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The judgements that evidence-based medicine adopts
Elena Rocca

Abstract 

In ‘The evidence that evidence-based medicine omits’, Brendan Clarke and colleagues argue that 

when establishing causal facts in medicine, evidence of mechanisms ought to be included 

alongside evidence of correlation. One of the reasons they provide is that correlations can be 

spurious and generated by unknown confounding variables. A causal mechanism can provide a 

plausible explanation for the correlation, and the absence of such an explanation is an indication 

that the correlation is not causal. Evidence-based medicine (EBM) proponents remain sceptical 

about this argument, one problem being that the formulation of a mechanism requires 

judgements that are external to the evaluation of data and experimental designs - for instance 

judgements of plausibility against, or derivability from, background knowledge. Since background 

knowledge is always incomplete and therefore unreliable, EBM proponents maintain that the 

plausibility of a hypothesis should be evaluated mainly by the quality of population data that 

yielded it. Here, I use the example of oestrogen replacement therapy’s effect on coronary heart 

disease, an example that is often quoted in defence of the epistemic advantage of randomised 

controlled trials, to show that the evaluation of the most reliable study design necessarily implies 

the adoption of judgements that are external to the specific evidence of correlation. The 

exclusion of evidence of mechanism, therefore, is not effective in bypassing paradigm-dependent 

judgements, which are external to specific evidence. Since such judgements cannot be excluded 

by evidence evaluation, they can only be kept under scrutiny, or adopted uncritically. I propose 

that the latter option can hinder the maintenance of an active critical inquiry, as well as the 

analysis of experts’ disagreement 
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1. Introduction 

The approach to clinical practice proposed by the evidence-based medicine (EBM) movement, 

has been a topic of debate during the last few decades. EBM is defined by its proponents as ‘the 

integration of best research evidence with clinical expertise and patient values’ to guide the 

clinical care of the single patient (1). While highlighting that evidence alone is insufficient to guide 

clinical decisions, this definition assigns nevertheless a crucial role to ‘the best research 

evidence’. However, there is debate on the kind of research evidence that best supports decision-

making in clinical practice. It is generally accepted that the establishment of statistical 

correlations through comparative population studies can be a powerful tool for detecting causal 

relationships in medicine. Older age (over 50) is correlated with an increased onset of colorectal 

cancer, for instance, which suggests a causal role of aging in the aetiology of this condition, and 

grounds the promotion of screening programs for this age group by some health care systems. 

However, it is also generally accepted that correlations are only indicators of causation, and thus 

can be fallible. In the previous example, age might not be a genuine cause of colorectal cancer, 

but just be associated with it because the two might be caused by common molecular changes. 

Even more problematically, correlations can be spurious, and be generated by unknown 

confounding variables. 

In presence of evidence of correlation, how should one evaluate whether it is a genuine or a 

spurious one? One strategy that has been supported by some scholars in philosophy of medicine 

is to look for evidence of a plausible mechanism underlying the correlation (2) (3). While there 

are several definitions of ‘mechanism’ available in the philosophical and medical literature, it is 

beyond the scope of this article to commit to any one particular definition. For my purposes here, 

it will be sufficient to generally define a mechanism as a causal process underlying the 

correlation. Evidence addressing a causal mechanism can include qualitative observations, 

laboratory experiments, investigations at the micro level, as well as existing statistical studies (4). 

The role of a causal mechanism is to provide a plausible explanation for the correlation, and the 

absence of such an explanation is an indication that the correlation is spurious (2). 

In tension with this argument, EBM frameworks rate evidence of correlations higher than the 

evidence of underlying mechanisms (5). That is to say, in the presence of high quality population 

studies, and therefore of reliable correlations, evidence of the mechanism underlying such 

correlations is not deemed as necessary for supporting decision making (6). Instead of collecting 

different types of evidence, EBM proponents aim to improve the reliability of a correlation by 

improving the quality of the population studies that yield it: 

 ‘…quality (tightly controlled, unbiased etc.) evidence rather than quantity of evidence 

helps reduce the likelihood of spuriousness.’ (6). 
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Why are EBM proponents sceptical about the reliance on causal mechanisms for establishing a 

causal relationship? One problem they wish to bypass can be illustrated as follows. Imagine that, 

for the formulation of a certain mechanism M, one needs three sets of specific data, for example, 

post-mortem histology, genotyping data, and cell-culture experiments. In order for these data to 

count as evidence for the specific mechanism M, they need to corroborate a number of related 

research hypotheses. In addition, the experimental design and methods used to collect and 

analyse the data ought to be both relevant and reliable. In the following, I will call specific 

evidence the set of data, together with the methods for data collection and analysis, which are 

used to directly test a specific hypothesis. Any other information will be called background 

knowledge. This includes more general evidence as well as theoretical understanding.  

However, the evaluation of data and experimental designs are not sufficient for the purpose of 

establishing M. First, the mechanism will not be established if it is not judged as ‘plausible’ based 

on background knowledge, which is external to the specific evidence. For instance, when 

investigating the mechanism underlying allergic reactions to a certain drug, the specific evidence 

will normally be interpreted in accordance with the basic knowledge about the physiology of the 

immune system. Such established knowledge is itself based on evidence, however this is a 

previously accumulated, general evidence, rather than a specific one, directly addressing the 

research question. This reliance on plausibility is problematic since background knowledge is 

always incomplete, and any judgement that leans on it is therefore unreliable. In multiple 

historical instances, based on commonly accepted background knowledge, the scientific 

community rejected the correct mechanism as implausible, or accepted the wrong mechanism 

as plausible (4). 

‘The apparent knowledge of what happens to some of the mechanisms under 

intervention lends an aura of acceptability, which, in turn, leads to more prolific use of a 

harmful effect’ (6, p.934) 

Second, the mechanism will not be established if it is not derived from within a more general 

understanding of phenomena, which is also external to the specific evidence. The formulation of 

the mechanism underlying a certain drug intervention, for example, requires an understanding 

of general mechanisms of drug metabolism. This is problematic for the same reason as above: 

such understanding is always incomplete: 

‘When it comes to drug therapy, mechanistic reasoning is bound to be based on ‘partial’ 

mechanisms because of the complexity and somewhat mysterious metabolic 

mechanism’ (7). 

We see, therefore, that the establishment of a causal mechanism, or explanation, requires 

additional judgements respects to the mere evaluation of the specific evidence (data and 
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experimental designs). These judgements are never entirely reliable, because they are based on 

background knowledge and general understanding of phenomena, which are always incomplete.  

In response to this, EBM frameworks recommend to rely preponderantly on evidence of 

correlations from population data, when making a causal claim (6). This recommendation can be 

motivated as follows (6, 7). While evidence of mechanism needs to be interpreted against fallible 

background knowledge and theoretical understanding, population data can be graded by simply 

evaluating the experimental design that generated them. This process still requires some theory 

(statistical theory, for instance). However, it largely circumvents the reliance on judgements that 

are external to the evidence of correlation available to test the specific hypothesis. Thus, 

evaluating the quality of a population study is comparatively a straightforward matter, since our 

understanding of what constitutes (for instance) a good statistical design is more reliable than 

our general understanding of biological phenomena. For this reason, according to the EBM 

framework, good evidence of correlation from population studies should be normally given 

priority over mechanistic evidence in medical decision making. 

In this paper, I argue that the strategy proposed by EBM, of relying preponderantly on 

correlations from population data, is not successful for the purpose of bypassing judgements that 

are external to the specific evidence. When the explanation underlying a certain correlation is 

left aside, the relative quality of population studies is proposed as the only tool in order to 

evaluate a casual hypothesis (6). This process, however, cannot be done by considering 

exclusively the population studies themselves; it is still reliant on external judgements based on 

background understanding of phenomena. The normative divergence, therefore, is not whether 

judgements external to the specific evidence ought to be included in medical decision making, 

but whether they ought to be kept under scrutiny or accepted uncritically (fig. 1). 

  

2.  Weighing evidence from different population studies 

At times, population studies yield correlations that contradict previous evidence or established 

theories. They might even contradict intuitions that are more fundamental than established 

theories. A randomised controlled trial (RCT), for instance, tested the effect of retroactive prayer 

on the length of hospitalization of 3400 patients and found a statistical significant effect of the 

‘treatment’ in the experimental group (8). The author’s motivation for this experiment was to 

show that a good experimental design is not a guarantee for unbiased results. In other words, 

the author adopts the fundamental assumption that instances of backward causation can never 

exist, therefore any result pointing to the opposite conclusion must be wrong. On the other hand, 

if one disregards the primitive role of basic assumptions, the results of such a study would give 

reasons to doubt the basic knowledge that the cause always precedes the effect.  Are 

correlations of this kind spurious, or do they indicate real causation? EBM proponents advise 
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caution in evaluating the plausibility of these hypotheses by looking for an explanatory causal 

mechanism based on current background knowledge. In other words, we should not rely on the 

fact that basic knowledge does not provide us with a plausible theory that would explain 

backward causation. We would risk repeating historical errors, in which relevant evidence was 

dismissed because at the time there was no established causal mechanism that could make sense 

of it. As an example, in the much quoted case of Dr. Semmelweis, evidence that antiseptic 

routines reduce infections at childbirth was rejected as implausible because there was no 

accepted understanding of how this could happen (9).  

How can such mistakes be avoided? Is there a strategy that allows to evaluate the spuriousness 

of a correlation, without relying on fallible mechanistic thinking? There is, according to EBM 

proponents. One can judge the plausibility of the hypothesis by evaluating the quality of the 

studies that yielded it. Howick 2011 states that it is possible to  

‘[…] evaluate the comparative clinical studies on their own grounds1. Implausible 

hypothesis are either true or false. If true we would expect consistent detectable effects 

in unbiased comparative clinical studies’ (6, p. 932, emphasis mine). 

It is the presence or absence of such effects, without the need of any explanation (and therefore 

without the need of any additional judgement than the evaluation of the study itself), that should 

guide our evaluation of the hypothesis.  Ideally then, postulates Howick, if unbiased comparable 

clinical studies showed consistently that retrospective prayer improves the healing of 

hospitalized patients, we ought to start believing that the cause can come after the effect, at 

least sometimes(6). 

‘If such consistent effects are demonstrated, then we should recall the Semmelweis case 

and temper our skepticism regarding the plausibility of the hypothesis’ (6, p. 932) 

In other words, the quality of the evidence alone is the most reliable benchmark to evaluate the 

likelihood of a hypothesis. 

This type of argumentation relies on the assumption that the evaluation of the relative strength 

of evidence, the quality of evidence and bias do not adopt judgements that are external to the 

specific evidence of correlation. Only under this assumption, indeed, can such evaluations be 

considered independent from background knowledge, explanations, and broader understanding 

of biological phenomena and therefore more reliable that mechanistic thinking. 

This assumption, I will argue, might hold in some simple cases of evidence evaluation, for instance 

when a trial with considerable statistical power stands against a previous small study. However, 

                                                           
1 By ‘on their own grounds’ the author means without the need of mechanistic reasoning. He defines mechanistic 
reasoning as ‘an inferential chain (or web) linking the intervention […] with a patient-relevant outcome, via 
relevant mechanism’. In other words, mechanistic reasoning is establishing causation by finding an explanation for 
why and how the outcome happens.  
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it cannot be generalized to evidence evaluation overall and therefore should not be taken as the 

default assumption. To demonstrate my claim, I will consider a renowned example within the 

EBM discourse: the case of oestrogen replacement therapy and its effect on coronary heart 

disease. 

Up until the 1990s, oestrogen therapy was widely prescribed to post-menopausal women 

because it was believed to protect them from coronary heart disease. Besides the existence of 

mechanistic evidence, this belief was supported by a considerable body of observational 

population studies. Although not all the observational evidence was consistent, much of it 

pointed to the same results. For instance,  15 internally controlled, medium and large prospective 

observational studies showed consistently that post-menopausal women receiving oestrogen 

replacement therapy had significantly less incidence of coronary heart disease than untreated 

patients (overall relative risk 0.50, confidence interval 0.43-0.56) (10). The confidence in 

oestrogen replacement therapy, however, was suspended when a large RCT showed the opposite 

result: treated patients had significantly increased risk of heart disease (estimated hazard ratio 

1.29, confidence interval 1.02-1.63) (11).This example is often quoted to demonstrate the 

epistemic advantage of RCTs over other types of evidence. However, it is circular to affirm that 

the RCT was considered superior because it yielded the ‘true’ result (6). In a weight-of-evidence 

approach, which considerations do we need to adopt in order to evaluate the RCT as the most 

reliable evidence? Let us consider three steps that are needed in order to evaluate the quality of 

the RCT against the existing body of evidence. 

  

A) Quality of the randomisation (known confounders). The EBM framework adopts the a priori 

assumption that causation is best detected by its capacity to make a difference. One method to 

test difference-making is to apply a potential causal factor to only one of two equivalent settings, 

so that the difference between the two outcomes can be attributed to the tested factor. The 

essential prerequisite is that the two settings - the experimental setting to which the tested 

causal factor is applied and the control setting that remains untreated - must be as similar as 

possible in order to circumvent problems such as causal over-determination and/or masking of 

the effect by unbalanced causal relevant factors (confounders). In order to meet this 

requirement, in a clinical trial the group of patients receiving the treatment must be as ‘similar’ 

as possible to the control group. This corresponds to saying that patient’s characteristics that are 

causally relevant for the outcome must be equally distributed among the two groups. 

In observational studies, the task of equally distributing the potentially relevant causal factors 

among the two groups is done by ‘matching’ the experimental and control group for the factors 

that one thinks might be significant. The clear problem with this strategy is that there is an 

indefinite number of unknown relevant factors, over which we have no control. This problem is 

supposedly taken care of by an alternative strategy, randomisation. The reasoning here is that if 
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one randomly assigns the patients to the two test groups a priori and the groups are large 

enough, then there is greater probability that more known and unknown confounders will be 

distributed evenly across the group, compared to observational studies (12). However, random 

allocation together with the law of large numbers is not per se sufficient reason to be confident 

that the study groups are more balanced than observational studies of otherwise comparable 

quality. At least not according to EBM textbooks. Sackett and colleagues do not take 

randomisation to be a guarantee for a high level of homogeneity without a so-called ‘baseline 

assessment’. This consists in a ‘double-check to see whether randomisation was effective by 

looking to see whether patients were similar at the start of the trial’ (12). If randomisation did 

not work properly, then it is necessary to re-randomise the participants. 

Verifying whether ‘patients are similar’ means double-checking whether experimental and 

control groups have a similar distribution of confounders that we suspect will be causally 

relevant, or factors that ‘potentially affect the outcome’ (7). What is to be accounted as 

potentially relevant factors change depending on the case at stake and, crucially, cannot be 

derived by the specific data of correlation themselves. On the contrary, it is a judgement based 

on a broader background understanding of the phenomenon under scrutiny. In the Rossouw RCT, 

the baseline assessment included age, race, hormone use, body mass index, smoking, history of 

heart disease, treatment for diabetes, blood pressure, statins and aspirin use amongst other 

factors. As it should be clear, such selection of causally relevant factors is reliant on the available 

body of knowledge about heart disease aetiology. This body of knowledge (obviously) varies over 

time. In the 1970s, for example, it was already clear that heart disease was correlated with social 

class distribution, but by 1992 a partial explanation was offered for this correlation: different 

levels of education contributed to the level of cigarette smoking, blood pressure, and total 

cholesterol (13) (14). The evaluation of potentially relevant causal factors, therefore, would have 

been different at these two different time points. When evaluating whether randomisation was 

effective, hence the quality of the RCT, hence the most reliable result, one unavoidably adopts 

the contemporary advancement in understanding the related phenomena. 

  

 B) Quality of randomisation (unknown confounders). 

Although RCTs maintain a primary epistemic role in EBM, the original claim that a well-done RCT 

trumps observational evidence, no matter how good and how much of it (15), was harshly 

criticized (16). One problem is that although we verified that randomisation was effective for 

known confounders, we still cannot be sure about how it took care of all the unknown ones. As 

generally acknowledged (by EBM proponents as well), randomisation alone is not sufficient to 

assure that all confounding factors are equally distributed across groups, even when it 

guarantees high probability of balancing each single factor (7,8,17,18). Some scholars have even 

proposed that ‘there is good reason to doubt that the balance assumption [the assumption that 
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each potential confounding cause is distributed similarly among the study groups] is true for even 

one of our best RCTs’ (18). Is this a matter of concern? It could be if we endorse arguments 

defending that RCTs should control for all causally relevant factors (19). However, in the case at 

hand, we do not necessarily need to ensure that the Russow study controlled for all confounding 

factors, as long as we demonstrate that it controlled for more confounding factors than the 

previously available observational evidence. 

This, again, is hard to do by solely focusing on the study designs and results. By adhering to these 

elements, one can only observe that the Rossouw study, because it is randomised, is the only 

study that removes allocation biases, therefore it is, in principle, the study that has better 

chances of being the least biased. This speculation can be proven much more firmly, however, 

by adopting judgements external to the studies themselves. The same Howick 2011 provides us 

with an example of such judgements: 

‘…there are independent reasons to believe the results of the randomised trial […]. For 

example, the authors of the earlier studies observed that mortality due to homicide was 

higher among women who did not take HRT [oestrogen replacement]. This (among other 

similar observations) implied that there were potentially confounding differences 

between women who chose (or were chosen by their doctors) to take HRT and those who 

did not.’ (6, p. 932) 

What Howick suggests here, is to evaluate the observational studies by considering some of the 

correlations they yield and judge them by their plausibility against background knowledge, rather 

than by their statistical significance. We do not accept that oestrogen replacement protects 

women from death due to homicide. Rather, we accept that this correlation points out an 

imbalance in the study recruitment, whereby one of the groups had a higher number of women 

living in bad neighbourhoods, for instance. These considerations, however, would not be possible 

if we focused only on the study in isolation. In this case, indeed, we would only be allowed to 

consider, as benchmarks for the plausibility of the causal association, factors such as the degree 

of significance, and/or the magnitude of the effect. The bigger the latter two, the more plausible 

it would be that the correlation is not spurious. When external judgement (based on general 

understanding of biology) is instead adopted, the stronger one such correlation, the bigger the 

proof that the study is seriously biased. 

C) Analogy with existing population studies. 

One could argue that, although considerations external to specific evidence might be necessary 

for evaluating the relative strength of population studies, such considerations do not need to 

include theoretical – explanatory aspects. Specifically, the reliance on a study’s result can 

increase if the study is in line with other high quality population studies. For example, by the early 

1970s there was evidence that the administration of equine oestrogen did not protect men 



9 
 

against heart coronary disease. On the contrary, high doses of oestrogen were correlated with a 

higher incidence of the condition (20). These results, yielded by the large cohort ‘Coronary Drug 

Project’, were used as an argument for holding scepticism toward the positive outcomes of 

observational trials in women (21). This way, one could argue that every new population study 

might be evaluated in the context of previously existing high-level population studies. In other 

words, background knowledge might be limited to population data, and exclude fallible 

explanations. 

The trouble with this reasoning is that, although in principle it is possible to separate population 

studies from the general state of the pathophysiological understanding of phenomena, this is not 

a realistic account of how evidence evaluation actually happens. Evidence from population 

studies, like any other type of evidence, acquire different significance depending on 

the total body of knowledge already available. For instance, gender difference in coronary heart 

disease have been increasingly elucidated, disclosing different anatomy, different 

physiopathology, different response to therapy and gender-specific risk factors (22). While in the 

1990s the gender – specific outcome of a cardiovascular intervention might have been surprising, 

it is less surprising nowadays. Arguably therefore, the fact that oestrogen replacement did not 

protect men from heart conditions would be less persuasive as an argument for scepticism 

toward the positive effect in women. By drawing on background knowledge, judgements external 

to the specific evidence also draw on explanatory, theoretical understanding of phenomena. 

In summary, I have considered the case of oestrogen replacement therapy and coronary heart 

disease, in which population studies of comparable statistical power, but with different 

experimental design, yielded conflicting results. When referring to this and similar examples, 

EBM proponents urge that the quest of an explanatory mechanism by which oestrogen might 

protect from heart disease, or on the contrary provoke it, should not have a decisive role in the 

evaluation or total evidence. On the contrary, they suggest, the evaluation of the most reliable 

result ought to exclude judgements that are external to the population studies themselves. In 

this section, I have argued that the evaluation of which experimental design was to be considered 

the most reliable, and therefore which result ought to be taken as ‘true’, inherently implies the 

use of judgements that are external to the specific population studies. Indeed, in order to justify 

the epistemic advantage of the randomised study, one needs to be confident in the fact that 

randomisation worked. This, as I suggested, cannot be done with the use of specific evidence 

alone, but drawing on background knowledge and the understanding of phenomena. The 

strategy of limiting evidence to correlations from population studies, therefore, is not effective 

in bypassing the need of judgements that are external to specific evidence. 

  

3. Implications 
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If judgements that are external to the specific evidence are inherently built into the evaluation 

of conflicting results, one cannot decide whether or not to include them in medical decision-

making. The choice is rather between keeping them under scrutiny, or accepting them 

uncritically. 

EBM’s high reliance on population studies ‘on their own’, and the low epistemic status left for 

explanatory mechanisms, conveys the false impression that specific evidence alone can guide us 

toward the ‘correct’ evaluation, and ultimately toward the right decision. There are some risks, 

or at least some disadvantages, in promoting such a belief on the supremacy of data. For one, it 

is not uncommon that good data lead to the wrong answer. For instance, much evidence in the 

1970s led the scientific community to wrongly accept herpes virus (HSV) as the cause of cervical 

cancer (4). In a study on 40.000 screened patients, HSV was strongly correlated with malignant 

changes of the cervical epithelium (23). Cervical dysplasia was correlated with HSV2 

infections (24). Antibodies against HSV2 were present four times as often in women with cervical 

cancer as controls (25). Fragments of HSV DNA could be directly detected in cervical cancer 

cells (26). Other types of herpes viruses were also implicated in other types of cancer (4). The 

wrong causal connection between HSV and the aetiology of cervical cancer was dominant until 

the mid-1980s. Only then, did the role of papilloma virus start to become evident. 

This and a plethora of similar stories highlight that in order to maintain active the critical inquiry, 

any evidence needs to be met with scepticism, rather than belief (27). This becomes somewhat 

harder, under the illusion of a completely objective, data-driven analysis. On the contrary, if all 

types of judgements used in evidence evaluation are kept under scrutiny, it becomes easier to 

suspend belief. 

Another problem with the illusion of a paradigm-free evidence evaluation is that it leaves us with 

no tools to understand cases of expert disagreement, in which different evaluations are drawn 

from the same evidence (28). There is rarely a straight forward path to decision making that is 

paved by the perfect data. Studies often yield conflicting results and have strengths and 

weaknesses that need to be weighed against each other - a process that necessitates expert’s 

judgement. 

Consider one example that has been increasingly visible in the last few years. The correlation 

between exposure to the herbicide glyphosate and the onset of some types of cancer, including 

non-Hodgkin lymphoma, was tested with a number of population studies. Three of these 

investigations are unanimously considered ‘key studies’ by different evaluating agencies because 

of large numbers and high statistical power (29). However, all these studies are also unanimously 

acknowledged to have weaknesses: low number of exposed cases, potentially unadjusted 

exposure to other pesticides, and possible biases in assessing the exposure (29). Two of these 

three studies are retrospective pooled analyses of case-control studies, one performed across 

Canada, and the other in the mid-west US (30,31). The specific advantage of these two studies is 
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that they control for confounding by other pesticides using a sophisticated statistical analysis. 

Both studies showed a positive correlation between exposure to glyphosate and the onset of 

non-Hodgkin lymphoma, while indeed controlling for several confounding exposures (32). 

However, it is generally acknowledged that such study design is prone to recall biases, since it is 

retrospective. On the other hand, a relatively large cohort study, the Agricultural Health Study 

(AHS), showed no statistical significant association between exposure to glyphosate and the 

onset of non-Hodgkin lymphoma, with no apparent exposure–response relationship in the 

results (33). There are potential advantages of cohort versus case-control studies: the cohort 

study is a prospective study and is hence free from recall biases. Despite this potential advantage, 

in this case the follow-up period was limited to less than a decade, which is considered an 

insufficient time frame for the onset of the lymphoma, at least according to the current 

understanding of this type of cancer (29). 

As often happens, different agencies evaluated this epidemiological evidence in different ways. 

The European Food Safety Authority (EFSA), for instance, considered the cohort AHS study as the 

best epidemiological evidence available, as it is the only one that was able control recall biases. 

Accordingly, EFSA’s verdict is that epidemiological data give ‘very limited evidence’ for an 

association between glyphosate – based formulations and non-Hodgkin lymphoma, ‘overall 

inconclusive for a causal or clear associative relationship’ (34). The International Agency for 

Research on Cancer (IARC), on the contrary, evaluated the two case-control studies as more 

reliable than the cohort study, one of the motivations being that ‘the median follow-up time in 

the AHS was 6.7 years, which is unlikely to be long enough to account for cancer latency’ (29). 

Consequently, IARC concludes that ‘a positive association has been observed’, although ‘chance, 

bias or confounding could not be ruled out with reasonable confidence’ (32, emphasis mine). This 

difference in evaluation is not as minimal as it seems. IARC, indeed, urges that ‘legitimate public 

health concerns arise when causality is credible’ (29), while EFSA finds no reason for such public 

concern (35). 

If we focus solely on the population studies and the experimental designs, we are left with little 

ground to understand the foundations of this disagreement. Indeed, all agencies agree about 

what the strength and weaknesses of each experiment are. What changes from agency to agency 

is the evaluation of the relevance of such strength and weaknesses in relation to the current 

knowledge advance on cancer aetiology (for instance, when considering the length of follow up). 

Moreover, there is arguably a different value judgement of whether a potential false positive due 

to re-collection biases is preferable to a possible false negative due to insufficient study duration. 

The glyphosate case is at the moment an open controversy, showing once more that the mere 

evaluation of studies ‘on their own grounds’ poorly applies to the complex realm of health 

sciences. Overall, the proposition of a weight-of-evidence process, driven by population studies 

and excluding external judgements, seems more an ideal abstraction than a concrete solution. 
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In summary, I argued in favour of a pluralistic approach to causal evidencing in medicine. My 

argument in line with other stances advocating that both evidence of correlations and 

explanatory evidence are necessary for successful decision-making (2-4). I allow that, in some 

cases, good evidence from population studies can license a causal inference. The crucial point, 

however, is how one should assess that such evidence is ‘good’, or ‘better’ than evidence from 

other population studies, which might point to different conclusions. I showed a case in which 

such judgement presupposes theories of mechanisms. Arguably, this is representative for many 

other complex cases of causal inference. However, even assuming that my conclusion cannot be 

extended to the majority of evaluations of statistical evidence, it still shows how a rigid 

interpretation of EBM evidence hierarchy is problematic. Finally, I fully acknowledge that 

explanations can be wrong, and consequently can hinder the correct causal inference. However, 

since, as I argued here, such explanations are irreducibly embedded in the medical sciences, I see 

this fallibility as a motivation for increasing our enquiry on causal explanations, rather than for 

dismissing it. 
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