. [CrossRef]

3. Divandari, H.; Hemmati-Sarapardeh, A.; Schaffie, M.; Ranjbar, M. Integrating functionalized magnetite
nanoparticles with low salinity water and surfactant solution: Interfacial tension study. Fuel 2020, 281, 118641.
[CrossRef]

4. Rezaei, A.; Abdollahi, H.; Derikvand, Z.; Hemmati-Sarapardeh, A.; Mosavi, A.; Nabipour, N. Insights into
the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based
Enhanced Oil Recovery Method to Rock Typing. Nanomaterials 2020, 10, 972. [CrossRef] [PubMed]

5. Corredor-Rojas, L.M.; Hemmati-Sarapardeh, A.; Husein, M.M.; Dong, M.; Maini, B.B. Rheological behavior
of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacrylamide and xanthan gum
solutions: Experimental measurements, mechanistic understanding, and model development. Energy Fuels
2018, 32, 10628–10638. [CrossRef]

6. Moghadasi, R.; Rostami, A.; Hemmati-Sarapardeh, A.; Motie, M. Application of Nanosilica for inhibition of
fines migration during low salinity water injection: Experimental study, mechanistic understanding, and
model development. Fuel 2019, 242, 846–862. [CrossRef]

7. Moldoveanu, G.M.; Ibanescu, C.; Danu, M.; Minea, A.A. Viscosity estimation of Al2O3, SiO2 nanofluids and
their hybrid: An experimental study. J. Mol. Liq. 2018, 253, 188–196. [CrossRef]

8. Gholami, E.; Vaferi, B.; Ariana, M.A. Prediction of viscosity of several alumina-based nanofluids using
various artificial intelligence paradigms-Comparison with experimental data and empirical correlations.
Powder Technol. 2018, 323, 495–506. [CrossRef]

9. Einstein, A. A new determination of molecular dimensions. Ann. Phys. 1906, 19, 289–306. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.07.049
http://dx.doi.org/10.1016/j.powtec.2017.04.061
http://dx.doi.org/10.1016/j.fuel.2020.118641
http://dx.doi.org/10.3390/nano10050972
http://www.ncbi.nlm.nih.gov/pubmed/32443641
http://dx.doi.org/10.1021/acs.energyfuels.8b02658
http://dx.doi.org/10.1016/j.fuel.2019.01.053
http://dx.doi.org/10.1016/j.molliq.2018.01.061
http://dx.doi.org/10.1016/j.powtec.2017.10.038
http://dx.doi.org/10.1002/andp.19063240204

Nanomaterials 2020, 10, 1767 17 of 20

10. Brinkman, H. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571.
[CrossRef]

11. Lundgren, T.S. Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 1972,
51, 273–299. [CrossRef]

12. Frankel, N.; Acrivos, A. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 1967,
22, 847–853. [CrossRef]

13. Batchelor, G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles.
J. Fluid Mech. 1977, 83, 97–117. [CrossRef]

14. Thomas, C.U.; Muthukumar, M. Three—body hydrodynamic effects on viscosity of suspensions of spheres.
J. Chem. Phys. 1991, 94, 5180–5189. [CrossRef]

15. Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids.
Chem. Phys. Lett. 2007, 444, 333–337. [CrossRef]

16. Maïga, S.E.B.; Nguyen, C.T.; Galanis, N.; Roy, G. Heat transfer behaviours of nanofluids in a uniformly
heated tube. Superlattices Microstruct. 2004, 35, 543–557. [CrossRef]

17. Varamesh, A.; Hemmati-Sarapardeh, A. Viscosity of nanofluid systems—A critical evaluation of modeling
approaches. In Nanofluids and Their Engineering Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis
Group: Abingdon, UK, 2019.

18. Mazloom, M.S.; Rezaei, F.; Hemmati-Sarapardeh, A.; Husein, M.M.; Zendehboudi, S.; Bemani, A. Artificial
Intelligence Based Methods for Asphaltenes Adsorption by Nanocomposites: Application of Group Method
of Data Handling, Least Squares Support Vector Machine, and Artificial Neural Networks. Nanomaterials
2020, 10, 890. [CrossRef]

19. Karimi, H.; Yousefi, F.; Rahimi, M.R.J.H.; Transfer, M. Correlation of viscosity in nanofluids using genetic
algorithm-neural network (GA-NN). Heat Mass Transf. 2011, 47, 1417–1425. [CrossRef]

20. Mehrabi, M.; Sharifpur, M.; Meyer, J.P. Viscosity of nanofluids based on an artificial intelligence model.
Int. Commun. Heat Mass Transf. 2013, 43, 16–21. [CrossRef]

21. Atashrouz, S.; Pazuki, G.; Alimoradi, Y. Estimation of the viscosity of nine nanofluids using a hybrid
GMDH-type neural network system. Fluid Phase Equilibria 2014, 372, 43–48. [CrossRef]

22. Meybodi, M.K.; Naseri, S.; Shokrollahi, A.; Daryasafar, A. Prediction of viscosity of water-based Al2O3, TiO2,
SiO2, and CuO nanofluids using a reliable approach. Chemom. Intell. Lab. Syst. 2015, 149, 60–69. [CrossRef]

23. Zhao, N.; Wen, X.; Yang, J.; Li, S.; Wang, Z. Modeling and prediction of viscosity of water-based nanofluids
by radial basis function neural networks. Powder Technol. 2015, 281, 173–183. [CrossRef]

24. Adio, S.A.; Mehrabi, M.; Sharifpur, M.; Meyer, J.P. Experimental investigation and model development
for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and
GA-PNN techniques. Int. Commun. Heat Mass Transf. 2016, 72, 71–83. [CrossRef]

25. Atashrouz, S.; Mozaffarian, M.; Pazuki, G. Viscosity and rheological properties of ethylene
glycol+water+Fe3O4 nanofluids at various temperatures: Experimental and thermodynamics modeling.
Korean J. Chem. Eng. 2016, 33, 2522–2529. [CrossRef]

26. Barati-Harooni, A.; Najafi-Marghmaleki, A. An accurate RBF-NN model for estimation of viscosity of
nanofluids. J. Mol. Liq. 2016, 224, 580–588. [CrossRef]

27. Heidari, E.; Sobati, M.A.; Movahedirad, S. Accurate prediction of nanofluid viscosity using a multilayer
perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. Syst. 2016, 155, 73–85. [CrossRef]

28. Longo, G.A.; Zilio, C.; Ortombina, L.; Zigliotto, M. Application of Artificial Neural Network (ANN) for
modeling oxide-based nanofluids dynamic viscosity. Int. Commun. Heat Mass Transf. 2017, 83, 8–14.
[CrossRef]

29. Bahiraei, M.; Hangi, M. An empirical study to develop temperature-dependent models for thermal
conductivity and viscosity of water-Fe3O4 magnetic nanofluid. Mater. Chem. Phys. 2016, 181, 333–343.
[CrossRef]

30. Barati-Harooni, A.; Najafi-Marghmaleki, A.; Mohebbi, A.; Mohammadi, A.H. On the estimation of viscosities
of Newtonian nanofluids. J. Mol. Liq. 2017, 241, 1079–1090. [CrossRef]

31. Aminian, A. Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the
process industries. J. Mol. Liq. 2017, 229, 300–308. [CrossRef]

http://dx.doi.org/10.1063/1.1700493
http://dx.doi.org/10.1017/S002211207200120X
http://dx.doi.org/10.1016/0009-2509(67)80149-0
http://dx.doi.org/10.1017/S0022112077001062
http://dx.doi.org/10.1063/1.460555
http://dx.doi.org/10.1016/j.cplett.2007.07.046
http://dx.doi.org/10.1016/j.spmi.2003.09.012
http://dx.doi.org/10.3390/nano10050890
http://dx.doi.org/10.1007/s00231-011-0802-z
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.02.008
http://dx.doi.org/10.1016/j.fluid.2014.03.031
http://dx.doi.org/10.1016/j.chemolab.2015.10.001
http://dx.doi.org/10.1016/j.powtec.2015.04.058
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.01.005
http://dx.doi.org/10.1007/s11814-016-0169-4
http://dx.doi.org/10.1016/j.molliq.2016.10.049
http://dx.doi.org/10.1016/j.chemolab.2016.03.031
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.03.003
http://dx.doi.org/10.1016/j.matchemphys.2016.06.067
http://dx.doi.org/10.1016/j.molliq.2017.06.088
http://dx.doi.org/10.1016/j.molliq.2016.12.071

Nanomaterials 2020, 10, 1767 18 of 20

32. Vakili, M.; Khosrojerdi, S.; Aghajannezhad, P.; Yahyaei, M. A hybrid artificial neural network-genetic algorithm
modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data.
Int. Commun. Heat Mass Transf. 2017, 82, 40–48. [CrossRef]

33. Ansari, H.R.; Zarei, M.J.; Sabbaghi, S.; Keshavarz, P. A new comprehensive model for relative viscosity
of various nanofluids using feed-forward back-propagation MLP neural networks. Int. Commun. Heat
Mass Transf. 2018, 91, 158–164. [CrossRef]

34. Derakhshanfard, F.; Mehralizadeh, A. Application of artificial neural networks for viscosity of crude oil-based
nanofluids containing oxides nanoparticles. J. Pet. Sci. Eng. 2018, 168, 263–272. [CrossRef]

35. Karimipour, A.; Ghasemi, S.; Darvanjooghi, M.H.K.; Abdollahi, A. A new correlation for estimating the
thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method.
Int. Commun. Heat Mass Transf. 2018, 92, 90–99. [CrossRef]

36. Murshed, S.M.S.; Leong, K.C.; Yang, C. Investigations of thermal conductivity and viscosity of nanofluids.
Int. J. Therm. Sci. 2008, 47, 560–568. [CrossRef]

37. Lee, J.-H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and
thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles.
Int. J. Heat Mass Transf. 2008, 51, 2651–2656. [CrossRef]

38. Singh, M.; Kundan, L. Experimental study on thermal conductivity and viscosity of Al2O3–nanotransformer
oil. Int. J. Theo. App. Res. Mech. Eng. 2013, 2, 125–130.

39. Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Angue Mintsa, H. Temperature
and particle-size dependent viscosity data for water-based nanofluids–Hysteresis phenomenon. Int. J. Heat
Fluid Flow 2007, 28, 1492–1506. [CrossRef]

40. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Experimental investigations and theoretical determination
of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 2010, 34, 210–216.
[CrossRef]

41. Tavman, I.; Turgut, A.; Chirtoc, M.; Schuchmann, H.; Tavman, S. Experimental investigation of viscosity
and thermal conductivity of suspensions containing nanosized ceramic particles. Arch. Mater. Sci. 2008, 34,
99–104.

42. Zhou, S.-Q.; Ni, R.; Funfschilling, D. Effects of shear rate and temperature on viscosity of alumina
polyalphaolefins nanofluids. J. Appl. Phys. 2010, 107, 054317. [CrossRef]

43. Mena, J.B.; Ubices de Moraes, A.A.; Benito, Y.R.; Ribatski, G.; Parise, J.A.R. Extrapolation of Al2O3–water
nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing
correlations. Appl. Therm. Eng. 2013, 51, 1092–1097. [CrossRef]

44. Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide
particles. Exp. Heat Transf. Int. J. 1998, 11, 151–170. [CrossRef]

45. Syam Sundar, L.; Venkata Ramana, E.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of
stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental
study. Int. Commun. Heat Mass Transf. 2014, 56, 86–95. [CrossRef]

46. Yiamsawas, T.; Dalkilic, A.S.; Mahian, O.; Wongwises, S. Measurement and correlation of the viscosity
of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports.
J. Dispers. Sci. Technol. 2013, 34, 1697–1703. [CrossRef]

47. Yiamsawas, T.; Mahian, O.; Dalkilic, A.S.; Kaewnai, S.; Wongwises, S. Experimental studies on the viscosity
of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature
applications. Appl. Energy 2013, 111, 40–45. [CrossRef]

48. Chiam, H.W.; Azmi, W.H.; Usri, N.A.; Mamat, R.; Adam, N.M. Thermal conductivity and viscosity of Al2O3

nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 2017, 81,
420–429. [CrossRef]

49. Anoop, K.; Kabelac, S.; Sundararajan, T.; Das, S.K. Rheological and flow characteristics of nanofluids:
Influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 2009, 106, 034909. [CrossRef]

50. Sekhar, Y.R.; Sharma, K. Study of viscosity and specific heat capacity characteristics of water-based Al2O3

nanofluids at low particle concentrations. J. Exp. Nanosci. 2015, 10, 86–102. [CrossRef]
51. Pastoriza-Gallego, M.; Casanova, C.; Páramo, R.; Barbés, B.; Legido, J.; Piñeiro, M. A study on stability

and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J. Appl. Phys. 2009,
106, 064301. [CrossRef]

http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.02.003
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.12.012
http://dx.doi.org/10.1016/j.petrol.2018.05.018
http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.02.002
http://dx.doi.org/10.1016/j.ijthermalsci.2007.05.004
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.02.004
http://dx.doi.org/10.1016/j.expthermflusci.2009.10.022
http://dx.doi.org/10.1063/1.3309478
http://dx.doi.org/10.1016/j.applthermaleng.2012.11.002
http://dx.doi.org/10.1080/08916159808946559
http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.06.009
http://dx.doi.org/10.1080/01932691.2013.764483
http://dx.doi.org/10.1016/j.apenergy.2013.04.068
http://dx.doi.org/10.1016/j.expthermflusci.2016.09.013
http://dx.doi.org/10.1063/1.3182807
http://dx.doi.org/10.1080/17458080.2013.796595
http://dx.doi.org/10.1063/1.3187732

Nanomaterials 2020, 10, 1767 19 of 20

52. Kulkarni, D.P.; Das, D.K.; Vajjha, R.S. Application of nanofluids in heating buildings and reducing pollution.
Appl. Energy 2009, 86, 2566–2573. [CrossRef]

53. Naik, M.; Sundar, L.S. Investigation into thermophysical properties of glycol based CuO nanofluid for heat
transfer applications. World Acad. Sci. Eng. Technol. 2011, 59, 440–446.

54. Pastoriza-Gallego, M.J.; Casanova, C.; Legido, J.L.; Piñeiro, M.M. CuO in water nanofluid: Influence of
particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria 2011, 300,
188–196. [CrossRef]

55. Namburu, P.K.; Kulkarni, D.P.; Misra, D.; Das, D.K. Viscosity of copper oxide nanoparticles dispersed in
ethylene glycol and water mixture. Exp. Therm. Fluid Sci. 2007, 32, 397–402. [CrossRef]

56. Jia-Fei, Z.; Zhong-Yang, L.; Ming-Jiang, N.; Ke-Fa, C. Dependence of nanofluid viscosity on particle size and
pH value. Chin. Phys. Lett. 2009, 26, 066202. [CrossRef]

57. Chevalier, J.; Tillement, O.; Ayela, F. Rheological properties of nanofluids flowing through microchannels.
Appl. Phys. Lett. 2007, 91, 3103. [CrossRef]

58. Jamshidi, N.; Farhadi, M.; Ganji, D.; Sedighi, K. Experimental investigation on viscosity of nanofluids.
Int. J. Eng. 2012, 25, 201–209. [CrossRef]

59. Rudyak, V.Y.; Dimov, S.V.; Kuznetsov, V.V. On the dependence of the viscosity coefficient of nanofluids on
particle size and temperature. Tech. Phys. Lett. 2013, 39, 779–782. [CrossRef]

60. Abdolbaqi, M.K.; Sidik, N.A.C.; Rahim, M.F.A.; Mamat, R.; Azmi, W.H.; Yazid, M.N.A.W.M.; Najafi, G.
Experimental investigation and development of new correlation for thermal conductivity and viscosity of
BioGlycol/water based SiO2 nanofluids. Int. Commun. Heat Mass Transf. 2016, 77, 54–63. [CrossRef]

61. Lee, S.W.; Park, S.D.; Kang, S.; Bang, I.C.; Kim, J.H. Investigation of viscosity and thermal conductivity of SiC
nanofluids for heat transfer applications. Int. J. Heat Mass Transf. 2011, 54, 433–438. [CrossRef]

62. Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and
viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci. 2009, 33, 706–714. [CrossRef]

63. Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367. [CrossRef]
64. Abdolbaqi, M.K.; Sidik, N.A.C.; Aziz, A.; Mamat, R.; Azmi, W.H.; Yazid, M.N.A.W.M.; Najafi, G.

An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2

nanofluids. Int. Commun. Heat Mass Transf. 2016, 77, 22–32. [CrossRef]
65. Khedkar, R.S.; Shrivastava, N.; Sonawane, S.S.; Wasewar, K.L. Experimental investigations and theoretical

determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid. Int. Commun. Heat
Mass Transf. 2016, 73, 54–61. [CrossRef]

66. Singh, R.; Sanchez, O.; Ghosh, S.; Kadimcherla, N.; Sen, S.; Balasubramanian, G. Viscosity of magnetite–toluene
nanofluids: Dependence on temperature and nanoparticle concentration. Phys. Lett. A 2015, 379, 2641–2644.
[CrossRef]

67. Syam Sundar, L.; Singh, M.K.; Sousa, A.C.M. Investigation of thermal conductivity and viscosity of Fe3O4

nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 2013, 44, 7–14. [CrossRef]
68. Esfe, M.H.; Saedodin, S.; Asadi, A.; Karimipour, A. Thermal conductivity and viscosity of Mg (OH) 2-ethylene

glycol nanofluids. J. Therm. Anal. Calorim. 2015, 120, 1145–1149. [CrossRef]
69. Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Mussari, L.; Piñeiro, M.M. Co3O4 ethylene glycol-based

nanofluids: Thermal conductivity, viscosity and high pressure density. Int. J. Heat Mass Transf. 2015, 85,
54–60. [CrossRef]

70. Sundar, L.S.; Hortiguela, M.J.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of water based
nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat Mass Transf. 2016, 76, 245–255.
[CrossRef]

71. Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Enhanced thermal properties of nanodiamond nanofluids.
Chem. Phys. Lett. 2016, 644, 99–110. [CrossRef]

72. Hemmat Esfe, M.; Saedodin, S. An experimental investigation and new correlation of viscosity of ZnO–EG
nanofluid at various temperatures and different solid volume fractions. Exp. Therm. Fluid Sci. 2014, 55, 1–5.
[CrossRef]

73. Pastoriza-Gallego, M.J.; Lugo, L.; Cabaleiro, D.; Legido, J.L.; Piñeiro, M.M. Thermophysical profile of ethylene
glycol-based ZnO nanofluids. J. Chem. Thermodyn. 2014, 73, 23–30. [CrossRef]

74. Rosenblatt, F. Principles of Neurodymanics: Perceptrons and the Theory of Brain Mechanisms; Spartan Books;
Cornell Aeronautical Laboratory, Inc.: Buffalo, NY, USA, 1962.

http://dx.doi.org/10.1016/j.apenergy.2009.03.021
http://dx.doi.org/10.1016/j.fluid.2010.10.015
http://dx.doi.org/10.1016/j.expthermflusci.2007.05.001
http://dx.doi.org/10.1088/0256-307X/26/6/066202
http://dx.doi.org/10.1063/1.2821117
http://dx.doi.org/10.5829/idosi.ije.2012.25.03b.07
http://dx.doi.org/10.1134/S1063785013090125
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.07.001
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
http://dx.doi.org/10.1016/j.expthermflusci.2009.01.005
http://dx.doi.org/10.1088/1367-2630/9/10/367
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.07.007
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.004
http://dx.doi.org/10.1016/j.physleta.2015.06.010
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.02.014
http://dx.doi.org/10.1007/s10973-015-4417-3
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.061
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.025
http://dx.doi.org/10.1016/j.cplett.2015.11.028
http://dx.doi.org/10.1016/j.expthermflusci.2014.02.011
http://dx.doi.org/10.1016/j.jct.2013.07.002

Nanomaterials 2020, 10, 1767 20 of 20

75. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.
Neural Netw. 1989, 2, 359–366. [CrossRef]

76. Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures
of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122.

77. Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Advances
in Neural Information Processing Systems; MIT Press: Camberidge, MA, USA, 1997; pp. 155–161.

78. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
79. Loh, W.-Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348. [CrossRef]
80. Song, Y.-Y.; Ying, L. Decision tree methods: Applications for classification and prediction.

Shanghai Arch. Psychiatry 2015, 27, 130.
81. Patel, N.; Upadhyay, S. Study of various decision tree pruning methods with their empirical comparison in

WEKA. Int. J. Comput. Appl. 2012, 60, 20–25. [CrossRef]
82. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
83. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis

and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282.
84. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: Berlin/Heidelberg,

Germany, 2001.
85. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
86. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
87. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151.

[CrossRef]
88. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/kˆ2).

In Doklady AN USSR; American Mathematical Society: Providence, RI, USA, 1983; pp. 543–547.
89. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
90. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
91. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
92. Dozat, T. Incorporating Nesterov Momentum into Adam; Natural Hazards 3, no. 2; Stanford University: Stanford,

CA, USA, 2016; pp. 437–453.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1111/insr.12016
http://dx.doi.org/10.5120/9744-4304
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Collection
	Model Development
	Multilayer Perceptron Network
	Support Vector Machine for Regression
	Decision Tree
	Random Forest and Extra Trees
	Optimization Methods

	Results and Discussion
	Conclusions
	References

