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ABSTRACT

Methods for linear regression with multivariate response variables are well described in sta-

tistical literature. In this study we conduct a theoretical evaluation of the expected squared

prediction error in bivariate linear regression where one of the response variables contains

missing data. We make the assumption of known covariance structure for the error terms.

On this basis, we evaluate three well-known estimators; standard ordinary least squares,

weighted generalized least squares and a James-Stein inspired estimator. Theoretical risk

functions are worked out for all three estimators to evaluate under which circumstances it is

advantageous to take the error covariance structure into account.
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1 Introduction and notation

In this paper, we evaluate a linear regression model with a bivariate response variable where

one of the responses contains missing data. For practical purposes this situation is likely

to occur if predictor variables and one response variable, typically a response variable of

subordinate interest, are easily sampled; but the other response, typically the one of primary

interest, is hard(er) or more costly to sample. Often, though not necessarily, the fully

observed response variable will be a surrogate variable (Upton and Cook, 2014) for the

response variable containing missing data. In such situations, a sampling method where

the primary response variable is sampled only for a subset of the total sample, might be

beneficial, especially if the error terms in the bivariate linear regression model are highly

correlated.

When no data is missing and ordinary least squares (ols) estimators are used, the gain

of applying one single multi-response regression model is limited compared to several single

response models, since the regression parameter estimates are equal and unaffected by the

covariance structure of the error term. In this paper, we show that the gain of using a

bivariate response variable model in cases with missing data for one of the responses might

be substantial if the covariance structure of the error terms is taken properly into account.

In the following scalars are denoted by lower-case lowercase italic characters, vectors by

lower case lowercase bold italic characters and matrices by upper case bold italic characters.

The single elements of any matrix are denoted by the corresponding lower case lowercase

italic letter and a subindex, i.e. wij is the element of the ith row and jth column of W .

In general, Greek letters are used for parameters and Latin letters are used for random

variables. The risk function for an estimator or predictor, for an estimator or predictor, θ̂,

and the with true value, θ, Rθ̂, is

Rθ̂ = E

[(
θ̂ − θ

)T (
θ̂ − θ

)]
;

In the present paper we evaluate a regression model where we assume the error covariance
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term to be known. In a companion paper, Gangsei et al. (2016b), estimators based on

unknown error covariance structure are evaluated. The theoretical work presented in the

present paper and Gangsei et al. (2016b) were initiated by a practical problem of estimating

the Lean Meat Percentage in Norwegian pork carcasses. In Gangsei et al. (2016a) the

methods were successfully applied to this practical problem.

2 Model spesification

The data are given by an n1 × 2 matrix of response variables, Y1, and an n1 × p matrix of

predictor variables, X1, in which the first column is the vector of unity, and the p − 1 last

columns are denoted Z1. If not stated otherwise, Z1 is assumed to be mean centred. The

model is a standard bivariate response variable regression model, i.e.

yT
i ∼ N2

(
βTxT

i , Σ
)
, i = 1, . . . , n1

where yi and xi denote the ith row of Y1 and X1 respectively. The p × 2 matrix β, which

first and second column are denoted β1 and β2, denotes the regression coefficients. The

notations β0 and βz are used for the first and p − 1 last rows of β. The 2 × 2 matrix Σ

denotes the error covariance matrix, with elements σij, i = 1, 2, j = 1, 2. The model is well

known from literature, also in a Bayesian setting (Box and Tiao, 1973; Minka, 2000).

We assume that the data represents a random sample from a larger population, of which a

random subsample contains missing data for the second response variable. The observations

are rearranged so that the first n2 (p < n2 ≤ n1) rows of Y1 are fully observed, and for the

n1 − n2 last rows of Y1 only the first column is observed. For the rest of this paper Y2, X2

and Z2 will represent the n2 × 2, n2 × p and n2 × (p− 1) sub-matrices of the n2 first rows of

Y1, X1 and Z1, respectively. Further, y1 and y2 denote the first and second column of Y1,

y21 and y22 denote the first and second column of Y2 and yv is the stacked column-vector

of y1 and y22.

The model might be defined in different ways, but the representation
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yv ∼ Nn1+n2

(
X(+)βv, Σ(+)

)
; (1)

where βv is the stacked column-vector of β1 and β2, is suitable for the purpose of the rest

of this paper. The (n1 + n2) × (n1 + n2) covariance matrix Σ(+) is the upper left block of

Σ⊗In1 . Likewise X(+) denotes the (n1 + n2)× 2p matrix representing the n1+n2 first rows

of I2 ⊗X1.

3 Estimators

3.1 The weighted generalized least squares estimator

The 2p× 1 vector β̂v denotes the weighted generalized least squares (gls) estimator based

on (1). We denote the first p elements of β̂v by β̂v1, and the last p elements by β̂v2. The

expression and distribution of β̂v are:

β̂v =
(
XT

(+)Σ
−1
(+)X(+)

)−1

XT
(+)Σ

−1
(+)yv, β̂v ∼ N2p

[
βv,

(
XT

(+)Σ
−1
(+)X(+)

)−1
]
;

Remark 1

β̂v1, equals β̂11, i.e. the ordinary ols estimator based on X1.

Remark 2

The expression and distribution for the weighted least squares gls–estimator for β2 is:

β̂v2 = β̂22 + σ12/σ22

(
β̂11 − β̂21

)
,

β̂v2 ∼ Np

{
β2, σ22

(
XT

2 X2

)−1 − σ12
2/σ22

[(
XT

2 X2

)−1 −
(
XT

1 X1

)−1
]}

;
(2)

, where β̂21 and β̂22 are the standard ols estimates based on the n2 first (full) observations

for β1 and β2 respectively. We observe that as n1 increases towards infinity the distribution

for β̂v2 approaches the distribution of β̂22 conditional on known β1, i.e.

β̂22 | β1 = β̂22 + σ12/σ11

(
β1 − β̂21

)
, β̂22 | β1 ∼ Np

[
β2,

(
σ22 − σ2

12/σ11

) (
XT

2 X2

)−1
]
;
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Remark 3

The covariance between β̂v1 and β̂v2 is σ12

(
XT

1 X1

)−1
.

3.2 James-Stein estimator

An alternative estimator for βv, kβ̂v, where 0 ≤ k ≤ 1 is known as the James–Stein estimator

(James and Stein, 1961; Efron and Morris, 1973). It is well known that if the regularization

parameter, k, is set appropriately, then the James Stein estimator outperforms the least

squares estimator in the sense of having smaller risk, i.e. Rkβ̂v ≤ Rβ̂v.

An obvious objection to the James Stein estimator is that it is biased for all k ̸= 1.

Another issue is how to set the regularization parameter at a suitable value. Bock (1975)

showed how to set k to minimize Rkβ̂v, based on the largest eigenvalue of covariance for β̂v.

A problem with the estimator kβ̂v is that the same regularization, k, is applied to both β̂v1

and β̂v2. Brown and Zidek (1980) and Matsuda and Komaki (2015), addresses this problem

by analysing different regularization matrices in detail, also based on known error covariance

structure, however, they do not deal with missing data for the response variables.

In this paper, we evaluate a variant of the James–Stein estimator, β̃, a stacked vector of

β̃1 = k1β̂v1 and β̃2 = k2β̂v2 where 0 ≤ ki ≤ 1 for i = 1, 2.

4 Prediction error

4.1 General form: No assumptions on predictor variables

Let yN denote a new observation, and let ỹN denote the corresponding predicted value based

on the new predictor variable, xN , i.e. a vector of length p where the first element is 1 and

the last p− 1 elements are denoted zN .

Theorem 1: Expected prediction error

The expected squared prediction errors denoted RyNi, for i = 1, 2, using the estimator β̃i,

and the notation Z2c for the first n2 rows of Z1 centred with respect to the column means of
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the same rows, are:

RyN1
=σ11 + σ11k

2
1

[
1/n1 + zT

N

(
ZT

1 Z1

)−1
zN

]
+ (1− k1)

2 xT
Nβ1β

T
1 xN ,

RyN2
=σ22 +

(
σ22 − σ2

12/σ11

)
k2
2

[
1/n2 + zT

N

(
ZT

2cZ2c

)−1
zN

]
+

σ2
12/σ11k

2
2

[
1/n1 + zT

N

(
ZT

1 Z1

)−1
zN

]
+ (1− k2)

2 xT
Nβ2β

T
2 xN ;

(3)

The proof is deferred to the Appendix.

4.2 Multivariate normal distributed predictor variables

The formulas given by (3) is valid for a new and observed observation xN and the given

calibration set X1. A more general statement about prediction error is the expected squared

prediction error over all calibration samples and new observations, E (RyNi
)Ex (RỹNi

), which

can be obtained under certain assumptions (Helland and Almøy, 1994).

Assume that all rows of the original (non-centred) Z1, and the new (non-centred) observa-

tion, zN , are independent multivariate normal distributed with fixed expectation parameter

and a fixed covariance matrix, Γ. Under these assumptions the expected prediction risks

might be given as functions of Σ, ni, ki, β0i and R2
i , where R2

i might be given the interpre-

tation as is the population coefficients of determination.

The natural choices for ki, denoted kOracle i, for i = 1, 2, are the values that minimize the

expected squared prediction error. The sub-indexing ”Oracle” is used in line with Wasserman

(2006) and reflects that these values are unattainable in most practical situations.

To compare the precision of different estimators we use the expected ratios of the expected

squared prediction errors of the estimators. Since the ratio of expectation is constant, this

ratio is equal to E (RỹNi
)/E (RŷNi

) Ex (RỹNi
)/Ex (RŷNi

), where the subscripts ỹNi and ŷNi

indicate the estimator.

The expressions given in (4) simplify equations and increase readability. However, they

might also be given some kind of interpretation as nei increases with sample size and decreases

as p increases. Further ne2 increases as ρ2 increases, an effect that might be given the
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interpretation as increased population size for estimating β2 by borrowing strength from the

observations with missing data.

The constants, ci2, i = 1, 2, are functions of the population coefficient of determination,

R2
i , and the intercept term, β0i. The relationship between these constants and both input

arguments are positive, though not linear.

ci1 =(nip− 2)/[ni (ni − p− 1)], ci2 = (n1 + 1)R2
i /
[
n1

(
1−R2

i

)]
+ β2

0i, i = 1, 2

ne1 =1/c11, ne2 = σ22/
[(
σ22 − σ2

12/σ11

)
c21 +

(
σ2
12/σ11

)
c11

]
;

(4)

Theorem 2: Prediction error over all calibration samples

The expected squared prediction errors over all calibration samples and new observations

using the estimator β̃i, for i = 1, 2 under the assumptions specified above, are:

E (RỹNi
) =σii

[
1 + k2

i n
−1
ei + (1− ki)

2 ci2
]
; (5)

The proof is deferred to the Appendix.

Corollary 1:

The values for ki minimizing the expected squared prediction error, and the corresponding

expected risk functions are:

kOracle i = ci2/
(
n−1
ei + ci2

)
, E (RỹNi

)Oracle = σii

{
1 + ci2/

[
nei

(
n−1
ei + ci2

)]}
;

Corollary 2:

The values klim i =
(
n−1
ei − ci2

)
/
(
n−1
ei + ci2

)
, has the property that for klim i < ki < 1, then

E (RỹNi
) < E (RŷNi

) Ex (RỹNi
) < Ex (RŷNi

), where ŷNi denotes the prediction based on β̂vi.

Corollary 3:

The expected ratios of the expected squared prediction errors of the estimator β̃i and the

two competitors β̂vi and β̂2i, note that for i = 1 those are equal, the ratios of the expected

prediction risks, are:

E (RỹNi
)/E (RŷNi

) =1− n−2
ei /

[(
n−1
ei + 1

) (
n−1
ei + ci2

)]
,

E (RỹNi
)/E (Rŷ2Ni

) =1−
(
ci1n

−1
ei + ci2n

−1
ei − ci1ci2

)
/
[
(ci1 + 1)

(
n−1
ei + ci2

)]
;
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Corollary 4:

The expected ratio of the expected squared prediction errors based on the estimators β̂vi and

β̂2i equals 1 for i = 1 and has a specially nice expression for i = 2, where ρ = σ12 (σ11σ22)
−1/2

ρ = σ12/
√
σ11σ22 is the correlation between the error terms.

E (RŷNi
)/E (Rŷ2Ni

) = 1− ρ2(c21 − c11)/(1 + c21);

Even though, in general, we assume Σ to be known in this paper the prediction risk for

the estimator

β̂Q2 = β̂22 + q12/q11

(
β̂11 − β̂21

)
, Q =

[
Y2 −X2

(
β̂21 β̂22

)]T [
Y2 −X2

(
β̂21 β̂22

)]
;

might be analysed analytically. The fraction q12/q11 is an unbiased estimator for σ12/σ11 as

can be derived using Giri (2003).

Lemma 1:

The expected risk function for prediction error, i.e. E
(
RŷQN2

)
Ex

(
RŷQN2

)
, using β̂Q2 as

estimator for β2 is:

E
(
RŷQN2

)
=σ22

{
(1 + c21)− (c21 − c11)

[
ρ2 −

(
1− ρ2

)
/(n2 − p− 2)

]}
; (6)

The proof is deferred to the Appendix.

Corollary 5:

The expected ratio of the expected squared prediction errors based on the estimators β̂Q2 and

β̂22 is:

E
(
RŷQN2

)
/E (Rŷ2Ni

) =1− [(c21 − c11)(1 + c21)]
[
ρ2 −

(
1− ρ2

)
/(n2 − p− 2)

]
;

Do note that if ρ2 < 1/(n2 − p− 1), then the expected prediction risk using the standard

ols estimator, β̂22, is smaller than using the estimator β̂Q2.
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5 Results

As shown in Fig. Figure 1, the gain of using β̂v2 over β̂22 may be substantial, especially

for combinations when ρ2 and (c21 − c11)/(1 + c21), are both high. The latter expression is

basically reflecting the relative difference between n1 and n2. Figure 2 shows that further

improvements might be achieved by substituting β̂vi with β̃i, for i = 1, 2 in situations when

ci2, basically reflecting the size of R2
i , is small. The effect diminishes when nei increases, i.e.

when the effective sample size is large.

The results of (3) and (6) were validated via simulations using the software ”R” (R Core

Team, 2014) and an extension of the package ”simrel” (Sæbø, 2015; Sæbø et al., 2015),

capable of producing a bivariate response variable. Figure 3 shows different simulation tests.

As this study is not a simulation study, we contented ourselves with simulating results for a

bundle of combinations for n1 and n2, varied ρ and plotted the results onto the theoretical

risks like shown in Figure 3 for visual validation.

6 Discussion

Our major finding in this study is to show that for linear regression with bivariate response

including missing data, there exists an unbiased weighted least square gls–estimator, β̂v2,

which reduces the expected prediction error compared with the standard ols estimator, when

the covariance structure of error terms is assumed to be known. The prediction precision

might be further improved by shrinking the weighted generalized least squares estimator by

the principles outlined by James and Stein (1961).

The natural next step, which is the topic of our companion paper (Gangsei et al., 2016b),

is to test out estimators that do not assume known covariance structure (Σ) and known

coefficients of determination (R2
i ). In (Gangsei et al., 2016b) an empirical Bayes estimator

is evaluated. A main topic is to modify the estimator β̂Q2 by adding shrinkage to the term

q12/q11. The obvious choice corresponding to β̃ is some kind of empirical Bayes estimator.

Their The connection to between empirical Bayes estimators and the James–Stein estimator
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is well documented by a series of papers by Efron and Morris (1971, 1972b,a, 1973, 1975,

1976). Other candidates would be restricted maximum likelihood estimators, corresponding

to β̂v, and possibly an extension of the (C)PLS estimator (Indahl et al., 2009), capable of

utilizing information from observations with missing data.

The generalisation of assuming predictors to be multivariate normal distributed might

be severely biased in a lot of practical situations, especially when experiments are designed.

However, for many, perhaps the majority, of practical situations, the assumption might

be justified at least after some normalizing transformation of variables. The validity of

the theoretical results when the assumption of normally distributed predictors is violated,

has been tested for the ols estimators by simulating results using randomly distributed,

not normal distributed predictors. The effect of non-normality was found to be negligible.

This seems intuitively correct, as the principles of the central limit theorem should also be

applicable for the current situation.

A Appendix

A.1 Proof of Theorem 1

Since xN is centred we may write RỹNi
= σii + RxT

N β̃i
. Further since β̂vi is normally dis-

tributed, so are β̃i and xT
n

(
βi − β̃i

)
for i = 1, 2. We have

E
[
xT
N

(
βi − β̃i

)]
= (1− ki)x

T
nβi, var

[
xT
n

(
βi − β̃i

)]
= k2

ix
T
N

(
XT

(+)Σ
−1
(+)X(+)

)−1

xN ;

It might be shown that:

xT
N

(
XT

1 X1

)−1
xN = 1/n1+zT

N

(
ZT

1 Z1

)−1
zN , xT

N

(
XT

2 X2

)−1
xN = 1/n2+zT

N

(
ZT

2cZ2c

)−1
zN ;

, where both Z2c and zN are centred with respect to the n2 first rows, and X2 is centred

with respect to all n1 rows. Then, since

RxT
N β̃i

= var
[
xT
N

(
βi − β̃i

)]
+
[
ExT

N

(
βi − β̃i

)]2
we get (3).
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A.2 Proof of Theorem 2

By applying the rules for double expectations, we may write E (RỹNi
) = EX1

[
ExN |X1 (RỹNi

)
]
.

Due to the assumption of independent normal distribution of the rows of Z1, we have that

ZT
1 Z1 and ZT

2cZ2c are two Wishard distributed variables with scale matrix Γ−1 and n1 − 1

and n2−1 degrees of freedom, respectively (Mardia et al., 1979). Thus, their inverse matrices

are inverse Wishard distributed with the same parameters. Due to the centring of zN , we

have that zN is multivariate normally distributed with zero mean and covariance matrix

[(ni + 1)/ni]Γ when centred using all rows (i = 1) or just the n2 first rows (i = 2).

By using rules for quadratic terms (Petersen and Pedersen, 2012), and the rules for

expectation of the trace, we find

E
[
zT
N

(
ZT

1 Z1

)−1
zN

]
= [(n1 + 1)/n1] [(p− 1)/(n1 − p− 1)] = c11 − 1/n1

E
[
zT
N

(
ZT

2cZ2c

)−1
zN

]
= [(n2 + 1)/n2] [(p− 1)/(n2 − p− 1)] = c21 − 1/n2

Further, E
(
xT
Nβiβ

T
i xN

)
= E (β2

0i) + E
(
zT
Nβziβ

T
zizN

)
since E (zN) = 0(p−1) for i = 1, 2.

Finally, the term E
(
zT
Nβziβ

T
zizN

)
= σiiR

2
i /(1−R2

i ) is given by definition.

Then (5) is obtained by substituting the elements in the expressions in (3) by the general

terms shown above. The corollaries are given without further proof as they are easily derived

mostly by minimizing functions with respect to k1 and k2.

A.3 Proof of Lemma 1

Conditional on known Q it might be shown by matrix algebra and the means of the multi-

variate normal distribution that the distribution of β̂Q2 is:

β̂Q2 ∼ Np

{
β2, σ22

(
XT

2 X2

)−1 −
(
2σ12q12/q11 − σ11q

2
12/q

2
11

) [(
XT

2 X2

)−1 −
(
XT

1 X1

)−1
]}

Due to the properties of the Normal–gamma distribution, we know that (Giri, 2003):

E (q12/q11) = σ12/σ11, E
(
q212/q

2
11

)
= σ2

12/σ
2
11 + |Σ|/

(
σ2
11 (n2 − p− 2)

)
;
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Then, since varQ

[
E
(
β̂Q2

)]
= 0T

p 0p we find var
(
β̂Q2

)
= EQ

[
var

(
β̂Q2

)]
, leading to

(6).
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Figure 1: The expected relative size (in %) for the expected squared prediction errors using

the estimator β̂v2 compared with β̂22 as a function of ρ and the fraction c21 − c11/1 + c21.

As this fraction decreases, it basically means that the relative difference between the sample-

sizes n1 and n2 also decreases.
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Figure 2: The expected relative size (in %) for the expected squared prediction errors using

the estimator β̃2 compared with β̂v2 as a function of ne2 and c22. c22 is basically a function

of R2
2 and increases when R2

2 increases.
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Figure 3: Expected squared prediction error using the predictors β̃2 (black dashed lines) β̂v2

(dark gray dashed lines), β̂Q2 (light gray dashed lines) and β̂22 (black dotted line) as functions

of ρ. n1 equal to 20 in left panel and 50 in right panel, and n2 equal to 7 in left panel and

20 in right panel. The simulated means are shown by diamonds in the colors corresponding

to the theoretical lines. The simulation means are based on 5× 103 independent calibration

sets for each of ρ = −0.9,−0.8, . . . , 0.9, and the estimates from each calibration set is used

to predict 103 new independent observations. For all panels and simulations p = 4, R2
1 = 0.4,

R2
2 = 0.6 and β01 = β02 = 0.
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