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1  | INTRODUC TION

Understanding how and why the number and identities of species 
vary among habitats is a central goal in ecology. Species distri‐
butions are the product of assembly processes whereby species 

disperse across the landscape and establish populations in habi‐
tats—within reach—where the environment provides suitable con‐
ditions (Keddy, 1992). Once established, biotic interactions, such 
as competition, determine how successful the newly arrived spe‐
cies will be, and thus influence abundances (Boulangeat, Gravel, & 
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Abstract
Identifying	the	influence	of	stochastic	processes	and	of	deterministic	processes,	such	
as dispersal of individuals of different species and trait‐based environmental filtering, 
has long been a challenge in studies of community assembly. Here, we present the 
Univariate	Community	Assembly	Analysis	 (UniCAA)	 and	 test	 its	 ability	 to	 address	
three hypotheses: species occurrences within communities are (a) limited by spatially 
restricted dispersal; (b) environmentally filtered; or (c) the outcome of stochasticity—
so that as community size decreases—species that are common outside a local com‐
munity have a disproportionately higher probability of occurrence than rare species. 
The comparison with a null model allows assessing if the influence of each of the 
three processes differs from what one would expect under a purely stochastic distri‐
bution of species. We tested the framework by simulating “empirical” metacommuni‐
ties	 under	 15	 scenarios	 that	 differed	 with	 respect	 to	 the	 strengths	 of	 spatially	
restricted dispersal (restricted vs. not restricted); habitat isolation (low, intermediate, 
and high immigration rates); and environmental filtering (strong, intermediate, and no 
filtering).	Through	these	tests,	we	found	that	UniCAA	rarely	produced	false	positives	
for	the	influence	of	the	three	processes,	yielding	a	type‐I	error	rate	≤5%.	The	type‐II	
error rate, that is, production of false negatives, was also acceptable and within the 
typical	cutoff	(20%).	We	demonstrate	that	the	UniCAA	provides	a	flexible	framework	
for retrieving the processes behind community assembly and propose avenues for 
future developments of the framework.
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Thullier, 2012) and—in the long‐term—species richness (Olsen & 
Klanderud, 2014). However, even if species have similar habitat re‐
quirements and are competitively equivalent, species richness will 
not remain stable since random fluctuations in population growth‐
rates eventually lead to monodominance by the initially most 
abundant species (Hubbell, 2001; Rosindell, Hubbell, & Etienne, 
2011).	If	species	can	disperse	between	communities	at	high	rates,	
the influence of such stochastic processes can be synchronized 
at the metacommunity level, and result in purely stochastic spe‐
cies distributions. Mechanisms of community assembly thus can 
be classified as belonging to: (a) dispersal limitation resulting from 
(i) habitat isolation, leading to low immigration rates so that local 
community dynamics are partly independent of metacommunity 
dynamics and (ii) spatially restricted dispersal of species, leading 
to low spatial immigration rates because potential immigrants 
mainly arrive from proximate source populations; (b) ecological 
filtering based on how the species’ fitness varies according to bi‐
otic and abiotic environmental conditions; and (c) stochastic pro‐
cesses, such as ecological drift (Vellend, 2016). These assembly 
processes can interact and reinforce each other. High immigration 
rates may reduce the influence of environmental filtering, and 
thus	 lead	 to	 mass‐effect	 metacommunities.	 In	 contrast,	 if	 envi‐
ronmental filtering is the dominant process, this leads to species‐
sorting	metacommunities	 (Leibold	et	al.,	2004).	The	 influence	of	
stochastic processes is also influenced by dispersal limitation and 
are expected to decrease as immigration increase (Vellend, 2016) 
since high immigration rates replenish the populations of rare spe‐
cies, thereby allowing them to persist over time (Hanski, 1991). 
Community size, that is, the number of individuals of all species, 
is a proxy for the carrying capacity of the local habitat. Because 
ecological drift is a probabilistic process, its influence increases as 
community	size	decreases	(Gilbert	&	Levine,	2017;	Vellend,	2016).	
In	neutral	metacommunities	with	high	 immigration	 rates,	 the	ef‐
fect of ecological drift will be synchronized at the metacommunity 
level, so that the relative abundance of species within local com‐
munities mirrors that of the metacommunity as a whole (Shipley, 
2014).	 In	 lieu	 of	 environmental	 filtering	 and	 dispersal	 limitation,	
species	 distributions	will	 therefore	 be	 purely	 stochastic.	Due	 to	
their complexities, identifying the processes behind patterns 
of species distributions remains a central challenge in ecology 
(Cadotte & Tucker, 2017).

Dispersal	 limitation	 restricts	 the	 flow	 of	 species	 across	 the	
landscape, and therefore results in spatially aggregated species 
distributions and increased species compositional dissimilarity (i.e., 
β‐diversity) between communities with increasing geographical 
distance	 (Anderson	 et	 al.,	 2011;	 Chave	&	 Leigh,	 2002).	 Ecological	
filtering may also cause species to aggregate into classifiable com‐
munities.	A	distinction	 is	made	between	biotic	ecological	 filtering,	
such as competition, and abiotic ecological filtering (hereafter “envi‐
ronmental filtering”). Environmental filtering operates by excluding 
species whose functional response traits do not allow them to per‐
sist within a habitat, and result in species distributions being predict‐
able	along	environmental	gradients	(Keddy,	1992;	Kraft	et	al.,	2015;	

McGill, Enquist, Weiher, & Westoby, 2006). Here, we focus on envi‐
ronmental filters, because they determine the potential combination 
of species within communities, upon which biotic interactions in turn 
operate	 (Boulangeat	 et	 al.,	 2012;	 Lawton,	 1999).	 The	 influence	 of	
environmental filtering versus ecological drift (and other stochastic 
processes) can be estimated by comparing observed β‐diversity val‐
ues between communities with those obtained from null models in 
which community assembly is neutral with regards to species iden‐
tities	(Chase	&	Myers,	2011;	Tucker,	Shoemaker,	Davies,	Nemergut,	
& Melbourne, 2016). However, because the environmental filtering 
and stochasticity often act in concert with dispersal limitation, the 
influence of all three processes should ideally be captured in the 
same analysis.

Current methods for disentangling the effects of the three 
community assembly processes (reviewed in Vellend et al., 2014) 
include: partitioning the variation in species composition along 
gradients of spatial and environmental dissimilarity (Peres‐Neto, 
Legendre,	 Dray,	 &	 Borcard,	 2006);	 comparing	 changes	 in	 the	
functional and species turnover along environmental and spatial 
gradients (Pavoine & Bonsall, 2011); and parallel analyses of, for 
example, phylogenetic, functional and species diversity indices 
(Münkemüller	et	al.,	2012).	An	alternative	approach	is	to	focus	on	
species occurrences (or abundances) rather than species compo‐
sition. By combining matrices that contain information on species 
distributions, environmental conditions, and species traits, ecol‐
ogists	 can	 test	 for	 trait–environment	 relationships	 (Dray	 et	 al.,	
2014;	Dray	&	Legendre,	2008).	Model‐based	approaches	that	allow	
explicit testing of how community assembly processes influence 
species occurrences or abundances have recently been developed 
(Ovaskainen	et	al.,	2017;	Warton	et	al.,	2015).	These	model‐based	
approaches focus on the distribution of species (or individuals) 
as a function of their traits, rather than modeling changes in trait 
values as a function of species distributions along environmental 
gradients. Using the presence (or absence) of species as response 
variables in statistical models, and including interaction terms be‐
tween functional traits and site‐specific environmental variables as 
explanatory variables, makes it possible to test the influence of en‐
vironmental filtering (Jamil, Ozinga, Kleyer, & Braak, 2013). Existing 
methods allow estimating the relative importance of spatially re‐
stricted dispersal, environmental filtering, and biotic interactions 
for species occurrences and abundances within local communities 
(Boulangeat	 et	 al.,	 2012;	Ovaskainen	 et	 al.,	 2017).	 An	 important	
limitation of current approaches is that they either test the influ‐
ence of spatially restricted dispersal versus environmental filtering, 
or stochasticity versus environmental filtering, but not all three 
processes simultaneously (but see Munoz et al., 2018 for estimat‐
ing the influence of immigration rates together with stochasticity 
and environmental filtering).

Here, we present a framework for simultaneously testing the 
influence of spatially restricted dispersal, environmental filtering, 
and stochasticity on species occurrences in terrestrial ecosystems, 
hereafter	UniCAA	(Univariate	Community	Assembly	Analysis).	The	
approach builds on the framework developed by Sydenham et al. 
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(2017), who modeled the occurrence of wild bee species in south‐
east	Norway.	 In	 the	present	study,	we	used	simulated	data	gener‐
ated	under	15	distinct	parameter	 state	 combinations	with	varying	
degrees of spatially restricted dispersal; immigration rates; and en‐
vironmental	filtering	to	assess	the	applicability	of	UniCAA,	based	on	
its ability to identify:

1. Spatially restricted dispersal in metacommunities, in cases 
where species migrations are most likely between proximate 
habitat patches. The influence of spatially restricted dispersal 
on metacommunity structure can take three primary forms 
(Leibold	&	Chase,	2018):	Dispersal	limitation	whereby	species	
fail to occupy all potential habitats within the metacommu‐
nity;	 Dispersal	 sufficiency	 where	 dispersal	 rates	 are	 inter‐
mediate	and	species	occur	in	the	majority	of	suitable	habitats;	
and	 Dispersal	 surplus	 whereby	 dispersal	 and	 immigration	
rates are sufficiently high to mask the influence of species‐
sorting mechanisms (e.g., environmental filtering). Under 
dispersal limitation, spatially restricted dispersal results in 
spatially aggregated species distributions and should be most 
pronounced in metacommunities with a high temporal species 
turnover (i.e., high immigration rates) and with ecologically 
equivalent species, because environmental filtering otherwise 
prevents dispersing species from establishing within com‐
munities.	 UniCAA	 should	 not	 confound	 spatially	 restricted	
dispersal with environmental filtering and produce false 
positives	 (type‐I	 errors)	 in	 metacommunities,	 if	 species	 are	
free to disperse but environmental conditions are spatially 
correlated.

2. Environmental filtering in metacommunities where species have 
narrow niche widths, and thereby lower probability of remaining 
in habitats with environmental conditions outside their funda‐
mental	niche.	In	such	cases,	the	probability	of	occurrence	should	
differ systematically between species, depending on their func‐
tional traits and local environmental conditions. The role of envi‐
ronmental filtering can be obscured if immigration rates are 
sufficiently high, that is, under mass‐effect metacommunities 
(Leibold	et	al.,	2004).	In	such	cases,	habitats	may	be	occupied	by	
species that are not adapted to local environmental conditions. 
However, such habitats should act as “sink‐habitats” and—on av‐
erage—have a lower probability of containing species whose 
traits do not match local conditions than species whose traits do 
match the local conditions.

3.	 Identify	stochasticity	in	metacommunities	in	cases	where	spe‐
cies are ecologically equivalent and not dispersal limited. 
Stochastic dynamics should be synchronized at the metacom‐
munity level when immigration rates are high and when species 
are	 ecologically	 equivalent.	Deviations	 from	 the	 patterns	 ex‐
pected under stochastic species distributions suggest that 
communities are dispersal limited or environmentally filtered, 
so that local community dynamics are at least partly independ‐
ent of the dynamics in distant or environmentally different 
communities.

2  | METHODS

2.1 | The UniCAA framework

UniCAA	uses	Generalized	Linear	Mixed	Models	 (GLMMs)	with	the	
probability of species occurring within communities as a response 
variable.	UniCAA	differs	from	other	model‐based	approaches	(Hui,	
2016;	Ovaskainen	et	al.,	2017;	Warton	et	al.,	2015)	 in	 two	 impor‐
tant aspects; (a) Spatially restricted dispersal is modeled as a fixed 
effect and as function of the species‐specific geographic distance 
to the nearest source population. This adds flexibility in that users 
can specify species‐specific distance matrices based on prior infor‐
mation on barriers to dispersal, and that the geographic distance 
can	be	transformed	to	improve	model	fit.	(b)	UniCAA	compares	the	
influence of the three community assembly processes to that ex‐
pected from a null model, thus allowing an assessment of whether 
the observed influence of each process differs from what would be 
expected under stochastic community assembly. Species and site 
identities are included as random intercepts in the model, to ac‐
count for multiple observations from the same sites and species. 
Thus, the modeled response is the probability of occurrence of an 
average species in an average site given the constraints imposed by 
spatially restricted dispersal, environmental filtering, and stochastic 
processes (Table 1).

1. The influence of spatially restricted dispersal is tested by in‐
cluding	the	fixed	effect	term	Distance	to	source	habitat,	which	
for all species‐by‐site combinations specifies the geographic 
distance to the nearest site where the species is found 
(Sydenham	 et	 al.,	 2017).	 A	 decrease	 in	 the	 mean	 probability	
of	 occurrence	 with	 Distance	 to	 source	 habitat	 would	 suggest	
that species are spatially aggregated, so that the mean prob‐
ability of occurrence decreases with the geographic distance 
to the nearest community from which the species could im‐
migrate	 (MacArthur	 &	 Wilson,	 1967).

2. The influence of environmental filters is tested by including 
Traits × Environmental conditions terms, that is, interactions be‐
tween the environmental conditions and functional traits (e.g., 
body	size)	of	species	(Jamil	et	al.,	2013).	If	community	assembly	is	
environmentally filtered, the probability of species occurring 
within communities depends on the environmental conditions 
and differs systematically between species depending on their 
functional traits (Keddy, 1992).

3. The influence of stochasticity is tested by including the interac‐
tion term Community size × Commonness, that is, between the 
total number of individuals sampled within a given site 
(Community size) and the proportionate contribution of a species 
to the total number of individuals found outside a given commu‐
nity (Commonness). The influence of stochastic community as‐
sembly is here understood as leading to patterns of species 
occurrence	that	are	solely	probabilistic.	If	species	are	ecologically	
equivalent	 and	 not	 subjected	 to	 spatially	 restricted	 dispersal,	
then—on average—the relative abundance of species within 
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communities should mirror that of the regional species pool 
(Shipley,	2014;	Vellend,	2016).	 In	UniCAA,	 the	 regional	 species	
pool is defined from the species composition of the set of sam‐
pled communities. We therefore expect regionally rare species to 
have a lower probability of occurrence within small communities 
than	 common	 species.	As	 community	 size	 increases,	 regionally	
common species should always be present, whereas rare species 
will have an increased, but not definite, probability of 
occurrence.

2.2 | Step 1 model specifications

The influence of spatially restricted dispersal, environmental fil‐
tering, and stochasticity on species occurrences is first tested by 
fitting	 separate	 GLMMs	 and	 using	 likelihood	 ratio	 tests	 to	 assess	
the statistical significance (α	=	0.05)	of	Distance	to	source	habitat,	
Traits × Environmental conditions and Community size × Regional 
commonness, respectively. Subsequently, a full model containing 
only	the	significant	terms	from	the	three	separate	GLMMs	is	built.	
The full model is then reduced to a final model through backward 
elimination of variables, retaining only those with significant contri‐
butions	to	model	fit.	In	the	case	where	species	occurrences	are	dis‐
persal	limited,	subjected	to	environmental	filtering	and	stochasticity,	
the final model formula becomes:

where Yij is the probability of the ith species being present in the jth 
site.	Distance	to	source	habitat,	Environmental	conditions,	Species	
traits, Community size, and Commonness are fixed effect terms, 
whereas Species identity and Site identity are random intercept 
terms	 (Zuur,	 Ieno,	Walker,	Saveliev,	&	Smith,	2009).	Although	 indi‐
vidual species may show unimodal responses to the environmen‐
tal gradient(s), the Species traits × Environmental conditions term 
models the average occurrence of species, with a given trait value 
as	a	function	of	the	environment.	Depending	on	the	combined	niche	
width of species belonging to a trait group, the mean occurrence 
of species within that trait group can be expected to be linear or 

unimodal. Misspecified models should result in non‐normally dis‐
tributed residuals around the predicted estimates for species oc‐
currences.	 The	 residual	 distribution	 of	 binomial	 GLMMs	 can	 be	
assessed	using	the	DHARMa	package	in	R	(Hartig,	2018).	As	in	the	
model selection, the statistical significance of the main effect terms 
in the model can be tested using likelihood ratio tests.

2.3 | Step 2 model specifications

To assess whether the observed relationship between spe‐
cies	 occurrences	 and	 Distance	 to	 source	 habitat,	 Species	
traits × Environmental conditions, and Community 
size × Commonness differ from that expected under stochastic 
community assembly, the regression coefficients from the fixed 
effect terms in the final model (step 1) are compared to those ob‐
tained	 from	a	null	model.	 In	 the	null	model,	 species	are	ecologi‐
cally equivalent, immigration rates are high and species are free 
to disperse across the entire landscape—that is, species distribu‐
tions are purely stochastic—resulting in a neutral metacommunity 
(sensu	Leibold	et	al.,	2004).	In	step	2,	the	final	model	from	step	1	
is refitted:

where	Data	source	is	a	categorical	variable	with	two	levels:	empiri‐
cal data or data from the null model (simulated data), ensuring that 
the null model does not affect parameter estimates for the empiri‐
cal	data.	Dataset	ID	is	a	categorical	variable	specifying	the	identity	
of	the	data	in	the	model.	Dataset	#1	is	the	empirical	data,	whereas	
each of the simulated metacommunities making up the null model 
is assigned a unique identifier. The random effects thereby become 
crossed	that	is:	Species	identity	given	Dataset	ID;	and	Site	identity	
given	Dataset	ID	so	that	the	number	of	groups	for	which	the	random	
effects are estimated, increase with the size of the null model.

The null model is constructed by reshuffling the original species‐
by‐site data frame while keeping the row and column sums constant. 
This null model retains the species’ relative abundances in the whole 
metacommunity as well as community sizes. Multiple randomizations 
are required because metacommunities will differ between differ‐
ent randomizations and because we are interested in obtaining a null 
model with parameter estimates reflecting the “average” randomized 
metacommunity. The computation time for fitting the model in step 2 
will increase with the number of randomizations used when specify‐
ing	the	null	model	(i.e.,	Dataset	IDs).	Our	fn.UniCAA.sim.eval function 

Yij=Bin(1,pij)

logit(pij)=�+�1×Distance to source habitatij+�
2
×Environmental filterj

+�3×Species traiti+�4×Species traiti

×Environmental conditionsj+�5×Community sizej

+�6×Commonnessi+�7×Community sizej

×Commonnessi+Species identityi+Site identity
j

Species identityi∼N(0,�2
�
)

Site identity
i
∼N(0,�2

�
)

logit(pij)= �+ (�1×Distance to source habitatij

+�
2
×Environmental filterj+�3×Species traiti

+�4×Species traiti×Environmental conditionsj

+�5×Community sizej+�6×Commonnessi

+�7×Community sizej×Commonnessi)
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+Species identityi∕DatasetID

+Site identity
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∕DatasetID
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(Supporting	 information	 Appendix	 S1)	 makes	 it	 possible	 to	 evaluate	
how many (e.g., 19, 49, 99, or 199) randomizations are required by plot‐
ting the β‐diversity between each randomized metacommunity and the 
empirical	metacommunity	against	the	randomization	number	(Dataset	
ID).	The	null	model	has	saturated	when	there	is	no	detectable	relation‐
ship between β‐diversity and randomization number.

Each of the randomized site‐by‐species matrices is combined 
with the original site‐by‐environment, site‐by‐coordinates, and 
species‐by‐traits	matrices	into	UniCAA.df	data	frames	by	using	the	
fn.UniCAA.df	 function	 (Supporting	 information	 Appendix	 S1).	 The	
UniCAA.df	data	frames	are	then	merged	with	the	empirical	UniCAA.
df	data	frame	and	two	columns	are	added:	 the	Dataset	 ID	column	
contains a unique identifier for each of the, for example, 100 data‐
sets	(99	simulated	+	1	empirical),	and	the	Data	source	column	con‐
tains a categorical variable with two levels (empirical or simulated). 
Statistically significant deviations from the null model suggest that 
the observed (empirical) community compositions differ from that 
expected if species were ecologically equivalent and free to disperse 
across the entire region.

2.4 | Testing the UniCAA framework

We generated “empirical” metacommunities through simula‐
tions,	where	community	assembly	followed	15	different	scenarios	

differing in terms of the influence of spatially restricted dispersal, 
immigration rates, strength of environmental filtering, and subse‐
quently	stochasticity	 (Figure	1).	Taken	together,	 the	15	scenarios	
represented a wide range of metacommunity dynamics. The simu‐
lated scenarios without spatially restricted dispersal, and with 
three different levels of immigration rates (low, intermediate, and 
high),	allowed	us	to	test	whether	UniCAA	was	able	to	distinguish	
between environmentally filtered and stochastically assembled 
metacommunities. Whereas the scenarios with spatially restricted 
dispersal and three levels of environmental filtering (strong, inter‐
mediate, and not restricted), and three levels of immigration rates 
(low,	 intermediate,	and	high)	allowed	us	 to	 test	whether	UniCAA	
was able to identify the role of spatially restricted dispersal in 
community	 assembly.	 To	 evaluate	 whether	 UniCAA	 consistently	
identified the processes that had shaped the distribution of spe‐
cies	within	the	metacommunity,	we	simulated	25	replicates	of	each	
of	the	15	scenarios.

2.5 | Metacommunity simulation

Metacommunity simulations were performed on a data‐generated 
landscape consisting of 3,969 communities where both environmen‐
tal conditions (Figure 1a) and community sizes (Figure 1b) were spa‐
tially	correlated	(Bivand,	Pebesma,	&	Gomez‐Rubio,	2013;	Hijmans	

TA B L E  1   Illustration	of	the	four	data	frames	used	in	UniCAA.	(a)	The	site‐by‐species	(Sp.)	data	frame	contains	the	abundance	of	the	ith 
species at the jth site. (b) The species‐by‐trait data frame contains the ith species’ functional trait value for each nth trait. (c) The site‐by‐
environment (Env.) data frame contains the environmental variable values (ecological filter) for the jth site. (d) The site‐by‐spatial geographic 
positions data frame contains the geographical coordinates for each jth	site.	(e)	The	UniCAA.df	dataframe	is	used	for	the	analyses	in	step	1.	
Prior to analyses, species only occurring within a single site are removed because the Distance to source habitat variable will return a missing 
value.	See	Supporting	information	Appendix	S1	for	a	fully	worked	example

a b c d

Sp. A Sp. B Sp. C Trait Env. Lat. Lon.

Site 1 10A1 5	B1 0 C1 Sp.	A 0 Site 1 0 Site 1 1 1

Site 2 5	A2 10 B2 5	C2 Sp. B 0.5 Site 2 0 Site 2 2 1

Site 3 0 A3 5	B3 10 C3 Sp. C 1 Site 3 1 Site 3 3 1

Site 4 0 A4 0 B4 5	C4 Site 4 1 Site 3 4 1

e

Presence Dist. to source habitat Trait Env. ComSize Commonness SpeciesID SiteID

1 1 0 0 15 0.125 Sp.	A Site 1

1 1 0 0 20 0.286 Sp.	A Site 2

… … … … … … … …

1 1 1 1 15 0.250 Sp. C Site 3

1 1 1 1 5 0.300 Sp. C Site 4

Note.	Dist.	to	source	habitat	is	the	distance	from	the	jth community to the nearest community where the ith	species	is	found.	Inter‐site	distances	are	
calculated using the spatial coordinates information in data frame d.	For	the	combination	Sp.	A	and	Site	1	the	Dist.	to	source	habitat	is	1	because	Sp.	A	
is found in Site 2, which is only one step away from Site 1. Community size (ComSize) is the total number of individuals within a community, calculated 
from data frame a. The ComSize of site 1 is: 10A1	+	5B1 + 0C1	=	15.	Commonness	is	calculated	using	the	information	in	data	frame	a as the proportionate 
contribution	of	the	focal	species	to	all	individuals	sampled	outside	the	focal	site,	for	example,	the	Commonness	of	species	A	outside	site	1	is:	5A2/(5A2 
+ 10B2	+	5C2	+	5B3 + 10C3	+	5C4)	=	0.125.
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et	al.,	2016;	Pebesma	&	Bivand,	2005).	We	implemented	the	spatial	
correlation by applying a Gaussian filter with sigma values 0.2 for en‐
vironmental conditions, and 0.4 for community sizes to a raster map 
with uniformly distributed values. This ensured that environmental 
gradients were steeper than community size gradients (Figure 1a,b) 
so that regions with a certain community size could harbor different 
habitat	 types	 (Supporting	 information	Appendix	 S2).	 The	 environ‐
mental gradient consisted of two‐digit values between zero and one 
(Figure 1a). Community sizes varied from 10 to 200, by increments of 
10 (Figure 1b). Within this landscape, we placed a grid of 64 evenly 
spaced sampling locations, thus removing the spatial autocorrela‐
tion in environmental conditions (r =	−0.066)	and	community	 sizes	
(r =	−0.065)	between	sampling	points.

We adopted the approach of Sokol, Brown, and Barrett (2017) 
to build a metacommunity simulation program in R (Supporting 

information	Appendix	S2)	 that	allowed	us	 to	simulate	metacom‐
munities that consisted of several local communities assembled 
with or without spatially restricted dispersal, with varying degrees 
of habitat connectivity (i.e., immigration rates) and with strong, 
intermediate, and no environmental filtering. Other spatially im‐
plicit simulation approaches allow simulating metacommunity dy‐
namics under environmental filtering, stochastic dynamics, and 
immigration rates (Munoz et al., 2018). However, a strength of 
the simulation approach of Sokol et al. (2017) is that it is spatially 
explicit so that the pool of potential immigrants that can reach a 
community changes as the metacommunity evolves, that is, the 
simulated metacommunities never reach a stable equilibrium. We 
therefore deemed the approach by Sokol et al. (2017) to result in 
more	 realistic	metacommunities.	During	 the	 simulation	 process,	
the species composition within each community evolved over n 

F I G U R E  1  Landscape	and	parameter	settings	used	in	the	metacommunity	simulations.	All	simulations	were	conducted	on	a	landscape	
consisting of (a) an environmental gradient and (b) varying community sizes. Each raster pixel in (a) and (b) contained a local community. 
Black dots in (a) and (b) show the location of the local communities that were used in the subsequent analyses. The relative abundance of 
species in the regional species pool differed at the onset of the metacommunity simulations (time step 0), emulating a typical species pool 
with	few	common	and	many	rare	species.	(d)	In	scenarios	where	species	were	dispersal	limited,	the	colonization	weight	of	species	decreased	
with	distance	to	the	receptor	community.	(e)	In	scenarios	where	community	assembly	was	subjected	to	strong	environmental	filtering,	the	
niche width of species prevented them from being recruited into local communities with unsuitable environmental conditions. (f) Under 
intermediate environmental filtering, species were allowed to establish within habitats with suboptimal environmental conditions, but had 
lower recruitment probabilities in these habitats. (g) When species were neutral, recruitment probabilities were arbitrary with respect to 
environmental conditions. Figure layout inspired by Sokol et al. (2017)
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time steps from its initial state (time step0). The evolution of each 
community was determined by: the local environmental condi‐
tions; the size of the community; the geographic position of the 
community; the immigration rate; whether or not dispersal was 
spatially restricted; the habitat requirement of each species, that 
is, its fundamental niche; and the environmental tolerance of each 
species, that is, its niche width.

The species composition within a community at time step0 was 
determined by calculating the environmentally weighted recruit‐
ment probability of each sp species (RPsp) following Equations (1) 
and (2).

where UW.RPsp was the unweighted recruitment probability of spe‐
ciessp.	RAsp was the predetermined regional relative abundance for 
a	species.	RAsp was defined by randomly selecting 60 numbers (one 
for each species) of a β‐distribution with α = 1, and β = 10, thus en‐
suring a typical species abundance distribution with many rare and 
few common species in the metacommunity (Figure 1c). E was the 
environmental conditions, μ the species‐specific environmental op‐
tima, and σ the niche width. ΣUW.RPsp was UW.RPsp summed across 
all species in the community. The species composition within each 
community was then determined by sampling individuals of each 
species, with their probability of being sampled weighted according 
to their community‐specific RPsp, until the community was saturated.

During	 each	 subsequent	 time	 step,	 the	 species	 composition	
within each community was determined through three steps. First, 
the relative abundance of each species within an immigration pool 
was	calculated	(RAIPsp)	following	Equations	(3)	to	(5):

where	DBWsource community was the predetermined distance based 
weight (w.slope) with which to weight potential immigrants from 
source communities according to their geographic distance (r) to 
the receptor community. Site distances were scaled between zero 
and	one	prior	to	calculating	the	DBWsource community.	UW.RAIPsp was 
the unweighted relative abundance of speciessp in the immigration 

pool,	 RAsp in source community was the proportionate abundance of 
speciessp	 within	 a	 potential	 source	 community.	 RAIPsp was the 
weighted relative abundance of speciessp in the immigration pool, 
and ΣUW.RAIPsp was	 the	 sum	 of	 UW.RAIPsp for all species that 
might immigrate into the focal community. The relative contribu‐
tion of the relative abundance of each species within the focal 
community	(RAfocal community) at the previous time step, and that of 
the species in the immigration pool was weighted according to the 
immigration rate.

Where immigration rate was the predetermined weight assigned to 
the immigration pool, relative to the relative abundance of species 
within	 the	 focal	 community	during	 the	previous	 time	 step.	 Lastly,	
the species composition within the community at time t was de‐
termined following the same random selection procedure as when 
determining the species composition at time step0 (Equations 7–8). 
We reiterated the entire process from Equations (1)–(8) through t 
time steps.

2.6 | Data simulations

We simulated spatially restricted dispersal by weighing the recruit‐
ment probabilities of species into the immigration pool, based on the 
distance between the receptor and source community (Figure 1d). 
Under spatially unrestricted dispersal, species received the same 
weight regardless of the distance they would have to travel to enter 
a community (Sokol et al., 2017). The fundamental niche optima of 
species was defined by first allocating 20 species to each of three 
groups:	 those	with	optima	close	to	 the	 lower	 (0.12),	medium	 (0.5),	
or higher (0.88) end of the environmental gradient. We allowed the 
niche optima of species within each group to evolve following a 
Brownian motion under 1,000 simulations, but always bound within 
the	 initial	niche	optima	±0.125,	to	emulate	a	scenario	where	traits	
evolve within functional guilds.

We	 ran	 25	 independent	 metacommunity	 simulations	 for	 each	
of	the	15	metacommunity	scenarios	resulting	in	a	total	of	375	data‐
sets. Each metacommunity scenario was defined by species: having 
a	narrow	(0.1),	intermediate	(0.5),	or	a	wide	niche	width	(10);	having	
spatially restricted dispersal so that the distance based immigra‐
tion weight (Equation 3) decreased with the distance between sites 
(w.slope = 1,000) or being allowed to disperse across the entire land‐
scape (w.slope = 0). The immigration rate (Equation 6) was set to 
three	 different	 levels:	 low	 (0.25),	 intermediate	 (0.5),	 or	 high	 (0.75).	

(1)UW.RPsp=RAsp×exp

−(E−�sp )
2

2×�2sp

(2)RPsp=
UW.RPsp

∑

UW.RPsp

(3)DBWsource community=exp(−w×r
2)

(4)UW.RAIPsp=
∑

RAspinsourcecommunity×DBWsourcecommunity

(5)RAIPsp=
UW.RAIPsp

∑
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(6)
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In	 each	 of	 the	 metacommunity	 simulations,	 the	 metacommunity	
evolved	through	50	time	steps,	enough	for	the	dissimilarity	between	
the resulting metacommunity and the metacommunity at time step0 
to stabilize.

2.7 | Data preparations

We	sampled	64	evenly	spread	communities	within	each	of	the	375	
simulated metacommunities, emulating a scenario where ecolo‐
gists sample local communities within a wider regional metacom‐
munity (Figure 1a,b). We split the species optima that had been 
used in the data simulations into a two‐level categorical variable 
(low, high) to exemplify the typical scenario where functional re‐
sponse traits serve as proxies for species optima. The categorical 
trait variable was used in the subsequent analyses (hereafter re‐
ferred to as Trait).

2.8 | Applying UniCAA to the simulated datasets

2.8.1 | Step 1: Identifying the drivers of 
community assembly

We	 applied	 the	 UniCAA	 framework	 to	 each	 of	 the	 375	 datasets.	
Because of the large number of models, we did not perform the man‐
ual	 variable	 selection	 described	 above.	 Instead,	 we	 developed	 an	 R	

function that automatically constructed two versions (log‐transform‐
ing	vs.	untransformed	Distance	to	source	habitat)	of	a	full	model	(i.e.,	
including all interaction terms and their main effects) and selected the 
version	with	the	lowest	Bayesian	information	criterion	(BIC)	value.	We	
then used the automated model selection function dredge()	in	MuMIn	
(Barton,	2013)	to	select	the	final	model	with	the	lowest	BIC	value.	We	
applied	this	model	selection	procedure	on	each	of	 the	375	datasets,	
extracted the z‐score (effect size) for each parameter estimate from the 
25	models	per	scenario,	and	calculated	the	average	z‐score, its standard 
deviation, the minimum and maximum z‐scores, as well as the number 
of simulations in which a fixed effect term was included. We used the 
DHARMa	package	in	R	(Hartig,	2018)	to	validate	the	final	model	for‐
mulations by visualy inspecing the residual distributions for each of the 
375	models.	We	did	not	detect	any	systematic	relationships	between	
the standardized residuals and the predicted values of the models, and 
only	in	few	cases	within	each	of	the	15	scenarios	did	the	residual	dis‐
tribution deviate from normality. These cases were mainly restricted to 
scenarios	with	either	spatially	restricted	dispersal	and/or	environmen‐
tal filtering and low immigration rates. This indicates that, overall, the 
models	were	correctly	specified	(Supporting	information	Appendix	S3).

2.8.2 | Step 2: Final model versus null model

We tested if the relationships between species occurrences and 
spatially restricted dispersal, environmental filtering, and ecological 

F I G U R E  2   Step 1—without spatially restricted dispersal. Metacommunities were simulated with (a–c) or without (d–f) environmental 
filtering and with low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Black points show the mean and 
red points show the minimum and maximum effect size for each explanatory term. Gray dashed lines mark the cutoff value for statistical 
significance (i.e., an absolute value of two). Numbers above the mean z‐values	show	the	number	of	models	(out	of	25)	in	which	a	term	was	
included. Positive and negative effect sizes indicate if community assembly processes led to an increase or decrease in species occurrence, 
respectively. For the Community size × Commonness interaction, a positive effect size indicates that the rate of increase in occurrence with 
community size depends on the commonness of species. For the environmental conditions × functional traits interaction, a positive effect 
size indicates that species occurrences along the environmental gradient (filter) depend on the functional traits of species
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drift that we had observed in step 1, differed from null models in 
which species distributions were stochastic. We applied step 2 of 
the	UniCAA	framework	to	all	15	scenarios	with	null	models	consist‐
ing of 99 randomizations as the fn.UniCAA.sim.eval function showed 
the null models saturated at this point.

To test whether the relationship between patterns of species 
occurrence and community assembly processes differed between 
the empirical data (in our case, simulated data) and the simulated 
data (null models with 99 randomizations), we calculated the ef‐
fect sizes (z‐scores)	from	the	interaction	terms	with	Data	source.	
Effect sizes (z‐scores) larger than an absolute value of two (1.96) 
indicated	 a	 statistically	 significant	 difference.	 All	 analyses	 and	
data	simulations	were	conducted	in	R	v.	3.5.0	(R	core	team,	2018),	
and	GLMMs	were	 fitted	using	 the	R	package	 lme4	 (Bates	et	 al.,	
2015).

3  | RESULTS

Using	simulated	data	allowed	us	to	test	whether	the	UniCAA	consist‐
ently retrieved the processes behind community assembly in meta‐
communities simulated with varying strengths of spatially restricted 
dispersal, environmental filtering, and stochasticity (Figure 1). The 
variables to be included in the second step of the analyses were 
selected in step 1 (Figures 2 and 3). The parameter estimates for 
these variables were compared with those obtained through null 
models	in	step	2	of	the	analyses.	UniCAA	had	low	type‐I	error	rates	
(i.e.,	<5%	false	positives,	Table	2,	Figures	4	and	5)	and	the	Distance	
to source habitat variable was never significant in more than one 
replication for a given scenario that was simulated without spatially 
restricted dispersal (Figures 2 and 4). The Trait × Environmental 
conditions term was never included in models that were simulated 

F I G U R E  3   Step 1—with spatially restricted dispersal. Metacommunities were simulated with strong (a–c), intermediate (d–f) or without 
environmental filtering (g–i) and with low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Black points 
show the mean and red points show the minimum and maximum effect size for each term. Gray dashed lines mark the cutoff value for 
statistical significance (i.e., an absolute value of two). Numbers above the mean z‐values	show	the	number	of	models	(out	of	25)	in	which	
a parameter was included. Positive and negative effect sizes indicate if community assembly processes led to an increase or decrease in 
species occurrence, respectively. For the community size × commonness interaction, a positive effect size indicates that the rate of increase 
in occurrence with community size depends on the commonness of species. For the environmental conditions × functional traits interaction, 
a positive effect size indicates that species occurrences along the environmental gradient (filter) depend on the functional traits of species
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without	environmental	filtering	(Figures	2d–f,	3g–I,	4d–f	and	5g–i).	
Moreover, the Community size × Commonness interaction only dif‐
fered from the null model in one case when metacommunities were 
simulated to be stochastic (i.e., without spatially restricted dispersal, 
high	immigration	rates,	and	no	environmental	filtering).	Type‐II	error	
rates	 were	 also	 acceptable	 [i.e.,	 <20%	 false	 negatives,	 (Johnson,	
Baary,	Ferguson,	&	Müller,	2015)]	as	UniCAA	only	failed	to	identify	
the	Distance	to	source	habitat	variable	as	significant	in	two	models	
simulated with high immigration rates and no environmental filtering 
(Table	2).	Moreover,	UniCAA	did	not	confound	stochastic	with	de‐
terministic metacommunities as the Community size × Commonness 
interaction term consistently differed between the null model data 
and the empirical data when included in scenarios with environmen‐
tal	filtering	(Figures	4a–c	and	5a–f).

UniCAA	correctly	 identified	the	 influence	of	environmental	fil‐
tering in all scenarios. When metacommunities were simulated with 
environmental filtering, the interaction term between Trait and 
Environmental conditions was included in all models (Figures 2a–c 
and 3a–f) and its influence differed between the empirical and the 
null	models	(Figures	4a–c	and	5a–f),	irrespective	of	spatially	restricted	
dispersal and immigration rates (Table 2). The Trait × Environmental 
conditions term was never included in the final models when meta‐
communities were simulated without niche‐based differences be‐
tween species.

Spatially restricted dispersal led to decreasing probabili‐
ties of species occurrence as the distance to the nearest site 
containing conspecifics increased (i.e., negative z‐values for 
“Dist”	 in	 Figure	 3a–i)	 and	 its	 influence	 depended	 on	 both	 the	

TA B L E  2  The	number	of	models	(out	of	25)	in	which	the	relationships	between	species	occurrences	and	the	drivers	of	community	
assembly	differed	between	the	null	model	and	the	empirical	models	in	step	2	of	the	UniCAA	analyses.	Results	from	each	of	the	15	scenarios	
are ordered according to whether or not metacommunities were structured by: spatially restricted dispersal; environmental filtering; and 
low, intermediate, and high immigration rates. The explanatory variables (fixed effect terms) were: the interaction term between the relative 
abundance of a species outside the focal community (Commonness) and the size of the focal community (Community size); the species‐
specific	geographic	distance	from	a	focal	community	to	the	nearest	community	where	the	species	was	found	(Distance	to	source	habitat);	
and the interaction term between the species‐specific functional traits (Trait) and the community‐specific environmental conditions 
(Environmental conditions). For each fixed effect term, the number of models in which the null model showed a more positive (z	≥	2)	or	
negative (z ≤ −2) relationship with species occurrences than that found in the empirical data is given. Fixed effect terms that were not 
included in the final models in step 1, and therefore neither in step 2 are marked with n.a. The number of models per scenario that contained 
each term is shown in Figures 2 and 3

Scenario ‐ step 2

Community size 
× Commonness Commonness Community size

log(Distance to 
source habitat)

Distance to 
source habitat

Trait × Environmental 
conditions

z > 2 z < 2 z > 2 z < 2 z > 2 z < 2 z > 2 z < 2 z > 2 z < 2 z > 2 z < 2

No dispersal limitation

No env. filtering

Low 25 0 25 0 25 0 1 0 0 0 n.a. n.a.

Intermediate 9 1 13 0 12 0 0 0 0 0 n.a. n.a.

High 1 0 1 0 0 0 0 0 1 0 n.a. n.a.

Strong env. filtering

Low n.a. n.a. 17 0 25 0 n.a. n.a. 0 1 0 25

Intermediate 2 0 25 0 25 0 1 0 n.a. n.a. 0 25

High 6 0 25 0 25 0 n.a. n.a. 1 0 0 25

Dispersal	limited

No env. filtering

Low 25 0 25 0 25 0 14 0 3 0 n.a. n.a.

Intermediate 25 0 25 0 25 0 22 0 1 0 n.a. n.a.

High 21 0 25 0 25 0 19 0 4 0 n.a. n.a.

Intermediate	Env.	filtering

Low 25 0 25 0 25 0 4 0 n.a. n.a. 0 25

Intermediate 25 0 25 0 25 0 18 0 n.a. n.a. 0 25

High 25 0 25 0 25 0 23 0 n.a. n.a. 0 25

Strong env. filtering

Low n.a. n.a. 18 0 25 0 7 0 1 0 0 25

Intermediate n.a. n.a. 25 0 25 0 7 0 1 0 0 25

High 4 0 25 0 25 0 14 0 n.a. n.a. 0 25
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immigration rate and the presence of environmental filtering. 
When immigration rates were reduced (low, intermediate), fewer 
models	contained	the	Distance	to	source	habitat	variable	with	a	
parameter estimate that differed from the null model (Figures 
3g–h and g–h) compared to when immigration rates were high 
(Figures	3i	 and	5i).	 Similarly,	 under	high	 immigration	 rates,	 the	
number	of	models	containing	significant	terms	for	the	Distance	
to source habitat variable were reduced under strong environ‐
mental	 filtering	 (Figures	 3c	 and	 5c)	 compared	 to	 under	 inter‐
mediate	(Figures	3f	and	5f)	or	 in	 lieu	of	environmental	filtering	
(Figures	3i	and	5i).

Species occurrences deviated more from purely stochastic 
distributions when metacommunities had been simulated with 
reduced immigration rates, spatially restricted dispersal and (or) 
environmental filtering. When immigration rates were low, the 
Community size × Commonness term, if included in the model, al‐
ways differed between the empirical data and the null model. This 
was also the case for scenarios simulated with either or both of 
spatially restricted dispersal and environmental filtering except for 
one scenario (spatially restricted dispersal, high immigration rates, 
no environmental filtering) where the estimates for Community 
size × Commonness did not deviate from the null model in four 
cases. Thus, increasing immigration rates will—in rare instances—
generate the same patterns of species occurrences as expected 
from stochastic community assembly, even if dispersal is spatially 
restricted, as long as species are neutral with regards to their 
niches.

4  | DISCUSSION

Simulating metacommunities with varying strengths of environmen‐
tal filtering and dispersal limitation allowed us to assess whether 
UniCAA	was	able	 to	 identify	 the	processes	behind	community	as‐
sembly.	UniCAA	had	acceptable	type‐I	and	type‐II	error	rates	when	
testing for the influence of spatially restricted dispersal, stochastic‐
ity,	and	environmental	filtering.	UniCAA	also	captured	the	interde‐
pendencies of the three processes through, for example, reduced 
influence of spatially restricted dispersal under strong environmen‐
tal	filtering.	A	major	innovation	of	the	UniCAA	framework	is	the	use	
of flexible mixed effect models to test the influence of all three pro‐
cesses simultaneously, by comparing parameter estimates obtained 
from the empirical data to those obtained from a null model (Table 2, 
Figures	4	and	5).

Our	results	show	that	the	UniCAA	framework	correctly	iden‐
tified stochastic species distributions. Such distributions scale 
up to neutral metacommunities in which species are neither en‐
vironmentally	 filtered	nor	dispersal	 limited	 (Leibold	et	al.,	2004).	
However, the influence of the Community size × Commonness in‐
teraction differed between the “empirical data” and the null mod‐
els when immigration rates were intermediate and low, because 
communities became more isolated, and random extinctions thus 
became less spatially synchronous. This is in line with the concept 
of homogenizing dispersal whereby high dispersal rates decrease 
spatial species turnover and lead to the species composition 
predicted under pure drift (Stegen et al., 2013). The null model 

F I G U R E  4   Step 2—without spatially restricted dispersal. Effect sizes (z‐values) from step 2 of the differences in regression slopes 
for community assembly processes between the “empirical” data (i.e., simulated “empirical” datasets) and null models for simulated 
metacommunities without dispersal limitation. Metacommunities were simulated with (a–c) or without (d–f) environmental filtering and with 
low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Blue points show the z‐value for the interaction terms 
between the drivers of community assembly, identified in step 1, and the data source (“empirical” vs. null model). Points are shaded as to 
reflect the density distribution of z‐values so that dark blue indicates a high density of models with the corresponding z‐value. Positive effect 
sizes show that the rate of change in species occurrence brought on by a community assembly process was weaker than expected given 
the	null	model.	Negative	effect	sizes	show	the	opposite,	whereas	effect	sizes	in	the	interval	−2:2	show	that	the	rate	of	change	in	species	
occurrence matches that expected from the null model (i.e., it is neutral)
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approach	in	UniCAA	bears	resemblance	to	the	neutral	prior	imple‐
mented	 in	CATS	[“Community	Assembly	through	Trait	Selection”	
(Shipley,	Vile,	&	Garnier,	2006)]	where	the	goodness‐of‐fit	statistic	
(R2) of an empirical model is compared to that of a prior distribu‐
tion.	 Similarly	 to	 the	 null	model	 approach	 in	UniCAA,	 the	CATS	
approach can be used to assess how much the relationship be‐
tween local species abundances and their relative abundances in 
the metacommunity diverges from what would be expected under 
stochastic community assembly (Shipley, Paine, & Baraloto, 2012). 
However, the comparisons between the empirical and null models 
differ.	CATS	bases	 this	comparison	on	the	variance	explained	by	
the	empirical	versus	the	prior	distribution,	whereas	UniCAA	tests	
if	 the	 relationships	 (regression	 slopes)	 differ.	 Another	 important	
distinction	between	CATS	and	UniCAA	is	that	by	including	infor‐
mation	 on	 the	 spatial	 location	 of	 communities,	 UniCAA	 allows	
estimating the influence of spatially restricted dispersal on local 
occurrences.

Distinguishing	 between	 the	 influence	 of	 environmental	 filter‐
ing and dispersal limitation is often problematic because environ‐
mental conditions tend to be spatially correlated between sampled 
habitats	(Gilbert	&	Lechowicz,	2004;	Peres‐Neto	&	Legendre,	2010).	
Although	 our	 sampling	 scheme	 reduced	 the	 spatial	 correlation	 in	

environmental conditions between our samples, thus allowing for 
meaningful parameter estimates, the underlying environmental con‐
ditions and community sizes that generated patterns of species dis‐
tributions	were	still	spatially	correlated.	While	UniCAA—under	our	
simulation settings—did not confound spatially restricted dispersal 
with environmental filtering, the degree of environmental filtering 
did influence the influence of spatially restricted dispersal (Table 2). 
This was expected, since the spatial component of community as‐
sembly disappears under strong environmental filtering, because 
species are unable to disperse across the landscape (Sokol et al., 
2017).	Using	the	UniCAA	approach,	we	were	able	to	show	how	the	
influence of spatially restricted dispersal becomes more important 
as the influence of environmental filters decrease and immigration 
rates	increase	(Table	2,	Figure	5c).	Testing	the	influence	of	spatially	
restricted dispersal and environmental filtering is possible using other 
frameworks (e.g., Ovaskainen et al., 2017). However, existing frame‐
works do not make it possible to conclude that community assembly 
is stochastic if neither parameter estimates for spatially restricted 
dispersal or environmental filtering are significant, since one may not 
have included all relevant traits or environmental gradients (Vellend 
et	al.,	2014).	The	null	model	approach	 in	UniCAA	allows	 testing	 if	
patterns of species occurrences differ from what would be expected 

F I G U R E  5   Step 2—with spatially restricted dispersal. Effect sizes (z‐values) of the differences in regression slopes for community 
assembly processes between the “empirical” data (i.e., simulated “empirical” datasets) and null models for simulated metacommunities with 
dispersal limitation. Metacommunities were simulated with strong (a–c), intermediate (d–f) or without environmental filtering (g–i) and with 
low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Blue points show the z‐value for the interaction terms 
between the drivers of community assembly, identified in step 1, and the data source (“empirical” vs. null model). Points are shaded as to 
reflect the density distribution of z‐values so that dark blue indicates a high density of models with the corresponding z‐value. Positive effect 
sizes show that the rate of change in species occurrence brought on by a community assembly process was weaker than expected given 
the	null	model.	Negative	effect	sizes	show	the	opposite,	whereas	effect	sizes	in	the	interval	−2:2	show	that	the	rate	of	change	in	species	
occurrence matches that expected from the null model (i.e., it is neutral).
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under purely stochastic community assembly. Environmental filter‐
ing will for instance lead to species aggregating within sites with 
suitable	environmental	conditions	 (Kraft	et	al.,	2015).	Species	may	
therefore have locally large populations, and a relatively high relative 
commonness, despite having restricted distributions. Under such 
scenarios, the mean probability of occurrence will be lower than ex‐
pected from the regional Community size × Commonness under the 
null model setting (i.e., positive z‐values in Table 2).

In	 our	 data	 simulations	 and	 analyses,	 all	 species	 had	 similar	
dispersal capabilities. When testing the role of spatially restricted 
dispersal,	that	is,	Distance	to	source	habitat,	it	is	possible	to	test	
whether dispersal abilities differ among trait groups by adding an 
interaction	term	between	the	Distance	to	source	habitat	variable	
and	that	trait	(Sydenham	et	al.,	2017).	If	the	slopes	for	Distance	to	
source habitat differ significantly between trait groups, this would 
indicate that the trait modifies dispersal limitation. This may be 
important, as dispersal capabilities are unlikely to be neutral with 
regard	to	species	identities	and	functional	traits	(Lowe	&	McPeek,	
2014).	Another	approach	is	to	use	β‐diversity indices—calculated 
for each trait group—to test for differences in dispersal limita‐
tion	 between	 trait	 groups	 (Anderson	 et	 al.,	 2011).	 Alternatively,	
one could compare differences in the relative importance of geo‐
graphic distance versus environmental drivers on species turnover 
(König, Weigelt, & Kreft, 2017). However, for continuous traits—
such	 as	 body	 size—this	 introduces	 some	 subjectivity	 as	 to	 how	
to	 classify	 each	 trait	 group.	 In	 contrast,	 it	 is	 possible	 to	 include	
continuous	traits	directly	in	the	UniCAA	framework.	The	flexibil‐
ity	 of	 the	UniCAA	approach	 also	 allows	 accounting	 for	 environ‐
mentally defined dispersal distances between sites. Since there 
were no large barriers to dispersal, species in our simulations were 
assumed to be able to disperse through all habitat types. Users 
of	the	UniCAA	should	consider,	whether	the	shortest	geographic	
distance between sites accurately reflects the shortest migratory 
path between communities (Graf, Schadt, Fernández, & Grimm, 
2007).	If	for	instance	large	water	bodies	separate	terrestrial	com‐
munities, then the shortest migratory path may follow the coast‐
line.	 In	 such	 cases,	 the	 species‐specific	 inter‐site	 distances	 used	
when	producing	 the	UniCAA	data	 frame	should	account	 for	 this	
by,	 for	 example,	 using	 the	 gridDistance	 function	 in	 the	 Raster	
package	in	R	(Hijmans	et	al.,	2016).	Moreover,	ecological	surveys/
datasets are unlikely to include all potential source habitats from 
which species can immigrate. The distance to source habitat may 
therefore produce slightly biased estimates. However, because 
UniCAA	estimates	 the	 average	decrease	 in	 occurrence	with	dis‐
tance to source habitat, the influence of such outliers is likely to 
be reduced as more species and sites are included in the analyses. 
Additionally,	the	spatial	configuration	of	study	sites	should	be	de‐
signed so that the spatial correlation in environmental conditions 
between	sites	is	reduced	(Gilbert	&	Lechowicz,	2004).

UniCAA	 incorporates	 the	 approach	 of	 Jamil	 et	 al.	 (2013),	
that is, tests the influence of environmental filtering through 
Trait × Environmental conditions terms. When formulating the mod‐
els, Jamil et al. (2013) included species‐specific random slopes for 

the environmental gradients. We did not include these in our anal‐
yses because including the unimodal responses of species along 
the environmental gradients as random slopes (i.e., second‐order 
polynomials for the environmental conditions) led to highly biased 
parameter estimates of the Trait × Environmental conditions term. 
However, if species are expected to show linear responses to an 
environmental gradient, and to differ in these responses, a model 
that includes random slopes should be compared to one that does 
not.	 Despite	 leaving	 out	 random	 slopes,	 our	 simulation	 study	
shows that the Trait × Environmental conditions term had accept‐
able	Type‐I,	and	Type‐II	errors;	UniCAA	always	identified	scenarios	
with	 environmental	 filtering	 (Table	2).	A	 strength	of	 incorporating	
the approach of Jamil et al. (2013) is that it allows testing multiple 
Trait × Environmental conditions terms simultaneously, thereby 
allowing for comparisons of their conditional effect sizes. This is 
particularly important since multiple environmental filters often in‐
fluence community assembly (de Bello et al., 2013).

Applying	UniCAA	requires	specific	hypotheses	about	trait–envi‐
ronment relationships in order to test the influence of environmental 
filtering, and therefore a set of functional traits for the species being 
studied. Whereas traits for some taxa have been compiled in data‐
bases	(e.g.,	Homburg,	Homburg,	Scäfer,	Schuldt,	&	Assman,	2014)—
or can be extracted from natural history books—identifying relevant 
traits requires a careful consideration of traits and environmental 
gradients	(Petchey	&	Gaston,	2006).	If	trait	data	are	not	available—
or if the aim is not to test how environmental filters select for spe‐
cies	based	on	specific	traits—then	other	approaches	than	UniCAA,	
such	as	variation	partitioning	(Borcard,	Legendre,	&	Drapeau,	1992;	
Peres‐Neto et al., 2006) will be more appropriate. Variation parti‐
tioning identifies the fractions of variation in species composition 
among communities that is attributable to environmental conditions, 
geographic distances, the combination of the two, and the unex‐
plained variation. Yet, whereas variation partitioning can be a more 
flexible	approach	than	UniCAA,	an	important	assumption	is	that	all	
relevant	environmental	gradients	(i.e.,	filters)	have	been	measured.	If	
not, one cannot conclude that the variation in species composition 
associated with spatial distances is not due to environmental filter‐
ing (Vellend et al., 2014).

We	believe	that	UniCAA	has	the	potential	 to	become	a	widely	
applicable framework, but we also recognize potential limitations 
and avenues for further development of the framework. Proxies for 
Distance	to	source	habitat,	Community	size,	and	Commonness	can	
be	difficult	to	obtain	for	un‐surveyed	areas.	UniCAA	does	therefore	
not replace the need for models that provide quantitative predic‐
tions of biodiversity in un‐surveyed areas and how this biodiversity 
may	 change	 according	 to	 environmental	 perturbations	 (D'Amen,	
Rahbek,	Zimmermann,	&	Guisan,	2017).	In	its	current	form,	UniCAA	
should therefore be viewed as a framework for testing hypotheses 
related to how dispersal limitation, abiotic ecological filtering, and 
ecological drift influence species occurrences within surveyed com‐
munities. Since environmental filtering can influence species abun‐
dances (Shipley et al., 2006), future studies should aim to expand the 
framework to model species abundances and test the applicability 
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of the framework when using such models. When extending the 
UniCAA	to	model	abundances,	one	should	consider	the	spatial	grain	
of the sampling units, particularly if biotic interactions are likely to 
be a central driver of differences in species abundances between 
sampling units. Not accounting for biotic interactions may be prob‐
lematic if communities are sampled at spatial grains where compe‐
tition or facilitation is important, such as at the habitat resource 
scale.	Incorporating	formal	tests	of	the	presence	and	strength	of	bi‐
otic	interactions	would	be	a	significant	contribution	to	the	UniCAA	
framework and is currently a central theme in community and macro‐
ecology	 (D'Amen,	Mod,	 Gotelli,	 &	 Guisan,	 2018;	Morales‐Castilla,	
Matias,	 Gravel,	 &	 Araújo,	 2015;	 Staniczenko,	 Sivasubramaniam,	
Suttle,	&	Pearson,	2017).	A	potentially	promising	avenue	 is	 to	use	
the residual correlation matrix between species (random effects) to 
identify species‐pairs that co‐occur less or more frequently than ex‐
pected	by	chance	(D'Amen	et	al.,	2018;	Warton	et	al.,	2015),	after	
having controlled for the influence of spatially restricted dispersal, 
environmental filtering, and stochasticity. Unfortunately, our meta‐
community simulator did not allow us to incorporate the influence 
of,	for	example,	competition	on	community	assembly.	If	competition	
reduces the number of ecologically similar species that occur within 
communities, the Trait × Environment interaction terms should still 
allow identifying if community assembly is environmentally filtered. 
In	such	cases,	the	influence	of	competition	should	simply	reduce	the	
mean probability of occurrence and abundance of species within 
trait groups. However, the probability of occurrence should still be 
greater in habitats with suitable environmental conditions than in 
habitats with non‐suitable environmental conditions.

5  | CONCLUSIONS

The	 UniCAA	 framework	 can	 be	 used	 to	 answer	 fundamental	
questions in ecology and enables exploration of novel questions. 
For instance, since the influence of ecological drift is estimated 
through the influence of Commonness—which may be deter‐
mined by speciation and large‐scale dispersal (Cornell & Harrison, 
2014)—UniCAA	enables	us	to	study	how	processes	that	shape	the	
regional species pool in turn influence community assembly. The 
framework can also be used to identify at which spatial scale (grain 
size) stochastic species distributions emerges as a consequence 
of non‐deterministic community assembly processes. Future de‐
velopments of the framework should focus on implementing the 
influence of biotic interactions, and also on developing null mod‐
els for stratifying randomizations within functional groups, as this 
may allow testing if species with similar traits show stochastic 
species distributions. Moreover, future studies should aim to com‐
pare	the	outputs	of	UniCAA	to	those	of	other	approaches	aimed	
at disentangling the influence of community assembly processes. 
To	accommodate	 the	use	of	UniCAA,	as	well	 as	 future	 improve‐
ments, we have included two R scripts to allow readers to directly 
apply and further develop the framework (Supporting information 
Appendixes	S1–S2).
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